Sample records for metal surface method

  1. Method to decrease loss of aluminum and magnesium melts

    DOEpatents

    Hryn, John N.; Pellin, Michael J.; Calaway, Jr., Wallis F.; Moore, Jerry F.; Krumdick, Gregory K.

    2002-01-01

    A method to minimize oxidation of metal during melting processes is provided, the method comprising placing solid phase metal into a furnace environ-ment, transforming the solid-phase metal into molten metal phase having a molten metal surface, and creating a barrier between the surface and the environment. Also provided is a method for isolating the surface of molten metal from its environment, the method comprising confining the molten metal to a controlled atmos-phere, and imposing a floating substrate between the surface and the atmosphere.

  2. Method for laser welding a fin and a tube

    DOEpatents

    Fuerschbach, Phillip W.; Mahoney, A. Roderick; Milewski, John O

    2001-01-01

    A method of laser welding a planar metal surface to a cylindrical metal surface is provided, first placing a planar metal surface into approximate contact with a cylindrical metal surface to form a juncture area to be welded, the planar metal surface and cylindrical metal surface thereby forming an acute angle of contact. A laser beam, produced, for example, by a Nd:YAG pulsed laser, is focused through the acute angle of contact at the juncture area to be welded, with the laser beam heating the juncture area to a welding temperature to cause welding to occur between the planar metal surface and the cylindrical metal surface. Both the planar metal surface and cylindrical metal surface are made from a reflective metal, including copper, copper alloys, stainless steel alloys, aluminum, and aluminum alloys.

  3. METHOD OF FORMING A PROTECTIVE COATING ON FERROUS METAL SURFACES

    DOEpatents

    Schweitzer, D.G.; Weeks, J.R.; Kammerer, O.F.; Gurinsky, D.H.

    1960-02-23

    A method is described of protecting ferrous metal surfaces from corrosive attack by liquid metals, such as liquid bismuth or lead-bismuth alloys. The nitrogen content of the ferrous metal surface is first reduced by reacting the metal surface with a metal which forms a stable nitride. Thereafter, the surface is contacted with liquid metal containing at least 2 ppm zirconium at a temperature in the range of 550 to 1100 deg C to form an adherent zirconium carbide layer on the ferrous surface.

  4. Method for preparing hydride configurations and reactive metal surfaces

    DOEpatents

    Silver, G.L.

    1984-05-18

    A method for preparing reactive metal surfaces, particularly uranium surfaces is disclosed, whereby the metal is immediately reactive to hydrogen gas at room temperature and low pressure. The metal surfaces are first pretreated by exposure to an acid which forms an adherent hydride-bearing composition on the metal surface. Subsequent heating of the pretreated metal at a temperature sufficient to decompose the hydride coating in vacuum or inert gas renders the metal surface instantaneously reactive to hydrogen gas at room temperature and low pressure.

  5. Method of making maximally dispersed heterogeneous catalysts

    DOEpatents

    Jennison, Dwight R [Albuquerque, NM

    2005-11-15

    A method of making a catalyst with monolayer or sub-monolayer metal by controlling the wetting characteristics on the support surface and increasing the adhesion between the catalytic metal and an oxide layer. There are two methods that have been demonstrated by experiment and supported by theory. In the first method, which is useful for noble metals as well as others, a negatively-charged species is introduced to the surface of a support in sub-ML coverage. The layer-by-layer growth of metal deposited onto the oxide surface is promoted because the adhesion strength of the metal-oxide interface is increased. This method can also be used to achieve nanoislands of metal upon sub-ML deposition. The negatively-charged species can either be deposited onto the oxide surface or a compound can be deposited that dissociates on, or reacts with, the surface to form the negatively-charged species. The deposited metal adatoms can thereby bond laterally to the negatively-charged species as well as vertically to the oxide surface. Thus the negatively-charged species serve as anchors for the metal. In the second method, a chemical reaction that occurs when most metals are deposited on a fully hydroxylated oxide surface is used to create cationic metal species that bind strongly both to the substrate and to metallic metal atoms. These are incorporated into the top layer of the substrate and bind strongly both to the substrate and to metallic metal atoms. In this case, these oxidized metal atoms serve as the anchors. Here, as in the previous method, nanoislands of catalytic metal can be achieved to increase catalytic activity, or monolayers or bilayers of reactive metal can also be made.

  6. Preparation of transition metal nanoparticles and surfaces modified with (CO)polymers synthesized by RAFT

    DOEpatents

    McCormick, III., Charles L.; Lowe, Andrew B.; Sumerlin, Brent S.

    2006-11-21

    A new, facile, general one-phase method of generating thio-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the stops of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  7. Preparation of transition metal nanoparticles and surfaces modified with (co)polymers synthesized by RAFT

    DOEpatents

    McCormick, III, Charles L.; Lowe, Andrew B [Hattiesburg, MS; Sumerlin, Brent S [Pittsburgh, PA

    2011-12-27

    A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  8. Ultra-fast boriding of metal surfaces for improved properties

    DOEpatents

    Timur, Servet; Kartal, Guldem; Eryilmaz, Osman L.; Erdemir, Ali

    2015-02-10

    A method of ultra-fast boriding of a metal surface. The method includes the step of providing a metal component, providing a molten electrolyte having boron components therein, providing an electrochemical boriding system including an induction furnace, operating the induction furnace to establish a high temperature for the molten electrolyte, and boriding the metal surface to achieve a boride layer on the metal surface.

  9. Method for preparing hydride configurations and reactive metal surfaces

    DOEpatents

    Silver, Gary L.

    1988-08-16

    A method for preparing highly hydrogen-reactive surfaces on metals which normally require substantial heating, high pressures, or an extended induction period, which involves pretreatment of said surfaces with either a non-oxidizing acid or hydrogen gas to form a hydrogen-bearing coating on said surfaces, and subsequently heating said coated metal in the absence of moisture and oxygen for a period sufficient to decompose said coating and cooling said metal to room temperature. Surfaces so treated will react almost instantaneously with hydrogen gas at room temperature and low pressure. The method is particularly applicable to uranium, thorium, and lanthanide metals.

  10. Method for decontamination of radioactive metal surfaces

    DOEpatents

    Bray, L.A.

    1996-08-13

    Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

  11. Method of producing adherent metal oxide coatings on metallic surfaces

    DOEpatents

    Lane, Michael H.; Varrin, Jr., Robert D.

    2001-01-01

    Provided is a process of producing an adherent synthetic corrosion product (sludge) coating on metallic surfaces. The method involves a chemical reaction between a dry solid powder mixture of at least one reactive metal oxide with orthophosphoric acid to produce a coating in which the particles are bound together and the matrix is adherent to the metallic surface.

  12. Systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooks, Robert Graham; Li, Anyin; Luo, Qingjie

    The invention generally relates to systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions. In certain aspects, the invention provides methods that involve providing a metal and a solvent. The methods additionally involve applying voltage to the solvated metal to thereby produce solvent droplets including ions of the metal containing compound, and directing the solvent droplets including the metal ions to a target. In certain embodiments, once at the target, the metal ions can react directly or catalyze reactions.

  13. Systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions

    DOEpatents

    Cooks, Robert Graham; Li, Anyin; Luo, Qingjie

    2017-01-24

    The invention generally relates to systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions. In certain aspects, the invention provides methods that involve providing a metal and a solvent. The methods additionally involve applying voltage to the solvated metal to thereby produce solvent droplets including ions of the metal containing compound, and directing the solvent droplets including the metal ions to a target. In certain embodiments, once at the target, the metal ions can react directly or catalyze reactions.

  14. Method for adhesion of metal films to ceramics

    DOEpatents

    Lowndes, Douglas H.; Pedraza, Anthony J.; DeSilva, Melvin J.; Kumar, Rajagopalan A.

    1997-01-01

    Methods for making strongly bonded metal-ceramic materials. The methods include irradiating a portion of the surface of the ceramic material with a pulsed ultraviolet laser having an energy density sufficient to effect activation of the irradiated surface of the ceramic material so that adhesion of metals subsequently deposited onto the irradiated surface is substantially increased. Advantages of the invention include (i) the need for only a small number of laser pulses at relatively low focused energy density, (ii) a smoother substrate surface, (iii) activation of the laser-treated surface which provides a chemical bond between the surface and a metal deposited thereon, (iv) only low temperature annealing is required to produce the strong metal-ceramic bond; (v) the ability to obtain strong adhesion between ceramic materials and oxidation resistant metals; (vi) ability to store the laser treated ceramic materials for later deposition of metals thereon.

  15. Method for adhesion of metal films to ceramics

    DOEpatents

    Lowndes, D.H.; Pedraza, A.J.; DeSilva, M.J.; Kumar, R.A.

    1997-12-30

    Methods for making strongly bonded metal-ceramic materials are disclosed. The methods include irradiating a portion of the surface of the ceramic material with a pulsed ultraviolet laser having an energy density sufficient to effect activation of the irradiated surface of the ceramic material so that adhesion of metals subsequently deposited onto the irradiated surface is substantially increased. Advantages of the invention include (i) the need for only a small number of laser pulses at relatively low focused energy density, (ii) a smoother substrate surface, (iii) activation of the laser-treated surface which provides a chemical bond between the surface and a metal deposited thereon, (iv) only low temperature annealing is required to produce the strong metal-ceramic bond; (v) the ability to obtain strong adhesion between ceramic materials and oxidation resistant metals; (vi) ability to store the laser treated ceramic materials for later deposition of metals thereon. 7 figs.

  16. Method of producing nanopatterned articles using surface-reconstructed block copolymer films

    DOEpatents

    Russell, Thomas P; Park, Soojin; Wang, Jia-Yu; Kim, Bokyung

    2013-08-27

    Nanopatterned surfaces are prepared by a method that includes forming a block copolymer film on a substrate, annealing and surface reconstructing the block copolymer film to create an array of cylindrical voids, depositing a metal on the surface-reconstructed block copolymer film, and heating the metal-coated block copolymer film to redistribute at least some of the metal into the cylindrical voids. When very thin metal layers and low heating temperatures are used, metal nanodots can be formed. When thicker metal layers and higher heating temperatures are used, the resulting metal structure includes nanoring-shaped voids. The nanopatterned surfaces can be transferred to the underlying substrates via etching, or used to prepare nanodot- or nanoring-decorated substrate surfaces.

  17. Surface Preparation Methods to Enhance Dynamic Surface Property Measurements of Shocked Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Zellner, Michael; McNeil, Wendy; Gray, George, III; Huerta, David; King, Nicholas; Neal, George; Payton, Jeremy; Rubin, Jim; Stevens, Gerald; Turley, William; Buttler, William

    2008-03-01

    This effort investigates surface-preparation methods to enhance dynamic surface-property measurements of shocked metal surfaces. To assess the ability of making reliable and consistent dynamic surface-property measurements, the amount of material ejected from the free-surface upon shock release to vacuum (ejecta) was monitored for shocked Al-1100 and Sn targets. Four surface preparation methods were considered: fly-cut machined finish, diamond-turned machine finish, polished finish, and ball-rolled. The samples were shock loaded by in-contact detonation of HE PBX-9501 on the front-side of the metal coupons. Ejecta production at the back-side or free-side of the metal coupons was monitored using piezoelectric pins, optical shadowgraphy, and x-ray attenuation radiography.

  18. Surface preparation methods to enhance dynamic surface property measurements of shocked metal surfaces

    NASA Astrophysics Data System (ADS)

    Zellner, M. B.; Vogan McNeil, W.; Gray, G. T.; Huerta, D. C.; King, N. S. P.; Neal, G. E.; Valentine, S. J.; Payton, J. R.; Rubin, J.; Stevens, G. D.; Turley, W. D.; Buttler, W. T.

    2008-04-01

    This effort investigates surface-preparation methods to enhance dynamic surface-property measurements of shocked metal surfaces. To assess the ability of making reliable and consistent dynamic surface-property measurements, the amount of material ejected from the free surface upon shock release to vacuum (ejecta) was monitored for shocked Al-1100 and Sn targets. Four surface-preparation methods were considered: Fly-cut machine finish, diamond-turned machine finish, polished finish, and ball rolled. The samples were shock loaded by in-contact detonation of HE PBX-9501 on the front side of the metal coupons. Ejecta production at the back side or free side of the metal coupons was monitored using piezoelectric pins, optical shadowgraphy, and x-ray attenuation radiography.

  19. Fabrication of Metallic Hollow Nanoparticles

    NASA Technical Reports Server (NTRS)

    Lillehei, Peter T. (Inventor); Chu, Sang-Hyon (Inventor); Park, Yeonjoon (Inventor); Kim, Jae-Woo (Inventor); Choi, Sr., Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2016-01-01

    Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH.sub.4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.

  20. Growth methods for controlled large-area fabrication of high-quality graphene analogs

    DOEpatents

    Najmaei, Sina; Liu, Zheng; Ajayan, Pulickel M.; Lou, Jun

    2017-02-28

    In some embodiments, the present disclosure pertains to methods of growing chalcogen-linked metallic films on a surface in a chamber. In some embodiments, the method comprises placing a metal source and a chalcogen source in the chamber, and gradually heating the chamber, where the heating leads to the chemical vapor deposition of the chalcogen source and the metal source onto the surface, and facilitates the growth of the chalcogen-linked metallic film from the chalcogen source and the metal source on the surface. In some embodiments, the chalcogen source comprises sulfur, and the metal source comprises molybdenum trioxide. In some embodiments, the growth of the chalcogen-linked metallic film occurs by formation of nucleation sites on the surface, where the nucleation sites merge to form the chalcogen-linked metallic film. In some embodiments, the formed chalcogen-linked metallic film includes MoS.sub.2.

  1. Oxidized film structure and method of making epitaxial metal oxide structure

    DOEpatents

    Gan, Shupan [Richland, WA; Liang, Yong [Richland, WA

    2003-02-25

    A stable oxidized structure and an improved method of making such a structure, including an improved method of making an interfacial template for growing a crystalline metal oxide structure, are disclosed. The improved method comprises the steps of providing a substrate with a clean surface and depositing a metal on the surface at a high temperature under a vacuum to form a metal-substrate compound layer on the surface with a thickness of less than one monolayer. The compound layer is then oxidized by exposing the compound layer to essentially oxygen at a low partial pressure and low temperature. The method may further comprise the step of annealing the surface while under a vacuum to further stabilize the oxidized film structure. A crystalline metal oxide structure may be subsequently epitaxially grown by using the oxidized film structure as an interfacial template and depositing on the interfacial template at least one layer of a crystalline metal oxide.

  2. A method of measuring a molten metal liquid pool volume

    DOEpatents

    Garcia, G.V.; Carlson, N.M., Donaldson, A.D.

    1990-12-12

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figs.

  3. Insulator coating for high temperature alloys method for producing insulator coating for high temperature alloys

    DOEpatents

    Park, J.H.

    1998-06-23

    A method for fabricating an electrically insulating coating on a surface is disclosed comprising coating the surface with a metal, and reacting the metal coated surface with a nonmetal so as to create a film on the metal-coated surface. Alternatively, the invention provides for a method for producing a noncorrosive, electrically insulating coating on a surface saturated with a nonmetal comprising supplying a molten fluid, dissolving a metal in the molten fluid to create a mixture, and contacting the mixture with the saturated surface. Lastly, the invention provides an electrically insulative coating comprising an underlying structural substrate coated with an oxide or nitride compound. 2 figs.

  4. Pendant-Drop Surface-Tension Measurement On Molten Metal

    NASA Technical Reports Server (NTRS)

    Man, Kin Fung; Thiessen, David

    1996-01-01

    Method of measuring surface tension of molten metal based on pendant-drop method implemented in quasi-containerless manner and augmented with digital processing of image data. Electrons bombard lower end of sample rod in vacuum, generating hanging drop of molten metal. Surface tension of drop computed from its shape. Technique minimizes effects of contamination.

  5. Metal alkoxides and methods of making same

    DOEpatents

    Hentges, Patrick J.; Greene, Laura H.; Pafford, Margaret Mary; Westwood, Glenn; Klemperer, Walter G.

    2005-01-04

    A method of making a superconducting structure includes depositing a metal alkoxide on a surface of a metal and hydrolyzing the metal alkoxide on the surface to form a pinhole-free film. The metal is a superconductor. The metal alkoxide may be a compound of formula (I): where M is zirconium or hafnium, and the purity of the compound is at least 97% as measured by NMR spectroscopy.

  6. Method of measuring a liquid pool volume

    DOEpatents

    Garcia, G.V.; Carlson, N.M.; Donaldson, A.D.

    1991-03-19

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools is disclosed, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figures.

  7. Method of measuring a liquid pool volume

    DOEpatents

    Garcia, Gabe V.; Carlson, Nancy M.; Donaldson, Alan D.

    1991-01-01

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid.

  8. Thermo-electric modular structure and method of making same

    DOEpatents

    Freedman, N.S.; Horsting, C.W.; Lawrence, W.F.; Carrona, J.J.

    1974-01-29

    A method is presented for making a thermoelectric module wtth the aid of an insulating wafer having opposite metallized surfaces, a pair of similar equalizing sheets of metal, a hot-junction strap of metal, a thermoelectric element having hot- and cold-junction surfaces, and a radiator sheet of metal. The method comprises the following steps: brazing said equalizer sheets to said opposite metallized surfaces, respectively, of said insulating wafer with pure copper in a non-oxidizing ambient; brazing one surface of said hot-junction strap to one of the surfaces of said equalizing sheet with a nickel-gold alloy in a non- oxidizing ambient; and diffusion bonding said hot-junction surface of said thermoelectric element to the other surface of said hot-junction strap and said radiator sheet to said cold-junction surface of said thermoelectric element, said diffusion bonding being carried out in a non-oxidizing ambient, under compressive loading, at a temperature of about 550 deg C., and for about one-half hour. (Official Gazette)

  9. Use of reagents to convert chrysotile and amosite asbestos used as insulation or protection for metal surfaces

    DOEpatents

    Sugama, Toshifumi; Petrakis, Leon

    2000-12-12

    A composition for converting asbestos-containing material, covering metal pipes or other metal surfaces, to non-regulated, environmentally benign-materials, and inhibiting the corrosion of the metal pipes or other metal surfaces. The composition comprises a combination of at least two multiple-functional group reagents, in which each reagent includes a Fluro acid component and a corrosion inhibiting compoment. A method for converting asbestos-containing material, covering metal pipes or other metal surfaces, to non-regulated, environmentally benign-materials, and inhibiting the corrosion of the metal pipes or other metal surfaces is also provided.

  10. Method of boronizing transition metal surfaces

    DOEpatents

    Koyama, Koichiro; Shimotake, Hiroshi

    1983-01-01

    A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB.sub.2, or CrB.sub.2. A transition metal to be coated is immersed in the melt at a temperature of no more than 700.degree. C. and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface.

  11. Application of IR imaging for free-surface velocity measurement in liquid-metal systems

    DOE PAGES

    Hvasta, M. G.; Kolemen, E.; Fisher, A.

    2017-01-05

    Measuring free-surface, liquid-metal flow velocity is challenging to do in a reliable and accurate manner. This paper presents a non-invasive, easily calibrated method of measuring the surface velocities of open-channel liquid-metal flows using an IR camera. Unlike other spatially limited methods, this IR camera particle tracking technique provides full field-of-view data that can be used to better understand open-channel flows and determine surface boundary conditions. Lastly, this method could be implemented and automated for a wide range of liquid-metal experiments, even if they operate at high-temperatures or within strong magnetic fields.

  12. Systems and Methods for Fabricating Structures Including Metallic Glass-Based Materials Using Ultrasonic Welding

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C. (Inventor); Roberts, Scott N. (Inventor)

    2017-01-01

    Systems and methods in accordance with embodiments of the invention fabricate objects including metallic glass-based materials using ultrasonic welding. In one embodiment, a method of fabricating an object that includes a metallic glass-based material includes: ultrasonically welding at least one ribbon to a surface; where at least one ribbon that is ultrasonically welded to a surface has a thickness of less than approximately 150.mu.m; and where at least one ribbon that is ultrasonically welded to a surface includes a metallic glass-based material.

  13. Methods of Fabricating a Layer of Metallic Glass-Based Material Using Immersion and Pouring Techniques

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas (Inventor)

    2015-01-01

    Systems and methods in accordance with embodiments of the invention implement layers of metallic glass-based materials. In one embodiment, a method of fabricating a layer of metallic glass includes: applying a coating layer of liquid phase metallic glass to an object, the coating layer being applied in a sufficient quantity such that the surface tension of the liquid phase metallic glass causes the coating layer to have a smooth surface; where the metallic glass has a critical cooling rate less than 1000 K/s; and cooling the coating layer of liquid phase metallic glass to form a layer of solid phase metallic glass.

  14. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOEpatents

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2005-10-18

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  15. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOEpatents

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2003-09-09

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  16. Method of boronizing transition metal surfaces

    DOEpatents

    Koyama, Koichiro; Shimotake, Hiroshi.

    1983-08-16

    A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB[sub 2], or CrB[sub 2]. A transition metal to be coated is immersed in the melt at a temperature of no more than 700 C and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface. 4 figs.

  17. Method for providing adhesion to a metal surface

    DOEpatents

    Harrah, L.A.; Allred, R.E.; Wilson, K.V. Jr.

    1992-02-18

    A process for treating metal surfaces to obtain improved susceptibility to bonding with adhesive compositions is disclosed. A metal surface is oxidized with a halogen to form a monolayer of halide ions on the surface. The halide ions are then exchanged with azide ions to form an azide monolayer on the metal surface. Upon contact of the treated surface with an adhesive composition, the azide layer may be thermally or photochemically decomposed to form active nitrene species, which react to bond the adhesive composition to the metal surface.

  18. Method for providing adhesion to a metal surface

    DOEpatents

    Harrah, Larry A.; Allred, Ronald E.; Wilson, Jr., Kennard V.

    1992-01-01

    A process for treating metal surfaces to obtain improved susceptibility to bonding with adhesive compositions is disclosed. A metal surface is oxidized with a halogen to form a monolayer of halide ions on the surface. The halide ions are then exchanged with azide ions to form an azide monolayer on the metal surface. Upon contact of the treated surface with an adhesive composition, the azide layer may be thermally or photochemically decomposed to form active nitrene species, which react to bond the adhesive composition to the metal surface.

  19. Method of Suppressing Sublimation in Advanced Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeffrey S. (Inventor); Caillat, Thierry (Inventor); Fleurial, Jean-Pierre (Inventor); Snyder, G. Jeffrey (Inventor)

    2009-01-01

    A method of applying a physical barrier to suppress thermal decomposition near a surface of a thermoelectric material including applying a continuous metal foil to a predetermined portion of the surface of the thermoelectric material, physically binding the continuous metal foil to the surface of the thermoelectric material using a binding member, and heating in a predetermined atmosphere the applied and physically bound continuous metal foil and the thermoelectric material to a sufficient temperature in order to promote bonding between the continuous metal foil and the surface of the thermoelectric material. The continuous metal foil forms a physical barrier to enclose a predetermined portion of the surface. Thermal decomposition is suppressed at the surface of the thermoelectric material enclosed by the physical barrier when the thermoelectric element is in operation.

  20. Method of adhesion between an oxide layer and a metal layer

    DOEpatents

    Jennison, Dwight R.; Bogicevic, Alexander; Kelber, Jeffry A.; Chambers, Scott A.

    2004-09-14

    A method of controlling the wetting characteristics and increasing the adhesion between a metal and an oxide layer. By introducing a negatively-charged species to the surface of an oxide layer, layer-by-layer growth of metal deposited onto the oxide surface is promoted, increasing the adhesion strength of the metal-oxide interface. The negatively-charged species can either be deposited onto the oxide surface or a compound can be deposited that dissociates on, or reacts with, the surface to form the negatively-charged species. The deposited metal adatoms can thereby bond laterally to the negatively-charged species as well as vertically to the oxide surface as well as react with the negatively charged species, be oxidized, and incorporated on or into the surface of the oxide.

  1. Method of producing catalytic material for fabricating nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seals, Roland D.; Menchhofer, Paul A.; Howe, Jane Y.

    Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (--COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then bemore » exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.« less

  2. Method of producing catalytic materials for fabricating nanostructures

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2013-02-19

    Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (--COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then be exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.

  3. Method of coating metal surfaces to form protective metal coating thereon

    DOEpatents

    Krikorian, Oscar H.; Curtis, Paul G.

    1992-01-01

    A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof.

  4. Method of coating metal surfaces to form protective metal coating thereon

    DOEpatents

    Krikorian, O.H.; Curtis, P.G.

    1992-03-31

    A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof. 1 figure.

  5. Direct metal brazing to cermet feedthroughs

    DOEpatents

    Not Available

    1982-07-29

    An improved method for brazing metallic components to a cermet surface in an alumina substrate eliminates the prior art metallized layer over the cermet via and adjoining alumina surfaces. Instead, a nickel layer is applied over the cermet surface only and metallic components are brazed directly to this nickel coated cermet surface. As a result, heretofore unachievable tensile strength joints are produced. In addition, cermet vias with their brazed metal components can be spaced more closely in the alumina substrate because of the elimination of the prior art metallized alumina surfaces.

  6. Direct metal brazing to cermet feedthroughs

    DOEpatents

    Hopper, Jr., Albert C.

    1984-12-18

    An improved method for brazing metallic components to a cermet surface in an alumina substrate eliminates the prior art metallized layer over the cermet via and adjoining alumina surfaces. Instead, a nickel layer is applied over the cermet surface only and metallic components are brazed directly to this nickel coated cermet surface. As a result, heretofore unachievable tensile strength joints are produced. In addition, cermet vias with their brazed metal components can be spaced more closely in the alumina substrate because of the elimination of the prior art metallized alumina surfaces.

  7. Method for electrochemical decontamination of radioactive metal

    DOEpatents

    Ekechukwu, Amy A [Augusta, GA

    2008-06-10

    A decontamination method for stripping radionuclides from the surface of stainless steel or aluminum material comprising the steps of contacting the metal with a moderately acidic carbonate/bicarbonate electrolyte solution containing sodium or potassium ions and thereafter electrolytically removing the radionuclides from the surface of the metal whereby radionuclides are caused to be stripped off of the material without corrosion or etching of the material surface.

  8. METHOD OF COATING GRAPHITE WITH STABLE METAL CARBIDES AND NITRIDES

    DOEpatents

    Gurinsky, D.H.

    1959-10-27

    A method is presented for forming protective stable nitride and carbide compounds on the surface of graphite. This is accomplished by contacting the graphite surface with a fused heavy liquid metal such as bismuth or leadbismuth containing zirconium, titanium, and hafnium dissolved or finely dispersed therein to form a carbide and nitride of at least one of the dissolved metals on the graphite surface.

  9. Metallic superhydrophobic surfaces via thermal sensitization

    NASA Astrophysics Data System (ADS)

    Vahabi, Hamed; Wang, Wei; Popat, Ketul C.; Kwon, Gibum; Holland, Troy B.; Kota, Arun K.

    2017-06-01

    Superhydrophobic surfaces (i.e., surfaces extremely repellent to water) allow water droplets to bead up and easily roll off from the surface. While a few methods have been developed to fabricate metallic superhydrophobic surfaces, these methods typically involve expensive equipment, environmental hazards, or multi-step processes. In this work, we developed a universal, scalable, solvent-free, one-step methodology based on thermal sensitization to create appropriate surface texture and fabricate metallic superhydrophobic surfaces. To demonstrate the feasibility of our methodology and elucidate the underlying mechanism, we fabricated superhydrophobic surfaces using ferritic (430) and austenitic (316) stainless steels (representative alloys) with roll off angles as low as 4° and 7°, respectively. We envision that our approach will enable the fabrication of superhydrophobic metal alloys for a wide range of civilian and military applications.

