Science.gov

Sample records for metal spallation target

  1. Radiochemical Determination of Polonium in Liquid Metal Spallation Targets

    NASA Astrophysics Data System (ADS)

    Hammer, B.; Schumann, D.; Neuhausen, J.; Wohlmuther, M.; Türler, A.

    2014-05-01

    The MEGAPIE target, consisting of 82 litres of lead-bismuth eutectic (LBE), was irradiated close to the megawatt range (0.8 MW) from August to December 2006 in the SINQ facility at PSI. After a cooling period of 5 years, a post-irradiation examination (PIE) program was started and samples were taken from different positions in the target. In this paper we focus on the measurement of α-emitting 208-210Po in the MEGAPIE target. The experimental results are compared with theoretical predictions obtained by FLUKA and MCNPX calculations.

  2. Initial observations of cavitation-induced erosion of liquid metal spallation target vessels at the Spallation Neutron Source

    SciTech Connect

    McClintock, David A; Riemer, Bernie; Ferguson, Phillip D; Carroll, Adam J; Dayton, Michael J

    2012-01-01

    During operation of the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory the mechanical properties of the AISI 316L target module are altered by high-energy neutron and proton radiation. The interior surfaces of the target vessel are also damaged by cavitation-induced erosion, which results from repetitive rapid heating of the liquid mercury by high-energy proton beam pulses. Until recently no observations of cavitation-induced erosion were possible for conditions prototypical to the SNS. Post irradiation examination (PIE) of the first and second operational SNS targets was performed to gain insight into the radiation-induced changes in mechanical properties of the 316L target material and the extent of cavitation-induced erosion to the target vessel inner surfaces. Observations of cavitation-induced erosion of the first and second operational SNS target modules are presented here, including images of the target vessel interiors and specimens removed from the target beam-entrance regions.

  3. Thermohydraulic behavior of the liquid metal target of a spallation neutron source

    SciTech Connect

    Takeda, Y.

    1996-06-01

    The author presents work done on three main problems. (1) Natural circulation in double coaxial cylindircal container: The thermohydraulic behaviour of the liquid metal target of the spallation neutron source at PSI has been investigated. The configuration is a natural-circulation loop in a concentric double-tube-type container. The results show that the natural-circulation loop concept is valid for the design phase of the target construction, and the current specified design criteria will be fulfilled with the proposed parameter values. (2) Flow around the window: Water experiments were performed for geometry optimisation of the window shape of the SINQ container for avoiding generating recirculation zones at peripheral area and the optimal cooling of the central part of the beam entrance window. Flow visualisation technique was mainly used for various window shapes, gap distance between the window and the guide tube edge. (3) Flow in window cooling channels: Flows in narrow gaps of cooling channels of two different types of windows were studied by flow visualisation techniques. One type is a slightly curved round cooling channel and the other is hemispherical shape, both of which have only 2 mm gap distance and the water inlet is located on one side and flows out from the opposite side. In both cases, the central part of the flow area has lower velocity than peripheral area.

  4. R&D-needs and opportunities to broaden the data base on materials and technology for liquid metal spallation targets

    SciTech Connect

    Bauer, G.S.

    1996-06-01

    Liquid metals have so far only been used to a very limited extent as spallation targets, notably at the ISOLDE-facility at CERN (Pb and La) to produce radioactive isotopes. Virtually no systematic studies have been carried out so far. The available data base is by no means sufficient to answer conclusively very important questions such as predicting reliably the service time of medium-to-high power target systems or determining precisely what technological measures are required and appropriate to maintain an optimum coolant quality, to mitigate the effects of pressure waves in short pulse sources and others. During the workshop several areas have been identified, where there exists an urgent need for improved knowledge and reliable data, and opportunities have been presented to acquire such knowledge and to generate such data. Opportunities to do such research and pertinent know-how, although scarce, are spread over institutions in several countries, and efforts to use these opportunities often require substantial resources both in man power and money. The workshop participants therefore unanimously supported the view that a coordinated and internationally concerted effort should be undertaken to make the best possible use of existing opportunities and available resources in order to develop the knowledge and technology necessary for the deployment and safe operation of target systems suitable for pulsed spallation neutron sources in the multi-megawatt range of beam power.

  5. Comments on the possibility of cavitation in liquid metal targets for pulsed spallation neutron sources

    SciTech Connect

    Carpenter J.M.

    1996-06-01

    When short pulses of protons strike the volume of a liquid target, the rapid heating produces a pressurized region which relaxes as the pressure wave propagates outward. Skala and Bauer have modeled the effects of the pressure wave impinging on the container walls of a liquid mercury target under ESS conditions. They find that high pressures and high wall stresses result if the medium is uniform, nearly incompressible liquid. The pressure and the stresses are much reduced if the liquid contains bubbles of helium, due to their high compressibility. However, according to the calculation, the pressure still reaches an atmosphere or so at the surface, which reflects the compressive wave as a rarefaction wave of the same magnitude. Even such modest underpressures can lead to the growth of bubbles (cavitation) at or near the surface, which can collapse violently and erode the container surface. It is necessary to avoid this. Leighton provides a wide ranging discussion of pressure waves in bubbly media, which may provide insights into the nature and control of cavitation phenomena. The paper surveys some of the relevant information from that source.

  6. Post irradiation examination of the Spallation Neutron Source target vessels

    SciTech Connect

    McClintock, David A; Ferguson, Phillip D; Mansur, Louis K

    2010-01-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory is an accelerator-based pulsed neutron source that produces high-energy spallation neutrons by bombarding liquid mercury flowing through a stainless steel target vessel. During operation the proton beam and spallation neutrons produce radiation damage in the AISI 316L austenitic stainless steel target vessel and water-cooled shroud. The beam pulses also cause rapid heating of the liquid mercury, which may produce cavitation erosion damage on the inner surface of the target vessel. The cavitation erosion rate is thought to be highly sensitive to beam power and predicted to be the primary life-limiting factor of target vessel. Though mitigation of cavitation erosion and radiation damage to the target vessel will be a critical for successful high-power operation of the SNS facility, the effects of radiation damage and cavitation erosion to target vessels in liquid metal spallation systems are not well known. Therefore preparations are being undertaken to perform post irradiation examination (PIE) of the liquid mercury target vessel and water-cooled shroud after end-of-life occurs. An overview of the planned PIE for the SNS target vessel is presented here, including proposed techniques for specimen acquisition and subsequent material properties characterization.

  7. Spallation neutron source target station issues

    SciTech Connect

    Gabriel, T.A.; Barnes, J.N.; Charlton, L.A.

    1996-10-01

    In many areas of physics, materials and nuclear engineering, it is extremely valuable to have a very intense source of neutrons so that the structure and function of materials can be studied. One facility proposed for this purpose is the National Spallation Neutron Source (NSNS). This facility will consist of two parts: (1) a high-energy ({approximately}1 GeV) and high powered ({approximately} 1 MW) proton accelerator, and (2) a target station which converts the protons to low-energy ({le} 2 eV) neutrons and delivers them to the neutron scattering instruments. This paper deals with the second part, i.e., the design and development of the NSNS target station and the scientifically challenging issues. Many scientific and technical disciplines are required to produce a successful target station. These include engineering, remote handling, neutronics, materials, thermal hydraulics, and instrumentation. Some of these areas will be discussed.

  8. Target Systems Overview for the Spallation Neutron Source

    SciTech Connect

    Gabriel, Tony A.; Barnes, John M.; Charlton, Lowell A.; Di Stefano, James; Farrell, Ken; Haines, John; Johnson, Jeffrey O.; Mansur, Louis K.; Pawel, Steve J.; Siman-Tov, Moshe; Taleyarkhan, Rusi; Wendel, Mark W.; McManamy, Thomas J.; Rennich, Mark J.

    2000-10-15

    The purpose and requirements of target systems as well as the technologies that are being utilized to design and build a state-of-the-art neutron spallation source, the Spallation Neutron Source, are discussed. Emphasis is given to the technology issues that present the greatest scientific challenges. The present facility configuration, ongoing analysis, and planned hardware research and development program are also described.

  9. Materials considerations for the National Spallation Neutron Source target

    SciTech Connect

    Mansur, L.K.; DiStefano, J.R.; Farrell, K.; Lee, E.H.; Pawel, S.J.; Wechsler, M.S.

    1997-08-01

    The National Spallation Neutron Source (NSNS), in which neutrons are generated by bombarding a liquid mercury target with 1 GeV protons, will place extraordinary demands on materials performance. The target structural material will operate in an aggressive environment, subject to intense fluxes of high energy protons, neutrons, and other particles, while exposed to liquid mercury and to water. Components that require special consideration include the Hg liquid target container and protective shroud, beam windows, support structures, moderator containers, and beam tubes. In response to these demands a materials R and D program has been developed for the NSNS that includes: selection of materials; calculations of radiation damage; irradiations, post irradiation testing, and characterization; compatibility testing and characterization; design and implementation of a plan for monitoring of materials performance in service; and materials engineering and technical support to the project. Irradiations are being carried out in actual and simulated spallation environments. Compatibility experiments in Hg are underway to ascertain whether the phenomena of liquid metal embrittlement and temperature gradient mass transfer will be significant. Results available to date are assessed in terms of the design and operational performance of the facility.

  10. Spallation target cryogenic cooling design challenges at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Jurns, J.; Ringnér, J.; Quack, H.; Arnold, P.; Weisend, J. G., II; Lyngh, D.

    2015-12-01

    The European Spallation Source (ESS) project is a neutron spallation source research facility currently being designed and built outside of Lund, Sweden. A linear accelerator delivers a 5 MW, 2.0 GeV, 62.5 mA proton beam to a spallation target to generate fast neutrons. Supercritical hydrogen circulates through two moderators surrounding the target, and transforms the fast neutrons emitted into slow neutrons, which are the final form of useful radiation. The supercritical hydrogen is in turn cooled from a helium cryogenic plant operating at 15-20 K. The supercritical cryogenic hydrogen circuit is a dynamic system, subject to significant changes in heat load. Proper pressure control of this system is critical to assure safe operation. The interaction between the hydrogen system and helium cryoplant poses unique challenges. This paper investigates the impact of the hydrogen system constraints on operation and control of the helium cryoplant, and suggests design options for the helium circuit.

  11. Overview of target systems for the Spallation Neutron Source

    SciTech Connect

    Gabriel, Tony A.; Barnes, John M.; Charlton, Lowell A.; DiStefano, James; Farrell, Ken; Haines, John; Johnson, Jeffrey O.; Mansur, Louis K.; Pawel, Steve J.; Siman-Tov, Moshe; Taleyarkhan, Rusi; Wendel, Mark W.; McManamy, Thomas J.; Rennich, Mark J.

    1997-01-01

    The purpose and requirements of target systems as well as the technologies that are being utilized to design and build a state-of-the-art neutron spallation source, the Spallation Neutron Source (SNS), are discussed. Emphasis is given to the technology issues that present the greatest scientific challenges. The present facility configuration, ongoing analysis, and the planned hardware research and development program are also described.

  12. Monte Carlo modeling of spallation targets containing uranium and americium

    NASA Astrophysics Data System (ADS)

    Malyshkin, Yury; Pshenichnov, Igor; Mishustin, Igor; Greiner, Walter

    2014-09-01

    Neutron production and transport in spallation targets made of uranium and americium are studied with a Geant4-based code MCADS (Monte Carlo model for Accelerator Driven Systems). A good agreement of MCADS results with experimental data on neutron- and proton-induced reactions on 241Am and 243Am nuclei allows to use this model for simulations with extended Am targets. It was demonstrated that MCADS model can be used for calculating the values of critical mass for 233,235U, 237Np, 239Pu and 241Am. Several geometry options and material compositions (U, U + Am, Am, Am2O3) are considered for spallation targets to be used in Accelerator Driven Systems. All considered options operate as deep subcritical targets having neutron multiplication factor of k∼0.5. It is found that more than 4 kg of Am can be burned in one spallation target during the first year of operation.

  13. Post-irradiation examination of the Spallation Neutron Source target module

    NASA Astrophysics Data System (ADS)

    McClintock, D. A.; Ferguson, P. D.; Mansur, L. K.

    2010-03-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory is an accelerator-based pulsed neutron source that produces high-energy spallation neutrons by bombarding liquid mercury flowing through a stainless steel target vessel. During operation the proton beam and spallation neutrons produce radiation damage in the AISI 316L austenitic stainless steel target vessel and water-cooled shroud. The beam pulses also cause rapid heating of the liquid mercury, which may produce cavitation erosion damage on the inner surface of the target vessel. The cavitation erosion rate is thought to be highly sensitive to beam power and predicted to be the primary life-limiting factor of the target module. Though cavitation erosion and radiation damage to the target vessel are expected to dictate its lifetime, the effects of radiation damage and cavitation erosion to target vessels in liquid metal spallation systems are not well known. Therefore preparations are being undertaken to perform post-irradiation examination (PIE) of the liquid mercury target vessel and water-cooled shroud after end-of-life occurs. An overview of the planned PIE for the SNS target vessel is presented here, including proposed techniques for specimen acquisition and subsequent material properties characterization.

  14. Target Operational Experience at the Spallation Neutron Source

    SciTech Connect

    Riemer, Bernie; Janney, Jim G; Kaminskas, Saulius; McClintock, David A; Rosenblad, Peter M

    2013-01-01

    The Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL) has operated at unprecedented power levels for a short-pulse spallation source. Target operations have been successful but not without difficulties. Three targets out of the eight used to date have ended life unexpectedly causing interruptions to the neutron science users. The first of a kind mercury target design experiences beam-pulse induced cavitation damage that is suspected in one of the target leaks. The two other targets suffered early failures due to defective welds. Diagnosing the causes of target leaks and understanding of the progression of cavitation erosion and radiation damage effects has made use of post-irradiation examination (PIE) capabilities. As a result of PIE, review of quality assurance practices and related investigations, design changes are being implemented and manufacturing oversight improved. This paper describes SNS target operating experience, including the more important observations and lessons learned.

  15. Overview of the Target Systems for the Spallation Neutron Source

    SciTech Connect

    Gabriel, T.A.; Haines, J.R.; McManamy, T.J.

    1998-10-15

    The technologies that are being utilized to design and build the target systems for a state-of-the-art accelerator- based neutron source, the Spallation Neutron Source (SNS), are discussed. Emphasis is given to the technology issues that present the greatest challenges. The present facility configuration, ongoing analysis, and planned research and development program are also described.

  16. Ductile-to-brittle transition in spallation of metallic glasses

    SciTech Connect

    Huang, X.; Ling, Z.; Dai, L. H.

    2014-10-14

    In this paper, the spallation behavior of a binary metallic glass Cu{sub 50}Zr{sub 50} is investigated with molecular dynamics simulations. With increasing the impact velocity, micro-voids induced by tensile pulses become smaller and more concentrated. The phenomenon suggests a ductile-to-brittle transition during the spallation process. Further investigation indicates that the transition is controlled by the interaction between void nucleation and growth, which can be regarded as a competition between tension transformation zones (TTZs) and shear transformation zones (STZs) at atomic scale. As impact velocities become higher, the stress amplitude and temperature rise in the spall region increase and micro-structures of the material become more unstable. Therefore, TTZs are prone to activation in metallic glasses, leading to a brittle behavior during the spallation process.

  17. The BLAIRR Irradiation Facility Hybrid Spallation Target Optimization

    SciTech Connect

    Simos N.; Hanson A.; Brown, D.; Elbakhshawn, M.

    2016-04-11

    BLAIRR STUDY STATUS OVERVIEW Beamline Complex Evaluation/Assessment and Adaptation to the Goals Facility Radiological Constraints ? Large scale analyses of conventional facility and integrated shield (concrete, soil)Target Optimization and Design: Beam-target interaction optimization Hadronic interaction and energy deposition limitations Single phase and Hybrid target concepts Irradiation Damage Thermo-mechanical considerations Spallation neutron fluence optimization for (a) fast neutron irradiation damage (b) moderator/reflector studies, (c) NTOF potential and optimization (d) mono-energetic neutron beam

  18. Energy deposition calculated by PHITS code in Pb spallation target

    NASA Astrophysics Data System (ADS)

    Yu, Quanzhi

    2016-01-01

    Energy deposition in a Pb spallation target irradiated by high energetic protons was calculated by PHITS2.52 code. The validation of the energy deposition and neutron production calculated by PHITS code was performed. Results show good agreements between the simulation results and the experimental data. Detailed comparison shows that for the total energy deposition, PHITS simulation result was about 15% overestimation than that of the experimental data. For the energy deposition along the length of the Pb target, the discrepancy mainly presented at the front part of the Pb target. Calculation indicates that most of the energy deposition comes from the ionizations of the primary protons and the produced secondary particles. With the event generator mode of PHITS, the deposit energy distribution for the particles and the light nulclei is presented for the first time. It indicates that the primary protons with energy more than 100 MeV are the most contributors to the total energy deposition. The energy depositions peaking at 10 MeV and 0.1 MeV, are mainly caused by the electrons, pions, d, t, 3He and also α particles during the cascade process and the evaporation process, respectively. The energy deposition density caused by different proton beam profiles are also calculated and compared. Such calculation and analyses are much helpful for better understanding the physical mechanism of energy deposition in the spallation target, and greatly useful for the thermal hydraulic design of the spallation target.

  19. Design of the Next Generation Spallation Target

    SciTech Connect

    Ferres, Laurent

    2016-06-13

    The purpose of this summary is to detail the studies that enable new nuclear physics experiments currently limited by neutron intensity or energy resolution available at LANSCE. The target is being redesigned so that the Flight Paths (FP) in the upper tier provide a higher intensity in the epithermal and medium energy ranges.

  20. Decommissioning and PIE of the MEGAPIE spallation target

    SciTech Connect

    Latge, C.; Henry, J.; Wohlmuther, M.; Dai, Y.; Gavillet, D.; Hammer, B.; Heinitz, S.; Neuhausen, J.; Schumann, D.; Thomsen, K.; Tuerler, A.; Wagner, W.; Gessi, A.; Guertin, A.; Konstantinovic, M.; Lindau, R.; Maloy, S.; Saito, S.

    2013-07-01

    A key experiment in the Accelerated Driven Systems roadmap, the MEGAwatt PIlot Experiment (MEGAPIE) (1 MW) was initiated in 1999 in order to design and build a liquid lead-bismuth spallation target, then to operate it into the Swiss spallation neutron facility SINQ at Paul Scherrer Institute. The target has been designed, manufactured, and tested during integral tests, before irradiation carried out end of 2006. During irradiation, neutron and thermo hydraulic measurements were performed allowing deep interpretation of the experiment and validation of the models used during design phase. The decommissioning, Post Irradiation Examinations and waste management phases were defined properly. The phases dedicated to cutting, sampling, cleaning, waste management, samples preparation and shipping to various laboratories were performed by PSI teams: all these phases constitute a huge work, which allows now to perform post-irradiation examination (PIE) of structural material, irradiated in relevant conditions. Preliminary results are presented in the paper, they concern chemical characterization. The following radio-nuclides have been identified by γ-spectrometry: {sup 60}Co, {sup 101}Rh, {sup 102}Rh, {sup 108m}Ag, {sup 110m}Ag, {sup 133}Ba, {sup 172}Hf/Lu, {sup 173}Lu, {sup 194}Hg/Au, {sup 195}Au, {sup 207}Bi. For some of these nuclides the activities can be easily evaluated from γ-spectrometry results ({sup 207}Bi, {sup 194}Hg/Au), while other nuclides can only be determined after chemical separations ({sup 108m}Ag, {sup 110m}Ag, {sup 195}Au, {sup 129}I, {sup 36}Cl and α-emitting {sup 208-210}Po). The concentration of {sup 129}I is lower than expected. The chemical analysis already performed on spallation and corrosion products in the lead-bismuth eutectic (LBE) are very relevant for further applications of LBE as a spallation media and more generally as a coolant.

  1. Target designs for the Brookhaven National Laboratory 5-MW pulsed spallation neutron source

    SciTech Connect

    Ludewig, H.; Todosow, M.; Powell, J.R.

    1996-03-01

    A feasibility study of a compact high power density target for a spallation neutron source was under-taken. The target arrangement consists primarily of heavy metal, with appropriate cooling passages. A high intensity proton beam of intermediate energy is directed at the target, where it interacts with the heavy metal nuclei. The subsequent spallation reactions produce several neutrons per proton resulting in an intense neutron source. The proton beam is assumed to havean energy of 5 MW, and to be cyclic with a repetition rate of 10Hz and 50Hz. The study was divided into two broad sections. First, an analysis of preliminary target designs was undertaken to ensure the overall feasibility of the concepts involved in the design and eventual construction of such a high power density target. Second, two proposed target designs, based on the first set of analyses, are investigated in more detail. Special care is taken to ensure that the neutron fluxes in the moderator are at the desired level no material compatibility problems exist,and the target is able to operate in a reliable and safe manner. Several target materials, coolant types, and target arrangements are investigated in the first section. The second section concentrates on a single target material and geometric arrangement. However, several structural material choices continue to be investigated with the aim of minimizing the effects of structural heating, and associated thermally induced stresses. In the final section the conclusions of this preliminary study are summarized.

  2. Development of solid state bonding processes for spallation neutron targets

    NASA Astrophysics Data System (ADS)

    Nelson, Andrew T.

    Solid state bonding techniques are of vital interest to current and future spallation target design efforts for both cladding and wider fabrication requirements. The distinct needs of both water and liquid metal cooled sources were considered in this study. Development of hot isostatic pressing techniques and process controls necessary for successful cladding of tungsten with tantalum as needed for existing water cooled designs constituted the first component of this work. A second independent study performed with an emphasis on high temperature lead bismuth coolants focused on exploration of uniaxial diffusion bonding methods to join tungsten and tantalum to HT9, a ferritic-martensitic stainless steel. A technique for evaluation of the thermal performance of joined interfaces was also developed and employed to study the diffusion bonded systems. Hot isostatic pressing performed at 1500°C for 3 hours and 200 MPa was found to produce an acceptable tantalum-tungsten bond provided extensive tantalum getter foil was used to wrap the target during the process. Excellent interface coherency was observed along with no oxidation or carburization on the tantalum surface. Uniaxial diffusion bonding at a temperature of 1060°C for 3 hours at pressures below 7 MPa resulted in excessive intermetallic formation at the HT9-tungsten and HT9-tantalum interfaces and significant residual interface porosity. Nickel and NiP interlayers were also observed to impart little benefit but did stabilize austenite with the HT9. A transition to lower temperatures and higher pressures improved bond quality. Conditions of 900°C for 3 hours and 70 MPa significantly improved both the HT9-tungsten and HT9-tantalum interfaces compared with the high temperature bond. An exploratory investigation of vanadium interlayers enhanced the result even further under these conditions and warrants further investigation. All interfaces produced in this study possessed a thermal resistance well below that needed

  3. Oak Ridge Spallation Neutron Source (ORSNS) target station design integration

    SciTech Connect

    McManamy, T.; Booth, R.; Cleaves, J.; Gabriel, T.

    1996-06-01

    The conceptual design for a 1- to 3-MW short pulse spallation source with a liquid mercury target has been started recently. The design tools and methods being developed to define requirements, integrate the work, and provide early cost guidance will be presented with a summary of the current target station design status. The initial design point was selected with performance and cost estimate projections by a systems code. This code was developed recently using cost estimates from the Brookhaven Pulsed Spallation Neutron Source study and experience from the Advanced Neutron Source Project`s conceptual design. It will be updated and improved as the design develops. Performance was characterized by a simplified figure of merit based on a ratio of neutron production to costs. A work breakdown structure was developed, with simplified systems diagrams used to define interfaces and system responsibilities. A risk assessment method was used to identify potential problems, to identify required research and development (R&D), and to aid contingency development. Preliminary 3-D models of the target station are being used to develop remote maintenance concepts and to estimate costs.

  4. Prototype Spallation Neutron Source Rotating Target Assembly Final Test Report

    SciTech Connect

    McManamy, Thomas J; Graves, Van; Garmendia, Amaia Zarraoa; Sorda, Fernando; Etxeita, Borja; Rennich, Mark J

    2011-01-01

    A full-scale prototype of an extended vertical shaft, rotating target assembly based on a conceptual target design for a 1 to 3-MW spallation facility was built and tested. Key elements of the drive/coupling assembly implemented in the prototype include high integrity dynamic face seals, commercially available bearings, realistic manufacturing tolerances, effective monitoring and controls, and fail-safe shutdown features. A representative target disk suspended on a 3.5 meter prototypical shaft was coupled with the drive to complete the mechanical tests. Successful operation for 5400 hours confirmed the overall mechanical feasibility of the extended vertical shaft rotating target concept. The prototype system showed no indications of performance deterioration and the equipment did not require maintenance or relubrication.

  5. Three-dimensional computational fluid dynamics for the Spallation Neutron Source liquid mercury target

    SciTech Connect

    Wendel, M.W.; Siman-Tov, M.

    1998-11-01

    The Spallation Neutron Source (SNS) is a high-power accelerator-based pulsed spallation source being designed by a multilaboratory team led by Oak Ridge National Laboratory (ORNL) to achieve high fluxes of neutrons for scientific experiments. Computational fluid dynamics (CFD) is being used to analyze the SNS design. The liquid-mercury target is subjected to the neutronic (internal) heat generation that results from the proton collisions with the mercury nuclei. The liquid mercury simultaneously serves as the neutronic target medium, transports away the heat generated within itself, and cools the metallic target structure. Recirculation and stagnation zones within the target are of particular concern because of the likelihood that they will result in local hot spots. These zones exist because the most feasible target designs include a complete U-turn flow redirection. Although the primary concern is that the target is adequately cooled, the pressure drop from inlet to outlet must also be considered because pressure drop directly affects structural loading and required pumping power. Based on the current design, a three-dimensional CFD model has been developed that includes the stainless steel target structure, the liquid-mercury target flow, and the liquid-mercury cooling jacket that wraps around the nose of the target.

  6. Cavitation and spallation in liquid metal droplets produced by subpicosecond pulsed laser radiation

    NASA Astrophysics Data System (ADS)

    Krivokorytov, M. S.; Vinokhodov, A. Yu.; Sidelnikov, Yu. V.; Krivtsun, V. M.; Kompanets, V. O.; Lash, A. A.; Koshelev, K. N.; Medvedev, V. V.

    2017-03-01

    The deformation and fragmentation of liquid metal microdroplets by intense subpicosecond Ti:sapphire laser pulses is experimentally studied with stroboscopic shadow photography. The experiments are performed at a peak intensity of 1014W /c m2 at the target's surface, which produces shock waves with pressures in the Mbar range. As a result of such a strong impact, the droplet is transformed into a complex-shaped hollow structure that undergoes asymmetrical expansion and eventually fragments. The hollow structure of the expanding target is explained by the effects of cavitation and spallation that follow the propagation of the laser-induced shock wave.

  7. The national spallation neutron source target station: A general overview

    SciTech Connect

    Gabriel, T.A.; Barnes, J.N.; Charlton, L.A.

    1997-06-01

    The technologies that are being utilized to design and build a state-of-the-art neutron spallation source, the National Spallation Neutron Source (NSNS), are discussed. Emphasis is given to the technology issues that present the greatest scientific challenges. The present facility configuration, ongoing analysis and the planned hardware research and development program are also described.

  8. Mesoscale polycrystal calculations of damage in spallation in metals

    SciTech Connect

    Tonks, Davis L; Bingert, John F; Livescu, Veronica; Luo, Shengnian; Bronkhorst, C A

    2010-01-01

    The goal of this project is to produce a damage model for spallation in metals informed by the polycrystalline grain structure at the mesoscale. Earlier damage models addressed the continuwn macroscale in which these effects were averaged out. In this work we focus on cross sections from recovered samples examined with EBSD (electron backscattered diffraction), which reveal crystal grain orientations and voids. We seek to understand the loading histories of specific sample regions by meshing up the crystal grain structure of these regions and simulating the stress, strain, and damage histories in our hydro code, FLAG. The stresses and strain histories are the fundamental drivers of damage and must be calculated. The calculated final damage structures are compared with those from the recovered samples to validate the simulations.

  9. Modeling astatine production in liquid lead-bismuth spallation targets

    NASA Astrophysics Data System (ADS)

    David, J. C.; Boudard, A.; Cugnon, J.; Ghali, S.; Leray, S.; Mancusi, D.; Zanini, L.

    2013-03-01

    Astatine isotopes can be produced in liquid lead-bismuth eutectic targets through proton-induced double charge exchange reactions on bismuth or in secondary helium-induced interactions. Models implemented into the most common high-energy transport codes generally have difficulties to correctly estimate their production yields as was shown recently by the ISOLDE Collaboration, which measured release rates from a lead-bismuth target irradiated by 1.4 and 1 GeV protons. In this paper, we first study the capability of the new version of the Liège intranuclear cascade model, INCL4.6, coupled to the deexcitation code ABLA07 to predict the different elementary reactions involved in the production of such isotopes through a detailed comparison of the model with the available experimental data from the literature. Although a few remaining deficiencies are identified, very satisfactory results are found, thanks in particular to improvements brought recently on the treatment of low-energy helium-induced reactions. The implementation of the models into MCNPX allows identifying the respective contributions of the different possible reaction channels in the ISOLDE case. Finally, the full simulation of the ISOLDE experiment is performed, taking into account the likely rather long diffusion time from the target, and compared with the measured diffusion rates for the different astatine isotopes, at the two studied energies, 1.4 and 1 GeV. The shape of the isotopic distribution is perfectly reproduced as well as the absolute release rates, assuming in the calculation a diffusion time between 5 and 10hours. This work finally shows that our model, thanks to the attention paid to the emission of high-energy clusters and to low-energy cluster induced reactions, can be safely used within MCNPX to predict isotopes with a charge larger than that of the target by two units in spallation targets, and, probably, more generally to isotopes created in secondary reactions induced by composite

  10. CFD analysis of a liquid mercury target for the National Spallation Neutron Source

    SciTech Connect

    Wendel, M.W.; Tov, M.S.

    1997-02-01

    Computational fluid dynamics (CFD) is being used to analyze the design of the National Spallation Neutron Source (NSNS) target. The target is subjected to the neutronic (internal) heat generation that results from the proton collisions with the mercury nuclei. The liquid mercury simultaneously serves as the neutronic target medium, transports away the heat generated within itself, and cools the metallic target structure. Recirculation and stagnation zones within the target are of particular concern because of the likelihood that they will result in local hot spots. These zones exist because the most feasible target designs include a complete U-turn flow redirection. Although the primary concern is that the target is adequately cooled, the pressure drop from inlet to outlet must also be considered because pressure drop directly affects structural loading and required pumping power. Various design options have been considered in an effort to satisfy these design criteria. Significant improvements to the design have been recommended based on the results. Detailed results are presented for the current target design including a comparison with published pressure-drop data. Comparisons are also made with forced convection heat transfer data for liquid mercury flow in circular tubes.

  11. Thermal-hydraulic simulation of mercury target concepts for a pulsed spallation neutron source

    SciTech Connect

    Siman-Tov, M.; Wendel, M.; Haines, J.

    1996-06-01

    The Oak Ridge Spallation Neutron Source (ORSNS) is a high-power, accelerator-based pulsed spallation neutron source being designed by a multi-laboratory team led by Oak Ridge National Laboratory to achieve very high fluxes of neutrons for scientific experiments. The ORSNS is projected to have a 1 MW proton beam upgradable to 5 MW. About 60% of the beam power (1-5 MW, 17-83 kJ/pulse in 0.5 microsec at 60 cps) is deposited in the liquid metal (mercury) target having the dimensions of 65x30x10 cm (about 19.5 liter). Peak steady state power density is about 150 and 785 MW/m{sup 3} for 1 MW and 5 MW beam respectively, whereas peak pulsed power density is as high as 5.2 and 26.1 GW/m{sup 3}, respectively. The peak pulse temperature rise rate is 14 million C/s (for 5 MW beam) whereas the total pulse temperature rise is only 7 C. In addition to thermal shock and materials compatibility, key feasibility issues for the target are related to its thermal-hydraulic performance. This includes proper flow distribution, flow reversals, possible {open_quotes}hot spots{close_quotes} and the challenge of mitigating the effects of thermal shock through possible injection of helium bubbles throughout the mercury volume or other concepts. The general computational fluid dynamics (CFD) code CFDS-FLOW3D was used to simulate the thermal and flow distribution in three preliminary concepts of the mercury target. Very initial CFD simulation of He bubbles injection demonstrates some potential for simulating behavior of He bubbles in flowing mercury. Much study and development will be required to be able to `predict`, even in a crude way, such a complex phenomena. Future direction in both design and R&D is outlined.

  12. Jet formation in spallation of metal film from substrate under action of femtosecond laser pulse

    SciTech Connect

    Inogamov, N. A.; Zhakhovskii, V. V.; Khokhlov, V. A.

    2015-01-15

    It is well known that during ablation by an ultrashort laser pulse, the main contribution to ablation of the substance is determined not by evaporation, but by the thermomechanical spallation of the substance. For identical metals and pulse parameters, the type of spallation is determined by film thickness d{sub f}. An important gauge is metal heating depth d{sub T} at the two-temperature stage, at which electron temperature is higher than ion temperature. We compare cases with d{sub f} < d{sub T} (thin film) and d{sub f} ≫ d{sub T} (bulk target). Radius R{sub L} of the spot of heating by an optical laser is the next (after d{sub f}) important geometrical parameter. The morphology of film bulging in cases where d{sub f} < d{sub T} on the substrate (blistering) changes upon a change in radius R{sub L} in the range from diffraction limit R{sub L} ∼ λ to high values of R{sub L} ≫ λ, where λ ∼ 1 μm is the wavelength of optical laser radiation. When d{sub f} < d{sub T}, R{sub L} ∼ λ, and F{sub abs} > F{sub m}, gold film deposited on the glass target acquires a cupola-shaped blister with a miniature frozen nanojet in the form of a tip on the circular top of the cupola (F{sub abs} and F{sub m} are the absorbed energy and the melting threshold of the film per unit surface area of the film). A new physical mechanism leading to the formation of the nanojet is proposed.

  13. Target station shielding issues at the spallation neutron source.

    PubMed

    Ferguson, P D; Gallmeier, F X; Iverson, E B; Popova, I I

    2005-01-01

    Recent spallation neutron source shielding activities in support of the neutron beam shutters and the hot cell walls are presented. Existing neutron beam shutters can be replaced with concrete at low power or with concrete and steel at approximately 500 kW of beam power. Potential voids in the hot cell walls are analysed to determine the impact on dose rates as a function of void size. A change in the type of shielding work is noted as the project moved from the early design stages as a 'green field' site to the current stage as a construction project nearing completion, where issues to be addressed are approaching retrofit-type analyses.

  14. Comparison of Different INC Physical Models of MCNPX to Compute Spallation Neutronics of LBE Target

    NASA Astrophysics Data System (ADS)

    Feghhi, Seyed Amir Hossein; Gholamzadeh, Zohreh; Tenreiro, Claudio; Alipoor, Zahra

    2015-04-01

    Spallation particles can utilize in different fields such as neutron scattering studies, external source for burning spent fuel as well as running subcritical reactors. Different computational particle transport codes are widely used to model spallation process into the heavy targets. Among these codes, MCNPX 2.6.0 comprises various intra nuclear cascade models for spallation calculations. Impact of different intra nuclear cascade models on calculation of neutronic parameters of LBE target has been evaluated in this work. Escaped neutron yield, energy deposition and residual nuclei production in the spallation target has been calculated using the physical models. A comparison between the computational and experimental has been carried out to validate the computational data. The simulation data showed there is a good conformity between the obtained data from Bertini/Drenser and Isabel/Drenser. The data achieved by Bertini/Abla and Isabel/Abla models are close to each other for the studied parameters as well. Among the studied models, CEM showed more discrepancies with experimental and other computational data. According to the obtained data, INCL4/Drenser, INCL4/Abla and Isabel/Drenser models can meet more agreements with experimental data.

  15. Development of a gas layer to mitigate cavitation damage in liquid mercury spallation targets

    SciTech Connect

    Felde, David K; Wendel, Mark W; Riemer, Bernie

    2008-01-01

    Establish of a gas layer between the flowing liquid and container wall is proposed for mitigating the effects of cavitation in mercury spallation targets. Previous work has shown an order of magnitude decrease in damage for a gas layer developed in a stagnant mercury target for an in-beam experiment. This work is aimed at extending these results to the more complex conditions introduced by a flowing mercury target system. A water-loop has been fabricated to provide initial insights on potential gas injection methods into a flowing liquid. An existing full-scale flow loop designed to simulate the Spallation Neutron Source target system will be used to extend these studies to mercury. A parallel analytical effort is being conducted using computational fluid dynamics (CFD) modeling to provide direction to the experimental effort. Some preliminary simulations of gas injection through a single hole have been completed and show behavior of the models that is qualitatively meaningful.

  16. Synthesis of neutron-rich transuranic nuclei in fissile spallation targets

    NASA Astrophysics Data System (ADS)

    Mishustin, Igor; Malyshkin, Yury; Pshenichnov, Igor; Greiner, Walter

    2015-04-01

    A possibility of synthesizing neutron-rich superheavy elements in spallation targets of Accelerator Driven Systems (ADS) is considered. A dedicated software called Nuclide Composition Dynamics (NuCoD) was developed to model the evolution of isotope composition in the targets during a long-time irradiation by intense proton and deuteron beams. Simulation results show that transuranic elements up to 249Bk can be produced in multiple neutron capture reactions in macroscopic quantities. However, the neutron flux achievable in a spallation target is still insufficient to overcome the so-called fermium gap. Further optimization of the target design, in particular, by including moderating material and covering it by a reflector could turn ADS into an alternative source of transuranic elements in addition to nuclear fission reactors.

  17. Investigation of Spheromak Plasma Cooling through Metallic Liner Spallation during Compression

    NASA Astrophysics Data System (ADS)

    Ross, Keeton; Mossman, Alex; Young, William; Ivanov, Russ; O'Shea, Peter; Howard, Stephen

    2016-10-01

    Various magnetic-target fusion (MTF) reactor concepts involve a preliminary magnetic confinement stage, followed by a metallic liner implosion that compresses the plasma to fusion conditions. The process is repeated to produce a pulsed, net-gain energy system. General Fusion, Inc. is pursuing one scheme that involves the compression of spheromak plasmas inside a liner formed by a collapsing vortex of liquid Pb-Li. The compression is driven by focused acoustic waves launched by gas-driven piston impacts. Here we describe a project to exploring the effects of possible liner spallation during compression on the spheromaks temperature, lifetime, and stability. We employ a 1 J, 10 ns pulsed YAG laser at 532nm focused onto a thin film of Li or Al to inject a known quantity of metallic impurities into a spheromak plasma and then measure the response. Diagnostics including visible and ultraviolet spectrometers, ion Doppler, B-probes, and Thomson scattering are used for plasma characterization. We then plan to apply the trends measured under these controlled conditions to evaluate the role of wall impurities during `field shots', where spheromaks are compressed through a chemically driven implosion of an aluminum flux conserver. The hope is that with further study we could more accurately include the effect of wall impurities on the fusion yield of a reactor-scale MTF system. Experimental procedures and results are presented, along with their relation to other liner-driven, MTF schemes. -/a

  18. Negative pressure and spallation in graphite targets under nano- and picosecond laser irradiation

    SciTech Connect

    Belikov, R S; Khishchenko, K V; Krasyuk, I K; Semenov, A Yu; Stuchebryukhov, I A; Rinecker, T; Schoenlein, A; Rosmej, O N; Tomut, M

    2015-05-31

    We present the results of experiments on the spallation phenomena in graphite targets under shock-wave nano- and picosecond irradiation, which have been performed on Kamerton-T (GPI, Moscow, Russia) and PHELIX (GSI, Darmstadt, Germany) laser facilities. In the range of the strain rates of 10{sup 6} – 10{sup 7} s{sup -1}, the data on the dynamic mechanical strength of the material at rapure (spallation) have been for the first time obtained. With a maximal strain rate of 1.4 × 10{sup 7} s{sup -1}, the spall strength of 2.1 GPa is obtained, which constitutes 64% of the theoretical ultimate tensile strength of graphite. The effect of spallation is observed not only on the rear side of the target, but also on its irradiated (front) surface. With the use of optical and scanning electron microscopes, the morphology of the front and rear surfaces of the targets is studied. By means of Raman scattering of light, the graphite structure both on the target front surface under laser exposure and on its rear side in the spall zone is investigated. A comparison of the dynamic strength of graphite and synthetic diamond is performed. (extreme light fields and their applications)

  19. Target delamination by spallation and ejecta dragging: An example from the Ries crater's periphery

    NASA Astrophysics Data System (ADS)

    Kenkmann, Thomas; Ivanov, Boris A.

    2006-11-01

    Subhorizontal shear planes (detachments) are observed in bedded limestones in the periphery of the Ries impact crater, Germany. These detachments occur at 0.8-1.8 crater radii distance from the crater center beneath deposits of the continuous ejecta blanket. Striations on detachment planes and offsets of markers indicate top-outward shearing with radial slip vectors. Detachments were found at depths between a few meters and more than 50 m beneath the target surface. The displacements along these faults range from meters to decameters and decrease with increasing depth and distance from the crater center. With increasing crater distance, detachment horizons tend to climb to shallower levels. Cross-cutting relationships to faults associated with the crater collapse indicate that detachment faulting started prior to the collapse but continued during crater modification. Numerical modeling of the cratering process shows that near-surface deformation outside the transient crater is induced by two separate mechanisms: (i) weak spallation by interference of shock and release waves near the target surface and (ii) subsequent dragging by the deposition of the ejecta curtain. Spallation causes an upward and outward directed motion of target material that increases in magnitude toward the target surface. It leads to decoupling of the uppermost target layers in the early cratering stage without totally disintegrating the rock. The subsequent arrival of the oblique impact shower of the ejecta curtain at the target surface delivers a horizontal momentum to the uppermost target area and results in a second horizontal displacement increment by dragging. With increasing depth this effect vanishes rapidly. Spallation decoupling and subsequent ejecta dragging of near-surface rocks is probably a general cratering mechanism around craters in layered targets with weak interbeds.

  20. Technical concepts for a long-wavelength target station for the Spallation Neutron Source.

    SciTech Connect

    Carpenter, J. M.

    2002-12-04

    The Spallation Neutron Source (SNS), a major new user facility for materials research funded by the U.S. Department of Energy (DOE), is under construction at Oak Ridge National Laboratory (ORNL), see the Spallation Neutron Source web site at: www.sns.gov/aboutsns/source/htm. The SNS will operate at a proton beam power of 1.4 MW delivered in short pulses at 60 Hz; this power level is an order of magnitude higher than that of the current most intense pulsed spallation neutron facility in the world, ISIS at the Rutherford-Appleton Laboratory in the United Kingdom: 160 kW at 50 Hz. When completed in 2006, the SNS will supply the research community with neutron beams of unprecedented intensity and a powerful, diverse instrument suite with exceptional capabilities. Together, these will enable a new generation of experimental studies of interest to chemists, condensed matter physicists, biologists, materials scientists, and engineers, in an ever-increasing range of applications. The Long-Wavelength Target Station (LWTS) complements the High-Power Target Station (HPTS) facility, which is already under construction, and will leverage the significant investment in the remainder of the complex, providing important new scientific opportunities. The fully equipped SNS will offer capabilities for neutron scattering studies of the structure and dynamics of materials with sensitivity, resolution, dynamic range, and speed that are unparalleled in the world.

  1. Optimized concept design of the target station of Chinese spallation neutron source

    NASA Astrophysics Data System (ADS)

    Yan, Q. W.; Yin, W.; Yu, B. L.

    2005-08-01

    CSNS (Chinese spallation neutron source) target station, with proton beam power of 100 kW, consists of Tungsten rectangular target surrounded by a beryllium/steel reflector, three wing-moderators and the shield having 18 beam tubes. The leakage neutron intensity from the target (with reflector) and heat deposition on the target, reflector and shield were calculated using Monte Carlo code NMTC/JAM respectively. It is reported that the target having rectangular section will produce more leakage neutron intensity than a square one for the same proton power. The temperature and thermal stress distribution in the target disks were calculated by the finite element method. The performances of moderators were calculated using MCNP-4A code.

  2. Cavitation damage prediction for spallation target vessels by assessment of acoustic vibration

    SciTech Connect

    Futakawa, Masatoshi; Kogawa, Hiroyuki; Hasegawa, Shoichi; Ikeda, Dr. Yujiro; Riemer, Bernie; Wendel, Mark W; Haines, John R; Bauer, Guenter; Naoe, Dr. Takashi; Okita, Dr. Kohei; Fujiwara, Dr. Akiko; Matsumoto, Dr. Yoichiro; Tanaka, Dr. Nobuatsu

    2008-01-01

    Liquid-mercury target systems for MW-class spallation neutron sources are being developed around the world. Proton beams are used to induce the spallation reaction. At the moment the proton beam hits the target, pressure waves are generated in the mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel leading to negative pressure that may cause cavitation along the vessel wall. In order to estimate the cavitation erosion, i.e. the pitting damage formed by the collapse of cavitation bubbles, off-beam tests were performed by using an electric magnetic impact testing machine (MIMTM), which can impose equivalent pressure pulses in mercury. The damage potential was defined based on the relationship between the pitting damage and the time-integrated acoustic vibration induced by impact due to the bubble collapses. Additionally, the damage potential was measured in on-beam tests carried out by using the proton beam at WNR (Weapons Neutron Research) facility in Los Alamos Neutron Science Center (LANSCE). In this paper, the concept of the damage potential, the relationship between the pitting damage formation and the damage potential both in off-beam and on-beam tests is shown.

  3. Gadolinium-148 and other spallation production cross section measurements for accelerator target facilities

    NASA Astrophysics Data System (ADS)

    Kelley, Karen Corzine

    At the Los Alamos Neutron Science Center accelerator complex, protons are accelerated to 800 MeV and directed to two tungsten targets, Target 4 at the Weapons Neutron Research facility and the 1L target at the Lujan Center. The Department of Energy requires hazard classification analyses to be performed on these targets and places limits on certain radionuclide inventories in the targets to avoid characterizing the facilities as "nuclear facilities." Gadolinium-148 is a radionuclide created from the spallation of tungsten. Allowed isotopic inventories are particularly low for this isotope because it is an alpha-particle emitter with a 75-year half-life. The activity level of Gadolinium-148 is low, but it encompasses almost two-thirds of the total dose burden for the two tungsten targets based on present yield estimates. From a hazard classification standpoint, this severely limits the lifetime of these tungsten targets. The cross section is not well-established experimentally and this is the motivation for measuring the Gadolinium-148 production cross section from tungsten. In a series of experiments at the Weapons Neutron Research facility, Gadolinium-148 production was measured for 600- and 800-MeV protons on tungsten, tantalum, and gold. These experiments used 3 mum thin tungsten, tantalum, and gold foils and 10 mum thin aluminum activation foils. In addition, spallation yields were determined for many short-lived and long-lived spallation products with these foils using gamma and alpha spectroscopy and compared with predictions of the Los Alamos National Laboratory codes CEM2k+GEM2 and MCNPX. The cumulative Gadolinium-148 production cross section measured from tantalum, tungsten, and gold for incident 600-MeV protons were 15.2 +/- 4.0, 8.31 +/- 0.92, and 0.591 +/- 0.155, respectively. The average production cross sections measured at 800 MeV were 28.6 +/- 3.5, 19.4 +/- 1.8, and 3.69 +/- 0.50 for tantalum, tungsten, and gold, respectively. These cumulative

  4. RESULTS FROM CAVITATION DAMAGE EXPERIMENTS WITH MERCURY SPALLATION TARGETS AT THE LANSCE WNR IN 2008

    SciTech Connect

    Riemer, Bernie; Abdou, Ashraf A; Felde, David K; Sangrey, Robert L; Wendel, Mark W

    2010-01-01

    Damage assessment from proton beam induced cavitation experiments on mercury spallation targets done at the LANSCE WNR facility has been completed. The experiments investigated two key questions for the Spallation Neutron Source target, namely, how damage is affected by flow velocity in the SNS coolant channel geometry, and how damage scales with proton beam intensity at a given constant charge per pulse. With regard to the former question, prior in-beam experiments indicated that the coolant channel geometry with stagnant mercury was especially vulnerable to damage which might warrant a design change. Yet other results indicated a reduction in damage with the introduction of flow. Using more prototypic to the SNS, the 2008 experiment damage results show the channel is less vulnerable than the bulk mercury side of the vessel wall. They also show no benefit from increasing channel flow velocity beyond nominal SNS speeds. The second question probed a consensus belief that damage scales with beam intensity (protons per unit area) by a power law dependence with exponent of around 4. Results from a 2005 experiment did not support this power law dependence but some observations were inconsistent and unexplained. These latest results show weaker damage dependence.

  5. ACCELERATOR SYSTEMS MODIFICATIONS FOR A SECOND TARGET STATION AT THE OAK RIDGE SPALLATION NEUTRON SOURCE

    SciTech Connect

    Galambos, John D; Kim, Sang-Ho; Plum, Michael A

    2014-01-01

    A second target station is planned for the Oak Ridge Spallation Neutron Source. The ion source will be upgraded to increase the peak current from 38 to 49 mA, additional superconducting RF cavities will be added to the linac to increase the H beam energy from 938 to 1300 MeV, and the accumulator ring will receive modifications to the injection and extraction systems to accommodate the higher beam energy. After pulse compression in the storage ring one sixth of the beam pulses (10 out of 60 Hz) will be diverted to the second target by kicker and septum magnets added to the existing Ring to Target Beam Transport (RTBT) line. No further modifications will be made to the RTBT so that when the kicker and septum magnets are turned off the original beam transport lattice will be unaffected. In this paper we will discuss these and other planned modifications and upgrades to the accelerator facility.

  6. Mercury target R&D for the Oak Ridge spallation neutron source

    SciTech Connect

    Haines, J.R.; DiStefano, J.; Farrell, K.; Gabriel, T.A.

    1996-06-01

    The conceptual design for the Oak Ridge Spallation Neutron Source (ORSNS) incorporates liquid mercury as its reference target material. A flowing liquid target was selected mainly because of the increased power handling capability possible with the convective transport process. The major reasons for choosing mercury as the liquid target material are because it: (1) is a liquid at room temperature, (2) has good heat transport properties, and (3) has a high atomic number and mass density resulting in high neutron yield and source brightness. Since liquid targets are not widely utilized in presently operating accelerator targets and because of the challenges posed by the intense, pulsed thermal energy deposition ({approximately}20-100 kJ deposited during each 1-10 {mu}s pulse), considerable R&D is planned for the mercury target concept. The key feasibility issue that will be addressed in early R&D efforts are the effects of the thermal shock environment, which will include development and testing of approaches to mitigate these effects. Materials compatiblity and ES&H issues associated with the use of liquid mercury are also of major importance in early R&D efforts. A brief description of the mercury target design concept, results of initial evaluations of its performance characteristics, identification of its critical issues, and an outline of the R&D program aimed at addressing these issues will be presented.

  7. Design and Testing of a Prototype Spallation Neutron Source Rotating Target Assembly

    SciTech Connect

    Rennich, Mark J; McManamy, Thomas J; Graves, Van; Garmendia, Amaia Zarraoa; Sorda, Fernando

    2010-01-01

    The mechanical aspects of an extended vertical shaft rotating target have been evaluated in a full-scale mockup test. A prototype assembly based on a conceptual target design for a 1 to 3-MW spallation facility was built and tested. Key elements of the drive/coupling assembly implemented in the prototype include high integrity dynamic face seals, commercially available bearings, realistic manufacturing tolerances, effective monitoring and controls, and fail-safe shutdown features. A representative target disk suspended on a 3.5 meter prototypical shaft was coupled with the drive to complete the mechanical tests. After1800 hours of operation the test program has confirmed the overall mechanical feasibility of the extended vertical shaft rotating target concept. Precision alignment of the suspended target disk; successful containment of the water and verification of operational stability over the full speed range of 30 to 60 rpm were primary indications the proposed mechanical design is valid for use in a high power target station.

  8. Thick target spallation product yields from 800 MeV protons on tungsten

    SciTech Connect

    Ullmann, J.L.; Staples, P.; Butler, G.

    1994-07-01

    A number of newly-conceived accelerator based technologies will employ medium-energy particles stopping in thick targets to produce large numbers of neutrons. It is important to quantify the residual radionuclides in the target because one must understand what nuclei and decay gammas are produced in order to design adequate shielding, to estimate ultimate waste disposal problems, and to predict possible effects of accidental dispersion during operation. Because stopping-length targets are considered, radionuclide production must be known as a function of energy. Moreover, secondary particle production, mostly neutrons, implies a need to be able to calculate particle transport. To test the overall ability to calculate radionuclide yields, a thick-target measurement was carried out and the results compared to detailed calculations. Although numerous measurements of thin-target spallation yields have been made, there have been only a few measurements on thick systems. The most complete study showed results for Pb and U systems. In this contribution, the authors report on measurements made for a stopping-length W target. Special efforts were made to measure short-lived isotopes, and reliable data on isotopes with two or three minute half-lives were obtained.

  9. Cavitation Damage Experiments for Mercury Spallation Targets At the LANSCE WNR in 2008

    SciTech Connect

    Riemer, Bernie; Wendel, Mark W; Felde, David K

    2010-01-01

    Proton beam experiments investigating cavitation damage in short pulse mercury spallation targets were performed at LANSCE WNR in July of 2008. They included two main areas for investigation: damage dependence on mercury velocity using geometry more prototypic to the SNS target than previously employed and damage dependence on incident proton beam flux intensity. The flow dependence experiment employed six test targets with mercury velocity in the channel ranging from 0 to more than 4 m/s. Each was hit with 100 WNR beam pulses with peak proton flux equivalent to that of SNS operating at 2.7 MW. Damage dependence on incident proton beam flux intensity was also investigated with three intensity levels used on simple rectangular shaped targets without mercury flow. Intensity variation was imposed by focusing the beam differently while maintaining protons per pulse. This kept total energy deposited in each target constant. A fourth test target was hit with various beams: constant protons and varied spot size; constant spot size and varied protons. No damage will be assessed in this case. Instead, acoustic emissions associated with cavitation collapse were measured by laser Doppler vibrometer (LDV) from readings of exterior vessel motions as well as by mercury wetted acoustic transducers. This paper will provide a description of the experiment and present available results. Damage assessment will require several months before surface analysis can be completed and was not available in time for IWSMT-9.

  10. Geant4 simulations of the neutron production and transport in the n_TOF spallation target

    NASA Astrophysics Data System (ADS)

    Lerendegui-Marco, J.; Cortés-Giraldo, M. A.; Guerrero, C.; Quesada, J. M.

    2016-11-01

    The neutron production and transport in the spallation target of the n_TOF facility at CERN has been simulated with Geant4. The results obtained with the different hadronic Physics Lists provided by Geant4 have been compared with the experimental neutron flux in n_TOF-EAR1. The best overall agreement in both the absolute value and the energy dependence of the flux from thermal to 1GeV, is obtained with the INCL++ model coupled with the Fritiof Model(FTFP). This Physics List has been thus used to simulate and study the main features of the new n_TOF-EAR2 beam line, currently in its commissioning phase.

  11. Chemistry control analysis of lead alloys systems to be used as nuclear coolant or spallation target

    NASA Astrophysics Data System (ADS)

    Courouau, J.-L.; Robin, J.-C.

    2004-11-01

    This study presents the lead alloy system chemistry analysis for use as nuclear coolant or spallation target in ADS related systems in order to set down the needs for purification processes and monitoring. The study is limited here to the two main impurities, oxygen and iron. The analysis of the various potential pollution sources that may occur during the various operating modes is given, as well as a first pollution rate assessment. In order to limit the consequences in term of contamination (clogging) and corrosion, it is necessary to define specifications for operation as regards oxygen and iron content in the fluid. As iron cannot be measured and controlled up to now, the best specification is to set the oxygen as high as possible, defined by the cold leg interface temperature to ensure tolerable contamination, in order to maximize the oxidation area to ensure corrosion protection by self-healing oxide layer for the entire system.

  12. Nuclear Simulation and Radiation Physics Investigations of the Target Station of the European Spallation Neutron Source

    SciTech Connect

    Filges, Detlef; Neef, Ralf-Dieter; Schaal, Hartwig

    2000-10-15

    The European Spallation Neutron Source (ESS) delivers high-intensity pulsed particle beams with 5-MW average beam power at 1.3-GeV incident proton energy. This causes sophisticated demands on material and geometry choices and a very careful optimization of the whole target system. Therefore, complex and detailed particle transport models and computer code systems have been developed and used to study the nuclear assessment of the ESS target system. The purpose here is to describe the methods of calculation mainly based on the Monte Carlo code to show the performance of the ESS target station. The interesting results of the simulations of the mercury target system are as follows: time-dependent neutron flux densities, energy deposition and heating, radioactivity and afterheat, materials damage by radiation, and high-energy source shielding. The results are discussed in great detail. The validity of codes and models, further requirements to improve the methods of calculation, and the status of running and planned experiments are given also.

  13. Overview of the national spallation neutron source with emphasis on the target station

    SciTech Connect

    Gabriel, T.A.; Barnes, J.N.; Charlton, L.A.

    1997-06-01

    The technologies that are being utilized to design and build a state-of-the-art neutron spallation source, the National Spallation Neutron Source (NSNS), are discussed. Emphasis is given to the technology issues that present the greatest scientific challenges. The present facility configuration, ongoing analysis and the planned hardware research and development program are also described.

  14. R&D of A MW-class solid-target for a spallation neutron source

    NASA Astrophysics Data System (ADS)

    Kawai, Masayoshi; Furusaka, Michihiro; Kikuchi, Kenji; Kurishita, Hiroaki; Watanabe, Ryuzo; Li, Jing-Feng; Sugimoto, Katsuhisa; Yamamura, Tsutomu; Hiraoka, Yutaka; Abe, Katsunori; Hasegawa, Akira; Yoshiie, Masatoshi; Takenaka, Hiroyuki; Mishima, Katsuichiro; Kiyanagi, Yoshiaki; Tanabe, Tetsuo; Yoshida, Naoaki; Igarashi, Tadashi

    2003-05-01

    R&D for a MW-class solid target composed of tungsten was undertaken to produce a pulsed intense neutron source for a future neutron scattering-facility. In order to solve the corrosion of tungsten, tungsten target blocks were clad with tantalum by means of HIP'ing, brazing and electrolytic coating in a molten salt bath. The applicability of the HIP'ing method was tested through fabricating target blocks for KENS (spallation neutron source at KEK). A further investigation to certify the optimum HIP conditions was made with the small punch test method. The results showed that the optimum temperature was 1500 °C at which the W/Ta interface gave the strongest fracture strength. In the case of the block with a hole for thermocouple, it was found that the fabrication preciseness of a straight hole and a tantalum sheath influenced the results. The development of a tungsten stainless-steel alloy was tried to produce a bare tungsten target, using techniques in powder metallurgy. Corrosion tests for various tungsten alloys were made while varying the water temperature and velocity. The mass loss of tungsten in very slow water at 180 °C was as low as 0.022 mg/y, but increased remarkably with water velocity. Simulation experiments for radiation damage to supplement the STIP-III experiments were made to investigate material hardening by hydrogen and helium, and microstructures irradiated by electrons. Both experiments showed consistent results on the order of the dislocation numbers and irradiation hardness among the different tungsten materials. Thermal-hydraulic designs were made for two types of solid target system of tungsten: slab and rod geometry as a function of the proton beam power. The neutronic performance of a solid target system was compared with that of mercury target based on Monte Carlo calculations by using the MCNP code.

  15. Thermal-hydraulic analysis of the liquid mercury target for the national spallation neutron source

    SciTech Connect

    Siman-Tov, M.; Wendel, M.W.; Haines, J.R.; Rogers, M.

    1997-04-01

    The National Spallation Neutron Source (NSNS) is a high-energy, accelerator-based spallation neutron source being designed by a multi-laboratory team led by Oak Ridge National Laboratory (ORNL) to achieve very high fluxes of neutrons for scientific experiments. The NSNS is proposed to have a 1 MW beam of high-energy ({approximately}1 GeV) protons upgradable to 5 MW and operating at 60 Hz with a pulse duration of 0.5 {mu}s. Peak steady-state power density in the target is about 640 MW/m{sup 3} for 1 MW, whereas the pulse instantaneous peak power density is as high as 22,000 GW/m{sup 3}. The local peak temperature rise for a single pulse over it`s time-averaged value is only 6{degrees}C, but the rate of this temperature rise during the pulse is extremely fast ({approximately}12 million {degrees}C/s). In addition to the resulting thermal shock and materials compatibility concerns, key feasibility issues for the target are related to its thermal-hydraulic performance. These include proper flow distribution, flow reversals and stagnation zones, possible {open_quotes}hot spots{close_quotes}, cooling of the beam {open_quotes}window{close_quotes}, and the challenge of mitigating the effects of thermal shock through possible injection of helium bubbles. An analytic approach was used on the PC spreadsheet EXCEL to evaluate target design options and to determine the global T/H parameters in the current concept. The general computational fluid dynamics (CFD) code CFX was used to simulate the detailed time-averaged two-dimensional thermal and flow distributions in the liquid mercury. In this paper, an overview of the project and the results of this preliminary work are presented. Heat transfer characteristics of liquid mercury under wetting and non-wetting conditions are discussed, and future directions of the program in T/H analysis and R&D are outlined.

  16. Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration

    SciTech Connect

    Gohar, Yousry; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

    2011-04-01

    The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

  17. Conceptual moderator studies for the Spallation Neutron Source short-pulse second target station

    SciTech Connect

    Gallmeier, F. X.; Lu, W.; Riemer, B. W.; Zhao, J. K.; Herwig, K. W.; Robertson, J. L.

    2016-06-14

    We identified candidate moderator configurations for a short-pulse second target station (STS) at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) using a global optimizer framework built around the MCNPX particle transport code. Neutron brightness metrics were selected as the figure-of-merit. We assumed that STS would use one out of six proton pulses produced by an SNS accelerator upgraded to operate at 1.3 GeV proton energy, 2.8 MW power and 60 Hz repetition rate. The simulations indicate that the peak brightness can be increased by a factor of 5 and 2.5 on a per proton pulse basis compared to the SNS first target station for both coupled and decoupled para-hydrogen moderators, respectively. Additional increases by factors of 3 and 2 were demonstrated for coupled and decoupled moderators, respectively, by reducing the area of neutron emission from 100 × 100 mm2 to 20 × 20 mm2. Furthermore, this increase in brightness has the potential to translate to an increase of beam intensity at the instruments’ sample positions even though the total neutron emission of the smaller moderator is less than that of the larger. This is especially true for instruments with small samples (beam dimensions). The increased fluxes in the STS moderators come at accelerated poison and de-coupler burnout and higher radiation-induced material damage rates per unit power, which overall translate into lower moderator lifetimes. Our first effort decoupled group moderators into a cluster collectively positioning them at the peak neutron production zone in the target and having a three-port neutron emission scheme that complements that of a cylindrical coupled moderator.

  18. Conceptual moderator studies for the Spallation Neutron Source short-pulse second target station

    DOE PAGES

    Gallmeier, F. X.; Lu, W.; Riemer, B. W.; ...

    2016-06-14

    We identified candidate moderator configurations for a short-pulse second target station (STS) at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) using a global optimizer framework built around the MCNPX particle transport code. Neutron brightness metrics were selected as the figure-of-merit. We assumed that STS would use one out of six proton pulses produced by an SNS accelerator upgraded to operate at 1.3 GeV proton energy, 2.8 MW power and 60 Hz repetition rate. The simulations indicate that the peak brightness can be increased by a factor of 5 and 2.5 on a per proton pulse basis compared tomore » the SNS first target station for both coupled and decoupled para-hydrogen moderators, respectively. Additional increases by factors of 3 and 2 were demonstrated for coupled and decoupled moderators, respectively, by reducing the area of neutron emission from 100 × 100 mm2 to 20 × 20 mm2. Furthermore, this increase in brightness has the potential to translate to an increase of beam intensity at the instruments’ sample positions even though the total neutron emission of the smaller moderator is less than that of the larger. This is especially true for instruments with small samples (beam dimensions). The increased fluxes in the STS moderators come at accelerated poison and de-coupler burnout and higher radiation-induced material damage rates per unit power, which overall translate into lower moderator lifetimes. Our first effort decoupled group moderators into a cluster collectively positioning them at the peak neutron production zone in the target and having a three-port neutron emission scheme that complements that of a cylindrical coupled moderator.« less

  19. Conceptual moderator studies for the Spallation Neutron Source short-pulse second target station

    NASA Astrophysics Data System (ADS)

    Gallmeier, F. X.; Lu, W.; Riemer, B. W.; Zhao, J. K.; Herwig, K. W.; Robertson, J. L.

    2016-06-01

    Candidate moderator configurations for a short-pulse second target station (STS) at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) have been identified using a global optimizer framework built around the MCNPX particle transport code. Neutron brightness metrics were selected as the figure-of-merit. We assumed that STS would use one out of six proton pulses produced by an SNS accelerator upgraded to operate at 1.3 GeV proton energy, 2.8 MW power and 60 Hz repetition rate. The simulations indicate that the peak brightness can be increased by a factor of 5 and 2.5 on a per proton pulse basis compared to the SNS first target station for both coupled and decoupled para-hydrogen moderators, respectively. Additional increases by factors of 3 and 2 were demonstrated for coupled and decoupled moderators, respectively, by reducing the area of neutron emission from 100 × 100 mm2 to 20 × 20 mm2. This increase in brightness has the potential to translate to an increase of beam intensity at the instruments' sample positions even though the total neutron emission of the smaller moderator is less than that of the larger. This is especially true for instruments with small samples (beam dimensions). The increased fluxes in the STS moderators come at accelerated poison and de-coupler burnout and higher radiation-induced material damage rates per unit power, which overall translate into lower moderator lifetimes. A first effort was undertaken to group decoupled moderators into a cluster collectively positioning them at the peak neutron production zone in the target and having a three-port neutron emission scheme that complements that of a cylindrical coupled moderator.

  20. Impact cratering experiments into quartzite, sandstone and tuff: The effects of projectile size and target properties on spallation

    NASA Astrophysics Data System (ADS)

    Poelchau, Michael H.; Kenkmann, Thomas; Hoerth, Tobias; Schäfer, Frank; Rudolf, Michael; Thoma, Klaus

    2014-11-01

    Impact cratering experiments were performed on quartzite, tuff, and dry and water-saturated sandstones in the framework of the MEMIN research unit. 2.5-12 mm diameter projectiles were accelerated to ∼5 km/s. Evaluation of the resulting craters shows that crater volumes and crater efficiencies of large-scale experiments are greater than predicted by strength scaling laws. A method to approximate the transient crater volume shows that this effect is largely due to an increase in spallation. Strength scaling laws are used to determine the reduction of tensile strength in large-scale experiments and show a decrease by a factor of 1.8-3.6. This strength reduction can be correlated with a decrease in strain rate for larger projectiles, and with the Weibull theory of strength reduction for larger rock sample sizes. Further variations in spallation are observed between different target materials; a decrease in spall is suggested to be controlled by increased porosity.

  1. The MD simulation on the micro-mechanism of micro-spallation of metal Pb under shock loading

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Xiang, Meizhen; Hu, Haibo

    2013-06-01

    We study the micro-mechanism of crystal and nano-crystal metal Pb under shock loading by using the molecular dynamics method. A wide range of shock intensity is conducted with the lowest one just above the threshold of solid spallation, while the highest one higher than the threshold of shock melting. The spallation mechanism is dominated by cavitation, i.e., nucleation, growth and coalescence of voids, as well as the interplay of cavitation and melting. Our results discovered that the grain boundary plays an important effect in the case of releasing melting, while it is smaller effect on the cases of conventional spallation and shock melting. The cavitation and melting firstly form in the grain boundary, and they display mutual promotion: melting makes the void nucleation at smaller tensile stress; void growth speeds the melting. The spall strength dependence on the grain boundary, void and melting temperature is qualitatively discussed. Due to grain boundary effects, the spall strength of nano-crystalline Pb is less sensitive to shock intensity than single-crystalline Pb if cavitation occurs in solid state materials. If melting starts before cavitation, the spall strength of both nano-crystalline and single-crystalline Pb decreases dramatically as shock intensity increases.

  2. Modeling of water radiolysis at spallation neutron sources

    SciTech Connect

    Daemen, L.L.; Kanner, G.S.; Lillard, R.S.; Butt, D.P.; Brun, T.O.; Sommer, W.F.

    1998-12-01

    In spallation neutron sources neutrons are produced when a beam of high-energy particles (e.g., 1 GeV protons) collides with a (water-cooled) heavy metal target such as tungsten. The resulting spallation reactions produce a complex radiation environment (which differs from typical conditions at fission and fusion reactors) leading to the radiolysis of water molecules. Most water radiolysis products are short-lived but extremely reactive. When formed in the vicinity of the target surface they can react with metal atoms, thereby contributing to target corrosion. The authors describe the results of calculations and experiments performed at los alamos to determine the impact on target corrosion of water radiolysis in the spallation radiation environment. The computational methodology relies on the use of the Los Alamos radiation transport code, LAHET, to determine the radiation environment, and the AEA code, FACSIMILE, to model reaction-diffusion processes.