  10. METHOD OF BRAZING

    DOEpatents

    Patriarca, P.; Slaughter, G.M.

    1962-11-27

    A method of joining metal surfaces is given. Surfaces having nickel or iron as the base metal are joined together with a brazing composition consisting of 80% nickel, 10% phosphorus, and 10% chromium. (AEC)

  11. MOD silver metallization for photovoltaics

    NASA Technical Reports Server (NTRS)

    Vest, G. M.; Vest, R. W.

    1984-01-01

    Photovoltaic cells require back side metallization and a collector grid system on the front surface. Both front and back surface metallizations should have good adhesion, low contact resistance, low sheet resistance, long term stability, and their deposition methods should not degrade the n-p junction. Advantages and disadvantages of different deposition methods are discussed.

  12. TREATMENT OF METALS PRIOR TO ELECTROPLATING

    DOEpatents

    Huddle, R.A.U.; Flint, O.

    1958-05-20

    The preparation of certain metal surfaces to receive electrodeposits is described. Surfaces of the metals are subjected to shot blasting by ferrous metal shot, and the surfaces then are given a coating of copper by displacement from a copper salt solution. The method applies to U, Zr, Ti, Ta, Ni, Mo, W, and V.

  13. Low-loss integrated electrical surface plasmon source with ultra-smooth metal film fabricated by polymethyl methacrylate 'bond and peel' method.

    PubMed

    Liu, Wenjie; Hu, Xiaolong; Zou, Qiushun; Wu, Shaoying; Jin, Chongjun

    2018-06-15

    External light sources are mostly employed to functionalize the plasmonic components, resulting in a bulky footprint. Electrically driven integrated plasmonic devices, combining ultra-compact critical feature sizes with extremely high transmission speeds and low power consumption, can link plasmonics with the present-day electronic world. In an effort to achieve this prospect, suppressing the losses in the plasmonic devices becomes a pressing issue. In this work, we developed a novel polymethyl methacrylate 'bond and peel' method to fabricate metal films with sub-nanometer smooth surfaces on semiconductor wafers. Based on this method, we further fabricated a compact plasmonic source containing a metal-insulator-metal (MIM) waveguide with an ultra-smooth metal surface on a GaAs-based light-emitting diode wafer. An increase in propagation length of the SPP mode by a factor of 2.95 was achieved as compared with the conventional device containing a relatively rough metal surface. Numerical calculations further confirmed that the propagation length is comparable to the theoretical prediction on the MIM waveguide with perfectly smooth metal surfaces. This method facilitates low-loss and high-integration of electrically driven plasmonic devices, thus provides an immediate opportunity for the practical application of on-chip integrated plasmonic circuits.

  14. Low-loss integrated electrical surface plasmon source with ultra-smooth metal film fabricated by polymethyl methacrylate ‘bond and peel’ method

    NASA Astrophysics Data System (ADS)

    Liu, Wenjie; Hu, Xiaolong; Zou, Qiushun; Wu, Shaoying; Jin, Chongjun

    2018-06-01

    External light sources are mostly employed to functionalize the plasmonic components, resulting in a bulky footprint. Electrically driven integrated plasmonic devices, combining ultra-compact critical feature sizes with extremely high transmission speeds and low power consumption, can link plasmonics with the present-day electronic world. In an effort to achieve this prospect, suppressing the losses in the plasmonic devices becomes a pressing issue. In this work, we developed a novel polymethyl methacrylate ‘bond and peel’ method to fabricate metal films with sub-nanometer smooth surfaces on semiconductor wafers. Based on this method, we further fabricated a compact plasmonic source containing a metal-insulator-metal (MIM) waveguide with an ultra-smooth metal surface on a GaAs-based light-emitting diode wafer. An increase in propagation length of the SPP mode by a factor of 2.95 was achieved as compared with the conventional device containing a relatively rough metal surface. Numerical calculations further confirmed that the propagation length is comparable to the theoretical prediction on the MIM waveguide with perfectly smooth metal surfaces. This method facilitates low-loss and high-integration of electrically driven plasmonic devices, thus provides an immediate opportunity for the practical application of on-chip integrated plasmonic circuits.

  15. Carbide and carbonitride surface treatment method for refractory metals

    DOEpatents

    Meyer, G.A.; Schildbach, M.A.

    1996-12-03

    A carbide and carbonitride surface treatment method for refractory metals is provided, in steps including, heating a part formed of boron, chromium, hafnium, molybdenum, niobium, tantalum, titanium, tungsten or zirconium, or alloys thereof, in an evacuated chamber and then introducing reaction gases including nitrogen and hydrogen, either in elemental or water vapor form, which react with a source of elemental carbon to form carbon-containing gaseous reactants which then react with the metal part to form the desired surface layer. Apparatus for practicing the method is also provided, in the form of a carbide and carbonitride surface treatment system including a reaction chamber, a source of elemental carbon, a heating subassembly and a source of reaction gases. Alternative methods of providing the elemental carbon and the reaction gases are provided, as well as methods of supporting the metal part, evacuating the chamber with a vacuum subassembly and heating all of the components to the desired temperature. 5 figs.

  16. Nanopatterned articles produced using surface-reconstructed block copolymer films

    DOEpatents

    Russell, Thomas P.; Park, Soojin; Wang, Jia-Yu; Kim, Bokyung

    2016-06-07

    Nanopatterned surfaces are prepared by a method that includes forming a block copolymer film on a substrate, annealing and surface reconstructing the block copolymer film to create an array of cylindrical voids, depositing a metal on the surface-reconstructed block copolymer film, and heating the metal-coated block copolymer film to redistribute at least some of the metal into the cylindrical voids. When very thin metal layers and low heating temperatures are used, metal nanodots can be formed. When thicker metal layers and higher heating temperatures are used, the resulting metal structure includes nanoring-shaped voids. The nanopatterned surfaces can be transferred to the underlying substrates via etching, or used to prepare nanodot- or nanoring-decorated substrate surfaces.

  17. Corrosion-resistant metal surfaces

    DOEpatents

    Sugama, Toshifumi [Wading River, NY

    2009-03-24

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  18. Method and composition for testing for the presence of an alkali metal

    DOEpatents

    Guon, Jerold

    1981-01-01

    A method and composition for detecting the presence of an alkali metal on the surface of a body such as a metal plate, tank, pipe or the like is provided. The method comprises contacting the surface with a thin film of a liquid composition comprising a light-colored pigment, an acid-base indicator, and a nonionic wetting agent dispersed in a liquid carrier comprising a minor amount of water and a major amount of an organic solvent selected from the group consisting of the lower aliphatic alcohols, ketones and ethers. Any alkali metal present on the surface in elemental form or as an alkali metal hydroxide or alkali metal carbonate will react with the acid-base indicator to produce a contrasting color change in the thin film, which is readily discernible by visual observation or automatic techniques.

  19. Apparatus and method for the electrolytic production of metals

    DOEpatents

    Sadoway, Donald R.

    1991-01-01

    Improved electrolytic cells and methods for producing metals by electrolytic reduction of a compound dissolved in a molten electrolyte are disclosed. In the improved cells and methods, a protective surface layer is formed upon at least one electrode in the electrolytic reduction cell and, optionally, upon the lining of the cell. This protective surface layer comprises a material that, at the operating conditions of the cell: (a) is not substantially reduced by the metal product; (b) is not substantially reactive with the cell electrolyte to form materials that are reactive with the metal product; and, (c) has an electrochemical potential that is more electronegative than that of the compound undergoing electrolysis to produce the metal product of the cell. The protective surface layer can be formed upon an electrode metal layer comprising a material, the oxide of which also satisfies the protective layer selection criteria. The protective layer material can also be used on the surface of a cell lining.

  20. Methods of Making Z-Shielding

    NASA Technical Reports Server (NTRS)

    Thomsen, III, Donald Laurence (Inventor); Cano, Roberto J. (Inventor); Jensen, Brian J. (Inventor); Hales, Stephen J. (Inventor); Alexa, Joel A. (Inventor)

    2014-01-01

    Methods of building Z-graded radiation shielding and covers. In one aspect, the method includes: providing a substrate surface having about medium Z-grade; plasma spraying a first metal having higher Z-grade than the substrate surface; and infusing a polymer layer to form a laminate. In another aspect, the method includes electro/electroless plating a first metal having higher Z-grade than the substrate surface. In other aspects, the methods include improving an existing electronics enclosure to build a Z-graded radiation shield by applying a temperature controller to at least part of the enclosure and affixing at least one layer of a first metal having higher Z-grade from the enclosure.

  1. Systems and Methods for Fabricating Objects Including Amorphous Metal Using Techniques Akin to Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas (Inventor)

    2017-01-01

    Systems and methods in accordance with embodiments of the invention fabricate objects including amorphous metals using techniques akin to additive manufacturing. In one embodiment, a method of fabricating an object that includes an amorphous metal includes: applying a first layer of molten metallic alloy to a surface; cooling the first layer of molten metallic alloy such that it solidifies and thereby forms a first layer including amorphous metal; subsequently applying at least one layer of molten metallic alloy onto a layer including amorphous metal; cooling each subsequently applied layer of molten metallic alloy such that it solidifies and thereby forms a layer including amorphous metal prior to the application of any adjacent layer of molten metallic alloy; where the aggregate of the solidified layers including amorphous metal forms a desired shape in the object to be fabricated; and removing at least the first layer including amorphous metal from the surface.

  2. Method of measuring metal coating adhesion

    DOEpatents

    Roper, J.R.

    A method for measuring metal coating adhesion to a substrate material comprising the steps of preparing a test coupon of substrate material having the metal coating applied to one surface thereof, applying a second metal coating of gold or silver to opposite surfaces of the test coupon by hot hollow cathode process, applying a coating to one end of each of two pulling rod members, joining the coated ends of the pulling rod members to said opposite coated surfaces of the test coupon by a solid state bonding technique and finally applying instrumented static tensile loading to the pulling rod members until fracture of the metal coating adhesion to the substrate material occurs.

  3. Method of measuring metal coating adhesion

    DOEpatents

    Roper, John R.

    1985-01-01

    A method for measuring metal coating adhesion to a substrate material comprising the steps of preparing a test coupon of substrate material having the metal coating applied to one surface thereof, applying a second metal coating of gold or silver to opposite surfaces of the test coupon by hot hollow cathode process, applying a coating to one end of each of two pulling rod members, joining the coated ends of the pulling rod members to said opposite coated surfaces of the test coupon by a solid state bonding technique and finally applying instrumented static tensile loading to the pulling rod members until fracture of the metal coating adhesion to the substrate material occurs.

  4. Electrochemical nitridation of metal surfaces

    DOEpatents

    Wang, Heli; Turner, John A.

    2015-06-30

    Electrochemical nitridation of metals and the produced metals are disclosed. An exemplary method of electrochemical nitridation of metals comprises providing an electrochemical solution at low temperature. The method also comprises providing a three-electrode potentiostat system. The method also comprises stabilizing the three-electrode potentiostat system at open circuit potential. The method also comprises applying a cathodic potential to a metal.

  5. Ultrasmooth Patterned Metals for Plasmonics and Metamaterials

    NASA Astrophysics Data System (ADS)

    Nagpal, Prashant; Lindquist, Nathan C.; Oh, Sang-Hyun; Norris, David J.

    2009-07-01

    Surface plasmons are electromagnetic waves that can exist at metal interfaces because of coupling between light and free electrons. Restricted to travel along the interface, these waves can be channeled, concentrated, or otherwise manipulated by surface patterning. However, because surface roughness and other inhomogeneities have so far limited surface-plasmon propagation in real plasmonic devices, simple high-throughput methods are needed to fabricate high-quality patterned metals. We combined template stripping with precisely patterned silicon substrates to obtain ultrasmooth pure metal films with grooves, bumps, pyramids, ridges, and holes. Measured surface-plasmon-propagation lengths on the resulting surfaces approach theoretical values for perfectly flat films. With the use of our method, we demonstrated structures that exhibit Raman scattering enhancements above 107 for sensing applications and multilayer films for optical metamaterials.

  6. Theory of the reaction dynamics of small molecules on metal surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Bret

    The objective of this project has been to develop realistic theoretical models for gas-surface interactions, with a focus on processes important in heterogeneous catalysis. The dissociative chemisorption of a molecule on a metal is a key step in many catalyzed reactions, and is often the rate-limiting step. We have explored the dissociative chemisorption of H 2, H 2O and CH 4 on a variety of metal surfaces. Most recently, our extensive studies of methane dissociation on Ni and Pt surfaces have fully elucidated its dependence on translational energy, vibrational state and surface temperature, providing the first accurate comparisons with experimentalmore » data. We have explored Eley-Rideal and hot atom reactions of H atoms with H- and C-covered metal surfaces. H atom interactions with graphite have also been explored, including both sticking and Eley-Rideal recombination processes. Again, our methods made it possible to explain several experiments studying these reactions. The sticking of atoms on metal surfaces has also been studied. To help elucidate the experiments that study these processes, we examine how the reaction dynamics depend upon the nature of the molecule-metal interaction, as well as experimental variables such as substrate temperature, beam energy, angle of impact, and the internal states of the molecules. Electronic structure methods based on Density Functional Theory are used to compute each molecule-metal potential energy surface. Both time-dependent quantum scattering techniques and quasi-classical methods are used to examine the reaction or scattering dynamics. Much of our effort has been directed towards developing improved quantum methods that can accurately describe reactions, as well as include the effects of substrate temperature (lattice vibration).« less

  7. Method of forming a hardened surface on a substrate

    DOEpatents

    Branagan, Daniel J.

    2010-08-31

    The invention includes a method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of B, C, Si and P. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  8. Iron aluminide alloy coatings and joints, and methods of forming

    DOEpatents

    Wright, Richard N.; Wright, Julie K.; Moore, Glenn A.

    1994-01-01

    A method of joining two bodies together, at least one of the bodies being predominantly composed of metal, the two bodies each having a respective joint surface for joining with the joint surface of the other body, the two bodies having a respective melting point, includes the following steps: a) providing aluminum metal and iron metal on at least one of the joint surfaces of the two bodies; b) after providing the aluminum metal and iron metal on the one joint surface, positioning the joint surfaces of the two bodies in juxtaposition against one another with the aluminum and iron positioned therebetween; c) heating the aluminum and iron on the juxtaposed bodies to a temperature from greater than or equal to 600.degree. C. to less than the melting point of the lower melting point body; d) applying pressure on the juxtaposed surfaces; and e) maintaining the pressure and the temperature for a time period effective to form the aluminum and iron into an iron aluminide alloy joint which bonds the juxtaposed surfaces and correspondingly the two bodies together. The method can also effectively be used to coat a body with an iron aluminide coating.

  9. Iron aluminide alloy coatings and joints, and methods of forming

    DOEpatents

    Wright, R.N.; Wright, J.K.; Moore, G.A.

    1994-09-27

    Disclosed is a method of joining two bodies together, at least one of the bodies being predominantly composed of metal, the two bodies each having a respective joint surface for joining with the joint surface of the other body, the two bodies having a respective melting point, includes the following steps: (a) providing aluminum metal and iron metal on at least one of the joint surfaces of the two bodies; (b) after providing the aluminum metal and iron metal on the one joint surface, positioning the joint surfaces of the two bodies in juxtaposition against one another with the aluminum and iron positioned therebetween; (c) heating the aluminum and iron on the juxtaposed bodies to a temperature from greater than or equal to 600 C to less than the melting point of the lower melting point body; (d) applying pressure on the juxtaposed surfaces; and (e) maintaining the pressure and the temperature for a time period effective to form the aluminum and iron into an iron aluminide alloy joint which bonds the juxtaposed surfaces and correspondingly the two bodies together. The method can also effectively be used to coat a body with an iron aluminide coating.

  10. Tin soldering of aluminum and its alloys

    NASA Technical Reports Server (NTRS)

    Gallo, Gino

    1921-01-01

    A method is presented for soldering aluminum to other metals. The method adopted consists of a galvanic application to the surface of the light-metal parts to be soldered, of a layer of another metal, which, without reacting electrolytically on the aluminum, adheres strongly to the surface to which it is applied, and is, on the other hand, adapted to receive the soft solder. The metal found to meet the criteria best was iron.

  11. Three-Dimensional Solution of the Free Vibration Problem for Metal-Ceramic Shells Using the Method of Sampling Surfaces

    NASA Astrophysics Data System (ADS)

    Kulikov, G. M.; Plotnikova, S. V.

    2017-03-01

    The possibility of using the method of sampling surfaces (SaS) for solving the free vibration problem of threedimensional elasticity for metal-ceramic shells is studied. According to this method, in the shell body, an arbitrary number of SaS parallel to its middle surface are selected in order to take displacements of these surfaces as unknowns. The SaS pass through the nodes of a Chebyshev polynomial, which improves the convergence of the SaS method significantly. As a result, the SaS method can be used to obtain analytical solutions of the vibration problem for metal-ceramic plates and cylindrical shells that asymptotically approach the exact solutions of elasticity as the number of SaS tends to infinity.

  12. Noble metal superparticles and methods of preparation thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yugang; Hu, Yongxing

    A method comprises heating an aqueous solution of colloidal silver particles. A soluble noble metal halide salt is added to the aqueous solution which undergoes a redox reaction on a surface of the silver particles to form noble metal/silver halide SPs, noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs on the surface of the silver particles. The heat is maintained for a predetermined time to consume the silver particles and release the noble metal/silver halide SPs, the noble metal halide/silver halide SPs or the noble metal oxide/silver halide SPs into the aqueous solution. The aqueous solution ismore » cooled. The noble metal/silver halide SPs, the noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs are separated from the aqueous solution. The method optionally includes adding a soluble halide salt to the aqueous solution.« less

  13. Solar cell comprising a plasmonic back reflector and method therefor

    DOEpatents

    Ding, I-Kang; Zhu, Jia; Cui, Yi; McGehee, Michael David

    2014-11-25

    A method for forming a solar cell having a plasmonic back reflector is disclosed. The method includes the formation of a nanoimprinted surface on which a metal electrode is conformally disposed. The surface structure of the nanoimprinted surface gives rise to a two-dimensional pattern of nanometer-scale features in the metal electrode enabling these features to collectively form the plasmonic back reflector.

  14. Apparatus and method to reduce wear and friction between CMC-to-metal attachment and interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cairo, Ronald Ralph; Parolini, Jason Robert; Delvaux, John McConnell

    An apparatus to reduce wear and friction between CMC-to-metal attachment and interface, including a metal layer configured for insertion between a surface interface between a CMC component and a metal component. The surface interface of the metal layer is compliant relative to asperities of the surface interface of the CMC component. A coefficient of friction between the surface interface of the CMC component and the metal component is about 1.0 or less at an operating temperature between about 300.degree. C. to about 325.degree. C. and a limiting temperature of the metal component.

  15. Detection of Influenza Virus with Specific Subtype by Using Localized Surface Plasmons Excited on a Flat Metal Surface

    NASA Astrophysics Data System (ADS)

    Ning, Jun; Nagata, Kotaro; Ainai, Akira; Hasegawa, Hideki; Kano, Hiroshi

    2013-08-01

    We report on a method to determine subtype of influenza viruses by using surface plasmons localized in microscopic region on a flat metal surface. In this method, refractive index variation arisen from interactions between viruses and their monoclonal antibodies is measured. The developed sensor shows stability of refractive index in the order of 10-4 against sample exchange. In our experiment, A/H1N1 viruses are distinguished from A/H3N2 viruses by using monoclonal antibodies immobilized on the metal surface. Since the measurement probe has the volume of ˜6 al, the method has potential to handle multiple subtypes in the measurement of a sample with ultra small volume.

  16. Method for joining carbon-carbon composites to metals

    DOEpatents

    Lauf, Robert J.; McMillan, April D.; Moorhead, Arthur J.

    1997-01-01

    A method for joining carbon-carbon composites to metals by brazing. Conventional brazing of recently developed carbon-bonded carbon fiber (CBCF) material to a metal substrate is limited by the tendency of the braze alloy to "wick" into the CBCF composite rather than to form a strong bond. The surface of the CBCF composite that is to be bonded is first sealed with a fairly dense carbonaceous layer achieved by any of several methods. The sealed surface is then brazed to the metal substrate by vacuum brazing with a Ti-Cu-Be alloy.

  17. Method for joining carbon-carbon composites to metals

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Moorhead, A.J.

    1997-07-15

    A method for joining carbon-carbon composites to metals by brazing. Conventional brazing of recently developed carbon-bonded carbon fiber (CBCF) material to a metal substrate is limited by the tendency of the braze alloy to ``wick`` into the CBCF composite rather than to form a strong bond. The surface of the CBCF composite that is to be bonded is first sealed with a fairly dense carbonaceous layer achieved by any of several methods. The sealed surface is then brazed to the metal substrate by vacuum brazing with a Ti-Cu-Be alloy. 1 fig.

  18. Method for forming a potential hydrocarbon sensor with low sensitivity to methane and CO

    DOEpatents

    Mukundan, Rangachary; Brosha, Eric L.; Garzon, Fernando

    2003-12-02

    A hydrocarbon sensor is formed with an electrolyte body having a first electrolyte surface with a reference electrode depending therefrom and a metal oxide electrode body contained within the electrolyte body and having a first electrode surface coplanar with the first electrolyte surface. The sensor was formed by forming a sintered metal-oxide electrode body and placing the metal-oxide electrode body within an electrolyte powder. The electrolyte powder with the metal-oxide electrode body was pressed to form a pressed electrolyte body containing the metal-oxide electrode body. The electrolyte was removed from an electrolyte surface above the metal-oxide electrode body to expose a metal-oxide electrode surface that is coplanar with the electrolyte surface. The electrolyte body and the metal-oxide electrode body were then sintered to form the hydrocarbon sensor.

  19. Carbide and carbonitride surface treatment method for refractory metals

    DOEpatents

    Meyer, Glenn A.; Schildbach, Marcus A.

    1996-01-01

    A carbide and carbonitride surface treatment method for refractory metals is provided, in steps including, heating a part formed of boron, chromium, hafnium, molybdenum, niobium, tantalum, titanium, tungsten or zirconium, or alloys thereof, in an evacuated chamber and then introducing reaction gases including nitrogen and hydrogen, either in elemental or water vapor form, which react with a source of elemental carbon to form carbon-containing gaseous reactants which then react with the metal part to form the desired surface layer. Apparatus for practicing the method is also provided, in the form of a carbide and carbonitride surface treatment system (10) including a reaction chamber (14), a source of elemental carbon (17), a heating subassembly (20) and a source of reaction gases (23). Alternative methods of providing the elemental carbon (17) and the reaction gases (23) are provided, as well as methods of supporting the metal part (12), evacuating the chamber (14) with a vacuum subassembly (18) and heating all of the components to the desired temperature.

  20. Method for cleaning and passivating a metal surface

    NASA Technical Reports Server (NTRS)

    Alexander, George B. (Inventor); Carpenter, Norman F. (Inventor)

    1976-01-01

    A cleaning solvent useful in the cleaning of metal surfaces, e.g. nickle-iron alloys, contains sulfamic acid, citric acid, a solvent for hydrocarbon residues, and a surfactant. Metal surfaces are cleaned by contacting the surface with the cleaning solvent and then passivated by contact with aqueous solutions of citric acid or sodium nitrite or a combination of the two.

  1. Solder for oxide layer-building metals and alloys

    DOEpatents

    Kronberg, James W.

    1992-01-01

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel. The comosition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than aproximatley 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300.degree. C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  2. Solder for oxide layer-building metals and alloys

    DOEpatents

    Kronberg, J.W.

    1992-09-15

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel is disclosed. The composition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than approximately 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300 C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  3. Nanopatterned articles produced using reconstructed block copolymer films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Thomas P.; Park, Soojin; Wang;, Jia-Yu

    Nanopatterned surfaces are prepared by a method that includes forming a block copolymer film on a substrate, annealing and surface reconstructing the block copolymer film to create an array of cylindrical voids, depositing a metal on the surface-reconstructed block copolymer film, and heating the metal-coated block copolymer film to redistribute at least some of the metal into the cylindrical voids. When very thin metal layers and low heating temperatures are used, metal nanodots can be formed. When thicker metal layers and higher heating temperatures are used, the resulting metal structure includes nanoring-shaped voids. The nanopatterned surfaces can be transferred tomore » the underlying substrates via etching, or used to prepare nanodot- or nanoring-decorated substrate surfaces.« less

  4. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    DOEpatents

    Paranthaman, Mariappan Parans; Liu, Hansan; Brown, Gilbert M.; Sun, Xiao-Guang; Bi, Zhonghe

    2016-12-06

    Compositions and methods of making are provided for mesoporous metal oxide microspheres electrodes. The mesoporous metal oxide microsphere compositions comprise (a) microspheres with an average diameter between 200 nanometers (nm) and 10 micrometers (.mu.m); (b) mesopores on the surface and interior of the microspheres, wherein the mesopores have an average diameter between 1 nm and 50 nm and the microspheres have a surface area between 50 m.sup.2/g and 500 m.sup.2/g. The methods of making comprise forming composite powders. The methods may also comprise refluxing the composite powders in a basic solution to form an etched powder, washing the etched powder with an acid to form a hydrated metal oxide, and heat-treating the hydrated metal oxide to form mesoporous metal oxide microspheres.

  5. Method for preparation of thermally and mechanically stable metal/porous substrate composite membranes

    DOEpatents

    Damle, Ashok S.

    2004-07-13

    A method is provided for the preparation of metal/porous substrate composite membranes by flowing a solution of metal to be plated over a first surface of a porous substrate and concurrently applying a pressure of gas on a second surface of the porous substrate, such that the porous substrate separates the solution of metal from the gas, and the use of the resulting membrane for the production of highly purified hydrogen gas.

  6. Calculations of the surface tensions of liquid metals

    NASA Technical Reports Server (NTRS)

    Stroud, D. G.

    1981-01-01

    The understanding of the surface tension of liquid metals and alloys from as close to first principles as possible is discussed. The two ingredients which are combined in these calculations are: the electron theory of metals, and the classical theory of liquids, as worked out within the framework of statistical mechanics. The results are a new theory of surface tensions and surface density profiles from knowledge purely of the bulk properties of the coexisting liquid and vapor phases. It is found that the method works well for the pure liquid metals on which it was tested; work is extended to mixtures of liquid metals, interfaces between immiscible liquid metals, and to the temperature derivative of the surface tension.

  7. Method for producing ceramic composition having low friction coefficient at high operating temperatures

    DOEpatents

    Lankford, Jr., James

    1988-01-01

    A method for producing a stable ceramic composition having a surface with a low friction coefficient and high wear resistance at high operating temperatures. A first deposition of a thin film of a metal ion is made upon the surface of the ceramic composition and then a first ion implantation of at least a portion of the metal ion is made into the near surface region of the composition. The implantation mixes the metal ion and the ceramic composition to form a near surface composite. The near surface composite is then oxidized sufficiently at high oxidizing temperatures to form an oxide gradient layer in the surface of the ceramic composition.

  8. Accuracy of methods for calculating volumetric wear from coordinate measuring machine data of retrieved metal-on-metal hip joint implants.