  3. Formation of x-ray Newton's rings from nano-scale spallation shells of metals in laser ablation

    NASA Astrophysics Data System (ADS)

    Nishikino, Masaharu; Hasegawa, Noboru; Tomita, Takuro; Minami, Yasuo; Eyama, Takashi; Kakimoto, Naoya; Izutsu, Rui; Baba, Motoyoshi; Kawachi, Tetsuya; Suemoto, Tohru

    2017-01-01

    The initial stages of the femtosecond (fs) laser ablation process of gold, platinum, and tungsten were observed by single-shot soft x-ray imaging technique. The formation and evolution of soft x-ray Newton's rings (NRs) were found for the first time. The soft x-ray NRs are caused by the interference between the bulk ablated surface and nanometer-scale thin spallation layer; they originate from the metal surface at pump energy fluence of around 1 J/cm2 and work as a flying soft x-ray beam splitter.

  4. Status of R&D on mitigating the effects of pressure waves for the Spallation Neutron Source mercury target

    NASA Astrophysics Data System (ADS)

    Riemer, Bernard W.; Wendel, Mark W.; Felde, David K.; Abdou, Ashraf A.; McClintock, David A.

    2012-12-01

    The Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory has been conducting R&D on mitigating the effects of pressure waves in mercury spallation targets since 2001. More precisely, cavitation damage of the target vessel caused by the short beam pulse threatens to limit its lifetime more severely than radiation damage as well as limit its ultimate power capacity - and hence its neutron intensity performance. The R&D program has moved from verification of the beam-induced damage phenomena to study of material and surface treatments for damage resistance to the current emphasis on gas injection techniques for damage mitigation. Two techniques are being worked on: injection of small dispersed gas bubbles that mitigate the pressure waves volumetrically; and protective gas walls that isolate the vessel from the damaging effects of collapsing cavitation bubbles. The latter has demonstrated good damage mitigation during in-beam testing with limited pulses, and adequate gas wall coverage at the beam entrance window has been demonstrated with the SNS mercury target flow configuration using a full scale mercury test loop. A question on the required area coverage remains which depends on results from SNS target post irradiation examination. The small gas bubble technique has been less effective during past in-beam tests but those results were with un-optimized and un-verified bubble populations. Another round of in-beam tests with small gas bubbles is planned for 2011. The first SNS target was removed from service in mid 2009 and samples were cut from two locations at the target's beam entrance window. Through-wall damage was observed at the innermost mercury vessel wall (not a containment wall). The damage pattern suggested correlation with the local mercury flow condition which is nearly stagnant at the peak damage location. Detailed post irradiation examination of the samples is under way that will assess the erosion and measure irradiation-induced changes

  5. Status of R&D on Mitigating the Effects of Pressure Waves for the Spallation Neutron Source Mercury Target

    SciTech Connect

    Riemer, Bernie; Wendel, Mark W; Felde, David K; Abdou, Ashraf A; McClintock, David A

    2012-01-01

    The Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory has been conducting R&D on mitigating the effects of pressure waves in mercury spallation targets since 2001. More precisely, cavitation damage of the target vessel caused by the short beam pulse threatens to limit its lifetime more severely than radiation damage as well as limit its ultimate power capacity and hence its neutron intensity performance. The R&D program has moved from verification of the beam-induced damage phenomena to study of material and surface treatments for damage resistance to the current emphasis on gas injection techniques for damage mitigation. Two techniques are being worked on: injection of small dispersed gas bubbles that mitigate the pressure waves volumetrically; and protective gas walls that isolate the vessel from the damaging effects of collapsing cavitation bubbles. The latter has demonstrated good damage mitigation during in-beam testing with limited pulses, and adequate gas wall coverage at the beam entrance window has been demonstrated with the SNS mercury target flow configuration using a full scale mercury test loop. A question on the required area coverage remains which depends on results from SNS target post irradiation examination. The small gas bubble technique has been less effective during past in-beam tests but those results were with un-optimized and un-verified bubble populations. Another round of in-beam tests with small gas bubbles is planned for 2011. The first SNS target was removed from service in mid 2009 and samples were cut from two locations at the target s beam entrance window. Through-wall damage was observed at the innermost mercury vessel wall (not a containment wall). The damage pattern suggested correlation with the local mercury flow condition which is nearly stagnant at the peak damage location. Detailed post irradiation examination of the samples is under way that will assess the erosion and measure irradiation-induced changes

  6. Topical report on a preconceptual design for the Spallation-Induced Lithium Conversion (SILC) target for the accelerator production of tritium (APT)

    SciTech Connect

    Van Tuyle, G.J.; Cokinos, D.M.; Czajkowski, C.; Franz, E.M.; Kroeger, P.; Todosow, M.; Youngblood, R.; Zucker, M.

    1993-09-30

    The preconceptual design of the APT Li-Al target system, also referred to as the Spallation-Induced Lithium Conversion (SILC), target system, is summarized in this report. The system has been designed to produce a ``3/8 Goal`` quantity of tritium using the 200-mA, 1.0 GeV proton beam emerging from the LANL-designed LINAC. The SILC target system consists of a beam expander, a heavy-water-cooled lead spallation neutron source assembly surrounded by light-water-cooled Li-Al blankets, a target window, heat removal systems, and related safety systems. The preconceptual design of each of these major components is described. Descriptions are also provided for the target fabrication, tritium extraction, and waste-steam processes. Performance characteristics are presented and discussed.

  7. Neutron-induced transmutation reactions in 237Np, 238Pu, and 239Pu at the massive natural uranium spallation target

    NASA Astrophysics Data System (ADS)

    Zavorka, L.; Adam, J.; Baldin, A. A.; Caloun, P.; Chilap, V. V.; Furman, W. I.; Kadykov, M. G.; Khushvaktov, J.; Pronskikh, V. S.; Solnyshkin, A. A.; Sotnikov, V.; Stegailov, V. I.; Suchopar, M.; Tsoupko-Sitnikov, V. M.; Tyutyunnikov, S. I.; Voronko, V.; Vrzalova, J.

    2015-04-01

    Transmutation reactions in the 237Np, 238Pu, and 239Pu samples were investigated in the neutron field generated inside a massive (m = 512 kg) natural uranium spallation target. The uranium target assembly QUINTA was irradiated with the deuteron beams of kinetic energy 2, 4, and 8 GeV provided by the Nuclotron accelerator at the Joint Institute for Nuclear Research (JINR) in Dubna. The neutron-induced transmutation of the actinide samples was measured off-line by implementing methods of gamma-ray spectrometry with HPGe detectors. Results of measurement are expressed in the form of both the individual reaction rates and average fission transmutation rates. For the purpose of validation of radiation transport programs, the experimental results were compared with simulations of neutron production and distribution performed by the MCNPX 2.7 and MARS15 codes employing the INCL4-ABLA physics models and LAQGSM event generator, respectively. In general, a good agreement between the experimental and calculated reaction rates was found in the whole interval of provided beam energies.

  8. Correlation between simulations and cavitation-induced erosion damage in Spallation Neutron Source target modules after operation

    SciTech Connect

    Riemer, Bernie; McClintock, David A; Kaminskas, Saulius; Abdou, Ashraf A

    2014-01-01

    An explicit finite element (FE) technique developed for estimating dynamic strain in the Spallation Neutron Source (SNS) mercury target module vessel is now providing insight into cavitation damage patterns observed in used targets. The technique uses an empirically developed material model for the mercury that describes liquid-like volumetric stiffness combined with a tensile pressure cut-off limit that approximates cavitation. The longest period each point in the mercury is at the tensile cut-off threshold is denoted its saturation time. Now, the pattern of saturation time can be obtained from these simulations and is being positively correlated with observed damage patterns and is interpreted as a qualitative measure of damage potential. Saturation time has been advocated by collaborators at J-Parc as a factor in predicting bubble nuclei growth and collapse intensity. The larger the ratio of maximum bubble size to nucleus, the greater the bubble collapse intensity to be expected; longer saturation times result in greater ratios. With the recent development of a user subroutine for the FE solver saturation time is now provided over the entire mercury domain. Its pattern agrees with spots of damage seen above and below the beam axis on the SNS inner vessel beam window and elsewhere. The other simulation result being compared to observed damage patterns is mercury velocity at the wall. Related R&D has provided evidence for the damage mitigation that higher wall velocity provides. In comparison to observations in SNS targets, inverse correlation of high velocity to damage is seen. In effect, it is the combination of the patterns of saturation time and low velocity that seems to match actual damage patterns.

  9. Calculation of radiation hazard connected with the SAD spallation target replacement

    NASA Astrophysics Data System (ADS)

    Pohorecki, Władysław

    2007-09-01

    The Subcritical Assembly in Dubna (SAD) is a device coupled with existing 660 MeV proton accelerator (max beam current 3.2 μA). The main characteristic parameters of the core are: MOX fuel, keff=0.95, fission power 27.6 kW, Pb reflector. The SAD target consists of one central and 18 hexagonal (36 mm pitch) Pb prisms in two concentric layers. The main goal of the calculations, is the evaluation of the radiation hazard connected with replacement of the target elements after planned six months working period. The total induced radioactivity and its spatial distributions in the target elements were presented elsewhere. Here the longitudinal distribution and the time evolution of the gamma/beta emmiters activity, their spectra in the most active central target element and adequate radiation exposure are shown. The attenuation factors for these gamma ray spectra for commonly used shielding materials (Pb, Fe) are calculated as well. The MCNPX code is used for radioisotope production calculations. Gamma and beta spectra are calculated using modified EvIzo program and TORI database. Methods and tools used for gamma spectra simulation are checked using the results obtained in the experiment with bare Pb cylindrical target.

  10. Summary of Mercury Compatibility Issues for the Spallation Neutron Source Target Containment and Ancillary Equipment

    SciTech Connect

    Pawel, SJ

    2003-04-08

    The purpose of this document is to summarize the primary results of the Hg compatibility research in support of the SNS target. In the absence of possible synergisms resulting from beam/irradiation effects, wetting of 316L/316LN stainless steel under SNS conditions by the Hg target is expected to be very limited. As a result, significant interactions such as dissolution, mass transfer, and embrittlement affecting general compatibility are not anticipated. A wide range of experiments on 316L/316LN stainless steel, including thermal convection and pumped loops, confirmed low corrosion/penetration rates in Hg up to 305 C and little or no wetting or mass transfer below about 250 C. A variety of standard mechanical tests comparing behavior of 316L in air and Hg revealed limited wetting and no degradation of mechanical properties such as reduced elongation or development of brittle fracture features. Preliminary fatigue tests indicated a negative effect (reduced cycles to failure and intergranular cracking) at very high loads for 316LN, but little or no effect at more modest loading. Annealed 316LN was found to be somewhat susceptible to cavitation-erosion damage, but significant improvement was realized with a kolsterizing surface treatment or coldworking the material. Within the scope of these test conditions, no compatibility-limited operations were identified for type 316L/316LN stainless steel (and variations thereof) as the Hg target containment material. More limited compatibility data on other materials are also reported.

  11. Spallation yield of neutrons produced in thick lead target bombarded with 250 MeV protons

    NASA Astrophysics Data System (ADS)

    Chen, L.; Ma, F.; Zhanga, X. Y.; Ju, Y. Q.; Zhang, H. B.; Ge, H. L.; Wang, J. G.; Zhou, B.; Li, Y. Y.; Xu, X. W.; Luo, P.; Yang, L.; Zhang, Y. B.; Li, J. Y.; Xu, J. K.; Liang, T. J.; Wang, S. L.; Yang, Y. W.; Gu, L.

    2015-01-01

    The neutron yield from thick target of Pb irradiated with 250 MeV protons has been studied experimentally. The neutron production was measured with the water-bath gold method. The thermal neutron distributions in the water were determined according to the measured activities of Au foils. Corresponding results calculated with the Monte Carlo code MCNPX were compared with the experimental data. It was found out that the Au foils with cadmium cover significantly changed the spacial distribution of the thermal neutron field. The corrected neutron yield was deduced to be 2.23 ± 0.19 n/proton by considering the influence of the Cd cover on the thermal neutron flux.

  12. Spallator: a new option for nuclear power

    SciTech Connect

    Steinberg, M.; Grand, P.; Takahashi, H.; Powell, J.R.; Kouts, H.J.

    1983-06-01

    The principles of the spallator reactor are reviewed. Advances in linear accelerator technology allow the design and construction of high current (hundreds of mA) continuous wave high energy (thousands of MeV) proton machines in the near term. Spallation neutronic calculations building on existing experimental results, indicate substantial neutron yields on uranium targets. Spallator target assembly designs based on water cooled reactor technology indicate operable efficient systems. Fuel cycles are presented which supply fissile material to thermal power reactors and reduce fission product waste. Preliminary comparative analysis indicates an economically competitive system in which a single purpose self-sufficient spallator supplies fuel to a number of LWRs. The spallator assures a long-term LWR power reactor economy. International interest in advancing the technology is indicated.

  13. Material issues relating to high power spallation neutron sources

    NASA Astrophysics Data System (ADS)

    Futakawa, M.

    2015-02-01

    Innovative researches using neutrons are being performed at the Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex (J-PARC), in which a mercury target system is installed for MW-class pulse spallation neutron sources. In order to produce neutrons by the spallation reaction, proton beams are injected into the mercury target. At the moment, when the intense proton beam hits the target, pressure waves are generated in mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel, leading to negative pressure that may cause cavitation along the vessel wall, i.e. on the interface between liquid and solid metals. On the other hand, the structural materials are subjected to irradiation damage due to protons and neutrons, very high cycle fatigue damages and so-called "liquid metal embrittlement". That is, the structural materials must be said to be exposed to the extremely severe environments. In the paper, research and development relating to the material issues in the high power spallation neutron sources that has been performed so far at J-PARC is summarized.

  14. European Spallation Source

    NASA Astrophysics Data System (ADS)

    Eshraqi, Mohammad; McGinnis, David; Lindroos, Mats

    The following sections are included: * Neutron usage and historical background * Spallation * History of spallation sources * The ESS facility * The ESS linac * Beam physics * The front-end and the normal conducting linac * Superconducting linac * RF sources * Summary * References

  15. Simulation of spallation life of metals in relation to operating stresses in the nanosecond loading time range

    NASA Astrophysics Data System (ADS)

    Makarov, P. V.; Bakeev, R. A.

    2015-10-01

    Spall fracture of materials is still the only means for investigation of the material life and mechanisms of its fracture in the micro-, nano-, and picosecond time ranges of tensile loading. The phenomenological model based on the concepts of multiscale fracture of materials as nonlinear dynamic systems is shown to satisfactorily describe their life in the given range. The model is employed for the calculation of spallation life.

  16. Analytical calculations and Monte-Carlo simulations of a high-resolution backscattering spectrometer for the long wavelength target station at the Spallation neutron source

    NASA Astrophysics Data System (ADS)

    Bordallo, H. N.; Herwig, K. W.; Zsigmond, G.

    2002-09-01

    Using the Monte-Carlo simulation programs McStas and VITESS, we present the design principles of the proposed high-resolution inverse geometry spectrometer on the Spallation neutron source (SNS)—long wavelength target station (LWTS). LWTS will enable the combination of large energy and momentum transfer ranges with energy resolution. Indeed the resolution of this spectrometer lie between that routinely achieved by spin echo techniques and the design goal of the high-power target station (HPTS) backscattering spectrometer. This niche of energy resolution is interesting for the study of slow motions of large objects and we are led to the domain of large molecules—polymers and biological molecules.

  17. Compatibility of materials with liquid metal targets for SNS

    SciTech Connect

    DiStefano, J.R.; Pawel, S.J.; DeVan, J.H.

    1996-06-01

    Several heavy liquid metals are candidates as the target in a spallation neutron source: Hg, Pb, Bi, and Pb-Bi eutectic. Systems with these liquid metals have been used in the past and a data-base on compatibility already exists. Two major compatibility issues have been identified when selecting a container material for these liquid metals: temperature gradient mass transfer and liquid metal embrittlement or LME. Temperature gradient mass transfer refers to dissolution of material from the high temperature portions of a system and its deposition in the lower temperature areas. Solution and deposition rate constants along with temperature, {Delta}T, and velocity are usually the most important parameters. For most candidate materials mass transfer corrosion has been found to be proportionately worse in Bi compared with Hg and Pb. For temperatures to {approx}550{degrees}C, ferritic/martensitic steels have been satisfactory in Pb or Hg systems and the maximum temperature can be extended to {approx}650{degrees}C with additions of inhibitors to the liquid metal, e.g. Mg, Ti, Zr. Above {approx}600{degrees}C, austenitic stainless steels have been reported to be unsatisfactory, largely because of the mass transfer of nickel. Blockage of flow from deposition of material is usually the life-limiting effect of this type of corrosion. However, mass transfer corrosion at lower temperatures has not been studied. At low temperatures (usually < 150{degrees}C), LME has been reported for some liquid metal/container alloy combinations. Liquid metal embrittlement, like hydrogen embrittlement, results in brittle fracture of a normally ductile material.

  18. The European scene regarding spallation neutron sources

    SciTech Connect

    Bauer, G.S.

    1996-06-01

    In Europe, a short pulse spallation neutron source, ISIS, has been operating for over 10 years, working its way up to a beam power level of 200 kW. A continuous source, SINQ, designed for a beam power of up to 1 MW, is scheduled to start operating at the end of 1996, and a detailed feasibility study has been completed for a 410 kW short pulse source, AUSTRON. Each of these sources seems to have settled for a target concept which is at or near the limits of its feasibility: The ISIS depleted uranium plate targets, heavy water cooled and Zircaloy clad, have so far not shown satisfactory service time and operation is likely to continue with a Ta-plate target, which, in the past has been used successfully for the equivalent of one full-beam-year before it was taken out of service due to degrading thermal properties. SINQ will initially use a rod target, made of Zircaloy only, but plans exist to move on to clad lead rods as quickly as possible. Apart from the not yet explored effect of hydrogen and helium production, there are also concerns about the generation of 7-Be in the cooling water from the spallation of oxygen, which might result in undesirably high radioactivity in the cooling plant room. A Liquid metal target, also under investigation for SINQ, would not only reduce this problem to a level of about 10 %, but would also minimize the risk of radiolytic corrosion in the beam interaction zone. Base on similar arguments, AUSTRON has been designed for edge cooled targets, but thermal and stress analyses show, that this concept is not feasible at higher power levels.

  19. Measuring the cross sections of heavy-metal spallation induced by deuterons with energies of 2, 2.94, and 3.5 GeV per nucleon

    NASA Astrophysics Data System (ADS)

    Artyushenko, M. Yu.; Baldin, A. A.; Berlev, A. I.; Bukhal, O. V.; Voronko, V. A.; Gusak, K. V.; Zhuk, I. V.; Kudashkin, I. V.; Paraipan, M.; Potapenko, A. S.; Safronova, A. A.; Sotnikov, V. V.; Tyutyunnikov, S. I.

    2016-07-01

    The cross sections for the spallation of the heavy-metal nuclei 181Ta, 197Au, 207Pb, 209Bi, 232Th, and 238U induced by relativistic deuterons with energies of 2, 2.94, and 3.5 GeV per nucleon are measured using the deuteron beam from the Nuclotron accelerator of the JINR Laboratory of High Energy Physics in Dubna, Russia. The cross-section measurements employ a combined experimental technique involving the solidstate nuclear-track detectors and the activation gamma spectrometry. Adding our measurements to the database of experimental nuclear data will make it possible to test the computer codes used for selecting the parameters of the ADS-type facilities.

  20. Overview of Spallation Neutron Source Physics

    NASA Astrophysics Data System (ADS)

    Russell, G. J.; Pitcher, E. J.; Muhrer, G.; Mezei, F.; Ferguson, P. D.

    In December 1971 , the world's most advanced steady-state research reactor, the High Flux Reactor at the Institut Laue-Langevin (ILL) in Grenoble, France, reached full power operation. The reactor has recently undergone an extensive renovation, is equipped with hot and cold sources, and has a complement of word class instruments. As such, the ILL reactor is the worldwide center for neutron research at a reactor installation. With present technology, the constraints of heat removal and fuel cost place a limit on the available flux of a steadystate research reactor at levels not much higher than that of the ILL reactor. There has been extensive progress worldwide to realize new high-flux neutron facilities using the technology of spallation. When coupled with the spallation process in appropriate target materials, highpower accelerators can be used to produce large numbers of neutrons, thus providing an alternate method to the use of nuclear reactors for this purpose. Spallation technology has recently become increasingly focussed on pulsed spallation neutron sources. Pulsed spallation neutron sources avoid the limitations of high time-average heat removal by producing neutrons for only a small fraction of the time. Also, the amount of energy deposited per useful neutron produced from spallation is less than that from fission. During the pulse, the available neutron flux from a pulsed spallation source can be much more intense than that obtainable in a steady-state reactor. Furthermore, pulsed neutron sources have certain unique features, which open up qualitatively new areas of science, which are not accessible to steady-state reactors. We discuss here the spallation process and spallation neutron sources. We compare the qualitative differences between fission and spallation and provide absolute neutron intensities for cold neutron production from a liquid H2, moderator at the Manuel Lujan Jr. Neutron Scattering Center (Lujan Center) short-pulse pulsed spallation

  1. Small Gas Bubble Experiment for Mitigation of Cavitation Damage and Pressure Waves in Short-pulse Mercury Spallation Targets

    SciTech Connect

    Wendel, Mark W; Felde, David K; Sangrey, Robert L; Abdou, Ashraf A; West, David L; Shea, Thomas J; Hasegawa, Shoichi; Kogawa, Hiroyuki; Naoe, Dr. Takashi; Farny, Dr. Caleb H.; Kaminsky, Andrew L

    2014-01-01

    Populations of small helium gas bubbles were introduced into a flowing mercury experiment test loop to evaluate mitigation of beam-pulse induced cavitation damage and pressure waves. The test loop was developed and thoroughly tested at the Spallation Neutron Source (SNS) prior to irradiations at the Los Alamos Neutron Science Center - Weapons Neutron Research Center (LANSCE-WNR) facility. Twelve candidate bubblers were evaluated over a range of mercury flow and gas injection rates by use of a novel optical measurement technique that accurately assessed the generated bubble size distributions. Final selection for irradiation testing included two variations of a swirl bubbler provided by Japan Proton Accelerator Research Complex (J-PARC) collaborators and one orifice bubbler developed at SNS. Bubble populations of interest consisted of sizes up to 150 m in radius with achieved gas void fractions in the 10^-5 to 10^-4 range. The nominal WNR beam pulse used for the experiment created energy deposition in the mercury comparable to SNS pulses operating at 2.5 MW. Nineteen test conditions were completed each with 100 pulses, including variations on mercury flow, gas injection and protons per pulse. The principal measure of cavitation damage mitigation was surface damage assessment on test specimens that were manually replaced for each test condition. Damage assessment was done after radiation decay and decontamination by optical and laser profiling microscopy with damaged area fraction and maximum pit depth being the more valued results. Damage was reduced by flow alone; the best mitigation from bubble injection was between half and a quarter that of flow alone. Other data collected included surface motion tracking by three laser Doppler vibrometers (LDV), loop wall dynamic strain, beam diagnostics for charge and beam profile assessment, embedded hydrophones and pressure sensors, and sound measurement by a suite of conventional and contact microphones.

  2. Metal-mediated targeting in the body.

    PubMed

    Tang, Xuan; Liang, Xiangyang

    2013-03-01

    Metal ions are important for many biological processes and are steadily available in the human body. Metal concentrations can be extremely high in diseased areas of various pathological conditions. Some synthetic and natural drugs need to be activated by metal ions as prodrugs. In this review, we provide a few examples to illustrate how metal ions activate and mediate drug targeting in the body. This knowledge may be helpful for the development of more effective drugs and pharmaceutical formulations.

  3. NOBLE GAS PRODUCTION FROM MERCURY SPALLATION AT SNS

    SciTech Connect

    DeVore, Joe R; Lu, Wei; Schwahn, Scott O

    2013-01-01

    Calculations for predicting the distribution of the products of spallation reactions between high energy protons and target materials are well developed and are used for design and operational applications in many projects both within DOE and in other arenas. These calculations are based on theory and limited experimental data that verifies rates of production of some spallation products exist. At the Spallation Neutron Source, a helium stream from the mercury target flows through a system to remove radioactivity from this mercury target offgas. The operation of this system offers a window through which the production of noble gases from mercury spallation by protons may be observed. This paper describes studies designed to measure the production rates of twelve noble gas isotopes within the Spallation Neutron Source mercury target.

  4. Two-phase flow model for energetic proton beam induced pressure waves in mercury target systems in the planned European Spallation Source

    NASA Astrophysics Data System (ADS)

    Barna, I. F.; Imre, A. R.; Rosta, L.; Mezei, F.

    2008-12-01

    Two-phase flow calculations are presented to investigate the thermo-hydraulical effects of the interaction between 2 ms long 1.3 GeV proton pulses with a closed mercury loop which can be considered as a model system of the target of the planned European Spallation Source (ESS) facility. The two-fluid model consists of six first-order partial differential equations that present one dimensional mass, momentum and energy balances for mercury vapor and liquid phases are capable to describe quick transients like cavitation effects or shock waves. The absorption of the proton beam is represented as instantaneous heat source in the energy balance equations. Densities and internal energies of the mercury liquid-vapor system is calculated from the van der Waals equation, but general method how to obtain such properties using arbitrary equation of state is also presented. A second order accurate high-resolution shock-capturing numerical scheme is applied with different kind of limiters in the numerical calculations. Our analysis show that even 75 degree temperature heat shocks cannot cause considerable cavitation effects in mercury.

  5. Spallation radiation effects in materials

    SciTech Connect

    Mansur, L.K.; Farrell, K.; Wechsler, M.S.

    1996-06-01

    Spallation refers to the process whereby particles (chiefly neutrons) are ejected from nuclei upon bombardment by high-energy protons. Spallation neutron sources (SNS`s) use these neutrons for neutron scattering and diffraction research, and SNS`s are proposed as the basis for systems for tritium production and transmutation of nuclear waste. Materials in SNS`s are exposed to the incident proton beam (energies typically about 1000 MeV) and to the spallation neutrons (spectrum of energies extending up to about 1000 MeV). By contrast the fission neutrons in nuclear reactors have an average energy of only about 2 MeV, and the neutrons in fusion reactors would have energies below about 14 MeV. Furthermore, the protons and neutrons in SNS`s for scattering and diffraction research are pulsed at frequencies of about 10 to 60 Hz, from which significant changes in the kinetics of point and extended defects may be expected. In addition, much higher transmutation rates occur in SNS-irradiated materials, On the whole, then, significant differences in microstructural development and macroscopic properties may result upon exposure in SNS systems, as compared with fission and fusion irradiations. In a more general sense, subjecting materials to new radiation environments has almost routinely led to new discoveries. To the extent that data are avaiable, however, the spallation environment appears to increase the degree of damage without introducing totally new effects. The first part of this presentation is an overview of radiation effects in materials, outlining essential concepts and property changes and their physical bases. This background is followed by a description of SNS irradiation environments and the effects on materials of exposure to these environments. A special discussion is given of the selection of target (e.g., liquid mercury), container (e.g., austenitic stainless steel or ferritic/martensitic steel), and structural materials in SNS systems.

  6. Analysis of structure and deformation behavior of AISI 316L tensile specimens from the second operational target module at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Gussev, M. N.; McClintock, D. A.; Garner, F. A.

    2016-01-01

    In an earlier publication, tensile testing was performed on specimens removed from the first two operational targets of the Spallation Neutron Source (SNS). There were several anomalous features in the results. First, some specimens had very large elongations (up to 57%) while others had significantly smaller values (10-30%). Second, there was a larger than the usual amount of data scatter in the elongation results. Third, the stress-strain diagrams of nominally similar specimens spanned a wide range of behavior ranging from expected irradiation-induced hardening to varying levels of force drop after yield point and indirect signs of "traveling deformation wave" behavior associated with strain-induced martensite formation. To investigate the cause(s) of such variable tensile behavior, several specimens from Target 2, spanning the range of observed tensile behavior, were chosen for detailed microstructural examination using electron backscatter diffraction (EBSD) analysis. It was shown that the steel employed in the construction of the target contained an unexpected bimodal grain size distribution, containing very large out-of-specification grains surrounded by "necklaces" of grains of within-specification sizes. The large grains were frequently comparable to the width of the gauge section of the tensile specimen. The propensity to form martensite during deformation was shown to be accelerated by radiation but also to be very sensitive to the relative orientation of the grains with respect to the tensile axis. Specimens having large grains in the gauge that were most favorably oriented for production of martensite strongly exhibited the traveling deformation wave phenomenon, while those specimens with less favorably oriented grains had lesser or no degree of the wave effect, thereby accounting for the observed data scatter.

  7. Analysis of structure and deformation behavior of AISI 316L tensile specimens from the second operational target module at the Spallation Neutron Source

    DOE PAGES

    Gussev, Maxim N.; McClintock, David A.; Garner, Frank

    2015-08-05

    In an earlier publication, tensile testing was performed on specimens removed from the first two operational targets of the Spallation Neutron Source (SNS). There were several anomalous features in the results. First, some specimens had very large elongations (up to 57%) while others had significantly smaller values. Second, there was a larger than the usual amount of data scatter in the elongation results. Third, the stress-strain diagrams of nominally similar specimens spanned a wide range of behavior ranging from expected irradiation-induced hardening to varying levels of force drop after yield point and indirect signs of "traveling deformation wave" behavior associatedmore » with strain-induced martensite formation. To investigate the cause(s) of such variable tensile behavior, several specimens from Target 2, spanning the range of observed tensile behavior, were chosen for detailed microstructural examination using electron backscattering analysis (EBSD). It was also shown that the steel employed in the construction of the target contained an unexpected bimodal grain size distribution, containing very large out-of-specification grains surrounded by necklaces of grains of within-specification sizes. The large grains were frequently comparable to the width of the gauge section of the tensile specimen. Moreover, the propensity to form martensite during deformation was shown to be accelerated by radiation but also to be very sensitive to the relative orientation of the grains with respect to the tensile axis. Specimens having large grains in the gauge that were most favorably oriented for production of martensite strongly exhibited the traveling deformation wave phenomenon, while those specimens with less favorably oriented grains had lesser or no degree of the wave effect, thereby accounting for the larger than expected data scatter.« less

  8. Analysis of structure and deformation behavior of AISI 316L tensile specimens from the second operational target module at the Spallation Neutron Source

    SciTech Connect

    Gussev, Maxim N.; McClintock, David A.; Garner, Frank

    2015-08-05

    In an earlier publication, tensile testing was performed on specimens removed from the first two operational targets of the Spallation Neutron Source (SNS). There were several anomalous features in the results. First, some specimens had very large elongations (up to 57%) while others had significantly smaller values. Second, there was a larger than the usual amount of data scatter in the elongation results. Third, the stress-strain diagrams of nominally similar specimens spanned a wide range of behavior ranging from expected irradiation-induced hardening to varying levels of force drop after yield point and indirect signs of "traveling deformation wave" behavior associated with strain-induced martensite formation. To investigate the cause(s) of such variable tensile behavior, several specimens from Target 2, spanning the range of observed tensile behavior, were chosen for detailed microstructural examination using electron backscattering analysis (EBSD). It was also shown that the steel employed in the construction of the target contained an unexpected bimodal grain size distribution, containing very large out-of-specification grains surrounded by necklaces of grains of within-specification sizes. The large grains were frequently comparable to the width of the gauge section of the tensile specimen. Moreover, the propensity to form martensite during deformation was shown to be accelerated by radiation but also to be very sensitive to the relative orientation of the grains with respect to the tensile axis. Specimens having large grains in the gauge that were most favorably oriented for production of martensite strongly exhibited the traveling deformation wave phenomenon, while those specimens with less favorably oriented grains had lesser or no degree of the wave effect, thereby accounting for the larger than expected data scatter.

  9. Process technology and effects of spallation products: Circuit components, maintenance, and handling

    SciTech Connect

    Sigg, B.; Haines, S.J.; Dressler, R.; McManamy, T.

    1996-06-01

    Working Session D included an assessment of the status of the technology and components required to: (1) remove impurities from the liquid metal (mercury or Pb-Bi) target flow loop including the effects of spallation products, (2) provide the flow parameters necessary for target operations, and (3) maintain the target system. A series of brief presentations were made to focus the discussion on these issues. The subjects of these presentations, and presenters were: (1) Spallation products and solubilities - R. Dressler; (2) Spallation products for Pb-Bi - Y. Orlov; (3) Clean/up/impurity removal components - B. Sigg; (4) {open_quotes}Road-Map{close_quotes} and remote handling needs - T. McManamy; (5) Remote handling issues and development - M. Holding. The overall conclusion of this session was that, with the exception of (i) spallation product related processing issues, (ii) helium injection and clean-up, and (iii) specialized remote handling equipment, the technology for all other circuit components (excluding the target itself) exists. Operating systems at the Institute of Physics in Riga, Latvia (O. Lielausis) and at Ben-Gurion University in Beer Shiva, Israel (S. Lesin) have demonstrated that other liquid metal circuit components including pumps, heat exchangers, valves, seals, and piping are readily available and have been reliably used for many years. In the three areas listed above, the designs and analysis are not judged to be mature enough to determine whether and what types of technology development are required. Further design and analysis of the liquid metal target system is therefore needed to define flow circuit processing and remote handling equipment requirements and thereby identify any development needs.

  10. Determination of spallation neutron flux through spectral adjustment techniques

    SciTech Connect

    Mosby, Michelle A.; Engle, Jonathan Ward; Jackman, Kevin Richard; Nortier, Francois Meiring; Birnbaum, Eva R.

    2016-05-30

    The Los Alamos Isotope Production Facility (IPF) creates medical isotopes using a proton beam impinged on a target stack. Spallation neutrons are created in the interaction of the beam with target. The use of these spallation neutrons to produce additional radionuclides has been proposed in this paper. However, the energy distribution and magnitude of the flux is not well understood. Finally, a modified SAND-II spectral adjustment routine has been used with radioactivation foils to determine the differential neutron fluence for these spallation neutrons during a standard IPF production run.

  11. Determination of spallation neutron flux through spectral adjustment techniques

    NASA Astrophysics Data System (ADS)

    Mosby, M. A.; Engle, J. W.; Jackman, K. R.; Nortier, F. M.; Birnbaum, E. R.

    2016-08-01

    The Los Alamos Isotope Production Facility (IPF) creates medical isotopes using a proton beam impinged on a target stack. Spallation neutrons are created in the interaction of the beam with target. The use of these spallation neutrons to produce additional radionuclides has been proposed. However, the energy distribution and magnitude of the flux is not well understood. A modified SAND-II spectral adjustment routine has been used with radioactivation foils to determine the differential neutron fluence for these spallation neutrons during a standard IPF production run.

  12. Proceedings of the international workshop on spallation materials technology

    SciTech Connect

    Mansur, L.K.; Ullmaier, H.

    1996-10-01

    This document contains papers which were presented at the International Workshop on Spallation Materials Technology. Topics included: overviews and thermal response; operational experience; materials experience; target station and component design; particle transport and damage calculations; neutron sources; and compatibility.

  13. The European Spallation Source

    SciTech Connect

    Peggs, S; Eshraqi, M; Hahn, H; Jansson, A; Lindroos, M; Ponton, A; Rathsman, K; Trahern, G; Bousso, S; Calaga, R; Devanz, G; Duperrier, R D; Eguia, J; Gammino, S; Moller, S P; Oyon, C; Ruber, R.J.M.Y.; Satogata, T

    2011-03-01

    The European Spallation Source (ESS) is a 5 MW, 2.5 GeV long pulse proton linac, to be built and commissioned in Lund, Sweden. The Accelerator Design Update (ADU) project phase is under way, to be completed at the end of 2012 by the delivery of a Technical Design Report. Improvements to the 2003 ESS design will be summarised, and the latest design activities will be presented.

  14. Pulsed spallation Neutron Sources

    SciTech Connect

    Carpenter, J.M.

    1994-12-31

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology.

  15. Pulsed spallation neutron sources

    SciTech Connect

    Carpenter, J.M.

    1996-05-01

    This paper reviews the early history of pulsed spallation neutron source development ar Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provide a few examples of applications in fundamental condensed matter physics, materials science and technology.

  16. Study of 232Th(n, γ) and 232Th(n,f) reaction rates in a graphite moderated spallation neutron field produced by 1.6 GeV deuterons on lead target

    NASA Astrophysics Data System (ADS)

    Asquith, N. L.; Hashemi-Nezhad, S. R.; Westmeier, W.; Zhuk, I.; Tyutyunnikov, S.; Adam, J.

    2015-02-01

    The Gamma-3 assembly of the Joint Institute for Nuclear Research (JINR), Dubna, Russia is designed to emulate the neutron spectrum of a thermal Accelerator Driven System (ADS). It consists of a lead spallation target surrounded by reactor grade graphite. The target was irradiated with 1.6 GeV deuterons from the Nuclotron accelerator and the neutron capture and fission rate of 232Th in several locations within the assembly were experimentally measured. 232Th is a proposed fuel for envisaged Accelerator Driven Systems and these two reactions are fundamental to the performance and feasibility of 232Th in an ADS. The irradiation of the Gamma-3 assembly was also simulated using MCNPX 2.7 with the INCL4 intra-nuclear cascade and ABLA fission/evaporation models. Good agreement between the experimentally measured and calculated reaction rates was found. This serves as a good validation for the computational models and cross section data used to simulate neutron production and transport of spallation neutrons within a thermal ADS.

  17. Benchmarking Geant4 for spallation neutron source calculations

    NASA Astrophysics Data System (ADS)

    DiJulio, Douglas D.; Batkov, Konstantin; Stenander, John; Cherkashyna, Nataliia; Bentley, Phillip M.

    2016-09-01

    Geant4 is becoming increasingly used for radiation transport simulations of spallation neutron sources and related components. Historically, the code has seen little usage in this field and it is of general interest to investigate the suitability of Geant4 for such applications. For this purpose, we carried out Geant4 calculations based on simple spallation source geometries and also with the the European Spallation Source Technical Design Report target and moderator configuration. The results are compared to calculations performed with the Monte Carlo N- Particle extended code. The comparisons are carried out over the full spallation neutron source energy spectrum, from sub-eV energies up to thousands of MeV. Our preliminary results reveal that there is generally good agreement between the simulations using both codes. Additionally, we have also implemented a general weight-window generator for Geant4 based applications and present some results of the method applied to the ESS target model.

  18. Spallator and APEX nuclear fuel cycle: a new option for nuclear power

    SciTech Connect

    Steinberg, M.

    1982-01-01

    A new nuclear fuel cycle is described which provides a long term supply of nuclear fuel for the thermal LWR nuclear power reactors and eliminates the need for long-term storage of radioactive waste. Fissile fuel is produced by the Spallator which depends on the production of spallation neutrons by the interaction of high-energy (1 to 2 GeV) protons on a heavy-metal target. The neutrons are absorbed in a surrounding natural-uranium or thorium blanket in which fissile Pu-239 to U-233 is produced. Advances in linear accelerator technology makes it possible to design and construct a high-beam-current continuous-wave proton linac for production purposes. The target is similar to a sub-critical reactor and produces heat which is converted to electricity for supplying the linac. The Spallator is a self-sufficient fuel producer, which can compete with the fast breeder. The APEX fuel cycle depends on recycling the transuranics and long-lived fission products while extracting the stable and short-lived fission products when reprocessing the fuel. Transmutation and decay within the fuel cycle and decay of short-lived fission products external to the fuel cycle eliminates the need for long-term geological age shortage of fission-product waste.

  19. The European Spallation Source

    SciTech Connect

    Lindroos M.; Calaga R.; Bousson S.; Danared H.; Devanz G. et al

    2011-04-20

    In 2003 the joint European effort to design a European Spallation Source (ESS) resulted in a set of reports, and in May 2009 Lund was agreed to be the ESS site. The ESS Scandinavia office has since then worked on setting all the necessary legal and organizational matters in place so that the Design Update and construction can be started in January 2011, in collaboration with European partners. The Design Update phase is expected to end in 2012, to be followed by a construction phase, with first neutrons expected in 2018-2019.

  20. Astrophysical Li-7 as a product of big bang nucleosynthesis and galactic cosmic-ray spallation

    NASA Technical Reports Server (NTRS)

    Olive, Keith A.; Schramm, David N.

    1992-01-01

    The astrophysical Li-7 abundance is considered to be largely primordial, while the Be and B abundances are thought to be due to galactic cosmic ray (GCR) spallation reactions on top of a much smaller big bang component. But GCR spallation should also produce Li-7. As a consistency check on the combination of big bang nucleosynthesis and GCR spallation, the Be and B data from a sample of hot population II stars is used to subtract from the measured Li-7 abundance an estimate of the amount generated by GCR spallation for each star in the sample, and then to add to this baseline an estimate of the metallicity-dependent augmentation of Li-7 due to spallation. The singly reduced primordial Li-7 abundance is still consistent with big bang nucleosynthesis, and a single GCR spallation model can fit the Be, B, and corrected Li-7 abundances for all the stars in the sample.

  1. Rarefaction after fast laser heating of thin metal film on a glass mount: spallation and inflation from one-dimensional to three-dimensional ablation flow

    NASA Astrophysics Data System (ADS)

    Inogamov, Nail; Khokhlov, Viktor; Petrov, Yury; Zhakhovsky, Vasily; Migdal, Kirill; Ilnitsky, Denis; Hasegawa, Noboru; Nishikino, Masaharu; Yamagiwa, Mitsuru; Ishino, Masahiko; Kawachi, Tetsuya; Faenov, Anatoly; Pikuz, Tatiana; Takayoshi, Shintaro; Eyama, Takashi; Kakimoto, Naoya; Tomita, Takuro; Baba, Motoyoshi; Minami, Yasuo; Suemoto, Tohru

    2015-06-01

    We numerically and experimentally consider the effect of subpicosecond Ti:sapp laser pump pulse onto 60-100 nm silver and gold films mounted onto a silica substrate. Pump pulse spalls out the film from the substrate. Influence of diameter of a laser irradiated spot 1-100 microns on a film surface is studied. A cupola like spallation shell is flying from the substrate. For the large spot the soft X-ray probe laser is used for measuring the ablation process. The research (NAI, VVZh, VAKh, DKI, YVP, KPM, AYF, TAP) has been performed under financial support from Russian Science Foundation (RSCF) (Project No. 14-19-01599).

  2. Further considerations of spallation effects

    NASA Technical Reports Server (NTRS)

    Dyer, C.

    1973-01-01

    Trapped photon and cosmic ray effects on spallation in the UK-5 (hard X ray telescope) central crystal were measured. Both low dose and high dose effects were considered. Decay results are presented in tables.

  3. Atomistic simulation study of short pulse laser interactions with a metal target under conditions of spatial confinement by a transparent overlayer

    NASA Astrophysics Data System (ADS)

    Karim, Eaman T.; Shugaev, Maxim; Wu, Chengping; Lin, Zhibin; Hainsey, Robert F.; Zhigilei, Leonid V.

    2014-05-01

    The distinct characteristics of short pulse laser interactions with a metal target under conditions of spatial confinement by a solid transparent overlayer are investigated in a series of atomistic simulations. The simulations are performed with a computational model combining classical molecular dynamics (MD) technique with a continuum description of the laser excitation, electron-phonon equilibration, and electronic heat transfer based on two-temperature model (TTM). Two methods for incorporation of the description of a transparent overlayer into the TTM-MD model are designed and parameterized for Ag-silica system. The material response to the laser energy deposition is studied for a range of laser fluences that, in the absence of the transparent overlayer, covers the regimes of melting and resolidification, photomechanical spallation, and phase explosion of the overheated surface region. In contrast to the irradiation in vacuum, the spatial confinement by the overlayer facilitates generation of sustained high-temperature and high-pressure conditions near the metal-overlayer interface, suppresses the generation of unloading tensile wave, decreases the maximum depth of melting, and prevents the spallation and explosive disintegration of the surface region of the metal target. At high laser fluences, when the laser excitation brings the surface region of the metal target to supercritical conditions, the confinement prevents the expansion and phase decomposition characteristic for the vacuum conditions leading to a gradual cooling of the hot compressed supercritical fluid down to the liquid phase and eventual solidification. The target modification in this case is limited to the generation of crystal defects and the detachment of the metal target from the overlayer.

  4. The thermal spallation drilling process

    SciTech Connect

    Williams, R.E.

    1986-01-01

    Holes can be produced in very hard rock more easily and less expensively by thermal spallation than by conventional means. This drilling process has been used for producing blast holes in the taconite iron mines and for quarrying granite. It is potentially valuable for drilling holes in very hard rock for the exploitation of geothermal energy and the storage of various commodities. However, investigation and development of the thermal spallation drilling process is proceeding slowly.

  5. Spallation source materials test program

    SciTech Connect

    Maloy, S.A.; Sommer, W.F.

    1997-12-01

    A spallation source materials program has been developed to irradiate and test candidate materials (Inconel 718, 316L and 304L stainless steel, modified 9Cr-1Mo(T91), Al6061-T6, Al5052-O) for use in the Accelerator Production of Tritium (APT) target and blanket in prototypic proton and neutron fluxes at prototypic temperatures. The study uses the 800 MeV, 1mA proton accelerator at the Los Alamos Neutron Science Center (LANSCE) which produces a Gaussian beam with 2 sigma = 3 cm. The experimental set-up contains prototypic modules of the tungsten neutron source and the lead/aluminum blanket with mechanical testing specimens of candidate APT materials placed in specific locations in the irradiation area. These specimens have been irradiated for greater than 3,600 hours with a maximum proton fluence of 4--5 {times} 10{sup 21} p/cm{sup 2} in the center of the proton beam. Specimens will yield some of the first data on the effect of proton irradiation to high dose on the materials` properties from tensile tests, 3 pt. bend tests, fracture toughness tests, pressurized tubes, U-bend stress corrosion cracking specimens, corrosion measurements and microstructural characterization of transmission electron microscopy specimens.

  6. Materials compatibility studies for the Spallation Neutron Source

    SciTech Connect

    DiStefano, J.R.; Pawel, S.J.; Manneschmidt, E.T.

    1998-11-01

    The Spallation Neutron Source (SNS) is a high power facility for producing neutrons that utilizes flowing liquid mercury inside an austenitic stainless steel container as the target for a 1.0 GeV proton beam. Type 316 SS has been selected as the container material for the mercury and consequences of exposure of 316 SS to radiation, thermal shock, thermal stress, cavitation and hot, flowing mercury are all being addressed by R and D programs. In addition, corrosion studies also include evaluation of Inconel 718 because it has been successfully used in previous spallation neutron systems as a window material. Two types of compatibility issues relative to 316 SS/mercury and Inconel 718/mercury are being examined: (1) liquid metal embrittlement (LME) and (2) temperature gradient mass transfer. Studies have shown that mercury does not easily wet type 316 SS below 275 C. In the LME experiments, attempts were made to promote wetting of the steel by mercury either by adding gallium to the mercury or coating the specimen with a tin-silver solder that the mercury easily wets. The latter proved more reliable in establishing wetting, but there was no evidence of LME in any of the constant extension rate tensile tests either at 23 or 100 C. Inconel 718 also showed no change in room temperature properties when tested in mercury or mercury-gallium. However, there was evidence that the fracture was less ductile. Preliminary evaluation of mass transfer of either type 316 SS or Inconel 718 in mercury or mercury-gallium at 350 C (maximum temperature) did not reveal significant effects. Two 5,000 h thermal convection loop tests of type 316 SS are in progress, with specimens in both hot and cold test regions, at 300 and 240 C, respectively.

  7. BEAM LOSS MITIGATION IN THE OAK RIDGE SPALLATION NEUTRON SOURCE

    SciTech Connect

    Plum, Michael A

    2012-01-01

    The Oak Ridge Spallation Neutron Source (SNS) accelerator complex routinely delivers 1 MW of beam power to the spallation target. Due to this high beam power, understanding and minimizing the beam loss is an ongoing focus area of the accelerator physics program. In some areas of the accelerator facility the equipment parameters corresponding to the minimum loss are very different from the design parameters. In this presentation we will summarize the SNS beam loss measurements, the methods used to minimize the beam loss, and compare the design vs. the loss-minimized equipment parameters.

  8. China Spallation Neutron Source: Design, R&D, and outlook

    NASA Astrophysics Data System (ADS)

    Wei, Jie; Chen, Hesheng; Chen, Yanwei; Chen, Yuanbo; Chi, Yunlong; Deng, Changdong; Dong, Haiyi; Dong, Lan; Fang, Shouxian; Feng, Ji; Fu, Shinian; He, Lunhua; He, Wei; Heng, Yuekun; Huang, Kaixi; Jia, Xuejun; Kang, Wen; Kong, Xiangcheng; Li, Jian; Liang, Tianjiao; Lin, Guoping; Liu, Zhenan; Ouyang, Huafu; Qin, Qing; Qu, Huamin; Shi, Caitu; Sun, Hong; Tang, Jingyu; Tao, Juzhou; Wang, Chunhong; Wang, Fangwei; Wang, Dingsheng; Wang, Qingbin; Wang, Sheng; Wei, Tao; Xi, Jiwei; Xu, Taoguang; Xu, Zhongxiong; Yin, Wen; Yin, Xuejun; Zhang, Jing; Zhang, Zong; Zhang, Zonghua; Zhou, Min; Zhu, Tao

    2009-02-01

    The China Spallation Neutron Source (CSNS) is an accelerator based multidiscipline user facility planned to be constructed in Dongguan, Guangdong, China. The CSNS complex consists of an negative hydrogen linear accelerator, a rapid cycling proton synchrotron accelerating the beam to 1.6 GeV energy, a solid tungsten target station, and instruments for spallation neutron applications. The facility operates at 25 Hz repetition rate with an initial design beam power of 120 kW and is upgradeable to 500 kW. The primary challenge is to build a robust and reliable user's facility with upgrade potential at a fraction of "world standard" cost. We report the status, design, R&D, and upgrade outlook including applications using spallation neutron, muon, fast neutron, and proton, as well as related programs including medical therapy and accelerator-driven sub-critical reactor (ADS) programs for nuclear waste transmutation.

  9. Spallation-induced fission reactions

    NASA Astrophysics Data System (ADS)

    Benlliure, J.; Rodríguez-Sánchez, J. L.

    2017-03-01

    During the last decade spallation-induced fission reactions have received particular attention because of their impact in the design of spallation-neutron sources or radioactive beam facilities, but also in the understanding of the fission process at high excitation energy. In this paper, we review the main progress brought by modern experimental techniques, in particular those based in the inverse kinematic, as well as the achievements in modelling these reactions. We will also address future possibilities for improving the investigation of fission dynamics.

  10. Liquid Metal Target for NLC Positron Source

    SciTech Connect

    Sheppard, John C.

    2002-08-19

    Possibility of creating the liquid lead target with parameters, optimum for the NLC positron source, is investigated. Target has a form of titanium vessel, filled with liquid lead, pumped through. The energy deposition in target is characterized by 35 kW average power and up to 250 J/g specific energy at optimum beam sigma 0.6 mm. The use of pumped through liquid lead as target material solves both the problems of power evacuation and target survival. The window for beam exit is made of both temperature and pressure resistive material--the diamond-like ceramic BN.

  11. Webinar Presentation: The MATCH Study (Metals Assessment Targeting Community Health)

    EPA Pesticide Factsheets

    This presentation, The MATCH Study (Metals Assessment Targeting Community Health), was given at the NIEHS/EPA Children's Centers 2015 Webinar Series: Historical Perspectives and Research Updates from Previously Funded Children's Centers held on 11/18/15.

  12. Supporting technologies for a long-pulse spallation source

    SciTech Connect

    Russell, G.J.; Weinacht, D.J.; Ferguson, P.D.; Pitcher, E.J.; Court, J.D.; Greene, G.L.

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project is directed toward the development of the technologies required for a long-pulse, spallation neutron source (LPSS). Traditionally, spallation neutron sources have used proton accelerators that provide intense, short ({le} 1{micro}s) pulses of high-energy protons to a spallation target. A LPSS uses a proton pulse with longer time duration ({approx} 1 ms) and offers the possibility of achieving very high spallation neutron fluxes at substantially lower cost. The performance of a LPSS is very dependent on the neutronic performance of the target-moderator system. A detailed study of this performance has been carried out using Monte Carlo simulations. It should be noted that a LPSS is optimally suited to a fully coupled moderator. Neutron production per proton from such a moderator is a factor of five to seven greater than that produce d by moderators used at short pulse sources. The results of these efforts have been published in a series of articles.

  13. Management of tritium European Spallation Source

    SciTech Connect

    Ene, D.; Andersson, K.; Jensen, M.; Nielsen, S.; Severin, G.

    2015-03-15

    The European Spallation Source (ESS) will produce tritium via spallation and activation processes during operational activities. Within the location of ESS facility in Lund, Sweden site it is mandatory to demonstrate that the management strategy of the produced tritium ensures the compliance with the country regulation criteria. The aim of this paper is to give an overview of the different aspects of the tritium management in ESS facility. Besides the design parameter study of the helium coolant purification system of the target the consequences of the tritium releasing into the environment were also analyzed. Calculations show that the annual release of tritium during the normal operations represents a small fraction from the estimated total dose. However, more refined calculations of migration of activated-groundwater should be performed for higher hydraulic conductivities, with the availability of the results on soil examinations. With the assumption of 100% release of tritium to the atmosphere during the occurring of the extreme accidents, it was found as well that the total dose complies with the constraint. (authors)

  14. Influence of free surface nanorelief on the rear spallation threshold: Molecular-dynamics investigation

    NASA Astrophysics Data System (ADS)

    Mayer, Alexander E.; Ebel, Andrej A.

    2016-10-01

    By means of molecular dynamics simulation, we investigate the interaction of picosecond-duration compression pulses excited by a flat impactor with flat and nano-structured rear surfaces of copper and aluminum samples. It is shown that protrusions on the rear surface can increase the threshold value of the impact velocity, leading to spallation. As the shock wave reaches the perturbed rear surface, an unloading on the lateral surfaces of the protrusions begins; it leads to an intensive plastic deformation in the surface layer of metal. A part of the compression pulse energy is spent on the plastic deformation that restricts the rarefaction wave amplitude and suppresses the spall fracture. An increase in threshold velocity can be observed for all investigated thicknesses of the targets. The increase is substantial with respect to comparability between the protrusion height and the compression pulse width (the impactor thickness). Another condition is the ratio of the protrusion cross-section to the total surface area, which should be neither small nor large-approximately 0.3-0.4 for the best case. At high protrusion heights (higher than the compression pulse width), as well as at large protrusion cross sections, instability develops on the rear surface of the target and is accompanied by mass ejection. The instability violates the rear surface integrity and restricts the threshold velocity, although the loss of integrity in this case goes through mass ejection, not spallation.

  15. Potential containment materials for liquid-lead and lead-bismuth eutectic spallation neutron source

    SciTech Connect

    Park, J.J.; Butt, D.P.; Beard, C.A.

    1997-11-01

    Lead (Pb) and lead-bismuth eutectic (44Pb-56Bi) have been the two primary candidate liquid-metal target materials for the production of spallation neutrons. Selection of a container material for the liquid-metal target will greatly affect the lifetime and safety of the target subsystem. For the lead target, niobium-1 (wt%) zirconium (Nb-1Zr) is a candidate containment material for liquid lead, but its poor oxidation resistance has been a major concern. The oxidation rate of Nb-1Zr was studied based on the calculations of thickness loss due to oxidation. According to these calculations, it appeared that uncoated Nb-1Zr may be used for a one-year operation at 900 C at P{sub O{sub 2}} = 1 {times} 10{sup {minus}6} torr, but the same material may not be used in argon with 5-ppm oxygen. Coating technologies to reduce the oxidation of Nb-1Zr are reviewed, as are other candidate refractory metals such as molybdenum, tantalum, and tungsten. For the Pb-Bi target, three candidate containment materials are suggested based on a literature survey of the materials compatibility and proton irradiation tests: Croloy 2-1/4, modified 9Cr-1Mo, and 12Cr-1Mo (HT-9) steel. These materials seem to be used only if the lead-bismuth is thoroughly deoxidized and treated with zirconium and magnesium.

  16. Mitochondrial metals as a potential therapeutic target in neurodegeneration

    PubMed Central

    Grubman, A; White, A R; Liddell, J R

    2014-01-01

    Transition metals are critical for enzyme function and protein folding, but in excess can mediate neurotoxic oxidative processes. As mitochondria are particularly vulnerable to oxidative damage due to radicals generated during ATP production, mitochondrial biometal homeostasis must therefore be tightly controlled to safely harness the redox potential of metal enzyme cofactors. Dysregulation of metal functions is evident in numerous neurological disorders including Alzheimer's disease, stroke, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and Friedrich's ataxia. This review describes the mitochondrial metal defects in these disorders and highlights novel metal-based therapeutic approaches that target mitochondrial metal homeostasis in neurological disorders. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24206195

  17. Preliminary waste management plan of European spallation

    SciTech Connect

    Ene, Daniela

    2013-07-01

    The European Spallation Source (ESS) is the European common effort in designing and building a next generation large-scale user facility for studies of the structure and dynamics of materials. The proposed schematic layout of the ESS facility is based on a linear driver (linac) directing the proton beam (5 MW of 2.5 GeV) of 2.8 ms long pulses with a 20 Hz on a tungsten target where neutrons are produced via spallation reactions. Further the neutrons will be moderated to thermal and sub-thermal energies in a couple of moderators placed around the target. The moderators feed 22 beamlines guiding the neutrons to the scattering instruments, mainly for neutron scattering research, as has been previously mentioned. The objective of this work is to develop a waste management plan for ESS facility. In this respect two important aspects are analyzed. First the present status of the problem is outlined as follow. Estimate types and quantities of waste that the ESS project will generate at different stages: commission, operation, decommissioning were derived using: i) precise Monte Carlo calculations ii) scaling the activity from the operation experience of the existing spallation source installations for waste such it is difficult to predict level of activation or for components of the facility in stage of the preconceptual model. Associated waste treatment/conditioning options and final disposal route were further analyzed in order to define the waste type and packet descriptions in agreement with Swedish regulations and policy. It was found that the compilation of completely new waste type descriptions for qualification of the ESS waste for disposal will be necessary. Particular attention was devoted to 'problematic waste' as Beryllium reflector, C-14 from graphite used as core zone of the beam-dump and collimators or waste arising from the purification systems of both Helium and water cooling circuits. Management of waste on ESS site: collection/segregation systems

  18. Status of the AUSTRON spallation project

    NASA Astrophysics Data System (ADS)

    Rauch, H.; Regler, M.; Weber, H.

    2000-03-01

    The characteristic parameters of the present version of the planned AUSTRON neutron spallation source are: (a) 10 Hz repetition rate at the target, (b) 500 kW average beam power, (c) 1.6 GeV proton energy and (d) strongly dedicated to cold neutron research. The machine can be built based on existing techniques and would provide a performance gain between 3 and 10 compared to existing installations. Progress has been made in the planning of the instrumentation where an improved standard instrumentation and several new systems have been designed and evaluated by an international group of neutron scientists. A clean room area with vibration, temperature and humidity control provides new possibilities for neutron optics, neutron reflectometry and nuclear orientation experiments. A proposed magnetic focusing line with an active energy transfer system indicates the capability to achieve a further intensity gain by a factor of 10. The status of the ongoing internationalization process will be reported as well.

  19. Assessment of the neutron cross section database for mercury for the ORNL spallation source

    SciTech Connect

    Leal, L.C.; Spencer, R.R.; Ingersoll, D.T.; Gabriel, T.A.

    1996-06-01

    Neutron source generation based on a high energy particle accelerator has been considered as an alternative to the canceled Advanced Neutron Source project at Oak Ridge National Laboratory. The proposed technique consists of a spallation neutron source in which neutrons are produced via the interaction of high-energy charged particles in a heavy metal target. Preliminary studies indicate that liquid mercury bombarded with GeV protons provides an excellent neutron source. Accordingly, a survey has been made of the available neutron cross-section data. Since it is expected that spectral modifiers, specifically moderators, will also be incorporated into the source design, the survey included thermal energy, resonance region, and high energy data. It was found that data of individual isotopes were almost non-existent and that the only evaluation found for the natural element had regions of missing data or discrepant data. Therefore, it appears that to achieve the desired degree of accuracy in the spallation source design it is necessary to re-evaluate the mercury database including making new measurements. During the presentation the currently available data will be presented and experiments proposed which can lead to design quality cross sections.

  20. Metallic and nonmetallic coatings for ICF targets

    SciTech Connect

    Hendricks, C.D.; Crane, J.K.; Hsieh, E.J.; Meyer, S.F.

    1981-04-17

    Some fusion targets designed to be driven by 0.35 to 1 ..mu..m laser light are glass spheres coated with layers of various materials such as hydrocarbons, fluorocarbons, beryllium, copper, gold, platinum, etc. The glass shell, which is filled with gas, liquid or solid deuterium-tritium fuel, must have remarkably good surface and wall thickness uniformity. Methods for depositing the various materials will be discussed. They include plasma polymerization, electro-deposition, sputtering and evaporation. Many of the difficulties encountered in the coating processes are the result of coating on free spheres with very small radii - 35 to 500 micrometers. Several means of overcoming the problems will be described and experimental results presented.

  1. Spallation and fracture resulting from reflected and intersecting stress waves.

    NASA Technical Reports Server (NTRS)

    Kinslow, R.

    1973-01-01

    Discussion of the effects of stress waves produced in solid by explosions or high-velocity impacts. These waves rebound from free surfaces in the form of tensile waves that are capable of causing internal fractures or spallation of the material. The high-speed framing camera is shown to be an important tool for observing the stress waves and fracture in transparent targets, and its photographs provide valuable information on the mechanics of fracture.

  2. Theoretical investigation of the thermal hydraulic behaviour of a slab-type liquid metal target

    SciTech Connect

    Dury, T.V.; Smith, B.L.

    1996-06-01

    The thermal hydraulics codes CFDS-FLOW3D and ASTEC have been used to simulate a slabtype design of ESS spallation target. This design is single-skinned, and of tapering form (in the beam direction), with rounded sides in a cross-section through a plane normal to the beam. The coolant fluid used is mercury, under forced circulation, with an inlet temperature of 180{degrees}C. The goal of these computer studies was to understand the behaviour of the coolant flow, and hence to arrive at a design which optimises the heat extraction for a given beam power - in the sense of: (1) minimising the peak local fluid temperature within the target, (2) maintaining an acceptable temperature level and distribution over and through the target outer wall, (3) keeping the overall fluid pressure loss through the complete target to a minimum, (4) staying within the physical limits of overall size required, particularly in the region of primary spallation. Two- and three-dimensional models have been used, with different arrangements and design of internal baffles, and different coolant flow distributions at the target inlet. Nominal total inlet mass flow was 245 kg/s, and a heat deposition profile used which was based on the proton beam energy distribution. This gave a nominal total heat load of 3.23 MW - of which 8.2kW were deposited in the window steel.

  3. Protein crystallography with spallation neutrons

    SciTech Connect

    Langan, P.; Schoenborn, Benno P.

    2003-01-01

    proteins and oriented molecular complexes. With spallation neutrons and their time dependent wavelength structure, one can select data with an optimal wavelength bandwidth and cover the whole Laue spectrum as time (wavelength) resolved diffraction data. This optimizes data quality with best peak to background ratios and provides spatial and energy resolution to eliminate peak overlaps. Such a Protein Crystallography Station (PCS) has been built and tested at Los Alamos Neutron Science Center. A partially coupled moderator is used to increase flux and data are collected by a Cylindrical He3 detector covering 120' with 200mm height. The PCS is described along with examples of data collected from a number of proteins.

  4. Incorporating metal into polarized 3He target cells

    NASA Astrophysics Data System (ADS)

    Katugampola, Sumudu K.; Matyas, Daniel J.; Wang, Yunxiao; Tobias, William A.; Nelyubin, Vladimir; Cates, Gordon D.

    2017-01-01

    An upcoming measurement at Jefferson Laboratory (JLab) of the electric form factor of the neutron will utilize a polarized 3He target at high luminosity. While polarized 3He targets at JLab have previously been made entirely of glass, we describe progress toward incorporating metal windows for the electron beam. Under the conditions of our targets, very few studies have been done on the spin-relaxation of nuclear-polarized 3He on metal surfaces. We have found good performance by using Oxygen Free High Conductivity (OFHC) copper substrates electroplated with gold. The glass-to-metal transitions within our test cells were based on Housekeeper seals. We have further established that Uranium glass (Canary glass) has excellent spin-relaxation properties, and can serve as a transition glass from Pyrex to Aluminosilicate glass (GE180). Another finding was that spin-relaxation properties were sensitive to the manner in which cells were annealed, an important issue because of constraints when annealing cells containing both metal and glass.

  5. Dose measurements around spallation neutron sources.

    PubMed

    Fragopoulou, M; Stoulos, S; Manolopoulou, M; Krivopustov, M; Zamani, M

    2008-01-01

    Neutron dose measurements and calculations around spallation sources appear to be of great importance in shielding research. Two spallation sources were irradiated by high-energy proton beams delivered by the Nuclotron accelerator (JINR), Dubna. Neutrons produced by the spallation sources were measured by using solid-state nuclear track detectors. In addition, neutron dose was calculated after polyethylene and concrete, using a phenomenological model based on empirical relations applied in high-energy physics. The study provides an analytical and experimental neutron benchmark analysis using the transmission factor and a comparison between the experimental results and calculations.

  6. Spallation Neutron Source reaches megawatt power

    SciTech Connect

    Dr. William F. Brinkman

    2009-09-30

    The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier. "Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE's Office of Science.

  7. Spallation Neutron Source reaches megawatt power

    ScienceCinema

    Dr. William F. Brinkman

    2016-07-12

    The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier. "Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE's Office of Science.

  8. Cryogenics at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Weisend, J. G., II; Arnold, P.; Hees, J. Fydrych. W.; Jurns, J. M.; Wang, X. L.

    Cryogenics plays an important role at the European Spallation Source, a world class neutron science center, currently under construction in Lund, Sweden. Three principal applications of cryogenics are found at ESS. The SRF cryomodules of the ESS proton linac require cooling at 2 K, 4.5 K and 40 K; the hydrogenmoderator surrounding the target that produces neutrons, requires cooling via 16.5 K helium and LHe is required for many of the scientific instruments. These needs will be met by a set of three cryogenic refrigeration/liquefaction plants and an extensive cryogenic distribution system. Significant progress has been made on the ESS cryogenic system in preparation for the expected first beam on target in 2019. This work includes: funding of industry studies for the accelerator cryoplant, preliminary design of the cryogenic distribution system, investigation of possible in kind contributors and release of the invitation to tender for the accelerator cryoplant.This paper describes the requirements, design solutions and current status of the ESS cryogenic system. The planned recovery of waste heat from the cryogenic plants, a unique aspect of ESS, is described. The procurement of the cryogenic system, expected to be done via a combination of purchase via competitive bids and in kind contributions is also discussed.

  9. Thermal spallation drilling. Final report

    SciTech Connect

    Miska, S.; Williams, R.E.; Potter, R.M.

    1992-04-30

    Work that was performed on a previous contract with the Los Alamos National Laboratory and subsequent work at NM Tech indicated that an intermittent heating and cooling cycle, produced by heating with the conventional blast from a small jet engine and then cooled with a stream of water, would prove to be successful in spalling additional rocks. New Mexico Tech has attempted to further the use of spallation drilling to suit applications for mining and oil and gas drilling by showing that the use of a heating and cooling system would successfully penetrate otherwise unspallable rocks. This process, while showing some success in previous experimentation, has proved to work only spasmodically. The rocks tested had zones that were not spallable or were so slowly spallable that non-uniform holes were produced. Because of these irregularities, further field experimentation is not now profitable.

  10. Laser backwriting process on glass via ablation of metal targets

    NASA Astrophysics Data System (ADS)

    Castelo, A.; Nieto, D.; Bao, C.; Flores-Arias, M. T.; Pérez, M. V.; Gómez-Reino, C.; López-Gascón, C.; de la Fuente, G. F.

    2007-05-01

    Ablation of metal targets onto pyrex glass substrates, using a Q-switched Nd:YAG laser working at 355 nm, was used to study the potential of a laser backwriting process for the fabrication of optical waveguides via an index of refraction change. Metal foils of stainless steel, aluminum, copper, brass and gold have been used as blanks and irradiated by focusing the laser beam through a cylindrical lens under continuous movement in a direction perpendicular to the irradiation. An horizontal setup was found suitable to improve the effect of the plume in the sample. Results were obtained for two different configurations. Transversal profiles were analysed using a contact profilometer, comparing results obtained for the different configurations, traverse speeds and metal targets used. Two ablation regimes were identified, which are related to a critical laser fluence value of 2.7 J/cm 2. Surface micrographs obtained by scanning electron microscopy are discussed, together with the characteristics of the structures attained, taking into account the optical and thermal properties of the ablated metal blanks.

  11. Mercury Cavitation Phenomenon in Pulsed Spallation Neutron Sources

    SciTech Connect

    Futakawa, Masatoshi; Naoe, Takashi; Kawai, Masayoshi

    2008-06-24

    Innovative researches will be performed at Materials and Life Science Experimental Facility in J-PARC, in which a mercury target system will be installed as MW-class pulse spallation neutron sources. Proton beams will be injected into mercury target to induce the spallation reaction. At the moment the intense proton beam hits the target, pressure waves are generated in the mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel leading to negative pressure that may cause cavitation along the vessel wall. Localized impacts by micro-jets and/or shock waves which are caused by cavitation bubble collapse impose pitting damage on the vessel wall. The pitting damage which degrades the structural integrity of target vessels is a crucial issue for high power mercury targets. Micro-gas-bubbles injection into mercury may be useful to mitigate the pressure wave and the pitting damage. The visualization of cavitation-bubble and gas-bubble collapse behaviors was carried out by using a high-speed video camera. The differences between them are recognized.

  12. New head picked for European Spallation Source

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2016-06-01

    The UK physicist John Womersley is to become the next director-general of the €1.8bn European Spallation Source (ESS), which is currently being built in Lund, Sweden, by a 17-member consortium of European countries.

  13. Biological metals and metal-targeting compounds in major neurodegenerative diseases.

    PubMed

    Barnham, Kevin J; Bush, Ashley I

    2014-10-07

    Multiple abnormalities occur in the homeostasis of essential endogenous brain biometals in age-related neurodegenerative disorders, Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. As a result, metals both accumulate in microscopic proteinopathies, and can be deficient in cells or cellular compartments. Therefore, bulk measurement of metal content in brain tissue samples reveal only the "tip of the iceberg", with most of the important changes occurring on a microscopic and biochemical level. Each of the major proteins implicated in these disorders interacts with biological transition metals. Tau and the amyloid protein precursor have important roles in normal neuronal iron homeostasis. Changes in metal distribution, cellular deficiencies, or sequestration in proteinopathies all present abnormalities that can be corrected in animal models by small molecules. These biochemical targets are more complex than the simple excess of metals that are targeted by chelators. In this review we illustrate some of the richness in the science that has developed in the study of metals in neurodegeneration, and explore its novel pharmacology.

  14. European Spallation Source and Neutron Science

    NASA Astrophysics Data System (ADS)

    Yeck, James

    2014-03-01

    International collaborations in large-scale scientific projects can link Sciences and Society. Following this goal, the European Spallation Source (ESS) is a multi-disciplinary research centre under design and construction in Lund, Sweden. This new facility is funded by a collaboration of 17 European countries. Scandinavia is providing 50 percent of the construction cost whilst the other member states are providing financial support mainly via in-kind contribution from institutes, laboratories or industries of the given countries. Scientists and engineers from 35 different countries are members of the workforce in Lund who participate in its design and construction. The ESS will enable new opportunities for researchers in fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics by producing very high flux neutrons to study condensed matter physics, chemistry, biology, nuclear physics and materials science. The ESS will be up to 30 times brighter than today's leading facilities and neutron sources. A tungsten target and a 5 MW long pulse proton accelerator, composed mainly of superconducting Radio-Frequency components, are used to achieve these goals.

  15. The Spallation Neutron Source accelerator system design

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; Bach, P.; Badea, V.; Battle, R.; Beebe-Wang, J.; Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E.; Blaskiewicz, M.; Blind, B.; Blokland, W.; Bookwalter, V.; Borovina, D.; Bowling, S.; Bradley, J.; Brantley, C.; Brennan, J.; Brodowski, J.; Brown, S.; Brown, R.; Bruce, D.; Bultman, N.; Cameron, P.; Campisi, I.; Casagrande, F.; Catalan-Lasheras, N.; Champion, M.; Champion, M.; Chen, Z.; Cheng, D.; Cho, Y.; Christensen, K.; Chu, C.; Cleaves, J.; Connolly, R.; Cote, T.; Cousineau, S.; Crandall, K.; Creel, J.; Crofford, M.; Cull, P.; Cutler, R.; Dabney, R.; Dalesio, L.; Daly, E.; Damm, R.; Danilov, V.; Davino, D.; Davis, K.; Dawson, C.; Day, L.; Deibele, C.; Delayen, J.; DeLong, J.; Demello, A.; DeVan, W.; Digennaro, R.; Dixon, K.; Dodson, G.; Doleans, M.; Doolittle, L.; Doss, J.; Drury, M.; Elliot, T.; Ellis, S.; Error, J.; Fazekas, J.; Fedotov, A.; Feng, P.; Fischer, J.; Fox, W.; Fuja, R.; Funk, W.; Galambos, J.; Ganni, V.; Garnett, R.; Geng, X.; Gentzlinger, R.; Giannella, M.; Gibson, P.; Gillis, R.; Gioia, J.; Gordon, J.; Gough, R.; Greer, J.; Gregory, W.; Gribble, R.; Grice, W.; Gurd, D.; Gurd, P.; Guthrie, A.; Hahn, H.; Hardek, T.; Hardekopf, R.; Harrison, J.; Hatfield, D.; He, P.; Hechler, M.; Heistermann, F.; Helus, S.; Hiatt, T.; Hicks, S.; Hill, J.; Hill, J.; Hoff, L.; Hoff, M.; Hogan, J.; Holding, M.; Holik, P.; Holmes, J.; Holtkamp, N.; Hovater, C.; Howell, M.; Hseuh, H.; Huhn, A.; Hunter, T.; Ilg, T.; Jackson, J.; Jain, A.; Jason, A.; Jeon, D.; Johnson, G.; Jones, A.; Joseph, S.; Justice, A.; Kang, Y.; Kasemir, K.; Keller, R.; Kersevan, R.; Kerstiens, D.; Kesselman, M.; Kim, S.; Kneisel, P.; Kravchuk, L.; Kuneli, T.; Kurennoy, S.; Kustom, R.; Kwon, S.; Ladd, P.; Lambiase, R.; Lee, Y. Y.; Leitner, M.; Leung, K.-N.; Lewis, S.; Liaw, C.; Lionberger, C.; Lo, C. C.; Long, C.; Ludewig, H.; Ludvig, J.; Luft, P.; Lynch, M.; Ma, H.; MacGill, R.; Macha, K.; Madre, B.; Mahler, G.; Mahoney, K.; Maines, J.; Mammosser, J.; Mann, T.; Marneris, I.; Marroquin, P.; Martineau, R.; Matsumoto, K.; McCarthy, M.; McChesney, C.; McGahern, W.; McGehee, P.; Meng, W.; Merz, B.; Meyer, R.; Meyer, R.; Miller, B.; Mitchell, R.; Mize, J.; Monroy, M.; Munro, J.; Murdoch, G.; Musson, J.; Nath, S.; Nelson, R.; Nelson, R.; O`Hara, J.; Olsen, D.; Oren, W.; Oshatz, D.; Owens, T.; Pai, C.; Papaphilippou, I.; Patterson, N.; Patterson, J.; Pearson, C.; Pelaia, T.; Pieck, M.; Piller, C.; Plawski, T.; Plum, M.; Pogge, J.; Power, J.; Powers, T.; Preble, J.; Prokop, M.; Pruyn, J.; Purcell, D.; Rank, J.; Raparia, D.; Ratti, A.; Reass, W.; Reece, K.; Rees, D.; Regan, A.; Regis, M.; Reijonen, J.; Rej, D.; Richards, D.; Richied, D.; Rode, C.; Rodriguez, W.; Rodriguez, M.; Rohlev, A.; Rose, C.; Roseberry, T.; Rowton, L.; Roybal, W.; Rust, K.; Salazer, G.; Sandberg, J.; Saunders, J.; Schenkel, T.; Schneider, W.; Schrage, D.; Schubert, J.; Severino, F.; Shafer, R.; Shea, T.; Shishlo, A.; Shoaee, H.; Sibley, C.; Sims, J.; Smee, S.; Smith, J.; Smith, K.; Spitz, R.; Staples, J.; Stein, P.; Stettler, M.; Stirbet, M.; Stockli, M.; Stone, W.; Stout, D.; Stovall, J.; Strelo, W.; Strong, H.; Sundelin, R.; Syversrud, D.; Szajbler, M.; Takeda, H.; Tallerico, P.; Tang, J.; Tanke, E.; Tepikian, S.; Thomae, R.; Thompson, D.; Thomson, D.; Thuot, M.; Treml, C.; Tsoupas, N.; Tuozzolo, J.; Tuzel, W.; Vassioutchenko, A.; Virostek, S.; Wallig, J.; Wanderer, P.; Wang, Y.; Wang, J. G.; Wangler, T.; Warren, D.; Wei, J.; Weiss, D.; Welton, R.; Weng, J.; Weng, W.-T.; Wezensky, M.; White, M.; Whitlatch, T.; Williams, D.; Williams, E.; Wilson, K.; Wiseman, M.; Wood, R.; Wright, P.; Wu, A.; Ybarrolaza, N.; Young, K.; Young, L.; Yourd, R.; Zachoszcz, A.; Zaltsman, A.; Zhang, S.; Zhang, W.; Zhang, Y.; Zhukov, A.

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ~100 high-power RF power systems, a 2 K cryogenic plant, ~400 DC and pulsed power supply systems, ~400 beam diagnostic devices and a distributed control system handling ~100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  16. Nanostructured target fabrication with metal and semiconductor nanoparticles

    NASA Astrophysics Data System (ADS)

    Barberio, M.; Antici, P.

    2015-10-01

    The development of ultra-intense high-energy (≫1 J) short (<1 ps) laser pulses in the last decade has enabled the acceleration of high-energy short-pulse proton beams. A key parameter for enhancing the acceleration regime is the laser-to-target absorption, which heavily depends on the target structure and material. In this work, we present the realization of a nanostructured target with a sub-laser wavelength nano-layer in the front surface as a possible candidate for improving the absorption. The nanostructured film was realized by a simpler and cheaper method than using conventional lithographic techniques: A colloidal solution of metallic or semiconductor nanoparticles (NPs) was produced by laser ablation and, after a heating and sonication process, was spray-dried on the front surface of an aluminum target. The obtained nanostructured film with a thickness of 1 μm appears, at morphological and chemical analysis, uniformly nanostructured and distributed on the target surface without the presence of oxides or external contaminants. Finally, the size of the NPs can be tuned from tens to hundreds of nanometers simply by varying the growth parameters (i.e., irradiation time, fluence, and laser beam energy).

  17. Laser induced heating and emission of electrons from metallic targets

    NASA Astrophysics Data System (ADS)

    Bharuthram, R.; Tripathi, V. K.

    1999-08-01

    A high power laser incident on a metallic target heats the electrons in the skin layer within a few ps. For a specific dependence of electron-phonon collision frequency on electron temperature, ν∝ Te1/2, the steady state electron temperature profile turns out to be an exponential function of depth. The heated electrons raise the rate of thermionic emission. When the laser is significantly converted into a surface plasma wave the rate of heating and emission is considerably enhanced.

  18. Application of Origen2.1 in the decay photon spectrum calculation of spallation products

    NASA Astrophysics Data System (ADS)

    Hong, Shuang; Yang, Yong-Wei; Xu, Hu-Shan; Meng, Hai-Yan; Zhang, Lu; Liu, Zhao-Qing; Gao, Yu-Cui; Chen, Kang

    2016-11-01

    Origen2.1 is a widely used computer code for calculating the burnup, decay, and processing of radioactive materials. However, the nuclide library of Origen2.1 is used for existing reactors like pressurized water reactors. To calculate the photon spectrum released by the decay of spallation products, we have made specific libraries for the ADS tungsten spallation target, based on the results given by the FLUKA Monte Carlo code. All the data used to make the Origen2.1 libraries are obtained from Nuclear structure & decay Data (NuDat2.6). The accumulated activity of spallation products and the contribution of nuclides to photon emission are given in this paper. Supported by Strategic Priority Research Program of Chinese Academy of Sciences (XDA03030102)

  19. Spallation of the Galileo probe heat shield

    NASA Astrophysics Data System (ADS)

    Lundell, J. H.

    1982-06-01

    The Galileo probe heat shield will encounter severe radiative and convective heating during entry into Jupiter's atmosphere. The shield is made of two different carbon phenolic composites; one is chopped-molded, and the other is tape-wrapped, both of which tend to spall under intense heating conditions. To characterize this phenomenon, an experimental program, using a gasdynamic laser, was initiated. Tests were performed at a variety of radiation intensities, and both the total and spallation mass-loss rates were measured and correlated with intensity. These correlations were then applied to calculated flight heating conditions for two model atmospheres. Entry of a 310-kg probe into the nominal atmosphere would result in a spallation mass loss of 6.3 kg, or 7.4% of the expected thermochemical mass loss. Similarly, entry of that probe into the cool-dense atmosphere would result in 11.9 kg of spallation, or about 10% of the expected thermochemical mass loss.

  20. Energy balance in laser ablation of metal targets

    SciTech Connect

    Sobral, H.; Villagran-Muniz, M.; Bredice, F.

    2005-10-15

    Laser-generated plasma was induced on metallic targets glued to a piezoelectric microphone and placed between the plates of a planar charged capacitor. The plasma generates a temporal redistribution of electric charge on the plates that can easily be measured by a resistor connected to the ground plate; this signal is proportional to the total number of ions removed by breakdown. Both the absorbed and scattered energies were simultaneously monitored by the photoacoustic signal and an energy meter. From these signals it was possible to determine the energy involved in each of the processes. Just above the ablation threshold most of the delivered energy is absorbed and the acoustic signal prevails compared to other contributions. Above this region, the electric signal, which is proportional to the energy involved in the ablation process, becomes dominant.

  1. Moisture-Induced Spallation and Interfacial Hydrogen Embrittlement of Alumina Scales

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2005-01-01

    Thermal expansion mismatch stresses and interfacial sulfur activity are the major factors producing primary Al2O3 scale spallation on high temperature alloys. However, moisture-induced delayed spallation appears as a secondary, but often dramatic, illustration of an additional mechanistic detail. A historical review of delayed failure of alumina scales and TBC s on superalloys is presented herein. Similarities with metallic phenomena suggest that hydrogen embrittlement from ambient humidity, resulting from the reaction Al+3H2O=Al(OH)3+3H(+)+3e(-), is the operative mechanism. This proposal was tested by standard cathodic hydrogen charging in 1N H2SO4, applied to Rene N5 pre-oxidized at 1150 C for 1000 1-hr cycles, and monitored by weight change, induced current, and microstructure. Here cathodic polarization at -2.0 V abruptly stripped mature Al2O3 scales at the oxide-metal interface. Anodic polarization at +2.0 V, however, produced alloy dissolution. Finally, with no applied voltage, the electrolyte alone produced neither scale spallation nor alloy dissolution. These experiments thus highlight the detrimental effects of hydrogen charging on alumina scale adhesion. It is proposed that interfacial hydrogen embrittlement is produced by moist air and is the root cause of both moisture-induced, delayed scale spallation and desktop TBC failures.

  2. HPC simulations of grain-scale spallation to improve thermal spallation drilling

    NASA Astrophysics Data System (ADS)

    Walsh, S. D.; Lomov, I.; Wideman, T. W.; Potter, J.

    2012-12-01

    Thermal spallation drilling and related hard-rock hole opening techniques are transformative technologies with the potential to dramatically reduce the costs associated with EGS well drilling and improve the productivity of new and existing wells. In contrast to conventional drilling methods that employ mechanical means to penetrate rock, thermal spallation methods fragment rock into small pieces ("spalls") without contact via the rapid transmission of heat to the rock surface. State-of-the-art constitutive models of thermal spallation employ Weibull statistical failure theory to represent the relationship between rock heterogeneity and its propensity to produce spalls when heat is applied to the rock surface. These models have been successfully used to predict such factors as penetration rate, spall-size distribution and borehole radius from drilling jet velocity and applied heat flux. A properly calibrated Weibull model would permit design optimization of thermal spallation drilling under geothermal field conditions. However, although useful for predicting system response in a given context, Weibull models are by their nature empirically derived. In the past, the parameters used in these models were carefully determined from laboratory tests, and thus model applicability was limited by experimental scope. This becomes problematic, for example, if simulating spall production at depths relevant for geothermal energy production, or modeling thermal spallation drilling in new rock types. Nevertheless, with sufficient computational resources, Weibull models could be validated in the absence of experimental data by explicit small-scale simulations that fully resolve rock grains. This presentation will discuss how high-fidelity simulations can be used to inform Weibull models of thermal spallation, and what these simulations reveal about the processes driving spallation at the grain-scale - in particular, the role that inter-grain boundaries and micro-pores play in the

  3. Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets

    DOEpatents

    Makowiecki, Daniel M.; Ramsey, Philip B.; Juntz, Robert S.

    1995-01-01

    An improved method for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite's high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding.

  4. Simulation of a beam rotation system for a spallation source

    NASA Astrophysics Data System (ADS)

    Reiss, Tibor; Reggiani, Davide; Seidel, Mike; Talanov, Vadim; Wohlmuther, Michael

    2015-04-01

    With a nominal beam power of nearly 1 MW on target, the Swiss Spallation Neutron Source (SINQ), ranks among the world's most powerful spallation neutron sources. The proton beam transport to the SINQ target is carried out exclusively by means of linear magnetic elements. In the transport line to SINQ the beam is scattered in two meson production targets and as a consequence, at the SINQ target entrance the beam shape can be described by Gaussian distributions in transverse x and y directions with tails cut short by collimators. This leads to a highly nonuniform power distribution inside the SINQ target, giving rise to thermal and mechanical stresses. In view of a future proton beam intensity upgrade, the possibility of homogenizing the beam distribution by means of a fast beam rotation system is currently under investigation. Important aspects which need to be studied are the impact of a rotating proton beam on the resulting neutron spectra, spatial flux distributions and additional—previously not present—proton losses causing unwanted activation of accelerator components. Hence a new source description method was developed for the radiation transport code MCNPX. This new feature makes direct use of the results from the proton beam optics code TURTLE. Its advantage to existing MCNPX source options is that all phase space information and correlations of each primary beam particle computed with TURTLE are preserved and transferred to MCNPX. Simulations of the different beam distributions together with their consequences in terms of neutron production are presented in this publication. Additionally, a detailed description of the coupling method between TURTLE and MCNPX is provided.

  5. Industrial recovered-materials-utilization targets for the metals and metal-products industry

    SciTech Connect

    1980-03-01

    The National Energy Conservation Policy Act of 1978 directs DOE to set targets for increased utilization of energy-saving recovered materials for certain industries. These targets are to be established at levels representing the maximum feasible increase in utilization of recovered materials that can be achieved progressively by January 1, 1987 and is consistent with technical and economic factors. A benefit to be derived from the increased use of recoverable materials is in energy savings, as state in the Act. Therefore, emhasis on different industries in the metals sector has been related to their energy consumption. The ferrous industry (iron and steel, ferrour foundries and ferralloys), as defined here, accounts for approximately 3%, and all others for the remaining 3%. Energy consumed in the lead and zinc segments is less than 1% each. Emphasis is placed on the ferrous scrap users, followed by the aluminum and copper industries. A bibliography with 209 citations is included.

  6. Generic guide concepts for the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Zendler, C.; Martin Rodriguez, D.; Bentley, P. M.

    2015-12-01

    The construction of the European Spallation Source (ESS) faces many challenges from the neutron beam transport point of view: the spallation source is specified as being driven by a 5 MW beam of protons, each with 2 GeV energy, and yet the requirements in instrument background suppression relative to measured signal vary between 10-6 and 10-8. The energetic particles, particularly above 20 MeV, which are expected to be produced in abundance in the target, have to be filtered in order to make the beamlines safe, operational and provide good quality measurements with low background. We present generic neutron guides of short and medium length instruments which are optimised for good performance at minimal cost. Direct line of sight to the source is avoided twice, with either the first point out of line of sight or both being inside the bunker (20 m) to minimise shielding costs. These guide geometries are regarded as a baseline to define standards for instruments to be constructed at ESS. They are used to find commonalities and develop principles and solutions for common problems. Lastly, we report the impact of employing the over-illumination concept to mitigate losses from random misalignment passively, and that over-illumination should be used sparingly in key locations to be effective. For more widespread alignment issues, a more direct, active approach is likely to be needed.

  7. Radiological Hazard of Spallation Products in Accelerator-Driven System

    SciTech Connect

    Saito, M.; Stankovskii, A.; Artisyuk, V.; Korovin, Yu.; Shmelev, A.; Titarenko, Yu.

    2002-09-15

    The central issue underlying this paper is related to elucidating the hazard of radioactive spallation products that might be an important factor affecting the design option of accelerator-driven systems (ADSs). Hazard analysis based on the concept of Annual Limit on Intake identifies alpha-emitting isotopes of rare earths (REs) (dysprosium, gadolinium, and samarium) as the dominant contributors to the overall toxicity of traditional (W, Pb, Pb-Bi) targets. The matter is addressed from several points of view: code validation to simulate their yields, choice of material for the neutron producing targets, and challenging the beam type. The paper quantitatively determines the domain in which the toxicity of REs exceeds that of polonium activation products broadly discussed now in connection with advertising lead-bismuth technology for the needs of ADSs.

  8. Shielding Design of the Spallation Neutron Source (SNS)

    SciTech Connect

    Johnson, J.O.

    1998-09-17

    The shielding design is important for the construction of an intense high-energy accelerator facility like the proposed Spallation Neutron Source (SNS) due to its impact on conventional facility design, maintenance operations, and since the cost for the radiation shielding shares a considerable part of the total facility costs. A calculational strategy utilizing coupled high energy Monte Carlo calculations and multi-dimensional discrete ordinates calculations, along with semi-empirical calculations, was implemented to perform the conceptual design shielding assessment of the proposed SNS. Biological shields have been designed and assessed for the proton beam transport system and associated beam dumps, the target station, and the target service cell and general remote maintenance cell. Shielding requirements have been assessed with respect to weight, space, and dose-rate constraints for operating, shutdown, and accident conditions. A discussion of the proposed facility design, conceptual design shielding requirements, calculational strategy, source terms, preliminary results and conclusions, and recommendations for additional analyses are presented.

  9. INJECTION CHOICE FOR SPALLATION NEUTRON SOURCE RING.

    SciTech Connect

    WEI,J.; BEEBE-WANG,J.; BLASKIEWICZ,M.; BRODOWSKI,J.; FEDOTOV,A.; GARDNER,C.; LEE,Y.Y.; RAPARIA,D.; DANILOV,V.; HOLMES,J.; PRIOR,C.; REES,G.; MACHIDA,S.

    2001-06-18

    Injection is key in the low-loss design of high-intensity proton facilities like the Spallation Neutron Source (SNS). During the design of both the accumulator and the rapid-cycling-synchrotron version of the SNS, extensive comparison has been made to select injection scenarios that satisfy SNS's low-loss design criteria. This paper presents issues and considerations pertaining to the final choice of the SNS injection systems.

  10. COHERENT at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Scholberg, Kate; Coherent Collaboration

    2016-03-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense isotropic flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure which is beneficial for background rejection. This talk will describe aspects of COHERENT, the experimental program underway to measure CEvNS (Coherent Elastic Neutrino-Nucleus Scattering) using low-energy nuclear recoil detectors.

  11. Uranium fluoride and metallic uranium as target materials for heavy-element experiments at SHIP

    NASA Astrophysics Data System (ADS)

    Kindler, Birgit; Ackermann, Dieter; Hartmann, Willi; Heßberger, Fritz Peter; Hofmann, Sigurd; Hübner, Annett; Lommel, Bettina; Mann, Rido; Steiner, Jutta

    2008-06-01

    In this contribution we describe the production and application of uranium targets for synthesis of heavy elements. The targets are prepared from uranium fluoride (UF 4) and from metallic uranium with thin carbon foils as backing. Targets of UF 4 were produced by thermal evaporation in a similar way as the frequently applied targets out of Bi, Bi 2O 3, Pb, PbS, SmF 3, and NdF 3, prepared mostly from isotopically enriched material [Birgit Kindler, et al., Nucl. Instr. and Meth. A 561 (2006) 107; Bettina Lommel, et al., Nucl. Instr. and Meth. A 561 (2006) 100]. In order to use more intensive beams and to avoid scattering of the reaction products in the target, metallic uranium is favorable. However, evaporation of metallic uranium is not feasible at a sustainable yield. Therefore, we established magnetron sputtering of metallic uranium. We describe production and properties of these targets. First irradiation tests show promising results.

  12. High power neutron production targets

    SciTech Connect

    Wender, S.

    1996-06-01

    The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.

  13. BEAM INSTRUMENTATION FOR THE SPALLATION NEUTRON SOURCE RING.

    SciTech Connect

    WITKOVER,R.L.; CAMERON,P.R.; SHEA,T.J.; CONNOLLY,R.C.; KESSELMAN,M.

    1999-03-29

    The Spallation Neutron Source (SNS) will be constructed by a multi-laboratory collaboration with BNL responsible for the transfer lines and ring. [1] The 1 MW beam power necessitates careful monitoring to minimize un-controlled loss. This high beam power will influence the design of the monitors in the high energy beam transport line (HEBT) from linac to ring, in the ring, and in the ring-to-target transfer line (RTBT). The ring instrumentation must cover a 3-decade range of beam intensity during accumulation. Beam loss monitoring will be especially critical since un-controlled beam loss must be kept below 10{sup -4}. A Beam-In-Gap (BIG) monitor is being designed to assure out-of-bucket beam will not be lost in the ring.

  14. The Spallation Neutron Source Beam Commissioning and Initial Operations

    SciTech Connect

    Henderson, Stuart; Aleksandrov, Alexander V.; Allen, Christopher K.; Assadi, Saeed; Bartoski, Dirk; Blokland, Willem; Casagrande, F.; Campisi, I.; Chu, C.; Cousineau, Sarah M.; Crofford, Mark T.; Danilov, Viatcheslav; Deibele, Craig E.; Dodson, George W.; Feshenko, A.; Galambos, John D.; Han, Baoxi; Hardek, T.; Holmes, Jeffrey A.; Holtkamp, N.; Howell, Matthew P.; Jeon, D.; Kang, Yoon W.; Kasemir, Kay; Kim, Sang-Ho; Kravchuk, L.; Long, Cary D.; McManamy, T.; Pelaia, II, Tom; Piller, Chip; Plum, Michael A.; Pogge, James R.; Purcell, John David; Shea, T.; Shishlo, Andrei P; Sibley, C.; Stockli, Martin P.; Stout, D.; Tanke, E.; Welton, Robert F; Zhang, Y.; Zhukov, Alexander P

    2015-09-01

    The Spallation Neutron Source (SNS) accelerator delivers a one mega-Watt beam to a mercury target to produce neutrons used for neutron scattering materials research. It delivers ~ 1 GeV protons in short (< 1 us) pulses at 60 Hz. At an average power of ~ one mega-Watt, it is the highest-powered pulsed proton accelerator. The accelerator includes the first use of superconducting RF acceleration for a pulsed protons at this energy. The storage ring used to create the short time structure has record peak particle per pulse intensity. Beam commissioning took place in a staged manner during the construction phase of SNS. After the construction, neutron production operations began within a few months, and one mega-Watt operation was achieved within three years. The methods used to commission the beam and the experiences during initial operation are discussed.

  15. COMMISSIONING OF THE SPALLATION NEUTRON SOURCE ACCELERATOR SYSTEMS

    SciTech Connect

    Plum, Michael A

    2007-01-01

    The Spallation Neutron Source accelerator complex consists of a 2.5 MeV H- front-end injector system, a 186 MeV normal-conducting linear accelerator, a 1 GeV superconducting linear accelerator, an accumulator ring, and associated beam transport lines. The linac was commissioned in five discrete runs, starting in 2002 and completed in 2005. The accumulator ring and associated beam transport lines were commissioned in two runs from January to April 2006. With the completed commissioning of the SNS accelerator, the facility has begun initial low-power operations. In the course of beam commissioning, most beam performance parameters and beam intensity goals have been achieved at low duty factor. A number of beam dynamics measurements have been performed, including emittance evolution, transverse coupling in the ring, beam instability thresholds, and beam distributions on the target. The commissioning results, achieved beam performance and initial operating experience of the SNS will be discussed

  16. Probing neutrino magnetic moments at the Spallation Neutron Source facility

    NASA Astrophysics Data System (ADS)

    Kosmas, T. S.; Miranda, O. G.; Papoulias, D. K.; Tórtola, M.; Valle, J. W. F.

    2015-07-01

    Majorana neutrino electromagnetic properties are studied through neutral current coherent neutrino-nucleus scattering. We focus on the potential of the recently planned COHERENT experiment at the Spallation Neutron Source to probe muon-neutrino magnetic moments. The resulting sensitivities are determined on the basis of a χ2 analysis employing realistic nuclear structure calculations in the context of the quasiparticle random phase approximation. We find that they can improve existing limits by half an order of magnitude. In addition, we show that these facilities allow for standard model precision tests in the low energy regime, with a competitive determination of the weak mixing angle. Finally, they also offer the capability to probe other electromagnetic neutrino properties, such as the neutrino charge radius. We illustrate our results for various choices of experimental setup and target material.

  17. Spallation reactions in extraterrestrial matter

    SciTech Connect

    Michel, Rolf

    1998-02-15

    This paper describes the cosmic-ray-induced production of stable and radioactive residual nuclides, the so-called cosmogenic nuclides. In extraterrestrial solar-system matter, i.e. planetary surfaces, meteorites, cosmic dust and the heavy component of the galactic cosmic radiation, these nuclides are experimentally observable as positive anomalies of isotopic abundances. They preserve a record of cosmic ray exposure which can be interpreted with respect to the collision and exposure history of the irradiated objects as well as to intensities and spectral distributions of cosmic ray particles in the past. To decipher the cosmic ray record in extraterrestrial matter and to obtain information which cannot be obtained by any other means reliable models are needed for the calculation of the production rates of cosmogenic nuclides. On the basis of thin-target and thick-target accelerator experiments such a model has been developed which is applied here exemplarily to interprete cosmogenic nuclide abundances in stony meteorites and lunar surface materials.

  18. Automatic beam position control at Los Alamos Spallation Radiation Effects Facility (LASREF)

    SciTech Connect

    Oothoudt, M.; Pillai, C.; Zumbro, M.

    1997-08-01

    Historically the Los Alamos Spallation Radiation Effects Facility (LASREF) has used manual methods to control the position of the 800 kW, 800 MeV proton beam on targets. New experiments, however, require more stringent position control more frequently than can be done manually for long periods of time. Data from an existing harp is used to automatically adjust steering magnets to maintain beam position to required tolerances.

  19. Spallation recoil II: Xenon evidence for young SiC grains

    NASA Astrophysics Data System (ADS)

    Ott, U.; Altmaier, M.; Herpers, U.; Kuhnhenn, J.; Merchel, S.; Michel, R.; Mohapatra, R. K.

    2005-11-01

    We have determined the recoil range of spallation xenon produced by irradiation of Ba glass targets with ˜1190 and ˜268 MeV protons, using a catcher technique, where spallation products are measured in target and catcher foils. The inferred range for 126Xe produced in silicon carbide is ˜0.19 μm, which implies retention of ˜70% for 126Xe produced in "typical" presolar silicon carbide grains of 1 μm size. Recoil loss of spallation xenon poses a significantly smaller problem than loss of the spallation neon from SiC grains. Ranges differ for the various Xe isotopes and scale approximately linearly as function of the mass difference between the target element, Ba, and the product. As a consequence, SiC grains of various sizes will have differences in spallation Xe composition. In an additional experiment at ˜66 MeV, where the recoil ranges of 22Na and 127Xe produced on Ba glass were determined using γ-spectrometry, we found no evidence for recoil ranges being systematically different at this lower energy. We have used the new data to put constraints on the possible presolar age of the SiC grains analyzed for Xe by Lewis et al. (1994). Uncertainties in the composition of the approximately normal Xe component in SiC (Xe-N) constitute the most serious problem in determining an age, surpassing remaining uncertainties in Xe retention and production rate. A possible interpretation is that spallation contributions are negligible and that trapped 124Xe/126Xe is ˜5% lower in Xe-N than in Q-Xe. But also for other reasonable assumptions for the 124Xe/126Xe ratio in Xe-N (e.g., as in Q-Xe), inferred exposure ages are considerably shorter than theoretically expected lifetimes for interstellar grains. A short presolar age is in line with observations by others (appearance, grain size distribution) that indicate little processing in the interstellar medium (ISM) of surviving (crystalline) SiC. This may be due to amorphization of SiC in the ISM on a much shorter time scale

  20. Moisture-Induced Delayed Spallation and Interfacial Hydrogen Embrittlement of Alumina Scales

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2008-01-01

    While interfacial sulfur is the primary chemical factor affecting Al2O3 scale adhesion, moisture-induced delayed spallation appears as a secondary, but impressive, mechanistic detail. Similarities with bulk metallic phenomena suggest that hydrogen embrittlement from ambient humidity, resulting from the reaction Al(sub alloy)+3(H2O)(sub air) = Al(OH)(-) (sub 3) +3H(+) may be the operative mechanism. This proposal was tested on pre-oxidized Rene N5 by standard cathodic hydrogen charging in 1N H2SO4, as monitored by weight change, induced current, and microstructure. Cathodic polarization at -2.0 V abruptly stripped mature Al2O3 scales at the oxide-metal interface. Anodic polarization at +2.0 V, however, produced alloy dissolution. Finally, with no applied voltage, the acid electrolyte produced neither scale spallation nor alloy dissolution. Thus, hydrogen charging was detrimental to alumina scale adhesion. Moisture-induced interfacial hydrogen embrittlement is concluded to be the cause of delayed scale spallation and desktop thermal barrier coating failures.

  1. Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets

    DOEpatents

    Makowiecki, D.M.; Ramsey, P.B.; Juntz, R.S.

    1995-07-04

    An improved method is disclosed for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite`s high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding. 11 figs.

  2. KNN classification of metallic targets using the magnetic polarizability tensor

    NASA Astrophysics Data System (ADS)

    Makkonen, J.; Marsh, L. A.; Vihonen, J.; Järvi, A.; Armitage, D. W.; Visa, A.; Peyton, A. J.

    2014-05-01

    Walk-through metal detectors are used at check points for preventing personnel and passengers from carrying threatening metallic objects, such as knives and guns, into a secure area. These systems are capable of detecting small metallic items, such as handcuff keys and blades, but are unable to distinguish accurately between threatening objects and innocuous items. This paper studies the extent to which a K-nearest-neighbour classifier can distinguish various kinds of metallic objects, such as knives, shoe shanks, belts and containers. The classifier uses features extracted from the magnetic polarizability tensor, which represents the electromagnetic properties of the object. The tests include distinguishing threatening objects from innocuous ones, classifying a set of objects into 13 classes, and distinguishing between several similar objects within an object class. A walk-through metal detection system is used as source for the test data, which consist of 835 scans and 67 objects. The results presented show a typical success rate of over 95% for recognizing threats, and over 85% for correct classification. In addition, we have shown that the system is capable of distinguishing between similar objects reliably. Overall, the method shows promise for the field of security screening and suggests the need for further research.

  3. Numerical and experimental analysis of spallation phenomena

    NASA Astrophysics Data System (ADS)

    Martin, Alexandre; Bailey, Sean C. C.; Panerai, Francesco; Davuluri, Raghava S. C.; Zhang, Huaibao; Vazsonyi, Alexander R.; Lippay, Zachary S.; Mansour, Nagi N.; Inman, Jennifer A.; Bathel, Brett F.; Splinter, Scott C.; Danehy, Paul M.

    2016-12-01

    The spallation phenomenon was studied through numerical analysis using a coupled Lagrangian particle tracking code and a hypersonic aerothermodynamics computational fluid dynamics solver. The results show that carbon emission from spalled particles results in a significant modification of the gas composition of the post-shock layer. Results from a test campaign at the NASA Langley HYMETS facility are presented. Using an automated image processing of short exposure images, two-dimensional velocity vectors of the spalled particles were calculated. In a 30-s test at 100 W/cm2 of cold-wall heat flux, more than 722 particles were detected, with an average velocity of 110 m/s.

  4. Muon-induced spallation backgrounds in DUNE

    NASA Astrophysics Data System (ADS)

    Zhu, Guanying; Li, Shirley; Beacom, John

    2017-01-01

    Galactic supernovae are rare, just a few per century, so it is important to be prepared. If we are, then the long-baseline detector DUNE could detect thousands of events, compared to the tens from SN 1987A. An important question is backgrounds from muon-induced spallation reactions. We simulate particle energy-loss processes in liquid argon, and compare relevant isotope yields with those in the water-Cherenkov detector SuperK. Our approach will help optimize the design of DUNE and further benefit the study of supernova neutrinos. GZ, SWL, and JFB are supported by NSF Grant PHY-1404311.

  5. Surface modification to prevent oxide scale spallation

    DOEpatents

    Stephens, Elizabeth V; Sun, Xin; Liu, Wenning; Stevenson, Jeffry W; Surdoval, Wayne; Khaleel, Mohammad A

    2013-07-16

    A surface modification to prevent oxide scale spallation is disclosed. The surface modification includes a ferritic stainless steel substrate having a modified surface. A cross-section of the modified surface exhibits a periodic morphology. The periodic morphology does not exceed a critical buckling length, which is equivalent to the length of a wave attribute observed in the cross section periodic morphology. The modified surface can be created using at least one of the following processes: shot peening, surface blasting and surface grinding. A coating can be applied to the modified surface.

  6. Materials Compatibility Studies for the Spallation Neutron Source

    SciTech Connect

    DiStefano, J.R.; Manneschmidt, E.T.; Pawel, S.J.

    1998-09-01

    The Spallation Neutron Source (SNS) is a high power facility for producing neutrons that utilizes flowing liquid mercury inside an austenitic stainless steel container as the target for a 1.0 GeV proton beam. The energy deposited in the target is transported by two separate mercury flow streams: one to transport heat in the interior target region and one to cool the stainless steel container. Three-dimensional computational fluid dynamics simulations have been performed to predict temperature, velocity, and pressure distributions in the target. Results have generally shown that the power deposited in the bulk mercury can be effectively transported with reasonable flow rates and the bulk mercury temperature should not exceed 160{deg}C. Assuming good thermal contact, the maximum stainless steel wall temperature should be 130 {deg}C. Type 316 SS has been selected as the container material for the mercury and consequences of exposure of 316 SS to radiation, thermal shock, thermal stress, cavitation and hot, flowing mercury are all being addressed by R&D programs. In addition, corrosion studies include evaluation of Inconel 718 because it has been successfully used in previous water cooled spallation neutron systems as a window material. With type 316 SS selected to contain the mercury target of the SNS, two types of compatibility issues have been examined: LME and temperature gradient mass transfer. Studies have shown that mercury does not easily wet type 316 SS below 275{deg}C. In the LME experiments, attempts were made to promote wetting of the steel by mercury either by adding gallium to the mercury or coating the specimen with a tin-silver solder that the mercury easily wets. The latter proved more reliable in establishing wetting, but there was no evidence of LME in any of the constant extension rate tensile tests either at 23 or 100 {deg}C. Inconel 718 also showed no change in room temperature properties when tested in mercwy or mercury-gallium. However, there

  7. Fundamental physics possibilities at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Klinkby, Esben; N-Nbar Collaboration; Soldner, Torsten; ANNI Collaboration

    2016-09-01

    The construction of the European Spallation Source ESS is ongoing in Lund, Sweden. This new high power spallation source with its long-pulse structure opens up new possibilities for fundamental physics experiments. This paper focusses on two proposals for fundamental physics at the ESS: The ANNI instrument and the neutron-anti-neutron oscillation experiment.

  8. Three-Dimensional Steerable Magnetic Field (3DSMF) Sensor System for Classification of Buried Metal Targets

    DTIC Science & Technology

    2006-07-01

    complex spatial magnetic field distributions With a conventional pulsed EMI metal detector , a current loop transmitter is placed in the vicinity of the...transmitter via a data acquisition and control system. The direction of the magnetic field and the field strength generated by a conventional loop EMI metal ... detector are a complex function of the distance of the antenna to the target. As the antenna is moved over the target, data are collected from

  9. Sensory Perception: An Overlooked Target of Occupational Exposure to Metals

    PubMed Central

    Gobba, Fabriziomaria

    2003-01-01

    The effect of exposure to industrial metals on sensory perception of workers has received only modest interest from the medical community to date. Nevertheless, some experimental and epidemiological data exist showing that industrial metals can affect vision, hearing and olfactory function, and a similar effect is also suggested for touch and taste. In this review the main industrial metals involved are discussed. An important limit in available knowledge is that, to date, the number of chemicals studied is relatively small. Another is that the large majority of the studies have evaluated the effect of a single chemical on a single sense. As an example, we know that mercury can impair hearing, smell, taste, touch and also vision, but we have scant idea if, in the same worker, a relation exists between impairments in different senses, or if impairments are independent. Moreover, workers are frequently exposed to different chemicals; a few available results suggest that a co-exposure may have no effect, or result in both an increase and a decrease of the effect, as observed for hearing loss, but this aspect certainly deserves much more study. As a conclusion, exposure to industrial metals can affect sensory perception, but knowledge of this effect is yet incomplete, and is largely inadequate especially for an estimation of “safe” thresholds of exposure. These data support the desirability of further good quality studies in this field. PMID:18365054

  10. Spallation studies on shock loaded uranium

    SciTech Connect

    Tonks, D.L.; Hixson, R.; Gustavsen, R.L.; Vorthman, J.E.; Kelly, A.; Zurek, A.K.; Thissel, W.R.

    1997-12-31

    Uranium samples at two different purity levels were used for spall strength measurements at three different stress levels. A 50 mm single-stage gas-gun was used to produce planar impact conditions using Z-cut quartz impactors. Samples of depleted uranium were taken from very high purity material and from material that had 300 ppm of carbon added. A pair of shots was done for each impact strength, one member of the pair with VISAR diagnostics and the second with soft recovery for metallographical examination. A series of increasing final stress states were chosen to effectively freeze the microstructural damage at three places in the development to full spall separation. This allowed determination of the dependence of spall mechanisms on stress level and sample purity. This report will discuss both the results of the metallurgical examination of soft recovered samples and the modeling of the free surface VISAR data. The micrographs taken from the recovered samples show brittle cracking as the spallation failure mechanism. Deformation induced twins are plentiful and obviously play a role in the spallation process. The twins are produced in the initial shock loading and, so, are present already before the fracture process begins. The 1 d characteristics code CHARADE has been used to model the free surface VISAR data.

  11. Systematic neutron guide misalignment for an accelerator-driven spallation neutron source

    NASA Astrophysics Data System (ADS)

    Zendler, C.; Bentley, P. M.

    2016-08-01

    The European Spallation Source (ESS) is a long pulse spallation neutron source that is currently under construction in Lund, Sweden. A considerable fraction of the 22 planned instruments extend as far as 75-150 m from the source. In such long beam lines, misalignment between neutron guide segments can decrease the neutron transmission significantly. In addition to a random misalignment from installation tolerances, the ground on which ESS is built can be expected to sink with time, and thus shift the neutron guide segments further away from the ideal alignment axis in a systematic way. These systematic errors are correlated to the ground structure, position of buildings and shielding installation. Since the largest deformation is expected close to the target, even short instruments might be noticeably affected. In this study, the effect of this systematic misalignment on short and long ESS beam lines is analyzed, and a possible mitigation by overillumination of subsequent guide sections investigated.

  12. Challenges and design solutions of the liquid hydrogen circuit at the European Spallation Source

    SciTech Connect

    Gallimore, S.; Nilsson, P.; Sabbagh, P.; Takibayev, A.; Weisend II, J. G.; Beßler, Y.; Klaus, M.

    2014-01-29

    The European Spallation Source (ESS), Lund, Sweden will be a 5MW long-pulse neutron spallation research facility and will enable new opportunities for researchers in the fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics. Neutrons are produced by accelerating a high-energy proton beam into a rotating helium-cooled tungsten target. These neutrons pass through moderators to reduce their energy to an appropriate range (< 5 meV for cold neutrons); two of which will use liquid hydrogen at 17 K as the moderating and cooling medium. There are several technical challenges to overcome in the design of a robust system that will operate under such conditions, not least the 20 kW of deposited heat. These challenges and the associated design solutions will be detailed in this paper.

  13. Challenges and design solutions of the liquid hydrogen circuit at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Gallimore, S.; Nilsson, P.; Sabbagh, P.; Takibayev, A.; Weisend, J. G., II; Beßler, Y.; Klaus, M.

    2014-01-01

    The European Spallation Source (ESS), Lund, Sweden will be a 5MW long-pulse neutron spallation research facility and will enable new opportunities for researchers in the fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics. Neutrons are produced by accelerating a high-energy proton beam into a rotating helium-cooled tungsten target. These neutrons pass through moderators to reduce their energy to an appropriate range (< 5 meV for cold neutrons); two of which will use liquid hydrogen at 17 K as the moderating and cooling medium. There are several technical challenges to overcome in the design of a robust system that will operate under such conditions, not least the 20 kW of deposited heat. These challenges and the associated design solutions will be detailed in this paper.

  14. Three-Dimensional Steerable Magnetic Field (3DSMF)Sensor System for Classification of Buried Metal Targets

    DTIC Science & Technology

    2006-07-01

    metallic anomalies. A commonly used sensor for UXO detection is the EMI metal detector . Conventional EMI metal detectors , using either frequency-domain...spatial magnetic field distributions [1]. With a conventional pulsed EMI metal detector , a current loop transmitter is placed in the vicinity of the...loop EMI metal detector are a complex function of the distance of the antenna to the target. As the antenna is moved over the target, data are

  15. Postsynthetic Tuning of Metal-Organic Frameworks for Targeted Applications.

    PubMed

    Islamoglu, Timur; Goswami, Subhadip; Li, Zhanyong; Howarth, Ashlee J; Farha, Omar K; Hupp, Joseph T

    2017-02-08

    Metal-organic frameworks (MOFs) are periodic, hybrid, atomically well-defined porous materials that typically form by self-assembly and consist of inorganic nodes (metal ions or clusters) and multitopic organic linkers. MOFs as a whole offer many intriguing properties, including ultrahigh porosity, tunable chemical functionality, and low density. These properties point to numerous potential applications, including gas storage, chemical separations, catalysis, light harvesting, and chemical sensing, to name a few. Reticular chemistry, or the linking of molecular building blocks into predetermined network structures, has been employed to synthesize thousands of MOFs. Given the vast library of candidate nodes and linkers, the number of potentially synthetically accessible MOFs is enormous. Nevertheless, a powerful complementary approach to obtain specific structures with desired chemical functionality is to modify known MOFs after synthesis. This approach is particularly useful when incorporation of particular chemical functionalities via direct synthesis is challenging or impossible. The challenges may stem from limited stability or solubility of precursors, unwanted secondary reactivity of precursors, or incompatibility of functional groups with the conditions needed for direct synthesis. MOFs can be postsynthetically modified by replacing the metal nodes and/or organic linkers or via functionalization of the metal nodes and/or organic linkers. Here we describe some of our efforts toward the development and application of postsynthetic strategies for imparting desired chemical functionalities in MOFs of known topology. The techniques include methods for functionalizing MOF nodes, i.e., solvent-assisted ligand incorporation (SALI) and atomic layer deposition in MOFs (AIM) as well as a method to replace structural linkers, termed solvent-assisted linker exchange (SALE), also known as postsynthethic exchange (PSE). For each functionalization strategy, we first describe

  16. Moisture-Induced Delayed Alumina Scale Spallation on a Ni(Pt)Al Coating

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2009-01-01

    Delayed interfacial scale failure takes place after cooling for samples of a Ni(Pt)Al-coated CMSX4 single crystal superalloy, cycled at 1150 C for up to 2000 hr. One sample exhibited premature coating grain boundary wrinkling, alumina scale spallation to bare metal, and a final weight loss of 3.3 mg/cm2 . Spallation under ambient conditions was monitored with time after cooldown and was found to continue for 24 hr. This produced up to 0.05 mg/cm2 additional loss for each hold, accumulating 0.7 mg/cm 2 (20 percent of the total) over the course of the test. After test termination, water immersion produced an additional 0.15 mg/cm2 loss. (A duplicate sample produced much less wrinkling and time dependent spalling, maintaining a net weight gain.) The results are consistent with the general phenomena of moisture-induced delayed spallation (MIDS) of mature, distressed alumina scales formed on oxidation resistant M-Al alloys. Relative ambient humidity is discussed as the factor controlling adsorbed moisture, reaction with the substrate, and hydrogen effects on interface strength.

  17. Simultaneous detection of multiple DNA targets based on encoding metal ions.

    PubMed

    Zheng, Lichun; Li, Xiaoyan; Liu, Panpan; Wu, Guofan; Lu, Xiaoquan; Liu, Xiuhui

    2014-02-15

    We present a novel strategy for simultaneous electrochemical detection of multiple DNA targets based on the use of different encoding metal ions as tags. The principle of this scheme is that metal ions bound to metallothionein (MT) molecules can be released down after hybridization with DNA targets and then be detected by stripping voltammetry. The novel detection probes, ssDNA/MT conjugates, covered with different metal ions were synthesized for the first time, then three encoding metal ions (Zn(2+), Cd(2+), and Pb(2+)) were used to differentiate the signals of three virus DNA due to their well-defined anodic stripping peaks at -1.13 V (Zn), -0.78 V (Cd), and -0.52 V (Pb) at BiFE, respectively. The anodic peak currents increased linearly with the concentrations of DNA targets in the range from 0.1 nM to 10nM with a detection limit of 33 pM. In addition, the one-base mismatched target was effectively discriminated from the complementary target. The described results demonstrated that this method possesses high sensitivity and selectivity for multi-target DNA assay and has great potential in applications for detection of even more targets in biological assays, particularly immunoassays.

  18. "Cavitation in a Mercury Target"

    SciTech Connect

    West, C.D.

    2000-09-06

    Recent theoretical work on the formation of bubble nucleation centers by energetic particles leads to some reasonably credible calculations of the maximum negative pressure that might be sustained without bubble formation in the mercury target of the Spallation Neutron Source.

  19. Cavitation in a Mercury Target

    SciTech Connect

    West, C.D.

    2000-09-01

    Recent theoretical work on the formation of bubble nucleation centers by energetic particles leads to some reasonably credible calculations of the maximum negative pressure that might be sustained without bubble formation in the mercury target of the Spallation Neutron Source.

  20. SPALLATION STUDIES ON SHOCK LOADED U-6 WT PCT NB.

    SciTech Connect

    D. TONKS; ET AL

    2001-01-10

    Several spallation experiments have been performed on the 6 wt pct alloy of uranium using gas gun driven normal plate impacts with VISAR instrumentation and soft recovery. The nominal shock pressures achieved were 28, 34, 42, 50, 55, and 82 kbar. This paper will focus on spallation modeling, e.g. using the 1 D characteristics code CHARADE to simulate the free surface particle velocity. The spallation model involves the ductile growth and coalescence of voids. Metallographical examination of recovered samples and details of the experimental apparatus are discussed in a separate paper.

  1. Spallation Neutron Source Accident Terms for Environmental Impact Statement Input

    SciTech Connect

    Devore, J.R.; Harrington, R.M.

    1998-08-01

    This report is about accidents with the potential to release radioactive materials into the environment surrounding the Spallation Neutron Source (SNS). As shown in Chap. 2, the inventories of radioactivity at the SNS are dominated by the target facility. Source terms for a wide range of target facility accidents, from anticipated events to worst-case beyond-design-basis events, are provided in Chaps. 3 and 4. The most important criterion applied to these accident source terms is that they should not underestimate potential release. Therefore, conservative methodology was employed for the release estimates. Although the source terms are very conservative, excessive conservatism has been avoided by basing the releases on physical principles. Since it is envisioned that the SNS facility may eventually (after about 10 years) be expanded and modified to support a 4-MW proton beam operational capability, the source terms estimated in this report are applicable to a 4-MW operating proton beam power unless otherwise specified. This is bounding with regard to the 1-MW facility that will be built and operated initially. See further discussion below in Sect. 1.2.

  2. Spallation nucleosynthesis by accelerated charged-particles

    SciTech Connect

    Goriely, S.

    2008-05-12

    Recent observations have suggested the presence of radioactive elements, such as Pm and 84{<=}Z{<=}99 elements) at the surface of the magnetic star HD101065, also known as Przybylski's star. This star is know to be a chemically peculiar star and its anomalous 38spallation processes resulting from the interaction of the stellar material with stellar energetic particle can by themselves only explain the abundances determined by observation at the surface of HD101065. We show that specific parametric simulations can explain many different observational aspects, and in particular that a significant production of Z>30 heavy elements can be achieved. In this nucleosynthesis process, the secondary-neutron captures play a crucial role. The most attractive feature of the spallation process is the systematic production of Pm and Tc and the possible synthesis of actinides and sub-actinides.Based on such a parametric model, it is also shown that intense fluences of accelerated charged-particles interacting with surrounding material can efficiently produce elements heavier than iron. Different regimes are investigated and shown to be at the origin of p- and s-nuclei in the case of high-fluence low-flux events and r-nuclei for high-fluence high-flux irradiations. The possible existence of such irradiation events need to be confirmed by hydrodynamics simulations, but most of all by spectroscopic observations through the detection of short-lived radio-elements.

  3. Strain rate effects for spallation of concrete

    NASA Astrophysics Data System (ADS)

    Häussler-Combe, Ulrich; Panteki, Evmorfia; Kühn, Tino

    2015-09-01

    Appropriate triaxial constitutive laws are the key for a realistic simulation of high speed dynamics of concrete. The strain rate effect is still an open issue within this context. In particular the question whether it is a material property - which can be covered by rate dependent stress strain relations - or mainly an effect of inertia is still under discussion. Experimental and theoretical investigations of spallation of concrete specimen in a Hopkinson Bar setup may bring some evidence into this question. For this purpose the paper describes the VERD model, a newly developed constitutive law for concrete based on a damage approach with included strain rate effects [1]. In contrast to other approaches the dynamic strength increase is not directly coupled to strain rate values but related to physical mechanisms like the retarded movement of water in capillary systems and delayed microcracking. The constitutive law is fully triaxial and implemented into explicit finite element codes for the investigation of a wide range of concrete structures exposed to impact and explosions. The current setup models spallation experiments with concrete specimen [2]. The results of such experiments are mainly related to the dynamic tensile strength and the crack energy of concrete which may be derived from, e.g., the velocity of spalled concrete fragments. The experimental results are compared to the VERD model and two further constitutive laws implemented in LS-Dyna. The results indicate that both viscosity and retarded damage are required for a realistic description of the material behaviour of concrete exposed to high strain effects [3].

  4. Targeted Removal of Bioavailable Metal as a Detoxification Strategy for Carbon Nanotubes

    PubMed Central

    Liu, Xinyuan; Guo, Lin; Morris, Daniel; Kane, Agnes B.; Hurt, Robert H.

    2008-01-01

    There is substantial evidence for toxicity and/or carcinogenicity upon inhalation of pure transition metals in fine particulate form. Carbon nanotube catalyst residues may trigger similar metal-mediated toxicity, but only if the metal is bioavailable and not fully encapsulated within fluid-protective carbon shells. Recent studies have documented the presence of bioavailable iron and nickel in a variety of commercial as-produced and vendor “purified” nanotubes, and the present article examines techniques to avoid or remove this bioavailable metal. First, data are presented on the mechanisms potentially responsible for free metal in “purified” samples, including kinetic limitations during metal dissolution, the re-deposition or adsorption of metal on nanotube outer surfaces, and carbon shell damage during last-step oxidation or one-pot purification. Optimized acid treatment protocols are presented for targeting the free metal, considering the effects of acid strength, composition, time, and conditions for post-treatment water washing. Finally, after optimized acid treatment, it is shown that the remaining, non-bioavailable (encapsulated) metal persists in a stable and biologically unavailable form up to two months in an in vitro biopersistence assay, suggesting that simple removal of bioavailable (free) metal is a promising strategy for reducing nanotube health risks. PMID:19255622

  5. Promises and Challenges of Two-Step Targets for Production of Neutron-rich RIBs

    SciTech Connect

    Talbert, W.L.; Drake, D.M.; Hsu, H.-H.; Wilson, M.T.

    2003-08-26

    Development of a prototype two-step target to produce neutron-rich RIBs is presented, with particular emphasis on thermal analysis under high-power operation. The two-step target is an attractive concept for production of fission-product activities without interference by high-energy spallation reactions which occur in direct production targets. In this concept, a high-energy production beam interacts with a primary target of refractory metal, depositing beam energy in the primary target and producing low-energy neutrons that cause fissions in a surrounding secondary target of mixed UC2 and excess C. Thermal analysis of the composite target presents challenges in cooling the primary target while maintaining the secondary target at temperatures suitable for release of the fission products. The effects of fission energy deposition in the secondary target are discussed, along with the complexities resulting from the thermally insulating character of the secondary target material.

  6. Results of thermal test of metallic molybdenum disk target and fast-acting valve testing

    SciTech Connect

    Virgo, M.; Chemerisov, S.; Gromov, R.; Jonah, C.; Vandegrift, G. F.

    2016-12-01

    This report describes the irradiation conditions for thermal testing of helium-cooled metallic disk targets that was conducted on March 9, 2016, at the Argonne National Laboratory electron linac. The four disks in this irradiation were pressed and sintered by Oak Ridge National Laboratory from molybdenum metal powder. Two of those disks were instrumented with thermocouples. Also reported are results of testing a fast-acting-valve system, which was designed to protect the accelerator in case of a target-window failure.

  7. On the estimation of target depth using the single transmit multiple receive metal detector array

    NASA Astrophysics Data System (ADS)

    Ho, K. C.; Gader, P. D.

    2012-06-01

    This paper investigates the use of the Single Transmit Multiple Receive (STMR) metal detector (MD) array to estimate the depth of metal targets, such as 155mm shells. The depth estimation problem using MD has been investigated by a number of researchers and the processing was performed along the down-track. The proposed method takes a different approach by exploring the MD responses in cross-track to achieve the depth estimation. It is found that the normalized energy spread of the MD output is narrower for shallow targets and wider for deeper targets. Based on this observation, a method is derived to estimate the depth of a target. Experimental results from the data collected at an U.S. Army test site validate the performance of the proposed depth estimator.

  8. Neutron diffractometers for structural biology at spallation neutron sources

    SciTech Connect

    Schoenborn, B.P.; Pitcher, E.

    1994-12-31

    Spallation neutron sources are ideal for diffraction studies of proteins and oriented molecular complexes. With spoliation neutrons and their time dependent wavelength structure, it is easy to electronically select data with an optimal wavelength bandwidth and cover the whole Laue spectrum as time (wavelength) resolved snapshots. This optimized data quality with best peak-to-background ratios and provides adequate spatial and energy resolution to eliminate peak overlaps. The application of this concept will use choppers to select the desired Laue wavelength spectrum and employ focusing optics and large cylindrical {sup 3}He detectors to optimize data collection rates. Such a diffractometer will cover a Laue wavelength range from 1 to 5{Angstrom} with a flight path length of 10m and an energy resolution of 0.25{Angstrom}. Moderator concepts for maximal flux distribution within this energy range will be discussed using calculated flux profiles. Since the energy resolution required for such timed data collection in this super Laue techniques is not very high, the use of a linac only (LAMPF) spoliation target is an exciting possibility with an order of magnitude increase in flux.

  9. The cryomodule test stand at the European Spallation Source

    SciTech Connect

    Hees, W.; Weisend II, J. G.; Wang, X. L.; Köttig, T.

    2014-01-29

    The European Spallation Source (ESS) is an intergovernmental project building a multidisciplinary research laboratory based upon the world's most powerful neutron source to be built in Lund, Sweden. The ESS will use a linear accelerator which will deliver protons with 5 MW of power to the target at 2.5 GeV with a nominal current of 50 mA. The superconducting part of the linac consists of over 150 niobium cavities cooled with superfluid helium at 2 K. A dedicated cryoplant will supply the cryomodules with single phase helium through an external cryogenic transfer line. The elliptical cavity cryomodules will undergo their site acceptance tests at the ESS cryomodule test stand in Lund. This test stand will use a 4.5 K cryoplant and warm sub-atmospheric compression to supply the 2 K helium. We will show the requirements for the test stand, a layout proposal and discuss the factors determining the required cryogenic capacity, test sequence and schedule.

  10. The effects of shockwave profile shape and shock obliquity on spallation in Cu and Ta: kinetic and stress-state effects on damage evolution(u)

    SciTech Connect

    Gray, George T

    2010-12-14

    Widespread research over the past five decades has provided a wealth of experimental data and insight concerning shock hardening and the spallation response of materials subjected to square-topped shock-wave loading profiles. Less quantitative data have been gathered on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (or triangular-wave) loading profile shock loading on the shock hardening, damage evolution, or spallation response of materials. Explosive loading induces an impulse dubbed a 'Taylor Wave'. This is a significantly different loading history than that achieved by a square-topped impulse in terms of both the pulse duration at a fixed peak pressure, and a different unloading strain rate from the peak Hugoniot state achieved. The goal of this research is to quantify the influence of shockwave obliquity on the spallation response of copper and tantalum by subjecting plates of each material to HE-driven sweeping detonation-wave loading and quantify both the wave propagation and the post-mortem damage evolution. This talk will summarize our current understanding of damage evolution during sweeping detonation-wave spallation loading in Cu and Ta and show comparisons to modeling simulations. The spallation responses of Cu and Ta are both shown to be critically dependent on the shockwave profile and the stress-state of the shock. Based on variations in the specifics of the shock drive (pulse shape, peak stress, shock obliquity) and sample geometry in Cu and Ta, 'spall strength' varies by over a factor of two and the details of the mechanisms of the damage evolution is seen to vary. Simplistic models of spallation, such as P{sub min} based on 1-D square-top shock data lack the physics to capture the influence of kinetics on damage evolution such as that operative during sweeping detonation loading. Such considerations are important for the development of predictive models of damage evolution and spallation in metals and alloys.

  11. A Hybrid Reflective/Refractive/Diffractive Achromatic Fiber-Coupled Radiation Resistant Imaging System for Use in the Spallation Neutron Source (SNS)

    SciTech Connect

    Maxey, L Curt; Ally, Tanya R; Brunson, Aly; Garcia, Frances; Goetz, Kathleen C; Hasse, Katelyn E; McManamy, Thomas J; Shea, Thomas J; Simpson, Marc Livingstone

    2011-01-01

    A fiber-coupled imaging system for monitoring the proton beam profile on the target of the Spallation Neutron Source was developed using reflective, refractive and diffractive optics to focus an image onto a fiber optic imaging bundle. The imaging system monitors the light output from a chromium-doped aluminum oxide (Al{sub 2}0{sub 3}:Cr) scintillator on the nose of the target. Metal optics are used to relay the image to the lenses that focus the image onto the fiber. The material choices for the lenses and fiber were limited to high-purity fused silica, due to the anticipated radiation dose of 10{sup 8} R. In the first generation system (which had no diffractive elements), radiation damage to the scintillator on the nose of the target significantly broadened the normally monochromatic (694 nm) spectrum. This created the need for an achromatic design in the second generation system. This was achieved through the addition of a diffractive optic for chromatic correction. An overview of the target imaging system and its performance, with particular emphasis on the design and testing of a hybrid refractive/diffractive high-purity fused silica imaging triplet, is presented.

  12. Progress in alkaline peroxide dissolution of low-enriched uranium metal and silicide targets

    SciTech Connect

    Chen, L.; Dong, D.; Buchholz, B.A.; Vandegrift, G.F.; Wu, D.

    1996-12-31

    This paper reports recent progress on two alkaline peroxide dissolution processes: the dissolution of low-enriched uranium metal and silicide (U{sub 3}Si{sub 2}) targets. These processes are being developed to substitute low-enriched for high-enriched uranium in targets used for production of fission-product {sup 99}Mo. Issues that are addressed include (1) dissolution kinetics of silicide targets, (2) {sup 99}Mo lost during aluminum dissolution, (3) modeling of hydrogen peroxide consumption, (4) optimization of the uranium foil dissolution process, and (5) selection of uranium foil barrier materials. Future work associated with these two processes is also briefly discussed.

  13. Formation of periodic structures upon laser ablation of metal targets in liquids

    SciTech Connect

    Kazakevich, Pavel V; Simakin, Aleksandr V; Shafeev, Georgii A

    2005-09-30

    Experimental data on the formation of ordered microstructures produced upon ablation of metal targets in liquids irradiated by a copper vapour laser or a pulsed Nd:YAG laser are presented. The structures were obtained on brass, bronze, copper, and tungsten substrates immersed in distilled water or ethanol. As a result of multiple-pulse laser ablation by a scanning beam, ordered microcones with pointed vertexes are formed on the target surface. The structures are separated by deep narrow channels. The structure period was experimentally shown to increase linearly with diameter of the laser spot on the target surface. (interaction of laser radiation with matter)

  14. Cryogenic System for the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Arenius, D.; Chronis, W.; Creel, J.; Dixon, K.; Ganni, V.; Knudsen, P.

    2004-06-01

    The Spallation Neutron Source (SNS) is a neutron-scattering facility being built at Oak Ridge, TN for the US Department of Energy. The SNS accelerator linac consists of superconducting radio-frequency (SRF) cavities in cryostats (cryomodules). The linac cryomodules are cooled to 2.1 K by a 2300 watt cryogenic refrigeration system. As an SNS partner laboratory, Jefferson Lab is responsible for the installed integrated cryogenic system design for the SNS linac accelerator consisting of major subsystem equipment engineered and procured from industry. Jefferson Lab's work included developing the major vendor subsystem equipment procurement specifications, equipment procurement, and the integrated system engineering support of the field installation and commissioning. The major cryogenic system components include liquid nitrogen storage, gaseous helium storage, cryogen distribution transfer line system, 2.1-K cold box consisting of four stages of cold compressors, 4.5-K cold box, warm helium compressors with its associated oil removal, gas management, helium purification, gas impurity monitoring systems, and the supportive utilities of electrical power, cooling water and instrument air. The system overview, project organization, the important aspects, and the capabilities of the cryogenic system are described.

  15. Materials considerations in accelerator targets

    SciTech Connect

    Peacock, H.B. Jr.; Iyer, N.C.; Louthan, M.R. Jr.

    1994-08-01

    Future nuclear materials production and/or the burn-up of long lived radioisotopes may be accomplished through the capture of spallation produced neutrons in accelerators. Aluminum clad-lead and/or lead alloys has been proposed as a spallation target. Aluminum was the cladding choice because of the low neutron absorption cross section, fast radioactivity decay, high thermal conductivity, and excellent fabricability. Metallic lead and lead oxide powders were considered for the target core with the fabrication options being casting or powder metallurgy (PM). Scoping tests to evaluate gravity casting, squeeze casting, and casting and swaging processes showed that, based on fabricability and heat transfer considerations, squeeze casting was the preferred option for manufacture of targets with initial core cladding contact. Thousands of aluminum clad aluminum-lithium alloy core targets and control rods for tritium production have been fabricated by coextrusion processes and successfully irradiated in the SRS reactors. Tritium retention in, and release from the coextruded product was modeled from experimental and operational data. Newly produced tritium atoms were trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability was the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release was determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. The model can be used to calculate tritium release from aluminum clad, aluminum-lithium alloy targets during postulated accelerator operational and accident conditions. This paper describes the manufacturing technologies evaluated and presents the model for tritium retention in aluminum clad, aluminum-lithium alloy tritium production targets.

  16. Materials considerations in accelerator targets

    SciTech Connect

    Peacock, H. B. Jr.; Iyer, N. C.; Louthan, M. R. Jr.

    1995-09-15

    Future nuclear materials production and/or the burn-up of long lived radioisotopes may be accomplished through the capture of spallation produced neutrons in accelerators. Aluminum clad-lead and/or lead alloys has been proposed as a spallation target. Aluminum was the cladding choice because of the low neutron absorption cross section, fast radioactivity decay, high thermal conductivity, and excellent fabricability. Metallic lead and lead oxide powders were considered for the target core with the fabrication options being casting or powder metallurgy (PM). Scoping tests to evaluate gravity casting, squeeze casting, and casting and swaging processes showed that, based on fabricability and heat transfer considerations, squeeze casting was the preferred option for manufacture of targets with initial core cladding contact. Thousands of aluminum clad aluminum-lithium alloy core targets and control rods for tritium production have been fabricated by coextrusion processes and successfully irradiated in the SRS reactors. Tritium retention in, and release from, the coextruded product was modeled from experimental and operational data. The model assumed that tritium atoms, formed by the 6Li(n,a)3He reaction, were produced in solid solution in the Al-Li alloy. Because of the low solubility of hydrogen isotopes in aluminum alloys, the irradiated Al-Li rapidly became supersaturated in tritium. Newly produced tritium atoms were trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability was the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release was determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. The model can be used to calculate tritium release from aluminum clad, aluminum-lithium alloy targets during postulated accelerator operational and accident conditions. This paper describes

  17. Materials considerations in accelerator targets

    NASA Astrophysics Data System (ADS)

    Peacock, H. B.; Iyer, N. C.; Louthan, M. R.