    PubMed

    Lu, Zhen; McKellop, Harry A

    2014-03-01

    This study compared the accuracy and sensitivity of several numerical methods employing spherical or plane triangles for calculating the volumetric wear of retrieved metal-on-metal hip joint implants from coordinate measuring machine measurements. Five methods, one using spherical triangles and four using plane triangles to represent the bearing and the best-fit surfaces, were assessed and compared on a perfect hemisphere model and a hemi-ellipsoid model (i.e. unworn models), computer-generated wear models and wear-tested femoral balls, with point spacings of 0.5, 1, 2 and 3 mm. The results showed that the algorithm (Method 1) employing spherical triangles to represent the bearing surface and to scale the mesh to the best-fit surfaces produced adequate accuracy for the wear volume with point spacings of 0.5, 1, 2 and 3 mm. The algorithms (Methods 2-4) using plane triangles to represent the bearing surface and to scale the mesh to the best-fit surface also produced accuracies that were comparable to that with spherical triangles. In contrast, if the bearing surface was represented with a mesh of plane triangles and the best-fit surface was taken as a smooth surface without discretization (Method 5), the algorithm produced much lower accuracy with a point spacing of 0.5 mm than Methods 1-4 with a point spacing of 3 mm.

  9. Protective conversion coating on mixed-metal substrates and methods thereof

    DOEpatents

    O'Keefe, Matthew J.; Maddela, Surender

    2016-09-06

    Mixed-metal automotive vehicle bodies-in-white comprising ferrous metal surfaces, zinc surfaces, aluminum alloy surfaces, and magnesium alloy surfaces are cleaned and immersed in an aqueous bath comprising an adhesion promoter and an aqueous electrocoat bath (the adhesion promoter may be in the electrocoat bath. The adhesion promoter, which may be a cerium salt, is selected to react with each metal in the body surfaces to form an oxide layer that provides corrosion resistance for the surface and adherence for the deposited polymeric paint coating. The body is cathodic in the electrocoat deposition.

  10. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al2O3 and Fe3O4, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  11. Method of bonding silver to glass and mirrors produced according to this method

    DOEpatents

    Pitts, J.R.; Thomas, T.M.; Czanderna, A.W.

    1984-07-31

    A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.

  12. Method of bonding silver to glass and mirrors produced according to this method

    DOEpatents

    Pitts, John R.; Thomas, Terence M.; Czanderna, Alvin W.

    1985-01-01

    A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.

  13. Molten metal containment vessel with rare earth oxysulfide protective coating thereon and method of making same

    DOEpatents

    Krikorian, Oscar H.; Curtis, Paul G.

    1992-01-01

    An improved molten metal containment vessel is disclosed in which wetting of the vessel's inner wall surfaces by molten metal is inhibited by coating at least the inner surfaces of the containment vessel with one or more rare earth oxysulfide or rare earth sulfide compounds to inhibit wetting and or adherence by the molten metal to the surfaces of the containment vessel.

  14. Surface plasmon-assisted microscope.

    PubMed

    Borejdo, Julian; Gryczynski, Zygmunt; Fudala, Rafal; Joshi, Chaitanya R; Borgmann, Kathleen; Ghorpade, Anuja; Gryczynski, Ignacy

    2018-06-01

    Total internal reflection microscopy (TIRF) has been a powerful tool in biological research. The most valuable feature of the method has been the ability to image 100- to 200-nm-thick layer of cell features adjacent to a coverslip, such as membrane lipids, membrane receptors, and structures proximal-to-basal membranes. Here, we demonstrate an alternative method of imaging thin-layer proximal-to-basal membranes by placing a sample on a high refractive index coverslip covered by a thin layer of gold. The sample is illuminated using the Kretschmann method (i.e., from the top to an aqueous medium). Fluorophores that are close to the metal surface induce surface plasmons in the metal film. Fluorescence from fluorophores near the metal surface couple with surface plasmons allowing them to penetrate the metal surface and emerge at a surface plasmon coupled emission angle. The thickness of the detection layer is further reduced in comparison with TIRF by metal quenching of fluorophores at a close proximity (below 10 nm) to a surface. Fluorescence is collected by a high NA objective and imaged by EMCCD or converted to a signal by avalanche photodiode fed by a single-mode optical fiber inserted in the conjugate image plane of the objective. The system avoids complications of through-the-objective TIRF associated with shared excitation and emission light path, has thin collection thickness, produces excellent background rejection, and is an effective method to study molecular motion. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  15. Fabrication and condensation characteristics of metallic superhydrophobic surface with hierarchical micro-nano structures

    NASA Astrophysics Data System (ADS)

    Chu, Fuqiang; Wu, Xiaomin

    2016-05-01

    Metallic superhydrophobic surfaces have various applications in aerospace, refrigeration and other engineering fields due to their excellent water repellent characteristics. This study considers a simple but widely applicable fabrication method using a two simultaneous chemical reactions method to prepare the acid-salt mixed solutions to process the metal surfaces with surface deposition and surface etching to construct hierarchical micro-nano structures on the surface and then modify the surface with low surface-energy materials. Al-based and Cu-based superhydrophobic surfaces were fabricated using this method. The Al-based superhydrophobic surface had a water contact angle of 164° with hierarchical micro-nano structures similar to the lotus leaves. The Cu-based surface had a water contact angle of 157° with moss-like hierarchical micro-nano structures. Droplet condensation experiments were also performed on these two superhydrophobic surfaces to investigate their condensation characteristics. The results show that the Al-based superhydrophobic surface has lower droplet density, higher droplet jumping probability, slower droplet growth rate and lower surface coverage due to the more structured hierarchical structures.

  16. Method of physical vapor deposition of metal oxides on semiconductors

    DOEpatents

    Norton, David P.

    2001-01-01

    A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.

  17. METHOD FOR COATING GRAPHITE WITH METALLIC CARBIDES

    DOEpatents

    Steinberg, M.A.

    1960-03-22

    A method for producing refractory coatings of metallic carbides on graphite was developed. In particular, the graphite piece to be coated is immersed in a molten solution of 4 to 5% by weight of zirconium, titanium, or niobium dissolved in tin. The solution is heated in an argon atmosphere to above 1400 deg C, whereby the refractory metal reacts with the surface of the graphite to form a layer of metalic carbide. The molten solution is cooled to 300 to 400 deg C, and the graphite piece is removed. Excess tin is wiped from the graphite, which is then heated in vacuum to above 2300 deg C. The tin vaporizes from the graphite surface, leaving the surface coated with a tenacious layer of refractory metallic carbide.

  18. Thin film application device and method for coating small aperture vacuum vessels

    DOEpatents

    Walters, Dean R; Este, Grantley O

    2015-01-27

    A device and method for coating an inside surface of a vessel is provided. In one embodiment, a coating device comprises a power supply and a diode in electrical communication with the power supply, wherein electrodes comprising the diode reside completely within the vessel. The method comprises reversibly sealing electrodes in a vessel, sputtering elemental metal or metal compound on the surface while maintaining the surface in a controlled atmosphere.

  19. Direct metal transfer printing on flexible substrate for fabricating optics functional devices

    NASA Astrophysics Data System (ADS)

    Jiang, Yingjie; Zhou, Xiaohong; Zhang, Feng; Shi, Zhenwu; Chen, Linsen; Peng, Changsi

    2015-11-01

    New functional materials and devices based on metal patterns can be widely used in many new and expanding industries,such as flat panel displays, alternative energy,sensors and so on. In this paper, we introduce a new transfer printing method for fabricating metal optics functional devices. This method can directly transfer a metal pattern from a polyethylene terephthalate (PET)supported UV or polydimethylsiloxane (PDMS) pattern to another PET substrate. Purely taking advantage of the anaerobic UV curing adhesive (a-UV) on PET substrate, metal film can be easily peeled off from micro/nano-structured surface. As a result, metal film on the protrusion can be selectively transferred onto the target substrate, to make it the metal functional surface. But which on the bottom can not be transferred. This method provides low cost fabrication of metal thin film devices by avoiding high cost lithography process. Compared with conventional approach, this method can get more smooth rough edges and has wider tolerance range for the original master mold. Future developments and potential applications of this metal transfer method will be addressed.

  20. Alkali metal for ultraviolet band-pass filter

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)

    1993-01-01

    An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.

  1. Method for Reduction of Silver Biocide Plating on Metal Surfaces

    NASA Technical Reports Server (NTRS)

    Steele, John; Nalette, Timothy; Beringer, Durwood

    2013-01-01

    Silver ions in aqueous solutions (0.05 to 1 ppm) are used for microbial control in water systems. The silver ions remain in solution when stored in plastic containers, but the concentration rapidly decreases to non-biocidal levels when stored in metal containers. The silver deposits onto the surface and is reduced to non-biocidal silver metal when it contacts less noble metal surfaces, including stainless steel, titanium, and nickel-based alloys. Five methods of treatment of contact metal surfaces to deter silver deposition and reduction are proposed: (1) High-temperature oxidation of the metal surface; (2) High-concentration silver solution pre-treatment; (3) Silver plating; (4) Teflon coat by vapor deposition (titanium only); and (5) A combination of methods (1) and (2), which proved to be the best method for the nickel-based alloy application. The mechanism associated with surface treatments (1), (2), and (5) is thought to be the development of a less active oxide layer that deters ionic silver deposition. Mechanism (3) is an attempt to develop an equilibrium ionic silver concentration via dissolution of metallic silver. Mechanism (4) provides a non-reactive barrier to deter ionic silver plating. Development testing has shown that ionic silver in aqueous solution was maintained at essentially the same level of addition (0.4 ppm) for up to 15 months with method (5) (a combination of methods (1) and (2)), before the test was discontinued for nickel-based alloys. Method (1) resulted in the maintenance of a biocidal level (approximately 0.05 ppm) for up to 10 months before that test was discontinued for nickel-based alloys. Methods (1) and (2) used separately were able to maintain ionic silver in aqueous solution at essentially the same level of addition (0.4 ppm) for up to 10 months before the test was discontinued for stainless steel alloys. Method (3) was only utilized for titanium alloys, and was successful at maintaining ionic silver in aqueous solution at essentially the same level of addition (0.4 ppm) for up to 10 months before the test was discontinued for simple flat geometries, but not for geometries that are difficult to Teflon coat.

  2. A Method to Manipulate Surface Tension of a Liquid Metal via Surface Oxidation and Reduction

    PubMed Central

    Dickey, Michael D.

    2016-01-01

    Controlling interfacial tension is an effective method for manipulating the shape, position, and flow of fluids at sub-millimeter length scales, where interfacial tension is a dominant force. A variety of methods exist for controlling the interfacial tension of aqueous and organic liquids on this scale; however, these techniques have limited utility for liquid metals due to their large interfacial tension. Liquid metals can form soft, stretchable, and shape-reconfigurable components in electronic and electromagnetic devices. Although it is possible to manipulate these fluids via mechanical methods (e.g., pumping), electrical methods are easier to miniaturize, control, and implement. However, most electrical techniques have their own constraints: electrowetting-on-dielectric requires large (kV) potentials for modest actuation, electrocapillarity can affect relatively small changes in the interfacial tension, and continuous electrowetting is limited to plugs of the liquid metal in capillaries. Here, we present a method for actuating gallium and gallium-based liquid metal alloys via an electrochemical surface reaction. Controlling the electrochemical potential on the surface of the liquid metal in electrolyte rapidly and reversibly changes the interfacial tension by over two orders of magnitude (~500 mN/m to near zero). Furthermore, this method requires only a very modest potential (< 1 V) applied relative to a counter electrode. The resulting change in tension is due primarily to the electrochemical deposition of a surface oxide layer, which acts as a surfactant; removal of the oxide increases the interfacial tension, and vice versa. This technique can be applied in a wide variety of electrolytes and is independent of the substrate on which it rests. PMID:26863045

  3. Semi-continuous detection of mercury in gases

    DOEpatents

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2011-12-06

    A new method for the semi-continuous detection of heavy metals and metalloids including mercury in gaseous streams. The method entails mass measurement of heavy metal oxides and metalloid oxides with a surface acoustic wave (SAW) sensor having an uncoated substrate. An array of surface acoustic wave (SAW) sensors can be used where each sensor is for the semi-continuous emission monitoring of a particular heavy metal or metalloid.

  4. Structural coloration of metallic surfaces with micro/nano-structures induced by elliptical vibration texturing

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Pan, Yayue; Guo, Ping

    2017-04-01

    Creating orderly periodic micro/nano-structures on metallic surfaces, or structural coloration, for control of surface apparent color and optical reflectivity has been an exciting research topic over the years. The direct applications of structural coloration include color marking, display devices, and invisibility cloak. This paper presents an efficient method to colorize metallic surfaces with periodic micro/nano-gratings using elliptical vibration texturing. When the tool vibration is coupled with a constant cutting velocity, controlled periodic ripples can be generated due to the overlapping tool trajectory. These periodic ripples with a wavelength near visible spectrum can act as micro-gratings to introduce iridescent colors. The proposed technique also provides a flexible method for color marking of metallic surfaces with arbitrary patterns and images by precise control of the spacing distance and orientation of induced micro/nano-ripples. Theoretical analysis and experimental results are given to demonstrate structural coloration of metals by a direct mechanical machining technique.

  5. Method for forming hermetic seals

    NASA Technical Reports Server (NTRS)

    Gallagher, Brian D.

    1987-01-01

    The firmly adherent film of bondable metal, such as silver, is applied to the surface of glass or other substrate by decomposing a layer of solution of a thermally decomposable metallo-organic deposition (MOD) compound such as silver neodecanoate in xylene. The MOD compound thermally decomposes into metal and gaseous by-products. Sealing is accomplished by depositing a layer of bonding metal, such as solder or a brazing alloy, on the metal film and then forming an assembly with another high melting point metal surface such as a layer of Kovar. When the assembly is heated above the temperature of the solder, the solder flows, wets the adjacent surfaces and forms a hermetic seal between the metal film and metal surface when the assembly cools.

  6. SURFACE MODIFICATION OF SILICA- AND CELLULOSE-BASED MICROFILTRATION MEMBRANES WITH FUNCTIONAL POLYAMINO ACIDS FOR HEAVY METAL SORPTION

    EPA Science Inventory

    Functionalized membranes represent a field with multiple applications. Examination of specific metal-macromolecule interactions on these surfaces presents an excellent method for characterizion of these materials. These interactions may also be exploited for heavy metal sorptio...

  7. Hydrogen absorption induced metal deposition on palladium and palladium-alloy particles

    DOEpatents

    Wang, Jia X [East Setauket, NY; Adzic, Radoslav R [East Setauket, NY

    2009-03-24

    The present invention relates to methods for producing metal-coated palladium or palladium-alloy particles. The method includes contacting hydrogen-absorbed palladium or palladium-alloy particles with one or more metal salts to produce a sub-monoatomic or monoatomic metal- or metal-alloy coating on the surface of the hydrogen-absorbed palladium or palladium-alloy particles. The invention also relates to methods for producing catalysts and methods for producing electrical energy using the metal-coated palladium or palladium-alloy particles of the present invention.

  8. Apparatus for coating a surface with a metal utilizing a plasma source

    DOEpatents

    Brown, I.G.; MacGill, R.A.; Galvin, J.E.

    1991-05-07

    An apparatus and method are disclosed for coating or layering a surface with a metal utilizing a metal vapor vacuum arc plasma source. The apparatus includes a trigger mechanism for actuating the metal vacuum vapor arc plasma source in a pulsed mode at a predetermined rate. The surface or substrate to be coated or layered is supported in position with the plasma source in a vacuum chamber. The surface is electrically biased for a selected period of time during the pulsed mode of operation of the plasma source. Both the pulsing of the metal vapor vacuum arc plasma source and the electrical biasing of the surface are synchronized for selected periods of time. 10 figures.

  9. Apparatus for coating a surface with a metal utilizing a plasma source

    DOEpatents

    Brown, Ian G.; MacGill, Robert A.; Galvin, James E.

    1991-01-01

    An apparatus and method for coating or layering a surface with a metal utilizing a metal vapor vacuum arc plasma source. The apparatus includes a trigger mechanism for actuating the metal vacuum vapor arc plasma source in a pulsed mode at a predetermined rate. The surface or substrate to be coated or layered is supported in position with the plasma source in a vacuum chamber. The surface is electrically biased for a selected period of time during the pulsed mode of operation of the plasma source. Both the pulsing of the metal vapor vacuum arc plasma source and the electrical biasing of the surface are synchronized for selected periods of time.

  10. Method of protecting the surface of a substrate. [by applying aluminide coating

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A. (Inventor); Grisaffe, S. J.

    1974-01-01

    The surface of a metallic base system is initially coated with a metallic alloy layer that is ductile and oxidation resistant. An aluminide coating is then applied to the metallic alloy layer. The chemistry of the metallic alloy layer is such that the oxidation resistance of the subsequently aluminized outermost layer is not seriously degraded.

  11. Velocity of action of oxygen, hydrogen sulfide, and halogens on metals

    NASA Technical Reports Server (NTRS)

    Tammann, Gustav; Koster, Werner

    1952-01-01

    This report discusses a method of determining the rate of surface oxidation of a metal by the change in the color of the surface film produced by reactions with oxygen, chlorine, or iodine. The metals studied included iron, nickel, copper, zinc, cadmium, tin, lead, cobalt, and manganese. Tables are given for surface film thickness versus color for various times.

  12. Surface texturing of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Mirtich, M. J.; Sovey, J. S. (Inventor)

    1982-01-01

    A method is disclosed for improving surface texture for adhesive bonding, metal bonding, substrate plating, decal substrate preparation, and biomedical implant applications. The surface to be bonded is dusted in a controlled fashion to produce a disbursed layer of fine mesh particles which serve as masks. The surface texture is produced by impinging gas ions on the masked surface. The textured surface takes the form of pillars or cones. The bonding material, such as a liquid epoxy, flows between the pillars which results in a bond having increased strength. For bonding metals a thin film of metal is vapor or sputter deposited onto the textured surface. Electroplating or electroless plating is then used to increase the metal thickness in the desired amount.

  13. Advances in Surface-Enhanced Fluorescence

    PubMed Central

    Lakowicz, Joseph R.; Geddes, Chris D.; Gryczynski, Ignacy; Malicka, Joanna; Gryczynski, Zygmunt; Aslan, Kadir; Lukomska, Joanna; Matveeva, Evgenia; Zhang, Jian; Badugu, Ramachandram; Huang, Jun

    2009-01-01

    We report recent achievements in metal-enhanced fluorescence from our laboratory. Several fluorophore systems have been studied on metal particle-coated surfaces and in colloid suspensions. In particular, we describe a distance dependent enhancement on silver island films (SIFs), release of self-quenching of fluorescence near silver particles, and the applications of fluorescence enhancement near metalized surfaces to bioassays. We discuss a number of methods for various shaped silver particle deposition on surfaces. PMID:15617385

  14. Methods of forming hardened surfaces

    DOEpatents

    Branagan, Daniel J [Iona, ID

    2004-07-27

    The invention encompasses a method of forming a metallic coating. A metallic glass coating is formed over a metallic substrate. After formation of the coating, at least a portion of the metallic glass can be converted into a crystalline material having a nanocrystalline grain size. The invention also encompasses metallic coatings comprising metallic glass. Additionally, the invention encompasses metallic coatings comprising crystalline metallic material, with at least some of the crystalline metallic material having a nanocrystalline grain size.

  15. Method for forming glass-to-metal seals

    DOEpatents

    Kramer, Daniel P.; Massey, Richard T.

    1986-01-01

    A method for forming a glass-to-metal seal in which the glass has a higher melting point than the metal. The molten glass is vacuum injection molded onto the metal, thus melting a very thin layer of the surface of the metal long enough to form a seal, but not long enough to cause a distortion in the shape of the metal component.

  16. Method of making controlled morphology metal-oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozcan, Soydan; Lu, Yuan

    2016-05-17

    A method of making metal oxides having a preselected morphology includes preparing a suspension that includes a solvent, polymeric nanostructures having multiplicities of hydroxyl surface groups and/or carboxyl surface groups, and a metal oxide precursor. The suspension has a preselected ratio of the polymeric nanostructures to the metal oxide precursor of at least 1:3, the preselected ratio corresponding to a preselected morphology. Subsequent steps include depositing the suspension onto a substrate, removing the solvent to form a film, removing the film from the substrate, and annealing the film to volatilize the polymeric nanostructures and convert the metal oxide precursor tomore » metal oxide nanoparticles having the preselected morphology or to a metal oxide nanosheet including conjoined nanoparticles having the preselected morphology.« less

  17. Shear-bond-strength of orthodontic brackets to aged nano-hybrid composite-resin surfaces using different surface preparation.

    PubMed

    Demirtas, Hatice Kubra; Akin, Mehmet; Ileri, Zehra; Basciftci, Faruk Ayhan

    2015-01-01

    The aim of this study was to evaluate the effects of different surface preparation methods on the shear bond strength (SBS) of orthodontic metal brackets to aged nano-hybrid resin composite surfaces in vitro. A total of 100 restorative composite resin discs, 6 mm in diameter and 3 mm thick, were obtained and treated with an ageing procedure. After ageing, the samples were randomly divided as follows according to surface preparation methods: (1)Control, (2)37% phosphoric acid gel, (3)Sandblasting, (4)Diamond bur, (5)Air-flow and 20 central incisor teeth were used for the control etched group. SBS test were applied on bonded metal brackets to all samples. SBS values and residual adhesives were evaluated. Analysis of variance showed a significant difference (p<0.001) between the groups. Sandblasted group had the highest SBS value (12.85 MPa) in experimental groups. The sandblasting surface treatment is recommended as an effective method of bonding orthodontic metal brackets to nano-hybrid composite resin surfaces.

  18. Thin-film solar cell fabricated on a flexible metallic substrate

    DOEpatents

    Tuttle, John R.; Noufi, Rommel; Hasoon, Falah S.

    2006-05-30

    A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).

  19. Thin-Film Solar Cell Fabricated on a Flexible Metallic Substrate

    DOEpatents

    Tuttle, J. R.; Noufi, R.; Hasoon, F. S.

    2006-05-30

    A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).

  20. Lattice matched semiconductor growth on crystalline metallic substrates

    DOEpatents

    Norman, Andrew G; Ptak, Aaron J; McMahon, William E

    2013-11-05

    Methods of fabricating a semiconductor layer or device and said devices are disclosed. The methods include but are not limited to providing a metal or metal alloy substrate having a crystalline surface with a known lattice parameter (a). The methods further include growing a crystalline semiconductor alloy layer on the crystalline substrate surface by coincident site lattice matched epitaxy. The semiconductor layer may be grown without any buffer layer between the alloy and the crystalline surface of the substrate. The semiconductor alloy may be prepared to have a lattice parameter (a') that is related to the lattice parameter (a). The semiconductor alloy may further be prepared to have a selected band gap.

  1. True temperature measurement on metallic surfaces using a two-color pyroreflectometer method.

    PubMed

    Hernandez, D; Netchaieff, A; Stein, A

    2009-09-01

    In the most common case of optical pyrometry, the major obstacle in determining the true temperature is the knowledge of the thermo-optical properties for in situ conditions. We present experimental results obtained with a method able to determine the true temperature of metallic surfaces above 500 degrees C when there is not parasitic effect by surrounding radiation. The method is called bicolor pyroreflectometry and it is based on Planck's law, Kirchhoff's law, and the assumption of identical reflectivity indicatrixes for the target surface at two different close wavelengths (here, 1.3 and 1.55 microm). The diffusion factor eta(d), the key parameter of the method, is introduced to determine the convergence temperature T(*), which is expected to be equal to the true temperature T. Our goal is to asses this method for different metallic surfaces. The validation of this method is made by comparison with thermocouples. Measurements were made for tungsten, copper, and aluminum samples of different roughnesses, determined by a rugosimeter. After introducing a theoretical model for two-color pyroreflectometry, we give a description of the experimental setup and present experimental applications of the subject method. The quality of the results demonstrates the usefulness of two-color pyroreflectometry to determine the temperatures of hot metals when the emissivity is not known and for the commercially important case of specular surfaces.

  2. High-speed high-efficiency 500-W cw CO2 laser hermetization of metal frames of microelectronics devices

    NASA Astrophysics Data System (ADS)

    Levin, Andrey V.

    1996-04-01

    High-speed, efficient method of laser surface treatment has been developed using (500 W) cw CO2 laser. The principal advantages of CO2 laser surface treatment in comparison with solid state lasers are the basis of the method. It has been affirmed that high efficiency of welding was a consequence of the fundamental properties of metal-IR-radiation (10,6 mkm) interaction. CO2 laser hermetization of metal frames of microelectronic devices is described as an example of the proposed method application.

  3. Method for removing strongly adsorbed surfactants and capping agents from metal to facilitate their catalytic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adzic, Radoslav R.; Gong, Kuanping; Cai, Yun

    A method of synthesizing activated electrocatalyst, preferably having a morphology of a nanostructure, is disclosed. The method includes safely and efficiently removing surfactants and capping agents from the surface of the metal structures. With regard to metal nanoparticles, the method includes synthesis of nanoparticle(s) in polar or non-polar solution with surfactants or capping agents and subsequent activation by CO-adsorption-induced surfactant/capping agent desorption and electrochemical oxidation. The method produces activated macroparticle or nanoparticle electrocatalysts without damaging the surface of the electrocatalyst that includes breaking, increasing particle thickness or increasing the number of low coordination sites.

  4. Method for forming a hardened surface on a substrate

    DOEpatents

    Branagan, Daniel J [Iona, ID

    2008-01-29

    The invention encompasses a method of forming a metallic coating. A metallic glass coating is formed over a metallic substrate. After formation of the coating, at least a portion of the metallic glass can be converted into a crystalline material having a nanocrystalline grain size. The invention also encompasses metallic coatings comprising metallic glass. Additionally, the invention encompasses metallic coatings comprising crystalline metallic material, with at least some of the crystalline metallic material having a nanocrystalline grain size.

  5. Raising the shields: PCR in the presence of metallic surfaces protected by tailor-made coatings.

    PubMed

    Scherag, Frank D; Brandstetter, Thomas; Rühe, Jürgen

    2014-10-01

    The implementation of PCR reactions in the presence of metallic surfaces is interesting for the generation of novel bioanalytical devices, because metals exhibit high mechanical stability, good thermal conductivity, and flexibility during deformation. However, metallic substrates are usually non-compatible with enzymatic reactions such as PCR due to poisoning of the active center of the enzyme or nonspecific adsorption of the enzymeto the metal surface, which could result in protein denaturation. We present a method for the generation of polymer coatings on metallic surfaces which are designed to minimize protein adsorption and also prevent the release of metal ions. These coatings consist of three layers covalently linked to each other; a self-assembled monolayer to promote adhesion, a photochemically generated barrier layer and a photochemically generated hydrogel. The coatings can be deposited onto aluminum, stainless steel, gold and copper surfaces. We compare PCR efficiencies in the presence of bare metallic surfaces with those of surfaces treated with the novel coating system. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Method of joining metallic and composite components

    NASA Technical Reports Server (NTRS)

    Semmes, Edmund B. (Inventor)

    2010-01-01

    A method is provided for joining a metallic member to a structure made of a composite matrix material. One or more surfaces of a portion of the metallic member that is to be joined to the composite matrix structure is provided with a plurality of outwardly projecting studs. The surface including the studs is brought into engagement with a portion of an uncured composite matrix material so that fibers of the composite matrix material intertwine with the studs, and the metallic member and composite structure form an assembly. The assembly is then companion cured so as to join the metallic member to the composite matrix material structure.

  7. Radiative decay engineering 3. Surface plasmon-coupled directional emission

    PubMed Central

    Lakowicz, Joseph R.