    1995-09-01

    Future nuclear materials production and/or the burn-up of long lived radioisotopes may be accomplished through the capture of spallation produced neutrons in accelerators. Aluminum clad-lead and/or lead alloys has been proposed as a spallation target. Aluminum was the cladding choice because of the low neutron absorption cross section, fast radioactivity decay, high thermal conductivity, and excellent fabricability. Metallic lead and lead oxide powders were considered for the target core with the fabrication options being casting or powder metallurgy (PM). Scoping tests to evaluate gravity casting, squeeze casting, and casting and swaging processes showed that, based on fabricability and heat transfer considerations, squeeze casting was the preferred option for manufacture of targets with initial core cladding contact. Thousands of aluminum clad aluminum-lithium alloy core targets and control rods for tritium production have been fabricated by coextrusion processes and successfully irradiated in the SRS reactors. Tritium retention in, and release from, the coextruded product was modeled from experimental and operational data. The model assumed that tritium atoms, formed by the 6Li(n,a)3He reaction, were produced in solid solution in the Al-Li alloy. Because of the low solubility of hydrogen isotopes in aluminum alloys, the irradiated Al-Li rapidly became supersaturated in tritium. Newly produced tritium atoms were trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability was the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release was determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. The model can be used to calculate tritium release from aluminum clad, aluminum-lithium alloy targets during postulated accelerator operational and accident conditions. This paper describes

  18. Preparation and testing of corrosion and spallation-resistant coatings

    SciTech Connect

    Hurley, John P.; Cavalli, Matthew N.

    2016-06-30

    its standard oxidation, spallation, and corrosion testing, which was scheduled for completion in the spring of 2016. However, because of commercial demands, the tests were not completed by the time of this report except some initial spallation tests at 1150°C. In those tests, several of the APMT plates separated from the CM247LC, likely because of the remaining aluminum oxide scale on the surface of the CM247LC. This implies that surface preparation may need to include machining to remove the oxide scale before bonding rather than just sandblasting. In previous tensile testing at 950°C, the breaks in the tensile samples always occurred in the APMT and not at the joints. Gasifier sampling was completed to determine what types of trace contaminants may occur in cleaned and combusted syngas and that could lead to corrosion or deposition in turbines firing coal syngas. The sampling was done from a pressurized fluidized-bed gasifier and a pressurized entrained-flow gasifier. The particles captured on a filter from syngas were typically 0.2 to 0.5 μm in diameter, whereas those captured from the combusted syngas were slightly larger and more spherical. X-ray photoelectron spectroscopy done at Oak Ridge National Laboratory showed that the particles do not contain any metals and have an atomic composition almost identical to that of the polycarbonate filter. This indicates that the particles are primarily soot-based and not formed from volatilization of metals in the gasifiers.

  19. Peptide-Metal Organic Framework Swimmers that Direct the Motion toward Chemical Targets.

    PubMed

    Ikezoe, Yasuhiro; Fang, Justin; Wasik, Tomasz L; Shi, Menglu; Uemura, Takashi; Kitagawa, Susumu; Matsui, Hiroshi

    2015-06-10

    Highly efficient and robust chemical motors are expected for the application in microbots that can selectively swim toward targets and accomplish their tasks in sensing, labeling, and delivering. However, one of major issues for such development is that current artificial swimmers have difficulty controlling their directional motion toward targets like bacterial chemotaxis. To program synthetic motors with sensing capability for the target-directed motion, we need to develop swimmers whose motions are sensitive to chemical gradients in environments. Here we create a new intelligent biochemical swimmer by integrating metal organic frameworks (MOFs) and peptides that can sense toxic heavy metals in solution and swim toward the targets. With the aid of Pb-binding enzymes, the peptide-MOF motor can directionally swim toward PbSe quantum dots (QD) by sensing pH gradient and eventually complete the motion as the swimmer reaches the highest gradient point at the target position in solution. This type of technology could be evolved to miniaturize chemical robotic systems that sense target chemicals and swim toward target locations.

  20. High heat flux accelerator targets cooling with liquid-metal jet impingement

    NASA Astrophysics Data System (ADS)

    Silverman, I.; Arenshtam, A.; Kijel, D.; Nagler, A.

    2005-12-01

    Accelerator targets for radioisotope production generate very high density of thermal energy in the target material, which absorbs the particles beam. The design of these targets requires efficient heat removal techniques in order to preserve the integrity of the target. Normal average heat fluxes from these targets are around 1 kW/cm2 and may reach order of magnitude higher values at hot spots. Few techniques exist to deal with such high heat fluxes. One of them is jet impingement that has been proved to be able to deal with heat fluxes as high as 40 kW/cm2 using water as coolant. However, this requires very high jet velocities of more than 100 m/s. A few theoretical and experimental studies indicate that liquid-metal coolants (e.g., gallium or gallium alloys) can improve the heat transfer efficiency in this configuration. Experimental cooling loops based on water and liquid-metal jet impingement have been designed and built at Soreq to evaluate this method. For the current liquid-metal system an eutectic alloy of gallium and indium (GaIn) is used. Initial experiments demonstrate that the GaIn cooling system can deal with heat flux of about 2 kW/cm2 over an area of 1 cm2. The jet velocity is less than 4 m/s and the required differential pressure from the pump is less than 1 bar.

  1. Modification of base-side {sup 99}MO production processes for LEU metal-foil targets.

    SciTech Connect

    Vandegrift, G. F.; Leonard, R. A.; Aase, S.; Sedlet, J.; Koma, Y.; Conner, C.; Clark, C. R.; Meyer, M. K.

    1999-09-30

    Argonne National Laboratory is cooperating with the National Atomic Energy Commission of the Argentine Republic (CNEA) to convert their {sup 99}Mo production process, which uses high enriched uranium (HEU), to low-enriched uranium (LEU), The program is multifaceted; however, discussed in this paper are (1) results of laboratory experiments to develop means for substituting LEU metal-foil targets into the current process and (2) preparation of uranium-alloy or uranium-metal/aluminum-dispersion targets. Although {sup 99}Mo production is a multi-step process, the first two steps (target dissolution and primary molybdenum recovery) are by far the most important in the conversion. Commonly, once molybdenum is separated from the bulk of the uranium, the remainder of the process need not be modified. Our results show that up to this point in our study, conversion of the CNEA process to LEU appears viable.

  2. Tagging spallation backgrounds with showers in water Cherenkov detectors

    NASA Astrophysics Data System (ADS)

    Li, Shirley Weishi; Beacom, John F.

    2015-11-01

    Cosmic-ray muons and especially their secondaries break apart nuclei ("spallation") and produce fast neutrons and beta-decay isotopes, which are backgrounds for low-energy experiments. In Super-Kamiokande, these beta decays are the dominant background in 6-18 MeV, relevant for solar neutrinos and the diffuse supernova neutrino background. In a previous paper, we showed that these spallation isotopes are produced primarily in showers, instead of in isolation. This explains an empirical spatial correlation between a peak in the muon Cherenkov light profile and the spallation decay, which Super-Kamiokande used to develop a new spallation cut. However, the muon light profiles that Super-Kamiokande measured are grossly inconsistent with shower physics. We show how to resolve this discrepancy and how to reconstruct accurate profiles of muons and their showers from their Cherenkov light. We propose a new spallation cut based on these improved profiles and quantify its effects. Our results can significantly benefit low-energy studies in Super-Kamiokande, and will be especially important for detectors at shallower depths, like the proposed Hyper-Kamiokande.

  3. Reactor target from metal chromium for "pure" high-intensive artificial neutrino source

    NASA Astrophysics Data System (ADS)

    Gavrin, V. N.; Kozlova, Yu. P.; Veretenkin, E. P.; Logachev, A. V.; Logacheva, A. I.; Lednev, I. S.; Okunkova, A. A.

    2017-01-01

    The paper presents the first results of development of manufacturing technology of metallic chromium targets from highly enriched isotope 50Cr for irradiation in a high flux nuclear reactor to obtain a compact high intensity neutrino source with low content of radionuclide impurities and minimum losses of enriched isotope. The main technological stages are the hydrolysis of chromyl fluoride, the electrochemical reduction of metallic chromium, the hot isostatic pressing of chromium powder and the electrical discharge machining of chromium bars. The technological stages of hot isostatic pressing of chromium powder and of electrical discharge machining of Cr rods have been tested.

  4. Metal/dendrimer nanocomposites for enhanced optical breakdown: acoustic characterization and initial targeted cell uptake study

    NASA Astrophysics Data System (ADS)

    Tse, Christine; Lesniak, Wojciech; Balogh, Lajos P.; Ye, Jing Yong; O'Donnell, Matthew

    2007-02-01

    Metal/dendrimer nanocomposites (DNCs) uniquely combine the properties of metallic clusters and the biofriendly polymer host in a nanosized hybrid particle. DNCs can biochemically target tissues and locally reduce femtosecond optical breakdown thresholds, making highly precise and selective photodisruption possible. In this study, we have used high-frequency acoustic monitoring of bubble production dynamics to investigate how DNC properties, solution concentration, and optical parameters affect threshold reduction, actual waiting time, and mechanical characteristics of breakdown. Breakdown is defined here as bubble production with an onset of less than 20 seconds after laser exposure. DNC properties varied include metal content (silver, gold) and terminal group (amino-NH II, glycidol-OH, and carboxyl- COOH) which determine pH values. Results indicate that DNC metal content markedly influences solution threshold reduction, while DNC terminal group (and thus net surface charge) and solution concentration influence the details of breakdown at these reduced threshold fluences. {Ag(0)} DNCs reduce breakdown threshold fluence 1-2 orders of magnitude more than {Au(0)} DNCs. Furthermore, concentrated DNC solutions and DNCs carrying a net negative charge (carboxyl terminal groups) increase bubble production up to four times and shorten waiting time for breakdown from seconds to milliseconds. Increasing laser fluence for a given DNC solution concentration also shortens breakdown waiting time. Lastly, utilizing the fluorescence properties of silver nanocomposites, we use confocal microscopy to examine KB cell uptake of folate targeted silver DNCs. Cells incubated with folate targeted silver DNCs exhibit a measurable increase of intracellular fluorescence compared to control cells (no DNC incubation). However, while we observe a threshold reduction in KB cells incubated with 500nM folate-targeted DNC solution, there is no threshold reduction in cells incubated with 50nM folate-targeted

  5. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties.

    PubMed

    Linic, Suljo; Christopher, Phillip; Xin, Hongliang; Marimuthu, Andiappan

    2013-08-20

    Heterogeneous catalysis by metals was among the first enabling technologies that extensively relied on nanoscience. The early intersections of catalysis and nanoscience focused on the synthesis of catalytic materials with high surface to volume ratio. These synthesis strategies mainly involved the impregnation of metal salts on high surface area supports. This would usually yield quasi-spherical nanoparticles capped by low-energy surface facets, typically with closely packed metal atoms. These high density areas often function as the catalytically active surface sites. Unfortunately, strategies to control the functioning surface facet (i.e., the geometry of active sites that performs catalytic turnover) are rare and represent a significant challenge in our ability to fine-tune and optimize the reactive surfaces. Through recent developments in colloidal chemistry, chemists have been able to synthesize metallic nanoparticles of both targeted size and desired shape. This has opened new possibilities for the design of heterogeneous catalytic materials, since metal nanoparticles of different shapes are terminated with different surface facets. By controlling the surface facet exposed to reactants, we can start affecting the chemical transformations taking place on the metal particles and changing the outcome of catalytic processes. Controlling the size and shape of metal nanoparticles also allows us to control the optical properties of these materials. For example, noble metals nanoparticles (Au, Ag, Cu) interact with UV-vis light through an excitation of localized surface plasmon resonance (LSPR), which is highly sensitive to the size and shape of the nanostructures. This excitation is accompanied by the creation of short-lived energetic electrons on the surface of the nanostructure. We showed recently that these energetic electrons could drive photocatalytic transformations on these nanostructures. The photocatalytic, electron-driven processes on metal nanoparticles

  6. A ROTATING METAL BAND TARGET FOR PION PRODUCTION AT MUON COLLIDERS.

    SciTech Connect

    KING,B.J.; SIMOS,N.; WEGGEL,R.V.; MOKHOV,N.V.

    2002-01-18

    A conceptual design is presented for a high power pion production target for muon colliders that is based on a rotating metal band. Three candidate materials are considered for the target band: inconel alloy 718, titanium alloy 6Al-4V grade 5 and nickel. A pulsed proton beam tangentially intercepts a chord of the target band that is inside a 20 Tesla tapered solenoidal magnetic pion capture channel similar to designs previously considered for muon colliders and neutrino factories. The target band has a radius of 2.5 meters and is continuously rotated at approximately 1 m/s to carry heat away from the production region and through a water cooling tank. The mechanical layout and cooling setup of the target are described, including the procedure for the routine replacement of the target band. A rectangular band cross section is assumed, optionally with I-beam struts to enhance stiffness and minimize mechanical vibrations. Results are presented from realistic MARS Monte Carlo computer simulations of the pion yield and energy deposition in the target and from ANSYS finite element calculations for the corresponding shock heating stresses. The target scenario is found to perform satisfactorily and with conservative safety margins for multi-MW pulsed proton beams.

  7. Final design, fluid dynamic and structural mechanical analysis of a liquid hydrogen Moderator for the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Bessler, Y.; Henkes, C.; Hanusch, F.; Schumacher, P.; Natour, G.; Butzek, M.; Klaus, M.; Lyngh, D.; Kickulies, M.

    2017-02-01

    The European Spallation Source (ESS) is currently in the construction phase and should have first beam on Target in 2019. ESS, located in Sweden, will be the most powerful spallation neutron source worldwide, with the goal to produce neutrons for research. As an in-kind partner the Forschungszentrum Juelich will among others, design and manufacture the four liquid hydrogen Moderators, which are located above and below the Target. Those vessels are confining the cold hydrogen used to reduce the energy level of the fast neutrons, produced by spallation in the Target, in order to make the neutrons usable for neutron scattering instruments. Due to the requirements [1], a fluid dynamic analysis with pressure and temperature depended hydrogen data, taking into account the pseudo critical phenomena and the pulsed neutronic heating (pressure waves) is necessary. With the fluid dynamic results, a structure mechanical analysis including radiation damage investigation (RCC-MRx code [5]), low temperature properties as well as strength reduction by welding can be realized. Finally, the manufacturing and welding completes the design process.

  8. GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING

    SciTech Connect

    Walsh, S C; Lomov, I; Roberts, J J

    2012-01-19

    Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discuss results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.

  9. Characterization of the radiation background at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    DiJulio, Douglas D.; Cherkashyna, Nataliia; Scherzinger, Julius; Khaplanov, Anton; Pfeiffer, Dorothea; Cooper-Jensen, Carsten P.; Fissum, Kevin G.; Kanaki, Kalliopi; Kirstein, Oliver; Ehlers, Georg; Gallmeier, Franz X.; Hornbach, Donald E.; Iverson, Erik B.; Newby, Robert J.; Hall-Wilton, Richard J.; Bentley, Phillip M.

    2016-09-01

    We present a survey of the radiation background at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, TN, USA during routine daily operation. A broad range of detectors was used to characterize primarily the neutron and photon fields throughout the facility. These include a WENDI-2 extended range dosimeter, a thermoscientific NRD, an Arktis 4He detector, and a standard NaI photon detector. The information gathered from the detectors was used to map out the neutron dose rates throughout the facility and also the neutron dose rate and flux profiles of several different beamlines. The survey provides detailed information useful for developing future shielding concepts at spallation neutron sources, such as the European Spallation Source (ESS), currently under construction in Lund, Sweden.

  10. Morphology of meteoroid and space debris craters on LDEF metal targets

    NASA Technical Reports Server (NTRS)

    Love, S. G.; Brownlee, D. E.; King, N. L.; Hoerz, F.

    1994-01-01

    We measured the depths, average diameters, and circularity indices of over 600 micrometeoroid and space debris craters on various metal surfaces exposed to space on the Long Duration Exposure Facility (LDEF) satellite, as a test of some of the formalisms used to convert the diameters of craters on space-exposed surfaces into penetration depths for the purpose of calculating impactor sizes or masses. The topics covered include the following: targe materials orientation; crater measurements and sample populations; effects of oblique impacts; effects of projectile velocity; effects of crater size; effects of target hardness; effects of target density; and effects of projectile properties.

  11. Morphology of meteoroid and space debris craters on LDEF metal targets

    NASA Astrophysics Data System (ADS)

    Love, S. G.; Brownlee, D. E.; King, N. L.; Hoerz, F.

    1994-03-01

    We measured the depths, average diameters, and circularity indices of over 600 micrometeoroid and space debris craters on various metal surfaces exposed to space on the Long Duration Exposure Facility (LDEF) satellite, as a test of some of the formalisms used to convert the diameters of craters on space-exposed surfaces into penetration depths for the purpose of calculating impactor sizes or masses. The topics covered include the following: targe materials orientation; crater measurements and sample populations; effects of oblique impacts; effects of projectile velocity; effects of crater size; effects of target hardness; effects of target density; and effects of projectile properties.

  12. Neutron scattering instrumentation for biology at spallation neutron sources

    SciTech Connect

    Pynn, R.

    1994-12-31

    Conventional wisdom holds that since biological entities are large, they must be studied with cold neutrons, a domain in which reactor sources of neutrons are often supposed to be pre-eminent. In fact, the current generation of pulsed spallation neutron sources, such as LANSCE at Los Alamos and ISIS in the United Kingdom, has demonstrated a capability for small angle scattering (SANS) - a typical cold- neutron application - that was not anticipated five years ago. Although no one has yet built a Laue diffractometer at a pulsed spallation source, calculations show that such an instrument would provide an exceptional capability for protein crystallography at one of the existing high-power spoliation sources. Even more exciting is the prospect of installing such spectrometers either at a next-generation, short-pulse spallation source or at a long-pulse spallation source. A recent Los Alamos study has shown that a one-megawatt, short-pulse source, which is an order of magnitude more powerful than LANSCE, could be built with today`s technology. In Europe, a preconceptual design study for a five-megawatt source is under way. Although such short-pulse sources are likely to be the wave of the future, they may not be necessary for some applications - such as Laue diffraction - which can be performed very well at a long-pulse spoliation source. Recently, it has been argued by Mezei that a facility that combines a short-pulse spallation source similar to LANSCE, with a one-megawatt, long-pulse spallation source would provide a cost-effective solution to the global shortage of neutrons for research. The basis for this assertion as well as the performance of some existing neutron spectrometers at short-pulse sources will be examined in this presentation.

  13. Optical steering of thermally generated microbubbles in a liquid for targeted metallic nanoparticle delivery

    NASA Astrophysics Data System (ADS)

    Krishnappa, Arjun; Abeywickrema, Ujitha; Banerjee, Partha

    2016-09-01

    A novel mathematical model is developed to investigate the behavior of thermally generated microbubbles in the presence of optical radiation to understand the mechanism of their steering. Forces acting on a bubble are studied in detail using a general force model. It has been proposed that these microbubbles with agglomerated metallic nanoparticles can be used for targeted drug delivery. The model can be extended to include the steering of bubbles with agglomerated silver or gold nanoparticles on their surface.

  14. Changes in the emission properties of metallic targets upon exposure to repetitively pulsed laser radiation

    NASA Astrophysics Data System (ADS)

    Konov, V. I.; Pimenov, S. M.; Prokhorov, A. M.; Chapliev, N. I.

    1988-02-01

    A scanning electron microscope and a repetitively pulsed CO2 laser are used to reveal the relationships which govern the correlation of the transforming metal surface microrelief with the emission of charged particles and the surface luminescence upon exposure to multipulse laser focusing. It is shown that the effect of sorption and laser-stimulated desorption on the emission signals can manifest itself in different ways depending on the current oscillation mode in the target-vacuum chamber circuit.

  15. Detection of supernova neutrinos at spallation neutron sources

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2016-07-01

    After considering supernova shock effects, Mikheyev-Smirnov-Wolfenstein effects, neutrino collective effects, and Earth matter effects, the detection of supernova neutrinos at the China Spallation Neutron Source is studied and the expected numbers of different flavor supernova neutrinos observed through various reaction channels are calculated with the neutrino energy spectra described by the Fermi-Dirac distribution and the “beta fit” distribution respectively. Furthermore, the numerical calculation method of supernova neutrino detection on Earth is applied to some other spallation neutron sources, and the total expected numbers of supernova neutrinos observed through different reactions channels are given. Supported by National Natural Science Foundation of China (11205185, 11175020, 11275025, 11575023)

  16. 5 MW pulsed spallation neutron source, Preconceptual design study

    SciTech Connect

    Not Available

    1994-06-01

    This report describes a self-consistent base line design for a 5 MW Pulsed Spallation Neutron Source (PSNS). It is intended to establish feasibility of design and as a basis for further expanded and detailed studies. It may also serve as a basis for establishing project cost (30% accuracy) in order to intercompare competing designs for a PSNS not only on the basis of technical feasibility and technical merit but also on the basis of projected total cost. The accelerator design considered here is based on the objective of a pulsed neutron source obtained by means of a pulsed proton beam with average beam power of 5 MW, in {approx} 1 {mu}sec pulses, operating at a repetition rate of 60 Hz. Two target stations are incorporated in the basic facility: one for operation at 10 Hz for long-wavelength instruments, and one operating at 50 Hz for instruments utilizing thermal neutrons. The design approach for the proton accelerator is to use a low energy linear accelerator (at 0.6 GeV), operating at 60 Hz, in tandem with two fast cycling booster synchrotrons (at 3.6 GeV), operating at 30 Hz. It is assumed here that considerations of cost and overall system reliability may favor the present design approach over the alternative approach pursued elsewhere, whereby use is made of a high energy linear accelerator in conjunction with a dc accumulation ring. With the knowledge that this alternative design is under active development, it was deliberately decided to favor here the low energy linac-fast cycling booster approach. Clearly, the present design, as developed here, must be carried to the full conceptual design stage in order to facilitate a meaningful technology and cost comparison with alternative designs.

  17. H- radio frequency source development at the Spallation Neutron Sourcea)

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Dudnikov, V. G.; Gawne, K. R.; Han, B. X.; Murray, S. N.; Pennisi, T. R.; Roseberry, R. T.; Santana, M.; Stockli, M. P.; Turvey, M. W.

    2012-02-01

    The Spallation Neutron Source (SNS) now routinely operates nearly 1 MW of beam power on target with a highly persistent ˜38 mA peak current in the linac and an availability of ˜90%. H- beam pulses (˜1 ms, 60 Hz) are produced by a Cs-enhanced, multicusp ion source closely coupled with an electrostatic low energy beam transport (LEBT), which focuses the 65 kV beam into a radio frequency quadrupole accelerator. The source plasma is generated by RF excitation (2 MHz, ˜60 kW) of a copper antenna that has been encased with a thickness of ˜0.7 mm of porcelain enamel and immersed into the plasma chamber. The ion source and LEBT normally have a combined availability of ˜99%. Recent increases in duty-factor and RF power have made antenna failures a leading cause of downtime. This report first identifies the physical mechanism of antenna failure from a statistical inspection of ˜75 antennas which ran at the SNS, scanning electron microscopy studies of antenna surface, and cross sectional cuts and analysis of calorimetric heating measurements. Failure mitigation efforts are then described which include modifying the antenna geometry and our acceptance/installation criteria. Progress and status of the development of the SNS external antenna source, a long-term solution to the internal antenna problem, are then discussed. Currently, this source is capable of delivering comparable beam currents to the baseline source to the SNS and, an earlier version, has briefly demonstrated unanalyzed currents up to ˜100 mA (1 ms, 60 Hz) on the test stand. In particular, this paper discusses plasma ignition (dc and RF plasma guns), antenna reliability, magnet overheating, and insufficient beam persistence.

  18. H- radio frequency source development at the Spallation Neutron Source

    SciTech Connect

    Welton, Robert F; Pennisi, Terry R; Roseberry, Ron T; Stockli, Martin P

    2012-01-01

    The Spallation Neutron Source (SNS) now routinely operates nearly 1 MW of beam power on target with a highly persistent {approx}38 mA peak current in the linac and an availability of {approx}90%. H{sup -} beam pulses ({approx}1 ms, 60 Hz) are produced by a Cs-enhanced, multicusp ion source closely coupled with an electrostatic low energy beam transport (LEBT), which focuses the 65 kV beam into a radio frequency quadrupole accelerator. The source plasma is generated by RF excitation (2 MHz, {approx}60 kW) of a copper antenna that has been encased with a thickness of {approx}0.7 mm of porcelain enamel and immersed into the plasma chamber. The ion source and LEBT normally have a combined availability of {approx}99%. Recent increases in duty-factor and RF power have made antenna failures a leading cause of downtime. This report first identifies the physical mechanism of antenna failure from a statistical inspection of {approx}75 antennas which ran at the SNS, scanning electron microscopy studies of antenna surface, and cross sectional cuts and analysis of calorimetric heating measurements. Failure mitigation efforts are then described which include modifying the antenna geometry and our acceptance/installation criteria. Progress and status of the development of the SNS external antenna source, a long-term solution to the internal antenna problem, are then discussed. Currently, this source is capable of delivering comparable beam currents to the baseline source to the SNS and, an earlier version, has briefly demonstrated unanalyzed currents up to {approx}100 mA (1 ms, 60 Hz) on the test stand. In particular, this paper discusses plasma ignition (dc and RF plasma guns), antenna reliability, magnet overheating, and insufficient beam persistence.

  19. H- radio frequency source development at the Spallation Neutron Source.

    PubMed

    Welton, R F; Dudnikov, V G; Gawne, K R; Han, B X; Murray, S N; Pennisi, T R; Roseberry, R T; Santana, M; Stockli, M P; Turvey, M W

    2012-02-01

    The Spallation Neutron Source (SNS) now routinely operates nearly 1 MW of beam power on target with a highly persistent ∼38 mA peak current in the linac and an availability of ∼90%. H(-) beam pulses (∼1 ms, 60 Hz) are produced by a Cs-enhanced, multicusp ion source closely coupled with an electrostatic low energy beam transport (LEBT), which focuses the 65 kV beam into a radio frequency quadrupole accelerator. The source plasma is generated by RF excitation (2 MHz, ∼60 kW) of a copper antenna that has been encased with a thickness of ∼0.7 mm of porcelain enamel and immersed into the plasma chamber. The ion source and LEBT normally have a combined availability of ∼99%. Recent increases in duty-factor and RF power have made antenna failures a leading cause of downtime. This report first identifies the physical mechanism of antenna failure from a statistical inspection of ∼75 antennas which ran at the SNS, scanning electron microscopy studies of antenna surface, and cross sectional cuts and analysis of calorimetric heating measurements. Failure mitigation efforts are then described which include modifying the antenna geometry and our acceptance∕installation criteria. Progress and status of the development of the SNS external antenna source, a long-term solution to the internal antenna problem, are then discussed. Currently, this source is capable of delivering comparable beam currents to the baseline source to the SNS and, an earlier version, has briefly demonstrated unanalyzed currents up to ∼100 mA (1 ms, 60 Hz) on the test stand. In particular, this paper discusses plasma ignition (dc and RF plasma guns), antenna reliability, magnet overheating, and insufficient beam persistence.

  20. GEANT4 simulations of the n_TOF spallation source and their benchmarking

    NASA Astrophysics Data System (ADS)

    Lo Meo, S.; Cortés-Giraldo, M. A.; Massimi, C.; Lerendegui-Marco, J.; Barbagallo, M.; Colonna, N.; Guerrero, C.; Mancusi, D.; Mingrone, F.; Quesada, J. M.; Sabate-Gilarte, M.; Vannini, G.; Vlachoudis, V.

    2015-12-01

    Neutron production and transport in the spallation target of the n_TOF facility at CERN has been simulated with GEANT4. The results obtained with different models of high-energy nucleon-nucleus interaction have been compared with the measured characteristics of the neutron beam, in particular the flux and its dependence on neutron energy, measured in the first experimental area. The best agreement at present, within 20% for the absolute value of the flux, and within few percent for the energy dependence in the whole energy range from thermal to 1 GeV, is obtained with the INCL++ model coupled with the GEANT4 native de-excitation model. All other available models overestimate by a larger factor, of up to 70%, the n_TOF neutron flux. The simulations are also able to accurately reproduce the neutron beam energy resolution function, which is essentially determined by the moderation time inside the target/moderator assembly. The results here reported provide confidence on the use of GEANT4 for simulations of spallation neutron sources.

  1. Asymmetric partitioning of metals among cluster anions and cations generated via laser ablation of mixed aluminum/Group 6 transition metal targets.

    PubMed

    Waller, Sarah E; Mann, Jennifer E; Jarrold, Caroline Chick

    2013-02-28

    While high-power laser ablation of metal alloys indiscriminately produces gas-phase atomic ions in proportion to the abundance of the various metals in the alloy, gas-phase ions produced by moderate-power laser ablation sources coupled with molecular beams are formed by more complicated mechanisms. A mass spectrometric study that directly compares the mass distributions of cluster anions and cations generated from laser ablation of pure aluminum, an aluminum/molybdenum mixed target, and an aluminum/tungsten mixed target is detailed. Mass spectra of anionic species generated from the mixed targets showed that both tungsten and molybdenum were in higher abundance in the negatively charged species than in the target material. Mass spectra of the cationic species showed primarily Al(+) and aluminum oxide and hydroxide cluster cations. No molybdenum- or tungsten-containing cluster cations were definitively assigned. The asymmetric distribution of aluminum and Group 6 transition metals in cation and anion cluster composition is attributed to the low ionization energy of atomic aluminum and aluminum suboxide clusters. In addition, the propensity of both molybdenum and tungsten to form metal oxide cluster anions under the same conditions that favor metallic aluminum cluster anions is attributed to differences in the optical properties of the surface oxide that is present in the metal powders used to prepare the ablation targets. Mechanisms of mixed metal oxide clusters are considered.

  2. Bacterial spores in granite survive hypervelocity launch by spallation: implications for lithopanspermia.

    PubMed

    Fajardo-Cavazos, Patricia; Langenhorst, Falko; Melosh, H Jay; Nicholson, Wayne L

    2009-09-01

    Bacterial spores are considered good candidates for endolithic life-forms that could survive interplanetary transport by natural impact processes, i.e., lithopanspermia. Organisms within rock can only embark on an interplanetary journey if they survive ejection from the surface of the donor planet and the associated extremes of compressional shock, heating, and acceleration. Previous simulation experiments have measured each of these three stresses more or less in isolation of one another, and results to date indicate that spores of the model organism Bacillus subtilis can survive each stress applied singly. Few simulations, however, have combined all three stresses simultaneously. Because considerable experimental and theoretical evidence supports a spallation mechanism for launch, we devised an experimental simulation of launch by spallation using the Ames Vertical Gun Range (AVGR). B. subtilis spores were applied to the surface of a granite target that was impacted from above by an aluminum projectile fired at 5.4 km/s. Granite spall fragments were captured in a foam recovery fixture and then recovered and assayed for shock damage by transmission electron microscopy and for spore survival by viability assays. Peak shock pressure at the impact site was calculated to be 57.1 GPa, though recovered spall fragments were only very lightly shocked at pressures of 5-7 GPa. Spore survival was calculated to be on the order of 10(-5), which is in agreement with results of previous static compressional shock experiments. These results demonstrate that endolithic spores can survive launch by spallation from a hypervelocity impact, which lends further evidence in favor of lithopanspermia theory.

  3. Spatial distribution of thorium fission rate in a fast spallation and fission neutron field: An experimental and Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Borger, J. J.; Hashemi-Nezhad, S. R.; Alexiev, D.; Brandt, R.; Westmeier, W.; Thomauske, B.; Adam, J.; Kadykov, M.; Tiutiunnikov, S.

    2012-02-01

    The Energy plus Transmutation (EpT) set-up of the Joint Institute for Nuclear Research (JINR), Dubna, Russia is composed of a lead spallation target surrounded by a blanket of natural uranium. The resultant neutron spectrum is a combination of spallation and fission spectra, modified by a reflective external layer of polyethylene and an internal absorbing layer of cadmium. The EpT set-up was irradiated with a beam of 4 GeV deuterons from the Nuclotron Accelerator at JINR. The spatial distribution of thorium fission rate within the assembly was determined experimentally, using a fission track detector technique, and compared with Monte Carlo predictions of the MCNPX code. Contributions of neutrons, protons, deuterons, photons and pions to total fission were taken into account. Close agreement between the experimental and calculated results was found.

  4. Demonstration of {sup 99}MO production using LEU metal-foil targets in the cintichem process.

    SciTech Connect

    Vandegrift, G. F.; Conner, C.; Hofman, G. L.; Snelgrove, J. L.; Mutalib, A.; Purwadi, B.; Adang, H. G.; Hotman, L.; Kadarisman, Sukmana, A.; Dicky, T. J.; Sriyono, Suripto, A.; Lutfi, D.; Amin; Basiran, A.; Gogo, A.; Sarwani; Taryo, T.

    1999-09-30

    In March and September 1999, demonstrations of the irradiation, disassembly, and processing of LEU metal foil targets were performed in the Indonesian BATAN PUSPIPTEK Facilities. These demonstrations showed that (1) irradiation and disassembly can be performed so that the uranium foil can be easily removed from the target body, and (2) with only minor changes to the current process, the LEU foil can produce yield and purity of the {sup 99}Mo product at least as great as that obtained with the HEU target. Further, because of these modifications, two hours are cut from the processing time, and the liquid waste volume is reduced. Results of these demonstrations will be presented along with conclusions and plans for future work.

  5. Preparation of mixed metal thin films by a PVD method using several kinds of powder targets

    NASA Astrophysics Data System (ADS)

    Suda, Yoshiaki; Kawasaki, Hiroharu; Ohshima, Tamiko; Yagyu, Yoshihito; Ihara, Takeshi; Yamauchi, Makiko; Plasma process; application Team

    2015-09-01

    Bismuth iron garnet (Bi3Fe5O12) and aluminum doped zinc oxide (AZO) thin films were prepared by a physical vapor deposition method using mixed metal powder targets. The X-ray powder diffraction and X-ray photoelectron spectroscopy results suggest that crystalline thin films can be prepared using powder targets with quality similar to that of the films prepared using bulk targets. Bi3Fe5O12 films prepared using the pulsed laser deposition method were Bi rich, which may be due to the lower melting temperature of Bi (544 K) compared with that of Fe (1811 K). The mean transparency and resistivity of the AZO films prepared by the sputtering method were approximately 79%-84% and 0.5 - 1.4 ohm/cm, respectively.

  6. Opportunities for Neutrino Physics at the Spallation Neutron Source (SNS)

    SciTech Connect

    Efremenko, Yuri; Hix, William Raphael

    2009-01-01

    In this paper we discuss opportunities for a neutrino program at the Spallation Neutrons Source (SNS) being commissioning at ORNL. Possible investigations can include study of neutrino-nuclear cross sections in the energy rage important for supernova dynamics and neutrino nucleosynthesis, search for neutrino-nucleus coherent scattering, and various tests of the standard model of electro-weak interactions.

  7. Muon Induced Spallation Neutrons in the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Orrell, J. L.; Ahmad, Q. R.; Hazama, R.; Wilkerson, J. F.

    2001-05-01

    Neutrons produced as spallation products from muon passage through the Sudbury Neutrino Observatory (SNO) are studied. Muons can produce spallation neutrons through inelastic scattering on nuclei. Thermalized neutrons capture on the deuterium in SNO's heavy water detector volume via d(n,γ)t. The γ-ray has an energy of 6.25-MeV and produces a detectable signal in the SNO detector. We show it is possible to extract a nearly pure sample of thermalized neutrons. The observed capture time and energy are used to confirm the events' identity as neutrons. The total detection efficiency for muon induced spallation of neutrons is estimated and used to calculate the total muon induced spallation rate of neutrons in the SNO detector. This rate will impact the analysis of the Neutral Current Detectors (NCDs). The NCDs are ^3He proportional counters which will be inserted into SNO and used to measure the neutral current reaction of neutrinos, d(ν_x,n)p, in SNO's heavy water.

  8. Neutron science opportunities at pulsed spallation neutron sources

    SciTech Connect

    Carpenter, J.M.

    1996-12-31

    Using the IPNS Upgrade plan developed at Argonne National Laboratory as a worked example of the design of a pulsed spallation neutron source, this paper explores some of the scientific applications of an advanced facility for materials science studies and the instrumentation for those purposes.

  9. Gamma ray line production from cosmic ray spallation reactions

    NASA Technical Reports Server (NTRS)

    Silberberg, R.; Tsao, C. H.; Letaw, J. R.

    1985-01-01

    The gamma ray line intensities due to cosmic ray spallation reactions in clouds, the galactic disk and accreting binary pulsars are calculated. With the most favorable plausible assumptions, only a few lines may be detectable to the level of 0.0000001 per sq. cm per sec. The intensities are compared with those generated in nuclear excitation reactions.

  10. Dissertation: Precompound Emission of Energetic Light Fragments in Spallation Reactions

    SciTech Connect

    Kerby, Leslie Marie

    2015-08-04

    Emission of light fragments (LF) from nuclear reactions is an open question. Different reaction mechanisms contribute to their production; the relative roles of each, and how they change with incident energy, mass number of the target, and the type and emission energy of the fragments is not completely understood. None of the available models are able to accurately predict emission of LF from arbitrary reactions. However, the ability to describe production of LF (especially at energies ≳ 30 MeV) from many reactions is important for different applications, such as cosmic-ray-induced Single Event Upsets (SEUs), radiation protection, and cancer therapy with proton and heavy-ion beams, to name just a few. The Cascade-Exciton Model (CEM) version 03.03 and the Los Alamos version of the Quark-Gluon String Model (LAQGSM) version 03.03 event generators in Monte Carlo N-Particle Transport Code version 6 (MCNP6) describe quite well the spectra of fragments with sizes up to ⁴He across a broad range of target masses and incident energies (up to ~ 5 GeV for CEM and up to ~ 1 TeV/A for LAQGSM). However, they do not predict the high energy tails of LF spectra heavier than ⁴He well. Most LF with energies above several tens of MeV are emitted during the precompound stage of a reaction. The current versions of the CEM and LAQGSM event generators do not account for precompound emission of LF larger than ⁴He. The aim of our work is to extend the precompound model in them to include such processes, leading to an increase of predictive power of LF-production in MCNP6. This entails upgrading the Modified Exciton Model currently used at the preequilibrium stage in CEM and LAQGSM. It also includes expansion and examination of the coalescence and Fermi break-up models used in the precompound stages of spallation reactions within CEM and LAQGSM. Extending our models to include emission of fragments heavier than ⁴He at the precompound stage has indeed provided results that have much

  11. Fast approximate EM induction modeling of metallic and UXO targets using a permeable prism

    NASA Astrophysics Data System (ADS)

    Asten, Michael W.; Duncan, Andrew C.

    2007-03-01

    The time-domain EM induction response of non-magnetic and magnetic targets can be approximated using a conductive permeable prism composed of six faces of conductive plates, each face being composed of a set of conductive ribbons. The effect of magnetic permeability is included by the use of two "apparent flux gathering" coefficients, and two "effective magnetic permeability" coefficients, in the axial and transverse directions. These four magnetic property coefficients are a function of physical properties and geometry of the target, but are independent of prism orientation relative to a transmitter. The approximation algorithm is computationally fast, allowing inversions for target parameters to be achieved in seconds. The model is tested on profiles acquired with a Geonics EM63 time-domain EM metal detector over a non-magnetic copper pipe target, and a steel artillery shell in horizontal and vertical orientations. Results show that this approximation to a permeable prism has a capability of fitting geometric, conductivity and magnetic parameters at both early and late sample times. The magnetic parameters show strong change from early to late times on the EMI decay curve, indicating that the magnetic properties of the target have non-linear characteristics. It is proposed that these magnetic parameters and the nature of their non-linearity may carry additional discrimination information for distinguishing between intact munitions and scrap in UXO studies.

  12. Bifunctional Coupling Agents for Radiolabeling of Biomolecules and Target-Specific Delivery of Metallic Radionuclides

    PubMed Central

    Liu, Shuang

    2008-01-01

    Receptor-based radiopharmaceuticals are of great current interest in early molecular imaging and radiotherapy of cancers, and provide a unique tool for target-specific delivery of radionuclides to the diseased tissues. In general, a target-specific radiopharmaceutical can be divided into four parts: targeting biomolecule (BM), pharmacokinetic modifying (PKM) linker, bifunctional coupling or chelating agent (BFC), and radionuclide. The targeting biomolecule serves as a “carrier” for specific delivery of the radionuclide. PKM linkers are used to modify radiotracer excretion kinetics. BFC is needed for radiolabeling of biomolecules with a metallic radionuclide. Different radiometals have significant difference in their coordination chemistry, and require BFCs with different donor atoms and chelator frameworks. Since the radiometal chelate can have a significant impact on physical and biological properties of the target-specific radiopharmaceutical, its excretion kinetics can be altered by modifying the coordination environment with various chelators or coligand, if needed. This review will focus on the design of BFCs and their coordination chemistry with technetium, copper, gallium, indium, yttrium and lanthanide radiometals. PMID:18538888

  13. Waste heat recovery from the European Spallation Source cryogenic helium plants - implications for system design

    SciTech Connect

    Jurns, John M.; Bäck, Harald; Gierow, Martin

    2014-01-29

    The European Spallation Source (ESS) neutron spallation project currently being designed will be built outside of Lund, Sweden. The ESS design includes three helium cryoplants, providing cryogenic cooling for the proton accelerator superconducting cavities, the target neutron source, and for the ESS instrument suite. In total, the cryoplants consume approximately 7 MW of electrical power, and will produce approximately 36 kW of refrigeration at temperatures ranging from 2-16 K. Most of the power consumed by the cryoplants ends up as waste heat, which must be rejected. One hallmark of the ESS design is the goal to recycle waste heat from ESS to the city of Lund district heating system. The design of the cooling system must optimize the delivery of waste heat from ESS to the district heating system and also assure the efficient operation of ESS systems. This report outlines the cooling scheme for the ESS cryoplants, and examines the effect of the cooling system design on cryoplant design, availability and operation.

  14. Plans for a Collaboratively Developed Distributed Control System for the Spallation Neutron Source

    SciTech Connect

    DeVan, W.R.; Gurd, D.P.; Hammonds, J.; Lewis, S.A.; Smith, J.D.

    1999-03-29

    The Spallation Neutron Source (SNS) is an accelerator-based pulsed neutron source to be built in Oak Ridge, Tennessee. The facility has five major sections - a ''front end'' consisting of a 65 keV H{sup -} ion source followed by a 2.5 MeV RFQ; a 1 GeV linac; a storage ring; a 1MW spallation neutron target (upgradeable to 2 MW); the conventional facilities to support these machines and a suite of neutron scattering instruments to exploit them. These components will be designed and implemented by five collaborating institutions: Lawrence Berkeley National Laboratory (Front End), Los Alamos National Laboratory (Linac); Brookhaven National Laboratory (Storage Ring); Argonne National Laboratory (Instruments); and Oak Ridge National Laboratory (Neutron Source and Conventional Facilities). It is proposed to implement a fully integrated control system for all aspects of this complex. The system will be developed collaboratively, with some degree of local autonomy for distributed systems, but centralized accountability. Technical integration will be based upon the widely-used EPICS control system toolkit, and a complete set of hardware and software standards. The scope of the integrated control system includes site-wide timing and synchronization, networking and machine protection. This paper discusses the technical and organizational issues of planning a large control system to be developed collaboratively at five different institutions, the approaches being taken to address those issues, as well as some of the particular technical challenges for the SNS control system.

  15. The Los Alamos study for a next-generation spallation-neutron-source driver

    SciTech Connect

    Jason, A.J.; Woods, R.

    1994-07-01

    A study has been conducted at Los Alamos to determine the feasibility of constructing a linac/accumulator-ring configuration that provides an 790-MeV 1-M proton beam to a new target system for the LANSCE neutron-scattering research facility. The study advocates use of the LAMPF side-coupled-cavity linac with an upgraded front end as an effective means of using present facilities and to provide a path for upgrade to 5 M of beam power. The ring accumulates 1.3 {times} 10{sup 14} particles in 1.2 ms by charge-changing injection with subsequent single-turn extraction to provide a 560-ns burst to the spallation targets at a 60-pps rate. A brief outline of the study results is given with emphasis on recent issues studied.

  16. Preparation and Testing of Corrosion and Spallation-Resistant Coatings

    SciTech Connect

    Hurley, John

    2015-11-01

    This Energy & Environmental Research Center (EERC) project is designed to determine if plating APMT®, a specific highly oxidation-resistant oxide dispersion-strengthened FeCrAl alloy made by Kanthal, onto nickel-based superalloy turbine parts is a viable method for substantially improving the lifetimes and maximum use temperatures of the parts. The method for joining the APMT plate to the superalloys is called evaporative metal bonding and involves placing a thin foil of zinc between the plate and the superalloy, clamping them together, and heating in an atmosphere-controlled furnace. Upon heating, the zinc melts and dissolves the oxide skins of the alloys at the bond line, allowing the two alloys to diffuse into each other. The zinc then diffuses through the alloys and evaporates from their surfaces. During this annual reporting period, the finite element model was completed and used to design clamping jigs to hold the APMT plate to the larger blocks of superalloys during the bonding process. The clamping system was machined from titanium–zirconium–molybdenum and used to bond the APMT plate to the superalloy blocks. The bond between the APMT plate was weak for one of each of the superalloy blocks. We believe that this occurred because enough oxidation had occurred on the surface of the parts as a result of a 1-month time period between sandblasting to prepare the parts and the actual bonding process. The other blocks were, therefore, bonded within 1 day of preparing the parts for bonding, and their joints appear strong. Scanning electron microscopy analyses of representative joints showed that no zinc remained in the alloys after bonding. Also, phases rich in hafnium and tantalum had precipitated near the bond line in the APMT. Iron from the APMT had diffused into the superalloys during bonding, more extensively in the CM247LC than in the Rene 80. Nickel from the superalloys had diffused into the APMT, again more extensively in the joint with the CM247LC than

  17. Characteristics of flows of energetic atoms reflected from metal targets during ion bombardment

    NASA Astrophysics Data System (ADS)

    Kuzmichev, A.; Perevertaylo, V.; Tsybulsky, L.; Volpian, O.

    2016-07-01

    Particle number and energy reflection coefficients for energetic neutralized gas ions (Ar and O atoms) backscattered from metal targets during ion bombardment have been calculated using TRIM code. The energy distributions of reflected atoms are computed, too, and their dependence on the primary ion energy and the angle of ion incidence is determined. The obtained data confirm the possibility of employing energetic atoms reflection for generation of high energy neutral beams and point out to take this phenomenon into account under analysis of the ion technology for coating deposition.

  18. Release from ISOLDE molten metal targets under pulsed proton beam conditions

    NASA Astrophysics Data System (ADS)

    Lettry, J.; Catherall, R.; Cyvoct, G.; Evensen, A. H. M.; Lindroos, M.; Jonsson, O. C.; Kugler, E.; Schindl, K.; Ravn, H.; Wildner, E.; Drumm, P.; Obert, J.; Putaux, J. C.; Sauvage, J.

    1996-04-01

    By moving the ISOLDE mass separators from the 600 MeV Synchrocyclotron (SC) to the 1 GeV Proton-Synchrotron-Booster (PS) the instantaneous energy density of the proton beam went up by 3 orders of magnitude. The developments of the molten metal target units and the optimization of the PS proton beam to cope with the effects of the thermal shocks induced by the proton beam are described. The energy density of the PS proton beam was reduced by spatial defocusing and time staggered extraction of the four PS-accelerators. The release from lanthanum, lead and tin targets is discussed for different settings of the proton beam and compared to the release observed at ISOLDE-SC. The yields of Hg isotopes are presented.

  19. Chemical fractionation resulting from the hypervelocity impact process on metallic targets

    NASA Astrophysics Data System (ADS)

    Libourel, Guy; Ganino, Clément; Michel, Patrick; Nakamura, Akiko

    2016-10-01

    In a regime of hypervelocity impact cratering, the internal energy deposited in target + projectile region is large enough to melt and/or vaporize part of the material involved, which expands rapidly away from the impact site. Fast and energetic impact processes have therefore important chemical consequences on the projectile and target rock transformations during major impact events. Several physical and chemical processes occurred indeed in the short duration of the impact, e.g., melting, coating, mixing, condensation, crystallization, redox reactions, quenching, etc., all concurring to alter both projectile and target composition on the irreversible way.In order to document such hypervelocity impact chemical fractionation, we have started a program of impact experiments by shooting doped (27 trace elements) millimeter-sized basalt projectiles on metallic target using a two stages light gas gun. With impact velocity in the range from 0.25 to 7 km.s-1, these experiments are aimed i) to characterize chemically and texturally all the post-mortem materials (e.g., target, crater, impact melt, condensates, and ejectas), in order ii) to make a chemical mass balance budget of the process, and iii) to relate it to the kinetic energy involved in the hypervelocity impacts for scaling law purpose. Irrespective of the incident velocities, our preliminary results show the importance of redox processes, the significant changes in the ejecta composition (e.g., iron enrichment) and the systematic coating of the crater by the impact melt [1]. On the target side, characterizations of the microstructure of the shocked iron alloys to better constrain the shielding processes. We also show how these results have great implications in our understanding on the current surface properties of small bodies, and chiefly in the case of M-type asteroids. [1] Ganino C, Libourel G, Nakamura AM & Michel P (2015) Goldschmidt Abstracts, 2015 990.

  20. Computer simulations for rf design of a Spallation Neutron Source external antenna H ion source

    SciTech Connect

    Lee, Sung-Woo; Goulding, Richard Howell; Kang, Yoon W; Shin, Ki; Welton, Robert F

    2010-01-01

    Electromagnetic modeling of the multicusp external antenna H ion source for the Spallation Neutron Source SNS has been performed in order to optimize high-power performance. During development of the SNS external antenna ion source, antenna failures due to high voltage and multicusp magnet holder rf heating concerns under stressful operating conditions led to rf characteristics analysis. In rf simulations, the plasma was modeled as an equivalent lossy metal by defining conductivity as . Insulation designs along with material selections such as ferrite and Teflon could be included in the computer simulations to compare antenna gap potentials, surface power dissipations, and input impedance at the operating frequencies, 2 and 13.56 MHz. Further modeling and design improvements are outlined in the conclusion.

  1. Computer simulations for rf design of a Spallation Neutron Source external antenna H- ion source.

    PubMed

    Lee, S W; Goulding, R H; Kang, Y W; Shin, K; Welton, R F

    2010-02-01

    Electromagnetic modeling of the multicusp external antenna H(-) ion source for the Spallation Neutron Source (SNS) has been performed in order to optimize high-power performance. During development of the SNS external antenna ion source, antenna failures due to high voltage and multicusp magnet holder rf heating concerns under stressful operating conditions led to rf characteristics analysis. In rf simulations, the plasma was modeled as an equivalent lossy metal by defining conductivity as sigma. Insulation designs along with material selections such as ferrite and Teflon could be included in the computer simulations to compare antenna gap potentials, surface power dissipations, and input impedance at the operating frequencies, 2 and 13.56 MHz. Further modeling and design improvements are outlined in the conclusion.

  2. High-Power Linac for the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Rej, D. J.

    2002-04-01

    The Spallation Neutron Source (SNS) will be the world’s most intense source of neutrons for fundamental science and industrial applications. Design and construction of this facility, located at Oak Ridge, is a joint venture between six DOE laboratories. Construction began in 1999 and is currently ahead of the scheduled 2006 completion date. Injecting a high-power, pulsed proton beam into a mercury target produces neutrons. In this talk, we review the physics requirements, design, and status of the construction of the 1-GeV, 1.4-MW average power RF linac for SNS. The accelerator consists of a drift tube linac (DTL), a coupled-cavity linac (CCL), and a superconducting rf (SRF) linac. The phase and quadrupole settings are set to avoid structure and parametric resonances, with coherent resonances posing minimal risk for emittance growth. The DTL is 37 m long and accelerates the ions to 87 MeV. The CCL is 55 m long and accelerates the ions to 186 MeV. The rf structure design and stability for both the DTL and CCL have been validated with scale models. The SRF linac has a modular design to accelerate ions to 1000 MeV, with a straightforward upgrade to 1.3 GeV at a later date. 3D particle-in-cell simulations of beam dynamics are performed to validate performance. The accelerator utilizes 93 MW of pulsed power operating continuously at 60-Hz with an 8factor. Approximately one hundred 402.5 or 805-MHz klystrons, with outputs between 0.55 and 5 MW, are used. The klystrons are powered by a novel converter-modulator that takes advantage of recent advances in IGBT switch plate assemblies and low-loss material cores for boost transformer. Beam diagnostics include position, phase, profile, and current monitors. They are designed to enable accurate beam steering and matching, and to minimize beam loss that would lead to activation and prevent hands-on maintenance.

  3. Fighting Cancer with Transition Metal Complexes: From Naked DNA to Protein and Chromatin Targeting Strategies

    PubMed Central

    Palermo, Giulia; Magistrato, Alessandra; Riedel, Tina; von Erlach, Thibaud; Davey, Curt A.; Dyson, Paul J.

    2015-01-01

    Abstract Many transition metal complexes have unique physicochemical properties that can be efficiently exploited in medicinal chemistry for cancer treatment. Traditionally, double‐stranded DNA has been assumed to be the main binding target; however, recent studies have shown that nucleosomal DNA as well as proteins can act as dominant molecular binding partners. This has raised new questions about the molecular determinants that govern DNA versus protein binding selectivity, and has offered new ways to rationalize their biological activity and possible side effects. To address these questions, molecular simulations at an atomistic level of detail have been used to complement, support, and rationalize experimental data. Herein we review some relevant studies—focused on platinum and ruthenium compounds—to illustrate the power of state‐of‐the‐art molecular simulation techniques and to demonstrate how the interplay between molecular simulations and experiments can make important contributions to elucidating the target preferences of some promising transition metal anticancer agents. This contribution aims at providing relevant information that may help in the rational design of novel drug‐discovery strategies. PMID:26634638

  4. Live Site Demonstrations: Former Pole Mountain Target and Maneuver Area, Laramie, WY. MetalMapper Data Analysis for Pole Mountain Target and Maneuver Area

    DTIC Science & Technology

    2012-03-08

    FINAL REPORT Live Site Demonstrations: Former Pole Mountain Target and Maneuver Area, Laramie, WY MetalMapper Data Analysis for Pole...Mountain Target and Maneuver Area ESTCP Project MR-201157 March 2012 John Baptiste Parsons Standard Form 298 (Rev. 8/98) REPORT ...DOCUMENTATION PAGE Prescribed by ANSI Std. Z39.18 Form Approved OMB No. 0704-0188 The public reporting burden for this collection of information is

  5. Convection in molten pool created by a concentrated energy flux on a solid metal target

    SciTech Connect

    Dikshit, B.; Zende, G. R.; Bhatia, M. S.; Suri, B. M.

    2009-08-15

    During surface evaporation of metals by use of a concentrated energy flux such as electron beam or lasers, a liquid metal pool having a very high temperature gradient is formed around the hot zone created by the beam. Due to temperature dependence of surface tension, density, and depression of the evaporating surface caused by back pressure of the emitted vapor in this molten pool, a strong convective current sets in the molten pool. A proposition is made that this convection may pass through three different stages during increase in the electron beam power depending upon dominance of the various driving forces. To confirm this, convective heat transfer is quantified in terms of dimensionless Nusselt number and its evolution with power is studied in an experiment using aluminum, copper, and zirconium as targets. These experimentally determined values are also compared to the theoretical values predicted by earlier researchers to test the validity of their assumptions and to know about the type of flow in the melt pool. Thus, conclusion about the physical characteristics of flow in the molten pool of metals could be drawn by considering the roles of surface tension and curvature of the evaporating surface on the evolution of convective heat transfer.

  6. Design of antibody-functionalized carbon nanotubes filled with radioactivable metals towards a targeted anticancer therapy

    NASA Astrophysics Data System (ADS)

    Spinato, Cinzia; Perez Ruiz de Garibay, Aritz; Kierkowicz, Magdalena; Pach, Elzbieta; Martincic, Markus; Klippstein, Rebecca; Bourgognon, Maxime; Wang, Julie Tzu-Wen; Ménard-Moyon, Cécilia; Al-Jamal, Khuloud T.; Ballesteros, Belén; Tobias, Gerard; Bianco, Alberto

    2016-06-01

    In the present work we have devised the synthesis of a novel promising carbon nanotube carrier for the targeted delivery of radioactivity, through a combination of endohedral and exohedral functionalization. Steam-purified single-walled carbon nanotubes (SWCNTs) have been initially filled with radioactive analogues (i.e. metal halides) and sealed by high temperature treatment, affording closed-ended CNTs with the filling material confined in the inner cavity. The external functionalization of these filled CNTs was then achieved by nitrene cycloaddition and followed by the derivatization with a monoclonal antibody (Cetuximab) targeting the epidermal growth factor receptor (EGFR), overexpressed by several cancer cells. The targeting efficiency of the so-obtained conjugate was evaluated by immunostaining with a secondary antibody and by incubation of the CNTs with EGFR positive cells (U87-EGFR+), followed by flow cytometry, confocal microscopy or elemental analyses. We demonstrated that our filled and functionalized CNTs can internalize more efficiently in EGFR positive cancer cells.In the present work we have devised the synthesis of a novel promising carbon nanotube carrier for the targeted delivery of radioactivity, through a combination of endohedral and exohedral functionalization. Steam-purified single-walled carbon nanotubes (SWCNTs) have been initially filled with radioactive analogues (i.e. metal halides) and sealed by high temperature treatment, affording closed-ended CNTs with the filling material confined in the inner cavity. The external functionalization of these filled CNTs was then achieved by nitrene cycloaddition and followed by the derivatization with a monoclonal antibody (Cetuximab) targeting the epidermal growth factor receptor (EGFR), overexpressed by several cancer cells. The targeting efficiency of the so-obtained conjugate was evaluated by immunostaining with a secondary antibody and by incubation of the CNTs with EGFR positive cells (U87

  7. LATIS modeling of laser induced midplane and backplane spallation

    SciTech Connect

    Glinksky, M.E.; Bailey, D.S.; London, R.A.

    1997-03-05

    The computer code LATIS is used to simulate midplane and backplane spallation resulting from short pulsed laser absorption. A 1-D planar geometry is simulated with an exponential laser absorption profile. The laser pulse length is assumed to be much shorter than the sound transit time across the laser absorption length. The boundary conditions are a fixed front plane and free backplane (backplane spall) and a free front plane and a fixed midplane (midplane spall). The NBS/NRC equation of state for water is used with a self- consistent yet empirical material strength and failure model. The failure model includes the effects of void nucleation, growth and coalescence. Definite signatures of the nucleation and coalescence thresholds are found in the back surface motion for backplane spallation.

  8. SPALLATION NEUTRON SOURCE OPERATIONAL EXPERIENCE AT 1 MW

    SciTech Connect

    Galambos, John D

    2011-01-01

    The Spallation Neutron Source (SNS) has been operating at the MW level for about one year. Experience in beam loss control and machine activation at this power level is presented. Also experience with machine protection systems is reviewed, which is critical at this power level. One of the most challenging operational aspects of high power operation has been attaining high availability, which is also discussed

  9. Spallation neutron source and other high intensity froton sources

    SciTech Connect

    Weiren Chou

    2003-02-06

    This lecture is an introduction to the design of a spallation neutron source and other high intensity proton sources. It discusses two different approaches: linac-based and synchrotron-based. The requirements and design concepts of each approach are presented. The advantages and disadvantages are compared. A brief review of existing machines and those under construction and proposed is also given. An R&D program is included in an appendix.

  10. Moisture-Induced Alumina Scale Spallation: The Hydrogen Factor

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2010-01-01

    For some time the oxidation community has been concerned with interfacial spallation of protective alumina scales, not just upon immediate cool down, but as a time-delayed phenomenon. Moisture-induced delayed spallation (MIDS) and desktop spallation (DTS) of thermal barrier coatings (TBCs) refer to this process. It is most apparent for relatively adherent alumina scales that have survived initial cool down in a dry environment, have built up considerable thickness and strain energy, and have been somewhat damaged, such as by cyclic oxidation cracking. Indeed, a "sensitive zone" can be described that maximizes the observed effect as a function of all the relevant factors. Moisture has been postulated to serve as a source of interfacial hydrogen embrittlement. Hydrogen is derived from reaction with aluminum in the alloy at an exposed interface. The purpose of this monograph is to trace the close analogy of this phenomenon to other hydrogen-induced effects, such as embrittlement of aluminides and blistering of alloys and anodic alumina films. A formalized, top-down, logic-tree structure is presented as a guide to this discussion. A theoretical basis for interfacial weakening by hydrogen is first cited, as are demonstrations of hydrogen detection as a reaction product or interfacial species. Further support is provided by critical experiments that recreate the moisture effect, but by isolating hydrogen from other potential causative factors. These experiments include tests in H 2-containing atmospheres or cathodic hydrogen charging. Accordingly, they strongly indicate that interfacial hydrogen, derived from moisture, is the key chemical species accounting for delayed alumina scale spallation.

  11. WATER PURITY DEVELOPMENT FOR THE COUPLED CAVITY LINAC (CCL) AND DRIFT TUBE LINAC (DTL) STRUCTURES OF THE SPALLATION NEUTRON SOURCE (SNS) LINAC

    SciTech Connect

    D. KATONAK; J. BERNARDIN; S. HOPKINS

    2001-06-01

    The Spallation Neutron Source (SNS) is a facility being designed for scientific and industrial research and development. SNS will generate and use neutrons as a diagnostic tool for medical purposes, material science, etc. The neutrons will be produced by bombarding a heavy metal target with a high-energy beam of protons, generated and accelerated with a linear particle accelerator, or linac. The low energy end of the linac consists of two room temperature copper structures, the drift tube linac (DTL), and the coupled cavity linac (CCL). Both of these accelerating structures use large amounts of electrical energy to accelerate the proton beam. Approximately 60-80% of the electrical energy is dissipated in the copper structure and must be removed. This is done using specifically designed water cooling passages within the linac's copper structure. Cooling water is supplied to these cooling passages by specially designed resonance control and water cooling systems. One of the primary components in the DTL and CCL water cooling systems, is a water purification system that is responsible for minimizing erosion, corrosion, scaling, biological growth, and hardware activation. The water purification system consists of filters, ion exchange resins, carbon beds, an oxygen scavenger, a UV source, and diagnostic instrumentation. This paper reviews related issues associated with water purification and describes the mechanical design of the SNS Linac water purification system.

  12. Moisture-Induced Alumina Scale Spallation: The Hydrogen Factor

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2009-01-01

    For some time our community has been concerned with interfacial spallation of protective alumina scales, not just upon immediate cooldown, but as a time-delayed phenomenon. Moisture-induced delayed spallation (MIDS) and desktop spallation (DTS) of TBC's refer to this process. It is most apparent for relatively adherent alumina scales that have survived cool down in a dry environment, built up considerable thickness and strain energy, and have been somewhat damaged, such as by cyclic oxidation cracking. Indeed, a "sweet zone" can be defined that maximizes the observed effect as a function of all the relevant factors. Moisture has been postulated to serve as a source of interfacial hydrogen embrittlement derived from reaction with aluminum in the alloy at an exposed interface. The purpose of this monograph is to trace the close analogy of this phenomenon to other hydrogen effects, such as embrittlement of aluminides and blistering of alloys and anodic alumina films. A formalized, top-down, logic tree structure is presented as a guide to this discussion. A theoretical basis for interfacial weakening by hydrogen is first cited, as are demonstrations of hydrogen as a reaction product or detected interfacial species. Further support is provided by critical experiments that produce the same moisture effect, but by isolating hydrogen from other potential causative factors. These experiments include tests in H2-containing atmospheres or cathodic hydrogen charging.

  13. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Setzler, Brian P.; Zhuang, Zhongbin; Wittkopf, Jarrid A.; Yan, Yushan

    2016-12-01

    Fuel cells are the zero-emission automotive power source that best preserves the advantages of gasoline automobiles: low upfront cost, long driving range and fast refuelling. To make fuel-cell cars a reality, the US Department of Energy has set a fuel cell system cost target of US$30 kW-1 in the long-term, which equates to US$2,400 per vehicle, excluding several major powertrain components (in comparison, a basic, but complete, internal combustion engine system costs approximately US$3,000). To date, most research for automotive applications has focused on proton exchange membrane fuel cells (PEMFCs), because these systems have demonstrated the highest power density. Recently, however, an alternative technology, hydroxide exchange membrane fuel cells (HEMFCs), has gained significant attention, because of the possibility to use stable platinum-group-metal-free catalysts, with inherent, long-term cost advantages. In this Perspective, we discuss the cost profile of PEMFCs and the advantages offered by HEMFCs. In particular, we discuss catalyst development needs for HEMFCs and set catalyst activity targets to achieve performance parity with state-of-the-art automotive PEMFCs. Meeting these targets requires careful optimization of nanostructures to pack high surface areas into a small volume, while maintaining high area-specific activity and favourable pore-transport properties.

  14. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells.

    PubMed

    Setzler, Brian P; Zhuang, Zhongbin; Wittkopf, Jarrid A; Yan, Yushan

    2016-12-06

    Fuel cells are the zero-emission automotive power source that best preserves the advantages of gasoline automobiles: low upfront cost, long driving range and fast refuelling. To make fuel-cell cars a reality, the US Department of Energy has set a fuel cell system cost target of US$30 kW(-1) in the long-term, which equates to US$2,400 per vehicle, excluding several major powertrain components (in comparison, a basic, but complete, internal combustion engine system costs approximately US$3,000). To date, most research for automotive applications has focused on proton exchange membrane fuel cells (PEMFCs), because these systems have demonstrated the highest power density. Recently, however, an alternative technology, hydroxide exchange membrane fuel cells (HEMFCs), has gained significant attention, because of the possibility to use stable platinum-group-metal-free catalysts, with inherent, long-term cost advantages. In this Perspective, we discuss the cost profile of PEMFCs and the advantages offered by HEMFCs. In particular, we discuss catalyst development needs for HEMFCs and set catalyst activity targets to achieve performance parity with state-of-the-art automotive PEMFCs. Meeting these targets requires careful optimization of nanostructures to pack high surface areas into a small volume, while maintaining high area-specific activity and favourable pore-transport properties.

  15. Time-domain response of a metal detector to a target buried in soil with frequency-dependent magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Das, Y.

    2006-05-01

    The work reported in this paper is a part of on-going studies to clarify how and to what extent soil electromagnetic properties affect the performance of induction metal detectors widely used in humanitarian demining. This paper studies the specific case of the time-domain response of a small metallic sphere buried in a non-conducting soil half-space with frequency-dependent complex magnetic susceptibility. The sphere is chosen as a simple prototype for the small metal parts in low-metal landmines, while soil with dispersive magnetic susceptibility is a good model for some soils that are known to adversely affect the performance of metal detectors. The included analysis and computations extend previous work which has been done mostly in the frequency domain. Approximate theoretical expressions for weakly magnetic soils are found to fit the experimental data very well, which allowed the estimation of soil model parameters, albeit in an ad hoc manner. Soil signal is found to exceed target signal (due to an aluminum sphere of radius 0.0127 m) in many cases, even for the weakly magnetic Cambodian laterite used in the experiments. How deep a buried target is detected depends on many other factors in addition to the relative strength of soil and target signals. A general statement cannot thus be made regarding detectability of a target in soil based on the presented results. However, computational results complemented with experimental data extend the understanding of the effect that soil has on metal detectors.

  16. s-wave elastic scattering of antihydrogen off atomic alkali-metal targets

    SciTech Connect

    Sinha, Prabal K.; Ghosh, A. S.

    2006-03-15

    We have investigated the s-wave elastic scattering of antihydrogen atoms off atomic alkali-metal targets (Li, Na, K, and Rb) at thermal energies (10{sup -16}-10{sup -4} a.u.) using an atomic orbital expansion technique. The elastic cross sections of these systems at thermal energies are found to be very high compared to H-H and H-He systems. The theoretical models employed in this study are so chosen to consider long-range forces dynamically in the calculation. The mechanism of cooling suggests that Li may be considered to be a good candidate as a buffer gas for enhanced cooling of antihydrogen atoms to ultracold temperature.

  17. Supersonic Propagation of a K-Shell Ionization Front in Metal Targets

    NASA Astrophysics Data System (ADS)

    Nilson, P. M.; Fiksel, G.; Solodov, A. A.; Stoeckl, C.; Mileham, C.; Theobald, W.; Davies, J. R.; Froula, D. H.; Betti, R.; Meyerhofer, D. D.

    2015-11-01

    The supersonic propagation of a K-shell ionization front has been measured in high-energy-density metal targets using 1-D monochromatic streaked x-ray imaging. The ionization front was driven by hot electrons generated by a 10-ps laser pulse focused to an intensity of 1018 W/cm2. The data show the ionization front travelling at 0 . 11 c +/- 0 . 02 c . The measurements are in good agreement with implicit-hybrid particle-in-cell and collisional-radiative code calculations that predict the hot-electron transport and the K-shell ionization front dynamics. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  18. Department of Energy review of the National Spallation Neutron Source Project

    SciTech Connect

    1997-06-01

    A Department of Energy (DOE) review of the Conceptual Design Report (CDR) for the National Spallation Neutron Source (NSNS) was conducted. The NSNS will be a new high-power spallation neutron source; initially, it will operate at 1 megawatt (MW), but is designed to be upgradeable to significantly higher power, at lower cost, when accelerator and target technologies are developed for higher power. The 53-member Review Committee examined the projected cost, schedule, technical scope, and management structure described in the CDR. For each of the major components of the NSNS, the Committee determined that the project team had produced credible designs that can be expected to work well. What remains to be done is to integrate the design of these components. With the exception of the liquid mercury target, the NSNS Project will rely heavily on proven technologies and, thus, will face a relatively low risk to successful project completion. The Total Project Cost (TPC) presented to the Committee in the CDR was $1.266 billion in as-spent dollars. In general, the Committee felt that the laboratory consortium had presented a credible estimate for each of the major components but that value engineering might produce some savings. The construction schedule presented to the Committee covered six years beginning in FY 1999. The Committee questioned whether all parts of the project could be completed according to this schedule. In particular, the linac and the conventional facilities appeared to have overly optimistic schedules. The NSNS project team was encouraged to reexamine these activities and to consider a more conservative seven-year schedule. Another concern of the Committee was the management structure. In summary, the Committee felt that this Conceptual Design Report was a very credible proposal, and that there is a high probability for successful completion of this major project within the proposed budget, although the six-year proposed schedule may be optimistic.

  19. A multifunctional metal-organic framework based tumor targeting drug delivery system for cancer therapy

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Dong, Zhi-Yue; Cheng, Hong; Wan, Shuang-Shuang; Chen, Wei-Hai; Zou, Mei-Zhen; Huo, Jia-Wei; Deng, He-Xiang; Zhang, Xian-Zheng

    2015-09-01

    Drug delivery systems (DDSs) with biocompatibility and precise drug delivery are eagerly needed to overcome the paradox in chemotherapy that high drug doses are required to compensate for the poor biodistribution of drugs with frequent dose-related side effects. In this work, we reported a metal-organic framework (MOF) based tumor targeting DDS developed by a one-pot, and organic solvent-free ``green'' post-synthetic surface modification procedure, starting from the nanoscale MOF MIL-101. Owing to the multifunctional surface coating, premature drug release from this DDS was prevented. Due to the pH responsive benzoic imine bond and the redox responsive disulfide bond at the modified surface, this DDS exhibited tumor acid environment enhanced cellular uptake and intracellular reducing environment triggered drug release. In vitro and in vivo results showed that DOX loaded into this DDS exhibited effective cancer cell inhibition with much reduced side effects.Drug delivery systems (DDSs) with biocompatibility and precise drug delivery are eagerly needed to overcome the paradox in chemotherapy that high drug doses are required to compensate for the poor biodistribution of drugs with frequent dose-related side effects. In this work, we reported a metal-organic framework (MOF) based tumor targeting DDS developed by a one-pot, and organic solvent-free ``green'' post-synthetic surface modification procedure, starting from the nanoscale MOF MIL-101. Owing to the multifunctional surface coating, premature drug release from this DDS was prevented. Due to the pH responsive benzoic imine bond and the redox responsive disulfide bond at the modified surface, this DDS exhibited tumor acid environment enhanced cellular uptake and intracellular reducing environment triggered drug release. In vitro and in vivo results showed that DOX loaded into this DDS exhibited effective cancer cell inhibition with much reduced side effects. Electronic supplementary information (ESI) available

  20. Bone as target organ for metals: the case of f-elements.

    PubMed

    Vidaud, Claude; Bourgeois, Damien; Meyer, Daniel

    2012-06-18

    The skeleton is a target organ for most metals. This leads to their bioaccumulation, either as storage of useful oligoelements or as a protection against damage by toxic elements. The different events leading to their accumulation in this organ, under constant remodeling, are not fully understood, nor the full subsequent impact on bone metabolism. This lack of knowledge is particularly true for lanthanides and actinides, whose use has been increasing over recent decades. These metals, known as f-elements, present chemical similarities and differences. After a comparison of the biologically relevant physicochemical properties of lanthanides and actinides, and a brief reminder of the main events of bone metabolism, this review considers the results published over the past decade regarding the interaction between bones and f-elements. Emphasis will be given to the molecular events, which constitute the basis of the most recent toxicological studies in this domain but still need further investigation. Ionic exchanges with the inorganic matrix, interactions with bone proteins, and cellular mechanism disturbances are mainly considered in this review.

  1. CO2 laser pulse shortening by laser ablation of a metal target.

    PubMed

    Donnelly, T; Mazoyer, M; Lynch, A; O'Sullivan, G; O'Reilly, F; Dunne, P; Cummins, T

    2012-03-01

    A repeatable and flexible technique for pulse shortening of laser pulses has been applied to transversely excited atmospheric (TEA) CO(2) laser pulses. The technique involves focusing the laser output onto a highly reflective metal target so that plasma is formed, which then operates as a shutter due to strong laser absorption and scattering. Precise control of the focused laser intensity allows for timing of the shutter so that different temporal portions of the pulse can be reflected from the target surface before plasma formation occurs. This type of shutter enables one to reduce the pulse duration down to ~2 ns and to remove the low power, long duration tails that are present in TEA CO(2) pulses. The transmitted energy is reduced as the pulse duration is decreased but the reflected power is ~10 MW for all pulse durations. A simple laser heating model verifies that the pulse shortening depends directly on the plasma formation time, which in turn is dependent on the applied laser intensity. It is envisaged that this plasma shutter will be used as a tool for pulse shaping in the search for laser pulse conditions to optimize conversion efficiency from laser energy to useable extreme ultraviolet (EUV) radiation for EUV source development.

  2. CO2 laser pulse shortening by laser ablation of a metal target

    NASA Astrophysics Data System (ADS)

    Donnelly, T.; Mazoyer, M.; Lynch, A.; O'Sullivan, G.; O'Reilly, F.; Dunne, P.; Cummins, T.

    2012-03-01

    A repeatable and flexible technique for pulse shortening of laser pulses has been applied to transversely excited atmospheric (TEA) CO2 laser pulses. The technique involves focusing the laser output onto a highly reflective metal target so that plasma is formed, which then operates as a shutter due to strong laser absorption and scattering. Precise control of the focused laser intensity allows for timing of the shutter so that different temporal portions of the pulse can be reflected from the target surface before plasma formation occurs. This type of shutter enables one to reduce the pulse duration down to ˜2 ns and to remove the low power, long duration tails that are present in TEA CO2 pulses. The transmitted energy is reduced as the pulse duration is decreased but the reflected power is ˜10 MW for all pulse durations. A simple laser heating model verifies that the pulse shortening depends directly on the plasma formation time, which in turn is dependent on the applied laser intensity. It is envisaged that this plasma shutter will be used as a tool for pulse shaping in the search for laser pulse conditions to optimize conversion efficiency from laser energy to useable extreme ultraviolet (EUV) radiation for EUV source development.

  3. Moisture-Induced TBC Spallation on Turbine Blade Samples

    NASA Technical Reports Server (NTRS)

    Smialek, James

    2011-01-01

    Delayed failure of TBCs is a widely observed laboratory phenomenon, although many of the early observations went unreported. The weekend effect or DeskTop Spallation (DTS) is characterized by initial survival of a TBC after accelerated laboratory thermal cycling, then failure by exposure to ambient humidity or water. Once initiated, failure can occur quite dramatically in less than a second. To this end, the water drop test and digital video recordings have become useful techniques in studies at NASA (Smialek, Zhu, Cuy), DECHMA (Rudolphi, Renusch, Schuetze), and CNRS Toulouse/SNECMA (Deneux, Cadoret, Hervier, Monceau). In the present study the results for a commercial turbine blade, with a standard EB-PVD 7YSZ TBC top coat and Pt-aluminide diffusion bond coat are reported. Cut sections were intermittently oxidized at 1100, 1150, and 1200 C and monitored by weight change and visual appearance. Failures were distributed widely over a 5-100 hr time range, depending on temperature. At some opportune times, failure was captured by video recording, documenting the appearance and speed of the moisture-induced spallation process. Failure interfaces exhibited alumina scale grains, decorated with Ta-rich oxide particles, and alumina inclusions as islands and streamers. The phenomenon is thus rooted in moisture-induced delayed spallation (MIDS) of the alumina scale formed on the bond coat. In that regard, many studies show the susceptibility of alumina scales to moisture, as long as high strain energy and a partially exposed interface exist. The latter conditions result from severe cyclic oxidation conditions, which produce a highly stressed and partially damaged scale. In one model, it has been proposed that moisture reacts with aluminum in the bond coat to release hydrogen atoms that embrittle the interface. A negative synergistic effect with interfacial sulfur is also invoked.

  4. Moisture-Induced TBC Spallation on Turbine Blade Samples

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2011-01-01

    Delayed failure of TBCs is a widely observed laboratory phenomenon, although many of the early observations went unreported. "The weekend effect" or "DeskTop Spallation" (DTS) is characterized by initial survival of a TBC after accelerated laboratory thermal cycling, then failure by exposure to ambient humidity or water. Once initiated, failure can occur quite dramatically in less than a second. To this end, the water drop test and digital video recordings have become useful techniques in studies at NASA (Smialek, Zhu, Cuy), DECHMA (Rudolphi, Renusch, Schuetze), and CNRS Toulouse/SNECMA (Deneux, Cadoret, Hervier, Monceau). In the present study the results for a commercial turbine blade, with a standard EB-PVD 7YSZ TBC top coat and Pt-aluminide diffusion bond monitored by weight change and visual appearance. Failures were distributed widely over a 5-100 hr time range, depending on temperature. At some opportune times, failure was captured by video recording, documenting the appearance and speed of the moisture-induced spallation process. Failure interfaces exhibited alumina scale grains, decorated with Ta-rich oxide particles, and alumina inclusions as islands and streamers. The phenomenon is thus rooted in moisture-induced delayed spallation (MIDS) of the alumina scale formed on the bond coat. In that regard, many studies show the susceptibility of alumina scales to moisture, as long as high strain energy and a partially exposed interface exist. The latter conditions result from severe cyclic oxidation conditions, which produce a highly stressed and partially damaged scale. In one model, it has been proposed that moisture reacts with aluminum in the bond coat to release hydrogen atoms that 'embrittle' the interface. A negative synergistic effect with interfacial sulfur is also invoked.

  5. Numerical modelling of spallation in 2D hydrodynamics codes

    NASA Astrophysics Data System (ADS)

    Maw, J. R.; Giles, A. R.

    1996-05-01

    A model for spallation based on the void growth model of Johnson has been implemented in 2D Lagrangian and Eulerian hydrocodes. The model has been extended to treat complete separation of material when voids coalesce and to describe the effects of elevated temperatures and melting. The capabilities of the model are illustrated by comparison with data from explosively generated spall experiments. Particular emphasis is placed on the prediction of multiple spall effects in weak, low melting point, materials such as lead. The correlation between the model predictions and observations on the strain rate dependence of spall strength is discussed.

  6. VESPA: The vibrational spectrometer for the European Spallation Source.

    PubMed

    Fedrigo, Anna; Colognesi, Daniele; Bertelsen, Mads; Hartl, Monika; Lefmann, Kim; Deen, Pascale P; Strobl, Markus; Grazzi, Francesco; Zoppi, Marco

    2016-06-01

    VESPA, Vibrational Excitation Spectrometer with Pyrolytic-graphite Analysers, aims to probe molecular excitations via inelastic neutron scattering. It is a thermal high resolution inverted geometry time-of-flight instrument designed to maximise the use of the long pulse of the European Spallation Source. The wavelength frame multiplication technique was applied to provide simultaneously a broad dynamic range (about 0-500 meV) while a system of optical blind choppers allows to trade flux for energy resolution. Thanks to its high flux, VESPA will allow the investigation of dynamical and in situ experiments in physical chemistry. Here we describe the design parameters and the corresponding McStas simulations.

  7. VESPA: The vibrational spectrometer for the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Fedrigo, Anna; Colognesi, Daniele; Bertelsen, Mads; Hartl, Monika; Lefmann, Kim; Deen, Pascale P.; Strobl, Markus; Grazzi, Francesco; Zoppi, Marco

    2016-06-01

    VESPA, Vibrational Excitation Spectrometer with Pyrolytic-graphite Analysers, aims to probe molecular excitations via inelastic neutron scattering. It is a thermal high resolution inverted geometry time-of-flight instrument designed to maximise the use of the long pulse of the European Spallation Source. The wavelength frame multiplication technique was applied to provide simultaneously a broad dynamic range (about 0-500 meV) while a system of optical blind choppers allows to trade flux for energy resolution. Thanks to its high flux, VESPA will allow the investigation of dynamical and in situ experiments in physical chemistry. Here we describe the design parameters and the corresponding McStas simulations.

  8. Optical model methods of predicting nuclide production from spallation reactions.

    PubMed

    Ramsey, C R; Townsend, L W; Tripathi, R K; Cucinotta, F A

    1998-02-01

    Quantum mechanical optical model methods for calculating isotope production cross sections from the spallation of heavy nuclei by high-energy protons are developed from a modified abrasion-ablation collision formalism. The abrasion step is treated quantum-mechanically as a knockout process which leaves the residual prefragment nucleus in an excited state. In ablation the prefragment deexcites to produce the final fragment. The excitation energies of the prefragments are estimated from a combination of liquid drop and frictional-spectator interaction considerations. Estimates of elemental and isotopic production cross sections are in good agreement with recently published cross section measurements.

  9. INTERACTION OF LASER RADIATION WITH MATTER: Formation of periodic structures upon laser ablation of metal targets in liquids

    NASA Astrophysics Data System (ADS)

    Kazakevich, Pavel V.; Simakin, Aleksandr V.; Shafeev, Georgii A.

    2005-09-01

    Experimental data on the formation of ordered microstructures produced upon ablation of metal targets in liquids irradiated by a copper vapour laser or a pulsed Nd:YAG laser are presented. The structures were obtained on brass, bronze, copper, and tungsten substrates immersed in distilled water or ethanol. As a result of multiple-pulse laser ablation by a scanning beam, ordered microcones with pointed vertexes are formed on the target surface. The structures are separated by deep narrow channels. The structure period was experimentally shown to increase linearly with diameter of the laser spot on the target surface.

  10. Influence of electronic stopping on sputtering induced by cluster impact on metallic targets

    SciTech Connect

    Sandoval, Luis; Urbassek, Herbert M.

    2009-04-01

    Using molecular-dynamics simulation, we model the sputtering of a Au (111) crystallite induced by the impact of Au{sub 13} projectiles with total energies up to 500 keV. Due to the uncertainty of the electronic stopping of Au moving in particular at small velocities, we performed several simulations, in which the electronic stopping parameters are systematically changed. Our results demonstrate the dominating influence of the cut-off energy E{sub c}, below which the high-velocity electronic stopping of atoms is switched off in the simulation. If E{sub c} is smaller than roughly one half the cohesive energy of the target, sputtering ceases after a few ps; the spike contribution to sputtering (also called phase explosion or gas-flow contribution) is entirely quenched and the sputtering yield is up to an order of magnitude smaller than when electronic stopping is taken into account only at higher atom energies. Our results demonstrate the importance of a careful modeling of electronic stopping in simulations of spike sputtering from metals.

  11. Mitochondria as an important target in heavy metal toxicity in rat hepatoma AS-30D cells.

    PubMed

    Belyaeva, Elena A; Dymkowska, Dorota; Wieckowski, Mariusz R; Wojtczak, Lech

    2008-08-15

    The mechanisms of toxic effects of divalent cations of three heavy metals Hg, Cd and Cu in rat ascites hepatoma AS-30D cells cultivated in vitro were compared. It was found that the toxicity of these ions, applied in the micromolar range (10-500 microM), decreased from Hg(2+) (most toxic) to Cu(2+) (least toxic). Hg(2+) and Cd(2+) produced a high percentage of cell death by both necrosis and apoptosis, whereas Cu(2+) at concentrations up to 500 microM was weakly effective. Hg(2+) at concentration of 10 microM appeared slightly uncoupling (i.e., stimulated resting state respiration and decreased the mitochondrial transmembrane potential), whereas it exerted a strong inhibitory effect on the respiratory chain and rapid dissipation of the membrane potential at higher concentrations. Cu(2+) had inhibitory effect on cell respiration only at 500 microM concentration and after incubation of 48 h but produced a significant uncoupling effect at lower concentrations. Cu(2+) induced an early and sharp increase of intracellular production of reactive oxygen species (ROS). The action of Hg(2+) and Cd(2+) on ROS generation was biphasic. They stimulated ROS generation within the cells at low concentrations and at short incubation times but decreased ROS generation at higher concentrations and at longer incubation. It is concluded that mitochondria are an important target for toxic effects of Hg(2+), Cd(2+) and Cu(2+) in AS-30D rat hepatoma cells.

  12. Separation of spallation and terrestrial C-14 in chondrites

    NASA Technical Reports Server (NTRS)

    Cresswell, R. G.; Beukens, R. P.; Rucklidge, J. C.

    1993-01-01

    Weathering products and contamination severely hamper our ability to accurately measure the C-14 spallation component in meteorites, but can give insights into a sample's terrestrial history. A procedure was developed to measure the C-14 in these components using CO and CO2 separations from temperature extractions from 200-500 mg of material. The Bruderheim (L6) chondrite was chosen as a standard following the practice of previous researchers, crosschecked against Peace River (L6), Abee (EH4), and Juvinas (EUC). Low temperature fractions (less than 900 C) give C-14 signatures consistent with a modern terrestrial C-14 source; melt fractions show elevated levels attesting to a spallogenic origin. Higher yields of CO in the melt fraction are less affected by the low levels of experimental contamination than the CO2. This fraction gave a mean CO:CO2 ratio in Bruderheim of 81.6 +/- 7.7; the ratio of the spallation component is 79.8 +/- 8.1. These values suggest equilibrium release of gases on the olivine-silica-pyroxene-iron buffer. This is corroborated by approximately equal release of the two components at 900 C. The chondrites gave an average saturation level of 54.3 +/- 2.9 dpm/kg; the achondrite gave 49.6 +/- 2.0 dpm/kg. No clear correlation with oxygen content is apparent, though shielding effects have yet to be evaluated. A further evaluation of this subject matter is given.

  13. Cyclotron production of ⁹⁹mTc: recycling of enriched ¹⁰⁰Mo metal targets.

    PubMed

    Gagnon, K; Wilson, J S; Holt, C M B; Abrams, D N; McEwan, A J B; Mitlin, D; McQuarrie, S A

    2012-08-01

    There is growing interest in the large scale cyclotron production of (99m)Tc via the (100)Mo(p,2n)(99m)Tc reaction. While the use and recycling of cyclotron-irradiated enriched molybdenum targets has been reported previously in the context of (94m)Tc production, to the best of our knowledge, previous recycling studies have been limited to the use of oxide targets. To facilitate reuse of high-power enriched (100)Mo targets, this work presents and evaluates a strategy for recycling of enriched metallic molybdenum. For the irradiated (100)Mo targets in this study, an overall metal to metal recovery of 87% is reported. Evaluation of "new" and "recycled" (100)Mo revealed no changes in the molybdenum isotopic composition (as measured via ICP-MS). For similar irradiation conditions of "new" and "recycled" (100)Mo, (i.e. target thicknesses, irradiation time, and energy), comparable levels of (94g)Tc, (95g)Tc, and (96g)Tc contaminants were observed. Comparable QC specifications (i.e. aluminum ion concentration, pH, and radiochemical purity) were also reported. We finally note that [(99m)Tc]-MDP images obtained by comparing MDP labelled with generator-based (99m)Tc vs. (99m)Tc obtained following the irradiation of recycled (100)Mo demonstrated comparable biodistribution. With the goal of producing large quantities of (99m)Tc, the proposed methodology demonstrates that efficient recycling of enriched metallic (100)Mo targets is feasible and effective.

  14. Targeting triple negative breast cancer cells by N3-substituted 9,10-Phenanthrenequinone thiosemicarbazones and their metal complexes

    NASA Astrophysics Data System (ADS)

    Afrasiabi, Zahra; Stovall, Preston; Finley, Kristen; Choudhury, Amitava; Barnes, Charles; Ahmad, Aamir; Sarkar, Fazlul; Vyas, Alok; Padhye, Subhash

    2013-10-01

    Novel N3-substituted 9,10-Phenanthrenequinone thiosemicarbazones and their copper, nickel and palladium complexes are structurally characterized and reported along with the single crystal X-ray structures of three ligands and one nickel complex. All compounds were evaluated for their antiproliferative potential against Triple Negative Breast Cancer (TNBC) cells which have poor prognosis and no effective drugs to treat with. All compounds exhibited antiproliferative activity against these cells. Among the metal complexes evaluated, redox active copper complexes were found to be more potent. The possible mechanism for such enhanced activity can be attributed to the generation of oxidative stress, which was amenable for targeting through metal complexation.

  15. Spallation occurrence from polyamide materials irradiated by thermal plasma with water absorption

    NASA Astrophysics Data System (ADS)

    Nakano, Tomoyuki; Tanaka, Yasunori; Nakagawa, T.; Shinsei, N.; Uesugi, Y.; Ishijima, T.

    2016-09-01

    This paper first describes the effect of water absorption in polyamide material irradiated by thermal plasmas on the occurrence of spallation phenomena. The interaction between polyamide materials and arc plasmas occurs particularly in the low voltage circuit breaker and aerospace fields. Spallation phenomena are those in which polymer particles are ejected from polymer bulk materials irradiated by high heat flux. To confirm the effect of water absorption into the polyamide material on spallation phenomena, polyamide specimens with and without water absorption were irradiated by Ar inductively coupled thermal plasma. The results show that the polyamide specimen with water absorption ejected spallation particles, whereas the polyamide specimen without water absorption were only slightly ejected, indicating that water absorption promotes the occurrence of spallation. The cooling effects of the spallation polyamide 66 (PA66) particles ablation were also estimated in hot air to assess the arc quenching ability from the spallation particle inclusion. This estimation showed that 10 and more PA66 particles inclusion might decrease the air temperature by 3000 K effectively, which can be useful to enhance arc quenching in circuit breakers working in air.

  16. Nondestructive evaluation of metal and composite targets using an infrared line-scanning technique

    NASA Astrophysics Data System (ADS)

    Smith, Christopher; Rowley, Matthew; Dvonch, Curt; Fulton, Mary

    2005-03-01

    A thermal, non-destructive evaluation (NDE) technique has been employed by ThermTech Services, Inc. in cooperation with NASA Langley Research Center that allows for quantitative measurements of wall thickness in steam boilers. By determining the thickness of the walls, one can easily determine how much thinning has occurred due to corrosion. This type of NDE can be applied to the inspection of wings and fuselages on aircraft and spaceflight vehicles including the shuttle. The NDE technique employs the linear movement of a heat source (lamp) and an infrared imager that is situated at a fixed distance behind the heat source. The instruments are aligned on a platform that moves up and down across the outer surface of a test sample. By analyzing the induced surface temperature variations, and processing images collected with the infrared imager, it can be determined where material loss of the tubes has occurred. After an image sequence has been collected, a line-by-line subtraction methodology is utilized to discard irrelevant information so that defects are displayed in a re-created image. The overall goal of this project is to provide a proof of concept for a portable, hand-operated thermographic line scanner that would provide an alternative to the existing mass- and power-intensive instrument that utilizes a cooled infrared imager. In this project, two different microbolometers are first analyzed using different metal- and carbon epoxy-based targets to determine which provides better resolution for detection of subsurface, manufactured defects. The feasibility of using uncooled bolometer technology to support the development of a portable instrument to conduct this type of NDE technique was proven.

  17. Experimental and computational results for 1054-nm laser-induced shock effects in confined meteorite and metallic targets

    NASA Astrophysics Data System (ADS)

    Remo, John L.; Hammerling, Peter X.

    2000-08-01

    When a single-pulse high-power laser irradiates a surface at atmospheric pressure, a laser supported detonation (LSD) wave can form above the target surface. The high-pressure gas behind the LSD wave transfers momentum to the target. The laser target coupling is substantially reduced in vacuum, the coupling coefficient typically being an order of magnitude less than that when an atmosphere is present. Another pressure enhancement technique is to confine the laser-target interface. Confinement or 'tamping' also can substantially increase the momentum coupling to the target. Experiments tend to differ from one another based on the target size (thickness) and confinement geometry. This work describes and compares some experimental results for metallic targets irradiated by 1054 nm radiation in the GW/cm2 range and interprets them in terms of simple models. As will be discussed in this paper, such models predict a weak sensitivity to target materials but results are likely to be different for inhomogeneous materials as has been seen in recent experiments on iron-nickel and stony meteorites.

  18. The Evolution of the Cryogenic System of the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Hees, W.; Arnold, Ph; Fydrych, J.; Jurns, J.; Wang, X. L.; Weisend, J. G., II

    2015-12-01

    The European Spallation Source (ESS) is an intergovernmental project building a multidisciplinary research laboratory based upon the world's most powerful neutron source to be built in Lund, Sweden. The ESS will use a superconducting linear accelerator which will deliver protons with 5 MW of power to the target at 2.0 GeV with a nominal current of 62.5 mA. A cryomodule test stand will be supplied with helium for the site acceptance tests. The target will have two moderators using supercritical hydrogen to cool down the neutrons. The neutron instruments and the experiments’ sample environment will use liquid helium and liquid nitrogen to cool detectors and samples. The ESS cryogenic system is designed to deliver cryogenic cooling capacity to all three client system. A first concept of the ESS cryogenic system was developed in 2010 and 2011 with a limited amount of input from the clients as well as from site infrastructure (i.e. buildings and utilities). The design had to be flexible enough to accommodate future changes in scope, schedule and available infrastructure. Over the following years the design has evolved together with these parameters to achieve a maturity today which allowed us to order the accelerator cryoplant and to start procurement of many of the other parts of the ESS cryogenic system. This paper presents the evolution of the design throughout the years and the factors influencing certain design choices.

  19. Dynamically polarized samples for neutron protein crystallography at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Zhao, Jinkui; Pierce, Josh; Myles, Dean; Robertson, J. L.; Herwig, Kenneth W.; Standaert, Bob; Cuneo, Matt; Li, Le; Meilleur, Flora

    2016-09-01

    To prepare for the next generation neutron scattering instruments for the planned second target station at the Spallation Neutron Source (SNS) and to broaden the scientific impact of neutron protein crystallography at the Oak Ridge National Laboratory, we have recently ramped up our efforts to develop a dynamically polarized target for neutron protein crystallography at the SNS. Proteins contain a large amount of hydrogen which contributes to incoherent diffraction background and limits the sensitivity of neutron protein crystallography. This incoherent background can be suppressed by using polarized neutron diffraction, which in the same time also improves the coherent diffraction signal. Our plan is to develop a custom Dynamic Nuclear Polarization (DNP) setup tailored to neutron protein diffraction instruments. Protein crystals will be polarized at a magnetic field of 5 T and temperatures of below 1 K. After the dynamic polarization process, the sample will be brought to a frozen-spin mode in a 0.5 T holding field and at temperatures below 100 mK. In a parallel effort, we are also investigating various ways of incorporating polarization agents needed for DNP, such as site specific spin labels, into protein crystals.

  20. STATUS OF THE SPALLATION NEUTRON SOURCE SUPERCONDUCTING RF FACILITIES

    SciTech Connect

    Stout, Daniel S; Assadi, Saeed; Campisi, Isidoro E; Casagrande, Fabio; Crofford, Mark T; DeVan, Bill; Hardek, Thomas W; Henderson, Stuart D; Howell, Matthew P; Kang, Yoon W; Geng, Xiaosong; Stone Jr, William C; Strong, William Herb; Williams, Derrick C; Wright, Paul Alan

    2007-01-01

    The Spallation Neutron Source (SNS) project was completed with only limited superconducting RF (SRF) facilities installed as part of the project. A concerted effort has been initiated to install the infrastructure and equipment necessary to maintain and repair the superconducting Linac, and to support power upgrade research and development (R&D). Installation of a Class10/100/10,000 cleanroom and outfitting of the test cave with RF, vacuum, controls, personnel protection and cryogenics systems is underway. A horizontal cryostat, which can house a helium vessel/cavity and fundamental power coupler for full power, pulsed testing, is being procured. Equipment for cryomodule assembly and disassembly is being procured. This effort, while derived from the experience of the SRF community, will provide a unique high power test capability as well as long term maintenance capabilities. This paper presents the current status and the future plans for the SNS SRF facilities.

  1. THE SPALLATION NEUTRON SOURCE CRYOMODULE TEST STAND RF SYSTEM

    SciTech Connect

    Crofford, Mark T; Ball, Jeffrey Allen; Davidson Jr, Taylor L; Hardek, Thomas W; Heidenreich, Dale A; Kasemir, Kay; Kim, Sang-Ho; Kang, Yoon

    2008-01-01

    The Spallation Neutron Source (SNS) has recently commissioned a cryomodule test facility for the repair and testing of the super-conducting radio-frequency (SRF) cavities. This facility utilizes the original 402.5/805 MHz Radio Frequency (RF) Klystron Test Stand as its power source along with dual Low Level RF (LLRF) control systems. One control system is based on the standard SNS Linac LLRF controls with a second system for open-loop only control. The system is designed to allow simultaneous testing of devices in the test cave and other devices which can be tested outside of the enclosure. Initial tests have shown good results; some improvements are yet to be implemented.

  2. Electron Cloud Mitigation in the Spallation Neutron Source Ring

    SciTech Connect

    Wei, J.; Blaskiewicz, Michael; Brodowski, J.; Cameron, P.; Davino, Daniele; Fedotov, A.; He, P.; Hseuh, H.; Lee, Y.Y.; Ludewig, H.; Meng, W.; Raparia, D.; Tuozzolo, J.; Zhang, S.Y.; Catalan-Lasheras, N.; Macek, R.J.; Furman, Miguel A.; Aleksandrov, A.; Cousineau, S.; Danilov, V.; Henderson, S.; /Brookhaven /CERN /LANL, Ctr. for Nonlinear Studies /LBL, Berkeley /Oak Ridge /SLAC

    2008-03-17

    The Spallation Neutron Source (SNS) accumulator ring is designed to accumulate, via H{sup -} injection, protons of 2 MW beam power at 1 GeV kinetic energy at a repetition rate of 60 Hz [1]. At such beam intensity, electron-cloud is expected to be one of the intensity-limiting mechanisms that complicate ring operations. This paper summarizes mitigation strategy adopted in the design, both in suppressing electron-cloud formation and in enhancing Landau damping, including tapered magnetic field and monitoring system for the collection of stripped electrons at injection, TiN coated beam chamber for suppression of the secondary yield, clearing electrodes dedicated for the injection region and parasitic on BPMs around the ring, solenoid windings in the collimation region, and planning of vacuum systems for beam scrubbing upon operation.

  3. Electron-cloud mitigation in the spallation neutron source ring

    SciTech Connect

    Wei, J.; Blaskiewicz, M.; Brodowski, J.; Cameron, P.; Davino, D.; Fedotov, A.; He, P.; Hseuh, H.; Lee, Y.Y.; Meng, W.; Raparia, D.; Tuozzolo, J.; Zhang, S.Y.; Danilov, V.; Henderson, S.; Furman, M.; Pivi, M.; Macek, R.

    2003-05-01

    The Spallation Neutron Source (SNS) accumulator ring is designed to accumulate, via H- injection, protons of 2 MW beam power at 1 GeV kinetic energy at a repetition rate of 60 Hz [1]. At such beam intensity, electron cloud is expected to be one of the intensity-limiting mechanisms that complicate ring operations. This paper summarizes mitigation strategy adopted in the design, both in suppressing electron-cloud formation and in enhancing Landau damping, including tapered magnetic field and monitoring system for the collection of stripped electrons at injection, TiN coated beam chamber for suppression of the secondary yield, clearing electrodes dedicated for the injection region and parasitic on BPMs around the ring, solenoid windings in the collimation region, and planning of vacuum systems for beam scrubbing upon operation.

  4. Core Vessel Insert Handling Robot for the Spallation Neutron Source

    SciTech Connect

    Graves, Van B; Dayton, Michael J

    2011-01-01

    The Spallation Neutron Source provides the world's most intense pulsed neutron beams for scientific research and industrial development. Its eighteen neutron beam lines will eventually support up to twenty-four simultaneous experiments. Each beam line consists of various optical components which guide the neutrons to a particular instrument. The optical components nearest the neutron moderators are the core vessel inserts. Located approximately 9 m below the high bay floor, these inserts are bolted to the core vessel chamber and are part of the vacuum boundary. They are in a highly radioactive environment and must periodically be replaced. During initial SNS construction, four of the beam lines received Core Vessel Insert plugs rather than functional inserts. Remote replacement of the first Core Vessel Insert plug was recently completed using several pieces of custom-designed tooling, including a highly complicated Core Vessel Insert Robot. The design of this tool are discussed.

  5. Preliminary Numerical and Experimental Analysis of the Spallation Phenomenon

    NASA Technical Reports Server (NTRS)

    Martin, Alexandre; Bailey, Sean C. C.; Panerai, Francesco; Davuluri, Raghava S. C.; Vazsonyi, Alexander R.; Zhang, Huaibao; Lippay, Zachary S.; Mansour, Nagi N.; Inman, Jennifer A.; Bathel, Brett F.; Splinter, Scott C.; Danehy, Paul M.

    2015-01-01

    The spallation phenomenon was studied through numerical analysis using a coupled Lagrangian particle tracking code and a hypersonic aerothermodynamics computational fluid dynamics solver. The results show that carbon emission from spalled particles results in a significant modification of the gas composition of the post shock layer. Preliminary results from a test-campaign at the NASA Langley HYMETS facility are presented. Using an automated image processing of high-speed images, two-dimensional velocity vectors of the spalled particles were calculated. In a 30 second test at 100 W/cm2 of cold-wall heat-flux, more than 1300 particles were detected, with an average velocity of 102 m/s, and most frequent observed velocity of 60 m/s.

  6. EVOLUTION OF THE SPALLATION NEUTRON SOURCE RING LATTICE.

    SciTech Connect

    WEI,J.; CATALAN - LASHERAS,N.; FEDOTOV,A.; GARDNER,C.J.; LEE,Y.Y.; PAPAPHILIPPOU,Y.; RAPARIA,D.; TSOUPAS,N.; HOLMES,J.

    2002-04-08

    Requirements of minimum beam loss for hand-on maintenance and flexibility for future operations are essential for the lattice design of the Spallation Neutron Source (SNS) accumulator ring. During the past seven years, the lattice has evolved from an all-FODO to a FODO/doublet hybrid, the circumference has been increased to accommodate for a higher energy foreseen with a super-conducting RF linac, and the layout has evolved from an {alpha}- to an {Omega}-geometry. Extensive studies are performed to determine working points that accommodate injection painting and minimize beam losses due to space charge and resonances. In this paper, we review the evolution of the SNS ring lattice and discuss the rationales.

  7. Evolution of the Spallation Neutron Source Ring Lattice

    NASA Astrophysics Data System (ADS)

    Wei, J.; Catalan-Lasheras, N.; Fedotov, A.; Gardner, C. J.; Lee, Y. Y.; Papaphilippou, Y.; Raparia, D.; Tsoupas, N.; Holmes, J.

    2002-12-01

    Requirements of minimum beam loss for hand-on maintenance and flexibility for future operations are essential for the lattice design of the Spallation Neutron Source (SNS) accumulator ring. During the past seven years, the lattice has evolved from an all-FODO to a FODO/doublet hybrid, the circumference has been increased to accommodate for a higher energy foreseen with a super-conducting RF linac, and the layout has evolved from an α- to an Ω- geometry. Extensive studies are performed to determine working points that accommodate injection painting and minimize beam losses due to space charge and resonances. In this paper, we review the evolution of the SNS ring lattice and discuss the rationales.

  8. CONSTRUCTION STATUS AND ISSUES OF THE SPALLATION NEUTRON SOURCE RING.

    SciTech Connect

    WEI,J.

    2004-07-05

    The Spallation Neutron Source (SNS) ring is designed to accumulate beam pulses of 1.5 x 10{sup 14} protons of 1 GeV kinetic energy at a repetition rate of 60 Hz [1]. At such beam intensity and power, key design challenges include control of beam loss and radio-activation, construction of high-quality large-aperture magnets and power supplies, design of robust injection and extraction systems, minimization of beam-coupling impedances, and mitigation of electron-cloud effects. This paper discusses the status of the ring systems with emphasis on technical challenges and issues, and presents future perspectives towards a next-generation high-intensity facility.

  9. Sulfur and Moisture Effects on Alumina Scale and TBC Spallation

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2007-01-01

    It has been well established that a few ppmw sulfur impurity may segregate to the interface of thermally grown alumina scales and the underlying substrate, resulting in bond degradation and premature spallation. This has been shown for NiAl and NiCrAl-based alloys, bare single crystal superalloys, or coated superalloys. The role of reactive elements (especially Y) has been to getter the sulfur in the bulk and preclude interfacial segregation. Pt additions are also very beneficial, however a similar thermodynamic explanation does not apply. The purpose of the present discussion is to highlight some observations of these effects on Rene'142, Rene'N5, PWA1480, and PWA1484. For PWA1480, we have mapped cyclic oxidation and spallation in terms of potential sulfur interfacial layers and found that a cumulative amount of about one monolayer is sufficient to degrade long term adhesion. Depending on substrate thickness, optimum performance occurs if sulfur is reduced below about 0.2-0.5 ppmw. This is accomplished in the laboratory by hydrogen annealing or commercially by melt-fluxing. Excellent 1150 C cyclic oxidation is thus demonstrated for desulfurized Rene'142, Rene'N5, and PWA1484. Alternatively, a series of N5 alloys provided by GE-AE have shown that as little as 15 ppmw of Y dopant was effective in providing remarkable scale adhesion. In support of a Y-S gettering mechanism, hydrogen annealing was unable to desulfurize these alloys from their initial level of 5 ppmw S. This impurity and critical doping level corresponds closely to YS or Y2S3 stoichiometry. In many cases, Y-doped alloys or alloys with marginal sulfur levels exhibit an oxidative sensitivity to the ambient humidity called Moisture-Induced Delayed Spallation (MIDS). After substantial scale growth, coupled with damage from repeated cycling, cold samples may spall after a period of time, breathing on them, or immersing them in water. While stress corrosion arguments may apply, we propose that the underlying

  10. The design and performance of a water cooling system for a prototype coupled cavity linear particle accelerator for the spallation neutron source

    SciTech Connect

    Bernardin, J. D.; Ammerman, C. N.; Hopkins, S. M.

    2002-01-01

    The Spallation Neutron Source (SNS) is a facility being designed for scientific and industrial research and development. The SNS will generate and employ neutrons as a research tool in a variety of disciplines including biology, material science, superconductivity, chemistry, etc. The neutrons will be produced by bombarding a heavy metal target with a high-energy beam of protons, generated and accelerated with a linear particle accelerator, or linac. The low energy end of the linac consists of, in part, a multi-cell copper structure termed a coupled cavity linac (CCL). The CCL is responsible for accelerating the protons from an energy of 87 MeV, to 185 MeV. Acceleration of the charged protons is achieved by the use of large electrical field gradients established within specially designed contoured cavities of the CCL. While a large amount of the electrical energy is used to accelerate the protons, approximately 60-80% of this electrical energy is dissipated in the CCL's copper structure. To maintain an acceptable operating temperature, as well as minimize thermal stresses and maintain desired contours of the accelerator cavities, the electrical waste heat must be removed from the CCL structure. This is done using specially designed water cooling passages within the linac's copper structure. Cooling water is supplied to these cooling passages by a complex water cooling and temperature control system. This paper discusses the design, analysis, and testing of a water cooling system for a prototype CCL. First, the design concept and method of water temperature control is discussed. Second, the layout of the prototype water cooling system, including the selection of plumbing components, instrumentation, as well as controller hardware and software is presented. Next, the development of a numerical network model used to size the pump, heat exchanger, and plumbing equipment, is discussed. Finally, empirical pressure, flow rate, and temperature data from the prototype CCL

  11. Chemical isolation of .sup.82 Sr from proton-irradiated Mo targets

    DOEpatents

    Grant, Patrick M.; Kahn, Milton; O'Brien, Jr., Harold A.

    1976-01-01

    Spallation reactions are induced in Mo targets with 200-800 MeV protons to produce microcurie to millicurie amounts of a variety of radionuclides. A six-step radiochemical procedure, incorporating precipitation, solvent extractions, and ion exchange techniques, has been developed for the separation and purification of Sr radioactivities from other spallation products and the bulk target material. Radiostrontium can be quantitatively recovered in a sufficiently decontaminated state for use in biomedical generator development.

  12. Methods of studying the composition of the low-energy ion beams and the surface of deuterated-metal targets

    NASA Astrophysics Data System (ADS)

    Kuznetsov, S. I.; Dudkin, G. N.; Nechaev, B. A.; Bystritsky, I. D.

    2016-06-01

    To study the reactions between the light nuclei (dd, pd, d3He, d4He) with ultralow collision energies, there is a need to obtain the high-precision experimental results on the purity of the target surface saturated with the hydrogen isotopes (protium, deuterium) and on the number and composition of the accelerated particles falling on the target. To solve this problem, a method has been developed and tested for operational testing the quality of the vacuum system and the cleaning of the metal target surface saturated with deuterium. The paper also presents the measurement results for the true flow of the accelerated ions and neutrals of hydrogen (deuterium), using a multigrid electrostatic energy analyzer. The values of the ion and neutral components of the accelerated particle flow were received for the Hall ion source. The values of the secondary electron emission coefficients were determined for a number of the metal targets (Cu, Ti, Ta, Zr) in the range of the accelerated ion energies of 3-12 keV.

  13. Technology and science at a high-power spallation source: Proceedings

    SciTech Connect

    Not Available

    1994-01-01

    These proceedings cover many aspects of the usefulness of spallation neutrons. Nine different areas are considered: surfaces and interfaces, engineering, materials science, polymers and complex fluids, chemistry, structural biology, nuclear engineering and radiation effects, condensed matter physics and fundamental physics.

  14. ELECTRON CLOUD AT COLLIMATOR AND INJECTION REGION OF THE SPALLATION NEUTRON SOURCE ACCUMULATOR RING.

    SciTech Connect

    WANG, L.; HSEUH, H.-C.; LEE, Y.Y.; RAPARIA, D.; WEI, J.; COUSINEAU, S.

    2005-05-16

    The beam loss along the Spallation Neutron Source's accumulator ring is mainly located at the collimator region and injection region. This paper studied the electron cloud build-up at these two regions with the three-dimension program CLOUDLAND.

  15. Computer simulations for rf design of a Spallation Neutron Source external antenna H{sup -} ion source

    SciTech Connect

    Lee, S. W.; Kang, Y. W.; Shin, K.; Welton, R. F.; Goulding, R. H.

    2010-02-15

    Electromagnetic modeling of the multicusp external antenna H{sup -} ion source for the Spallation Neutron Source (SNS) has been performed in order to optimize high-power performance. During development of the SNS external antenna ion source, antenna failures due to high voltage and multicusp magnet holder rf heating concerns under stressful operating conditions led to rf characteristics analysis. In rf simulations, the plasma was modeled as an equivalent lossy metal by defining conductivity as {sigma}. Insulation designs along with material selections such as ferrite and Teflon could be included in the computer simulations to compare antenna gap potentials, surface power dissipations, and input impedance at the operating frequencies, 2 and 13.56 MHz. Further modeling and design improvements are outlined in the conclusion.

  16. Helium Bubble Injection Solution To The Cavitation Damage At The Spallation Neutron Source

    SciTech Connect

    Francis, M. W.; Ruggles, A. E.

    2009-03-10

    The Spallation Neutron Source (SNS) is one of the largest science projects in the United States, with total cost near 1.4 Billion Dollars. The limiting factor of the facility had always been assumed to be the lifetime of the target window due to radiation damage. After further investigation, the lifetime of the target was determined not to be limited by radiation damage but by cavitation damage. The cavitation damage derives from pressure waves caused by the beam energy deposition. Vapor bubbles form when low to negative pressures occur in the mercury near the stainless steel target window due to wave interaction with the structure. Collapse of these bubbles can focus wave energy in small liquid jets that erode the window surface. Compressibility of the mercury can be enhanced to reduce the amplitude of the pressure wave caused by the beam energy deposition. To enhance compressibility, small (10 to 30 micron diameter) gas bubbles could be injected into the bulk of the mercury. Solubility and diffusivity parameters of inert gas in mercury are required for a complete mechanical simulation and engineering of these strategies. Using current theoretical models, one obtains a theoretical Henry coefficient of helium in mercury on the order of 3.9E15 Pa-molHg/molHe at 300 K. This low solubility was confirmed by a direct, offline experimental method. Mercury was charged with helium and any pressure change was recorded. Any pressure change was attributed to gas going into solution. Therefore, with the sensitivity of the experiment, a lower limit of 9E12 Pa-molHg/molHe was placed on the mercury-helium system. These values guarantee a stable bubble lifetime needed within the SNS mercury target to mitigate cavitation issues.

  17. Microjet formation and hard x-ray production from a liquid metal target irradiated by intense femtosecond laser pulses

    SciTech Connect

    Lar'kin, A. Uryupina, D.; Ivanov, K.; Savel'ev, A.; Bonnet, T.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Spohr, K.; Breil, J.; Chimier, B.; Dorchies, F.; Fourment, C.; Leguay, P.-M.; Tikhonchuk, V. T.

    2014-09-15

    By using a liquid metal as a target one may significantly enhance the yield of hard x-rays with a sequence of two intense femtosecond laser pulses. The influence of the time delay between the two pulses is studied experimentally and interpreted with numerical simulations. It was suggested that the first arbitrary weak pulse produces microjets from the target surface, while the second intense pulse provides an efficient electron heating and acceleration along the jet surface. These energetic electrons are the source of x-ray emission while striking the target surface. The microjet formation is explained based on the results given by both optical diagnostics and hydrodynamic modeling by a collision of shocks originated from two distinct zones of laser energy deposition.

  18. Proceedings of Soil Decon `93: Technology targeting radionuclides and heavy metals

    SciTech Connect

    Not Available

    1993-09-01

    The principal objective for convening this workshop was to exchange ideas and discuss with scientists and engineers methods for removing radionuclides and/or toxic metals from soils. Over the years there have been numerous symposia, conferences, and workshops directed at soil remediation. However, this may be the first where the scope was narrowed to the removal of radionuclides and toxic metals from soils. The intent was to focus on the separation processes controlling the removal of the radionuclide and/or metal from soil. Its purpose was not intended to be a soil washing/leaching workshop, but rather to identify a variety or combination of processes (chemical, physical, and biological) that can be used in concert with the applicable engineering approaches to decontaminate soils of radionuclides and toxic metals. Abstracts and visual aids used by the speakers of the workshop are presented in this document.

  19. Stripper foil failure modes and cures at the Oak Rdige Spallation Neutron Source

    SciTech Connect

    Plum, M.A.; Raparia, D.; Cousineau, S.M.; Galambos, J.; Kim, S.H.; Ladd, P.; Luck, C.F.; Peters, C.C.; Polsky, Y.; Shaw, R.W.; Macek, R.J.

    2011-03-28

    The Oak Ridge Spallation Neutron Source comprises a 1 GeV, 1.5 MW linear accelerator followed by an accumulator ring and a liquid mercury target. To manage the beam loss caused by the H{sup 0} excited states created during the H{sup -} charge-exchange injection into the accumulator ring, the stripper foil is located inside one of the chicane dipoles. This has some interesting consequences that were not fully appreciated until the beam power reached about 840 kW. One consequence was sudden failure of the stripper foil system due to convoy electrons stripped from the incoming H{sup -} beam, which circled around to strike the foil bracket and cause bracket failure. Another consequence is that convoy electrons can reflect back up from the electron catcher and strike the foil and bracket. An additional contributor to foil system failure is vacuum breakdown due to the charge developed on the foil by secondary electron emission. In this paper we detail these and other interesting failure mechanisms and describe the improvements we have made to mitigate them.

  20. Stripper foil failure modes and cures at the Spallation Neutron Source

    SciTech Connect

    Cousineau, Sarah M; Galambos, John D; Kim, Sang-Ho; Ladd, Peter; Luck, Chris; Peters, Charles C; Polsky, Yarom; Shaw, Robert W; Raparia, Deepak; Macek, Robert James; Plum, Michael A

    2011-01-01

    The Spallation Neutron Source comprises a 1 GeV, 1.4 MW linear accelerator followed by an accumulator ring and a liquid mercury target. To manage the beam loss caused by the $H^0$ excited states created during the $H^-$ charge exchange injection into the accumulator ring, the stripper foil is located inside one of the chicane dipoles. This has some interesting consequences that were not fully appreciated until the beam power reached about 840 kW. One consequence was sudden failure of the stripper foil system due to convoy electrons stripped from the incoming $H^-$ beam, which circled around to strike the foil bracket and cause bracket failure. Another consequence is that convoy electrons can reflect back up from the electron catcher and strike the foil and bracket. An additional contributor to foil system failure is vacuum breakdown due to the charge developed on the foil by secondary electron emission. In this paper we detail these and other interesting failure mechanisms and describe the improvements we have made to mitigate them.

  1. Characterization of irradiated AISI 316L stainless steel disks removed from the Spallation Neutron Source

    SciTech Connect

    Vevera, Bradley J; Hyres, James W; McClintock, David A; Riemer, Bernie

    2014-01-01

    Irradiated AISI 316L stainless steel disks were removed from the Spallation Neutron Source (SNS) for post-irradiation examination (PIE) to assess mechanical property changes due to radiation damage and erosion of the target vessel. Topics reviewed include high-resolution photography of the disk specimens, cleaning to remove mercury (Hg) residue and surface oxides, profile mapping of cavitation pits using high frequency ultrasonic testing (UT), high-resolution surface replication, and machining of test specimens using wire electrical discharge machining (EDM), tensile testing, Rockwell Superficial hardness testing, Vickers microhardness testing, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The effectiveness of the cleaning procedure was evident in the pre- and post-cleaning photography and permitted accurate placement of the test specimens on the disks. Due to the limited amount of material available and the unique geometry of the disks, machine fixturing and test specimen design were critical aspects of this work. Multiple designs were considered and refined during mock-up test runs on unirradiated disks. The techniques used to successfully machine and test the various specimens will be presented along with a summary of important findings from the laboratory examinations.

  2. Modeling of remelting processes of metal targets using pulses of continuous laser with pre-impulses

    NASA Astrophysics Data System (ADS)

    Jach, Karol; Marczak, Jan; Świerczyński, Robert; Strzelec, Marek; Ostrowski, Roman; Sarzyński, Antoni; Skrzeczanowski, Wojciech; Rycyk, Antoni; CzyŻ, Krzysztof

    2016-12-01

    The study presents preliminary results of theoretical analyses concerning interaction of quasi-cw laser radiation with an aluminium target. The range of laser power the authors were interested in was from 1 to 10 kW, and target thicknesses from 0.1 to 1 cm. It was also assumed that a laser beam diameter on the target (Al) was around 0.5 cm. A mathematicalphysical model of the phenomenon was based on the equation of conservation of energy (spatially one-dimensional model - (z,t)) taking into account: radiation absorption and transport inside the target, heat conduction, reflection of part of radiation from the target's surface, and heat losses in the processes of melting and evaporation. Coefficients of light absorption and reflection from the target's surface were described with semi-empirical expressions, which took into account their dependence on the temperature and density. Initially, a case of target static during heating was considered. Subsequently, the problem of enhancement of radiation interaction with the target (decrease of reflection coefficient) by the use of short (< 20 ns), high power pre-impulse was analyzed. The last case needed expansion of a set of equations with the continuity equation and the equation of motion, to take into account evaporation of target's surface under influence of the pre-impulse. It was shown that thermal effect of the pre-impulse is practically not influencing final depths of target remelting. On the other hand, damage (matting) of the target's surface by the pre-impulse, causing the decrease of reflection coefficient can have a substantial influence on the remelting depth.

  3. Polymer-based metal nano-coated disposable target for matrix-assisted and matrix-free laser desorption/ionization mass spectrometry.

    PubMed

    Bugovsky, Stefan; Winkler, Wolfgang; Balika, Werner; Koranda, Manfred; Allmaier, Günter

    2016-07-15

    The ideal MALDI/LDI mass spectrometry sample target for an axial TOF instrument possesses a variety of properties. Primarily, it should be chemically inert to the sample, i.e. analyte, matrix and solvents, highly planar across the whole target, without any previous chemical contact and provide a uniform surface to facilitate reproducible measurements without artifacts from previous sample or matrix compounds. This can be hard to achieve with a metal target, which has to be extensively cleaned every time after use. Any cleaning step may leave residues behind, may change the surface properties due to the type of cleaning method used or even cause microscopic scratches over time hence altering matrix crystallization behavior. Alternatively, use of disposable targets avoids these problems. As each possesses the same surface they therefore have the potential to replace the conventional full metal targets so commonly employed. Furthermore, low cost single-use targets with high planarity promise an easier compliance with GLP guidelines as they alleviate the problem of low reproducibility due to inconsistent sample/matrix crystallization and changes to the target surface properties. In our tests, polymeric metal nano-coated targets were compared to a stainless steel reference. The polymeric metal nano-coated targets exhibited all the performance characteristics for a MALDI MS sample support, and even surpassed the - in our lab commonly used - reference in some aspects like limit of detection. The target exhibits all necessary features such as electrical conductivity, vacuum, laser and solvent compatibility.

  4. Device for Writing the Time Tail from Spallation Neutron Pulses

    SciTech Connect

    Langan, P.; Schoenborn, Benno P.; Langan, P.; Schoenborn, Benno P.; Daemen, L. L.

    2001-01-01

    Recent work at Los Alamos Neutron Science Center (LANSCE), has shown that there are large gains in neutron beam intensity to be made by using coupled moderators at spallation neutron sources. Most of these gains result from broadening the pulse-width in time. However the accompanying longer exponential tail at large emission times can be a problem in that it introduces relatively large beam-related backgrounds at high resolutions. We have designed a device that can reshape the moderated neutron beam by cutting the time-tail so that a sharp time resolution can be re-established without a significant loss in intensity. In this work the basic principles behind the tail-cutter and some initial results of Monte Carlo simulations are described. Unwanted neutrons in the long time-tail are diffracted out of the transmitted neutron beam by a nested stack of aperiodic multi-layers, rocking at the same frequency as the source. Nested aperiodic multi-layers have recently been used at X-ray sources and as band-pass filters in quasi-Laue neutron experiments at reactor neutron sources. Optical devices that rock in synchronization with a pulsed neutron beam are relatively new but are already under construction at LANSCE. The tail-cutter described here is a novel concept that uses existing multi-layer technology in a new way for spallation neutrons. Coupled moderators in combination with beam shaping devices offer the means of increasing flux whilst maintaining a sharp time distribution. A prototype device is being constructed for the protein crystallography station at LANSCE. The protein crystallography station incorporates a water moderator that has been judiciously coupled in order to increase the flux over neutron energies that are important to structural biology (3-80meV). This development in moderator design is particularly important because protein crystallography is flux limited and because conventional ambient water and cold hydrogen moderators do not provide relatively

  5. Actinide chelation: biodistribution and in vivo complex stability of the targeted metal ions.

    PubMed

    Kullgren, Birgitta; Jarvis, Erin E; An, Dahlia D; Abergel, Rebecca J

    2013-01-01

    Because of the continuing use of nuclear fuel sources and heightened threats of nuclear weapon use, the amount of produced and released radionuclides is increasing daily, as is the risk of larger human exposure to fission product actinides. A rodent model was used to follow the in vivo distribution of representative actinides, administered as free metal ions or complexed with chelating agents including diethylenetriamine pentaacetic acid (DTPA) and the hydroxypyridinonate ligands 3,4,3-LI(1,2-HOPO) and 5-LIO(Me-3,2-HOPO). Different metabolic pathways for the different metal ions were evidenced, resulting in intricate ligand- and metal-dependent decorporation mechanisms. While the three studied chelators are known for their unrivaled actinide decorporation efficiency, the corresponding metal complexes may undergo in vivo decomposition and release metal ions in various biological pools. This study sets the basis to further explore the metabolism and in vivo coordination properties of internalized actinides for the future development of viable therapeutic chelating agents.

  6. LOW LOSS DESIGN OF THE LINAC AND ACCUMULATOR RING FOR THE SPALLATION NEUTRON SOURCE.

    SciTech Connect

    RAPARIA,D.

    2003-02-03

    The Spallation Neutron Source (SNS) is a second generation pulsed neutron source and is presently in the fourth year of a seven-year construction cycle at Oak Ridge National Laboratory. A collaboration of six national laboratories (ANL, BNL, LANL, LBNL, ORNL, TJNAF) is responsible for the design and construction of the various subsystems. The operation of the facility will begin in 2006 and deliver a 1.0 GeV, 1.4 MW proton beam with pulse length of 650 nanosecond at a repetition rate of 60 Hz, on a liquid mercury target. It consists of an RF volume H{sup -} source of 50 mA peak current at 6% duty; an all electrostatic Low-Energy Beam Transport (LEBT) which also serves as a first stage beam chopper with {+-} 25 ns rise/fall time; a 402.5 MHz, 4-vane Radio-Frequency Quadrupole (RFQ) for acceleration up to 2.5 MeV; a Medium Energy Beam Transport (MEBT) housing a second stage chopper (<{+-} 10ns rise/fall), an adjustable beam halo scraper, and diagnostics devices; a 6-tank Drift Tube Linac (DTL) with permanent magnet quadrupoles up to 87 MeV; an 805 MHz, 4-module, Side Coupled Cavity Linac (CCL) up to 186 MeV; an 805 MHz, superconducting RF (SRF) linac with eleven medium beta ({beta} = 0.61) cryo-modules and twelve high beta ({beta} = 0.81) cryo-modules accelerating the beam to the full energy; a High Energy Beam transport (HEBT) for diagnostics, transverse and longitudinal collimation, energy correction, painting and matching; an accumulator ring compressing the 1 GeV, 1 ms pulse to 650 ns for delivery onto the target through a Ring to Target Beam Transport (RTBT) with transverse collimators.

  7. The Sb, LiIO3 and HIO3 Aligned Nuclear Targets for Investigation of Time Reversal Invariance Violation

    NASA Astrophysics Data System (ADS)

    Beda, A. G.; Ivanova, L. D.

    2007-04-01

    The use of aligned nuclear targets for investigation of TRIV has a great discovery potential due to the large enhancement of TRIV effects in compound resonances of nuclei. The appropriate target materials of HIO3, LiIO3 and Sb single crystals in which the I and Sb nuclei can be aligned by brute force method at millikelvin temperatures were proposed in this work. The single crystals of required sizes were grown from HIO3, LiIO3 and metallic Sb and the construction of dilution refrigerator that is precooled by two stage pulse-tube refrigerator without any cryoliquids was developed. The use of proposed targets at the new neutron spallation source (JSNS, Japan) will make possible to discover TRIV or decrease the present limit on the intensity of parity conserving time violating interaction by two-three order of magnitude.

  8. Pressure waves in liquid mercury target from pulsed heat loads and the possible way controlling their effects

    SciTech Connect

    Ni, L.; Skala, K.

    1996-06-01

    In ESS project liquid metals are selected as the main target for the pulsed spallation neutron source. Since the very high instantaneous energy is deposited on the heavy molten target in a very short period time, pressure waves are generated. They travel through the liquid and cause high stress in the container. Also, additional stress should be considered in the wall which is the result of direct heating of the target window. These dynamic processes were simulated with computational codes with the static response being analized first. The total resulting dynamic wall stress has been found to have exceeded the design stress for the selected container material. Adding a small amount of gas bubbles in the liquid could be a possible way to reduce the pressure waves.

  9. Localization of metal targets by time reversal of electromagnetic waves . 3D-numerical and experimental study

    NASA Astrophysics Data System (ADS)

    Benhamouche, Mehdi; Bernard, Laurent; Serhir, Mohammed; Pichon, Lionel; Lesselier, Dominique

    2013-11-01

    This paper proposes a criterion for locating obstacles by time reversal (TR) of electromagnetic (EM) waves based on the analysis of the density of EM energy map in time domain. Contrarily to a monochromatic study of the TR, the wide-band approach requires to determine the instant of the wave focus. This enables us to locate the focal spots that are indicative of the positions. The criterion proposed is compared to the inverse of the minimum entropy criterion as used in the literature [X. Xu, E.L. Miller, C.M. Rappaport, IEEE Trans. Geosci. Remote Sens. 41, 1804 (2003)]. An application for the localization of 3D metal targets is proposed using finite integration technique (FIT) as computational tool at the modeling stage. An experimental validation is presented for canonical three-dimensional configurations with two kinds of metal objects. Contribution to the Topical Issue "Numelec 2012", Edited by Adel Razek.

  10. A multi-element screening method to identify metal targets for blood biomonitoring in green sea turtles (Chelonia mydas).

    PubMed

    Villa, C A; Finlayson, S; Limpus, C; Gaus, C

    2015-04-15

    Biomonitoring of blood is commonly used to identify and quantify occupational or environmental exposure to chemical contaminants. Increasingly, this technique has been applied to wildlife contaminant monitoring, including for green turtles, allowing for the non-lethal evaluation of chemical exposure in their nearshore environment. The sources, composition, bioavailability and toxicity of metals in the marine environment are, however, often unknown and influenced by numerous biotic and abiotic factors. These factors can vary considerably across time and space making the selection of the most informative elements for biomonitoring challenging. This study aimed to validate an ICP-MS multi-element screening method for green turtle blood in order to identify and facilitate prioritisation of target metals for subsequent fully quantitative analysis. Multi-element screening provided semiquantitative results for 70 elements, 28 of which were also determined through fully quantitative analysis. Of the 28 comparable elements, 23 of the semiquantitative results had an accuracy between 67% and 112% relative to the fully quantified values. In lieu of any available turtle certified reference materials (CRMs), we evaluated the use of human blood CRMs as a matrix surrogate for quality control, and compared two commonly used sample preparation methods for matrix related effects. The results demonstrate that human blood provides an appropriate matrix for use as a quality control material in the fully quantitative analysis of metals in turtle blood. An example for the application of this screening method is provided by comparing screening results from blood of green turtles foraging in an urban and rural region in Queensland, Australia. Potential targets for future metal biomonitoring in these regions were identified by this approach.

  11. Target depth dependence of damage rate in metals by 150 MeV proton irradiation

    NASA Astrophysics Data System (ADS)

    Yoshiie, T.; Ishi, Y.; Kuriyama, Y.; Mori, Y.; Sato, K.; Uesugi, T.; Xu, Q.

    2015-01-01

    A series of irradiation experiments with 150 MeV protons was performed. The relationship between target depth (or shield thickness) and displacement damage during proton irradiation was obtained by in situ electrical resistance measurements at 20 K. Positron annihilation lifetime measurements were also performed at room temperature after irradiation, as a function of the target thickness. The displacement damage was found to be high close to the beam incident surface area, and decreased with increasing target depth. The experimental results were compared with damage production calculated with an advanced Monte Carlo particle transport code system (PHITS).

  12. A HIGH FIELD PULSED SOLENOID MAGNET FOR LIQUID METAL TARGET STUDIES.

    SciTech Connect

    KIRK,H.G.IAROCCI,M.SCADUTO,J.WEGGEL,R.J.MULHOLLAND,G.MCDONALD,K.T.

    2003-05-12

    The target system for a muon collider/neutrino factory requires the conjunction of an intense proton beam, a high-Z liquid target and a high-field solenoid magnet. We describe here the design parameters for a pulsed solenoid, including the magnet cryogenic system and power supply, that can generate transient fields of greater than 10T with a flat-tops on the order of 1 second. It is envisioned to locate this device at the Brookhaven AGS for proof-of-principle testing of a liquid-jet target system with pulses of le13 protons.

  13. Light nuclides produced in the proton-induced spallation of {sup 238}U at 1 GeV

    SciTech Connect

    Ricciardi, M.V.; Armbruster, P.; Enqvist, T.; Kelic, A.; Rejmund, F.; Schmidt, K.-H.; Yordanov, O.; Benlliure, J.; Pereira, J.; Bernas, M.; Mustapha, B.; Stephan, C.; Tassan-Got, L.

    2006-01-15

    The production of light and intermediate-mass nuclides formed in the reaction {sup 1}H+{sup 238}U at 1 GeV was measured at the Fragment Separator at GSI, Darmstadt. The experiment was performed in inverse kinematics, by shooting a 1 A GeV {sup 238}U beam on a thin liquid-hydrogen target. A total of 254 isotopes of all elements in the range 7{<=}Z{<=}37 were unambiguously identified, and the velocity distributions of the produced nuclides were determined with high precision. The results show that the nuclides are produced in a very asymmetric binary decay of heavy nuclei originating from the spallation of uranium. All the features of the produced nuclides merge with the characteristics of the fission products as their mass increases.

  14. Coherent neutrino-nucleus scattering detection with a CsI[Na] scintillator at the SNS spallation source

    NASA Astrophysics Data System (ADS)

    Collar, J. I.; Fields, N. E.; Hai, M.; Hossbach, T. W.; Orrell, J. L.; Overman, C. T.; Perumpilly, G.; Scholz, B.

    2015-02-01

    We study the possibility of using CsI[Na] scintillators as an advantageous target for the detection of coherent elastic neutrino-nucleus scattering (CENNS), using the neutrino emissions from the SNS spallation source at Oak Ridge National Laboratory. The response of this material to low-energy nuclear recoils like those expected from this process is characterized. Backgrounds are studied using a 2 kg low-background prototype crystal in a dedicated radiation shield. The conclusion is that a planned 14 kg detector should measure approximately 550 CENNS events per year above a demonstrated ~ 7 keVnr low-energy threshold, with a signal-to-background ratio sufficient for a first measurement of the CENNS cross-section. The cross-section for the 208Pb(νe ,e-)208Bi reaction, of interest for future supernova neutrino detection, can be simultaneously obtained.

  15. rf improvements for Spallation Neutron Source H- ion source.

    PubMed

    Kang, Y W; Fuja, R; Goulding, R H; Hardek, T; Lee, S-W; McCarthy, M P; Piller, M C; Shin, K; Stockli, M P; Welton, R F

    2010-02-01

    The Spallation Neutron Source at Oak Ridge National Laboratory is ramping up the accelerated proton beam power to 1.4 MW and just reached 1 MW. The rf-driven multicusp ion source that originates from the Lawrence Berkeley National Laboratory has been delivering approximately 38 mA H(-) beam in the linac at 60 Hz, 0.9 ms. To improve availability, a rf-driven external antenna multicusp ion source with a water-cooled ceramic aluminum nitride (AlN) plasma chamber is developed. Computer modeling and simulations have been made to analyze and optimize the rf performance of the new ion source. Operational statistics and test runs with up to 56 mA medium energy beam transport beam current identify the 2 MHz rf system as a limiting factor in the system availability and beam production. Plasma ignition system is under development by using a separate 13 MHz system. To improve the availability of the rf power system with easier maintenance, we tested a 70 kV isolation transformer for the 80 kW, 6% duty cycle 2 MHz amplifier to power the ion source from a grounded solid-state amplifier.

  16. Interaction Of CO2 Laser Nanosecond Pulse Train With The Metallic Targets In Optical Breakdown Regime

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.; Firsov, K. N.; Konov, V. I.; Nikitin, P. I.; Prokhorov, A. M.; Silenok, A. S.; Sorochenko, V. R.

    1986-11-01

    In the present paper the electric field and currents in the air-breakdown plasma, produced by the train of nanosecond pulses of TEA-002 - regenerative amplifier near the un-charged targets are studied. The breakdown thresholds and the efficiency of plasma-target heat transmission are also measured. The results of numerical calculations made for increasing of the pulse train contrast with respect to the background in a regenerative amplifier are advanced.