    2009-01-01

    A new method of fluorescence detection that promises to increase sensitivity by 20- to 1000-fold is described. This method will also decrease the contribution of sample autofluorescence to the detected signal. The method depends on the coupling of excited fluorophores with the surface plasmon resonance present in thin metal films, typically silver and gold. The phenomenon of surface plasmon-coupled emission (SPCE) occurs for fluorophores 20–250 nm from the metal surface, allowing detection of fluorophores over substantial distances beyond the metal–sample interface. SPCE depends on interactions of the excited fluorophore with the metal surface. This interaction is independent of the mode of excitation; that is, it does not require evanescent wave or surface-plasmon excitation. In a sense, SPCE is the inverse process of the surface plasmon resonance absorption of thin metal films. Importantly, SPCE occurs over a narrow angular distribution, converting normally isotropic emission into easily collected directional emission. Up to 50% of the emission from unoriented samples can be collected, much larger than typical fluorescence collection efficiencies near 1% or less. SPCE is due only to fluorophores near the metal surface and may be regarded as emission from the induced surface plasmons. Autofluorescence from more distal parts of the sample is decreased due to decreased coupling. SPCE is highly polarized and autofluorescence can be further decreased by collecting only the polarized component or only the light propagating with the appropriate angle. Examples showing how simple optical configurations can be used in diagnostics, sensing, or biotechnology applications are presented. Surface plasmon-coupled emission is likely to find widespread applications throughout the biosciences. PMID:14690679

  8. Method for forming glass-to-metal seals

    DOEpatents

    Kramer, D.P.; Massey, R.T.

    1985-08-26

    Disclosed is a method for forming a glass-to-metal seal in which the glass has a higher melting point than the metal. The molten glass is vacuum injection molded onto the metal, thus melting a very thin layer of the surface of the metal long enough to form a seal, but not long enough to cause a distortion in the shape of the metal component.

  9. Metal halide solid-state surface treatment for nanocrystal materials

    DOEpatents

    Luther, Joseph M.; Crisp, Ryan; Beard, Matthew C.

    2016-04-26

    Methods of treating nanocrystal and/or quantum dot devices are described. The methods include contacting the nanocrystals and/or quantum dots with a solution including metal ions and halogen ions, such that the solution displaces native ligands present on the surface of the nanocrystals and/or quantum dots via ligand exchange.

  10. Giant and switchable surface activity of liquid metal via surface oxidation

    PubMed Central

    Khan, Mohammad Rashed; Eaker, Collin B.; Bowden, Edmond F.; Dickey, Michael D.

    2014-01-01

    We present a method to control the interfacial tension of a liquid alloy of gallium via electrochemical deposition (or removal) of the oxide layer on its surface. In sharp contrast with conventional surfactants, this method provides unprecedented lowering of surface tension (∼500 mJ/m2 to near zero) using very low voltage, and the change is completely reversible. This dramatic change in the interfacial tension enables a variety of electrohydrodynamic phenomena. The ability to manipulate the interfacial properties of the metal promises rich opportunities in shape-reconfigurable metallic components in electronic, electromagnetic, and microfluidic devices without the use of toxic mercury. This work suggests that the wetting properties of surface oxides—which are ubiquitous on most metals and semiconductors—are intrinsic “surfactants.” The inherent asymmetric nature of the surface coupled with the ability to actively manipulate its energetics is expected to have important applications in electrohydrodynamics, composites, and melt processing of oxide-forming materials. PMID:25228767

  11. Sintered silver joints via controlled topography of electronic packaging subcomponents

    DOEpatents

    Wereszczak, Andrew A.

    2014-09-02

    Disclosed are sintered silver bonded electronic package subcomponents and methods for making the same. Embodiments of the sintered silver bonded EPSs include topography modification of one or more metal surfaces of semiconductor devices bonded together by the sintered silver joint. The sintered silver bonded EPSs include a first semiconductor device having a first metal surface, the first metal surface having a modified topography that has been chemically etched, grit blasted, uniaxial ground and/or grid sliced connected to a second semiconductor device which may also include a first metal surface with a modified topography, a silver plating layer on the first metal surface of the first semiconductor device and a silver plating layer on the first metal surface of the second semiconductor device and a sintered silver joint between the silver plating layers of the first and second semiconductor devices which bonds the first semiconductor device to the second semiconductor device.

  12. Powder-in-tube and thick-film methods of fabricating high temperature superconductors having enhanced biaxial texture

    DOEpatents

    Goyal, Amit; Kroeger, Donald M.

    2003-11-11

    A method for forming an electronically active biaxially textured article includes the steps of providing a substrate having a single crystal metal or metal alloy surface, deforming the substrate to form an elongated substrate surface having biaxial texture and depositing an epitaxial electronically active layer on the biaxially textured surface. The method can include at least one annealing step after the deforming step to produce the biaxially textured substrate surface. The invention can be used to form improved biaxially textured articles, such as superconducting wire and tape articles having improved J.sub.c values.

  13. Studies of Surface Charging of Polymers by Indirect Triboelectrification

    NASA Astrophysics Data System (ADS)

    Mantovani, James; Calle, Carlos; Groop, Ellen; Buehler, Martin

    2001-03-01

    Charge is known to develop on the surface of an insulating polymer by frictional charging through direct physical contact with another material. We will present results of recent triboelectrification studies of polymer surfaces that utilized an indirect method of frictional charging. This method first involves placing a grounded thin metal foil in stationary contact over the polymer surface. The exposed metal foil is then rubbed with the surface of the material that generates the triboelectric charge. Data is presented for five types of polymers: fiberglass/epoxy, polycarbonate (Lexan), polytetraflouroethylene (Teflon), Rulon J, and polymethylmethacrylate (PMMA, Lucite). The amount of charge that develops on an insulator's surface is measured using the MECA Electrometer, which was developed jointly by NASA Kennedy Space Center and the Jet Propulsion Laboratory to study the electrostatic properties of soil on the surface of Mars. Even though the insulator's surface is electrically shielded from the rubbing material by the grounded metal foil, charge measurements obtained by the MECA Electrometer after the metal foil is separated from the insulator's surface reveal that the insulator's surface does accumulate charge by indirect frictional charging. A possible explanation of the observations will be presented based on a simple contact barrier model.

  14. Fabrication of gold dot, ring, and corpuscle arrays from block copolymer templates via a simple modification of surface energy

    NASA Astrophysics Data System (ADS)

    Cho, Heesook; Choi, Sinho; Kim, Jin Young; Park, Soojin

    2011-12-01

    We demonstrate a simple method for tuning the morphologies of as-spun micellar thin films by modifying the surface energy of silicon substrates. When a polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) copolymer dissolved in o-xylene was spin-coated onto a PS-modified surface, a dimple-type structure consisting of a thick PS shell and P2VP core was obtained. Subsequently, when the films were immersed in metal precursor solutions at certain periods of time and followed by plasma treatment, metal individual dots in a ring-shaped structure, metal nanoring, and metal corpuscle arrays were fabricated, depending on the loading amount of metal precursors. In contrast, when PS-b-P2VP films cast onto silicon substrates with a native oxide were used as templates, only metal dotted arrays were obtained. The combination of micellar thin film and surface energy modification offers an effective way to fabricate various nanostructured metal or metal oxide films.We demonstrate a simple method for tuning the morphologies of as-spun micellar thin films by modifying the surface energy of silicon substrates. When a polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) copolymer dissolved in o-xylene was spin-coated onto a PS-modified surface, a dimple-type structure consisting of a thick PS shell and P2VP core was obtained. Subsequently, when the films were immersed in metal precursor solutions at certain periods of time and followed by plasma treatment, metal individual dots in a ring-shaped structure, metal nanoring, and metal corpuscle arrays were fabricated, depending on the loading amount of metal precursors. In contrast, when PS-b-P2VP films cast onto silicon substrates with a native oxide were used as templates, only metal dotted arrays were obtained. The combination of micellar thin film and surface energy modification offers an effective way to fabricate various nanostructured metal or metal oxide films. Electronic supplementary information (ESI) available: AFM images of Au nanorings prepared from a mixed solvent and characterization of PS-b-P2VP micellar films. See DOI: 10.1039/c1nr11075f

  15. Material for surface-enhanced Raman spectroscopy, and SER sensors and method for preparing same

    NASA Technical Reports Server (NTRS)

    Farquharson, Stuart (Inventor); Nelson, Chad (Inventor); Lee, Yuan-Hsiang (Inventor)

    2003-01-01

    Metal-doped sol-gel materials, suitable for use as sensors for surface-enhanced Raman spectroscopic analysis for trace chemical detection, are produced by effecting gelation and solvent removal of a doped sol-gel under mild temperature conditions. At least in certain instances reaction and drying will desirably be effected in an oxygen-starved environment. The metal of the sol-gel material functions, when irradiated, to produce a plasmon field for interaction with molecules of an analyte in contact therewith, increasing by orders of magnitude Raman photons that are generate by excitation radiation, and the method allows matching of the metal and metal particle size to a wavelength of light (or incident radiation, e.g., laser radiation) to generate surface plasmons. The porosity of the sol-gel material dramatically increases the surface area, and thereby the amount of metal exposed for analyte interaction. The sensors provided may be in the form of glass vials, fiber optics, multi-well micro-sample plates, etc., having surface coatings of the doped sol-gel material, to provide sampling systems for use in a Raman instrument.

  16. Flexible Ceramic-Metal Insulation Composite and Method of Making

    NASA Technical Reports Server (NTRS)

    Rasky, Daniel J. (Inventor); Sawko, Paul M. (Inventor); Kilodziej, Paul (Inventor); Kourtides, Demetrius A. (Inventor)

    1998-01-01

    A method for joining a woven flexible ceramic fabric and a thin metal sheet creating an integral metal surfaced flexible thermal protection article, which methods compress: placing multiple dots of high temperature metallic or fabric and the thin metal sheet in a random or organized pattern, with the proviso that the brazing material covers about 10% or less of the surface of one flat side of the metal sheet; heating the flexible ceramic fabric, brazing material and thin metal sheet for a predetermined period of time to integrally connect the same; and cooling the formed flexible article to ambient temperature. Preferably the flexible ceramic is selected from fibers comprising atoms of silicon, carbon, nitrogen, boron, oxygen or combinations thereof. The flexible thermal protection article produced is also part of the present invention. The thin metal sheet is comprised of titanium, aluminum, chromium, niobium or alloys or combinations thereof. The brazing material is selected from copper/silver or copper/gold or is a ceramic brazing or adhesive material.

  17. Bio-functionalization of biomedical metals.

    PubMed

    Xiao, M; Chen, Y M; Biao, M N; Zhang, X D; Yang, B C

    2017-01-01

    Bio-functionalization means to endow biomaterials with bio-functions so as to make the materials or devices more suitable for biomedical applications. Traditionally, because of the excellent mechanical properties, the biomedical metals have been widely used in clinic. However, the utilized functions are basically supporting or fixation especially for the implantable devices. Nowadays, some new functions, including bioactivity, anti-tumor, anti-microbial, and so on, are introduced to biomedical metals. To realize those bio-functions on the metallic biomedical materials, surface modification is the most commonly used method. Surface modification, including physical and chemical methods, is an effective way to alter the surface morphology and composition of biomaterials. It can endow the biomedical metals with new surface properties while still retain the good mechanical properties of the bulk material. Having analyzed the ways of realizing the bio-functionalization, this article briefly summarized the bio-functionalization concepts of six hot spots in this field. They are bioactivity, bony tissue inducing, anti-microbial, anti-tumor, anticoagulation, and drug loading functions. Copyright © 2016. Published by Elsevier B.V.

  18. A reliable method of manufacturing metallic hierarchical superhydrophobic surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogreb, Roman; Whyman, Gene; Barayev, Reuven

    2009-06-01

    A method of manufacturing hierarchical metallic surfaces demonstrating superhydrophobic properties is presented. The surfaces showed apparent contact angles as high as 153 deg. and sliding angles of 10 deg. for 50-100 {mu}l droplets. The Cassie-like model [A. B. D. Cassie and S. Baxter, Trans. Faraday Soc. 40, 546 (1944)], considering the hierarchical topography of the relief, predicts apparent contact angles in a satisfactory agreement with the measured values.

  19. METHOD FOR SOLDERING NORMALLY NON-SOLDERABLE ARTICLES

    DOEpatents

    McGuire, J.C.

    1959-11-24

    Methods are presented for coating and joining materials which are considered difficult to solder by utilizing an abrasive wheel and applying a bar of a suitable coating material, such as Wood's metal, to the rotating wheel to fill the cavities of the abrasive wheel and load the wheel with the coating material. The surface of the base material is then rubbed against the loaded rotating wheel, thereby coating the surface with the soft coating metal. The coating is a cohesive bonded layer and holds the base metal as tenaciously as a solder holds to easily solderable metals.

  20. Process of preparing metal parts to be heated by means of infrared radiance

    DOEpatents

    Mayer, Howard Robinson [Cincinnati, OH; Blue, Craig A [Knoxville, TN

    2009-06-09

    A method for preparing metal for heating by infrared radiance to enable uniform and consistent heating. The surface of one or more metal parts, such as aluminum or aluminum alloy parts, is treated to alter the surface finish to affect the reflectivity of the surface. The surface reflectivity is evaluated, such as by taking measurements at one or more points on the surface, to determine if a desired reflectivity has been achieved. The treating and measuring are performed until the measuring indicates that the desired reflectivity has been achieved. Once the treating has altered the surface finish to achieve the desired reflectivity, the metal part may then be exposed to infrared radiance to heat the metal part to a desired temperature, and that heating will be substantially consistent throughout by virtue of the desired reflectivity.

  1. Cell surface engineering of microorganisms towards adsorption of heavy metals.

    PubMed

    Li, Peng-Song; Tao, Hu-Chun

    2015-06-01

    Heavy metal contamination has become a worldwide environmental concern due to its toxicity, non-degradability and food-chain bioaccumulation. Conventional physical and chemical treatment methods for heavy metal removal have disadvantages such as cost-intensiveness, incomplete removal, secondary pollution and the lack of metal specificity. Microbial biomass-based biosorption is one of the approaches gaining increasing attention because it is effective, cheap, and environmental friendly and can work well at low concentrations. To enhance the adsorption properties of microbial cells to heavy metal ions, the cell surface display of various metal-binding proteins/peptides have been performed using a cell surface engineering approach. The surface engineering of Gram-negative bacteria, Gram-positive bacteria and yeast towards the adsorption of heavy metals are reviewed in this article. The problems and future perspectives of this technology are discussed.

  2. IRRADIATION METHOD OF CONVERTING ORGANIC COMPOUNDS

    DOEpatents

    Allen, A.O.; Caffrey, J.M. Jr.

    1960-10-11

    A method is given for changing the distribution of organic compounds from that produced by the irradiation of bulk alkane hydrocarbons. This method consists of depositing an alkane hydrocarbon on the surface of a substrate material and irradiating with gamma radiation at a dose rate of more than 100,000 rads. The substrate material may be a metal, metal salts, metal oxides, or carbons having a surface area in excess of 1 m/sup 2//g. The hydrocarbons are deposited in layers of from 0.1 to 10 monolayers on the surfaces of these substrates and irradiated. The product yields are found to vary from those which result from the irradiation of bulk hydrocarbons in that there is an increase in the quantity of branched hydrocarbons.

  3. Method of assembling and sealing an alkali metal battery

    DOEpatents

    Elkins, Perry E.; Bell, Jerry E.; Harlow, Richard A.; Chase, Gordon G.

    1983-01-01

    A method of initially assembling and then subsequently hermetically sealing a container portion of an alkali metal battery to a ceramic portion of such a battery is disclosed. Sealing surfaces are formed respectively on a container portion and a ceramic portion of an alkali metal battery. These sealing surfaces are brought into juxtaposition and a material is interposed therebetween. This interposed material is one which will diffuse into sealing relationship with both the container portion and the ceramic portion of the alkali metal battery at operational temperatures of such a battery. A pressure is applied between these sealing surfaces to cause the interposed material to be brought into intimate physical contact with such juxtaposed surfaces. A temporary sealing material which will provide a seal against a flow of alkali metal battery reactants therethrough at room temperatures and is applied over the juxtaposed sealing surfaces and material interposed therebetween. The entire assembly is heated to an operational temperature so that the interposed material diffuses into the container portion and the ceramic portion to form a hermetic seal therebetween. The pressure applied to the juxtaposed sealing surfaces is maintained in order to ensure the continuation of the hermetic seal.

  4. Method of assembling and sealing an alkali metal battery

    DOEpatents

    Elkins, P.E.; Bell, J.E.; Harlow, R.A.; Chase, G.G.

    1983-03-01

    A method of initially assembling and then subsequently hermetically sealing a container portion of an alkali metal battery to a ceramic portion of such a battery is disclosed. Sealing surfaces are formed respectively on a container portion and a ceramic portion of an alkali metal battery. These sealing surfaces are brought into juxtaposition and a material is interposed there between. This interposed material is one which will diffuse into sealing relationship with both the container portion and the ceramic portion of the alkali metal battery at operational temperatures of such a battery. A pressure is applied between these sealing surfaces to cause the interposed material to be brought into intimate physical contact with such juxtaposed surfaces. A temporary sealing material which will provide a seal against a flow of alkali metal battery reactants there through at room temperatures and is applied over the juxtaposed sealing surfaces and material interposed there between. The entire assembly is heated to an operational temperature so that the interposed material diffuses into the container portion and the ceramic portion to form a hermetic seal there between. The pressure applied to the juxtaposed sealing surfaces is maintained in order to ensure the continuation of the hermetic seal. 4 figs.

  5. Study of plasma formation in CW CO2 laser beam-metal surface interaction

    NASA Astrophysics Data System (ADS)

    Azharonok, V. V.; Vasilchenko, Zh V.; Golubev, Vladimir S.; Gresev, A. N.; Zabelin, Alexandre M.; Chubrik, N. I.; Shimanovich, V. D.

    1994-04-01

    An interaction of the cw CO2 laser beam and a moving metal surface has been studied. The pulsed and thermodynamical parameters of the surface plasma were investigated by optical and spectroscopical methods. The subsonic radiation wave propagation in the erosion plasma torch has been studied.

  6. Application of a mixed metal oxide catalyst to a metallic substrate

    NASA Technical Reports Server (NTRS)

    Sevener, Kathleen M. (Inventor); Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Wisner, Daniel L. (Inventor)

    2009-01-01

    A method for applying a mixed metal oxide catalyst to a metallic substrate for the creation of a robust, high temperature catalyst system for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in propulsion systems. The method begins by forming a prepared substrate material consisting of a metallic inner substrate and a bound layer of a noble metal intermediate. Alternatively, a bound ceramic coating, or frit, may be introduced between the metallic inner substrate and noble metal intermediate when the metallic substrate is oxidation resistant. A high-activity catalyst slurry is applied to the surface of the prepared substrate and dried to remove the organic solvent. The catalyst layer is then heat treated to bind the catalyst layer to the surface. The bound catalyst layer is then activated using an activation treatment and calcinations to form the high-activity catalyst system.

  7. Response Ant Colony Optimization of End Milling Surface Roughness

    PubMed Central

    Kadirgama, K.; Noor, M. M.; Abd Alla, Ahmed N.

    2010-01-01

    Metal cutting processes are important due to increased consumer demands for quality metal cutting related products (more precise tolerances and better product surface roughness) that has driven the metal cutting industry to continuously improve quality control of metal cutting processes. This paper presents optimum surface roughness by using milling mould aluminium alloys (AA6061-T6) with Response Ant Colony Optimization (RACO). The approach is based on Response Surface Method (RSM) and Ant Colony Optimization (ACO). The main objectives to find the optimized parameters and the most dominant variables (cutting speed, feedrate, axial depth and radial depth). The first order model indicates that the feedrate is the most significant factor affecting surface roughness. PMID:22294914

  8. Comparison of finite element and transfer matrix methods for numerical investigation of surface plasmon waveguides

    NASA Astrophysics Data System (ADS)

    Haddouche, Issam; Cherbi, Lynda

    2017-01-01

    In this paper, we investigate Surface Plasmon Polaritons (SPPs) in the visible regime at a metal/dielectric interface within two different waveguide structures, the first is a Photonic Crystal Fiber where the Full Vector Finite Element Method (FVFEM) is used and the second is a slab waveguide where the transfer matrix method (TMM) is used. Knowing the diversities between the two methods in terms of speed, simplicity, and scope of application, computation is implemented with respect to wavelength and metal layer thickness in order to analyze and compare the performances of the two methods. Simulation results show that the TMM can be a good approximation for the FVFEM and that SPPs behave more like modes propagating in a semi infinite metal/dielectric structure as metal thickness increases from about 150 nm.

  9. A new method for promoting adhesion between precious metal alloys and dental adhesives.

    PubMed

    Ohno, H; Araki, Y; Endo, K

    1992-06-01

    A new, simple method of modifying the adherend metal surface by a liquid Ga-Sn alloy (Adlloy) was applied to dental precious and base-metal alloys for adhesion with 4-META adhesive resin. Adhesions of 4-META resin to three other surface states--as-polished, oxidized at high temperature, and electroplated tin--were also performed for comparison with the adhesion on Adlloy-modified surfaces. Bond strength measurements were made, and the durability against water at the adhering interface was evaluated. The Adlloy-modified gold alloys (Type IV and 14 K) and silver-based alloys (Ag-Pd and Ag-Cu) showed not only high bond strengths but also excellent water durability at the adhesion interface. Surface modification by Adlloy, however, did not affect adhesion to Ag-In-Zn and base-metal (SUS, Co-Cr, and Ni-Cr) alloys. Adhesion to the tin-electroplated specimens was comparable with that to the Adlloy-modified specimens.

  10. Casting technology for manufacturing metal rods from simulated metallic spent fuels

    NASA Astrophysics Data System (ADS)

    Leeand, Y. S.; Lee, D. B.; Kim, C. K.; Shin, Y. J.; Lee, J. H.

    2000-09-01

    A uranium metal rod 13.5 mm in diameter and 1,150 mm long was produced from simulated metallic spent fuels with advanced casting equipment using the directional-solidification method. A vacuum casting furnace equipped with a four-zone heater to prevent surface oxidation and the formation of surface shrinkage holes was designed. By controlling the axial temperature gradient of the casting furnace, deformation by the surface shrinkage phenomena was diminished, and a sound rod was manufactured. The cooling behavior of the molten uranium was analyzed using the computer software package MAGMAsoft.

  11. Electrodes synthesized from carbon nanostructures coated with a smooth and conformal metal adlayer

    DOEpatents

    Adzic, Radoslav; Harris, Alexander

    2014-04-15

    High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The preferred manufacturing process involves the initial oxidation of the carbon nanostructures followed by a surface preparation process involving immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing a suitable quantity of non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means. The nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. The process can be controlled and repeated to obtain a desired film coverage. The resulting coated nanostructures may be used, for example, as high-performance electrodes in supercapacitors, batteries, or other electric storage devices.

  12. Method of making a composite tube to metal joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leslie, James C.; Leslie, II, James C.; Heard, James

    A method for making a metal to composite tube joint including selecting an elongated interior fitting constructed with an exterior barrel, reduced in exterior diameter to form a distally facing annular shoulder and then projecting still further distally to form an interior sleeve having a radially outwardly facing bonding surface. Selecting an elongated metal outer sleeve formed proximally with a collar constructed for receipt over the barrel and increased in interior diameter and projecting distally to form an exterior sleeve having a radially inwardly facing bonding surface cooperating with the first bonding surface to form an annulus receiving an extremitymore » of a composite tube and a bond bonding the extremity of the tube to the bonding surfaces.« less

  13. Investigation of the influence of pretreatment parameters on the surface characteristics of amorphous metal for use in power industry

    NASA Astrophysics Data System (ADS)

    Nieroda, Jolanta; Rybak, Andrzej; Kmita, Grzegorz; Sitarz, Maciej

    2018-05-01

    Metallic glasses are metallic materials, which exhibit an amorphous structure. These are mostly three or more component alloys, and some of them are magnetic metals. Materials of this kind are characterized by high electrical resistivity and at the same time exhibit very good magnetic properties (e.g. low-magnetization loss). The above mentioned properties are very useful in electrical engineering industry and this material is more and more popular as a substance for high-efficiency electrical devices production. This industry area is still evolving, and thus even higher efficiency of apparatus based on amorphous material is expected. A raw material must be carefully investigated and characterized before the main production process is started. Presented work contains results of complementary examination of amorphous metal Metglas 2605. Studies involve two ways to obtain clean and oxidized surface with high reactivity, namely degreasing followed by annealing process and plasma treatment. The amorphous metal parameters were examined by means of several techniques: surface free energy (SFE) measurements by sessile drop method, X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and both ex situ and in situ Raman spectroscopy. Additionally, influence of plasma parameters on wetting properties were optimized in systematic way with Design of Experiments (DOE) method. A wide range of used methods allow to fully investigate the amorphous metal material during preliminary preparation of surface. Obtained results provide information about appropriate parameters that should be applied in order to obtain highly reactive surface with functional oxide layer on it.

  14. [Influence of different porcelain surface treatment method on the bonding of metal brackets to porcelain].

    PubMed

    Fan, Cun-Hui; Chen, Jie; Liu, Xin-Qiang; Ma, Xin

    2005-08-01

    To investigate the influence of different porcelain surface treatment methods on the shear bond strength of metal brackets bonded to porcelain. 80 porcelain facets were divided randomly into two groups according to different adhesive material that was used to bond metal brackets. Adhesive material were Jing-Jin enamel adhesive and light-cured composite resin. Each group was further divided into 4 subgroups according to different surface treatment methods, which were acid etching with 37% phosphoric acid (H3PO4), acid etching with 9.6% hydrofluoric acid (HF), deglazing by grinding and silanating the porcelain surface. All specimens were stored in 37 degrees C water for 24 hours and then the shear bond strength and the porcelain fracture after debonding was determined. The porcelain surfaces after HF etching, H3PO4 etching and deglazing by grinding were examined by scanning electron microscopy respectively. The shear bond strengths in the HF etching groups, the deglazing groups and the silanating groups were much greater than that in the phosphoric etching groups (P < 0.01). Adequate orthodontic bonding strength was achieved both when bonded with light-cured composite resin after deglazing by grinding and when bonded with either of these adhesives after HF etching or surface silanating. There were no differences in the rates of porcelain fractures among groups (P > 0.05). HF etching, deglazing by grinding and silanating can all increase the shear bond strength between metal bracket and porcelain. Surface silanating of porcelain is a better surface treatment when metal brackets bonded to porcelain.

  15. Method of fabricating conductive electrodes on the front and backside of a thin film structure

    DOEpatents

    Tabada, Phillipe J [Roseville, CA; Tabada, legal representative, Melody; Pannu, Satinderpall S [Pleasanton, CA

    2011-05-22

    A method of fabricating a thin film device having conductive front and backside electrodes or contacts. Top-side cavities are first formed on a first dielectric layer, followed by the deposition of a metal layer on the first dielectric layer to fill the cavities. Defined metal structures are etched from the metal layer to include the cavity-filled metal, followed by depositing a second dielectric layer over the metal structures. Additional levels of defined metal structures may be formed in a similar manner with vias connecting metal structures between levels. After a final dielectric layer is deposited, a top surface of a metal structure of an uppermost metal layer is exposed through the final dielectric layer to form a front-side electrode, and a bottom surface of a cavity-filled portion of a metal structure of a lowermost metal layer is also exposed through the first dielectric layer to form a back-side electrode.

  16. Controlled fabrication of semiconductor-metal hybrid nano-heterostructures via site-selective metal photodeposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vela Becerra, Javier; Ruberu, T. Purnima A.

    A method of synthesizing colloidal semiconductor-metal hybrid heterostructures is disclosed. The method includes dissolving semiconductor nanorods in a solvent to form a nanorod solution, and adding a precursor solution to the nanorod solution. The precursor solution contains a metal. The method further includes illuminating the combined precursor and nanorod solutions with light of a specific wavelength. The illumination causes the deposition of the metal in the precursor solution onto the surface of the semiconductor nanorods.

  17. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    DOEpatents

    Farmer, Joseph C.; Wong, Frank M.G.; Haslam, Jeffery J.; Yang, Nancy; Lavernia, Enrique J.; Blue, Craig A.; Graeve, Olivia A.; Bayles, Robert; Perepezko, John H.; Kaufman, Larry; Schoenung, Julie; Ajdelsztajn, Leo

    2014-07-15

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  18. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    DOEpatents

    Farmer, Joseph C [Tracy, CA; Wong, Frank M. G. [Livermore, CA; Haslam, Jeffery J [Livermore, CA; Yang, Nancy [Lafayette, CA; Lavernia, Enrique J [Davis, CA; Blue, Craig A [Knoxville, TN; Graeve, Olivia A [Reno, NV; Bayles, Robert [Annandale, VA; Perepezko, John H [Madison, WI; Kaufman, Larry [Brookline, MA; Schoenung, Julie [Davis, CA; Ajdelsztajn, Leo [Walnut Creek, CA

    2009-11-17

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  19. System and process for aluminization of metal-containing substrates

    DOEpatents

    Chou, Yeong-Shyung; Stevenson, Jeffry W.

    2017-12-12

    A system and method are detailed for aluminizing surfaces of metallic substrates, parts, and components with a protective alumina layer in-situ. Aluminum (Al) foil sandwiched between the metallic components and a refractory material when heated in an oxidizing gas under a compression load at a selected temperature forms the protective alumina coating on the surface of the metallic components. The alumina coating minimizes evaporation of volatile metals from the metallic substrates, parts, and components in assembled devices that can degrade performance during operation at high temperature.

  20. System and process for aluminization of metal-containing substrates

    DOEpatents

    Chou, Yeong-Shyung; Stevenson, Jeffry W

    2015-11-03

    A system and method are detailed for aluminizing surfaces of metallic substrates, parts, and components with a protective alumina layer in-situ. Aluminum (Al) foil sandwiched between the metallic components and a refractory material when heated in an oxidizing gas under a compression load at a selected temperature forms the protective alumina coating on the surface of the metallic components. The alumina coating minimizes evaporation of volatile metals from the metallic substrates, parts, and components in assembled devices during operation at high temperature that can degrade performance.

  1. Scattering properties of electromagnetic waves from metal object in the lower terahertz region

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Dang, H. X.; Hu, T. Y.; Su, Xiang; Lv, R. C.; Li, Hao; Tan, X. M.; Cui, T. J.

    2018-01-01

    An efficient hybrid algorithm is proposed to analyze the electromagnetic scattering properties of metal objects in the lower terahertz (THz) frequency. The metal object can be viewed as perfectly electrical conducting object with a slightly rough surface in the lower THz region. Hence the THz scattered field from metal object can be divided into coherent and incoherent parts. The physical optics and truncated-wedge incremental-length diffraction coefficients methods are combined to compute the coherent part; while the small perturbation method is used for the incoherent part. With the MonteCarlo method, the radar cross section of the rough metal surface is computed by the multilevel fast multipole algorithm and the proposed hybrid algorithm, respectively. The numerical results show that the proposed algorithm has good accuracy to simulate the scattering properties rapidly in the lower THz region.

  2. Improvement of Surface Layer Characteristics by Shot Lining

    NASA Astrophysics Data System (ADS)

    Harada, Yasunori

    In the present study, lining of the metal with foils using shot peening was investigated to improve the surface layer characteristics. In the shot peening experiment, the foils set on the metal are pelted with hard particles traveling at a high velocity. The foils are bonded to the metal surface due to plastic deformation induced by the collision of the particles. The foils and the metal are heated to heighten the bondability because of the reduction of flow stress. Lining the metal with the hard powder sandwiched between two aluminum foil sheets was also attempted. In this experiment, a centrifugal shot peening machine wite an electrical heater was employed. The metals are commercially aluminium alloys and magnesium alloys, and the foils are commercially aluminum, titanium and nickel. The effects of shot speed and the heating temperature on the bondability were examined. Wear resistance was also evaluated by grinding. The foils were successfully bonded to the metal surface. It was found that the present method is effective in improving of surface layer characteristics.

  3. Liquid surface skimmer apparatus for molten lithium and method

    DOEpatents

    Robinson, Samuel C.; Pollard, Roy E.; Thompson, William F.; Stark, Marshall W.; Currin, Jr., Robert T.

    1995-01-01

    This invention relates to an apparatus for separating two fluids having different specific gravities. The invention also relates to a method for using the separating apparatus of the present invention. This invention particularly relates to the skimming of molten lithium metal from the surface of a fused salt electrolyte in the electrolytic production of lithium metal from a mixed fused salt.

  4. Metallized Nanotube Polymer Composite (MNPC) and Methods for Making Same

    NASA Technical Reports Server (NTRS)

    Harrison, Joycelyn S. (Inventor); Lowther, Sharon E. (Inventor); Lillehei, Peter T. (Inventor); Park, Cheol (Inventor); Taylor, Larry (Inventor); Kang, Jin Ho (Inventor); Nazem, Negin (Inventor); Kim, Jae-Woo (Inventor); Sauti, Godfrey (Inventor)

    2017-01-01

    A novel method to develop highly conductive functional materials which can effectively shield various electromagnetic effects (EMEs) and harmful radiations. Metallized nanotube polymer composites (MNPC) are composed of a lightweight polymer matrix, superstrong nanotubes (NT), and functional nanoparticle inclusions. MNPC is prepared by supercritical fluid infusion of various metal precursors (Au, Pt, Fe, and Ni salts), incorporated simultaneously or sequentially, into a solid NT-polymer composite followed by thermal reduction. The infused metal precursor tends to diffuse toward the nanotube surface preferentially as well as the surfaces of the NT-polymer matrix, and is reduced to form nanometer-scale metal particles or metal coatings. The conductivity of the MNPC increases with the metallization, which provides better shielding capabilities against various EMEs and radiations by reflecting and absorbing EM waves more efficiently. Furthermore, the supercritical fluid infusion process aids to improve the toughness of the composite films significantly regardless of the existence of metal.

  5. Liquid Galvanic Coatings for Protection of Imbedded Metals

    NASA Technical Reports Server (NTRS)

    MacDowell, Louis G. (Inventor); Curran, Joseph J. (Inventor)

    2003-01-01

    Coating compositions and methods of their use are described herein for the reduction of corrosion in imbedded metal structures. The coatings are applied as liquids to an external surface of a substrate in which the metal structures are imbedded. The coatings are subsequently allowed to dry. The liquid applied coatings provide galvanic protection to the imbedded metal structures. Continued protection can be maintained with periodic reapplication of the coating compositions, as necessary, to maintain electrical continuity. Because the coatings may be applied using methods similar to standard paints, and because the coatings are applied to external surfaces of the substrates in which the metal structures are imbedded, the corresponding corrosion protection may be easily maintained. The coating compositions are particularly useful in the protection of metal-reinforced concrete.

  6. Adsorption energies of benzene on close packed transition metal surfaces using the random phase approximation

    NASA Astrophysics Data System (ADS)

    Garrido Torres, José A.; Ramberger, Benjamin; Früchtl, Herbert A.; Schaub, Renald; Kresse, Georg

    2017-11-01

    The adsorption energy of benzene on various metal substrates is predicted using the random phase approximation (RPA) for the correlation energy. Agreement with available experimental data is systematically better than 10% for both coinage and reactive metals. The results are also compared with more approximate methods, including van der Waals density functional theory (DFT), as well as dispersion-corrected DFT functionals. Although dispersion-corrected DFT can yield accurate results, for instance, on coinage metals, the adsorption energies are clearly overestimated on more reactive transition metals. Furthermore, coverage dependent adsorption energies are well described by the RPA. This shows that for the description of aromatic molecules on metal surfaces further improvements in density functionals are necessary, or more involved many-body methods such as the RPA are required.

  7. Templated synthesis of metal nanorods in silica nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Yadong; Gao, Chuanbo

    A method of preparing a metal nanorod. The method includes seeding a metal nanoparticle within the lumen of a nanotube, and growing a metal nanorod from the seeded metal nanoparticle to form a metal nanorod-nanotube composite. In some cases, the nanotube includes metal binding ligands attached to the inner surface. Growing of the metal nanorod includes incubating the seeded nanotube in a solution that includes: a metal source for the metal in the metal nanorod, the metal source including an ion of the metal; a coordinating ligand that forms a stable complex with the metal ion; a reducing agent formore » reducing the metal ion, and a capping agent that stabilizes atomic monomers of the metal. Compositions derived from the method are also provided.« less

  8. Method for preparing surfaces of metal composites having a brittle phase for plating. [Patent application

    DOEpatents

    Coates, C.W.; Wilson, T.J.

    1982-05-19

    The present invention is directed to a method for preparing surfaces of two-phase metal composites having relatively brittle and malleable components for plating with corrosion-resistant material. In practice of the present invention, the surfaces of the composite are etched to remove a major portion or fraction of the brittle component. The etched surface is then peened with particulates for breaking the brittle component from the surfaces and for spreading or smearing the malleable component over the surfaces. The peened surface is then chemically cleaned of residual traces of the brittle component to which the corrosion-resistant material may be plated thereon in an adherent manner.

  9. A novel and expeditious method to fabricate superhydrophobic metal carboxylate surface

    NASA Astrophysics Data System (ADS)

    Li, Feng; Geng, Xingguo; Chen, Zhi; Zhao, Lei

    2012-01-01

    This article has presented a novel method to fabricate superhydrophobic metal carboxylate surface on substrates like copper, ferrum, etc. This method markedly shortened the fabrication time to less than one second. The superhydrophobic effect is even better that the contact angle (CA) is 170±1° and the sliding angle (SA) <2°. Scanning electron microscopy (SEM) images showed micro-nano flower-like structures. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed that the flower-like structures are composed of Cu[CH3(CH2)12COO]2. The ethanol solution containing fatty acid and metal salt plays a key role in this method. This method has tremendous potentials in industrial production of superhydrophobic materials.

  10. Method for determining molten metal pool level in twin-belt continuous casting machines

    DOEpatents

    Kaiser, Timothy D.; Daniel, Sabah S.; Dykes, Charles D.

    1989-03-21

    A method for determining level of molten metal in the input of a continuous metal casting machine having at least one endless, flexible, revolving casting belt with a surface which engages the molten metal to be cast and a reverse, cooled surface along which is directed high velocity liquid coolant includes the steps of predetermining the desired range of positions of the molten metal pool and positioning at least seven heat-sensing transducers in bearing contact with the moving reverse belt surface and spaced in upstream-downstream relationship relative to belt travel spanning the desired pool levels. A predetermined temperature threshold is set, somewhat above coolant temperature and the output signals of the transducer sensors are scanned regarding their output signals indicative of temperatures of the moving reverse belt surface. Position of the molten pool is determined using temperature interpolation between any successive pair of upstream-downstream spaced sensors, which follows confirmation that two succeeding downstream sensors are at temperature levels exceeding threshold temperature. The method accordingly provides high resolution for determining pool position, and verifies the determined position by utilizing full-strength signals from two succeeding downstream sensors. In addition, dual sensors are used at each position spanning the desired range of molten metal pool levels to provide redundancy, wherein only the higher temperature of each pair of sensors at a station is utilized.

  11. Chemical solution deposition method of fabricating highly aligned MgO templates

    DOEpatents

    Paranthaman, Mariappan Parans [Knoxville, TN; Sathyamurthy, Srivatsan [Knoxville, TN; Aytug, Tolga [Knoxville, TN; Arendt, Paul N [Los Alamos, NM; Stan, Liliana [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM

    2012-01-03

    A superconducting article includes a substrate having an untextured metal surface; an untextured barrier layer of La.sub.2Zr.sub.2O.sub.7 or Gd.sub.2Zr.sub.2O.sub.7 supported by and in contact with the surface of the substrate; a biaxially textured buffer layer supported by the untextured barrier layer; and a biaxially textured superconducting layer supported by the biaxially textured buffer layer. Moreover, a method of forming a buffer layer on a metal substrate includes the steps of: providing a substrate having an untextured metal surface; coating the surface of the substrate with a barrier layer precursor; converting the precursor to an untextured barrier layer; and depositing a biaxially textured buffer layer above and supported by the untextured barrier layer.

  12. Metal surface coloration by oxide periodic structures formed with nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Veiko, Vadim; Karlagina, Yulia; Moskvin, Mikhail; Mikhailovskii, Vladimir; Odintsova, Galina; Olshin, Pavel; Pankin, Dmitry; Romanov, Valery; Yatsuk, Roman

    2017-09-01

    In this work, we studied a method of laser-induced coloration of metals, where small-scale spatially periodic structures play a key role in the process of color formation. The formation of such structures on a surface of AISI 304 stainless steel was demonstrated for the 1.06 μm fiber laser with nanosecond duration of pulses and random (elliptical) polarization. The color of the surface depends on the period, height and orientation of periodic surface structures. Adjustment of the polarization of the laser radiation or change of laser incidence angle can be used to control the orientation of the structures. The formation of markings that change their color under the different viewing angles becomes possible. The potential application of the method is metal product protection against falsification.

  13. Prevention of corrosion with polyaniline

    NASA Technical Reports Server (NTRS)

    Ahmad, Naseer (Inventor); MacDiarmid, Alan G. (Inventor)

    1997-01-01

    Methods for improving the corrosion inhibition of a metal or metal alloy substrate surface are provided wherein the substrate surface is coated with a polyaniline film. The polyaniline film coating is applied by contacting the substrate surface with a solution of polyaniline. The polyaniline is dissolved in an appropriate organic solvent and the solvent is allowed to evaporate from the substrate surface yielding the polyaniline film coating.

  14. Significant Enhancement of MgZnO Metal-Semiconductor-Metal Photodetectors via Coupling with Pt Nanoparticle Surface Plasmons

    NASA Astrophysics Data System (ADS)

    Guo, Zexuan; Jiang, Dayong; Hu, Nan; Yang, Xiaojiang; Zhang, Wei; Duan, Yuhan; Gao, Shang; Liang, Qingcheng; Zheng, Tao; Lv, Jingwen

    2018-06-01

    We proposed and demonstrated MgZnO metal-semiconductor-metal (MSM) ultraviolet photodetectors (UV) assisted with surface plasmons (SPs) prepared by the radio frequency magnetron sputtering deposition method. After the decoration of their surface with Pt nanoparticles (NPs), the responsivity of all the electrode spacing (3, 5, and 8 μm) photodetectors were enhanced dramatically; to our surprise, comparing with them the responsivity of larger spacing sample, more SPs were gathered which are smaller than others in turn. A physical mechanism focused on SPs and depletion width is given to explain the above results.

  15. Method for preparing surfaces of metal composites having a brittle phase for plating

    DOEpatents

    Coates, Cameron W.; Wilson, Thomas J.

    1984-01-01

    The present invention is directed to a method for preparing surfaces of two-phase metal composites having relatively brittle and malleable components for plating with corrosion-resistant material. In practice of the present invention, the surfaces of the composites are etched to remove a major portion or fraction of the brittle component. The etched surface is then peened with particulates for breaking the brittle component from the surfaces and for spreading or smearing the malleable component over the surfaces. The peened surface is then chemically cleaned of residual traces of the brittle component so as to provide a surface of essentially the malleable component to which the corrosion-resistant material may be plated thereon in an adherent manner.

  16. A feasible strategy to balance the crystallinity and specific surface area of metal oxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhang, Q. P.; Xu, X. N.; Liu, Y. T.; Xu, M.; Deng, S. H.; Chen, Y.; Yuan, H.; Yu, F.; Huang, Y.; Zhao, K.; Xu, S.; Xiong, G.

    2017-04-01

    Practical, efficient synthesis of metal oxide nanocrystals with good crystallinity and high specific surface area by a modified polymer-network gel method is demonstrated, taking ZnO nanocrystals as an example. A novel stepwise heat treatment yields significant improvement in crystal quality. Such nanophase materials can effectively degrade common organic dyes under solar radiation and can perform very well in photo-assisted detection of NO2 gas. Other typical metal oxide nanocrystals with good crystallinity and high specific surface area were also synthesized successfully under similar conditions. This work provides a general strategy for the synthesis of metal oxide nanocrystals, balancing the crystallinity and specific surface area.

  17. Electrode structure and method for making the same

    DOEpatents

    Affinito, John D.; Lowe, Gregory K.

    2015-05-26

    Electrode structures, and more specifically, electrode structures for use in electrochemical cells, are provided. The electrode structures described herein may include one or more protective layers. In one set of embodiments, a protective layer may be formed by exposing a lithium metal surface to a plasma comprising ions of a gas to form a ceramic layer on top of the lithium metal. The ceramic layer may be highly conductive to lithium ions and may protect the underlying lithium metal surface from reaction with components in the electrolyte. In some cases, the ions may be nitrogen ions and a lithium nitride layer may be formed on the lithium metal surface. In other embodiments, the protective layer may be formed by converting lithium to lithium nitride at high pressures. Other methods for forming protective layers are also provided.

  18. Molten metal injector system and method

    DOEpatents

    Meyer, Thomas N.; Kinosz, Michael J.; Bigler, Nicolas; Arnaud, Guy

    2003-04-01

    Disclosed is a molten metal injector system including a holder furnace, a casting mold supported above the holder furnace, and a molten metal injector supported from a bottom side of the mold. The holder furnace contains a supply of molten metal having a metal oxide film surface. The bottom side of the mold faces the holder furnace. The mold defines a mold cavity for receiving the molten metal from the holder furnace. The injector projects into the holder furnace and is in fluid communication with the mold cavity. The injector includes a piston positioned within a piston cavity defined by a cylinder for pumping the molten metal upward from the holder furnace and injecting the molten metal into the mold cavity under pressure. The piston and cylinder are at least partially submerged in the molten metal when the holder furnace contains the molten metal. The cylinder further includes a molten metal intake for receiving the molten metal into the piston cavity. The molten metal intake is located below the metal oxide film surface of the molten metal when the holder furnace contains the molten metal. A method of injecting molten metal into a mold cavity of a casting mold is also disclosed.

  19. 1980 Naval Research Laboratory Review

    DTIC Science & Technology

    1981-07-01

    Scattering Method for Measurements of Sinusoidal Surfaces A .K . Jordan...121 Semianalytic Method for Satellite Orbit Determination B . K au fm an...142 A New Metal-surface Cleaning Method D .L. V enezky and R . Panayappan

  20. Simulated BRDF based on measured surface topography of metal

    NASA Astrophysics Data System (ADS)

    Yang, Haiyue; Haist, Tobias; Gronle, Marc; Osten, Wolfgang

    2017-06-01

    The radiative reflective properties of a calibration standard rough surface were simulated by ray tracing and the Finite-difference time-domain (FDTD) method. The simulation results have been used to compute the reflectance distribution functions (BRDF) of metal surfaces and have been compared with experimental measurements. The experimental and simulated results are in good agreement.

  1. Method for making a dynamic pressure sensor and a pressure sensor made according to the method

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Robbins, William E. (Inventor); Robins, Glenn M. (Inventor)

    1994-01-01

    A method for providing a perfectly flat top with a sharp edge on a dynamic pressure sensor using a cup-shaped stretched membrane as a sensing element is described. First, metal is deposited on the membrane and surrounding areas. Next, the side wall of the pressure sensor with the deposited metal is machined to a predetermined size. Finally, deposited metal is removed from the top of the membrane in small steps, by machining or lapping while the pressure sensor is mounted in a jig or the wall of a test object, until the true top surface of the membrane appears. A thin indicator layer having a color contrasting with the color of the membrane may be applied to the top of the membrane before metal is deposited to facilitate the determination of when to stop metal removal from the top surface of the membrane.

  2. Hardfacing material

    DOEpatents

    Branagan, Daniel J [Iona, ID

    2012-01-17

    A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  3. Metal surface corrosion grade estimation from single image

    NASA Astrophysics Data System (ADS)

    Chen, Yijun; Qi, Lin; Sun, Huyuan; Fan, Hao; Dong, Junyu

    2018-04-01

    Metal corrosion can cause many problems, how to quickly and effectively assess the grade of metal corrosion and timely remediation is a very important issue. Typically, this is done by trained surveyors at great cost. Assisting them in the inspection process by computer vision and artificial intelligence would decrease the inspection cost. In this paper, we propose a dataset of metal surface correction used for computer vision detection and present a comparison between standard computer vision techniques by using OpenCV and deep learning method for automatic metal surface corrosion grade estimation from single image on this dataset. The test has been performed by classifying images and calculating the accuracy for the two different approaches.

  4. Electrochemical method for synthesizing metal-containing particles and other objects

    DOEpatents

    Rondinone, Adam Justin; Ivanov, Ilia N.; Smith, Sean Campbell; Liang, Chengdu; Hensley, Dale K.; Moon, Ji-Won; Phelps, Tommy Joe

    2017-05-02

    The invention is directed to a method for producing metal-containing (e.g., non-oxide, oxide, or elemental) nano-objects, which may be nanoparticles or nanowires, the method comprising contacting an aqueous solution comprising a metal salt and water with an electrically powered electrode to form said metal-containing nano-objects dislodged from the electrode, wherein said electrode possesses a nanotextured surface that functions to confine the particle growth process to form said metal-containing nano-objects. The invention is also directed to the resulting metal-containing compositions as well as devices in which they are incorporated.

  5. Surface preparation for high purity alumina ceramics enabling direct brazing in hydrogen atmospheres

    DOEpatents

    Cadden, Charles H.; Yang, Nancy Yuan Chi; Hosking, Floyd M.

    2001-01-01

    The present invention relates to a method for preparing the surface of a high purity alumina ceramic or sapphire specimen that enables direct brazing in a hydrogen atmosphere using an active braze alloy. The present invention also relates to a method for directly brazing a high purity alumina ceramic or sapphire specimen to a ceramic or metal member using this method of surface preparation, and to articles produced by this brazing method. The presence of silicon, in the form of a SiO.sub.2 -containing surface layer, can more than double the tensile bond strength in alumina ceramic joints brazed in a hydrogen atmosphere using an active Au-16Ni-0.75 Mo-1.75V filler metal. A thin silicon coating applied by PVD processing can, after air firing, produce a semi-continuous coverage of the alumina surface with a SiO.sub.2 film. Room temperature tensile strength was found to be proportional to the fraction of air fired surface covered by silicon-containing films. Similarly, the ratio of substrate fracture versus interface separation was also related to the amount of surface silicon present prior to brazing. This process can replace the need to perform a "moly-manganese" metallization step.

  6. Changes in the structure of the surface layer of metal materials upon friction and electric current loading

    NASA Astrophysics Data System (ADS)

    Fadin, V. V.

    2013-09-01

    Dependences of the electric conductivity of a contact and wear intensity of metal materials on the electric current density in sliding friction are obtained. It is established that alloying of the material basis leads to faster damage of the friction surface. The presence of about 40 аt.% oxygen in the surface layer is detected by the Auger spectrometry method. It is demonstrated by the x-ray diffraction method that FeO formed in the surface layer leads to an increase in the electric conductivity of the contact.

  7. Mechanical interlocking of cotton fibers on slightly textured surfaces of metallic cylinders

    PubMed Central

    Zhang, Youqiang; Tian, Yu; Meng, Yonggang

    2016-01-01

    Mechanical interlocking is widely applied in industry and general lives of human beings. In this work, we realized the control of locking or sliding states of cotton fibers on the metal surfaces with slightly different textures through traditional machining. Three types of sliding states, i.e., locking, one-way sliding, and two-way sliding have been achieved. It is found that the locking or sliding of the cotton fibers on the metallic cylinder depends on the friction coefficient and the ratio of cotton fiber diameter, 2r, to the height of the rough peaks, h, of metal surfaces. When the critical ratio h/r exceeds 1, the cotton fibers could tightly attach to the metallic surface through mechanical interlocking. This work provided a convenient and universal method for the control of interlocking or sliding of fiber-based materials on textured surfaces. PMID:27156720

  8. Electrode structures and surfaces for Li batteries

    DOEpatents

    Thackeray, Michael M.; Kang, Sun-Ho; Balasubramanian, Mahalingam; Croy, Jason

    2017-03-14

    This invention relates to methods of preparing positive electrode materials for electrochemical cells and batteries. It relates, in particular, to a method for fabricating lithium-metal-oxide electrode materials for lithium cells and batteries. The method comprises contacting a hydrogen-lithium-manganese-oxide material with one or more metal ions, preferably in an acidic solution, to insert the one or more metal ions into the hydrogen-lithium-manganese-oxide material; heat-treating the resulting product to form a powdered metal oxide composition; and forming an electrode from the powdered metal oxide composition.

  9. Pyrophoric metal-carbon foam composites and methods of making the same

    DOEpatents

    Gash, Alexander E [Brentwood, CA; Satcher, Jr., Joe H.; Simpson, Randall L [Livermore, CA; Baumann, Theodore F [Discovery Bay, CA; Worsley, Marcus A [Belmont, CA

    2012-05-08

    A method for creating a pyrophoric material according to one embodiment includes thermally activating a carbon foam for creating micropores therein; contacting the activated carbon foam with a liquid solution comprising a metal salt for depositing metal ions in the carbon foam; and reducing the metal ions in the foam to metal particles. A pyrophoric material in yet another embodiment includes a pyrophoric metal-carbon foam composite comprising a carbon foam having micropores and mesopores and a surface area of greater than or equal to about 2000 m.sup.2/g, and metal particles in the pores of the carbon foam. Additional methods and materials are also disclosed.

  10. Correcting the spectroscopic surface gravity using transits and asteroseismology. No significant effect on temperatures or metallicities with ARES and MOOG in local thermodynamic equilibrium

    NASA Astrophysics Data System (ADS)

    Mortier, A.; Sousa, S. G.; Adibekyan, V. Zh.; Brandão, I. M.; Santos, N. C.

    2014-12-01

    Context. Precise stellar parameters (effective temperature, surface gravity, metallicity, stellar mass, and radius) are crucial for several reasons, amongst which are the precise characterization of orbiting exoplanets and the correct determination of galactic chemical evolution. The atmospheric parameters are extremely important because all the other stellar parameters depend on them. Using our standard equivalent-width method on high-resolution spectroscopy, good precision can be obtained for the derived effective temperature and metallicity. The surface gravity, however, is usually not well constrained with spectroscopy. Aims: We use two different samples of FGK dwarfs to study the effect of the stellar surface gravity on the precise spectroscopic determination of the other atmospheric parameters. Furthermore, we present a straightforward formula for correcting the spectroscopic surface gravities derived by our method and with our linelists. Methods: Our spectroscopic analysis is based on Kurucz models in local thermodynamic equilibrium, performed with the MOOG code to derive the atmospheric parameters. The surface gravity was either left free or fixed to a predetermined value. The latter is either obtained through a photometric transit light curve or derived using asteroseismology. Results: We find first that, despite some minor trends, the effective temperatures and metallicities for FGK dwarfs derived with the described method and linelists are, in most cases, only affected within the errorbars by using different values for the surface gravity, even for very large differences in surface gravity, so they can be trusted. The temperatures derived with a fixed surface gravity continue to be compatible within 1 sigma with the accurate results of the infrared flux method (IRFM), as is the case for the unconstrained temperatures. Secondly, we find that the spectroscopic surface gravity can easily be corrected to a more accurate value using a linear function with the effective temperature. Tables 1 and 2 are available in electronic form at http://www.aanda.org

  11. A post-processing study on aluminum surface by fiber laser: Removing face milling patterns

    NASA Astrophysics Data System (ADS)

    Kayahan, Ersin

    2018-05-01

    The face milling process of the metal surface is a well-known machining process of using rotary cutters to remove material from a workpiece. Flat metal surfaces can be produced by a face milling process. However, in practice, visible, traced marks following the motion of points on the cutter's face are usually apparent. In this study, it was shown that milled patterns can be removed by means of 20 W fiber laser on the aluminum surface (AA7075). Experimental results also showed that roughened and hydrophobic surface can be produced with optimized laser parameters. It is a new approach to remove the patterns from the metal surface and can be explained through roughening by re-melting instead of ablation. The new method is a strong candidate to replace sandblasting the metal surface. It is also cheap and environmentally friendly.