  17. Inside HOLMES experiment: 163Ho metallic target production for the micro-calorimeter absorber

    NASA Astrophysics Data System (ADS)

    Pizzigoni, G.; Alpert, B.; Balata, M.; Bennett, D.; Biasotti, M.; Boragno, C.; Brofferio, C.; De Gerone, M.; Dressler, R.; Faverazani, M.; Ferri, E.; Folwer, J.; Gatti, F.; Giachero, A.; Heinitz, S.; Hilton, G.; Köster, U.; Lusignoli, M.; Maino, M.; Mates, J.; Nisi, S.; Nizzolo, R.; Nucciotti, A.; Pessina, G.; Puiu, A.; Ragazzi, S.; Reintsema, C.; Ribeiro Gomes, M.; Shmidt, D.; Schumann, D.; Sisti, M.; Swetz, D.; Terranova, F.; Ullom, J.; Day, P. K.

    2016-07-01

    The main goal in the HOLMES experiment is the neutrino mass measurement using an array of 1000 micro-calorimeters with standard metallic absorber. A good isotope for such measurement is the 163Ho, those isotopes embedded in the metallic absorber will be 1011-1013. Since 163Ho is not available in nature, a dedicated process must be set up to produce the amount needed for this neutrino mass experiment. The process with the highest born-up cross-section is the neutron irradiation of Er2O3 enriched in 162Er: 162Er(n,γ)163Er →163Ho+νe, where the decay is an EC with half-life of about 75 min and the (n,γ) is about 20 barns for thermal neutron. After the neutron irradiation in the oxide powder there are several radioactive isotopes which are potentially disturbing because of the background that they cause below 5 keV. The chemical separation of holmium from the irradiation enriched Er2O3 powder is therefore mandatory and will be performed by means of ion exchange chromatography. On the end of those processes the oxide powder enriched in 162Er will have the 163Ho isotope number required. The holmium chemical state influences the end point of the EC spectrum, in order to avoid such effect it is necessary to embed in the absorber only the metallic isotope. Reduction and distillation technique allowed us to obtain a pure metallic holmium, starting from natural oxide holmium. This technique will be applied on the irradiated oxide powder to obtain the metallic 163Ho, ready to be embedded in the micro-calorimeter absorber.

  18. Hypoxia-inducible factor prolyl hydroxylases as targets for neuroprotection by "antioxidant" metal chelators: From ferroptosis to stroke.

    PubMed

    Speer, Rachel E; Karuppagounder, Saravanan S; Basso, Manuela; Sleiman, Sama F; Kumar, Amit; Brand, David; Smirnova, Natalya; Gazaryan, Irina; Khim, Soah J; Ratan, Rajiv R

    2013-09-01

    Neurologic conditions including stroke, Alzheimer disease, Parkinson disease, and Huntington disease are leading causes of death and long-term disability in the United States, and efforts to develop novel therapeutics for these conditions have historically had poor success in translating from bench to bedside. Hypoxia-inducible factor (HIF)-1α mediates a broad, evolutionarily conserved, endogenous adaptive program to hypoxia, and manipulation of components of the HIF pathway is neuroprotective in a number of human neurological diseases and experimental models. In this review, we discuss molecular components of one aspect of hypoxic adaptation in detail and provide perspective on which targets within this pathway seem to be ripest for preventing and repairing neurodegeneration. Further, we highlight the role of HIF prolyl hydroxylases as emerging targets for the salutary effects of metal chelators on ferroptosis in vitro as well in animal models of neurological diseases.

  19. Note: study of extreme ultraviolet and soft x-ray emission of metal targets produced by laser-plasma-interaction.

    PubMed

    Mantouvalou, I; Jung, R; Tuemmler, J; Legall, H; Bidu, T; Stiel, H; Malzer, W; Kanngiesser, B; Sandner, W

    2011-06-01

    Different metal targets were investigated as possible source material for tailored laser-produced plasma-sources. In the wavelength range from 1 to 20 nm, x-ray spectra were collected with a calibrated spectrometer with a resolution of λ/Δλ = 150 at 1 nm up to λ/Δλ = 1100 at 15 nm. Intense line emission features of highly ionized species as well as continuum-like spectra from unresolved transitions are presented. With this knowledge, the optimal target material can be identified for the envisioned application of the source in x-ray spectrometry on the high energy side of the spectra at about 1 keV. This energy is aimed for because 1 keV-radiation is ideally suited for L-shell x-ray spectroscopy with nm-depth resolution.

  20. Hypoxia inducible factor prolyl hydroxylases as targets for neuroprotection by “antioxidant” metal chelators: from ferroptosis to stroke

    PubMed Central

    Speer, Rachel E.; Karuppagounder, Saravanan S.; Basso, Manuela; Sleiman, Sama; Kumar, Amit; Brand, David; Smirnova, Natalya; Gazaryan, Irina; Khim, Soah J.; Ratan, Rajiv R.

    2015-01-01

    Neurologic conditions including stroke, Alzheimer’s disease, Parkinson’s disease and Huntington’s disease are leading causes of death and long-term disability in the United States, and efforts to develop novel therapeutics for these conditions have historically had poor success in translating from bench to bedside. Hypoxia Inducible Factor-1alpha (HIF-1α) mediates a broad, evolutionarily conserved, endogenous adaptive program to hypoxia, and manipulation of components of the HIF pathway are neuroprotective in a number of human neurological diseases and experimental models. In this review, we discuss molecular components of one aspect of hypoxic adpatation in detail, and provide perspective on which targets within this pathway appear to be ripest for preventing and repairing neurodegeneration. Further, we highlight the role of HIF prolyl hydroxylases as emerging targets for the salutary effects of metal chelators on ferroptosis in vitro as well in animal models of neurological diseases. PMID:23376032

  1. Production of Actinium-225 via High Energy Proton Induced Spallation of Thorium-232

    SciTech Connect

    Harvey, James T.; Nolen, Jerry; Vandergrift, George; Gomes, Itacil; Kroc, Tom; Horwitz, Phil; McAlister, Dan; Bowers, Del; Sullivan, Vivian; Greene, John

    2011-12-30

    The science of cancer research is currently expanding its use of alpha particle emitting radioisotopes. Coupled with the discovery and proliferation of molecular species that seek out and attach to tumors, new therapy and diagnostics are being developed to enhance the treatment of cancer and other diseases. This latest technology is commonly referred to as Alpha Immunotherapy (AIT). Actinium-225/Bismuth-213 is a parent/daughter alpha-emitting radioisotope pair that is highly sought after because of the potential for treating numerous diseases and its ability to be chemically compatible with many known and widely used carrier molecules (such as monoclonal antibodies and proteins/peptides). Unfortunately, the worldwide supply of actinium-225 is limited to about 1,000mCi annually and most of that is currently spoken for, thus limiting the ability of this radioisotope pair to enter into research and subsequently clinical trials. The route proposed herein utilizes high energy protons to produce actinium-225 via spallation of a thorium-232 target. As part of previous R and D efforts carried out at Argonne National Laboratory recently in support of the proposed US FRIB facility, it was shown that a very effective production mechanism for actinium-225 is spallation of thorium-232 by high energy proton beams. The base-line simulation for the production rate of actinium-225 by this reaction mechanism is 8E12 atoms per second at 200 MeV proton beam energy with 50 g/cm2 thorium target and 100 kW beam power. An irradiation of one actinium-225 half-life (10 days) produces {approx}100 Ci of actinium-225. For a given beam current the reaction cross section increases slightly with energy to about 400 MeV and then decreases slightly for beam energies in the several GeV regime. The object of this effort is to refine the simulations at proton beam energies of 400 MeV and above up to about 8 GeV. Once completed, the simulations will be experimentally verified using 400 MeV and 8 Ge

  2. Vacuum seals design and testing for a linear accelerator of the National Spallation Neutron Source

    SciTech Connect

    Z. Chen; C. Gautier; F. Hemez; N. K. Bultman

    2000-02-01

    Vacuum seals are very important to ensure that the Spallation Neutron Source (SNS) Linac has an optimum vacuum system. The vacuum joints between flanges must have reliable seals to minimize the leak rate and meet vacuum and electrical requirements. In addition, it is desirable to simplify the installation and thereby also simplify the maintenance required. This report summarizes an investigation of the metal vacuum seals that include the metal C-seal, Energized Spring seal, Helcoflex Copper Delta seal, Aluminum Delta seal, delta seal with limiting ring, and the prototype of the copper diamond seals. The report also contains the material certifications, design, finite element analysis, and testing for all of these seals. It is a valuable reference for any vacuum system design. To evaluate the suitability of several types of metal seals for use in the SNS Linac and to determine the torque applied on the bolts, a series of vacuum leak rate tests on the metal seals have been completed at Los Alamos Laboratory. A copper plated flange, using the same type of delta seal that was used for testing with the stainless steel flange, has also been studied and tested. A vacuum seal is desired that requires significantly less loading than a standard ConFlat flange with a copper gasket for the coupling cavity assembly. To save the intersegment space the authors use thinner flanges in the design. The leak rate of the thin ConFlat flange with a copper gasket is a baseline for the vacuum test on all seals and thin flanges. A finite element analysis of a long coupling cavity flange with a copper delta seal has been performed in order to confirm the design of the long coupling cavity flange and the welded area of a cavity body with the flange. This analysis is also necessary to predict a potential deformation of the cavity under the combined force of atmospheric pressure and the seating load of the seal. Modeling of this assembly has been achieved using both HKS/Abaqus and COSMOS

  3. Neutron and gamma-ray shielding requirements for a below-ground neutrino detector system at the Rutherford Laboratory Spallation Neutron Source

    SciTech Connect

    Gabriel, T.A.; Lillie, R.A.; Childs, R.L.; Wilczynski, J.; Zeitnitz, B.

    1983-03-01

    The neutron and gamma-ray shielding requirements for a proposed neutrino system below the target station at the Rutherford Laboratory Spallation Neutron Source (SNS) are studied. The present shield below the station consists of 2 meters of iron and 1 meter of concrete, below which is chalk (CaCO/sub 3/). An underground bunker housing the neutrino detector system would require additional shielding consisting of 6 meters of the chalk plus approx. 3 meters of iron to reduce the number of high-energy (> approx. 7 MeV) neutrons and gamma rays entering the detector system to an acceptable level of approx. 1 per day.

  4. Thin-film preparation by back-surface irradiation pulsed laser deposition using metal powder targets

    NASA Astrophysics Data System (ADS)

    Kawasaki, Hiroharu; Ohshima, Tamiko; Yagyu, Yoshihito; Ihara, Takeshi; Yamauchi, Makiko; Suda, Yoshiaki

    2017-01-01

    Several kinds of functional thin films were deposited using a new thin-film preparation method named the back-surface irradiation pulsed laser deposition (BIPLD) method. In this BIPLD method, powder targets were used as the film source placed on a transparent target holder, and then a visible-wavelength pulsed laser was irradiated from the holder side to the substrate. Using this new method, titanium oxide and boron nitride thin films were deposited on the silicon substrate. Surface scanning electron microscopy (SEM) images suggest that all of the thin films were deposited on the substrate with some large droplets irrespective of the kind of target used. The deposition rate of the films prepared by using this method was calculated from film thickness and deposition time to be much lower than that of the films prepared by conventional PLD. X-ray diffraction (XRD) measurement results suggest that rutile and anatase TiO2 crystal peaks were formed for the films prepared using the TiO2 rutile powder target. Crystal peaks of hexagonal boron nitride were observed for the films prepared using the boron nitride powder target. The crystallinity of the prepared films was changed by annealing after deposition.

  5. Shock Ignition in Non-Cryogenic Metal-Gas Targets on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Perkins, L. John; Cerjan, C.; Smalyuk, V.; Bailey, D.; Comley, A.; Garbett, W.; McKenty, P.; Cheng, B.

    2011-10-01

    Shock ignition offers the possibility of volumetric ignition and burn in single-shell, room-temperature gas targets on the National Ignition Facility. We are investigating whether the high fusion energy gains potentially available with shock ignition in cryogenic DT targets on NIF (L.J.Perkins et al, PRL 103 (2009)) can be traded for modest gains and yields in such platforms. If so, being non-cryogenic with simple single-shell construction and medium-pressure gas fill, they should easier to field and diagnose. The targets are characterized by a thick, graded-density Be-Au ablator-pusher shell with low in-flight-aspect-ratios. Because the high-Z Au shell reflects Bremsstrahlung, such targets are capable of volumetric ignition at temperatures of around 4 keV with low shell velocities around 1.5e7cm/s. Gas targets are inherently low gain (<=10) so they are probably not IFE relevant. The ultimate performance will be determined by degree and control of high-Z mix in the gas. Simulations indicate that we can potentially trade fusion yield for good ignition fall-line behavior by tuning gas pressure and shock launch time. This work performed under the auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  6. Metal concentrations in selected brands of canned fish in Nigeria: estimation of dietary intakes and target hazard quotients.

    PubMed

    Iwegbue, Chukwujindu M A

    2015-03-01

    The concentrations of metals (Cd, Pb, Ni, Cr, Cu, Co, Fe, Mn, and Zn) were determined in selected brands of canned mackerel, sardine, and tuna in Nigeria with a view to providing information on the dietary intakes of metals and lifelong health hazards associated with the consumption of these products. The concentrations of metals were determined by using atomic absorption spectrometry after acid digestion. The mean concentrations of metals in canned mackerel, sardine, and tuna were found as 0.04-0.58, 0.06-0.44, 0.32-0.83 μg/g for Cd; 0.05-2.82, 0.70-2.98, 0.23-2.56 μg/g for Pb, 1.33-11.33, <0.20-17.53, nd-34.2 μg/g for Ni, 0.49-3.79, 0.22-1.89, 0.66-14.39 μg/g for Cr, 0.33-0.92, 0.03-1.51, <0.08-1.31 μg/g for Cu, 0.11-2.17, nd-0.75, 0.14-0.50 μg/g for Co, 6.45-26.90, 6.06-53.54, 3.06-95.78 μg/g for Fe, 2.30-3.84, 0.95-21.78, 1.65-2.33 μg/g for Mn, 1.15-7.19, 3.60-17.88, 1.21-5.35 μg/g for Zn, respectively. The mean concentrations of Cd, Pb, and Fe in some of these brands of canned fish were above their permissible limits while other metals occurred at levels below their permissible limits. The estimated daily intakes of metals from consumption of 20.8 g fish per day by a 60 kg body weight adult were below the provisional tolerable daily intakes for Cd, Pb, Ni, Cr, and Cu and recommended daily intakes for Co, Fe, Mn, and Zn. The estimated target hazard quotients of the examined metals were less than 1 in the majority of the samples indicating no long-term health hazard at the present circumstance.

  7. Recent developments in human biomonitoring: non-invasive assessment of target tissue dose and effects of pneumotoxic metals

    PubMed Central

    Mutti, A.; Corradi, M.

    2006-01-01

    Summary Tobacco smoke and polluted environments substantially increase the lung burden of pneumotoxic chemicals, particularly pneumotoxic metallic elements. To achieve a better understanding of the early events between exposure to inhaled toxicants and the onset of adverse effects on the lung, the characterization of dose at the target organ would be extremely useful. Exhaled breath condensate (EBC), obtained by cooling exhaled air under conditions of spontaneous breathing, is a novel technique that could provide a non-invasive assessment of pulmonary pathobiology. Considering that EBC is water practically free of interfering solutes, it represents an ideal biological matrix for elemental characterization. Published data show that several toxic metals and trace elements are detectable in EBC, raising the possibility of using this medium to quantify the lung tissue dose of pneumotoxic substances. This novel approach may represent a significant advance over the analysis of alternative media (blood, serum, urine, hair), which are not as reliable (owing to interfering substances in the complex matrix) and reflect systemic rather than lung (target tissue) levels of both toxic metals and essential trace elements. Data obtained among workers occupationally exposed to either hard metals or chromium (VI) and in smokers with or without chronic obstructive pulmonary disease (COPD) are reviewed to show that – together with biomarkers of exposure – EBC also allows the simultaneous quantification of biomarkers of effect directly sampled from the epithelial lining fluid, thus providing novel insights on both kinetic and dynamic aspects of metal toxicology. Riassunto «Recenti sviluppi nel biomonitoraggio umano: valutazione non invasiva della dose a livello dell’organo bersaglio e degli effetti pneumotossici». L’esposizione cronica a fumo di tabacco ed ad altri inquinati ambientali determina un accumulo polmonare di sostanze pneumotossiche, soprattutto metalli. Allo scopo

  8. Charge transfer between sensing and targeted metal nanoparticles in indirect nanoplasmonic sensors

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.; Langhammer, Christoph

    2017-03-01

    In indirect nanoplasmonic sensors, the plasmonic metal nanoparticles are adjacent to the material of interest, and the material-related changes of their optical properties are used to probe that material. If the latter itself represents another metal in the form of nanoparticles, its deposition is accompanied by charge transfer to or from the plasmonic nanoparticles in order to equalize the Fermi levels. We estimate the value of the transferred charge and show on the two examples, nanoparticle sintering and hydride formation, that the charge transfer has negligible influence on the probed processes, because the effect of charge transfer is less important than that of nanoparticle surface energy. This further corroborates the non-invasive nature of nanoplasmonic sensors.

  9. Numerical simulation of dynamic failure and multi spall fracture in metals

    NASA Astrophysics Data System (ADS)

    Bayandin, Yu V.; Saveleva, N. V.; Naimark, O. B.

    2016-11-01

    Dynamic behavior of metals under intensive loading is characterized by intensive nucleation and growth of defects (microshears and microcracks) both under shock-wave compression and unloading conditions that may reduce to spallation and in some cases to multiple spallation. Spall fracture in material produced by the action of tensile stress in bulk of sample when two decompression waves collide. For higher amplitudes of shockwave the initiation of secondary spallation appears when intensity of residual wave is enough. The purpose of present investigation is consists on formulation of physical-mathematical model of dynamic behavior of metals under shock compression loadings. Plate impact test is considered. Wide range constitutive model based on the statistical theory for solids with defect (microshears and microcracks) was developed. Comparison of microstructure investigation and numerical simulation results of spall fracture (including secondary spallation) in vanadium is presented.

  10. Assessment of the lifetime of the beam window of MEGAPIE target liquid metal container

    NASA Astrophysics Data System (ADS)

    Dai, Y.; Henry, J.; Auger, T.; Vogt, J.-B.; Almazouzi, A.; Glasbrenner, H.; Groeschel, F.

    2006-09-01

    The lifetime of the beam window of the T91 liquid Pb-Bi container in the MEGAPIE target is discussed based on the present knowledge of lead bismuth eutectic (LBE) corrosion, embrittlement and radiation effects in relevant conditions. In the MEGAPIE target, since the high hydrogen production will likely reduce the oxygen content to a low level, LBE corrosion may reduce the wall thickness up to 2%. In addition, the corrosion induced grain boundary dissolution will promote LBE embrittlement on the T91 steel in the beam window. The DBTT data and fracture toughness values of T91 specimens tested in contact with LBE suggest a lower bound of the lifetime of the T91 beam window to be limited to a dose of 6 dpa, corresponding to 2.4 Ah proton charge to be received by the target in about 20 weeks in the normal operation condition.

  11. Metal vapor target for precise studies of ion-atom collisions

    SciTech Connect

    Chen, W. Vorobyev, G.; Herfurth, F.; Hillenbrand, P.-M.; Spillmann, U.; Guo, D.; Trotsenko, S.; Gumberidze, A.; Stöhlker, Th.

    2014-05-15

    Although different ion-atom collisions have been studied in various contexts, precise values of cross-sections for many atomic processes were seldom obtained. One of the main uncertainties originates from the value of target densities. In this paper, we describe a unique method to measure a target density precisely with a combination of physical vapor deposition and inductively coupled plasma optical emission spectrometry. This method is preliminarily applied to a charge transfer cross-section measurement in collisions between highly charged ions and magnesium vapor. The final relative uncertainty of the target density is less than 2.5%. This enables the precise studies of atomic processes in ion-atom collisions, even though in the trial test the deduction of precise capture cross-sections was limited by other systematic errors.

  12. Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation.

    PubMed

    Wang, Xue; Gaustad, Gabrielle; Babbitt, Callie W

    2016-05-01

    Development of lithium-ion battery recycling systems is a current focus of much research; however, significant research remains to optimize the process. One key area not studied is the utilization of mechanical pre-recycling steps to improve overall yield. This work proposes a pre-recycling process, including mechanical shredding and size-based sorting steps, with the goal of potential future scale-up to the industrial level. This pre-recycling process aims to achieve material segregation with a focus on the metallic portion and provide clear targets for subsequent recycling processes. The results show that contained metallic materials can be segregated into different size fractions at different levels. For example, for lithium cobalt oxide batteries, cobalt content has been improved from 35% by weight in the metallic portion before this pre-recycling process to 82% in the ultrafine (<0.5mm) fraction and to 68% in the fine (0.5-1mm) fraction, and been excluded in the larger pieces (>6mm). However, size fractions across multiple battery chemistries showed significant variability in material concentration. This finding indicates that sorting by cathode before pre-treatment could reduce the uncertainty of input materials and therefore improve the purity of output streams. Thus, battery labeling systems may be an important step towards implementation of any pre-recycling process.

  13. Target organs of the Manila clam Ruditapes philippinarum for studying metal accumulation and biomarkers in pollution monitoring: laboratory and in-situ transplantation experiments.

    PubMed

    Won, Eun-Ji; Kim, Kyung-Tae; Choi, Jin-Young; Kim, Eun-Soo; Ra, Kongtae

    2016-08-01

    To characterize the target organs of the Manila clam Ruditapes philippinarum for use in environmental study, the accumulation of trace metals and three biomarkers was measured in different organs. Exposure with Cu and Pb carried out under laboratory conditions revealed a linear uptake of metals throughout the experimental period in each tissue. In particular, significant increase was observed in gills and mantle. The increase of intracellular reactive oxygen species showed the great potential of gills as a target tissue for both Cu and Pb exposure. The highest activity of glutathione S-transferase and their relative increase in activity were also observed in gills. Metallothionein-like protein levels, however, increased greatly in the digestive gland and mantle during Cu and Pb exposure, respectively, although all tissues, except the foot, showed significant changes after 24 h of metal exposure. In the field study, the highest concentration of metals was recorded in the gills and mantle, accounting for over 50 % of the total accumulated metal in all sites. Additionally, Cu and Pb increased significantly in these two organs, respectively. However, the order of accumulation rate in laboratory exposure was not concomitant with those of the lab-based study, suggesting that different routes of metal uptake and exposure duration induce distinct partitioning of metals and regulating system in R. philippinarum. These series of exposure studies demonstrated that gills, mantle, and digestive gland in R. philippinarum are potential target tissues in environmental monitoring study using metal concentrations and biomarkers.

  14. Structural-hydraulic test of the liquid metal EURISOL target mock-up

    NASA Astrophysics Data System (ADS)

    Milenković, Rade Ž.; Dementjevs, Sergejs; Samec, Karel; Platacis, Ernests; Zik, Anatolij; Flerov, Aleksej; Manfrin, Enzo; Thomsen, Knud

    2009-08-01

    Structural-hydraulic tests of the European Isotope Separation On-Line (EURISOL) neutron converter target mock-up, named MErcury Target EXperiment 1 (METEX 1), have been conducted by Paul Scherrer Institut (PSI, Switzerland) in cooperation with Institute of Physics of the University of Latvia (IPUL, Latvia). PSI proceeded with extensive thermal-hydraulic and structural computational studies, followed by the target mock-up tests carried out on the mercury loop at IPUL. One of the main goals of the METEX 1 test is to investigate the hydraulic and structural behaviour of the EURISOL target mock-up for various inlet flow conditions (i.e. mass flow rates) and, in particular, for nominal operating flow rate and pressure in the system. The experimental results were analysed by advanced time-frequency methods such as Short-Time Fourier Transform in order to check the vibration characteristics of the mock-up and the resonance risk. The experimental results (obtained in METEX 1), which include inlet flow rate, pressure of the cover gas, total pressure loss, structural acceleration, sound and strain data, were jointly analysed together with numerical data obtained from Computational Fluid Dynamics (CFD).

  15. Impact spallation processes on the Moon: A case study from the size and shape analysis of ejecta boulders and secondary craters of Censorinus crater

    NASA Astrophysics Data System (ADS)

    Krishna, N.; Kumar, P. Senthil

    2016-01-01

    have subdued ejecta (rayless craters), while some possess bright-rayed ejecta (bright-rayed craters). The CSFD of rayless craters show a steep power-law slope with a b-value of -4.0, similar to the secondary craters produced by the impact of ejecta from primary craters. We therefore interpret the rayless craters as the secondary craters of Censorinus. On the other hand, the CSFD of bright-rayed craters have smaller power-law slope (b value -2.7) which is a characteristic of primary craters, and thus provide 3 Ma age for Censorinus crater. When the characteristics of Censorinus boulders are compared with the theoretical spallation models that are sensitive to the petrophysical properties of the target (lunar highland), the models generally agree with the Censorinus boulders. However, the observed shape and size characteristics of the Censorinus boulders are found to be more complex than the theoretical spallation models. The ejecta boulders suffered more complex fragmentation and asymmetric distribution in response to the oblique impact. The spallation models accounting oblique impacts have not yet been developed. Therefore, our Censorinus boulder observations can be used to develop and validate the new theoretical spallation models for the effects of oblique impacts.

  16. Measurement of interface strength by a laser spallation technique

    NASA Astrophysics Data System (ADS)

    Gupta, V.; Argon, A. S.; Parks, D. M.; Cornie, J. A.

    A LASER spallation experiment has been developed to measure the strength of planar interfaces between a substrate and a thin coating (in the thickness range of 0.3-3 μm). In this technique a laser pulse of a high enough energy and a pre-determined duration is converted into a pressure pulse of a critical amplitude and width that is sent through the substrate toward the free surface with the coating. The reflected tensile wave from the free surface of the coating pries-off the coating. The critical stress amplitude that accomplishes the removal of the coating is determined from a computer simulation of the process. The simulation itself is verified by means of a piezo-electric crystal probe that is capable of mapping out the profile of the stress pulse generated by the laser pulse. Interface strength values ranging from 3.7 to 10.5 GPa were determined for the Si/SiC system. For the interfaces between pyrolytic graphite and SiC coatings an average strength of 7.2 GPA was measured, while the corresponding interface strength between a Pitch-55 type ribbon with a fiber-like morphology and SiC coatings was found to be 0.23 GPa. Intrinsic strengths of SiC coatings and Si crystal were also determined using this technique. These were, on the average, 8.6 GPa for Si crystals and 11.9 GPa for a SiC coating. Furthermore, the potential of the laser technique to determine the interface toughness was also demonstrated, provided well-characterizable flaws can be planted on the interface.

  17. Superconducting Prototype Cavities for the Spallation Neutron Source (SNS) Project

    SciTech Connect

    Gianluigi Ciovati

    2001-09-01

    The Spallation Neutron Source project includes a superconducting linac section in the energy range from 186 MeV to 1000 MeV. For this energy range two types of cavities are needed with geometrical {beta} values of {beta} = 0.61 and {beta} = 0.81. An aggressive cavity prototyping program is being pursued at Jefferson Lab, which calls for fabricating and testing four {beta} = 0.61 cavities and two {beta} = 0.81 cavities. Both types consist of six cells made from high purity niobium and feature one HOM coupler on each beam pipe and a port for a high power coaxial input coupler. Three of the four {beta} = 0.61 cavities will be used for a cryomodule test in early 2002. At this time four medium beta cavities and one high beta cavity have been completed at JLab. The first tests on the {beta} = 0.61 and {beta} = 0.81 exceeded the design values for gradient and Q value: E{sub acc} = 10.1 MV/m and Q = 5 x 10{sup 9} at 2.1K for the {beta} = 0.61 and E{sub acc} = 12.3 MV/m and Q = 5 x 10{sup 9} at 2.1 K for the {beta} = 0.81. One of the medium beta cavities has been equipped with an integrated helium vessel and measurements of the static Lorentz force detuning have been done and compared to the ''bare'' cavities. In addition two single cell cavities have been fabricated, equipped with welded-on HOM couplers. They are being used to evaluate the HOM couplers with respect to multipacting, fundamental mode rejection and HOM damping as far as possible in a single cell. This paper describes the cavity design with respect to electromagnetic and mechanical features, the fabrication efforts and the results obtained with the different cavities existing at the time of this workshop.

  18. The COHERENT Experiment at the Spallation Neutron Source

    SciTech Connect

    Elliott, Steven Ray

    2015-09-30

    The COHERENT collaboration's primary objective is to measure coherent elastic neutrino- nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. The CEvNS cross section is cleanly predicted in the standard model; hence its measurement provides a standard model test. It is relevant for supernova physics and supernova-neutrino detection, and enables validation of dark-matter detector background and detector-response models. In the long term, precision measurement of CEvNS will address questions of nuclear structure. COHERENT will deploy multiple detector technologies in a phased approach: a 14-kg CsI[Na] scintillating crystal, 15 kg of p-type point-contact germanium detectors, and 100 kg of liquid xenon in a two-phase time projection chamber. Following an extensive background measurement campaign, a location in the SNS basement has proven to be neutron-quiet and suitable for deployment of the COHERENT detector suite. The simultaneous deployment of the three COHERENT detector subsystems will test the N=2 dependence of the cross section and ensure an unambiguous discovery of CEvNS. This document describes concisely the COHERENT physics motivations, sensitivity and plans for measurements at the SNS to be accomplished on a four-year timescale.

  19. Design, status and first operations of the spallation neutron source polyphase resonant converter modulator system

    SciTech Connect

    Reass, W. A.; Apgar, S. E.; Baca, D. M.; Doss, James D.; Gonzales, J.; Gribble, R. F.; Hardek, T. W.; Lynch, M. T.; Rees, D. E.; Tallerico, P. J.; Trujillo, P. B.; Anderson, D. E.; Heidenreich, D. A.; Hicks, J. D.; Leontiev, V. N.

    2003-01-01

    The Spallation Neutron Source (SNS) is a new 1.4 MW average power beam, 1 GeV accelerator being built at Oak Ridge National Laboratory. The accelerator requires 15 converter-modulator stations each providing between 9 and 11 MW pulses with up to a 1 .I MW average power. The converter-modulator can be described as a resonant 20 kHz polyphase boost inverter. Each converter modulator derives its buss voltage from a standard substation cast-core transformer. Each substation is followed by an SCR pre-regulator to accommodate voltage changes from no load to full load, in addition to providing a soft-start function. Energy storage is provided by self-clearing metallized hazy polypropylene traction capacitors. These capacitors do not fail short, but clear any internal anomaly. Three 'H-Bridge' IGBT transistor networks are used to generate the polyphase 20 kHz transformer primary drive waveforms. The 20 kHz drive waveforms are time-gated to generate the desired klystron pulse width. Pulse width modulation of the individual 20 lcHz pulses is utilized to provide regulated output waveforms with DSP based adaptive feedforward and feedback techniques. The boost transformer design utilizes nanocrystalline alloy that provides low core loss at design flux levels and switching frequencies. Capacitors are used on the transformer secondary networks to resonate the leakage inductance. The transformers are wound for a specific leakage inductance, not turns ratio. This design technique generates multiple secondary volts per turn as compared to the primary. With the appropriate tuning conditions, switching losses are minimized. The resonant topology has the added benefit of being deQed in a klystron fault condition, with little energy deposited in the arc. This obviates the need of crowbars or other related networks. A review of these design parameters, operational performance, production status, and OWL installation and performance to date will be presented.

  20. Long-Lifetime Low-Scatter Neutron Polarization Target

    SciTech Connect

    Dr. Jonathan M. Richardson

    2004-07-09

    Polarized neutrons scattering is an important technology for characterizing magnetic and other materials. Polarized helium three (P-3He) is a novel technology for creating polarized beams and, perhaps more importantly, for the analysis of polarization in highly divergent scattered beams. Analysis of scattered beams requires specialized targets with complex geometries to ensure accurate results. Special materials and handling procedures are required to give the targets a long useful lifetime. In most cases, the targets must be shielded from stray magnetic fields from nearby equipment. SRL has developed and demonstrated hybrid targets made from glass and aluminum. We have also developed and calibrated a low-field NMR system for measuring polarization lifetimes. We have demonstrated that our low-field system is able to measure NMR signals in the presence of conducting (metallic) cell elements. We have also demonstrated a non-magnetic valve that can be used to seal the cells. We feel that these accomplishments in Phase I are sufficient to ensure a successful Phase II program. The commercial market for this technology is solid. There are over nine neutron scattering centers in the US and Canada and over 22 abroad. Currently, the US plans to build a new $1.4B scattering facility called the Spallation Neutron Source (SNS). The technology developed in this project will allow SRL to supply targets to both existing and future facilities. SRL is also involved with the application of P-3He to medical imaging.

  1. Effects study on the thermal stresses in a LEU metal foil annular target.

    PubMed

    Govindarajan, Srisharan G; Solbrekken, Gary L

    2015-09-01

    The effects of fission gas pressure, uranium swelling and thermal contact conductance on the thermal-mechanical behavior of an annular target containing a low-enriched uranium foil (LEU) encapsulated in a nickel foil have been presented in this paper. The draw-plug assembly method is simulated to obtain the residual stresses, which are applied to the irradiation model as initial inputs, and the integrated assembly-irradiation process is simulated as an axisymmetric problem using the commercial finite element code Abaqus FEA. Parametric studies were performed on the LEU heat generation rate and the results indicate satisfactory irradiation performance of the annular target. The temperature and stress margins have been provided along with a discussion of the results.

  2. Channels of energy redistribution in short-pulse laser interactions with metal targets

    NASA Astrophysics Data System (ADS)

    Zhigilei, Leonid V.; Ivanov, Dmitriy S.

    2005-07-01

    The kinetics and channels of laser energy redistribution in a target irradiated by a short, 1 ps, laser pulse is investigated in computer simulations performed with a model that combines molecular dynamics (MD) simulations with a continuum description of the laser excitation and relaxation of the conduction band electrons, based on the two-temperature model (TTM). The energy transferred from the excited electrons to the lattice splits into several parts, namely the energy of the thermal motion of the atoms, the energy of collective atomic motions associated with the relaxation of laser-induced stresses, the energy carried away from the surface region of the target by a stress wave, the energy of quasi-static anisotropic stresses, and, at laser fluences above the melting threshold, the energy transferred to the latent heat of melting and then released upon recrystallization. The presence of the non-thermal channels of energy redistribution (stress wave and quasi-static stresses), not accounted for in the conventional TTM model, can have important implications for interpretation of experimental results on the kinetics of thermal and mechanical relaxation of a target irradiated by a short laser pulse as well as on the characteristics of laser-induced phase transformations. The fraction of the non-thermal energy in the total laser energy partitioning increases with increasing laser fluence.

  3. Oxidative Recession, Sulfur Release, and Al203 Spallation for Y-Doped Alloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2001-01-01

    Second-order spallation phenomena have been noted for Y-doped Rene'N5 after long term oxidation at 1150 degrees C. The reason for this behavior has not been conclusively identified. A mass equivalence analysis has shown that the surface recession resulting from oxidation has the potential of releasing about 0.15 monolayer of sulfur for every 1 mg/sq cm of oxygen reacted for an alloy containing 5 ppmw of sulfur. This amount is significant in comparison to levels that have been shown to result in first-order spallation behavior for undoped alloys. Oxidative recession is therefore speculated to be a contributing source of sulfur and second-order spallation for Y-doped alloys.

  4. Nonlinear absorption of surface plasmons and emission of electrons from metallic targets

    SciTech Connect

    Singh, D. B.; Kumar, Gagan; Tripathi, V. K.

    2007-10-15

    A large-amplitude surface plasma wave (SPW) over a metal-vacuum interface Ohmically heats the electrons and undergoes nonlinear absorption. The attenuation rate increases with the local SPW amplitude. The enhanced electron temperature leads to stronger thermionic emission of electrons. At typical Nd:glass laser intensity I{sub L}=7 GW/cm{sup 2}, if one takes the amplitude of the SPW to be {approx_equal}6 times the amplitude of the laser, one obtains the thermionic electron emission current density J=200 A/cm{sup 2}. However, the emission current density decreases with propagation distance at a much faster rate than the SPW amplitude and electron temperature.

  5. H{sup -} radio frequency source development at the Spallation Neutron Source

    SciTech Connect

    Welton, R. F.; Gawne, K. R.; Han, B. X.; Murray, S. N.; Pennisi, T. R.; Roseberry, R. T.; Santana, M.; Stockli, M. P.; Dudnikov, V. G.; Turvey, M. W.

    2012-02-15

    The Spallation Neutron Source (SNS) now routinely operates nearly 1 MW of beam power on target with a highly persistent {approx}38 mA peak current in the linac and an availability of {approx}90%. H{sup -} beam pulses ({approx}1 ms, 60 Hz) are produced by a Cs-enhanced, multicusp ion source closely coupled with an electrostatic low energy beam transport (LEBT), which focuses the 65 kV beam into a radio frequency quadrupole accelerator. The source plasma is generated by RF excitation (2 MHz, {approx}60 kW) of a copper antenna that has been encased with a thickness of {approx}0.7 mm of porcelain enamel and immersed into the plasma chamber. The ion source and LEBT normally have a combined availability of {approx}99%. Recent increases in duty-factor and RF power have made antenna failures a leading cause of downtime. This report first identifies the physical mechanism of antenna failure from a statistical inspection of {approx}75 antennas which ran at the SNS, scanning electron microscopy studies of antenna surface, and cross sectional cuts and analysis of calorimetric heating measurements. Failure mitigation efforts are then described which include modifying the antenna geometry and our acceptance/installation criteria. Progress and status of the development of the SNS external antenna source, a long-term solution to the internal antenna problem, are then discussed. Currently, this source is capable of delivering comparable beam currents to the baseline source to the SNS and, an earlier version, has briefly demonstrated unanalyzed currents up to {approx}100 mA (1 ms, 60 Hz) on the test stand. In particular, this paper discusses plasma ignition (dc and RF plasma guns), antenna reliability, magnet overheating, and insufficient beam persistence.

  6. Overcoming target-mediated quinolone resistance in topoisomerase IV by introducing metal-ion-independent drug-enzyme interactions.

    PubMed

    Aldred, Katie J; Schwanz, Heidi A; Li, Gangqin; McPherson, Sylvia A; Turnbough, Charles L; Kerns, Robert J; Osheroff, Neil

    2013-12-20

    Quinolones, which target gyrase and topoisomerase IV, are the most widely prescribed antibacterials worldwide. Unfortunately, their use is threatened by the increasing prevalence of target-mediated drug resistance. Greater than 90% of mutations that confer quinolone resistance act by disrupting enzyme-drug interactions coordinated by a critical water-metal ion bridge. Quinazolinediones are quinolone-like drugs but lack the skeletal features necessary to support the bridge interaction. These compounds are of clinical interest, however, because they retain activity against the most common quinolone resistance mutations. We utilized a chemical biology approach to determine how quinazolinediones overcome quinolone resistance in Bacillus anthracis topoisomerase IV. Quinazolinediones that retain activity against quinolone-resistant topoisomerase IV do so primarily by establishing novel interactions through the C7 substituent, rather than the drug skeleton. Because some quinolones are highly active against human topoisomerase IIα, we also determined how clinically relevant quinolones discriminate between the bacterial and human enzymes. Clinically relevant quinolones display poor activity against topoisomerase IIα because the human enzyme cannot support drug interactions mediated by the water-metal ion bridge. However, the inclusion of substituents that allow quinazolinediones to overcome topoisomerase IV-mediated quinolone resistance can cause cross-reactivity against topoisomerase IIα. Therefore, a major challenge in designing drugs that overcome quinolone resistance lies in the ability to identify substituents that mediate strong interactions with the bacterial, but not the human, enzymes. On the basis of our understanding of quinolone-enzyme interactions, we have identified three compounds that display high activity against quinolone-resistant B. anthracis topoisomerase IV but low activity against human topoisomerase IIα.

  7. EFFECT OF SURFACE CONDITION ON SPALLATION BEHAVIOR OF OXIDE SCALE ON SS 441 SUBSTRATE USED IN SOFC

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2011-03-01

    As operating temperature of SOFC decreases, ferritic stainless steel has attracted a great deal of attention for its use as an interconnect in SOFCs because of its gas-tightness, low electrical resistivity, ease of fabrication, and cost-effectiveness. However, oxidation reaction of the metallic interconnects in a typical SOFC working environment is unavoidable. The growth stresses in the oxide scale and on the scale/substrate interface combined with the thermal stresses induced by thermal expansion coefficient mismatch between the oxide scale and the substrate may lead to scale delamination/buckling and eventual spallation during stack cooling, which can lead to serious cell performance degradation. Therefore, the interfacial adhesion strength between the oxide scale and substrate is crucial to the reliability and durability of the metallic interconnect in SOFC operating environments. In this paper, we investigated the effect of the surface conditions on the interfacial strength of oxide scale and SS441 substrate experimentally. Contrary to the conventional sense, it was found that rough surface of SS441 substrate will decrease the interfacial adhesive strength of the oxide scale and SS441 substrate

  8. Laser heating of a cavity versus a plane surface for metal targets utilizing photothermal deflection measurements

    NASA Astrophysics Data System (ADS)

    Jeong, S. H.; Greif, R.; Russo, R. E.

    1996-08-01

    The effects of a cylindrical cavity in a metal surface on the energy coupling of a laser beam with the solid were investigated by using a photothermal deflection technique. The photothermal deflection of a probe beam over the cavity was measured while the bottom of the cavity was heated with a Nd-YAG laser with a wavelength of 1064 nm. Cavities in three different materials and with two different aspect ratios were used for the experiment. Temperature distributions in the solid and the surrounding air were computed numerically and used to calculate photothermal deflections for cavity heating and for plane surface heating. Reflection of the heating laser beam inside the cavity increased the photothermal deflection amplitude significantly with larger increases for materials with larger thermal diffusivity. The computed photothermal deflections agreed more closely with the experimental results when reflection of the heating laser beam inside the cavity was included in the numerical model. The overall energy coupling between a heating laser and a solid is enhanced by a cavity.

  9. Folate-targeted single-wall metal-organic nanotubes used as multifunctional drug carriers

    NASA Astrophysics Data System (ADS)

    Yang, Linyan; Liu, Min; Huang, Kebin; Ai, Xia; Li, Cun; Ma, Jifei; Jin, Tianming; Liu, Xin

    2017-01-01

    Doxorubicin (DOX) is a member of the anthracycline class of chemotherapeutic agents that are used for the treatment of many common human cancers. A self-assembled functionalized metal-organic nanotubes, SWMONTs could be loaded with the anticancer drug DOX. Via the modification of SWMONTs, DOX/SWMONTs-SiO2, DOX/SWMONTs-SiO2-NH2, DOX/SWMONTs-SiO2-NH2-FA samples could be obtained. The SEM characterization of the samples indicated that the particle size of DOX/SWMONTs-SiO2NH2 samples were smaller than 200 nm. Drug-release experiments implied that DOX from the DOX/SWMONTs-SiO2-NH2-FA samples could be released faster at acidic tumor tissue than at normal body fluid (pH7.4). DOX has strong cytotoxicity, and at 20 μg/mL dosage of DOX large amount of apoptotic cells could be seen. Cellular uptaking experiments were used to study the apoptotic mechanism, while for DOX/SWMONTs-SiO2-NH2-FA samples, the strong drug fluorescence was found in the cytoplasm rather than in the nucleus.

  10. X-ray and gamma ray emission from petawatt laser-driven nanostructured metal targets

    NASA Astrophysics Data System (ADS)

    Hill, Matthew; Allan, Peter; Brown, Colin; Hoarty, David; Hobbs, Lauren; James, Steven; Bargsten, Clayton; Hollinger, Reed; Rocca, Jorge; Park, Jaebum; Chen, Hui; London, Richard; Shepherd, Ronnie; Tommasini, Riccardo; Vinko, Sam; Wark, Justin; Marjoribanks, Robin; Neely, David; Spindloe, Chris

    2016-10-01

    Nano-wire arrays of nickel and gold have been fired at the Orion laser facility using high contrast 1 ω and 2 ω short pulse beams (0.7 ps pulse length, >1020 W cm-2 intensity). Time-resolved and time-integrated K-shell and M-shell emission have been characterized and compared to those of flat foils, investigating the capability of these metamaterial coatings to enhance laser-target coupling and X-ray emission. Bremsstrahlung emission of gamma rays and associated pair production via the Bethe-Heitler process have also been investigated by use of 1 mm-thick gold substrates attached to the gold nanowires. We present our latest experimental data and outline some potential future applications.

  11. The Metallicity Distribution and Hot Jupiter Rate of the Kepler Field: Hectochelle High-resolution Spectroscopy for 776 Kepler Target Stars

    NASA Astrophysics Data System (ADS)

    Guo, Xueying; Johnson, John A.; Mann, Andrew W.; Kraus, Adam L.; Curtis, Jason L.; Latham, David W.

    2017-03-01

    The occurrence rate of hot Jupiters from the Kepler transit survey is roughly half that of radial velocity surveys targeting solar neighborhood stars. One hypothesis to explain this difference is that the two surveys target stars with different stellar metallicity distributions. To test this hypothesis, we measure the metallicity distribution of the Kepler targets using the Hectochelle multi-fiber, high-resolution spectrograph. Limiting our spectroscopic analysis to 610 dwarf stars in our sample with {log}g > 3.5, we measure a metallicity distribution characterized by a mean of {[{{M}}/{{H}}]}{mean}=-0.045+/- 0.009, in agreement with previous studies of the Kepler field target stars. In comparison, the metallicity distribution of the California Planet Search radial velocity sample has a mean of {[{{M}}/{{H}}]}{CPS,{mean}}=-0.005+/- 0.006, and the samples come from different parent populations according to a Kolmogorov–Smirnov test. We refit the exponential relation between the fraction of stars hosting a close-in giant planet and the host star metallicity using a sample of dwarf stars from the California Planet Search with updated metallicities. The best-fit relation tells us that the difference in metallicity between the two samples is insufficient to explain the discrepant hot Jupiter occurrence rates; the metallicity difference would need to be ≃0.2–0.3 dex for perfect agreement. We also show that (sub)giant contamination in the Kepler sample cannot reconcile the two occurrence calculations. We conclude that other factors, such as binary contamination and imperfect stellar properties, must also be at play.

  12. The metallicity distribution and hot Jupiter rate of the Kepler field: Hectochelle High-resolution spectroscopy for 776 Kepler target stars

    NASA Astrophysics Data System (ADS)

    Guo, Xueying; Johnson, John A.; Mann, Andrew W.; Kraus, Adam L.; Curtis, Jason L.; Latham, David W.

    2017-01-01

    The occurrence rate of hot Jupiters from the Kepler transit survey is roughly half that of radial velocity surveys targeting solar neighborhood stars. One hypothesis to explain this difference is that the two surveys target stars with different stellar metallicity distributions. To test this hypothesis, we measure the metallicity distribution of the Kepler targets using the Hectochelle multi-fiber, high-resolution spectrograph. Limiting our spectroscopic analysis to 610 dwarf stars in our sample with log(g) > 3.5, we measure a metallicity distribution characterized by a mean of [M/H]_{mean} = -0.045 +/- 0.009, in agreement with previous studies of the Kepler field target stars. In comparison, the metallicity distribution of the California Planet Search radial velocity sample has a mean of [M/H]_{CPS, mean} = -0.005 +\\- 0.006, and the samples come from different parent populations according to a Kolmogorov-Smirnov test. We refit the exponential relation between the fraction of stars hosting a close-in giant planet and the host star metallicity using a sample of dwarf stars from the California Planet Search with updated metallicities. The best-fit relation tells us that the difference in metallicity between the two samples is insufficient to explain the discrepant Hot Jupiter occurrence rates; the metallicity difference would need to be 0.2-0.3 dex for perfect agreement. We also show that (sub)giant contamination in the Kepler sample cannot reconcile the two occurrence calculations. We conclude that other factors, such as binary contamination and imperfect stellar properties, must also be at play.

  13. Isospin effects in a covariant transport approach to spallation reactions: Analysis of p+Fe and p+Pb reactions at 0.8,1.2, and 1.6 GeV

    SciTech Connect

    Abdel-Waged, Khaled; Felemban, Nuha; Gaitanos, Theodoros; Ferini, Graziella; Toro, Massimo Di

    2010-01-15

    We have investigated the influence of different nonlinear relativistic mean-field models (NL, NL{rho}, and NL{rho}{delta}) on spallation neutrons for p+Fe and p+Pb reactions at 0.8,1.2, and 1.6 GeV by means of a relativistic Boltzmann Uehling Uhlenbeck (RBUU) approach plus a statistical multifragmentation (SM) decay model. We find that the 'evaporation shoulder', that is, the neutron energy spectrum from 3 to 30 MeV, almost for any emission angle is quite sensitive to the isospin part of the mean field. For the more neutron-rich Pb target the evaporation component can be directly related to the low-density behavior on the symmetry energy in the thermal expansion phase of the excited compound system. It turns out that the spallation data for the reactions under study are shown to be more consistent with RBUU+SM employing the NLrho effective Lagrangian.

  14. Interactions of calmodulin with metal ions and with its target proteins revealed by conformation-sensitive monoclonal antibodies.

    PubMed

    Wolf, T; Solomon, B; Ivnitski, D; Rishpon, J; Fleminger, G

    1998-01-01

    Two monoclonal antibodies (mAbs) raised against bovine calmodulin (CaM), CAM1 and CAM4, enable one to monitor conformational changes that occur in the molecule. The interaction of CAM1 with CaM depends on the Ca2+ occupancy of its Ca(2+)-binding sites. CAM4, in contrast, interacts with CaM in a Ca(2+)-independent manner, interacting with both holoCaM and EGTA-treated CaM to a similar extent. Their interaction with various CaMs, CaM tryptic fragments and chemically modified CaM, as well as molecular graphics, led to identification of the CAM1 and CAM4 epitopes on the C- and N-terminal lobes of CAM respectively. The two mAbs were used as macromolecular probes to detect conformational changes occurring in the CaM molecule upon binding of metal ions and target proteins and peptides. MAb CAM1 successfully detected changes associated with Al3+ binding even in the presence of Ca2+, indicating that Al3+ and Ca2+ ions may bind to the protein simultaneously, leading to a new conformation of the molecule. MAbs CAM1 and CAM4 were used to follow the interactions of CaM with its target peptides and proteins. Complexes with melittin, mastoparan, calcineurin and phosphodiesterase showed different immunological properties on an immuno-enzyme electrode, indicating unique structural properties for each complex.

  15. THEY MIGHT BE GIANTS: LUMINOSITY CLASS, PLANET OCCURRENCE, AND PLANET-METALLICITY RELATION OF THE COOLEST KEPLER TARGET STARS

    SciTech Connect

    Mann, Andrew W.; Hilton, Eric J.; Gaidos, Eric; Lepine, Sebastien

    2012-07-01

    We estimate the stellar parameters of late K- and early M-type Kepler target stars. We obtain medium-resolution visible spectra of 382 stars with K{sub P} - J > 2 ({approx_equal}K5 and later spectral type). We determine luminosity class by comparing the strength of gravity-sensitive indices (CaH, K I, Ca II, and Na I) to their strength in a sample of stars of known luminosity class. We find that giants constitute 96% {+-} 1% of the bright (K{sub P} < 14) Kepler target stars, and 7% {+-} 3% of dim (K{sub P} > 14) stars, significantly higher than fractions based on the stellar parameters quoted in the Kepler Input Catalog (KIC). The KIC effective temperatures are systematically (110{sup +15}{sub -35} K) higher than temperatures we determine from fitting our spectra to PHOENIX stellar models. Through Monte Carlo simulations of the Kepler exoplanet candidate population, we find a planet occurrence of 0.36 {+-} 0.08 when giant stars are properly removed, somewhat higher than when a KIC log g > 4 criterion is used (0.27 {+-} 0.05). Last, we show that there is no significant difference in g - r color (a probe of metallicity) between late-type Kepler stars with transiting Earth-to-Neptune-size exoplanet candidates and dwarf stars with no detected transits. We show that a previous claimed offset between these two populations is most likely an artifact of including a large number of misidentified giants.

  16. Signal enhancement in electrospray laser desorption/ionization mass spectrometry by using a black oxide-coated metal target and a relatively low laser fluence.

    PubMed

    Kononikhin, Alexey; Huang, Min-Zong; Popov, Igor; Kostyukevich, Yury; Kukaev, Evgeny; Boldyrev, Alexey; Spasskiy, Alexander; Leypunskiy, Ilya; Shiea, Jentaie; Nikolaev, Eugene

    2013-01-01

    The electrospray Laser desorption/ionization (ELDI) method is actively used for direct sample analysis and ambient mass spectrometry imaging. The optimizing of Laser desorption conditions is essential for this technology. In this work, we propose using a metal target with a black oxide (Fe3O4) coating to increase the signal in ELDI-MS for peptides and small proteins. The experiments were performed on an LTQ-FT mass spectrometer equipped with a home-made ELDI ion source. A cutter blade with black oxide coating was used as a target. A nitrogen laser was used with the following parameters: 337 nm, pulse duration 4ns, repetition rate 10 Hz, fluence to approximately 700 Jm(-2). More than a five times signal increase was observed for a substance P peptide when a coated and a non-coated metal target were compared. No ion signal was observed for proteins if the same fluence and the standard stainless steel target were used. With the assistance of the Fe3O4 coated metal target and a relatively low laser fluence < or =700 Jm(-2)), proteins such as insulin, ubiquitin and myoglobin were successfully ionized. It was demonstrated that the Fe3O4-coated metal target can be used efficiently to assist laser desorption and thus significantly increase the analyte signal in ELDI-MS. A relatively low laser fluence (< or = 700 Jm(-2)) was enough to desorb peptides and proteins (up to 17 kDal with the assistance of the Fe3O4-coated metal target under ambient conditions.

  17. Thermochromism of metal-doped VO{sub 2} films deposited by dual-target sputtering

    SciTech Connect

    Jin, P.; Tazawa, M.; Yoshimura, K.; Miki, T.; Igarashi, K.; Tanemura, S.

    1994-12-31

    There are several kinds of chromogenic materials such as photochromic material, electrochromic material and thermochromic material, of which the thermochromic one is known for its optical properties (transmittance and reflectance) being able to change reversibly upon temperature. Among the chromogenic materials feasible to smart window coatings, thermochromic (TC) one has recently received increasing attention, since a window with TC coating enables automatic control of the energy throughputs of the solar radiation as well as the environmental radiation in response to the ambient temperature. Here, thermochromic VO{sub 2} films were prepared by reactive magnetron sputtering under various conditions of substrate temperature, total sputter pressure and oxygen flow ratio and characterized by XRD, RBS, AFM and spectrophotometry. Films with VO{sub 2} single phase were formed from a fairly low substrate temperature of 300 C by precisely controlling the oxygen flow ratio. The use of vanadium nucleated substrates significantly improved the crystallinity of VO{sub 2}. Tungsten doped V{sub 1{minus}x}W{sub x}O{sub 2} films with x = 0--0.26 were formed by dual-target sputtering and the thermochromism of films was evaluated. The tungsten doping linearly decreased {tau}{sub c} by 24 C/at.%W with a reduction in the hysteresis loop width.

  18. Heat transfer to a heavy liquid metal in curved geometry: Code validation and CFD simulation for the MEGAPIE lower target

    NASA Astrophysics Data System (ADS)

    Dury, Trevor V.

    2006-06-01

    The ESS and SINQ Heat Emitting Temperature Sensing Surface (HETSS) mercury experiments have been used to validate the Computational Fluid Dynamics (CFD) code CFX-4 employed in designing the lower region of the international liquid metal cooled MEGAPIE target, to be installed at SINQ, PSI, in 2006. Conclusions were drawn on the best turbulence models and degrees of mesh refinement to apply, and a new CFD model of the MEGAPIE geometry was made, based on the CATIA CAD design of the exact geometry constructed. This model contained the fill and drain tubes as well as the bypass feed duct, with the differences in relative vertical length due to thermal expansion being considered between these tubes and the window. Results of the mercury experiments showed that CFD calculations can be trusted to give peak target window temperature under normal operational conditions to within about ±10%. The target nozzle actually constructed varied from the theoretical design model used for CFD due to the need to apply more generous separation distances between the nozzle and the window. In addition, the bypass duct contraction approaching the nozzle exit was less sharp compared with earlier designs. Both of these changes modified the bypass jet penetration and coverage of the heated window zone. Peak external window temperature with a 1.4 mA proton beam and steady-state operation is now predicted to be 375 °C, with internal temperature 354.0 °C (about 32 °C above earlier predictions). Increasing bypass flow from 2.5 to 3.0 kg/s lowers these peak temperatures by about 12 °C. Stress analysis still needs to be made, based on these thermal data.

  19. Behind the Scenes of the Spallation Neutron Source – The Linear Accelerator

    SciTech Connect

    Galambos, John

    2016-03-11

    The Spallation Neutron Source at Oak Ridge National Laboratory is a one-of-a-kind research facility that provides the most intense pulsed neutron beams in the world for scientific research and industrial development. Take a look inside the facility's linear accelerator.

  20. Scaling phenomena of isobaric yields in projectile fragmentation, spallation, and fission reactions

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Huang, Ling; Song, Yi-Dan

    2017-02-01

    Background: The isobaric ratio difference scaling phenomenon, which has been found for the fragments produced in projectile fragmentation reactions, is related to the nuclear density change in reaction systems. Purpose: To verify whether the isobaric ratio difference scaling exists in the fragments produced in the spallation and fission reactions. Methods: The isobaric ratio difference scaling, denoted by SΔ lnR21 , is in theory deduced within the framework of the canonical ensemble theory at the grand-canonical limitation. The fragments measured in a series of projectile fragmentation, spallation, and fission reactions have been analyzed. Results: A good SΔ lnR21 scaling phenomenon is shown for the fragments produced both in the projectile fragmentation reactions and in the spallation reactions, whereas the SΔ lnR21 scaling phenomenon for the fragments in the fission reaction is less obvious. Conclusions: The SΔ lnR21 scaling is used to probe the properties of the equilibrium system at the time of fragment formation. The good scaling of SΔ lnR21 suggests that the equilibrium state can be achieved in the projectile fragmentation and spallation reactions. Whereas in the fission reaction, the result of SΔ lnR21 indicates that the equilibrium of the system is hard to achieve.

  1. Multimaterial lamination as a means of retarding penetration and spallation failures in plates

    NASA Technical Reports Server (NTRS)

    Dibattista, J. D.; Humes, D. H.

    1972-01-01

    Experimental data are presented which show that hypervelocity impact spallation and penetration failures of a single solid aluminum plate and of a solid aluminum plate spaced a distance behind a Whipple meteor bumper may be retarded by replacing the solid aluminum plate with a laminated plate. Four sets of experiments were conducted. The first set of experiments was conducted with projectile mass and velocity held constant and with polycarbonate cylinders impacted into single plates of different construction. The second set of experiments was done with single plates of various construction and aluminum spherical projectiles of similar mass but different velocities. These two experiments showed that a laminated plate of aluminum and polycarbonate or aluminum and methyl methacrylate could prevent spallation and penetration failures with a lower areal density than either an all-aluminum laminated plate or a solid aluminum plate. The aluminum laminated plate was in turn superior to the solid aluminum plate in resisting spallation and penetration failures. In addition, through an example of 6061-T6 aluminum and methyl methacrylate, it is shown that a laminated structure ballistically superior to its parent materials may be built. The last two sets of experiments were conducted using bumper-protected main walls of solid aluminum and of laminated aluminum and polycarbonate. Again, under hypervelocity impact conditions, the laminated main walls were superior to the solid aluminum main walls in retarding spallation and penetration failures.

  2. BEAM-LOSS DRIVEN DESIGN OPTIMIZATION FOR THE SPALLATION NEUTRON SOURCE (SNS) RING.

    SciTech Connect

    WEI,J.; BEEBE-WANG,J.; BLASKIEWICZ,M.; CAMERON,P.; DANBY,G.; GARDNER,C.J.; JACKSON,J.; LEE,Y.Y.; LUDEWIG,H.; MALITSKY,N.; RAPARIA,D.; TSOUPAS,N.; WENG,W.T.; ZHANG,S.Y.

    1999-03-29

    This paper summarizes three-stage design optimization for the Spallation Neutron Source (SNS) ring: linear machine design (lattice, aperture, injection, magnet field errors and misalignment), beam core manipulation (painting, space charge, instabilities, RF requirements), and beam halo consideration (collimation, envelope variation, e-p issues etc.).

  3. Behind the Scenes of the Spallation Neutron Source – The Linear Accelerator

    ScienceCinema

    Galambos, John

    2016-07-12

    The Spallation Neutron Source at Oak Ridge National Laboratory is a one-of-a-kind research facility that provides the most intense pulsed neutron beams in the world for scientific research and industrial development. Take a look inside the facility's linear accelerator.

  4. Influence of microstructural anisotropy on the spallation of 1080 eutectoid steel

    SciTech Connect

    Bourne, N. K.; Millett, J. C. F.; Lopez, M. F.; Vecchio, K. S.; Gray, G. T. , III

    2001-01-01

    While the influence of crystallographic texture on elastic and plastic constitutive response has seen extensive investigation in recent years, the influence of texture on the dynamic fracture of engineering materials remains less extensively explored. In particular, the influence of anisotropy, both textural and morphological, on the spallation behavior of materials remains poorly quantified. In this study, the spallation response of 1080-steel has been studied as a function of microstructural morphological anisotropy. In this study the influence of elongated MnS stringers, resident within a crystallographically isotropic eutectoid steel, on the spallation response of 1080 steel was investigated. That of a fully-pearlitic 1080 steel loaded to 5 GPa was found to be dominated by the heterogeneous nucleation of damage normal and orthogonal to the MnS stringers. Delamination between the matrix pearlitic microstructure and the MnS stringers was seen to correlate to a significantly lower pull-back signal during transverse loading than to that parallel to the stringer axis. The 'pull-back' signals and post-spallation metallographic observations are discussed with reference to the influence of microstructural anisotropy on void nucleation and growth.

  5. INFLUENCE OF MICROSTRUCTURAL ANISOTROPY ON THE SPALLATION OF 1080 EUTECTOID STEEL

    SciTech Connect

    G.T. GRAY; M.F. LOPEZ; ET AL

    2001-06-01

    While the influence of crystallographic texture on elastic and plastic constitutive response has seen extensive investigation in recent years, the influence of texture on the dynamic fracture of engineering materials remains less extensively explored. In particular, the influence of anisotropy, both textural and morphological, on the spallation behavior of materials remains poorly quantified. In this study, the spallation response of 1080-steel has been studied as a function of microstructural morphological anisotropy. In this study the influence of elongated MnS stringers, resident within a crystallographically isotropic eutectoid steel, on the spallation response of 1080 steel was investigated. That of a fully-pearlitic 1080 steel loaded to 5 GPa was found to be dominated by the heterogeneous nucleation of damage normal and orthogonal to the MnS stringers. Delamination between the matrix pearlitic microstructure and the MnS stringers was seen to correlate to a significantly lower pull-back signal during transverse loading than to that parallel to the stringer axis. The ''pull-back'' signals and post-spallation metallographic observations are discussed with reference to the influence of microstructural anisotropy on void nucleation and growth.

  6. RADIATION-RESISTANT FIBER OPTIC STRAIN SENSORS FOR SNS TARGET INSTRUMENTATION

    SciTech Connect

    Blokland, Willem; Bryan, Jeff; Riemer, Bernie; Sangrey, Robert L; Wendel, Mark W; Liu, Yun

    2016-01-01

    Measurement of stresses and strains in the mercury tar-get vessel of the Spallation Neutron Source (SNS) is important to understand the structural dynamics of the target. This work reports the development of radiation-resistant fiber optic strain sensors for the SNS target in-strumentation.

  7. A technical and economic evaluation of thermal spallation drilling technology

    SciTech Connect

    1984-07-10

    Thermal spallation of rock may be defined as a type of progressive rock failure caused by the creation of thermal stresses induced by a sudden application of heat from a high temperature source. This technology is applicable to only certain types of hard rock, such as dolomite, taconite, and granite. In 1981 and 1982, the deepest holes ever drilled by this process were drilled in granite to depths of 1086 feet and 425 feet respectively. Penetration rates at the bottom of the deeper hole reached a maximum of 100 ft/hr. Because of these high rates, considerable interest was generated concerning the use of this technology for the drilling of deep holes. Based on this interest, this study was undertaken to evaluate the technical and economic aspects of the technology in general. This methodology has been used for blasthole drilling, the cutting of chambers at the bottom of drilled holes, and the cutting of narrow grooves in rock. However, because of the very high temperatures generated by the flame jet and the application of the technology to only certain types of rock, other areas of use have been very limited. In this report, evaluation of the technology was performed by conceptually designing and costing a theoretical flame jet drilling rig. The design process reviews a number of different concepts of the various components needed, and then chooses those pieces of equipment that best suit the needs of the system and have the best chance of being properly developed. The final concept consists of a flexible umbilical hose containing several internal hoses for carrying the various required fluids. An evaluation of this system was then made to determine its operational characteristics. The drilling capabilities and the economics of this rig were then compared to a conventional rotary drilling rig by theoretically drilling two holes of approximately 15,000 feet in depth. This comparison was done by use of a spread sheet type computer program. The results of this study

  8. An automated flow system incorporating in-line acid dissolution of bismuth metal from a cyclotron irradiated target assembly for use in the isolation of astatine-211.

    PubMed

    O'Hara, Matthew J; Krzysko, Anthony J; Niver, Cynthia M; Morrison, Samuel S; Owsley, Stanley L; Hamlin, Donald K; Dorman, Eric F; Scott Wilbur, D

    2017-04-01

    Astatine-211 ((211)At) is a promising cyclotron-produced radionuclide being investigated for use in targeted alpha therapy. The wet chemical isolation of trace quantities of (211)At, produced within several grams of Bi metal deposited onto an aluminum cyclotron target assembly, involves a multi-step procedure. Because the (211)At isolation method is labor-intensive and complex, automation of the method is being developed to facilitate routine processing at the University of Washington and to make it easier to transfer the process to other institutions. As part of that automation effort, a module useful in the initial step of the isolation procedure, dissolution of the Bi target, was designed and tested. The computer-controlled module performs in-line dissolution of Bi metal from the target assembly using an enclosed target dissolution block, routing the resulting solubilized (211)At/Bi mixture to the subsequent process step. The primary parameters involved in Bi metal solubilization (influent HNO3 concentration and flow rate) were optimized prior to evaluation of the system using replicate (211)At-bearing cyclotron irradiated targets. The results indicate that the system performs in a predictable and reproducible manner, with cumulative Bi and (211)At recoveries following a sigmoidal function.

  9. Iron-Targeting Antitumor Activity of Gallium Compounds and Novel Insights Into Triapine®-Metal Complexes

    PubMed Central

    Antholine, William E.

    2013-01-01

    Abstract Significance: Despite advances made in the treatment of cancer, a significant number of patients succumb to this disease every year. Hence, there is a great need to develop new anticancer agents. Recent Advances: Emerging data show that malignant cells have a greater requirement for iron than normal cells do and that proteins involved in iron import, export, and storage may be altered in cancer cells. Therefore, strategies to perturb these iron-dependent steps in malignant cells hold promise for the treatment of cancer. Recent studies show that gallium compounds and metal-thiosemicarbazone complexes inhibit tumor cell growth by targeting iron homeostasis, including iron-dependent ribonucleotide reductase. Chemical similarities of gallium(III) with iron(III) enable the former to mimic the latter and interpose itself in critical iron-dependent steps in cellular proliferation. Newer gallium compounds have emerged with additional mechanisms of action. In clinical trials, the first-generation-compound gallium nitrate has exhibited activity against bladder cancer and non-Hodgkin's lymphoma, while the thiosemicarbazone Triapine® has demonstrated activity against other tumors. Critical Issues: Novel gallium compounds with greater cytotoxicity and a broader spectrum of antineoplastic activity than gallium nitrate should continue to be developed. Future Directions: The antineoplastic activity and toxicity of the existing novel gallium compounds and thiosemicarbazone-metal complexes should be tested in animal tumor models and advanced to Phase I and II clinical trials. Future research should identify biologic markers that predict tumor sensitivity to gallium compounds. This will help direct gallium-based therapy to cancer patients who are most likely to benefit from it. Antioxid. Redox Signal. 00, 000–000. PMID:22900955

  10. Target-stimulated metallic HgS nanostructures on a DNA-based polyion complex membrane for highly efficient impedimetric detection of dissolved hydrogen sulfide.

    PubMed

    Zhuang, Junyang; Fu, Libing; Lai, Wenqiang; Tang, Dianping; Chen, Guonan

    2013-12-11

    Target-stimulated metallic HgS nanostructures formed on the DNA-based polyion complex (PIC) membrane were for the first time utilized as an efficient scheme for impedimetric detection of hydrogen sulfide (H2S) by coupling insoluble precipitation with sensitivity enhancement.