  12. Effects of femtosecond laser and other surface treatments on the bond strength of metallic and ceramic orthodontic brackets to zirconia

    PubMed Central

    García-Sanz, Verónica; Bellot-Arcís, Carlos; Mendoza-Yero, Omel; Doñate-Buendía, Carlos; Montero, Javier; Albaladejo, Alberto

    2017-01-01

    Femtosecond laser has been proposed as a method for conditioning zirconia surfaces to boost bond strength. However, metallic or ceramic bracket bonding to femtosecond laser-treated zirconia surfaces has not been tested. This study compared the effects of four conditioning techniques, including femtosecond laser irradiation, on shear bond strength (SBS) of metallic and ceramic brackets to zirconia.Three hundred zirconia plates were divided into five groups: 1) control (C); 2) sandblasting (APA); 3) silica coating and silane (SC); 4) femtosecond laser (FS); 5) sandblasting followed by femtosecond laser (APA+SC). A thermal imaging camera measured temperature changes in the zirconia during irradiation. Each group was divided into 2 subgroups (metallic vs ceramic brackets). SBS was evaluated using a universal testing machine. The adhesive remnant index (ARI) was registered and surfaces were observed under SEM. Surface treatment and bracket type significantly affected the bracket-zirconia bond strength. SBS was significantly higher (p<0.001) for ceramic brackets in all groups (APA+FS > APA > FS > SC > control) than metallic brackets (APA+FS > FS > SC > APA > control). For metallic brackets, groups SC (5.99 ± 1.86 MPa), FS (6.72 ± 2.30 MPa) and APA+FS (7.22 ± 2.73 MPa) reported significantly higher bond strengths than other groups (p < 0.05). For ceramic brackets, the highest bond strength values were obtained in groups APA (25.01 ± 4.45 MPa), FS (23.18 ± 6.51 MPa) and APA+FS (29.22 ± 8.20 MPa).Femtosecond laser enhances bond strength of ceramic and metallic brackets to zirconia. Ceramic brackets provide significantly stronger adhesion than metallic brackets regardless of the surface treatment method. PMID:29049418

  13. Effects of femtosecond laser and other surface treatments on the bond strength of metallic and ceramic orthodontic brackets to zirconia.

    PubMed

    García-Sanz, Verónica; Paredes-Gallardo, Vanessa; Bellot-Arcís, Carlos; Mendoza-Yero, Omel; Doñate-Buendía, Carlos; Montero, Javier; Albaladejo, Alberto

    2017-01-01

    Femtosecond laser has been proposed as a method for conditioning zirconia surfaces to boost bond strength. However, metallic or ceramic bracket bonding to femtosecond laser-treated zirconia surfaces has not been tested. This study compared the effects of four conditioning techniques, including femtosecond laser irradiation, on shear bond strength (SBS) of metallic and ceramic brackets to zirconia.Three hundred zirconia plates were divided into five groups: 1) control (C); 2) sandblasting (APA); 3) silica coating and silane (SC); 4) femtosecond laser (FS); 5) sandblasting followed by femtosecond laser (APA+SC). A thermal imaging camera measured temperature changes in the zirconia during irradiation. Each group was divided into 2 subgroups (metallic vs ceramic brackets). SBS was evaluated using a universal testing machine. The adhesive remnant index (ARI) was registered and surfaces were observed under SEM. Surface treatment and bracket type significantly affected the bracket-zirconia bond strength. SBS was significantly higher (p<0.001) for ceramic brackets in all groups (APA+FS > APA > FS > SC > control) than metallic brackets (APA+FS > FS > SC > APA > control). For metallic brackets, groups SC (5.99 ± 1.86 MPa), FS (6.72 ± 2.30 MPa) and APA+FS (7.22 ± 2.73 MPa) reported significantly higher bond strengths than other groups (p < 0.05). For ceramic brackets, the highest bond strength values were obtained in groups APA (25.01 ± 4.45 MPa), FS (23.18 ± 6.51 MPa) and APA+FS (29.22 ± 8.20 MPa).Femtosecond laser enhances bond strength of ceramic and metallic brackets to zirconia. Ceramic brackets provide significantly stronger adhesion than metallic brackets regardless of the surface treatment method.

  14. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    DOEpatents

    Parans Paranthaman, Mariappan; Bi, Zhonghe; Bridges, Craig A; Brown, Gilbert M

    2014-12-16

    Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions comprise (a) microspheres with an average diameter between 200 nanometers (nm) and 10 micrometers (.mu.m); (b) mesopores on the surface and interior of the microspheres, wherein the mesopores have an average diameter between 1 nm and 50 nm and the microspheres have a surface area between 50 m.sup.2/g and 500 m.sup.2/g, and wherein the composition has an electrical conductivity of at least 1.times.10.sup.-7 S/cm at 25.degree. C. and 60 MPa. The methods of making comprise forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least one method selected from the group consisting of: (i) annealing in a reducing atmosphere, (ii) doping with an aliovalent element, and (iii) coating with a coating composition.

  15. Synthesis of metal oxide nanoparticles via a robust ``solvent-deficient'' method

    NASA Astrophysics Data System (ADS)

    Smith, Stacey J.; Huang, Baiyu; Liu, Shengfeng; Liu, Qingyuan; Olsen, Rebecca E.; Boerio-Goates, Juliana; Woodfield, Brian F.

    2014-11-01

    We report an efficient, general methodology for producing high-surface area metal oxide nanomaterials for a vast range of metal oxides, including at least one metal oxide nanomaterial from nearly every transition metal and semi-metal group in the periodic table (groups 3-4 and 6-15) as well as several from the lanthanide group (see Table 1). The method requires only 2-3 simple steps; a hydrated metal salt (usually a nitrate or chloride salt) is ground with bicarbonate (usually NH4HCO3) for 10-30 minutes to form a precursor that is then either untreated or rinsed before being calcined at relatively low temperatures (220-550 °C) for 1-3 hours. The method is thus similar to surfactant-free aqueous methods such as co-precipitation but is unique in that no solvents are added. The resulting ``solvent-deficient'' environment has interesting and unique consequences, including increased crystallinity of the products over other aqueous methods and a mesoporous nature in the inevitable agglomerates. The products are chemically pure and phase pure with crystallites generally 3-30 nm in average size that aggregate into high surface area, mesoporous agglomerates 50-300 nm in size that would be useful for catalyst and gas sensing applications. The versatility of products and efficiency of the method lend its unique potential for improving the industrial viability of a broad family of useful metal oxide nanomaterials. In this paper, we outline the methodology of the solvent-deficient method using our understanding of its mechanism, and we describe the range and quality of nanomaterials it has produced thus far.We report an efficient, general methodology for producing high-surface area metal oxide nanomaterials for a vast range of metal oxides, including at least one metal oxide nanomaterial from nearly every transition metal and semi-metal group in the periodic table (groups 3-4 and 6-15) as well as several from the lanthanide group (see Table 1). The method requires only 2-3 simple steps; a hydrated metal salt (usually a nitrate or chloride salt) is ground with bicarbonate (usually NH4HCO3) for 10-30 minutes to form a precursor that is then either untreated or rinsed before being calcined at relatively low temperatures (220-550 °C) for 1-3 hours. The method is thus similar to surfactant-free aqueous methods such as co-precipitation but is unique in that no solvents are added. The resulting ``solvent-deficient'' environment has interesting and unique consequences, including increased crystallinity of the products over other aqueous methods and a mesoporous nature in the inevitable agglomerates. The products are chemically pure and phase pure with crystallites generally 3-30 nm in average size that aggregate into high surface area, mesoporous agglomerates 50-300 nm in size that would be useful for catalyst and gas sensing applications. The versatility of products and efficiency of the method lend its unique potential for improving the industrial viability of a broad family of useful metal oxide nanomaterials. In this paper, we outline the methodology of the solvent-deficient method using our understanding of its mechanism, and we describe the range and quality of nanomaterials it has produced thus far. Electronic supplementary information (ESI) available: (1) Preliminary Netzsch milling results for Al2O3 and CeO2, (2) XRD patterns/analyses of the dried and rinsed precursors plotted with the ICDD standard patterns of the materials they contain, (3) all TG/DTA-MS data. See DOI: 10.1039/c4nr04964k

  16. Contour forming of metals by laser peening

    DOEpatents

    Hackel, Lloyd; Harris, Fritz

    2002-01-01

    A method and apparatus are provided for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts. A light beam of 10 to 100 J/pulse is imaged to create an energy fluence of 60 to 200 J/cm.sup.2 on an absorptive layer applied over a metal surface. A tamping layer of water is flowed over the absorptive layer. The absorption of laser light causes a plasma to form and consequently creates a shock wave that induces a deep residual compressive stress into the metal. The metal responds to this residual stress by bending.

  17. Carbon nanotubes grown on bulk materials and methods for fabrication

    DOEpatents

    Menchhofer, Paul A [Clinton, TN; Montgomery, Frederick C [Oak Ridge, TN; Baker, Frederick S [Oak Ridge, TN

    2011-11-08

    Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

  18. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parans Paranthaman, Mariappan; Bi, Zhonghe; Bridges, Craig A.

    Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions include microspheres with an average diameter between about 200 nanometers and about 10 micrometers and mesopores on the surface and interior of the microspheres. The methods of making include forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least annealing in a reducing atmosphere, doping with an aliovalent element, and coating with a coating composition.

  19. Low Temperature Metal Coating Method Final Report CRADA No. TSB-1155-95

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Sang-Wook; Gabel, Howard

    A new metal coating method, cidled KEM (kinetic energy metal.lization), demonstrated in the laboratory by lnovati, utilized fast-moving solid particIes entrained in a gas that are caused to fiow through a nozzIe to effect particle deposition on metal surfaces at room temperature conditions. This method (US Patent 5,795,626) was an attractive and viabIe alternative to the currentIy available high-temperature coating methods avaiIabIe. Since it differs significantly from existing metal coating technologies, a brief description of the method is incIuded here. The proposed method, KEM, achieves cohesive and adhesive metallurgical bonding through the high-speed coUision of powder with a substrate andmore » the subsequent discharge of electrical charge at the substrate. Such coating is effected by entraining metal powder in a gas and accelerating this mixture through a supersonic nozzle. The gas/powder is directed towards the substrate to be coated. Collisions occur, initiaIly between the powder and the substrate, and, as the first Iayer of the coating forms, between the powder and the coating. During these collisions the powder is rapidly deformed, causing the exposure of fresh (oxide free) active metal surface. When these’active surfaces contact one another, they agglomerate and form true metaIIurgicaI bonds. The resultant coating has Iow porosity and high adhesive and cohesive strength. The formation of metaIIurgicaI bonds is potentiated by the discharge of electrical energy. This electrical energy is the result of triboeIectric charging of the particIes during acceleration and transit to the nozzIe. An advantage of the method is that it does not raise the temperature of the powder being appLiedor that of the substrate. Consequently, materials sensitive to high temperature may be applied without changing Me properties of the materkd or substrate.« less

  20. Platinum-based electrocatalysts synthesized by depositing contiguous adlayers on carbon nanostructures

    DOEpatents

    Adzic, Radoslav R.; Harris, Alexander

    2015-10-06

    High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The manufacturing process may involve initial oxidation of the carbon nanostructures followed by immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means and the nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. Subsequent film growth may be performed via the initial quasi-underpotential deposition of a non-noble metal followed by immersion in a solution comprising a more noble metal. The resulting coated nanostructures may be used, for example, as high-performance electrodes in supercapacitors, batteries, or other electric storage devices.

  1. Platinum-based electrocatalysts synthesized by depositing contiguous adlayers on carbon nanostructures

    DOEpatents

    Adzic, Radoslav; Harris, Alexander

    2013-03-26

    High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The preferred manufacturing process involves the initial oxidation of the carbon nanostructures followed by immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means and the nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. Subsequent film growth may be performed via the initial quasi-underpotential deposition of a non-noble metal followed by immersion in a solution comprising a more noble metal. The resulting coated nanostructures may be used, for example, as high-performance electrodes in supercapacitors, batteries, or other electric storage devices.

  2. Durable hydrophobic coating composition for metallic surfaces and method for the preparation of the composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiong

    A durable hydrophobic coating composition containing fluorinated silanes for metallic surfaces, such as stainless steel surfaces. The composition includes at least one fluorine-containing silane compound, at least one phosphorus-containing silane compound, and at least one hydrolysable compound. This coating is suitable for condenser tubes, among other applications, to promote dropwise condensation.

  3. Ionic self-assembly of surface functionalized metal-organic polyhedra nanocages and their ordered honeycomb architecture at the air/water interface.

    PubMed

    Li, Yantao; Zhang, Daojun; Gai, Fangyuan; Zhu, Xingqi; Guo, Ya-nan; Ma, Tianliang; Liu, Yunling; Huo, Qisheng

    2012-08-18

    Metal-organic polyhedra (MOP) nanocages were successfully surface functionalized via ionic self-assembly and the ordered honeycomb architecture of the encapsulated MOP nanocages was also fabricated at the air/water surface. The results provide a novel synthetic method and membrane processing technique of amphiphilic MOP nanocages for various applications.

  4. Methods and systems for in-situ electroplating of electrodes

    DOEpatents

    Zappi, Guillermo Daniel; Zarnoch, Kenneth Paul; Huntley, Christian Andrew; Swalla, Dana Ray

    2015-06-02

    The present techniques provide electrochemical devices having enhanced electrodes with surfaces that facilitate operation, such as by formation of a porous nickel layer on an operative surface, particularly of the cathode. The porous metal layer increases the surface area of the electrode, which may result in increasing the efficiency of the electrochemical devices. The formation of the porous metal layer is performed in situ, that is, after the assembly of the electrodes into an electrochemical device. The in situ process offers a number of advantages, including the ability to protect the porous metal layer on the electrode surface from damage during assembly of the electrochemical device. The enhanced electrode and the method for its processing may be used in any number of electrochemical devices, and is particularly well suited for electrodes in an electrolyzer useful for splitting water into hydrogen and oxygen.

  5. Nano-Engineered Catalysts for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Myung, Nosang; Narayanan, Sekharipuram; Wiberg, Dean

    2008-01-01

    Nano-engineered catalysts, and a method of fabricating them, have been developed in a continuing effort to improve the performances of direct methanol fuel cells as candidate power sources to supplant primary and secondary batteries in a variety of portable electronic products. In order to realize the potential for high energy densities (as much as 1.5 W h/g) of direct methanol fuel cells, it will be necessary to optimize the chemical compositions and geometric configurations of catalyst layers and electrode structures. High performance can be achieved when catalyst particles and electrode structures have the necessary small feature sizes (typically of the order of nanometers), large surface areas, optimal metal compositions, high porosity, and hydrophobicity. The present method involves electrodeposition of one or more catalytic metal(s) or a catalytic-metal/polytetrafluoroethylene nanocomposite on an alumina nanotemplate. The alumina nanotemplate is then dissolved, leaving the desired metal or metal/polytetrafluoroethylene-composite catalyst layer. Unlike some prior methods of making fine metal catalysts, this method does not involve processing at elevated temperature; all processing can be done at room temperature. In addition, this method involves fewer steps and is more amenable to scaling up for mass production. Alumina nanotemplates are porous alumina membranes that have been fabricated, variously, by anodizing either pure aluminum or aluminum that has been deposited on silicon by electronbeam evaporation. The diameters of the pores (7 to 300 nm), areal densities of pores (as much as 7 x 10(exp 10)sq cm), and lengths of pores (up to about 100 nm) can be tailored by selection of fabrication conditions. In a given case, the catalytic metal, catalytic metal alloy, or catalytic metal/ polytetrafluoroethylene composite is electrodeposited in the pores of the alumina nanotemplate. The dimensions of the pores, together with the electrodeposition conditions, determine the sizes and surface areas of the catalytic particles. Hence, the small features and large surface areas of the porosity translate to the desired small particle size and large surface area of the catalyst (see figure). When polytetrafluoroethylene is included, it is for the purpose of imparting hydrophobicity in order to prevent water from impeding the desired diffusion of gases through the catalyst layer. To incorporate polytetrafluoroethylene into a catalytic-metal/polytetrafluoroethylene nanocomposite, one suspends polytetrafluoroethylene nanoparticles in the electrodeposition solution. The polytetrafluoroethylene content can be varied to obtain the desired degree of hydrophobicity and permeability by gas.

  6. A Novel Method for Depositing Precious Metal Films on Difficult Surfaces

    NASA Technical Reports Server (NTRS)

    Veitch, L. C.; Phillip, W. H.

    1994-01-01

    A guanidine-based vehicle was developed to deposit precious metal coatings on surfaces known to be difficult to coat. To demonstrate this method, a platinum coating was deposited on alumina fibers using a guanidine-platinum solution. X-ray diffraction confirmed that the only species present in the coating was platinum and that all of the carbon species had been removed upon heat treatment. SEM results showed that some porosity was present but that the coatings uniformly covered the fiber surface and adhered well to the finer.

  7. Method of making an electrode

    DOEpatents

    Isenberg, Arnold O.

    1986-01-01

    Disclosed is a method of coating an electrode on a solid oxygen conductive oxide layer. A coating of particles of an electronic conductor is formed on one surface of the oxide layer and a source of oxygen is applied to the opposite surface of the oxide layer. A metal halide vapor is applied over the electronic conductor and the oxide layer is heated to a temperature sufficient to induce oxygen to diffuse through the oxide layer and react with the metal halide vapor. This results in the growing of a metal oxide coating on the particles of electronic conductor, thereby binding them to the oxide layer.

  8. Introduction to Field Water-Quality Methods for the Collection of Metals - 2007 Project Summary

    USGS Publications Warehouse

    Allen, Monica L.

    2008-01-01

    The U.S. Geological Survey (USGS), Region VI of the U.S. Environmental Protection Agency (USEPA), and the Osage Nation presented three 3-day workshops, in June-August 2007, entitled ?Introduction to Field Water-Quality Methods for the Collection of Metals.? The purpose of the workshops was to provide instruction to tribes within USEPA Region VI on various USGS surface-water measurement methods and water-quality sampling protocols for the collection of surface-water samples for metals analysis. Workshop attendees included members from over 22 tribes and pueblos. USGS instructors came from Oklahoma, New Mexico, and Georgia. Workshops were held in eastern and south-central Oklahoma and New Mexico and covered many topics including presampling preparation, water-quality monitors, and sampling for metals in surface water. Attendees spent one full classroom day learning the field methods used by the USGS Water Resources Discipline and learning about the complexity of obtaining valid water-quality and quality-assurance data. Lectures included (1) a description of metal contamination sources in surface water; (2) introduction on how to select field sites, equipment, and laboratories for sample analysis; (3) collection of sediment in surface water; and (4) utilization of proper protocol and methodology for sampling metals in surface water. Attendees also were provided USGS sampling equipment for use during the field portion of the class so they had actual ?hands-on? experience to take back to their own organizations. The final 2 days of the workshop consisted of field demonstrations of current USGS water-quality sample-collection methods. The hands-on training ensured that attendees were exposed to and experienced proper sampling procedures. Attendees learned integrated-flow techniques during sample collection, field-property documentation, and discharge measurements and calculations. They also used enclosed chambers for sample processing and collected quality-assurance samples to verify their techniques. Benefits of integrated water-quality sample-collection methods are varied. Tribal environmental programs now have the ability to collect data that are comparable across watersheds. The use of consistent sample collection, manipulation, and storage techniques will provide consistent quality data that will enhance the understanding of local water resources. The improved data quality also will help the USEPA better document the condition of the region?s water. Ultimately, these workshops equipped tribes to use uniform sampling methods and to provide consistent quality data that are comparable across the region.

  9. High Surface Area Dendrite Nanoelectrodes for Electrochemistry

    NASA Astrophysics Data System (ADS)

    Nesbitt, Nathan; Glover, Jennifer; Goyal, Saurabh; Simidjiysky, Svetoslav; Naughton, Michael

    2014-03-01

    Solution-based electrodeposition of metal using a low ion concentration, surface passivation agents, and/or electrochemical crystal conditioning has allowed for the formation of high surface area metal electrodes, useful for Raman spectroscopy and electrochemical sensors. Additionally, high frequency electrical oscillations have been used to electrically connect co-planar electrodes, a process called directed electrochemical nanowire assembly (DENA). These approaches aim to control the crystal face that metal atoms in solution will nucleate onto, thus causing anisotropic growth of metal crystals. However, DENA has not been used to create high surface area electrodes, and no study has been conducted on the effect of micron-scale surface topography on the initial nucleation of metal crystals on the electrode surface. When DENA is used to create a high surface area electrode, such a texture has a strong impact on the subsequent topography of the three dimensional dendritic structures by limiting the areal density of crystals on the electrode surface. Such structures both demonstrate unique physics concerning the nucleation of metal dendrites, and offer a unique and highly facile fabrication method of high surface area electrodes, useful for chemical and biological sensing. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (DGE-1258923).

  10. Fabricated nanogap-rich plasmonic nanostructures through an optothermal surface bubble in a droplet.

    PubMed

    Karim, Farzia; Vasquez, Erick S; Zhao, Chenglong

    2018-01-15

    A rapid and cost-effective method for the fabrication of nanogap-rich structures is demonstrated in this Letter. The method utilizes the Marangoni convection around an optothermal surface bubble inside a liquid droplet with a nanoliter volume. The liquid droplet containing metallic nanoparticles reduces the sample consumption and confines the liquid flow. The optothermal surface bubble creates a strong convective flow that allows for the rapid deposition of the metallic nanoparticles to form nanogap-rich structures on any substrate under ambient conditions. This method will enable a broad range of applications such as biosensing, environmental analysis, and nonlinear optics.

  11. Surface preparation of substances for continuous convective assembly of fine particles

    DOEpatents

    Rossi, Robert

    2003-01-01

    A method for producing periodic nanometer-scale arrays of metal or semiconductor junctions on a clean semiconductor substrate surface is provided comprising the steps of: etching the substrate surface to make it hydrophilic, forming, under an inert atmosphere, a crystalline colloid layer on the substrate surface, depositing a metal or semiconductor material through the colloid layer onto the surface of the substrate, and removing the colloid from the substrate surface. The colloid layer is grown on the clean semiconductor surface by withdrawing the semiconductor substrate from a sol of colloid particles.

  12. [Research of the surface oxide film on anodizing Ni-Cr porcelain alloy].

    PubMed

    Zhu, Song; Sun, Hong-Chen; Zhang, Jing-Wei; Li, Zong-Hui

    2006-08-01

    To study the shape, thickness and oxide percentage of major metal element of oxide film on Ni-Cr porcelain alloy after anodizing pretreatment. 10 samples were made and divided into 2 groups at random. Then after surface pretreatment, the oxide films of two samples of each group were analyzed using electronic scanning microscope. The rest 3 samples were measured by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). Lightly selective solution appeared because the different component parts of the alloy have dissimilar electrode, whose dissolve velocity were quite unlike. The sample's metal surface expanded, so the mechanical interlocking of porcelain and metal increased bond strength. The thickness of oxide film was 1.72 times of the control samples. The oxide percentage of major metal elements such as Cr, Ni and Mo were higher, especially Cr. It initially involved the formation of a thin oxide bound to the alloy and second, the ability of the formed oxide to saturate the porcelain, completing the chemical bond of porcelain to metal. The method of anodizing Ni-Cr porcelain alloy can easily control the forming of oxide film which was thin and its surface pattern was uniform. It is repeated and a good method of surface pretreatment before firing cycle.

  13. Influence of head size on the development of metallic wear and on the characteristics of carbon layers in metal-on-metal hip joints

    PubMed Central

    Sprecher, Christoph M; Wimmer, Markus A; Milz, Stefan; Taeger, Georg

    2009-01-01

    Background and purpose Particles originating from the articulating surfaces of hip endoprostheses often induce an inflammatory response, which can be related to implant failure. We therefore analyzed the metal content in capsular tissue from 44 McKee-Farrar metal-on-metal hip prostheses (with 3 different head sizes) and we also analyzed the morphological structure of layers located on articulating surfaces. Methods Atomic absorption spectrometry (AAS) was used to analyze the metal content in capsular tissue. Visually detectable carbon layers located on the articulating surfaces were evaluated using scanning electron microscopy (SEM), energy-dispersive Xray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). Results Metallic debris was detected in all capsular tissue samples but no statistically significant differences in metal content were found in relation to implant head size. The morphological characteristics of the different layer zones allowed an exact analysis of contact and non-contact areas. Furthermore, surface layers appear to have a protective function because they can prevent sharp-edged particles from damaging the prostheses surface. Interpretation The implant head size does not appear to influence the amount of metallic debris. The layers obviously act like a lubricating agent because the protection function does not occur in regions without layers where the metal surface often shows numerous scratches. As layers are not generated immediately after the implantation of hip prostheses, these findings may at least partially explain the high amount of wear early after implantation. PMID:19421914

  14. Prevention and suppression of metal packing fires.

    PubMed

    Roberts, Mark; Rogers, William J; Sam Mannan, M; Ostrowski, Scott W

    2003-11-14

    Structured packing has been widely used because of large surface area that makes possible columns with high capacity and efficiency. The large surface area also contributes to fire hazards because of hydrocarbon deposits that can easily combust and promote combustion of the thin metal packing materials. Materials of high surface area that can fuel fires include reactive metals, such as titanium, and materials that are not considered combustible, such as stainless steel. Column design and material selection for packing construction is discussed together with employee training and practices for safe column maintenance and operations. Presented also are methods and agents for suppression of metal fires. Guidance for prevention and suppression of metal fires is related to incidents involving packing fires in columns.

  15. Computer-aided study of key factors determining high mechanical properties of nanostructured surface layers in metal-ceramic composites

    NASA Astrophysics Data System (ADS)

    Konovalenko, Igor S.; Shilko, Evgeny V.; Ovcharenko, Vladimir E.; Psakhie, Sergey G.

    2017-12-01

    The paper presents the movable cellular automaton method. It is based on numerical models of surface layers of the metal-ceramic composite NiCr-TiC modified under electron beam irradiation in inert gas plasmas. The models take into account different geometric, concentration and mechanical parameters of ceramic and metallic components. The authors study the contributions of key structural factors in mechanical properties of surface layers and determine the ranges of their variations by providing the optimum balance of strength, strain hardening and fracture toughness.

  16. Metal-organic framework materials with ultrahigh surface areas

    DOEpatents

    Farha, Omar K.; Hupp, Joseph T.; Wilmer, Christopher E.; Eryazici, Ibrahim; Snurr, Randall Q.; Gomez-Gualdron, Diego A.; Borah, Bhaskarjyoti

    2015-12-22

    A metal organic framework (MOF) material including a Brunauer-Emmett-Teller (BET) surface area greater than 7,010 m.sup.2/g. Also a metal organic framework (MOF) material including hexa-carboxylated linkers including alkyne bond. Also a metal organic framework (MOF) material including three types of cuboctahedron cages fused to provide continuous channels. Also a method of making a metal organic framework (MOF) material including saponifying hexaester precursors having alkyne bonds to form a plurality of hexa-carboxylated linkers including alkyne bonds and performing a solvothermal reaction with the plurality of hexa-carboxylated linkers and one or more metal containing compounds to form the MOF material.

  17. Improved Method Being Developed for Surface Enhancement of Metallic Materials

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.

    2001-01-01

    Surface enhancement methods induce a layer of beneficial residual compressive stress to improve the impact (FOD) resistance and fatigue life of metallic materials. A traditional method of surface enhancement often used is shot peening, in which small steel spheres are repeatedly impinged on metallic surfaces. Shot peening is inexpensive and widely used, but the plastic deformation of 20 to 40 percent imparted by the impacts can be harmful. This plastic deformation can damage the microstructure, severely limiting the ductility and durability of the material near the surface. It has also been shown to promote accelerated relaxation of the beneficial compressive residual stresses at elevated temperatures. Low-plasticity burnishing (LPB) is being developed as an improved method for the surface enhancement of metallic materials. LPB is being investigated as a rapid, inexpensive surface enhancement method under NASA Small Business Innovation Research contracts NAS3-98034 and NAS3-99116, with supporting characterization work at NASA. Previously, roller burnishing had been employed to refine surface finish. This concept was adopted and then optimized as a means of producing a layer of compressive stress of high magnitude and depth, with minimal plastic deformation (ref. 1). A simplified diagram of the developed process is given in the following figure. A single pass of a smooth, free-rolling spherical ball under a normal force deforms the surface of the material in tension, creating a compressive layer of residual stress. The ball is supported in a fluid with sufficient pressure to lift the ball off the surface of the retaining spherical socket. The ball is only in mechanical contact with the surface of the material being burnished and is free to roll on the surface. This apparatus is designed to be mounted in the conventional lathes and vertical mills currently used to machine parts. The process has been successfully applied to nickel-base superalloys by a team from the NASA Glenn Research Center, Lambda Research, and METCUT Research, as supported by the NASA Small Business Innovation Research Phase I and II programs, the Ultra Safe program, and the Ultra- Efficient Engine Technology (UEET) Program.

  18. Terahertz NDE for Metallic Surface Roughness Evaluation

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Anastasi, Robert F.

    2006-01-01

    Metallic surface roughness in a nominally smooth surface is a potential indication of material degradation or damage. When the surface is coated or covered with an opaque dielectric material, such as paint or insulation, then inspecting for surface changes becomes almost impossible. Terahertz NDE is a method capable of penetrating the coating and inspecting the metallic surface. The terahertz frequency regime is between 100 GHz and 10 THz and has a free space wavelength of 300 micrometers at 1 THz. Pulsed terahertz radiation, can be generated and detected using optical excitation of biased semiconductors with femtosecond laser pulses. The resulting time domain signal is 320 picoseconds in duration. In this application, samples are inspected with a commercial terahertz NDE system that scans the sample and generates a set of time-domain signals that are a function of the backscatter from the metallic surface. Post processing is then performed in the time and frequency domains to generate C-scan type images that show scattering effects due to surface non-uniformity.

  19. Noninvasive noble metal nanoparticle arrays for surface-enhanced Raman spectroscopy of proteins

    NASA Astrophysics Data System (ADS)

    Inya-Agha, Obianuju; Forster, Robert J.; Keyes, Tia E.

    2007-02-01

    Noble metal nanoparticles arrays are well established substrates for surface enhanced Raman spectroscopy (SERS). Their ability to enhance optical fields is based on the interaction of their surface valence electrons with incident electromagnetic radiation. In the array configuration, noble metal nanoparticles have been used to produce SER spectral enhancements of up to 10 8 orders of magnitude, making them useful for the trace analysis of physiologically relevant analytes such as proteins and peptides. Electrostatic interactions between proteins and metal surfaces result in the preferential adsorption of positively charged protein domains onto metal surfaces. This preferential interaction has the effect of disrupting the native conformation of the protein fold, with a concomitant loss of protein function. A major historic advantage of Raman microspectroscopy has been is its non-invasive nature; protein denaturation on the metal surfaces required for SER spectroscopy renders it a much more invasive technique. Further, part of the analytical power of Raman spectroscopy lies in its use as a secondary conformation probe. The protein structural loss which occurs on the metal surface results in secondary conformation readings which are not true to the actual native state of the analyte. This work presents a method for chemical fabrication of noble metal SERS arrays with surface immobilized layers which can protect protein native conformation without excessively mitigating the electromagnetic enhancements of spectra. Peptide analytes are used as model systems for proteins. Raman spectra of alpha lactalbumin on surfaces and when immobilized on these novel arrays are compared. We discuss the ability of the surface layer to protect protein structure whilst improving signal intensity.

  20. A Modified Electrostatic Adsorption Apparatus for Latent Fingerprint Development on Unfired Cartridge Cases.

    PubMed

    Xu, Jingyang; Zhang, Ziyuan; Zheng, Xiaochun; Bond, John W

    2017-05-01

    Visualization of latent fingerprints on metallic surfaces by the method of applying electrostatic charging and adsorption is considered as a promising chemical-free method, which has the merit of nondestruction, and is considered to be effective for some difficult situations such as aged fingerprint deposits or those exposed to environmental extremes. In fact, a portable electrostatic generator can be easily accessible in a local forensic technology laboratory, which is already widely used in the visualization of footwear impressions. In this study, a modified version of this electrostatic apparatus is proposed for latent fingerprint development and has shown great potential in visualizing fingerprints on metallic surfaces such as cartridge cases. Results indicate that this experimental arrangement can successfully develop aged latent fingerprints on metal surfaces, and we demonstrate its effectiveness compared with existing conventional fingerprint recovery methods. © 2016 American Academy of Forensic Sciences.

  1. Spinel-structured metal oxide on a substrate and method of making same by molecular beam epitaxy

    DOEpatents

    Chambers, Scott A.

    2006-02-21

    A method of making a spinel-structured metal oxide on a substrate by molecular beam epitaxy, comprising the step of supplying activated oxygen, a first metal atom flux, and at least one other metal atom flux to the surface of the substrate, wherein the metal atom fluxes are individually controlled at the substrate so as to grow the spinel-structured metal oxide on the substrate and the metal oxide is substantially in a thermodynamically stable state during the growth of the metal oxide. A particular embodiment of the present invention encompasses a method of making a spinel-structured binary ferrite, including Co ferrite, without the need of a post-growth anneal to obtain the desired equilibrium state.

  2. Competitive adsorption of heavy metals in soil underlying an infiltration facility installed in an urban area.

    PubMed

    Hossain, M A; Furumai, H; Nakajima, F

    2009-01-01

    Accumulation of heavy metals at elevated concentration and potential of considerable amount of the accumulated heavy metals to reach the soil system was observed from earlier studies in soakaways sediments within an infiltration facility in Tokyo, Japan. In order to understand the competitive adsorption behaviour of heavy metals Zn, Ni and Cu in soil, competitive batch adsorption experiments were carried out using single metal and binary metal combinations on soil samples representative of underlying soil and surface soil at the site. Speciation analysis of the adsorbed metals was carried out through BCR sequential extraction method. Among the metals, Cu was not affected by competition while Zn and Ni were affected by competition of coexisting metals. The parameters of fitted 'Freundlich' and 'Langmuir' isotherms indicated more intense competition in underlying soil compared to surface soil for adsorption of Zn and Ni. The speciation of adsorbed metals revealed less selectivity of Zn and Ni to soil organic matter, while dominance of organic bound fraction was observed for Cu, especially in organic rich surface soil. Compared to underlying soil, the surface soil is expected to provide greater adsorption to heavy metals as well as provide greater stability to adsorbed metals, especially for Cu.

  3. Method of preparing size-selected metal clusters

    DOEpatents

    Elam, Jeffrey W.; Pellin, Michael J.; Stair, Peter C.

    2010-05-11

    The invention provides a method for depositing catalytic clusters on a surface, the method comprising confining the surface to a controlled atmosphere; contacting the surface with catalyst containing vapor for a first period of time; removing the vapor from the controlled atmosphere; and contacting the surface with a reducing agent for a second period of time so as to produce catalyst-containing nucleation sites.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Addleman, Raymond S; Atkinson, David A; Bays, John T

    An enhanced swipe sampler and method of making are described. The swipe sampler is made of a fabric containing selected glass, metal oxide, and/or oxide-coated glass or metal fibers. Fibers are modified with silane ligands that are directly attached to the surface of the fibers to functionalize the sampling surface of the fabric. The swipe sampler collects various target analytes including explosives and other threat agents on the surface of the sampler.

  5. Nanostructured Metal Oxides for Stoichiometric Degradation of Chemical Warfare Agents.

    PubMed

    Štengl, Václav; Henych, Jiří; Janoš, Pavel; Skoumal, Miroslav

    2016-01-01

    Metal oxides have very important applications in many areas of chemistry, physics and materials science; their properties are dependent on the method of preparation, the morphology and texture. Nanostructured metal oxides can exhibit unique characteristics unlike those of the bulk form depending on their morphology, with a high density of edges, corners and defect surfaces. In recent years, methods have been developed for the preparation of metal oxide powders with tunable control of the primary particle size as well as of a secondary particle size: the size of agglomerates of crystallites. One of the many ways to take advantage of unique properties of nanostructured oxide materials is stoichiometric degradation of chemical warfare agents (CWAs) and volatile organic compounds (VOC) pollutants on their surfaces.

  6. Electrochemical synthesis of elongated noble metal nanoparticles, such as nanowires and nanorods, on high-surface area carbon supports

    DOEpatents

    Adzic, Radoslav; Blyznakov, Stoyan; Vukmirovic, Miomir

    2015-08-04

    Elongated noble-metal nanoparticles and methods for their manufacture are disclosed. The method involves the formation of a plurality of elongated noble-metal nanoparticles by electrochemical deposition of the noble metal on a high surface area carbon support, such as carbon nanoparticles. Prior to electrochemical deposition, the carbon support may be functionalized by oxidation, thus making the manufacturing process simple and cost-effective. The generated elongated nanoparticles are covalently bound to the carbon support and can be used directly in electrocatalysis. The process provides elongated noble-metal nanoparticles with high catalytic activities and improved durability in combination with high catalyst utilization since the nanoparticles are deposited and covalently bound to the carbon support in their final position and will not change in forming an electrode assembly.

  7. Freeform Deposition Method for Coolant Channel Closeout

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R. (Inventor); Reynolds, David Christopher (Inventor); Walker, Bryant H. (Inventor)

    2017-01-01

    A method is provided for fabricating a coolant channel closeout jacket on a structure having coolant channels formed in an outer surface thereof. A line of tangency relative to the outer surface is defined for each point on the outer surface. Linear rows of a metal feedstock are directed towards and deposited on the outer surface of the structure as a beam of weld energy is directed to the metal feedstock so-deposited. A first angle between the metal feedstock so-directed and the line of tangency is maintained in a range of 20-90.degree.. The beam is directed towards a portion of the linear rows such that less than 30% of the cross-sectional area of the beam impinges on a currently-deposited one of the linear rows. A second angle between the beam and the line of tangency is maintained in a range of 5-65 degrees.

  8. Surface display of synthetic phytochelatins on Saccharomyces cerevisiae for enhanced ethanol production in heavy metal-contaminated substrates.

    PubMed

    Yang, Chi-En; Chu, I-Ming; Wei, Yu-Hong; Tsai, Shen-Long

    2017-12-01

    The aim of this work was to study the feasibility of surface displaying synthetic phytochelatin (EC) on Saccharomyces cerevisiae to overcome the inhibitory effect of heavy metals on ethanol production. Via the fusion of a gene encoding EC to an α-agglutinin gene, the engineered S. cerevisiae was able to successfully display EC on its surface. This surface engineered yeast strain exhibited an efficient cadmium adsorption capability and a remarkably enhanced cadmium tolerance. Moreover, its ethanol production efficiency was significantly improved as compared to a control strain in the presence of cadmium. Similar results could also be observed in the presence of other metals, such as nickel, lead and copper. Overall, this method allows simultaneous biorefinery and heavy metal removal when using heavy metal-contaminated biomass as raw materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effects of surface-finishing protocols on the roughness, color change, and translucency of different ceramic systems.

    PubMed

    Akar, Gülcan Coşkun; Pekkan, Gürel; Çal, Ebru; Eskitaşçıoğlu, Gürcan; Özcan, Mutlu

    2014-08-01

    Surface-finishing protocols have a mechanical impact on ceramic surfaces that could eventually affect surface topography and light scattering. An optimum protocol is needed to avoid damaging the optical properties of ceramics. The purpose of this study was to determine the effects of different surface-finishing protocols on the surface roughness, color change, and translucency of ceramic and metal ceramic restorations. Standardized disk-shaped specimens (1.5 × 10 mm, n=128) were fabricated from 3 different ceramic core materials (aluminum oxide [Al2O3]-AL, zirconium oxide [ZrO2]-ZR, lithium disilicate [Li2Si2O5]-LIT), veneered (V) with dentin ceramics (n=32 per group), and placed in the following groups: ALV, ZRV, and LITV. The metal ceramic group acted as the control (n=32). Four different surface-finishing methods were tested. Airborne-particle abrasion with 50 μm Al2O3, polishing with adjustment kit, polishing with adjustment kit plus diamond polishing paste, and autoglazing (n=8 subgroup) were applied on the veneering ceramics. The specimens were analyzed with a profilometer for surface roughness, and color change and translucency were measured with a clinical spectrophotometer. Statistical analyses were performed with 1-way ANOVA and the Tukey honest significant difference tests (α=.05). Specimens treated with the airborne particle abrasion method showed significantly higher mean profilometer for surface roughness values in all groups (P<.05). The polishing with adjustment kit and autoglazing methods revealed statistically similar surface roughness values in all groups (P>.05). With the diamond polishing paste method, lower surface roughness values were achieved in the ZRV and metal ceramic groups acted as the control groups. Different surface-finishing methods affected the color change of the ceramic systems, except for ZRV. Surface-finishing protocols significantly affected the translucency values of the ALV, LITV, and metal ceramic groups (P<.05). No single surface-finishing protocol can be recommended to obtain the smoothest surface and the least color change without affecting translucency for the ceramics tested. The airborne-particle abrasion protocol created rougher surfaces and decreased translucency, and color change in zirconia was not affected by the finishing protocols. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. Drag reduction using metallic engineered surfaces with highly ordered hierarchical topographies: nanostructures on micro-riblets

    NASA Astrophysics Data System (ADS)

    Kim, Taekyung; Shin, Ryung; Jung, Myungki; Lee, Jinhyung; Park, Changsu; Kang, Shinill

    2016-03-01

    Durable drag-reduction surfaces have recently received much attention, due to energy-saving and power-consumption issues associated with harsh environment applications, such as those experienced by piping infrastructure, ships, aviation, underwater vehicles, and high-speed ground vehicles. In this study, a durable, metallic surface with highly ordered hierarchical structures was used to enhance drag-reduction properties, by combining two passive drag-reduction strategies: an air-layer effect induced by nanostructures and secondary vortex generation by micro-riblet structures. The nanostructures and micro-riblet structures were designed to increase slip length. The top-down fabrication method used to form the metallic hierarchical structures combined laser interference lithography, photolithography, thermal reflow, nanoimprinting, and pulse-reverse-current electrochemical deposition. The surfaces were formed from nickel, which has high hardness and corrosion resistance, making it suitable for use in harsh environments. The drag-reduction properties of various metal surfaces were investigated based on the surface structure: a bare surface, a nanostructured surface, a micro-riblet surface, and a hierarchically structured surface of nanostructures on micro-riblets.

  11. Experimental Study of Reciprocating Friction between Rape Stalk and Bionic Nonsmooth Surface Units

    PubMed Central

    Ma, Zheng; Li, Yaoming; Xu, Lizhang

    2015-01-01

    Background. China is the largest producer of rape oilseed in the world; however, the mechanization level of rape harvest is relatively low, because rape materials easily adhere to the cleaning screens of combine harvesters, resulting in significant cleaning losses. Previous studies have shown that bionic nonsmooth surface cleaning screens restrain the adhesion of rape materials, but the underlying mechanisms remain unclear. Objective. The reciprocating friction between rape stalk and bionic nonsmooth metal surface was examined. Methods. The short-time Fourier transform method was used to discriminate the stable phase of friction signals and the stick-lag distance was defined to analyze the stable reciprocating friction in a phase diagram. Results. The reciprocating friction between rape stalk and metal surface is a typical stick-slip friction, and the bionic nonsmooth metal surfaces with concave or convex units reduced friction force with increasing reciprocating frequency. The results also showed that the stick-lag distance of convex surface increased with reciprocating frequency, which indicated that convex surface reduces friction force more efficiently. Conclusions. We suggest that bionic nonsmooth surface cleaning screens, especially with convex units, restrain the adhesion of rape materials more efficiently compared to the smooth surface cleaning screens. PMID:27034611

  12. METHOD OF JOINING CARBIDES TO BASE METALS

    DOEpatents

    Krikorian, N.H.; Farr, J.D.; Witteman, W.G.

    1962-02-13

    A method is described for joining a refractory metal carbide such as UC or ZrC to a refractory metal base such as Ta or Nb. The method comprises carburizing the surface of the metal base and then sintering the base and carbide at temperatures of about 2000 deg C in a non-oxidizing atmosphere, the base and carbide being held in contact during the sintering step. To reduce the sintering temperature and time, a sintering aid such as iron, nickel, or cobait is added to the carbide, not to exceed 5 wt%. (AEC)

  13. Functional Coatings or Films for Hard-Tissue Applications

    PubMed Central

    Wang, Guocheng; Zreiqat, Hala

    2010-01-01

    Metallic biomaterials like stainless steel, Co-based alloy, Ti and its alloys are widely used as artificial hip joints, bone plates and dental implants due to their excellent mechanical properties and endurance. However, there are some surface-originated problems associated with the metallic implants: corrosion and wear in biological environments resulting in ions release and formation of wear debris; poor implant fixation resulting from lack of osteoconductivity and osteoinductivity; implant-associated infections due to the bacterial adhesion and colonization at the implantation site. For overcoming these surface-originated problems, a variety of surface modification techniques have been used on metallic implants, including chemical treatments, physical methods and biological methods. This review surveys coatings that serve to provide properties of anti-corrosion and anti-wear, biocompatibility and bioactivity, and antibacterial activity. PMID:28883319

  14. Fermi surfaces, spin-mixing parameter, and colossal anisotropy of spin relaxation in transition metals from ab initio theory

    NASA Astrophysics Data System (ADS)

    Zimmermann, Bernd; Mavropoulos, Phivos; Long, Nguyen H.; Gerhorst, Christian-Roman; Blügel, Stefan; Mokrousov, Yuriy

    2016-04-01

    The Fermi surfaces and Elliott-Yafet spin-mixing parameter (EYP) of several elemental metals are studied by ab initio calculations. We focus first on the anisotropy of the EYP as a function of the direction of the spin-quantization axis [B. Zimmermann et al., Phys. Rev. Lett. 109, 236603 (2012), 10.1103/PhysRevLett.109.236603]. We analyze in detail the origin of the gigantic anisotropy in 5 d hcp metals as compared to 5 d cubic metals by band structure calculations and discuss the stability of our results against an applied magnetic field. We further present calculations of light (4 d and 3 d ) hcp crystals, where we find a huge increase of the EYP anisotropy, reaching colossal values as large as 6000 % in hcp Ti. We attribute these findings to the reduced strength of spin-orbit coupling, which promotes the anisotropic spin-flip hot loops at the Fermi surface. In order to conduct these investigations, we developed an adapted tetrahedron-based method for the precise calculation of Fermi surfaces of complicated shape and accurate Fermi-surface integrals within the full-potential relativistic Korringa-Kohn-Rostoker Green function method.

  15. Evaluation of metal bond strength to dentin and enamel using different adhesives and surface treatments.

    PubMed

    Dundar, Mine; Gungor, Mehmet Ali; Cal, Ebru; Darcan, Alev; Erdem, Adalet

    2007-01-01

    Because adherence of base metal alloys is important for the long-term clinical success of adhesive fixed partial dentures, it has been necessary to improve adhesion to metal substrate by using different surface treatments. This study used different surface conditioning methods and two different luting resins to evaluate the shear bond strength of base metal alloys to dentin and enamel. Sixty noncarious freshly extracted human teeth were mounted in a plastic holder filled with autopolymerized acrylic resin. After the roots were removed and 30 flat enamel and 30 flat dentin surfaces were exposed, the specimens were divided randomly into two main luting cement groups. Sixty nickel chromium (NiCr) metal specimens were fabricated and subjected to three different surface conditioning procedures: sandblasting with 50 microm aluminum oxide, tribochemical silica coating, and a combination of the two. Scanning electron mircoscopy (SEM) evaluations revealed mainly cohesive failures. Self-cure adhesive resulted in higher bond strengths to dental substrates. Higher bond strengths were achieved through a combination of sandblasting and tribochemical silica coating; however, further clinical research is required. A surface treatment that combines sandblasting with tribochemical silica coating can achieve a more effective bond for adhesive restorations with metal substrates.

  16. Ultrafine and Smooth Full Metal Nanostructures for Plasmonics

    NASA Astrophysics Data System (ADS)

    Zhu, Xinli; Zhang, Jaseng; Xu, Jun; Liao, Zhimin; Wu, Xiaosong; Yu, Dapeng

    2013-03-01

    Surface plasmon polaritons (SPPs), which are coupled excitations of electrons bound to a metal-dielectric interface, show great potential for application in future nanoscale photonic systems due to the strong field confinement at the nanoscale, intensive local field enhancement, and interplay between strongly localized and propagating SPPs. The fabrication of sufficiently smooth metal surface with nanoscale feature size is crucial for SPPs to have practical applications. A template stripping (ST) method combined with PMMA as a template was successfully developed to create extraordinarily smooth metal nanostructures with a desirable feature size and morphology for plasmonics and metamaterials. The advantages of this method, including the high resolution, precipitous top-to bottom profile with a high aspect ratio, and three-dimensional characteristics, make it very suitable for the fabrication of plasmonic structures. By using this ST method, boxing ring-shaped nanocavities have been fabricated and the confined modes of surface plasmon polaritons in these nanocavities have been investigated and imaged by using cathodoluminescence spectroscopy. The mode of the out-of-plane field components of surface plasmon polaritons dominates the experimental mode patterns, indicating that the electron beam locally excites the out-of-plane field component of surface plasmon polaritons, and quality factors can be directly acquired. Numerous applications, such as plasmonic filter, nanolaser, and efficient light-emitting devices, can be expected to arise from these developments.

  17. METHOD OF ELECTROPLATING ON URANIUM

    DOEpatents

    Rebol, E.W.; Wehrmann, R.F.

    1959-04-28

    This patent relates to a preparation of metallic uranium surfaces for receiving coatings, particularly in order to secure adherent electroplated coatings upon uranium metal. In accordance with the invention the uranium surface is pretreated by degreasing in trichloroethylene, followed by immersion in 25 to 50% nitric acid for several minutes, and then rinsed with running water, prior to pickling in trichloroacetic acid. The last treatment is best accomplished by making the uranium the anode in an aqueous solution of 50 per cent by weight trichloroacetic acid until work-distorted crystals or oxide present on the metal surface have been removed and the basic crystalline structure of the base metal has been exposed. Following these initial steps the metallic uranium is rinsed in dilute nitric acid and then electroplated with nickel. Adnerent firmly-bonded coatings of nickel are obtained.

  18. Method for fabricating a substrate having spaced apart microcapillaries thereon

    DOEpatents

    Jarvis, Eric E.

    1995-01-01

    Methods for manufacturing a self-supporting substrate having a plurality of spaced-apart needles (spikes or microcapillaries) projecting upwardly from a major surface of the substrate. In a preferred method, metal is deposited onto a porous membrane such that the metal extends into the pores, after which the membrane is dissolved.

  19. Structure having spatially separated photo-excitable electron-hole pairs and method of manufacturing same

    DOEpatents

    Liang, Yong [Richland, WA; Daschbach, John L [Richland, WA; Su, Yali [Richland, WA; Chambers, Scott A [Kennewick, WA

    2006-08-22

    A method for producing quantum dots. The method includes cleaning an oxide substrate and separately cleaning a metal source. The substrate is then heated and exposed to the source in an oxygen environment. This causes metal oxide quantum dots to form on the surface of the substrate.

  20. Structure having spatially separated photo-excitable electron-hole pairs and method of manufacturing same

    DOEpatents

    Liang, Yong [Richland, WA; Daschbach, John L [Richland, WA; Su, Yali [Richland, WA; Chambers, Scott A [Kennewick, WA

    2003-03-18

    A method for producing quantum dots. The method includes cleaning an oxide substrate and separately cleaning a metal source. The substrate is then heated and exposed to the source in an oxygen environment. This causes metal oxide quantum dots to form on the surface of the substrate.

  1. Method for joining metal by solid-state bonding

    DOEpatents

    Burkhart, L. Elkin; Fultz, Chester R.; Maulden, Kerry A.

    1979-01-01

    The present development is directed to a method for joining metal at relatively low temperatures by solid-state bonding. Planar surfaces of the metal workpieces are placed in a parallel abutting relationship with one another. A load is applied to at least one of the workpieces for forcing the workpieces together while one of the workpieces is relatively slowly oscillated in a rotary motion over a distance of about 1.degree.. After a preselected number of oscillations, the rotary motion is terminated and the bond between the abutting surfaces is effected. An additional load may be applied to facilitate the bond after terminating the rotary motion.

  2. Silicon-nitride and metal composite

    DOEpatents

    Landingham, R.L.; Huffsmith, S.A.

    A composite and a method for bonding the composite are described. The composite includes a ceramic portion of silicon nitride, a refractory metal portion and a layer of MoSi/sub 2/ indirectly bonding the composite together. The method includes contacting the layer of MoSi/sub 2/ with a surface of the silicon nitride and with a surface of the metal; heating the layer to a temperature below 1400/sup 0/C; and, simultaneously, compressing the layer such that the contacting is with a pressure of at least 30 MPa. This composite overcomes useful life problems in the fabrication of parts for a helical expander for use in power generation.

  3. Silicon-nitride and metal composite

    DOEpatents

    Landingham, Richard L.; Huffsmith, Sarah A.

    1981-01-01

    A composite and a method for bonding the composite. The composite includes a ceramic portion of silicon nitride, a refractory metal portion and a layer of MoSi.sub.2 indirectly bonding the composite together. The method includes contacting the layer of MoSi.sub.2 with a surface of the silicon nitride and with a surface of the metal; heating the layer to a temperature below 1400.degree. C.; and, simultaneously with the heating, compressing the layer such that the contacting is with a pressure of at least 30 MPa. This composite overcomes useful life problems in the fabrication of parts for a helical expander for use in power generation.

  4. Emerging surface characterization techniques for carbon steel corrosion: a critical brief review.

    PubMed

    Dwivedi, D; Lepkova, K; Becker, T

    2017-03-01

    Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed.