  11. Triple Ion-Beam Studies of Radiation Damage in 9Cr2WVTa Ferritic/Martensitic Steel for a High Power Spallation Neutron Source

    SciTech Connect

    Lee, EH

    2001-08-01

    To simulate radiation damage under a future Spallation Neutron Source (SNS) environment, irradiation experiments were conducted on a candidate 9Cr-2WVTa ferritic/martensitic steel using the Triple Ion Facility (TIF) at ORNL. Irradiation was conducted in single, dual, and triple ion beam modes using 3.5 MeV Fe{sup 2}, 360 keV He{sup +}, and 180 keV H{sup +} at 80, 200, and 350 C. These irradiations produced various defects comprising black dots, dislocation loops, line dislocations, and gas bubbles, which led to hardening. The largest increase in hardness, over 63%, was observed after 50 dpa for triple beam irradiation conditions, revealing that both He and H are augmenting the hardening. Hardness increased less than 30% after 30 dpa at 200 C by triple beams, compatible with neutron irradiation data from previous work which showed about a 30% increase in yield strength after 27.2 dpa at 365 C. However, the very large concentrations of gas bubbles in the matrix and on lath and grain boundaries after these simulated SNS irradiations make predictions of fracture behavior from fission reactor irradiations to spallation target conditions inadvisable.

  12. Three-Dimensional Characterization of Buried Metallic Targets via a Tomographic Algorithm Applied to GPR Synthetic Data

    NASA Astrophysics Data System (ADS)

    Comite, Davide; Galli, Alessandro; Catapano, Ilaria; Soldovieri, Francesco; Pettinelli, Elena

    2013-04-01

    This work is focused on the three-dimensional (3-D) imaging of buried metallic targets achievable by processing GPR (ground penetrating radar) simulation data via a tomographic inversion algorithm. The direct scattering problem has been analysed by means of a recently-developed numerical setup based on an electromagnetic time-domain CAD tool (CST Microwave Studio), which enables us to efficiently explore different GPR scenarios of interest [1]. The investigated 3D domain considers here two media, representing, e.g., an air/soil environment in which variously-shaped metallic (PEC) scatterers can be buried. The GPR system is simulated with Tx/Rx antennas placed in a bistatic configuration at the soil interface. In the implementation, the characteristics of the antennas may suitably be chosen in terms of topology, offset, radiative features, frequency ranges, etc. Arbitrary time-domain waveforms can be used as the input GPR signal (e.g., a Gaussian-like pulse having the frequency spectrum in the microwave range). The gathered signal at the output port includes the backscattered wave from the objects to be reconstructed, and the relevant data may be displayed in canonical radargram forms [1]. The GPR system sweeps along one main rectilinear direction, and the scanning process is here repeated along different close parallel lines to acquire data for a full 3-D analysis. Starting from the processing of the synthetic GPR data, a microwave tomographic approach is used to tackle the imaging, which is based on the Kirchhoff approximation to linearize the inverse scattering problem [2]. The target reconstruction is given in terms of the amplitude of the 'object function' (normalized with respect to its maximum inside the 3-D investigation domain). The data of the scattered field are collected considering a multi-frequency step process inside the fixed range of the signal spectrum, under a multi-bistatic configuration where the Tx and Rx antennas are separated by an offset

  13. Characteristics of high-energy neutrons estimated using the radioactive spallation products of Au at the 500-MeV neutron irradiation facility of KENS.

    PubMed

    Matsumura, Hiroshi; Masumoto, Kazuyoshi; Nakao, Noriaki; Wang, Qingbin; Toyoda, Akihiro; Kawai, Masayoshi; Aze, Takahiro; Fujimura, Masatsugu

    2005-01-01

    We carried out a shielding experiment of high-energy neutrons, generated from a tungsten target bombarded with primary 500-MeV protons at KENS, which penetrated through a concrete shield in the zero-degree direction. We propose a new method to evaluate the spectra of high-energy neutrons ranging from 8 to 500 MeV. Au foils were set in a concrete shield, and the reaction rates for 13 radionuclides produced by the spallation reactions on the Au targets were measured by radiochemical techniques. The experimental results were compared with those obtained by the MARS14 Monte-Carlo code. A good agreement (between them) was found for energies beyond 100 MeV. The profile of the neutron spectrum, ranging from 8 to 500 MeV, does not depend on the thickness of the concrete shield.

  14. Examination of irradiated 304L stainless steel to 6061-T6 aluminum inertia welded transition joints after irradiation in a spallation neutron

    SciTech Connect

    Dunn, K.A.

    2000-04-28

    The Savannah River Technology Center (SRTC) designed and fabricated tritium target/blanket assemblies which were irradiated for six months at the Los Alamos Neutron Science Center (LANSCE). Cooling water was supplied to the assemblies through 1 inch diameter 304L Stainless Steel (SS) tubing. To attach the 304L SS tubing to the modules a 304L SS to 6061-T6 Aluminum (Al) inertia welded transition joint was used. These SS/Al inertia weld transition joints simulate expected transition joints in the Accelerator Production of Tritium (APT) Target/Blanket where as many as a thousand SS/Al weld transition joints will be used. Materials compatibility between the 304L SS and the 6061-T6 Al in the spallation neutron environment is a major concern as well as the corrosion associated with the cooling water flowing through the piping. The irradiated inertia weld examination will be discussed.

  15. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    SciTech Connect

    Mauro, N. A.; Vogt, A. J.; Derendorf, K. S.; Johnson, M. L.; Kelton, K. F.; Rustan, G. E.; Quirinale, D. G.; Goldman, A. I.; Kreyssig, A.; Lokshin, K. A.; Neuefeind, J. C.; An, Ke; Wang, Xun-Li; Egami, T.

    2016-01-15

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. However, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elastic and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. To demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr{sub 64}Ni{sub 36} measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample (∼100 mg)

  16. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source.

    PubMed

    Mauro, N A; Vogt, A J; Derendorf, K S; Johnson, M L; Rustan, G E; Quirinale, D G; Kreyssig, A; Lokshin, K A; Neuefeind, J C; An, Ke; Wang, Xun-Li; Goldman, A I; Egami, T; Kelton, K F

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. However, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elastic and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. To demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr64Ni36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample (∼100 mg).

  17. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    DOE PAGES

    Mauro, N. A.; Vogt, A. J.; Derendorf, K. S.; ...

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. But, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elasticmore » and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. Furthermore, to demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr64Ni36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample ( 100 mg).« less

  18. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    SciTech Connect

    Mauro, N. A.; Vogt, A. J.; Derendorf, K. S.; Johnson, M. L.; Rustan, G. E.; Quirinale, D. G.; Kreyssig, A.; Lokshin, K. A.; Neuefeind, J. C.; An, Ke; Wang, Xun-Li; Goldman, A. I.; Egami, T.; Kelton, K. F.

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. But, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elastic and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. Furthermore, to demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr64Ni36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample ( 100 mg).

  19. Evaluation of the immunological profile of antibody-functionalized metal-filled single-walled carbon nanocapsules for targeted radiotherapy

    PubMed Central

    Perez Ruiz de Garibay, Aritz; Spinato, Cinzia; Klippstein, Rebecca; Bourgognon, Maxime; Martincic, Markus; Pach, Elzbieta; Ballesteros, Belén; Ménard-Moyon, Cécilia; Al-Jamal, Khuloud T.; Tobias, Gerard; Bianco, Alberto

    2017-01-01

    This study investigates the immune responses induced by metal-filled single-walled carbon nanotubes (SWCNT) under in vitro, ex vivo and in vivo settings. Either empty amino-functionalized CNTs [SWCNT-NH2 (1)] or samarium chloride-filled amino-functionalized CNTs with [SmCl3@SWCNT-mAb (3)] or without [SmCl3@SWCNT-NH2 (2)] Cetuximab functionalization were tested. Conjugates were added to RAW 264.7 or PBMC cells in a range of 1 μg/ml to 100 μg/ml for 24 h. Cell viability and IL-6/TNFα production were determined by flow cytometry and ELISA. Additionally, the effect of SWCNTs on the number of T lymphocytes, B lymphocytes and monocytes within the PBMC subpopulations was evaluated by immunostaining and flow cytometry. The effect on monocyte number in living mice was assessed after tail vein injection (150 μg of each conjugate per mouse) at 1, 7 and 13 days post-injection. Overall, our study showed that all the conjugates had no significant effect on cell viability of RAW 264.7 but conjugates 1 and 3 led to a slight increase in IL-6/TNFα. All the conjugates resulted in significant reduction in monocyte/macrophage cell numbers within PBMCs in a dose-dependent manner. Interestingly, monocyte depletion was not observed in vivo, suggesting their suitability for future testing in the field of targeted radiotherapy in mice. PMID:28198410

  20. Evaluation of the immunological profile of antibody-functionalized metal-filled single-walled carbon nanocapsules for targeted radiotherapy

    NASA Astrophysics Data System (ADS)

    Perez Ruiz de Garibay, Aritz; Spinato, Cinzia; Klippstein, Rebecca; Bourgognon, Maxime; Martincic, Markus; Pach, Elzbieta; Ballesteros, Belén; Ménard-Moyon, Cécilia; Al-Jamal, Khuloud T.; Tobias, Gerard; Bianco, Alberto

    2017-02-01

    This study investigates the immune responses induced by metal-filled single-walled carbon nanotubes (SWCNT) under in vitro, ex vivo and in vivo settings. Either empty amino-functionalized CNTs [SWCNT-NH2 (1)] or samarium chloride-filled amino-functionalized CNTs with [SmCl3@SWCNT-mAb (3)] or without [SmCl3@SWCNT-NH2 (2)] Cetuximab functionalization were tested. Conjugates were added to RAW 264.7 or PBMC cells in a range of 1 μg/ml to 100 μg/ml for 24 h. Cell viability and IL-6/TNFα production were determined by flow cytometry and ELISA. Additionally, the effect of SWCNTs on the number of T lymphocytes, B lymphocytes and monocytes within the PBMC subpopulations was evaluated by immunostaining and flow cytometry. The effect on monocyte number in living mice was assessed after tail vein injection (150 μg of each conjugate per mouse) at 1, 7 and 13 days post-injection. Overall, our study showed that all the conjugates had no significant effect on cell viability of RAW 264.7 but conjugates 1 and 3 led to a slight increase in IL-6/TNFα. All the conjugates resulted in significant reduction in monocyte/macrophage cell numbers within PBMCs in a dose-dependent manner. Interestingly, monocyte depletion was not observed in vivo, suggesting their suitability for future testing in the field of targeted radiotherapy in mice.

  1. Room Temperature Growth of Al-Doped ZnO Thin Films by Reactive DC Sputtering Technique with Metallic Target

    NASA Astrophysics Data System (ADS)

    Hasuike, Noriyuki; Nishio, Koji; Kisoda, Kenji; Harima, Hiroshi

    2013-01-01

    We prepared Al-deopd ZnO (AZO) films by reactive DC sputtering method using metallic target at room temperature. All the tested AZO films (0<[Al]<8.9%) with the transmittance above 85% in visible region were successfully grown on quartz substrate. All the AZO films have wurtzite structure with no impurity phase. The AZO films with [Al]<2.9% have the preferential orientation in c-axis direction, and the orientation became indistinct as increasing in Al content. In the optical measurement, the absorption edge was shifted from 3.30 to 3.66 eV due to Burstein-Moss effect, and the electron densities were roughly estimated at 2.5×1019 to 1.5×1021 cm-3, respectively. On the other hand, the high transmittance in infrared region suggested low electron mobility. Since this gives rise to the high electric resistivity, the further improvements and optimization of the growth conditions are required for the realization of AZO based transparent conductive.

  2. Magnetic Resonance Imaging Distortion and Targeting Errors from Strong Rare Earth Metal Magnetic Dental Implant Requiring Revision.

    PubMed

    Seong-Cheol, Park; Chong Sik, Lee; Seok Min, Kim; Eu Jene, Choi; Do Hee, Lee; Jung Kyo, Lee

    2016-12-22

    Recently, the use of magnetic dental implants has been re-popularized with the introduction of strong rare earth metal, for example, neodymium, magnets. Unrecognized magnetic dental implants can cause critical magnetic resonance image distortions. We report a case involving surgical failure caused by a magnetic dental implant. A 62-year-old man underwent deep brain stimulation for medically insufficiently controlled Parkinson's disease. Stereotactic magnetic resonance imaging performed for the first deep brain stimulation showed that the overdenture was removed. However, a dental implant remained and contained a neodymium magnet, which was unrecognized at the time of imaging; the magnet caused localized non-linear distortions that were the largest around the dental magnets. In the magnetic field, the subthalamic area was distorted by a 4.6 mm right shift and counter clockwise rotation. However, distortions were visually subtle in the operation field and small for distant stereotactic markers, with approximately 1-2 mm distortions. The surgeon considered the distortion to be normal asymmetry or variation. Stereotactic marker distortion was calculated to be in the acceptable range in the surgical planning software. Targeting errors, approximately 5 mm on the right side and 2 mm on the left side, occurred postoperatively. Both leads were revised after the removal of dental magnets. Dental magnets may cause surgical failures and should be checked and removed before stereotactic surgery. Our findings should be considered when reviewing surgical precautions and making distortion-detection algorithm improvements.

  3. Radiation induced cavitation: A possible phenomenon in liquid targets?

    SciTech Connect

    West, C.D.

    1998-07-01

    The proposed design of a new, short-pulse spallation neutron source includes a liquid mercury target irradiated with a 1 GeV proton beam. This paper explores the possibility that cavitation bubbles may be formed in the mercury and briefly discusses some design features that could avoid harmful effects should cavitation take place.

  4. High-pressure beamline (PLANET) at the spallation neutron source, J-PARC (Invited)

    NASA Astrophysics Data System (ADS)

    Kagi, H.; Hattori, T.; Arima, H.; Utsumi, W. S.; Komatsu, K.; Nagai, T.; Yagi, T.

    2009-12-01

    Material and Life Science experimental Facility (MLF) of Japan Proton Accelerator Research Complex (J-PARC) will be one of the most powerful spallation neutron facilities in the world. The pulsed neutron source with a liquid Hg target is designed to be running at 25 Hz with a power of 1 MW. We have started the construction of the powder diffractometer dedicated to high-pressure experiments (PLANET) on BL-11. PLANET aims to study structures of hydrogen-bearing materials including dense hydrous minerals of the Earth’s deep interior, magmas and light element liquids. The instrument will realize diffraction and radiography experiments for powder and liquid/glass samples at high pressures up to 20 GPa and 2000 K using a large sized multi-anvil hydraulic press that can apply forces of ˜1500 ton. The instrument views a decoupled liquid H2 moderator with a cross section of 100 × 100 mm2. The primary and secondary fight paths are 25 m and 1.5 m, respectively. The 11.5-m-long supermirror guide with elliptical shape starts at a distance of 11.5 m from the moderator. Design of elliptical geometry is optimized by means of incorporating several different grade mirrors and linear approximation with planar guide in order to save cost for production without degradation of the intensity performance. The guide has a rectangular cross-section and consists of four walls coated with supermirror material. Sample is placed at 2 m from the guide exit. The 90° detectors will be installed at 1.5 m from the sample position. For the powder diffraction measurements using a multi-anvil press, an incident neutron beam passes through the vertical anvil gaps and irradiates the sample in the pressure medium. Diffracted neutrons go through the other anvil gaps at 90° direction. Half inch 3He linear position sensitive detectors with 600 mm length will be arranged horizontally and form these detector banks, which cover the scattering angle of 79° ≤ 2θ ≤ 101° and -35° ≤ Φ ≤ +35°. The

  5. I. Impact Spallation Experiments: Fracture Patterns and Spall Velocities. I. Craters in Carbonate Rocks: AN Electron Paramagnetic Resonance Analysis of Shock Damage.

    NASA Astrophysics Data System (ADS)

    Polanskey, Carol Ann

    This work is divided into two independent papers. Paper 1. Spall velocities were measured for nine experimental impacts into San Marcos gabbro targets. Impact velocities ranged from 1 to 6.5 km/sec. Projectiles were iron, aluminum, lead, and basalt of varying sizes. The projectile masses ranged from a 4 g lead bullet to a 0.04 g aluminum sphere. The velocities of fragments were measured from high-speed films taken of the events. The maximum spall velocity observed was 30 m/sec, or 0.56 percent of the 5.4 km/sec impact velocity. The measured velocities were compared to the spall velocities predicted by the spallation model of Melosh (1984). The compatibility between the spallation model for large planetary impacts and the results of these small scale experiments are considered in detail. The targets were also bisected to observe the pattern of internal fractures. A series of fractures were observed, whose location coincided with the boundary between rock subjected to the peak shock compression and a theoretical "near surface zone" predicted by the spallation model. Thus, between this boundary and the free surface, the target material should receive reduced levels of compressive stress as compared to the more highly shocked region below. Paper 2. Carbonate samples from the nuclear explosion crater, OAK, and a terrestrial impact crater, Meteor Crater, were analyzed for shock damage using electron paramagnetic resonance, EPR. The first series of samples for OAK Crater were obtained from six boreholes within the crater, and the second series were ejecta samples recovered from the crater floor. The degree of shock damage in the carbonate material was assessed by comparing the sample spectra to spectra of Solenhofen limestone, which had been shocked to known pressures. The results of the OAK borehole analysis have identified a thin zone of highly shocked carbonate material underneath the crater floor. This zone has a maximum depth of approximately 200 ft below sea floor

  6. Impact spallation experiments - Fracture patterns and spall velocities

    NASA Technical Reports Server (NTRS)

    Polanskey, Carol A.; Ahrens, Thomas J.

    1990-01-01

    The spall velocities produced by nine experimental impacts of 1 to 6.5 km/sec into San Marcos gabbro targets, using projectiles of Fe, Al, Pb, and basalt of various sizes, have been measured in conjunction with fragment-velocity high-speed filmings of the events. A detailed comparison is made between measured spall velocities and those predicted by the model of Melosh (1984), with a view to the compatibility of small-scale results and large planetary impacts. Attention is also given to the patterns of internal fracture generated by impact within the targets.

  7. Impact spallation experiments - Fracture patterns and spall velocities

    SciTech Connect

    Polanskey, C.A.; Ahrens, T.J. California Institute of Technology, Pasadena )

    1990-09-01

    The spall velocities produced by nine experimental impacts of 1 to 6.5 km/sec into San Marcos gabbro targets, using projectiles of Fe, Al, Pb, and basalt of various sizes, have been measured in conjunction with fragment-velocity high-speed filmings of the events. A detailed comparison is made between measured spall velocities and those predicted by the model of Melosh (1984), with a view to the compatibility of small-scale results and large planetary impacts. Attention is also given to the patterns of internal fracture generated by impact within the targets. 29 refs.

  8. Dynamics of spallation during femtosecond laser ablation studied by time-resolved reflectivity with double pump pulses

    SciTech Connect

    Kumada, Takayuki Otobe, Tomohito; Nishikino, Masaharu; Hasegawa, Noboru; Hayashi, Terutake

    2016-01-04

    The dynamics of photomechanical spallation during femtosecond laser ablation of fused silica was studied by time-resolved reflectivity with double pump pulses. Oscillation of reflectivity was caused by interference between the probe pulses reflected at the sample surface and the spallation layer, and was enhanced when the surface was irradiated with the second pump pulse within a time interval, Δτ, of several picoseconds after the first pump pulse. However, as Δτ was increased, the oscillation amplitude decreased with an exponential decay time of 10 ps. The oscillation disappeared when Δτ exceeded 20 ps. This result suggests that the formation time of the spallation layer is approximately 10 ps. A second pump pulse with Δτ shorter than 10 ps excites the bulk sample. The spallation layer that is photo-excited by the first and second pump pulses is separated afterward. In contrast, a pulse with Δτ longer than the formation time excites and breaks up the spallation layer that has already been separated from the bulk. The formation time of the spallation layer, as determined in this experiment, is attributed to the characteristic time of the mechanical equilibration corresponding to the thickness divided by the sound velocity of the photo-excited layer.

  9. In-situ structural integrity evaluation for high-power pulsed spallation neutron source - Effects of cavitation damage on structural vibration

    NASA Astrophysics Data System (ADS)

    Wan, Tao; Naoe, Takashi; Futakawa, Masatoshi

    2016-01-01

    A double-wall structure mercury target will be installed at the high-power pulsed spallation neutron source in the Japan Proton Accelerator Research Complex (J-PARC). Cavitation damage on the inner wall is an important factor governing the lifetime of the target-vessel. To monitor the structural integrity of the target vessel, displacement velocity at a point on the outer surface of the target vessel is measured using a laser Doppler vibrometer (LDV). The measured signals can be used for evaluating the damage inside the target vessel because of cyclic loading and cavitation bubble collapse caused by pulsed-beam induced pressure waves. The wavelet differential analysis (WDA) was applied to reveal the effects of the damage on vibrational cycling. To reduce the effects of noise superimposed on the vibration signals on the WDA results, analysis of variance (ANOVA) and analysis of covariance (ANCOVA), statistical methods were applied. Results from laboratory experiments, numerical simulation results with random noise added, and target vessel field data were analyzed by the WDA and the statistical methods. The analyses demonstrated that the established in-situ diagnostic technique can be used to effectively evaluate the structural response of the target vessel.

  10. Spallation model for the titanium-rich supernova remnant cassiopeia A.

    PubMed

    Ouyed, Rachid; Leahy, Denis; Ouyed, Amir; Jaikumar, Prashanth

    2011-10-07

    Titanium-rich subluminous supernovae are rare and challenge current SN nucleosynthesis models. We present a model in which ejecta from a standard supernova is impacted by a second explosion of the neutron star (a quark nova), resulting in spallation reactions that lead to (56)Ni destruction and (44)Ti creation under the right conditions. Basic calculations of the spallation products shows that a delay between the two explosions of ∼5  days reproduces the observed abundance of (44)Ti in Cas A and explains its low luminosity as a result of the destruction of (56)Ni. Our results could have important implications for light curves of subluminous as well as superluminous supernovae.

  11. Negative Pressures and Spallation in Water Drops Subjected to Nanosecond Shock Waves.

    PubMed

    Stan, Claudiu A; Willmott, Philip R; Stone, Howard A; Koglin, Jason E; Liang, Mengning; Aquila, Andrew L; Robinson, Joseph S; Gumerlock, Karl L; Blaj, Gabriel; Sierra, Raymond G; Boutet, Sébastien; Guillet, Serge A H; Curtis, Robin H; Vetter, Sharon L; Loos, Henrik; Turner, James L; Decker, Franz-Josef

    2016-06-02

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below -100 MPa were reached in the drops. We model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.

  12. A neutron resonance capture analysis experimental station at the ISIS spallation source.

    PubMed

    Pietropaolo, Antonino; Gorini, Giuseppe; Festa, Giulia; Reali, Enzo; Grazzi, Francesco; Schooneveld, Erik M

    2010-09-01

    Neutron resonance capture analysis (NRCA) is a nuclear technique that is used to determine the elemental composition of materials and artifacts (e.g., bronze objects) of archaeological interest. NRCA experiments are mostly performed at the GELINA facility in Belgium, a pulsed neutron source operating with an electron linear accelerator. Very intense fluxes of epithermal neutrons are also provided by spallation neutron sources, such as the ISIS spallation neutron source in the United Kingdom. In the present study, the suitability of the Italian Neutron Experimental Station (INES) beam line for NRCA measurements is assessed using a compact (n, γ) resonance detector made of a Yttrium-Aluminum-Perovskite (YAP) scintillation crystal coupled with a silicon photomultiplier (SiPM) readout. The measurements provided a qualitative recognition of the composition of the standard sample, a lower limit for the sensitivity for NRCA for almost-in-traces elements, and an estimation of the relative isotopic concentration in the sample.

  13. Negative pressures and spallation in water drops subjected to nanosecond shock waves

    SciTech Connect

    Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.; Koglin, Jason E.; Liang, Mengning; Aquila, Andrew L.; Robinson, Joseph S.; Gumerlock, Karl L.; Blaj, Gabriel; Sierra, Raymond G.; Boutet, Sebastien; Guillet, Serge A. H.; Curtis, Robin H.; Vetter, Sharon L.; Loos, Henrik; Turner, James L.; Decker, Franz -Josef

    2016-05-16

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPa were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.

  14. Spallation Model for the Titanium-Rich Supernova Remnant Cassiopeia A

    SciTech Connect

    Ouyed, Rachid; Leahy, Denis; Ouyed, Amir; Jaikumar, Prashanth

    2011-10-07

    Titanium-rich subluminous supernovae are rare and challenge current SN nucleosynthesis models. We present a model in which ejecta from a standard supernova is impacted by a second explosion of the neutron star (a quark nova), resulting in spallation reactions that lead to {sup 56}Ni destruction and {sup 44}Ti creation under the right conditions. Basic calculations of the spallation products shows that a delay between the two explosions of {approx}5 days reproduces the observed abundance of {sup 44}Ti in Cas A and explains its low luminosity as a result of the destruction of {sup 56}Ni. Our results could have important implications for light curves of subluminous as well as superluminous supernovae.

  15. Negative pressures and spallation in water drops subjected to nanosecond shock waves

    DOE PAGES

    Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.; ...

    2016-05-16

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPamore » were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.« less

  16. Coherent Scattering Investigations at the Spallation Neutron Source: a Snowmass White Paper

    SciTech Connect

    Akimov, D.; Bernstein, A.; BarbeauP.,; Barton, P. J.; Bolozdynya, A.; Cabrera-Palmer, B.; Cavanna, F.; Cianciolo, Vince; Collar, J.; Cooper, R. J.; Dean, D. J.; Efremenko, Yuri; Etenko, A.; Fields, N.; Foxe, M.; Figueroa-Feliciano, E.; Fomin, N.; Gallmeier, F.; Garishvili, I.; Gerling, M.; Green, M.; Greene, Geoffrey; Hatzikoutelis, A.; Henning, Reyco; Hix, R.; Hogan, D.; Hornback, D.; Jovanovic, I.; Hossbach, T.; Iverson, Erik B; Klein, S. R.; Khromov, A.; Link, J.; Louis, W.; Lu, W.; Mauger, C.; Marleau, P.; Markoff, D.; Martin, R. D.; Mueller, Paul Edward; Newby, J.; Orrell, John L.; O'Shaughnessy, C.; Penttila, Seppo; Patton, K.; Poon, A. W.; Radford, David C; Reyna, D.; Ray, H.; Scholberg, K.; Sosnovtsev, V.; Tayloe, R.; Vetter, K.; Virtue, C.; Wilkerson, J.; Yoo, J.; Yu, Chang-Hong

    2013-01-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure that is beneficial for background rejection. In this white paper, we describe how the SNS source can be used for a measurement of coherent elastic neutrino-nucleus scattering (CENNS), and the physics reach of different phases of such an experimental program (CSI: Coherent Scattering Investigations at the SNS).

  17. Fundamental neutron physics beamline at the spallation neutron source at ORNL

    DOE PAGES

    Fomin, N.; Greene, G. L.; Allen, R. R.; ...

    2014-11-04

    In this paper, we describe the Fundamental Neutron Physics Beamline (FnPB) facility located at the Spallation Neutron Source at Oak Ridge National Laboratory. The FnPB was designed for the conduct of experiments that investigate scientific issues in nuclear physics, particle physics, astrophysics and cosmology using a pulsed slow neutron beam. Finally, we present a detailed description of the design philosophy, beamline components, and measured fluxes of the polychromatic and monochromatic beams.

  18. RESULTS OF BACKGROUND SUBTRACTION TECHNIQUES ON THE SPALLATION NEUTRON SOURCE BEAM LOSS MONITORS

    SciTech Connect

    Pogge, James R; Zhukov, Alexander P

    2010-01-01

    Recent improvements to the Spallation Neutron Source (SNS) beam loss monitor (BLM) designs have been made with the goal of significantly reducing background noise. This paper outlines this effort and analyzes the results. The significance of this noise reduction is the ability to use the BLM sensors [1], [2], [3] distributed throughout the SNS accelerator as a method to monitor activation of components as well as monitor beam losses.

  19. Spallation backgrounds in Super-Kamiokande are made in muon-induced showers

    NASA Astrophysics Data System (ADS)

    Li, Shirley Weishi; Beacom, John F.

    2015-05-01

    Crucial questions about solar and supernova neutrinos remain unanswered. Super-Kamiokande has the exposure needed for progress, but detector backgrounds are a limiting factor. A leading component is the beta decays of isotopes produced by cosmic-ray muons and their secondaries, which initiate nuclear spallation reactions. Cuts of events after and surrounding muon tracks reduce this spallation decay background by ≃ 90 % (at a cost of ≃ 20 % deadtime), but its rate at 6-18 MeV is still dominant. A better way to cut this background was suggested in a Super-Kamiokande paper by Bays et al. [Phys. Rev. D 85, 052007 (2012)] on a search for the diffuse supernova neutrino background. They found that spallation decays above 16 MeV were preceded near the same location by a peak in the apparent Cherenkov light profile from the muon; a more aggressive cut was applied to a limited section of the muon track, leading to decreased background without increased deadtime. We put their empirical discovery on a firm theoretical foundation. We show that almost all spallation decay isotopes are produced by muon-induced showers and that these showers are rare enough and energetic enough to be identifiable. This is the first such demonstration for any detector. We detail how the physics of showers explains the peak in the muon Cherenkov light profile and other Super-K observations. Our results provide a physical basis for practical improvements in background rejection that will benefit multiple studies. For solar neutrinos, in particular, it should be possible to dramatically reduce backgrounds at energies as low as 6 MeV.

  20. The Macromolecular Neutron Diffractometer MaNDi at the Spallation Neutron Source

    DOE PAGES

    Coates, Leighton; Cuneo, Matthew J.; Frost, Matthew J.; ...

    2015-07-18

    The Macromolecular Neutron Diffractometer (MaNDi) is located on beamline 11B of the Spallation Neutron Source at Oak Ridge National Laboratory. Moreover, the instrument is a neutron time-of-flight wavelength-resolved Laue diffractometer optimized to collect diffraction data from single crystals. Finally, the instrument has been designed to provide flexibility in several instrumental parameters, such as beam divergence and wavelength bandwidth, to allow data collection from a range of macromolecular systems.

  1. The Macromolecular Neutron Diffractometer MaNDi at the Spallation Neutron Source

    SciTech Connect

    Coates, Leighton; Cuneo, Matthew J.; Frost, Matthew J.; He, Junhong; Weiss, Kevin L.; McFeeters, Hana; Tomanicek, Stephen J.; Vandavasi, Venu Gopal; Langan, Paul; Iverson, Erik B.

    2015-07-18

    The Macromolecular Neutron Diffractometer (MaNDi) is located on beamline 11B of the Spallation Neutron Source at Oak Ridge National Laboratory. Moreover, the instrument is a neutron time-of-flight wavelength-resolved Laue diffractometer optimized to collect diffraction data from single crystals. Finally, the instrument has been designed to provide flexibility in several instrumental parameters, such as beam divergence and wavelength bandwidth, to allow data collection from a range of macromolecular systems.

  2. CHINA SPALLATION NEUTRON SOURCE PROJECT: DESIGN ITERATIONS AND R AND D STATUS.

    SciTech Connect

    WEI,J.

    2006-09-21

    The China Spallation Neutron Source (CSNS) is an accelerator based high power project currently under preparation in China. The accelerator complex is based on an H{sup -} linear accelerator and a rapid cycling proton synchrotron. During the past year, the design of most accelerator systems went through major iterations, and initial research and developments were started on the prototyping of several key components. This paper summarizes major activities of the past year.

  3. Mechanism of spallation in platinum aluminide/electron beam physical vapor-deposited thermal barrier coatings

    SciTech Connect

    Gell, M.; Vaidyanathan, K.; Barber, B.; Cheng, J.; Jordan, E.

    1999-02-01

    The spallation failure of a commercial thermal barrier coating (TBC), consisting of a single-crystal RENE N5 superalloy, a platinum aluminide (Pt-Al) bond coat, and an electron beam-deposited 7 wt pct yttria-stabilized zirconia ceramic layer (7YSZ), was studied following cyclic furnace testing. In the uncycled state and prior to deposition of the ceramic, the Pt-Al bond-coat surface contains a cellular network of ridges corresponding to the underlying bond-coat grain-boundary structure. With thermal cycling, the ridges and associated grain boundaries are the sites of preferential oxidation and cracking, which results in the formation of cavities that are partially filled with oxide. Using a fluorescent penetrant dye in conjunction with a direct-pull test, it is shown that, when specimens are cycled to about 80 pct of life, these grain-boundary regions show extensive debonding. The roles of oxidation and cyclic stress in localized grain boundary region spallation are discussed. The additional factors leading to large-scale TBC spallation are described.

  4. Delayed Alumina Scale Spallation on Rene'n5+y: Moisture Effects and Acoustic Emission

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Morscher, Gregory N.

    2001-01-01

    The single crystal superalloy Rene'N5 (with or without Y-doping and hydrogen annealing) was cyclically oxidized at 1150 C for 1000 hours. After considerable scale growth (>= 500 hours), even the adherent alumina scales formed on Y-doped samples exhibited delayed interfacial spallation during subsequent water immersion tests, performed up to one year after oxidation. Spallation was characterized by weight loss, the amount of spalled area, and acoustic emission response. Hydrogen annealing (prior to oxidation) reduced spallation both before and after immersion, but without measurably reducing the bulk sulfur content of the Y-doped alloys. The duration and frequency of sequential, co-located acoustic emission events implied an interfacial crack growth rate at least 10(exp -3) m/s, but possibly higher than 10(exp 2) m/s. This is much greater than classic moisture-assisted slow crack growth rates in bulk alumina (10(exp -6) to 10(exp -3) m/s), which may still have occurred undetected by acoustic emission. An alternative failure sequence is proposed: an incubation process for preferential moisture ingress leads to a local decrease in interfacial toughness, thus allowing fast fracture driven by stored strain energy.

  5. NON-DESTRUCTIVE THERMAL BARRIER COATING SPALLATION PREDICTION BY A LOADBASED MICRO-INDENTATION TECHNIQUE

    SciTech Connect

    J. M. Tannenbaum; K. Lee; B. S.-J. Kang; M.A. Alvin

    2010-11-18

    Currently, the durability and life cycle of thermal barrier coatings (TBC) applied to gas turbine blades and combustor components are limiting the maximum temperature and subsequent efficiency at which gas turbine engines operate. The development of new materials, coating technologies and evaluation techniques is required if enhanced efficiency is to be achieved. Of the current ceramic coating materials used in gas turbine engines, yttria stabilized zirconia (YSZ) is most prevalent, its low thermal conductivity, high thermal expansion coefficient and outstanding mechanical strength make it ideal for use in TBC systems. However, residual stresses caused by coefficients of thermal expansion mismatches within the TBC system and unstable thermally grown oxides are considered the primary causes for its premature and erratic spallation failure. Through finite element simulations, it is shown that the residual stresses generated within the thermally grown oxide (TGO), bond coat (BC), YSZ and their interfaces create slight variations in indentation unloading surface stiffness response prior to spallation failure. In this research, seven air plasma sprayed and one electron beam physical vapor deposition yttria partially stabilized zirconia TBCs were subjected to isothermal and cyclic loadings at 1100°C. The associated coating degradation was evaluated using a non-destructive multiple partial unloading micro-indentation procedure. The results show that the proposed non-destructive micro-indentation evaluation technique can be an effective and specimenindependent TBC failure prediction tool capable of determining the location of initial spallation failure prior to its actual occurrence.

  6. Dislocation-kinetic analysis of FCC and BCC crystal spallation under shock-wave loading

    NASA Astrophysics Data System (ADS)

    Malygin, G. A.; Ogarkov, S. L.; Andriyash, A. V.

    2015-09-01

    Within the dislocation-kinetic model of the formation and propagation of shock waves in crystals under their intense shock-wave loading, the crystal spallation mechanism at micro- and macrolevels has been discussed taking into account published empirical data. It has been shown that the spallation time t f for Cu, Ni, α-Fe, and Ta crystals in the time interval of 10-6-10-9 s at the macroscopic level changes with variations in the wave pressure σ as , where = is the plastic strain rate according to the Swegle-Grady relation; K f , K σ, and ɛ f = K f K σ ≈ 3-5% are the pressure-independent spallation coefficients and strain, respectively; and E is the Young's modulus. At the microlevel, the dislocation-kinetic calculation of plastic zones around pore nuclei as stress concentrators and plastic strain localization regions at the shock wave front has been performed. It has been shown that the pore coalescence and spall fracture formation result from the superposition of shear stresses and plastic deformations in interpore spacings when the latter decrease to a size of the order of two pore sizes.

  7. Preparation and testing of corrosion and spallation-resistant coatings

    SciTech Connect

    Hurley, John

    2012-09-30

    This Energy & Environmental Research Center (EERC) project is designed to determine if plating APMT, a specific highly oxidation-resistant oxide dispersion-strengthened FeCrAl alloy made by Kanthal, onto nickel-based superalloy turbine parts is a viable method for substantially improving the lifetimes and maximum use temperatures of the parts. The method for joining the APMT plate to the superalloys is called evaporative metal bonding. It involves placing a thin foil of zinc (Zn) between the plate and the superalloy, clamping them together, and heating in an atmosphere-controlled furnace. Upon heating, the Zn melts and dissolves the oxide skins of the alloys at the bond line, allowing the two alloys to diffuse into each other. The Zn then diffuses through the alloys and evaporates from their surfaces. Laboratory testing has shown that the diffusion rate of Zn through the FeCrAl alloy is much faster than through the nickel superalloys. This means that the FeCrAl will serve as a sink for the Zn bonding alloy during the evaporative metal bonding process. Also, the testing has shown that the Zn diffusion mechanism is bulk diffusion, and not intergranular. This is a surprise. However, it means that quantification of the Zn diffusivities in these samples will be significantly simpler than would have been the case if grain boundary diffusion dominated. In addition to the laboratory testing, gas impinger and particulate samples are being collected from a combustor firing syngas and natural gas to determine what types of microcontaminants may reach a turbine firing syngas. The syngas is created in one of two different pilot-scale pressurized coal gasifiers. The initial analysis of the impinger solutions was for standard U.S. Environmental Protection Agency (EPA) Method 29 determination of hazardous metals and did not include major element analysis. When syngas is fired, the amount of Mn in the combustor gas increases substantially. Halogens (Br2 and Cl2) and hydrogen

  8. Phenomenological Studies of Macroscale Failure in Metals

    SciTech Connect

    Kashiwa, Bryan Andrew; Hull, Lawrence Mark

    2016-12-06

    Highlights of recent phenomenological studies of metal failure are given. Failure leading to spallation and fragmentation are typically of interest. The current ‘best model’ includes the following; a full history stress in tension; nucleation initiating dynamic relaxation; toward a tensile yield function; failure dependent on strain, strain rate, and temperature; a mean-preserving ‘macrodefect’ is introduced when failure occurs in tension; and multifield theoretical refinements

  9. PREPARATION AND TESTING OF CORROSIONAND SPALLATION-RESISTANT COATINGS

    SciTech Connect

    Hurley, John

    2014-11-01

    This Energy & Environmental Research Center (EERC) project is designed to determine if plating APMT®, a specific highly oxidation-resistant oxide dispersion-strengthened FeCrAl alloy made by Kanthal, onto nickel-based superalloy turbine parts is a viable method for substantially improving the lifetimes and maximum use temperatures of the parts. The method for joining the APMT plate to the superalloys is called evaporative metal bonding and involves placing a thin foil of zinc (Zn) between the plate and the superalloy, clamping them together, and heating in an atmosphere-controlled furnace. Upon heating, the Zn melts and dissolves the oxide skins of the alloys at the bond line, allowing the two alloys to diffuse into each other. The Zn then diffuses through the alloys and evaporates from their surfaces. Laboratory testing to determine the diffusion rate of Zn through the alloys has been completed. However, an analytical solution does not exist to model the diffusion of zinc through the alloys. For this reason, a finite difference algorithm using MATLAB was developed. It makes use of the hopscotch algorithm. The model allows the user to specify the dimensions of the metal parts, the Zn concentration at the bondline, the mesh size, time step, and Zn diffusivity. The experimentally measured values of diffusivity for Zn in APMT and Rene 80/CM 247LC are approximately 2.7 × 10-12 and 4 × 10-14 m2/s, respectively. While the qualitative behavior of the model appears correct, a comparison of the diffusion predictions with the experimental results from earlier in the project indicates that the expected Zn concentration is significantly higher than that measured experimentally. The difference depends on the assumed initial concentration, which is difficult to quantify exactly under experimental conditions for t = 0. In addition to the diffusion work, the coefficients of thermal expansions were determined for each of the alloys as a function of temperature. This information

  10. Measurement of Volatile Radionuclides Production and Release Yields followed by a Post-Irradiation Analysis of a Pb/Bi Filled Ta Target at ISOLDE

    NASA Astrophysics Data System (ADS)

    Zanini, L.; Köster, U.; David, J. C.; Tall, Y.; Andersson, M.; Berg, K.; Cormon, S.; Fallot, M.; Foucher, Y.; Frånberg, H.; Gröschel, F.; Guertin, A.; Kirchner, T.; Leray, S.; Manfrin, E.; Noah, E.; Ravn, H.; Stora, T.; Thiollière, N.; Wohlmuther, M.

    2014-05-01

    A crucial requirement in the development of liquid-metal spallation neutron target is knowledge of the composition and amount of volatile radionuclides that are released from the target during operation. It is also important to know the total amount produced, which could be released if there was an accident. One type is the lead-bismuth eutectic (LBE) target where different radionuclides can be produced following interaction with a high-energy proton beam, notably noble gases (Ar, Kr, Xe isotopes) and other relative volatile isotopes such as Hg and At. The results of an irradiation experiment performed at ISOLDE on a LBE target are compared with predictions from the MCNPX code using the latest developments on the Liège Intranuclear Cascade model (INCL4.6) and the CEM03 model. The calculations are able to reproduce the mass distribution of the radioisotopes produced, including the At production, where there is a significant contribution from secondary reactions. Subsequently, a post-irradiation examination of the irradiated target was performed. Investigations of both the tantalum target structure, in particular the beam window, and the lead-bismuth eutectic were performed using several experimental techniques. No sign of severe irradiation damage, previously observed in other ISOLDE targets, was found.

  11. Overview of ten-year operation of the superconducting linear accelerator at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Kim, S.-H.; Afanador, R.; Barnhart, D. L.; Crofford, M.; Degraff, B. D.; Doleans, M.; Galambos, J.; Gold, S. W.; Howell, M. P.; Mammosser, J.; McMahan, C. J.; Neustadt, T. S.; Peters, C.; Saunders, J. W.; Strong, W. H.; Vandygriff, D. J.; Vandygriff, D. M.

    2017-04-01

    The Spallation Neutron Source (SNS) has acquired extensive operational experience of a pulsed proton superconducting linear accelerator (SCL) as a user facility. Numerous lessons have been learned in its first 10 years operation to achieve a stable and reliable operation of the SCL. In this paper, an overview of the SNS SCL design, qualification of superconducting radio frequency (SRF) cavities and ancillary subsystems, an overview of the SNS cryogenic system, the SCL operation including SCL output energy history and downtime statistics, performance stability of the SRF cavities, efforts for SRF cavity performance recovery and improvement at the SNS, and maintenance activities for cryomodules are introduced.

  12. HYSPEC : A CRYSTAL TIME OF FLIGHT HYBRID SPECTROMETER FOR THE SPALLATION NEUTRON SOURCE.

    SciTech Connect

    SHAPIRO,S.M.; ZALIZNYAK,I.A.

    2002-12-30

    This document lays out a proposal by the Instrument Development Team (IDT) composed of scientists from leading Universities and National Laboratories to design and build a conceptually new high-flux inelastic neutron spectrometer at the pulsed Spallation Neutron Source (SNS) at Oak Ridge. This instrument is intended to supply users of the SNS and scientific community, of which the IDT is an integral part, with a platform for ground-breaking investigations of the low-energy atomic-scale dynamical properties of crystalline solids. It is also planned that the proposed instrument will be equipped with a polarization analysis capability, therefore becoming the first polarized beam inelastic spectrometer in the SNS instrument suite, and the first successful polarized beam inelastic instrument at a pulsed spallation source worldwide. The proposed instrument is designed primarily for inelastic and elastic neutron spectroscopy of single crystals. In fact, the most informative neutron scattering studies of the dynamical properties of solids nearly always require single crystal samples, and they are almost invariably flux-limited. In addition, in measurements with polarization analysis the available flux is reduced through selection of the particular neutron polarization, which puts even more stringent limits on the feasibility of a particular experiment. To date, these investigations have mostly been carried out on crystal spectrometers at high-flux reactors, which usually employ focusing Bragg optics to concentrate the neutron beam on a typically small sample. Construction at Oak Ridge of the high-luminosity spallation neutron source, which will provide intense pulsed neutron beams with time-averaged fluxes equal to those at medium-flux reactors, opens entirely new opportunities for single crystal neutron spectroscopy. Drawing upon experience acquired during decades of studies with both crystal and time-of-flight (TOF) spectrometers, the IDT has developed a conceptual

  13. Spallation neutron source saddle antenna H{sup -} ion source project

    SciTech Connect

    Dudnikov, Vadim; Johnson, Rolland P.; Dudnikova, Galina; Stockli, Martin; Welton, Robert

    2010-02-15

    In this project we are developing an H{sup -} source which will synthesize the most important developments in the field of negative ion sources to provide high current, high brightness, good lifetime, high reliability, and high power efficiency. We describe two planned modifications to the present spallation neutron source external antenna source in order to increase the plasma density near the output aperture: (1) replacing the present 2 MHz plasma-forming solenoid antenna with a 13 MHz saddle-type antenna and (2) replacing the permanent multicusp magnetic system with a weaker electromagnet.

  14. Facility for fast neutron irradiation tests of electronics at the ISIS spallation neutron source

    SciTech Connect

    Andreani, C.; Pietropaolo, A.; Salsano, A.; Gorini, G.; Tardocchi, M.; Paccagnella, A.; Gerardin, S.; Frost, C. D.; Ansell, S.; Platt, S. P.

    2008-03-17

    The VESUVIO beam line at the ISIS spallation neutron source was set up for neutron irradiation tests in the neutron energy range above 10 MeV. The neutron flux and energy spectrum were shown, in benchmark activation measurements, to provide a neutron spectrum similar to the ambient one at sea level, but with an enhancement in intensity of a factor of 10{sup 7}. Such conditions are suitable for accelerated testing of electronic components, as was demonstrated here by measurements of soft error rates in recent technology field programable gate arrays.

  15. Mechanical characterization of thin film structures using a laser spallation technique

    NASA Astrophysics Data System (ADS)

    Wu, Jianxin

    The laser spallation technique has been developed to measure the interface strength between different materials, especially thin film structures. In this work, it is refined and applied to various material systems. With these advances, the laser spallation technique is now fully mature for applications not only to measurement of material interface strength, but also to the study of laser-material interaction, dynamic fracture mechanics, as well as to the measurement of material bulk properties. In the first part of this work, the laser spallation technique was examined quantitatively for signal processing and stress wavefield recovery. It is shown that the short time Fourier transformation is another appropriate means for recovering the free surface displacement from the acquired optical signal. Two methods have been chosen to recover the stress field inside the sample. When the displacement of the coating's free surface is recorded directly, it is convenient to use a special finite difference strategy. When the free surface displacement is recorded on the bare substrate surface, it is more convenient to use the finite element method to calculate the interface strength. The application work includes several topics. The first one was the evaluation of the effect of substrate orientation and deposition mode on the interface strength of Nb-sapphire interfaces. The interface strength is higher for the sapphire substrate with prismatic orientation, and RF deposition mode yields higher interface strength than the DC mode. The second application estimated the effect of substrate roughness on the interface strength of Nb-alumina system. The effect of chemical composition of thin films on the interface strength was also investigated. The final application investigated the dynamic fracture mechanics of thin film structures. The purpose of this chapter is to clarify the controversial topic regarding the limit speed of bimaterial interface crack propagation. We were successful

  16. Mitigation and Prediction of Spallation of Oxide Scales on Ferritic Stainless Steel

    SciTech Connect

    Chou, Y. S.; Stephens, Elizabeth V.; Xu, Zhijie; Xu, Wei; Koeppel, Brian J.; Stevenson, Jeffry W.

    2015-02-04

    This report summarizes results from experimental and modeling studies performed by researchers at Pacific Northwest National Laboratory on behalf of the Solid-State Energy Conversion Alliance (SECA) Core Technology Program. The results indicate that application of physical surface modifications, such as surface blasting, prior to application of protective surface coatings can substantially increase oxide scale spallation resistance during long-term exposure to elevated temperatures (e.g., 800-850ºC). To better understand and predict the benefits of surface modification, an integrated modeling framework was developed and applied to the obtained experimental results.

  17. Overview of ten-year operation of the superconducting linear accelerator at the Spallation Neutron Source

    DOE PAGES

    Kim, Sang-Ho; Afanador, Ralph; Barnhart, Debra L.; ...

    2017-02-04

    The Spallation Neutron Source (SNS) has acquired extensive operational experience of a pulsed proton superconducting linear accelerator (SCL) as a user facility. Numerous lessons have been learned in its first 10 years operation to achieve a stable and reliable operation of the SCL. In this paper, an overview of the SNS SCL design, qualification of superconducting radio frequency (SRF) cavities and ancillary subsystems, an overview of the SNS cryogenic system, the SCL operation including SCL output energy history and downtime statistics, performance stability of the SRF cavities, efforts for SRF cavity performance recovery and improvement at the SNS, and maintenancemore » activities for cryomodules are introduced.« less

  18. Testing Procedures and Results of the Prototype Fundamental Power Coupler for the Spallation Neutron Source

    SciTech Connect

    Stirbet, M; Campisi, I E; Daly, E F; Davis, G K; Drury, M; Kneisel, P; Myneni, G; Powers, T; Schneider, W J; Wilson, K M; Kang, Y; Cummings, K A; Hardek, T

    2001-06-01

    High-power RF testing with peak power in excess of 500 kW has been performed on prototype Fundamental Power Couplers (FPC) for the Spallation Neutron Source superconducting (SNS) cavities. The testing followed the development of procedures for cleaning, assembling and preparing the FPC for installation in the test stand. The qualification of the couplers has occurred for the time being only in a limited set of conditions (travelling wave, 20 pps) as the available RF system and control instrumentation are under improvement.

  19. Emittance studies of the Spallation Neutron Source external-antenna H- ion source.

    PubMed

    Han, B X; Stockli, M P; Welton, R F; Pennisi, T R; Murray, S N; Santana, M; Long, C D

    2010-02-01

    A new Allison-type emittance scanner has been built to characterize the ion sources and low energy beam transport systems at Spallation Neutron Source. In this work, the emittance characteristics of the H(-) beam produced with the external-antenna rf-driven ion source and transported through the two-lens electrostatic low energy beam transport are studied. The beam emittance dependence on beam intensity, extraction parameters, and the evolution of the emittance and twiss parameters over beam pulse duration are presented.

  20. Electron cloud development in the Proton Storage Ring and in theSpallation Neutron Source

    SciTech Connect

    Pivi, M.T.F.; Furman, M.A.

    2002-10-08

    We have applied our simulation code "POSINST" to evaluatethe contribution to the growth rate of the electron-cloud instability inproton storage rings. Recent simulation results for the main features ofthe electron cloud in the storage ring of the Spallation Neutron Source(SNS) at Oak Ridge, and updated results for the Proton Storage Ring (PSR)at Los Alamos are presented in this paper. A key ingredient in our modelis a detailed description of the secondary emitted-electron energyspectrum. A refined model for the secondary emission process includingthe so-called true secondary, rediffused and backscattered electrons hasrecently been included in the electron-cloud code.

  1. Laser Driven Compression Equations of State and Hugoniot Pressure Measurements in Thick Solid Metallic Targets at ˜0.17-13 TW/cm2

    NASA Astrophysics Data System (ADS)

    Remo, John L.

    2010-10-01

    An electro-optic laser probe was developed to obtain parameters for high energy density equations of state (EoS), Hugoniot pressures (PH), and strain rates for high energy density laser irradiation intensity, I, experiments at ˜170 GW/cm2 (λ = 1064 nm) to ˜13 TW/cm2 (λ = 527 nm) on Al, Cu, Ti, Fe, Ni metal targets in a vacuum. At I ˜7 TW/cm2 front surface plasma pressures and temperatures reached 100's GPa and over two million K. Rear surface PH ranged from 7-120 GPa at average shock wave transit velocities 4.2-8.5 km/s, depending on target thickness and I. A surface plasma compression ˜100's GPa generated an impulsive radial expanding shock wave causing compression, rarefactions, and surface elastic and plastic deformations depending on I. A laser/fiber optic system measured rear surface shock wave emergence and particle velocity with ˜3 GHz resolution by monitoring light deflection from diamond polished rear surfaces of malleable metallic targets, analogous to an atomic force microscope. Target thickness, ˜0.5-2.9 mm, prevented front surface laser irradiation penetration, due to low radiation skin depth, from altering rear surface reflectivity (refractive index). At ˜10 TW electromagnetic plasma pulse noise generated from the target chamber overwhelmed detector signals. Pulse frequency analysis using Moebius loop antennae probed transient noise characteristics. Average shock (compression) and particle (rear surface displacement) velocity measurements determined rear surface PH and GPa) EoS that are compared with gas guns.

  2. Spallation Neutrons and Pressure SNAP DE-FG02-03ER46085 CLOSE-OUT MAY 2009

    SciTech Connect

    Parise, John B

    2009-05-22

    The purpose of the grant was to build a community of scientist and to draw upon their expertise to design and build the world's first dedicated high pressure beamline at a spallation source - the so called Spallation Neutron And Pressure (SNAP) beamline at the Spallation Neutron Source (SNS) at OAk Ridge NAtional LAboratory. . Key to this endeavor was an annual meeting attended by the instrument design team and the executive committee. The discussions at those meeting set an ambitious agenda for beamline design and construction and highlighted key science areas of interest for the community. This report documents in 4 appendices the deliberations at the annual SNAP meetings and the evolution of the beamline optics from concept to construction. The appendices also contain key science opportunities for extreme conditions research.

  3. Big-bang nucleosynthesis with a long-lived charged massive particle including {sup 4}He spallation processes in a bound state

    SciTech Connect

    Jittoh, Toshifumi; Kohri, Kazunori; Koike, Masafumi; Sato, Joe; Sugai, Kenichi; Yamanaka, Masato; Yazaki, Koichi

    2012-07-27

    We propose helium-4 spallation processes induced by long-lived stau in supersymmetric standard models, and investigate an impact of the processes on light elements abundances. We show that, as long as the phase space of helium-4 spallation processes is open, they are more important than stau-catalyzed fusion and hence constrain the stau property.

  4. High-k gadolinium scandate on Si obtained by high pressure sputtering from metal targets and in-situ plasma oxidation

    NASA Astrophysics Data System (ADS)

    Pampillón, M. A.; San Andrés, E.; Feijoo, P. C.; Fierro, J. L. G.

    2017-03-01

    This article studies the physical and electrical behavior of Gd2‑x Sc x O3 layers grown by high pressure sputtering from metallic Gd and Sc targets. The aim is to obtain a high permittivity dielectric for microelectronic applications. The films were obtained by the deposition of a metallic nanolaminate of Gd and Sc alternating layers, which is afterwards in-situ oxidized by plasma. The oxide films obtained were close to stoichiometry, amorphous and with minimal interfacial regrowth. By fabricating metal–insulator–semiconductor capacitors we found that a moderate temperature annealing is needed to enhance permittivity, which reaches a high value of 32 while keeping moderate leakage. Finally, the feasibility of interface scavenging in this material with Ti gate electrodes is also demonstrated.

  5. Proceedings of the workshop on ion source issues relevant to a pulsed spallation neutron source: Part 2 workshop presentations

    SciTech Connect

    Schroeder, L.; Leung, Ka-Ngo; Alonso, J.

    1994-10-01

    As part of the Lawrence Berkeley Laboratory Pulsed Spallation Source study, this Workshop was convened to address ion-source technology`s present status with respect to the next-generation Pulsed Spallation Source in the 1-5 MW range for the neutron scattering community. Considerations of Low Energy Beam Transport (LEBT) parameters and designs were included in the discussions throughout the Workshop. Ion-source requirements and actually-achieved performances were assessed, resulting in a determination of research and development requirements to bridge the gap. Part 1 of these Proceedings summarizes the Workshop; Part 2 contains viewgraphs of Workshop presentations.

  6. Preliminary evaluation of cavitation-erosion resistance of Ti-alloys in mercury for the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Pawel, S. J.; Mansur, L. K.

    2010-03-01

    A number of Ti-based alloys in both the mill-annealed and 20% cold-worked conditions were subjected to sonication conditions in Hg using a vibratory horn to assess relative cavitation-erosion resistance. Weight loss as a function of exposure time decreased monotonically with increasing hardness for all alloys/conditions examined, with Ti-6Al-4V (Grade 5) and Ti-6Al-2Sn-4Zr-2Mo yielding the best resistance to cavitation-erosion as evidenced by low weight losses and little or no tendency to form pits on the exposed surface. Unalloyed Ti (Grade 4) and Ti-0.12Pd (Grade 7) exhibited greater weight losses by a factor of about two and about five, respectively, with Ti-0.12Pd particularly prone to pitting development. The mean erosion rates of the best two Ti-alloys examined were about a factor of three higher than identically tested 316LN stainless steel following a low temperature carburizing treatment, but this difference is considered minor given that the rate for both materials is very low/manageable and represents a through-thickness property for the Ti-alloys. A nitriding surface treatment was also evaluated as a potential method to further increase the cavitation-erosion resistance of these alloys in Hg, but the selected treatment proved largely ineffective as measured by rapid weight loss. Recommendations for further work to evaluate the efficacy of Ti-based alloys for use in high-powered targets for the Spallation Neutron Source are given.

  7. Preliminary Evaluation of Cavitation-Erosion Resistance of Ti-Alloys in Mercury for the Spallation Neutron Source

    SciTech Connect

    Pawel, Steven J; Mansur, Louis K

    2010-01-01

    A number of Ti-based alloys in both the mill-annealed and 20% cold-worked conditions were subjected to sonication conditions in Hg using a vibratory horn to assess relative cavitation-erosion resistance. Weight loss as a function of exposure time was roughly proportional to hardness for all alloys/conditions examined, with Ti-6Al-4V (Ti-Grade 5) and Ti-6Al-2Sn-4Zr-2Mo yielding the best resistance to cavitation-erosion as evidenced by low weight losses and little or no tendency to form pits on the exposed surface. Unalloyed Ti (Ti-Grade 4) and Ti-0.12Pd (Ti-Grade 7) exhibited greater weight losses by a factor or about two and about five, respectively, with Ti-0.12Pd particularly prone to pitting development. The mean erosion rates of the best two Ti-alloys examined here were about a factor of three higher than identically tested 316LN stainless steel following a low temperature carburizing treatment, but this difference is considered minor given that the rate for both materials is very low/manageable and represents a through-thickness property for the Ti-alloys. A nitriding surface treatment was also evaluated as a potential method to further increase the cavitation-erosion resistance of these alloys in Hg, but the selected treatment proved largely ineffective. Recommendations for further work to evaluate the efficacy of Ti-based alloys for use in high-powered targets for the Spallation Neutron Source are given.

  8. INTERACTION OF LASER RADIATION WITH MATTER AND OTHER LASER APPLICATIONS: Changes in the emission properties of metal targets during pulse-periodic laser irradiation

    NASA Astrophysics Data System (ADS)

    Konov, Vitalii I.; Pimenov, S. M.; Prokhorov, A. M.; Chapliev, N. I.

    1988-02-01

    A scanning electron microscope was used with a pulse-periodic CO2 laser to discover the laws governing the correlation of the modified microrelief of metal surfaces, subjected to the action of multiple laser pulses, with the emission of charged particles and the luminescence of the irradiated zone. It was established that the influence of sorption and laser-induced desorption on the emission signals may be manifested differently depending on the regime of current generation in the "target-vacuum chamber" circuit.

  9. Time-domain Response of a Metal Detector to a Target Buried in Soil with Frequency-dependent Magnetic Susceptibility

    DTIC Science & Technology

    2016-07-06

    The work reported in this paper is a part of on-going studies to clarify how and to what extent soil electromagnetic properties affect the...performance of induction metal detectors widely used in humanitarian demining. This paper studies the specific case of the time-domain response of a small

  10. Au25 cluster functionalized metal-organic nanostructures for magnetically targeted photodynamic/photothermal therapy triggered by single wavelength 808 nm near-infrared light

    NASA Astrophysics Data System (ADS)

    Yang, Dan; Yang, Guixin; Gai, Shili; He, Fei; An, Guanghui; Dai, Yunlu; Lv, Ruichan; Yang, Piaoping

    2015-11-01

    Near-infrared (NIR) light-induced cancer therapy has gained considerable interest, but pure inorganic anti-cancer platforms usually suffer from degradation issues. Here, we designed metal-organic frameworks (MOFs) of Fe3O4/ZIF-8-Au25 (IZA) nanospheres through a green and economic procedure. The encapsulated Fe3O4 nanocrystals not only produce hyperthemal effects upon NIR light irradiation to effectively kill tumor cells, but also present targeting and MRI imaging capability. More importantly, the attached ultrasmall Au25(SR)18- clusters (about 2.5 nm) produce highly reactive singlet oxygen (1O2) to cause photodynamic effects through direct sensitization under NIR light irradiation. Furthermore, the Au25(SR)18- clusters also give a hand to the hyperthemal effect as photothermal fortifiers. This nanoplatform exhibits high biocompatibility and an enhanced synergistic therapeutic effect superior to any single therapy, as verified by in vitro and in vivo assay. This image-guided therapy based on a metal-organic framework may stimulate interest in developing other kinds of metal-organic materials with multifunctionality for tumor diagnosis and therapy.Near-infrared (NIR) light-induced cancer therapy has gained considerable interest, but pure inorganic anti-cancer platforms usually suffer from degradation issues. Here, we designed metal-organic frameworks (MOFs) of Fe3O4/ZIF-8-Au25 (IZA) nanospheres through a green and economic procedure. The encapsulated Fe3O4 nanocrystals not only produce hyperthemal effects upon NIR light irradiation to effectively kill tumor cells, but also present targeting and MRI imaging capability. More importantly, the attached ultrasmall Au25(SR)18- clusters (about 2.5 nm) produce highly reactive singlet oxygen (1O2) to cause photodynamic effects through direct sensitization under NIR light irradiation. Furthermore, the Au25(SR)18- clusters also give a hand to the hyperthemal effect as photothermal fortifiers. This nanoplatform exhibits high

  11. Large Scale Accelerator Production of 225Ac: Effective Cross sections for 78-192 MeV Protons Incident on 232Th Targets

    DOE PAGES

    Griswold, Justin R; Medvedev, Dmitri G.; Engle, Jonathan W.; ...

    2016-09-28

    Actinium-225 and 213Bi have been used successfully in targeted alpha therapy (TAT) in preclinical and clinical research. This paper is a continuation of research activities aiming to expand the availability of 225Ac. The high energy proton spallation reaction on natural thorium metal target has been utilized to produce millicurie quantities of 225Ac. The results of sixteen irradiation experiments of Th metal at beam energies between 78 and 200 MeV are summarized in this work. Irradiations have been conducted at Brookhaven National Laboratory (BNL) and Los Alamos National Laboratory (LANL), while target dissolution and processing was carried out at Oak Ridgemore » National Laboratory (ORNL). Excitation functions for actinium and thorium isotopes as well as for some of the fission products are presented. The cross sections for production of 225Ac range from 3.6 to 16.7 mb in the incident proton energy range of 78 to 192 MeV. Based on these data, production of Curie quantities of 225Ac is possible by irradiating a 5.0 g cm-2232Th target for 10 days in either BNL or LANL proton irradiation facilities.« less

  12. Large scale accelerator production of (225)Ac: Effective cross sections for 78-192MeV protons incident on (232)Th targets.

    PubMed

    Griswold, J R; Medvedev, D G; Engle, J W; Copping, R; Fitzsimmons, J M; Radchenko, V; Cooley, J C; Fassbender, M E; Denton, D L; Murphy, K E; Owens, A C; Birnbaum, E R; John, K D; Nortier, F M; Stracener, D W; Heilbronn, L H; Mausner, L F; Mirzadeh, S

    2016-12-01

    Actinium-225 and (213)Bi have been used successfully in targeted alpha therapy (TAT) in preclinical and clinical research. This paper is a continuation of research activities aiming to expand the availability of (225)Ac. The high-energy proton spallation reaction on natural thorium metal targets has been utilized to produce millicurie quantities of (225)Ac. The results of sixteen irradiation experiments of thorium metal at beam energies between 78 and 192MeV are summarized in this work. Irradiations have been conducted at Brookhaven National Laboratory (BNL) and Los Alamos National Laboratory (LANL), while target dissolution and processing was carried out at Oak Ridge National Laboratory (ORNL). Excitation functions for actinium and thorium isotopes, as well as for some of the fission products, are presented. The cross sections for production of (225)Ac range from 3.6 to 16.7mb in the incident proton energy range of 78-192MeV. Based on these data, production of curie quantities of (225)Ac is possible by irradiating a 5.0gcm(-2 232)Th target for 10 days in either BNL or LANL proton irradiation facilities.

  13. Radiation damage/activity calculation for CSNS target station

    NASA Astrophysics Data System (ADS)

    Yin, W.; Liang, T. J.; Yu, Q. Z.; Jia, X. J.

    2010-03-01

    The radiation damages have been performed for Chinese spallation neutron source (CSNS) target center components that relies on Monte Carlo simulation code MCNPX. During the calculation, Bertini intranuclear cascade model, three level-density formulation GCCI, and multistage pre-equilibrium model MPM on which are provided within MCNPX are employed. We calculate the displacement per atom (DPA) and afterheat of the tungsten target, the stainless steel target vessel window and the aluminum alloy moderator vessel. As a hundred kW-level source, these spallation center components have the lifetime more than 5 year. We also give the activity for the T0 chopper of the beam line HIPD to get the primary data for making out a maintenance scenario.

  14. ALARA Review of the Spallation Neutron Source Accumulator Ring and Transfer Lines

    SciTech Connect

    Haire, M.J.

    2003-06-30

    The Spallation Neutron Source (SNS) is designed to meet the growing need for new tools that will deepen our understanding in materials science, life science, chemistry, fundamental and nuclear physics, earth and environmental sciences, and engineering sciences. The SNS is an accelerator-based neutron-scattering facility that when operational will produce an average beam power of 2 MW at a repetition rate of 60 Hz. The accelerator complex consists of the front-end systems, which will include an ion source; a 1-GeV full-energy linear accelerator; a single accumulator ring and its transfer lines; and a liquid mercury target. This report documents an as-low-as-reasonably-achievable (ALARA) review of the accumulator ring and transfer lines at their early design stage. An ALARA working group was formed and conducted a review of the SNS ring and transfer lines at the {approx}25% complete design stage to help ensure that ALARA principles are being incorporated into the design. The radiological aspects of the SNS design criteria were reviewed against regulatory requirements and ALARA principles. Proposed features and measures were then reviewed against the SNS design criteria. As part of the overall review, the working group reviewed the design manual; design drawings and process and instrumentation diagrams; the environment, safety, and health manual; and other related reports and literature. The group also talked with SNS design engineers to obtain explanations of pertinent subject matter. The ALARA group found that ALARA principles are indeed being incorporated into the early design stage. Radiation fields have been characterized, and shielding calculations have been performed. Radiological issues are being adequately addressed with regard to equipment selection, access control, confinement structure and ventilation, and contamination control. Radiation monitoring instrumentation for worker and environment protection are also being considered--a good practice at this

  15. Study of the Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND

    SciTech Connect

    KamLAND Collaboration; Abe, S.; Enomoto, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.; Yonezawa, E.; Yoshida, S.; Kozlov, A.; Murayama, H.; Busenitz, J.; Classen, T.; Grant, C.; Keefer, G.; Leonard, D. S.; McKee, D.; Piepke, A.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Gray, F.; Guardincerri, E.; Hsu, L.; Ichimura, K.; Kadel, R.; Lendvai, C.; Luk, K.-B.; O'Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D. A.; Jillings, C.; Mauger, C.; McKeown, R. D.; Vogel, P.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Pakvasa, S.; Foster, J.; Horton-Smith, G. A.; Tang, A.; Dazeley, S.; Downum, K. E.; Gratta, G.; Tolich, K.; Bugg, W.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Piquemal, F.; Ricol, J.-S.; Decowski, M. P.

    2009-06-30

    Radioactive isotopes produced through cosmic muon spallation are a background for rare event detection in {nu} detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillator, and for checking estimates from current simulations based upon MUSIC, FLUKA, and Geant4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be (2.8 {+-} 0.3) x 10{sup -4} n/({mu} {center_dot} (g/cm{sup 2})). For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  16. Effects of surface deposition, hole blockage, and thermal barrier coating spallation on vane endwall film cooling

    SciTech Connect

    Sundaram, N.; Thole, K.A.

    2007-07-15

    With the increase in usage of gas turbines for power generation and given that natural gas resources continue to be depleted, it has become increasingly important to search for alternate fuels. One source of alternate fuels is coal derived synthetic fuels. Coal derived fuels, however, contain traces of ash and other contaminants that can deposit on vane and turbine surfaces affecting their heat transfer through reduced film cooling. The endwall of a first stage vane is one such region that can be susceptible to depositions from these contaminants. This study uses a large-scale turbine vane cascade in which the following effects on film cooling adiabatic effectiveness were investigated in the endwall region: the effect of near-hole deposition, the effect of partial film cooling hole blockage, and the effect of spallation of a thermal barrier coating. The results indicated that deposits near the hole exit can sometimes improve the cooling effectiveness at the leading edge, but with increased deposition heights the cooling deteriorates. Partial hole blockage studies revealed that the cooling effectiveness deteriorates with increases in the number of blocked holes. Spallation studies showed that for a spalled endwall surface downstream of the leading edge cooling row, cooling effectiveness worsened with an increase in blowing ratio.

  17. The test beamline of the European Spallation Source - Instrumentation development and wavelength frame multiplication

    NASA Astrophysics Data System (ADS)

    Woracek, R.; Hofmann, T.; Bulat, M.; Sales, M.; Habicht, K.; Andersen, K.; Strobl, M.

    2016-12-01

    The European Spallation Source (ESS), scheduled to start operation in 2020, is aiming to deliver the most intense neutron beams for experimental research of any facility worldwide. Its long pulse time structure implies significant differences for instrumentation compared to other spallation sources which, in contrast, are all providing short neutron pulses. In order to enable the development of methods and technology adapted to this novel type of source well in advance of the first instruments being constructed at ESS, a test beamline (TBL) was designed and built at the BER II research reactor at Helmholtz-Zentrum Berlin (HZB). Operating the TBL shall provide valuable experience in order to allow for a smooth start of operations at ESS. The beamline is capable of mimicking the ESS pulse structure by a double chopper system and provides variable wavelength resolution as low as 0.5% over a wide wavelength band between 1.6 Å and 10 Å by a dedicated wavelength frame multiplication (WFM) chopper system. WFM is proposed for several ESS instruments to allow for flexible time-of-flight resolution. Hence, ESS will benefit from the TBL which offers unique possibilities for testing methods and components. This article describes the main capabilities of the instrument, its performance as experimentally verified during the commissioning, and its relevance to currently starting ESS instrumentation projects.

  18. Production of radioactive isotopes through cosmic muon spallation in KamLAND

    SciTech Connect

    Abe, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Kibe, Y.; Kishimoto, Y.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.

    2010-02-15

    Radioactive isotopes produced through cosmic muon spallation are a background for rare-event detection in nu detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka liquid-scintillator antineutrino detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillators, and for checking estimates from current simulations based upon MUSIC, FLUKA, and GEANT4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be Y{sub n}=(2.8+-0.3)x10{sup -4} mu{sup -1} g{sup -1} cm{sup 2}. For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  19. Coupled Ablation, Heat Conduction, Pyrolysis, Shape Change and Spallation of the Galileo Probe

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Y.-K.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    The Galileo probe enters the atmosphere of Jupiter in December 1995. This paper presents numerical methodology and detailed results of our final pre-impact calculations for the heat shield response. The calculations are performed using a highly modified version of a viscous shock layer code with massive radiation coupled with a surface thermochemical ablation and spallation model and with the transient in-depth thermal response of the charring and ablating heat shield. The flowfield is quasi-steady along the trajectory, but the heat shield thermal response is dynamic. Each surface node of the VSL grid is coupled with a one-dimensional thermal response calculation. The thermal solver includes heat conduction, pyrolysis, and grid movement owing to surface recession. Initial conditions for the heat shield temperature and density were obtained from the high altitude rarefied-flow calculations of Haas and Milos. Galileo probe surface temperature, shape, mass flux, and element flux are all determined as functions of time along the trajectory with spallation varied parametrically. The calculations also estimate the in-depth density and temperature profiles for the heat shield. All this information is required to determine the time-dependent vehicle mass and drag coefficient which are necessary inputs for the atmospheric reconstruction experiment on board the probe.

  20. Polarized internal target apparatus

    DOEpatents

    Holt, R.J.

    1984-10-10

    A polarized internal target apparatus with a polarized gas target of improved polarization and density (achieved by mixing target gas atoms with a small amount of alkali metal gas atoms, and passing a high intensity polarized light source into the mixture to cause the alkali metal gas atoms to become polarized which interact in spin exchange collisions with target gas atoms yielding polarized target gas atoms) is described.

  1. Polarized internal target apparatus

    DOEpatents

    Holt, Roy J.

    1986-01-01

    A polarized internal target apparatus with a polarized gas target of improved polarization and density achieved by mixing target gas atoms with a small amount of alkali metal gas atoms, and passing a high intensity polarized light source into the mixture to cause the alkali metal gas atoms to become polarized which interact in spin exchange collisions with target gas atoms yielding polarized target gas atoms.

  2. Recent developments in zinc oxide target chemistry

    SciTech Connect

    Heaton, R.C.; Taylor, W.A.; Phillips, D.R.; Jamriska, D.J. Sr.; Garcia, J.B.

    1994-04-01

    Zinc oxide targets irradiated with high energy protons at the Los Alamos Meson Physics Facility (LAMPF) contain a number of radioactive spallation products in quantities large enough to warrant recovery. This paper describes methods for recovering {sup 7}Be, {sup 46}Sc, and {sup 48}V from such targets and offers suggestions on possible ways to recover additional isotopes. The proposed methods are based on traditional precipitation and ion exchange techniques, are readily adaptable to hot cell use, and produce no hazardous waste components. The products are obtained in moderate to high yields and have excellent radiopurity.

  3. Acoustic-wave generation in the process of CO2-TEA-laser-radiation interaction with metal targets in air

    NASA Astrophysics Data System (ADS)

    Apostol, Ileana; Teodorescu, G.; Serbanescu-Oasa, Anca; Dragulinescu, Dumitru; Chis, Ioan; Stoian, Razvan

    1995-03-01

    Laser radiation interaction with materials is a complex process in which creation of acoustic waves or stress waves is a part of it. As a function of the laser radiation energy and intensity incident on steel target surface ultrasound signals were registered and studied. Thermoelastic, ablation and breakdown mechanisms of generation of acoustic waves were analyzed.

  4. Optimizing EMI transmitter and receiver configurations to enhance detection and identification of small and deep metallic targets

    NASA Astrophysics Data System (ADS)

    Fernández, Juan Pablo; Barrowes, Benjamin; Bijamov, Alex; O'Neill, Kevin; Shamatava, Irma; Steinhurst, Daniel A.; Shubitidze, Fridon

    2012-06-01

    Current electromagnetic induction (EMI) sensors of the kind used to discriminate buried unexploded orndance (UXO) can detect targets down to a depth limited by the geometric size of the transmitter (Tx) coils, the amplitudes of the transmitting currents, and the noise floor of the receivers (Rx). The last two factors are not independent: for example, one cannot detect a deeply buried target simply by increasing the amplitude of the Tx current, since this also increases the noise and thus does not improve the SNR. The problem could in principle be overcome by increasing the size of the Tx coils and thus their moment. Current multi-transmitter instruments such as the TEMTADS sensor array can be electronically tweaked to provide a big Tx moment: they can be modified to transmit signals from two, three or more Tx coils simultaneously. We investigate the possibility of enhancing the deep-target detection capability of TEMTADS by exploring different combinations of Tx coils. We model different multi-Tx combinations within TEMTADS using a full-3D EMI solver based on the method of auxiliary sources (MAS).We determine the feasibility of honing these combinations for enhanced detection and discrimination of deep targets. We investigate how to improve the spatial resolution and focusing properties of the primary magnetic field by electronically adjusting the currents of the transmitters. We apply our findings to data taken at different UXO live sites.

  5. Simulations towards optimization of a neutron/anti-neutron oscillation experiment at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Frost, Matthew; Kamyshkov, Yuri; Castellanos, Luis; Klinkby, Esben; US NNbar Collaboration

    2015-04-01

    The observation of Neutron/Anti-neutron oscillation would prove the existence of Baryon Number Violation (BNV), and thus an explanation for the dominance of matter over anti-matter in the universe. The latest experiments have shown the oscillation time to be greater than 8.6 x 107 seconds, whereas current theoretical predictions suggest times on the order of 108 to 109 seconds. A neutron oscillation experiment proposed at the European Spallation Source (ESS) would provide sensitivity of more than 1000 times previous experiments performed, thus providing a result well-suited to confirm or deny current theory. A conceptual design of the proposed experiment will be presented, as well as the optimization of key experiment components using Monte-Carlo simulation methods, including the McStas neutron ray-trace simulation package. This work is supported by the Organized Research Units Program funded by The University of Tennessee, Knoxville Office of Research and Engagement.

  6. Experiment Automation with a Robot Arm using the Liquids Reflectometer Instrument at the Spallation Neutron Source

    SciTech Connect

    Zolnierczuk, Piotr A; Vacaliuc, Bogdan; Sundaram, Madhan; Parizzi, Andre A; Halbert, Candice E; Hoffmann, Michael C; Greene, Gayle C; Browning, Jim; Ankner, John Francis

    2013-01-01

    The Liquids Reflectometer instrument installed at the Spallation Neutron Source (SNS) enables observations of chemical kinetics, solid-state reactions and phase-transitions of thin film materials at both solid and liquid surfaces. Effective measurement of these behaviors requires each sample to be calibrated dynamically using the neutron beam and the data acquisition system in a feedback loop. Since the SNS is an intense neutron source, the time needed to perform the measurement can be the same as the alignment process, leading to a labor-intensive operation that is exhausting to users. An update to the instrument control system, completed in March 2013, implemented the key features of automated sample alignment and robot-driven sample management, allowing for unattended operation over extended periods, lasting as long as 20 hours. We present a case study of the effort, detailing the mechanical, electrical and software modifications that were made as well as the lessons learned during the integration, verification and testing process.

  7. Low-level rf control of Spallation Neutron Source: System and characterization

    NASA Astrophysics Data System (ADS)

    Ma, Hengjie; Champion, Mark; Crofford, Mark; Kasemir, Kay-Uwe; Piller, Maurice; Doolittle, Lawrence; Ratti, Alex

    2006-03-01

    The low-level rf control system currently commissioned throughout the Spallation Neutron Source (SNS) LINAC evolved from three design iterations over 1 yr intensive research and development. Its digital hardware implementation is efficient, and has succeeded in achieving a minimum latency of less than 150 ns which is the key for accomplishing an all-digital feedback control for the full bandwidth. The control bandwidth is analyzed in frequency domain and characterized by testing its transient response. The hardware implementation also includes the provision of a time-shared input channel for a superior phase differential measurement between the cavity field and the reference. A companion cosimulation system for the digital hardware was developed to ensure a reliable long-term supportability. A large effort has also been made in the operation software development for the practical issues such as the process automations, cavity filling, beam loading compensation, and the cavity mechanical resonance suppression.

  8. EXPERIENCE WITH COLLABORATIVE DEVELOPMENT FOR THE SPALLATION NEUTRON SOURCE FROM A PARTNER LAB PERSPECTIVE.

    SciTech Connect

    HOFF, L.T.

    2005-10-10

    Collaborative development and operation of large physics experiments is fairly common. Less common is the collaborative development or operation of accelerators. A current example of the latter is the Spallation Neutron Source (SNS). The SNS project was conceived as a collaborative effort between six DOE facilities. In the SNS case, the control system was also developed collaboratively. The SNS project has now moved beyond the collaborative development phase and into the phase where Oak Ridge National Lab (ORNL) is integrating contributions from collaborating ''partner labs'' and is beginning accelerator operations. In this paper, the author reflects on the benefits and drawbacks of the collaborative development of an accelerator control system as implemented for the SNS project from the perspective of a partner lab.

  9. A comparison of four direct geometry time-of-flight spectrometers at the Spallation Neutron Source

    SciTech Connect

    Stone, M. B.; Abernathy, D. L.; Ehlers, G.; Garlea, O.; Podlesnyak, A.; Winn, B.; Niedziela, J. L.; DeBeer-Schmitt, L.; Graves-Brook, M.; Granroth, G. E.; Kolesnikov, A. I.

    2014-04-15

    The Spallation Neutron Source at Oak Ridge National Laboratory now hosts four direct geometry time-of-flight chopper spectrometers. These instruments cover a range of wave-vector and energy transfer space with varying degrees of neutron flux and resolution. The regions of reciprocal and energy space available to measure at these instruments are not exclusive and overlap significantly. We present a direct comparison of the capabilities of this instrumentation, conducted by data mining the instrument usage histories, and specific scanning regimes. In addition, one of the common science missions for these instruments is the study of magnetic excitations in condensed matter systems. We have measured the powder averaged spin wave spectra in one particular sample using each of these instruments, and use these data in our comparisons.

  10. Micro-punching process based on spallation delamination induced by laser driven-flyer

    NASA Astrophysics Data System (ADS)

    Di, Jianke; Zhou, Ming; Li, Jian; Li, Chen; Zhang, Wei; Amoako, George

    2012-01-01

    In this article, we proposed a micro-punching process for microstructure on films based on laser driven-flyer induced spallation delamination phenomenon at the interface between a film and its substrate. To validate such a micro-punching process, a series of experiments were carried out for fabrication of microstructures on Au films coated on K9 glass substrates and polyimide substrate. Results show that through such a punching process, the microstructure on Au films can be fabricated efficiently and the spatial resolution is able to reach micron level. Moreover, we found that this method was more suitable for films coated on soft substrates rather than that coated on brittle substrates due to the additional destruction of the brittle substrate. This micro-punching process has a wide range of potential application in microfluidic devices, biodevices and other MEMS devices.

  11. Coincidence Doppler broadening study of Eurofer 97 irradiated in spallation environment

    NASA Astrophysics Data System (ADS)

    Sabelová, V.; Kršjak, V.; Kuriplach, J.; Dai, Y.; Slugeň, V.

    2015-03-01

    The behavior of transmutation helium during isochronal annealing of irradiated Eurofer 97 was investigated using coincidence Doppler broadening spectroscopy (CDBS). The investigated ferritic martensitic steel was irradiated in 2000 and 2001 in the frame of the STIP-II project at the Swiss neutron spallation source (SINQ) (irradiation with neutrons and protons) at the Paul Scherrer Institute (PSI). During isochronal annealing experiment, coarsening of vacancy clusters and/or growth of helium bubbles was observed at T ⩾ 500 °C. This process causes an increase of low-momentum annihilation events and related increase of the S parameter during thermal treatment of material. On the other hand, the maximum concentration of helium in small vacancy clusters (Vn) was observed after annealing at 400 °C, where an excellent correlation with the calculated CDBS profiles of Vn + Hem clusters was found.

  12. VSI@ESS: Case study for a vibrational spectroscopy instrument at the european spallation source

    NASA Astrophysics Data System (ADS)

    Zoppi, Marco; Fedrigo, Anna; Celli, Milva; Colognesi, Daniele

    2015-01-01

    Neutron Vibrational Spectroscopy is a well-established experimental technique where elementary excitations at relatively high frequency are detected via inelastic neutron scattering. This technique attracts a high interest in a large fraction of the scientific community in the fields of chemistry, materials science, physics, and biology, since one of its main applications exploits the large incoherent scattering cross section of the proton with respect to all the other elements, whose dynamics can be spectroscopically detected, even if dissolved in very low concentration in materials composed of much heavier atoms. We have proposed a feasibility study for a Vibrational Spectroscopy Instrument (VSI) at the European Spallation Source ESS. Here, we will summarize the preliminary design calculations and the corresponding McStas simulation results for a possible ToF, Inverted Geometry, VSI beamline.

  13. Beamline Performance Simulations for the Fundamental Neutron Physics Beamline at the Spallation Neutron Source

    PubMed Central

    Huffman, P. R.; Greene, G. L.; Allen, R. R.; Cianciolo, V.; Huerto, R. R.; Koehler, P.; Desai, D.; Mahurin, R.; Yue, A.; Palmquist, G. R.; Snow, W. M.

    2005-01-01

    Monte Carlo simulations are being performed to design and characterize the neutron optics components for the two fundamental neutron physics beamlines at the Spallation Neutron Source. Optimization of the cold beamline includes characterization of the guides and benders, the neutron transmission through the 0.89 nm monochromator, and the expected performance of the four time-of-flight choppers. The locations and opening angles of the choppers have been studied using a simple spreadsheet-based analysis that was developed for other SNS chopper instruments. The spreadsheet parameters are then optimized using Monte Carlo techniques to obtain the results presented in this paper. Optimization of the 0.89 nm beamline includes characterizing the double crystal monochromator and the downstream guides. The simulations continue to be refined as components are ordered and their exact size and performance specifications are determined. PMID:27308115

  14. Beamline Performance Simulations for the Fundamental Neutron Physics Beamline at the Spallation Neutron Source.

    PubMed

    Huffman, P R; Greene, G L; Allen, R R; Cianciolo, V; Huerto, R R; Koehler, P; Desai, D; Mahurin, R; Yue, A; Palmquist, G R; Snow, W M

    2005-01-01

    Monte Carlo simulations are being performed to design and characterize the neutron optics components for the two fundamental neutron physics beamlines at the Spallation Neutron Source. Optimization of the cold beamline includes characterization of the guides and benders, the neutron transmission through the 0.89 nm monochromator, and the expected performance of the four time-of-flight choppers. The locations and opening angles of the choppers have been studied using a simple spreadsheet-based analysis that was developed for other SNS chopper instruments. The spreadsheet parameters are then optimized using Monte Carlo techniques to obtain the results presented in this paper. Optimization of the 0.89 nm beamline includes characterizing the double crystal monochromator and the downstream guides. The simulations continue to be refined as components are ordered and their exact size and performance specifications are determined.

  15. A comparison of four direct geometry time-of-flight spectrometers at the Spallation Neutron Source.

    PubMed

    Stone, M B; Niedziela, J L; Abernathy, D L; DeBeer-Schmitt, L; Ehlers, G; Garlea, O; Granroth, G E; Graves-Brook, M; Kolesnikov, A I; Podlesnyak, A; Winn, B

    2014-04-01

    The Spallation Neutron Source at Oak Ridge National Laboratory now hosts four direct geometry time-of-flight chopper spectrometers. These instruments cover a range of wave-vector and energy transfer space with varying degrees of neutron flux and resolution. The regions of reciprocal and energy space available to measure at these instruments are not exclusive and overlap significantly. We present a direct comparison of the capabilities of this instrumentation, conducted by data mining the instrument usage histories, and specific scanning regimes. In addition, one of the common science missions for these instruments is the study of magnetic excitations in condensed matter systems. We have measured the powder averaged spin wave spectra in one particular sample using each of these instruments, and use these data in our comparisons.

  16. Application of automated weight windows to spallation neutron source shielding calculations using Geant4

    NASA Astrophysics Data System (ADS)

    Stenander, John; DiJulio, Douglas D.

    2015-10-01

    We present an implementation of a general weight-window generator for global variance reduction in Geant4 based applications. The implementation is flexible and can be easily adjusted to a user-defined model. In this work, the weight-window generator was applied to calculations based on an instrument shielding model of the European Spallation Source, which is currently under construction in Lund, Sweden. The results and performance of the implemented methods were evaluated through the definition of two figures of merit. It was found that the biased simulations showed an overall improvement in performance compared to the unbiased simulations. The present work demonstrates both the suitability of the generator method and Geant4 for these types of calculations.

  17. Development of the activation analysis calculational methodology for the Spallation Neutron Source (SNS)

    SciTech Connect

    Odano, N.; Johnson, J.O.; Charton, L.A.; Barnes, J.M.

    1998-03-01

    For the design of the proposed Spallation Neutron Source (SNS), activation analyses are required to determine the radioactive waste streams, on-line material processing requirements remote handling/maintenance requirements, potential site contamination and background radiation levels. For the conceptual design of the SNS, the activation analyses were carried out using the high-energy transport code HETC96 coupled with MCNP to generate the required nuclide production rates for the ORIHET95 isotope generation code. ORIHET95 utilizes a matrix-exponential method to study the buildup and decay of activities for any system for which the nuclide production rates are known. In this paper, details of the developed methodology adopted for the activation analyses in the conceptual design of the SNS are presented along with some typical results of the analyses.

  18. Evidence of a halo formation mechanism in the Spallation Neutron Source linac

    NASA Astrophysics Data System (ADS)

    Jeon, Dong-O.

    2013-04-01

    A new halo formation mechanism and its mitigation scheme [D. Jeon, J. Stovall, A. Aleksandrov, J. Wei, J. Staples, R. Keller, L. Young, H. Takeda, and S. Nath, Phys. Rev. ST Accel. Beams 5, 094201 (2002)PRABFM1098-440210.1103/PhysRevSTAB.5.094201] are verified experimentally through a series of emittance measurements performed during the drift tube linac tank 1 commissioning of the Spallation Neutron Source. This is a rare experiment evidence of a halo formation mechanism. As the simulation predicts, the emittance measurements clearly show a visible halo reduction as well as a significant rms emittance reduction when the proposed round beam optics is employed. The emittance measurement results are consistent with multiparticle simulations and also consistent with wire scanner results. These measurements serve as a valuable code benchmarking for a beam under an intense space charge effect.

  19. A comparison of four direct geometry time-of-flight spectrometers at the Spallation Neutron Source

    SciTech Connect

    Stone, Matthew B; Niedziela, Jennifer L; Abernathy, Douglas L; Debeer-Schmitt, Lisa M; Garlea, Vasile O; Granroth, Garrett E; Graves-Brook, Melissa K; Ehlers, Georg; Kolesnikov, Alexander I; Podlesnyak, Andrey A; Winn, Barry L

    2014-04-01

    The Spallation Neutron Source at Oak Ridge National Laboratory now hosts four direct geometry time-of-flight chopper spectrometers. These instruments cover a range of wave vector and energy transfer space with varying degrees of neutron flux and resolution. The regions of reciprocal and energy space available to measure at these instruments is not exclusive and overlaps significantly. We present a direct comparison of the capabilities of this instrumentation, conducted by data mining the instrument usage histories, and specific scanning regimes. In addition, one of the common science missions for these instruments is the study of magnetic excitations in condensed matter systems. We have measured the powder averaged spin wave spectra in one particular sample using each of these instruments, and use these data in our comparisons.

  20. The new Cold Neutron Chopper Spectrometer at the Spallation Neutron Source -- Design and Performance

    SciTech Connect

    Ehlers, Georg; Podlesnyak, Andrey A.; Niedziela, Jennifer L.; Iverson, Erik B.; Sokol, Paul E.

    2011-01-01

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  1. The new cold neutron chopper spectrometer at the Spallation Neutron Source: Design and performance

    SciTech Connect

    Ehlers, G.; Podlesnyak, A. A.; Niedziela, J. L.; Iverson, E. B.; Sokol, P. E.

    2011-08-15

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  2. Gel versus aerogel to collect high velocity ejectas from laser shock-loaded metallic targets for postrecovery analyses

    NASA Astrophysics Data System (ADS)

    Lescoute, Emilien; De Rességuier, Thibaut; Chevalier, Jean-Marc

    2012-03-01

    Soft recovery of fast objects is an issue of considerable interest for many applications involving shock wave loading, such as ballistics, armor design, or more recently laser-driven inertial confinement fusion, where the characterization of the debris ejected from metallic shells subjected to intense laser irradiation conditions the design of the experiments. In this work, we compare the high velocity ejecta recovery efficiency of two materials: silica aerogel (density 0.03 g/cm3), which has been used as fragment collector for many years, and "varagel" (density 0.9 g/cm3), which we have tested recently in laser shock experiments. Ejected fragments have been recovered in both types of collectors. Then, samples have been analyzed by X-ray tomography at the European Synchrotron Radiation Facility (ESRF). Three-dimensional reconstructions of the fragments populations have been achieved, and quantitative comparisons between both collecting materials, used in the same conditions, have been performed.

  3. Some evidence for the base-metal potential of the Pretoria Group: stratigraphic targets, tectonic setting and REE patterns

    NASA Astrophysics Data System (ADS)

    Reczko, B. F. F.; Eriksson, P. G.; Snyman, C. P.

    1995-04-01

    The Timeball Hill and Silverton Formations of the 2.1 2.3 Ga Pretoria Group have regional lithological associations which are thought to have been favourable for the genesis of stratiform sulphide deposits. The observed association of carboniferous and pyritic black shales, tuffaceous material, stromatolitic carbonates and inferred turbidity current deposits is common in stratiform sulphide deposits of the sedimentary exhalative group. Massive sulphides in the Silverton Formation are compatible with a syngenetic brine discharge, probably related to deep fracture systems. The basal shales of the Timeball Hill Formation are significantly enriched in base-metals and Ba. Interlayered tuff beds at this stratigraphic level have PGE-contents of up to 1 g/t. The REE-geochemistry of Pretoria Group sedimentary rocks supports hydrothermal activity as an important factor in both stratigraphic units.

  4. Ionothermal synthesis and structural transformation targeted by ion exchange in metal-1,3,5-benzenetricarboxylate compounds

    NASA Astrophysics Data System (ADS)

    Xu, Qing-Qing; Liu, Bing; Xu, Ling; Jiao, Huan

    2017-03-01

    Ionothermal reactions of 1,3,5-benzenetricarboxylate acid (H3BTC) and Ni(NO3)2, Co(NO3)2 and Cu(NO3)2 gave two discrete 32-membered ring-like allomers, [M2(HBTC)2(NH2CONH2)2(H2O)4]·3H2O (M=Ni(1), Co(2)) and one layered [Cu2(BTC)Cl(H2O)4] (3). The weak interactions in 1 can be deconstructed to some degree in ion exchange by exploring the factors of divalent and trivalent metal species, metal concentration and soaking time, which are demonstrated by PXRD and N2 absorption. Cu2+ has the highest N2 adsorbance when soaking with 1, and 1 can keep structure stable when Cu2+ below 0.16 mol L-1 and the soaking time within 24d. As Cu2+ beyond 0.16 mol L-1 and the soaking time beyond 24d, the structure of compound 1 starts to transform with the crystal morphology from clear pale green to opaque blue. Ionothermal reactions of compound 1 with different Cu2+ amounts obtained Ni2+-Cu2+ hetero complexes, whose PXRD patterns are similar to that of 3 and EDS indicates Cu2+% increases with Cu2+ additions and close to 100% as Cu2+ being 1.6 mmol. It suggests that 3 is a controlled product and Cu2+ can transform discrete compound 1 into 2D compound 3.

  5. Disentangling xenon components in Nakhla: martian atmosphere, spallation and martian interior^1

    NASA Astrophysics Data System (ADS)

    Gilmour, J. D.; Whitby, J. A.; Turner, G.

    2001-01-01

    A powdered sample of Nakhla was separated into 3 subsamples. One was left otherwise untreated, one was washed in water and one etched with HNO 3 removing 6% of the original mass. We report results of isotopic analysis of xenon released by laser step heating on aliquots of each of these subsamples; some aliquots were neutron irradiated before isotopic analysis (to allow determination of I, Ba and U as daughter xenon isotopes) and some were not. There is evidence that water soluble phases contain both martian atmospheric xenon and a component with low 129Xe/ 132Xe, either martian interior xenon or terrestrial atmosphere. Higher temperature data from unirradiated aliquots of the water and acid treated samples reveal two-component mixing. One is a trapped xenon component with 129Xe/ 132Xe = 2.350 ± 0.026, isotopically identical to the martian atmosphere as measured in shock glass from shergottites. It is associated with leachable iodine, suggesting it is trapped close to grain boundaries. It may be a result of shock incorporation of adsorbed atmospheric gas. The second component is best explained as an intimate mixture of martian interior xenon and spallation xenon. The martian interior component is present at a concentration of ˜10 -12 cm 3 STP g -1 132Xe, around 40 times lower than that observed in Chassigny. Its association with spallation xenon (produced from Ba and light rare earth elements) suggests it is in the feldspathic mesostasis. We propose that it was trapped during crystallisation and reflects the mantle source of the parental magma.

  6. Final Report on MEGAPIE Target Irradiation and Post-Irradiation Examination

    SciTech Connect

    Yong, Dai

    2015-06-30

    Megawatt pilot experiment (MEGAPIE) was successfully performed in 2006. One of the important goals of MEGAPIE is to understand the behaviour of structural materials of the target components exposed to high fluxes of high-energy protons and spallation neutrons in flowing LBE (liquid lead-bismuth eutectic) environment by conducting post-irradiation examination (PIE). The PIE includes four major parts: non-destructive test, radiochemical analysis of production and distribution of radionuclides produced by spallation reaction in LBE, analysis of LBE corrosion effects on structural materials, T91 and SS 316L steels, and mechanical testing of the T91 and SS 316L steels irradiated in the lower part of the target. The non-destructive test (NDT) including visual inspection and ultrasonic measurement was performed in the proton beam window area of the T91 calotte of the LBE container, the most intensively irradiated part of the MEGAPIE target. The visual inspection showed no visible failure and the ultrasonic measurement demonstrated no detectable change in thickness in the beam window area. Gamma mapping was also performed in the proton beam window area of the AlMg3 safety-container. The gamma mapping results were used to evaluate the accumulated proton fluence distribution profile, the input data for determining irradiation parameters. Radiochemical analysis of radionuclides produced by spallation reaction in LBE is to improve the understanding of the production and distribution of radionuclides in the target. The results demonstrate that the radionuclides of noble metals, 207Bi, 194Hg/Au are rather homogeneously distributed within the target, while radionuclides of electropositive elements are found to be deposited on the steel-LBE interface. The corrosion effect of LBE on the structural components under intensive irradiation was investigated by metallography. The results show that no evident corrosion damages. However, unexpected deep

  7. Folate-targeted pH-responsive calcium zoledronate nanoscale metal-organic frameworks: Turning a bone antiresorptive agent into an anticancer therapeutic.

    PubMed

    Au, Kin Man; Satterlee, Andrew; Min, Yuanzeng; Tian, Xi; Kim, Young Seok; Caster, Joseph M; Zhang, Longzhen; Zhang, Tian; Huang, Leaf; Wang, Andrew Z

    2016-03-01

    Zoledronate (Zol) is a third-generation bisphosphonate that is widely used as an anti-resorptive agent for the treatment of cancer bone metastasis. While there is preclinical data indicating that bisphosphonates such as Zol have direct cytotoxic effects on cancer cells, such effect has not been firmly established in the clinical setting. This is likely due to the rapid absorption of bisphosphonates by the skeleton after intravenous (i.v.) administration. Herein, we report the reformulation of Zol using nanotechnology and evaluation of this novel nanoscale metal-organic frameworks (nMOFs) formulation of Zol as an anticancer agent. The nMOF formulation is comprised of a calcium zoledronate (CaZol) core and a polyethylene glycol (PEG) surface. To preferentially deliver CaZol nMOFs to tumors as well as facilitate cellular uptake of Zol, we incorporated folate (Fol)-targeted ligands on the nMOFs. The folate receptor (FR) is known to be overexpressed in several tumor types, including head-and-neck, prostate, and non-small cell lung cancers. We demonstrated that these targeted CaZol nMOFs possess excellent chemical and colloidal stability in physiological conditions. The release of encapsulated Zol from the nMOFs occurs in the mid-endosomes during nMOF endocytosis. In vitro toxicity studies demonstrated that Fol-targeted CaZol nMOFs are more efficient than small molecule Zol in inhibiting cell proliferation and inducing apoptosis in FR-overexpressing H460 non-small cell lung and PC3 prostate cancer cells. Our findings were further validated in vivo using mouse xenograft models of H460 and PC3. We demonstrated that Fol-targeted CaZol nMOFs are effective anticancer agents and increase the direct antitumor activity of Zol by 80-85% in vivo through inhibition of tumor neovasculature, and inhibiting cell proliferation and inducing apoptosis.

  8. Design strategies to improve the sensitivity of photoactive metal carbonyl complexes (photoCORMs) to visible light and their potential as CO-donors to biological targets.

    PubMed

    Chakraborty, Indranil; Carrington, Samantha J; Mascharak, Pradip K

    2014-08-19

    The recent surprising discovery of the beneficial effects of carbon monoxide (CO) in mammalian physiology has drawn attention toward site-specific delivery of CO to biological targets. To avoid difficulties in handling of this noxious gas in hospital settings, researchers have focused their attention on metal carbonyl complexes as CO-releasing molecules (CORMs). Because further control of such CO delivery through light-triggering can be achieved with photoactive metal carbonyl complexes (photoCORMs), we and other groups have attempted to isolate such complexes in the past few years. Typical metal carbonyl complexes release CO when exposed to UV light, a fact that often deters their use in biological systems. From the very beginning, our effort therefore was directed toward identifying design principles that could lead to photoCORMs that release CO upon illumination with low-power (5-15 mW/cm(2)) visible and near-IR light. In our work, we have utilized Mn(I), Re(I), and Ru(II) centers (all d(6) ground state configuration) to ensure overall stability of the carbonyl complexes. We also hypothesized that transfer of electron density from the electron-rich metal centers to π* MOs of the ligand frame via strong metal-to-ligand charge transfer (MLCT) transitions in the visible/near-IR region would weaken metal-CO back-bonding and promote rapid CO photorelease. This expectation has been realized in a series of carbonyl complexes derived from a variety of designed ligands and smart choice of ligand/coligand combinations. Several principles have emerged from our systematic approach to the design of principal ligands and the choice of auxiliary ligands (in addition to the number of CO) in synthesizing these photoCORMs. In each case, density functional theory (DFT) and time-dependent DFT (TDDFT) study afforded insight into the dependence of the CO photorelease from a particular photoCORM on the wavelength of light. Results of these theoretical studies indicate that extended

  9. The influence of laser ablation plume at different laser incidence angle on the impulse coupling coefficient with metal target

    NASA Astrophysics Data System (ADS)

    Zhao, Xiong-Tao; Tang, Feng; Han, Bing; Ni, Xiao-Wu

    2016-12-01

    A calibrated pendulum measuring device and a dimensionless analysis method were used to measure the impulse coupling coefficient at different laser intensities with aluminum, steel, and iron targets. The experiment was performed with a pulsed laser with the wavelength of 1.06 μm and the pulse duration of 7 ns. The experimental measurements of the variation of the impulse coupling coefficient versus the laser energy density agree with the theoretical prediction, and the optimum laser energy density correlated with the maximum impulse coupling coefficient corresponding to the theoretical predictions. The impulse coupling coefficients with laser incidence angles of 0 ° and 45 ° are compared for understanding of the effects of the ablation plume on the impulse coupling effect, and the experimental result shows that the impulse coupling effect grows as the incidence angle changes from 0 ° to 45 ° . Furthermore, the transmittance of the incident laser through the ablation plume in front of the target is deduced from the impulse measurements, and the effect of the ablation plume on the impulse coupling at high laser intensity is discussed. In order to investigate the weak impulse coupling effect, which is difficult to obtain from the experiments, the impulse coupling coefficient at low laser energy density was calculated by the finite element simulation.

  10. Large Scale Accelerator Production of 225Ac: Effective Cross sections for 78-192 MeV Protons Incident on 232Th Targets

    SciTech Connect

    Griswold, Justin R; Medvedev, Dmitri G.; Engle, Jonathan W.; Copping, Roy; Fitzsimmons, Jonathan M.; Radchenko, Valery; Cooley, Jason; Fassbender, Michael; Denton, David L.; Murphy, Karen E.; Owens, Allison C.; Birnbaum, Eva R.; John, Kevin D.; Nortier, Francois M.; Stracener, Daniel W; Heilbronn, Lawrence H.; Mausner, Leonard F.; Mirzadeh, Saed

    2016-09-28

    Actinium-225 and 213Bi have been used successfully in targeted alpha therapy (TAT) in preclinical and clinical research. This paper is a continuation of research activities aiming to expand the availability of 225Ac. The high energy proton spallation reaction on natural thorium metal target has been utilized to produce millicurie quantities of 225Ac. The results of sixteen irradiation experiments of Th metal at beam energies between 78 and 200 MeV are summarized in this work. Irradiations have been conducted at Brookhaven National Laboratory (BNL) and Los Alamos National Laboratory (LANL), while target dissolution and processing was carried out at Oak Ridge National Laboratory (ORNL). Excitation functions for actinium and thorium isotopes as well as for some of the fission products are presented. The cross sections for production of 225Ac range from 3.6 to 16.7 mb in the incident proton energy range of 78 to 192 MeV. Based on these data, production of Curie quantities of 225Ac is possible by irradiating a 5.0 g cm-2232Th target for 10 days in either BNL or LANL proton irradiation facilities.

  11. Potential human health risks from toxic metals, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine pesticides via canned fish consumption: estimation of target hazard quotients.

    PubMed

    El Morsy, Fadia A M; El-Sadaawy, Manal M; Ahdy, Hoda H H; Abdel-Fattah, Laila M; El-Sikaily, Amany M; Khaled, Azza; Tayel, Fathi M T

    2013-01-01

    Canned fish (tuna and sardine) of different geographical regions were collected randomly from supermarkets and were analyzed for heavy metal contents (Hg, Cd and Pb) polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and pesticides. Canned fish samples (two brands of sardines, six brands of tuna) that were purchased from Egyptian cities between 2009 and 2010, represent four countries (Morocco, Republic of Yemen, Indonesia and Thailand). Health risks on humans via dietary intake of seafood were assessed by the target hazard quotients (THQs), potential non-carcinogenic and carcinogenic effects. The contents of trace metals in canned tuna and canned sardines were found as: 0.149-0.218 μg/g for Cd; 0.312-0.937 μg/g for Pb and 0.053-0.022 μg/g for Hg. Canned sardines fluctuated between 0.55 and 1.82, 1.08 and 1.64, 11.91 and 26.24 ng/g for total HCHs, Total cyclodienes and DDTs respectively while the corresponding concentrations in canned tuna were 0.24-1.85, 0.24-1‥85 and 6.56-49.73 ng/g, respectively. Total PCBs fluctuated between 21.75 and 55.10 for canned sardines and 8.56-208.11 ng/g for canned tuna. On the other hand the total PAHs fluctuated between 0.006-9.775 and 1.556-2.686 ng/g for tuna and sardines. From the human health point of view, there is no adverse health effect for both PAHs and heavy metals content on consumers.

  12. Chelation Motifs Affecting Metal-dependent Viral Enzymes: N′-acylhydrazone Ligands as Dual Target Inhibitors of HIV-1 Integrase and Reverse Transcriptase Ribonuclease H Domain

    PubMed Central

    Carcelli, Mauro; Rogolino, Dominga; Gatti, Anna; Pala, Nicolino; Corona, Angela; Caredda, Alessia; Tramontano, Enzo; Pannecouque, Christophe; Naesens, Lieve; Esposito, Francesca

    2017-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection, still represent a serious global health emergency. The chronic toxicity derived from the current anti-retroviral therapy limits the prolonged use of several antiretroviral agents, continuously requiring the discovery of new antiviral agents with innovative strategies of action. In particular, the development of single molecules targeting two proteins (dual inhibitors) is one of the current main goals in drug discovery. In this contest, metal-chelating molecules have been extensively explored as potential inhibitors of viral metal-dependent enzymes, resulting in some important classes of antiviral agents. Inhibition of HIV Integrase (IN) is, in this sense, paradigmatic. HIV-1 IN and Reverse Transcriptase-associated Ribonuclease H (RNase H) active sites show structural homologies, with the presence of two Mg(II) cofactors, hence it seems possible to inhibit both enzymes by means of chelating ligands with analogous structural features. Here we present a series of N′-acylhydrazone ligands with groups able to chelate the Mg(II) hard Lewis acid ions in the active sites of both the enzymes, resulting in dual inhibitors with micromolar and even nanomolar activities. The most interesting identified N′-acylhydrazone analog, compound 18, shows dual RNase H-IN inhibition and it is also able to inhibit viral replication in cell-based antiviral assays in the low micromolar range. Computational modeling studies were also conducted to explore the binding attitudes of some model ligands within the active site of both the enzymes. PMID:28373864

  13. LIQUID TARGET

    DOEpatents

    Martin, M.D.; Salsig, W.W. Jr.

    1959-01-13

    A liquid handling apparatus is presented for a liquid material which is to be irradiated. The apparatus consists essentially of a reservoir for the liquid, a target element, a drain tank and a drain lock chamber. The target is in the form of a looped tube, the upper end of which is adapted to be disposed in a beam of atomic particles. The lower end of the target tube is in communication with the liquid in the reservoir and a means is provided to continuously circulate the liquid material to be irradiated through the target tube. Means to heat the reservoir tank is provided in the event that a metal is to be used as the target material. The apparatus is provided with suitable valves and shielding to provide maximum safety in operation.

  14. Performance characteristics of the new detector array for the SANS2d instrument on the ISIS spallation neutron source

    NASA Astrophysics Data System (ADS)

    Duxbury, D.; Heenan, R.; McPhail, D.; Raspino, D.; Rhodes, N.; Rogers, S.; Schooneveld, E.; Spill, E.; Terry, A.

    2014-12-01

    The performance of the new position sensitive neutron detector arrays of the Small Angle Neutron Scattering (SANS) instrument SANS2d is described. The SANS2d instrument is one of the seven instruments currently available for users on the second target station (TS2) of the ISIS spallation neutron source. Since the instrument became operational in 2009 it has used two one metre square multi-wire proportional detectors (MWPC). However, these detectors suffer from a low count rate capability, are easily damaged by excess beam and are then expensive to repair. The new detector arrays each consist of 120 individual position sensitive detector tubes, filled with 15 bar of 3He. Each of the tubes is one metre long and has a diameter of 8mm giving a detector array with an overall area of one square metre. Two such arrays have been built and installed in the SANS2d vacuum tank where they are currently taking user data. For SANS measurements operation of the detector within a vacuum is essential in order to reduce air scattering. A novel, fully engineered approach has been utilised to ensure that the high voltage connections and preamps are located inside the SANS2d vacuum tank at atmospheric pressure, within air tubes and air boxes respectively. The signal processing electronics and data acquisition system are located remotely in a counting house outside of the blockhouse. This allows easy access for maintenance purposes, without the need to remove the detectors from the vacuum tank. The design will be described in detail. A position resolution of 8mm FWHM or less has been measured along the length of the tubes. The initial measurements taken from a standard sample indicate that whilst the detector arrays themselves only represent a moderate improvement in overall detection efficiency (~ 20%), compared to the previous detector, the count rate capability is increased by a factor of 100. A significant advantage of the new array is the ability to change a single tube in situ

  15. A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents

    SciTech Connect

    Kohler, Nathan J.; Fryxell, Glen E.; Zhang, Miqin

    2004-06-16

    A trifluoroethylester-terminal poly (ethylene glycol) (PEG) silane was synthesized and self-assembled on iron oxide nanoparticles. The nanoparticle system thus prepared has the flexibility to conjugate with cell targeting agents having either carboxylic and amine terminal groups for a number of biomedical applications, including magnetic resonance imaging (MRI) and controlled drug delivery. The trifluoroethylester silane was synthesized by modifying a PEG diacid to form the corresponding bistrifluoroethylester (TFEE), followed by a reaction with 3-aminopropyltriethoxysilane (APS). The APS coupled with PEG chains confers the stability of PEG self-assembled monolayers (SAMs) and increases the PEG packing density on nanoparticles by establishing hydrogen bonding between the carbonyl and amine groups present within the monolayer structure. The success of the synthesis of the PEG TEFE silane was confirmed with 1H NMR and Fourier transform infrared spectroscopy (FTIR). The conjugating flexibility of the PEG TEFE was demonstrated with folic acid having carboxylic acid groups and amine terminal groups respectively and confirmed by FTIR. TEM analysis showed the dispersion of nanoparticles before and after they were coated with PEG and folic acid.

  16. Titanium spallation cross sections between 30 and 584 MeV and Ar-39 activities on the moon

    NASA Technical Reports Server (NTRS)

    Steinburnn, F.; Fireman, E. L.

    1974-01-01

    The production cross sections of Ar39 for Ti spallation at 45-, 319-, 433-, and 584-MeV proton energies were measured to be 0.37 + or - 0.09, 12.4 + or - 3.7, 9.1 + or - 2.7, and 17.8 + or - 6.2 mb, respectively. Normalized Ar39 production rates and activities are also derived for protons above 40 MeV and for three differential proton spectra of the type approximately E(- alpha). It is concluded that, even for samples of high-Ti content, Ti spallation by solar protons below 200-MeV energy does not contribute significantly to their Ar39 radioactivity.

  17. Investigation on heavy liquid metal cooling of ADS fuel pin assemblies

    NASA Astrophysics Data System (ADS)

    Litfin, K.; Batta, A.; Class, A. G.; Wetzel, Th.; Stieglitz, R.

    2011-08-01

    In the framework of accelerator driven sub-critical reactor systems heavy liquid metals are considered as coolant for the reactor core and the spallation target. In particular lead or lead bismuth eutectic (LBE) exhibit efficient heat removal properties and high production rate of neutrons. However, the excellent heat conductivity of LBE-flows expressed by a low molecular Prandtl number of the order 10 -2 requires improved modeling of the turbulent heat transfer. Although various models for thermal hydraulics of LBE flows are existing, validated heat transfer correlations for ADS-relevant conditions are still missing. In order to validate the sub-channel codes and computational fluid dynamics codes used to design fuel assemblies, the comparison with experimental data is inevitable. Therefore, an experimental program composed of three major experiments, a single electrically heated rod, a 19-pin hexagonal water rod bundle and a LBE rod bundle, has been initiated at the Karlsruhe Liquid metal Laboratory (KALLA) of the Karlsruhe Institute of Technology, in order to quantify and separate the individual phenomena occurring in the momentum and energy transfer of a fuel assembly.

  18. Simulation of cosmic irradiation conditions in thick target arrangements

    NASA Technical Reports Server (NTRS)

    Theis, S.; Englert, P.; Reedy, R. C.; Arnold, J. R.

    1986-01-01

    One approach to simulate 2-pi irradiation conditions of planetary surfaces which has been widely applied in the past are bombardments of so called thick targets. A very large thick target was exposed recently to 2.1 GeV protons at the Bevatron-Bevalac in Berkeley. In a 100x100x180 cm steel-surrounded granodiorite target radioactive medium and high energy spallation products of the incident primary and of secondary particles were analyzed along the beam axis down to depths of 140 g/cm(2) in targets such as Cu, Ni, Co, Fe, T, Si, SiO2 and Al. Activities of these nuclides were exclusively determined via instrumental gamma-ray spectroscopy. Relative yields of neutron capture and spallation products induced in Co and Cu targets during the thick target bombardment are shown as a function of depth. The majority of the medium energy products such as Co-58 from Co targets exhibit a maximum at shallow depths of 40-60 g/cm(2) and then decrease exponentially. In a comparable 600 MeV proton bombarded thick target such a slight maximum for medium energy products was not observed. Rather, Co-58 activities in Co decreased steadily with the highest activity at the surface. The activities of the n-capture product Co-60 increase steadily starting at the surface. This indicates the rapidly growing flux of low energy neutrons within the target.

  19. Autism genes are selectively targeted by environmental pollutants including pesticides, heavy metals, bisphenol A, phthalates and many others in food, cosmetics or household products.

    PubMed

    Carter, C J; Blizard, R A

    2016-10-27

    The increasing incidence of autism suggests a major environmental influence. Epidemiology has implicated many candidates and genetics many susceptibility genes. Gene/environment interactions in autism were analysed using 206 autism susceptibility genes (ASG's) from the Autworks database to interrogate ∼1 million chemical/gene interactions in the comparative toxicogenomics database. Any bias towards ASG's was statistically determined for each chemical. Many suspect compounds identified in epidemiology, including tetrachlorodibenzodioxin, pesticides, particulate matter, benzo(a)pyrene, heavy metals, valproate, acetaminophen, SSRI's, cocaine, bisphenol A, phthalates, polyhalogenated biphenyls, flame retardants, diesel constituents, terbutaline and oxytocin, inter alia showed a significant degree of bias towards ASG's, as did relevant endogenous agents (retinoids, sex steroids, thyroxine, melatonin, folate, dopamine, serotonin). Numerous other suspected endocrine disruptors (over 100) selectively targeted ASG's including paraquat, atrazine and other pesticides not yet studied in autism and many compounds used in food, cosmetics or household products, including tretinoin, soy phytoestrogens, aspartame, titanium dioxide and sodium fluoride. Autism polymorphisms influence the sensitivity to some of these chemicals and these same genes play an important role in barrier function and control of respiratory cilia sweeping particulate matter from the airways. Pesticides, heavy metals and pollutants also disrupt barrier and/or ciliary function, which is regulated by sex steroids and by bitter/sweet taste receptors. Further epidemiological studies and neurodevelopmental and behavioural research is warranted to determine the relevance of large number of suspect candidates whose addition to the environment, household, food and cosmetics might be fuelling the autism epidemic in a gene-dependent manner.

  20. Design of the APT Target/Blanket

    NASA Astrophysics Data System (ADS)

    Cappiello, M. W.

    1998-04-01

    The Accelerator Production of Tritium Target/Blanket system is composed of a separated tungsten spallation target surrounded by a lead moderator, as well as attendant heat removal systems. The system is housed in a building located at the end of a 1.3 km long linear accelerator, which can produce a 100 mA proton beam up to 1700 MeV (170MW). The beam is expanded by a rastering system to a 0.19m x 190.m shape before passing through an Inconel window and impacting the heavy-water cooled tungsten target. Neutrons produced in the tungsten by the spallation process are further multiplied and moderated in a surrounding light-water cooled lead blanket. Neutron capture in tubes of Helium-3 gas inserted in the blanket produce tritium which is removed on a continual basis in an adjacent Tritium Separation Facility (TSF). The APT T/B is a robust design based on existing technology. Where possible, proven materials and component designs are used. To accommodate uncertainties in predicted lifetimes, the design is modularized to allow for a straightforward replacement of spent components. The thermal hydraulic design is well within allowable limits and due to the low temperature and pressure systems, offers additional safety and reliability benefits. The safety by design process has incorporated passive design features, redundancy, and defense in depth to provide adequate protection of both the worker and the public.

  1. Accident analysis of the windowless target system

    SciTech Connect

    Bianchi, F.; Ferri, R.

    2006-07-01

    Transmutation systems are able to reduce the radio-toxicity and amount of High-Level Wastes (HLW), which are the main concerns related to the peaceful use of nuclear energy, and therefore they should make nuclear energy more easily acceptable by population. A transmutation system consists of a sub-critical fast reactor, an accelerator and a Target System, where the spallation reactions needed to sustain the chain reaction take place. Three options were proposed for the Target System within the European project PDS-XADS (Preliminary Design Studies on an Experimental Accelerator Driven System): window, windowless and solid. This paper describes the constraints taken into account in the design of the windowless Target System for the large Lead-Bismuth-Eutectic cooled XADS and deals with the results of the calculations performed to assess the behaviour of the target during some accident sequences related to pump trips. (authors)

  2. The expected radiation damage of CSNS target

    NASA Astrophysics Data System (ADS)

    Yin, W.; Yu, Q. Z.; Lu, Y. L.; Wang, S. L.; Tong, J. F.; Liang, T. J.

    2012-12-01

    The radiation damage to the tungsten target and its SS316 vessel for Chinese Spallation Neutron Source (CSNS) has been estimated with a Monte-Carlo simulation code MCNPX2.5.0. We compare the effects on the radiation damage due to two different proton beam profiles: a uniform distribution and a Gaussian distribution. We also discuss the dependence of the radiation damage estimation on different physics models. The results show the peak displacement productions in vessel and the fourth target plate are 2.5 and 5.5 dpa/y, respectively, under a Gaussian proton beam. The peak helium productions in the vessel and the fourth target are 305 and 353 appm/y, respectively, under the same proton beam. Based on these results and the allowable dpa values we have estimated the lifetime of the tungsten target and its vessel.

  3. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K.

    2014-01-01

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

  4. Measurement cells of the Spallation Neutron Source neutron Electric Dipole Moment experiment

    NASA Astrophysics Data System (ADS)

    Leung, Kent; SNS nEDM Collaboration

    2016-09-01

    The Spallation Neutron Source (SNS) neutron Electric Dipole Moment (nEDM) experiment will use 3 L rectangular measurement cells filled with superfluid helium at 0.3 - 0.5 K with a 10-10 fraction of polarized 3He. These cells are made from 0.5 in thick PMMA plates, coated with a mixture of deuterated polystyrene and deuterated tetraphenyl butadiene and then glued together with deuterated acrylic cement. The experiment requires the cells to be: non-magnetic, non-conducting, fluorescent at the inner surface for VUV photons, optically transparent, cryogenic-friendly, polarized 3He friendly, and have long ultracold neutron (UCN) storage times. The successful production of full-sized cells and how these cells address each of the above requirements, will be presented. Focus will be given on recent UCN storage tests of several cells measured between 90 K to 20 K. These results demonstrate the cryogenic robustness of these cells and UCN loss f-factors of 2 ×10-5 , better than beryllium at low temperatures. A previous problem of gaps or uncovered patches exposed on the inside of the cell has been resolved. Exploratory work on new polymer coatings that could improve our cells further will also be presented. DE-FG02-97ER41042.

  5. Overview of the conceptual design of the future VENUS beamline at the Spallation Neutron Source

    SciTech Connect

    Bilheux, Hassina Z; Herwig, Kenneth W; Keener, Wylie S; Davis, Larry E

    2015-01-01

    VENUS will be a world-class neutron-imaging instrument that will uniquely utilize the Spallation Neutron Source (SNS) time-of-flight (TOF) capabilities to measure and characterize objects across several length scales (mm to m). When completed, VENUS will provide academia, industry and government laboratories with the opportunity to advance scientific research in areas such as energy, materials, additive manufacturing, geosciences, transportation, engineering, plant physiology, biology, etc. It is anticipated that a good portion of the VENUS user community will have a strong engineering/industrial research focus. Installed at Beamline 10 (BL10), VENUS will be a 25-m neutron imaging facility with the capability to fully illuminate (i.e., umbra illumination) a 20 cm x 20 cm detector area. The design allows for a 28 cm x 28 cm field of view when using the penumbra to 80% of the full illumination flux. A sample position at 20 m will be implemented for magnification measurements. The optical components are comprised of a series of selected apertures, T0 and bandwidth choppers, beam scrapers, a fast shutter to limit sample activation, and flight tubes filled with Helium. Techniques such as energy selective, Bragg edge and epithermal imaging will be available at VENUS

  6. High Field Pulsed Magnets for Neutron Scattering at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Granroth, G. E.; Lee, J.; Fogh, E.; Christensen, N. B.; Toft-Petersen, R.; Nojiri, H.

    2015-03-01

    A High Field Pulsed Magnet (HFPM) setup, is in use at the Spallation Nuetron Source(SNS), Oak Ridge National Laboratory. With this device, we recently measured the high field magnetic spin structure of LiNiPO4. The results of this study will be highlighted as an example of possible measurements that can be performed with this device. To further extend the HFPM capabilities at SNS, we have learned to design and wind these coils in house. This contribution will summarize the magnet coil design optimization procedure. Specifically by varying the geometry of the multi-layer coil, we arrive at a design that balances the maximum field strength, neutron scattering angle, and the field homogeneity for a specific set of parameters. We will show that a 6.3kJ capacitor bank, can provide a magnetic field as high as 30T for a maximum scattering angle around 40° with homogeneity of +/- 4 % in a 2mm diameter spherical volume. We will also compare the calculations to measurements from a recently wound test coil. This work was supported in part by the Lab Directors' Research and Development Fund of ORNL.

  7. Accelerating Data Acquisition, Reduction, and Analysis at the Spallation Neutron Source

    SciTech Connect

    Campbell, Stuart I; Kohl, James Arthur; Granroth, Garrett E; Miller, Ross G; Doucet, Mathieu; Stansberry, Dale V; Proffen, Thomas E; Taylor, Russell J; Dillow, David

    2014-01-01

    ORNL operates the world's brightest neutron source, the Spallation Neutron Source (SNS). Funded by the US DOE Office of Basic Energy Science, this national user facility hosts hundreds of scientists from around the world, providing a platform to enable break-through research in materials science, sustainable energy, and basic science. While the SNS provides scientists with advanced experimental instruments, the deluge of data generated from these instruments represents both a big data challenge and a big data opportunity. For example, instruments at the SNS can now generate multiple millions of neutron events per second providing unprecedented experiment fidelity but leaving the user with a dataset that cannot be processed and analyzed in a timely fashion using legacy techniques. To address this big data challenge, ORNL has developed a near real-time streaming data reduction and analysis infrastructure. The Accelerating Data Acquisition, Reduction, and Analysis (ADARA) system provides a live streaming data infrastructure based on a high-performance publish subscribe system, in situ data reduction, visualization, and analysis tools, and integration with a high-performance computing and data storage infrastructure. ADARA allows users of the SNS instruments to analyze their experiment as it is run and make changes to the experiment in real-time and visualize the results of these changes. In this paper we describe ADARA, provide a high-level architectural overview of the system, and present a set of use-cases and real-world demonstrations of the technology.

  8. The Nanoscale Ordered MAterials Diffractometer NOMAD at the Spallation Neutron Source SNS

    NASA Astrophysics Data System (ADS)

    Neuefeind, Jörg; Feygenson, Mikhail; Carruth, John; Hoffmann, Ron; Chipley, Kenneth K.

    2012-09-01

    The Nanoscale Ordered MAterials Diffractometer (NOMAD) is neutron time-of-flight diffractometer designed to determine pair distribution functions of a wide range of materials ranging from short range ordered liquids to long range ordered crystals. Due to a large neutron flux provided by the Spallation Neutron Source SNS and a large detector coverage neutron count-rates exceed comparable instruments by one to two orders of magnitude. This is achieved while maintaining a relatively high momentum transfer resolution of a δQ/Q ˜0.8% FWHM (typical), and a possible δQ/Q of 0.24% FWHM (best). The real space resolution is related to the maximum momentum transfer; a maximum momentum transfer of 50 Å-1 can be obtained routinely and the maximum momentum transfer given by the detector configuration and the incident neutron spectrum is 125 Å. High stability of the source and the detector allow small contrast isotope experiments to be performed. A detailed description of the instrument is given and the results of experiments with standard samples are discussed.

  9. Improved design of proton source and low energy beam transport line for European Spallation Source

    SciTech Connect

    Neri, L. Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Ciavola, G.; Torrisi, G.; Cheymol, B.; Ponton, A.; Galatà, A.; Patti, G.; Gozzo, A.; Lega, L.

    2014-02-15

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  10. Control system for the Spallation Neutron Source H{sup -} source test facility Allison scanner

    SciTech Connect

    Long, C. D.; Stockli, M. P.; Gorlov, T. V.; Han, B.; Murray, S. N.; Pennisi, T. R.

    2010-02-15

    Spallation Neutron Source is currently in progress of a multiyear plan to ramp ion beam power to the initial design power of 1.4 MW. Key to reaching this goal is understanding and improving the operation of the H{sup -} ion source. An Allison scanner was installed on the ion source in the test facility to support this improvement. This paper will discuss the hardware and the software control system of the installed Allison scanner. The hardware for the system consists of several parts. The heart of the system is the scanner head, complete with associated bias plates, slits, and signal detector. There are two analog controlled high voltage power supplies to bias the plates in the head, and a motor with associated controller to position the head in the beam. A multifunction data acquisition card reads the signals from the signal detector, as well as supplies the analog voltage control for the power supplies. To synchronize data acquisition with the source, the same timing signal that is used to trigger the source itself is used to trigger data acquisition. Finally, there is an industrial personal computer to control the rest of the hardware. Control software was developed using National Instruments LABVIEW, and consists of two parts: a data acquisition program to control the hardware and a stand alone application for offline user data analysis.

  11. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    SciTech Connect

    Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K.

    2014-01-29

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

  12. Background Studies at the Spallation Neutron Source for the COHERENT Experiment

    NASA Astrophysics Data System (ADS)

    Heath, Matthew; Coherent Collaboration

    2016-09-01

    The COHERENT experiment is attempting a first measurement of coherent elastic neutrino-nucleus scattering (CEvNS) at the Spallation Neutron Source (SNS) at Oak Ridge National Lab. CEvNS is a standard model process that is important in understanding supernova neutrinos, the structure of the weak interaction, and as a background for dark matter searches. COHERENT is placing a suite of four detector technologies in a basement location at the SNS: point contact germanium detectors, CsI[Na] crystals, NaI[Tl] crystals, and single phase liquid argon. Previous attempts to measure the CEvNS process have grappled with very high rates of backgrounds due to the low energy thresholds required. Accelerator-correlated neutrons are the most troublesome background for COHERENT because a simple accelerator on/off background subtraction procedure fails to remove them. To understand these backgrounds, COHERENT features measurements from the SciBath detector and the Sandia Neutron Scatter Camera (NSC). Important neutron measurements from both SciBath and the NSC, as well as gamma measurements from the SNS basement location where the four detector technologies for COHERENT will be placed will be discussed. COHERENT collaborators are supported by the U. S. Department of Energy Office of Science, the National Science Foundation, NASA, and the Sloan Foundation.

  13. Initial tests of the Spallation Neutron Source H{sup -} ion source with an external antenna

    SciTech Connect

    Welton, R.F.; Stockli, M.P.; Murray, S.N.; Kang, Y.; Peters, J.

    2006-03-15

    The ion source for the Spallation Neutron Source (SNS) is a radio-frequency (rf) multicusp source designed to deliver H{sup -} beam pulses of 40 mA to the SNS accelerator with a normalized root-mean-square emittance of less than 0.2{pi} mm mrad, with a pulse length of 1 ms and a repetition rate of 60 Hz. In order to achieve this performance the source must operate with both high-pulse rf power, {approx}50 kW, and high average rf power, {approx}3.5 kW, over a continuous operational period of 3 weeks. During operation at these power levels the plasma-immersed, porcelain-coated rf antenna is susceptible to damage, limiting source lifetime. We are therefore developing an ion source where the plasma is separated from the Cu antenna by an Al{sub 2}O{sub 3} discharge chamber. This article describes the ion source, presents initial beam extraction measurements, and details our ongoing effort to develop this concept into a suitable ion source for the SNS.

  14. Improvements to the internal and external antenna H(-) ion sources at the Spallation Neutron Source.

    PubMed

    Welton, R F; Dudnikov, V G; Han, B X; Murray, S N; Pennisi, T R; Pillar, C; Santana, M; Stockli, M P; Turvey, M W

    2014-02-01

    The Spallation Neutron Source (SNS), a large scale neutron production facility, routinely operates with 30-40 mA peak current in the linac. Recent measurements have shown that our RF-driven internal antenna, Cs-enhanced, multi-cusp ion sources injects ∼55 mA of H(-) beam current (∼1 ms, 60 Hz) at 65-kV into a Radio Frequency Quadrupole (RFQ) accelerator through a closely coupled electrostatic Low-Energy Beam Transport system. Over the last several years a decrease in RFQ transmission and issues with internal antennas has stimulated source development at the SNS both for the internal and external antenna ion sources. This report discusses progress in improving internal antenna reliability, H(-) yield improvements which resulted from modifications to the outlet aperture assembly (applicable to both internal and external antenna sources) and studies made of the long standing problem of beam persistence with the external antenna source. The current status of the external antenna ion source will also be presented.

  15. The continued development of the Spallation Neutron Source external antenna H- ion source.

    PubMed

    Welton, R F; Carmichael, J; Desai, N J; Fuga, R; Goulding, R H; Han, B; Kang, Y; Lee, S W; Murray, S N; Pennisi, T; Potter, K G; Santana, M; Stockli, M P

    2010-02-01

    The U.S. Spallation Neutron Source (SNS) is an accelerator-based, pulsed neutron-scattering facility, currently in the process of ramping up neutron production. In order to ensure that the SNS will meet its operational commitments as well as provide for future facility upgrades with high reliability, we are developing a rf-driven, H(-) ion source based on a water-cooled, ceramic aluminum nitride (AlN) plasma chamber. To date, early versions of this source have delivered up to 42 mA to the SNS front end and unanalyzed beam currents up to approximately 100 mA (60 Hz, 1 ms) to the ion source test stand. This source was operated on the SNS accelerator from February to April 2009 and produced approximately 35 mA (beam current required by the ramp up plan) with availability of approximately 97%. During this run several ion source failures identified reliability issues, which must be addressed before the source re-enters production: plasma ignition, antenna lifetime, magnet cooling, and cooling jacket integrity. This report discusses these issues, details proposed engineering solutions, and notes progress to date.

  16. Separation of beam and electrons in the spallation neutron source H{sup -} ion source

    SciTech Connect

    Whealton, J.H.; Raridon, R.J.; Leung, K.N.

    1997-12-01

    The Spallation Neutron Source (SNS) requires an ion source producing an H{sup {minus}} beam with a peak current of 35mA at a 6.2 percent duty factor. For the design of this ion source, extracted electrons must be transported and dumped without adversely affecting the H{sup {minus}} beam optics. Two issues are considered: (1) electron containment transport and controlled removal; and (2) first-order H{sup {minus}} beam steering. For electron containment, various magnetic, geometric and electrode biasing configurations are analyzed. A kinetic description for the negative ions and electrons is employed with self-consistent fields obtained from a steady-state solution to Poisson`s equation. Guiding center electron trajectories are used when the gyroradius is sufficiently small. The magnetic fields used to control the transport of the electrons and the asymmetric sheath produced by the gyrating electrons steer the ion beam. Scenarios for correcting this steering by split acceleration and focusing electrodes will be considered in some detail.

  17. Fundamental neutron physics at a 1 MW long pulse spallation neutron source

    SciTech Connect

    Greene, G.L.

    1995-12-31

    Modern neutron sources and modern neutron science share a common origin in mid twentieth century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for the study of condensed matter with modern neutron sources being primarily used (and primarily justified) as tools for condensed matter research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities carried out at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high flux neutron facilities. Future sources, particularly high power spallation sources, offer exciting possibilities for the continuation of this program of research.

  18. Improved design of proton source and low energy beam transport line for European Spallation Source

    NASA Astrophysics Data System (ADS)

    Neri, L.; Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Torrisi, G.; Cheymol, B.; Ponton, A.; Galatà, A.; Patti, G.; Gozzo, A.; Lega, L.; Ciavola, G.

    2014-02-01

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  19. Characterization of an explosively bonded aluminum proton beam window for the Spallation Neutron Source

    SciTech Connect

    McClintock, David A; Janney, Jim G; Parish, Chad M

    2014-01-01

    An effort is underway at the Spallation Neutron Source (SNS) to change the design of the 1st Generation high-nickel alloy proton beam window (PBW) to one that utilizes aluminum for the window material. One of the key challenges to implementation of an aluminum PBW at the SNS was selection of an appropriate joining method to bond an aluminum window to the stainless steel bulk shielding of the PBW assembly. An explosively formed bond was selected as the most promising joining method for the aluminum PBW design. A testing campaign was conducted to evaluate the strength and efficacy of explosively formed bonds that were produced using two different interlayer materials: niobium and titanium. The characterization methods reported here include tensile testing, thermal-shock leak testing, optical microscopy, and advanced scanning electron microscopy. All tensile specimens examined failed in the aluminum interlayer and measured tensile strengths were all slightly greater than the native properties of the aluminum interlayer, while elongation values were all slightly lower. A leak developed in the test vessel with a niobium interlayer joint after repeated thermal-shock cycles, and was attributed to an extensive crack network that formed in a layer of niobium-rich intermetallics located on the bond interfaces of the niobium interlayer; the test vessel with a titanium interlayer did not develop a leak under the conditions tested. Due to the experience gained from these characterizations, the explosively formed bond with a titanium interlayer was selected for the aluminum PBW design at the SNS.

  20. Influence of sample geometry on sweeping-detonation-wave spallation in tantalum

    NASA Astrophysics Data System (ADS)

    Gray, G. T.; Hull, L. M.; Livescu, V.; Briggs, M. E.; Meyer, R. K.

    2017-01-01

    Widespread research since 1950 has provided a wealth of experimental data concerning shock hardening and the spallation response of materials subjected to square-topped shock-wave loading profiles. Sweeping-wave loading is a significantly different loading history than that achieved by a square-topped impulse or 1-D HE-driven plane-wave shock in terms of the evolving spherical and shear stresses applied. Sweeping-wave loading in a flat-plate geometry was previously observed to: a) yield a lower spall strength than previously documented for 1-D supported-shock-wave loading, b) exhibit increased shock hardening as a function of increasing obliquity, and c) lead to an increased incidence of deformation twin formation with increasing shock obliquity (1). The current sweeping-wave loading of a 10 cm radius curved Ta plate is observed to: a) lead to an increase in the shear stress as a function of increasing obliquity, and b) display a more developed level of damage evolution, extensive voids and coalescence, and lower spall strength with obliquity in the curved plate than in the flat-plate sweeping-detonation wave loading for an equivalent HE loading.