  5. Emerging surface characterization techniques for carbon steel corrosion: a critical brief review

    NASA Astrophysics Data System (ADS)

    Dwivedi, D.; Lepkova, K.; Becker, T.

    2017-03-01

    Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed.

  6. Emerging surface characterization techniques for carbon steel corrosion: a critical brief review

    PubMed Central

    Dwivedi, D.; Becker, T.

    2017-01-01

    Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed. PMID:28413351

  7. Plasmon-enhanced photocatalytic activity of Na0.9Mg0.45Ti3.55O8 loaded with noble metals directly observed with scanning Kelvin probe microscopy.

    PubMed

    Wang, Jing-Zhou; Guo, Ze-Qing; Zhou, Jian-Ping; Lei, Yu-Xi

    2018-07-27

    The noble metals Au, Ag and Pt were loaded onto Na 0.9 Mg 0.45 Ti 3.55 O 8 (NMTO) using a chemical bath deposition method devised in our recent work for the first time. The composite photocatalysts exhibit more effective photodegradation of methylene blue, due to the Schottky barrier built between NMTO and noble metal. Hot electrons generated during localized surface plasmon processes in metal nanoparticles transfer to the semiconductor, manifesting as a depression of surface potential directly detectable by scanning Kelvin probe microscopy. The key factor responsible for the improved ability of semiconductor-based photocatalysts is charge separation. The most effective weight concentrations of Au, Ag and Pt loaded onto NMTO were found to be 5.00%, 12.6% and 5.55% respectively. NMTO loaded with noble metals shows good photostability and recyclability for the degradation of methylene blue. A possible mechanism for the photodegradation of methylene blue over NMTO loaded with noble metals is proposed. This work highlights the potential application of NMTO-based photocatalysts, and provides an effective method to detect localized surface plasmons.

  8. Method for fabricating prescribed flaws in the interior of metals

    DOEpatents

    Hsu, David K.; Thompson, Donald O.

    1989-03-07

    The method for fabricating a metal body having a flaw of predetermined size and shape located therein comprises placing half of the metal powder required to make the metal body in the die of a press and pressing it to create a flat upper surface thereon. A piece of copper foil is cut to the size and shape of the desired interior crack and placed on the upper surface of the powder and centered in position. The remaining powder is then placed in the die to cover the copper foil. The powder is first cold pressed and removed from the press. The powder metal piece is then sintered in a furnace at a temperature above the melting point of the copper and below the melting point of the metal. It is then removed from the furnace, cooled to room temperature, and placed back in the die and pressed further. This procedure results in an interior flaw or crack. Modified forms of the method involve using a press-sinter-press-sinter cycle with the first sinter being below the melting point of the copper and the second sinter being above the melting point of the copper and below the melting point of the metal.

  9. Plasmon absorption modulator systems and methods

    DOEpatents

    Kekatpure, Rohan Deodatta; Davids, Paul

    2014-07-15

    Plasmon absorption modulator systems and methods are disclosed. A plasmon absorption modulator system includes a semiconductor substrate, a plurality of quantum well layers stacked on a top surface of the semiconductor substrate, and a metal layer formed on a top surface of the stack of quantum well layers. A method for modulating plasmonic current includes enabling propagation of the plasmonic current along a metal layer, and applying a voltage across the stack of quantum well layers to cause absorption of a portion of energy of the plasmonic current by the stack of quantum well layers. A metamaterial switching system includes a semiconductor substrate, a plurality of quantum well layers stacked on a top surface of the semiconductor substrate, and at least one metamaterial structure formed on a top surface of the stack of quantum well layers.

  10. Method of forming shrink-fit compression seal

    NASA Technical Reports Server (NTRS)

    Podgorski, T. J. (Inventor)

    1977-01-01

    A method for making a glass-to-metal seal is described. A domed metal enclosure having a machined seal ring is fitted to a glass post machined to a slight taper and to a desired surface finish. The metal part is then heated by induction in a vacuum. As the metal part heats and expands relative to the glass post, the metal seal ring, possessing a higher coefficient of expansion than the glass post, slides down the tapered post. Upon cooling, the seal ring crushes against the glass post forming the seal. The method results in a glass-to-metal seal possessing extremely good leak resistance, while the parts are kept clean and free of the contaminants.

  11. METHOD FOR TREATING GRAPHITE PRODUCT

    DOEpatents

    Gurinsky, D.H.

    1961-08-01

    A method is described for treating a carbon body with a carbonyl consisting of nickel, iron, and mixtures thereof. The carbonyl is decomposed in a non-oxidizing atmosphere into a mixture of the metal and carbon monoxide on the surface of a carbon body heated to above the decomposition point of the carbonyl. The temperature is increased of the carbon body to an elevated temperature above the point at which a liquid eutectic mixture of the metal and carbon of the carbon body is formed at the surface and below that at which substantial carburization occurs. The elevated temperature is maintained whereby the liquid mixture flows over the surface of the carbon body. The carbon body is cooled below the decomposition temperature of the carbonyl of the metal and to a temperature suitable for forming the carbonyl of the metal. The carbon body is then contacted with carbon monoxide at the carbonyl-forming temperature, whereby carbonyl of the metal is formed in and on the carbon body. The carbonyl is removed from the carbon body by gasifying the carbonyl. (AEC)

  12. Elemental and compound semiconductor surface chemistry: Intelligent interfacial design facilitated through novel functionalization and deposition strategies

    NASA Astrophysics Data System (ADS)

    Porter, Lon Alan, Jr.

    The fundamental understanding of silicon surface chemistry is an essential tool for silicon's continued dominance of the semiconductor industry in the years to come. By tapping into the vast library of organic functionalities, the synthesis of organic monolayers may be utilized to prepare interfaces, tailored to a myriad of applications ranging from silicon VLSI device optimization and MEMS to physiological implants and chemical sensors. Efforts in our lab to form stable organic monolayers on porous silicon through direct silicon-carbon linkages have resulted in several efficient functionalization methods. In the first chapter of this thesis a comprehensive review of these methods, and many others is presented. The following chapter and the appendix serve to demonstrate both potential applications and studies aimed at developing a fundamental understanding of the chemistry behind the organic functionalization of silicon surfaces. The remainder of this thesis attempts to demonstrate new methods of metal deposition onto both elemental and compound semiconductor surfaces. Currently, there is considerable interest in producing patterned metallic structures with reduced dimensions for use in technologies such as ULSI device fabrication, MEMS, and arrayed nanosensors, without sacrificing throughput or cost effectiveness. Research in our laboratory has focused on the preparation of precious metal thin films on semiconductor substrates via electroless deposition. Continuous metallic films form spontaneously under ambient conditions, in the absence of a fluoride source or an externally applied current. In order to apply this metallization method toward the development of useful technologies, patterning utilizing photolithography, microcontact printing, and scanning probe nanolithography has been demonstrated.

  13. Internal zone growth method for producing metal oxide metal eutectic composites

    DOEpatents

    Clark, Grady W.; Holder, John D.; Pasto, Arvid E.

    1980-01-01

    An improved method for preparing a cermet comprises preparing a compact having about 85 to 95 percent theoretical density from a mixture of metal and metal oxide powders from a system containing a eutectic composition, and inductively heating the compact in a radiofrequency field to cause the formation of an internal molten zone. The metal oxide particles in the powder mixture are effectively sized relative to the metal particles to permit direct inductive heating of the compact by radiofrequency from room temperature. Surface melting is prevented by external cooling or by effectively sizing the particles in the powder mixture.

  14. Investigation of Dynamic Oxygen Adsorption in Molten Solder Jetting Technology

    NASA Technical Reports Server (NTRS)

    Megaridis, Constantine M.; Bellizia, Giulio; McNallan, Michael; Wallace, David B.

    2003-01-01

    Surface tension forces play a critical role in fluid dynamic phenomena that are important in materials processing. The surface tension of liquid metals has been shown to be very susceptible to small amounts of adsorbed oxygen. Consequently, the kinetics of oxygen adsorption can influence the capillary breakup of liquid-metal jets targeted for use in electronics assembly applications, where low-melting-point metals (such as tin-containing solders) are utilized as an attachment material for mounting of electronic components to substrates. By interpreting values of surface tension measured at various surface ages, adsorption and diffusion rates of oxygen on the surface of the melt can be estimated. This research program investigates the adsorption kinetics of oxygen on the surface of an atomizing molten-metal jet. A novel oscillating capillary jet method has been developed for the measurement of dynamic surface tension of liquids, and in particular, metal melts which are susceptible to rapid surface degradation caused by oxygen adsorption. The experimental technique captures the evolution of jet swells and necks continuously along the jet propagation axis and is used in conjunction with an existing linear, axisymmetric, constant-property model to determine the variation of the instability growth rate, and, in turn, surface tension of the liquid as a function of surface age measured from the exit orifice. The conditions investigated so far focus on a time window of 2-4ms from the jet orifice. The surface properties of the eutectic 63%Sn-37%Pb solder alloy have been investigated in terms of their variation due to O2 adsorption from a N2 atmosphere containing controlled amounts of oxygen (from 8 ppm to 1000 ppm). The method performed well for situations where the oxygen adsorption was low in that time window. The value of surface tension for the 63Sn-37Pb solder in pure nitrogen was found to be 0.49 N/m, in good agreement with previously published work. A characteristic time of O(1ms) or less was determined for the molten-metal surface to be saturated by oxygen at 1000 ppm concentration in N2.

  15. Creating metamaterial building blocks with directed photochemical metallization of silver onto DNA origami templates.

    PubMed

    Hossen, Md Mir; Bendickson, Lee; Palo, Pierre E; Yao, Zhiqi; Nilsen-Hamilton, Marit; Hillier, Andrew C

    2018-08-31

    DNA origami can be used to create a variety of complex and geometrically unique nanostructures that can be further modified to produce building blocks for applications such as in optical metamaterials. We describe a method for creating metal-coated nanostructures using DNA origami templates and a photochemical metallization technique. Triangular DNA origami forms were fabricated and coated with a thin metal layer by photochemical silver reduction while in solution or supported on a surface. The DNA origami template serves as a localized photosensitizer to facilitate reduction of silver ions directly from solution onto the DNA surface. The metallizing process is shown to result in a conformal metal coating, which grows in height to a self-limiting value with increasing photoreduction steps. Although this coating process results in a slight decrease in the triangle dimensions, the overall template shape is retained. Notably, this coating method exhibits characteristics of self-limiting and defect-filling growth, which results in a metal nanostructure that maps the shape of the original DNA template with a continuous and uniform metal layer and stops growing once all available DNA sites are exhausted.

  16. Strip casting apparatus and method

    DOEpatents

    Williams, R.S.; Baker, D.F.

    1988-09-20

    Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip. 6 figs.

  17. Strip casting apparatus and method

    DOEpatents

    Williams, Robert S.; Baker, Donald F.

    1988-01-01

    Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip.

  18. Graphite pellicles, methods of formation and properties

    NASA Astrophysics Data System (ADS)

    Topala, P.; Marin, L.; Besliu, V.; Stoicev, P.; Ojegov, A.; Cosovschii, P.

    2015-11-01

    The paper presents the results of experimental investigations aimed at the establishing the composition and the functional properties of the graphite pellicles formed on the metal surfaces by the action of plasma in the air media at normal pressure applying electrical discharges in impulse (EDI). It shows that they have the same behavior characteristics as fullerene, avoiding the stick effect between metal surfaces and between metal and liquid glass at temperatures of the order of 400-1200 °C.

  19. Pre-loading of components during laser peenforming

    DOEpatents

    Hackel, Lloyd A [Livermore, CA; Halpin, John M [Tracy, CA; Harris, Fritz B [Rocklin, CA

    2003-12-30

    A method and apparatus are provided for forming shapes and contours in metal sections by prestressing a workpiece and generating laser induced compressive stress on the surface of the metal workpiece. The step of prestressing the workpiece is carried out with a jig. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts.

  20. A quantitative experimental phantom study on MRI image uniformity.

    PubMed

    Felemban, Doaa; Verdonschot, Rinus G; Iwamoto, Yuri; Uchiyama, Yuka; Kakimoto, Naoya; Kreiborg, Sven; Murakami, Shumei

    2018-05-23

    Our goal was to assess MR image uniformity by investigating aspects influencing said uniformity via a method laid out by the National Electrical Manufacturers Association (NEMA). Six metallic materials embedded in a glass phantom were scanned (i.e. Au, Ag, Al, Au-Ag-Pd alloy, Ti and Co-Cr alloy) as well as a reference image. Sequences included spin echo (SE) and gradient echo (GRE) scanned in three planes (i.e. axial, coronal, and sagittal). Moreover, three surface coil types (i.e. head and neck, Brain, and temporomandibular joint coils) and two image correction methods (i.e. surface coil intensity correction or SCIC, phased array uniformity enhancement or PURE) were employed to evaluate their effectiveness on image uniformity. Image uniformity was assessed using the National Electrical Manufacturers Association peak-deviation non-uniformity method. Results showed that temporomandibular joint coils elicited the least uniform image and brain coils outperformed head and neck coils when metallic materials were present. Additionally, when metallic materials were present, spin echo outperformed gradient echo especially for Co-Cr (particularly in the axial plane). Furthermore, both SCIC and PURE improved image uniformity compared to uncorrected images, and SCIC slightly surpassed PURE when metallic metals were present. Lastly, Co-Cr elicited the least uniform image while other metallic materials generally showed similar patterns (i.e. no significant deviation from images without metallic metals). Overall, a quantitative understanding of the factors influencing MR image uniformity (e.g. coil type, imaging method, metal susceptibility, and post-hoc correction method) is advantageous to optimize image quality, assists clinical interpretation, and may result in improved medical and dental care.

  1. Method for the preparation of metal colloids in inverse micelles and product preferred by the method

    DOEpatents

    Wilcoxon, Jess P.

    1992-01-01

    A method is provided for preparing catalytic elemental metal colloidal particles (e.g. gold, palladium, silver, rhodium, iridium, nickel, iron, platinum, molybdenum) or colloidal alloy particles (silver/iridium or platinum/gold). A homogeneous inverse micelle solution of a metal salt is first formed in a metal-salt solvent comprised of a surfactant (e.g. a nonionic or cationic surfactant) and an organic solvent. The size and number of inverse micelles is controlled by the proportions of the surfactant and the solvent. Then, the metal salt is reduced (by chemical reduction or by a pulsed or continuous wave UV laser) to colloidal particles of elemental metal. After their formation, the colloidal metal particles can be stabilized by reaction with materials that permanently add surface stabilizing groups to the surface of the colloidal metal particles. The sizes of the colloidal elemental metal particles and their size distribution is determined by the size and number of the inverse micelles. A second salt can be added with further reduction to form the colloidal alloy particles. After the colloidal elemental metal particles are formed, the homogeneous solution distributes to two phases, one phase rich in colloidal elemental metal particles and the other phase rich in surfactant. The colloidal elemental metal particles from one phase can be dried to form a powder useful as a catalyst. Surfactant can be recovered and recycled from the phase rich in surfactant.

  2. Method for fabricating solar cells having integrated collector grids

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr. (Inventor)

    1979-01-01

    A heterojunction or Schottky barrier photovoltaic device comprising a conductive base metal layer compatible with and coating predominately the exposed surface of the p-type substrate of the device such that a back surface field region is formed at the interface between the device and the base metal layer, a transparent, conductive mixed metal oxide layer in integral contact with the n-type layer of the heterojunction or Schottky barrier device having a metal alloy grid network of the same metal elements of the oxide constituents of the mixed metal oxide layer embedded in the mixed metal oxide layer, an insulating layer which prevents electrical contact between the conductive metal base layer and the transparent, conductive metal oxide layer, and a metal contact means covering the insulating layer and in intimate contact with the metal grid network embedded in the transparent, conductive oxide layer for conducting electrons generated by the photovoltaic process from the device.

  3. Antibacterial properties of modified biodegradable PHB non-woven fabric.

    PubMed

    Slepička, P; Malá, Z; Rimpelová, S; Švorčík, V

    2016-08-01

    The antibacterial properties of poly(hydroxybutyrate) (PHB) non-woven fabric were explored in this study. The PHB was activated by plasma modification and subsequently processed with either immersion into a solution of nanoparticles or direct metallization. The wettability and surface chemistry of the PHB surface was determined. The thickness of the sputtered nanolayer on PHB fabric was characterized. It was found that plasma modification led to a formation of strongly hydrophilic surface, while the subsequent metallization by silver or gold resulted in a significantly increased water contact angle. Further, it was found that antibacterial activity may be controlled by the type of a metal and deposition method used. The immersion of plasma modified fabric into Ag nanoparticle solution led to enhanced antibacterial efficiency of PHB against Escherichia coli (E. coli). Direct silver sputtering on PHB fabric was proved to be a simple method for construction of a surface with strong antibacterial potency against both Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epidermidis). We demonstrated the antibacterial activity of PHB fabric modified by plasma activation and consecutive selection of a treatment method for an effective antibacterial surface construction. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Effect of ion implantation on the tribology of metal-on-metal hip prostheses.

    PubMed

    Bowsher, John G; Hussain, Azad; Williams, Paul; Nevelos, Jim; Shelton, Julia C

    2004-12-01

    Nitrogen ion implantation (which considerably hardens the surface of the bearing) may represent one possible method of reducing the wear of metal-on-metal (MOM) hip bearings. Currently there are no ion-implanted MOM bearings used clinically. Therefore a physiological hip simulator test was undertaken using standard test conditions, and the results compared to previous studies using the same methods. N2-ion implantation of high carbon cast Co-Cr-Mo-on-Co-Cr-Mo hip prostheses increased wear by 2-fold during the aggressive running-in phase compared to untreated bearing surfaces, plus showing no wear reductions during steady-state conditions. Although 2 specimens were considered in the current study, it would appear that ion implantation has no clinical benefit for MOM.

  5. Laser anti-corrosion treatment of metal surfaces

    NASA Astrophysics Data System (ADS)

    Iakovlev, Alexey; Ruzankina, Julia; Kascheev, Sergey; Vasilyev, Oleg; Parfenov, V.; Grishkanich, Alexsandr

    2017-02-01

    Metal corrosion is the main problem of all metal constructions and buildings. Annual losses resulting from corrosion in industrialized countries are estimated in the range from 2% to 4 % of gross national product. We used a CW fiber laser with the wavelength of 1064 nm and a power up to 18,4 W for laser irradiation of metal surfaces. We report on the optimal treatment of the metal corrosion with laser power density in the range of 93,3÷ 95,5 W/cm2. After the process of laser treatment of steel surface we observe decreased roughness of steel and a small change in its chemical composition. There was an active research of new ways to improve the surface properties of metals and to increase the corrosion resistance. One of the breakthrough methods to protect the material against corrosion is laser treatment. We used a CW fiber laser operating at 1064 nm with up to 18,4 W output power. Experimentally, the samples (steel plates) were irradiated by laser for 35 seconds. Surface treatment of metal was provided at a room temperature and a relative air humidity of 55%. The impact of laser radiation on the surface has contributed to a small change of its chemical composition. It forms protective fluoride coating on the metal surface. The laser radiation significantly increased the concentration of fluorine in the metal from 0.01 atom. % to 5.24 atom. %. The surface roughness of steel has changed from 3.66 μ to 2.66 μ. Protective coatings with best resistance to corrosion were obtained with laser power density in a range of 93.3 W/cm2 to 95.5 W/cm2.

  6. Preparation of bioactive titania films on titanium metal via anodic oxidation.

    PubMed

    Cui, X; Kim, H-M; Kawashita, M; Wang, L; Xiong, T; Kokubo, T; Nakamura, T

    2009-01-01

    To research the crystal structure and surface morphology of anodic films on titanium metal in different electrolytes under various electrochemical conditions and investigate the effect of the crystal structure of the oxide films on apatite-forming ability in simulated body fluid (SBF). Titanium oxide films were prepared using an anodic oxidation method on the surface of titanium metal in four different electrolytes: sulfuric acid, acetic acid, phosphoric acid and sodium sulfate solutions with different voltages for 1 min at room temperature. Anodic films that consisted of rutile and/or anatase phases with porous structures were formed on titanium metal after anodizing in H(2)SO(4) and Na(2)SO(4) electrolytes, while amorphous titania films were produced after anodizing in CH(3)COOH and H(3)PO(4) electrolytes. Titanium metal with the anatase and/or rutile crystal structure films showed excellent apatite-forming ability and produced a compact apatite layer covering all the surface of titanium after soaking in SBF for 7d, but titanium metal with amorphous titania layers was not able to induce apatite formation. The resultant apatite layer formed on titanium metal in SBF could enhance the bonding strength between living tissue and the implant. Anodic oxidation is believed to be an effective method for preparing bioactive titanium metal as an artificial bone substitute even under load-bearing conditions.

  7. Determination of the density of surface states at the semiconductor-insulator interface in a metal-insulator-semiconductor structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulyamov, G., E-mail: Gulyamov1949@rambler.ru; Sharibaev, N. U.

    2011-02-15

    The temporal dependence of thermal generation of electrons from occupied surface states at the semiconductor-insulator interface in a metal-insulator-semiconductor structure is studied. It is established that, at low temperatures, the derivative of the probability of depopulation of occupied surface states with respect to energy is represented by the Dirac {delta} function. It is shown that the density of states of a finite number of discrete energy levels under high-temperature measurements manifests itself as a continuous spectrum, whereas this spectrum appears discrete at low temperatures. A method for processing the continuous spectrum of the density of surface states is suggested thatmore » method makes it possible to determine the discrete energy spectrum. The obtained results may be conducive to an increase in resolution of the method of non-stationary spectroscopy of surface states.« less

  8. Three-dimensional carbon fibers and method and apparatus for their production

    DOEpatents

    Muradov, Nazim Z [Melbourne, FL

    2012-02-21

    This invention relates to novel three-dimensional (3D) carbon fibers which are original (or primary) carbon fibers (OCF) with secondary carbon filaments (SCF) grown thereon, and, if desired, tertiary carbon filaments (TCF) are grown from the surface of SCF forming a filamentous carbon network with high surface area. The methods and apparatus are provided for growing SCF on the OCF by thermal decomposition of carbonaceous gases (CG) over the hot surface of the OCF without use of metal-based catalysts. The thickness and length of SCF can be controlled by varying operational conditions of the process, e.g., the nature of CG, temperature, residence time, etc. The optional activation step enables one to produce 3D activated carbon fibers with high surface area. The method and apparatus are provided for growing TCF on the SCF by thermal decomposition of carbonaceous gases over the hot surface of the SCF using metal catalyst particles.

  9. Composite pipe to metal joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leslie, James C.; Leslie, II, James C.; Heard, James

    A method for making a metal to composite tube joint including selecting an elongated interior fitting constructed with an exterior barrel, reduced in exterior diameter to form a distally facing annular shoulder and then projecting still further distally to form an interior sleeve having a radially outwardly facing bonding surface. Selecting an elongated metal outer sleeve formed proximally with a collar constructed for receipt over the barrel and increased in interior diameter and projecting distally to form an exterior sleeve having a radially inwardly facing bonding surface cooperating with the first bonding surface to form an annulus receiving an extremitymore » of a composite tube and a bond bonding the extremity of the tube to the bonding surfaces.« less

  10. Wireless Metal Detection and Surface Coverage Sensing for All-Surface Induction Heating

    PubMed Central

    Kilic, Veli Tayfun; Unal, Emre; Demir, Hilmi Volkan

    2016-01-01

    All-surface induction heating systems, typically comprising small-area coils, face a major challenge in detecting the presence of a metallic vessel and identifying its partial surface coverage over the coils to determine which of the coils to power up. The difficulty arises due to the fact that the user can heat vessels made of a wide variety of metals (and their alloys). To address this problem, we propose and demonstrate a new wireless detection methodology that allows for detecting the presence of metallic vessels together with uniquely sensing their surface coverages while also identifying their effective material type in all-surface induction heating systems. The proposed method is based on telemetrically measuring simultaneously inductance and resistance of the induction coil coupled with the vessel in the heating system. Here, variations in the inductance and resistance values for an all-surface heating coil loaded by vessels (made of stainless steel and aluminum) at different positions were systematically investigated at different frequencies. Results show that, independent of the metal material type, unique identification of the surface coverage is possible at all freqeuncies. Additionally, using the magnitude and phase information extracted from the coupled coil impedance, unique identification of the vessel effective material is also achievable, this time independent of its surface coverage. PMID:26978367

  11. Methods and systems for detection of ice formation on surfaces

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Wang, Wubao (Inventor); Sztul, Henry (Inventor); Budansky, Yury (Inventor)

    2007-01-01

    A system for detecting ice formation on metal, painted metal and other material surfaces can include a transparent window having an exterior surface upon which ice can form; a light source and optics configured and arranged to illuminate the exterior surface of the window from behind the exterior surface; and a detector and optics configured and arranged to receive light backscattered by the exterior surface and any ice disposed on the exterior surface and determine the thickness of the ice layer. For example, the system can be used with aircraft by placing one or more windows in the wings of the aircraft. The system is used for a novel optical method for real-time on-board detection and warning of ice formation on surfaces of airplanes, unmanned aerial vehicles (UAVs), and other vehicles and stationary structures to improve their safety and operation.

  12. Anodic behavior of uranium in AlCl3-1-ethyl-3-methyl-imidazolium chloride ionic liquid

    NASA Astrophysics Data System (ADS)

    Jiang, Yidong; Luo, Lizhu; Wang, Shaofei; Bin, Ren; Zhang, Guikai; Wang, Xiaolin

    2018-01-01

    The oxidation state of metals unambiguously affects its anodic behavior in ionic liquid. We systematically investigated the anodic behavior of uranium with different surface oxidation states by electrochemical measurements, spectroscopic methods and surface analysis techniques. In the anodic process, metal uranium can be oxidized to U3+. The corresponding products accumulated on the metal/ILs interface will form a viscous layer. The anodic behavior of uranium is also strongly dependent upon the surface oxide states including thickness and homogeneity of the oxide film. With an increase in the thickness of oxide film, it will be breached at potentials in excess of a critical value. A uniform oxide on uranium surface can be breached evenly, and then the underlying metal starts to dissolve forming a viscous layer which can facilitate uniformly stripping of oxide, thus giving an oxide-free surface. Otherwise, a nonuniform oxide can result in a severe pitted surface with residue oxygen.

  13. Surface plasmon microscopy with low-cost metallic nanostructures for biosensing I

    NASA Astrophysics Data System (ADS)

    Lindquist, Nathan; Oh, Sang-Hyun; Otto, Lauren

    2012-02-01

    The field of plasmonics aims to manipulate light over dimensions smaller than the optical wavelength by exploiting surface plasmon resonances in metallic films. Typically, surface plasmons are excited by illuminating metallic nanostructures. For meaningful research in this exciting area, the fabrication of high-quality nanostructures is critical, and in an undergraduate setting, low-cost methods are desirable. Careful optical characterization of the metallic nanostructures is also required. Here, we present the use of novel, inexpensive nanofabrication techniques and the development of a customized surface plasmon microscopy setup for interdisciplinary undergraduate experiments in biosensing, surface-enhanced Raman spectroscopy, and surface plasmon imaging. A Bethel undergraduate student performs the nanofabrication in collaboration with the University of Minnesota. The rewards of mentoring undergraduate students in cooperation with a large research university are numerous, exposing them to a wide variety of opportunities. This research also interacts with upper-level, open-ended laboratory projects, summer research, a semester-long senior research experience, and will enable a large range of experiments into the future.

  14. Electromagnetic Field Redistribution in Metal Nanoparticle on Graphene.

    PubMed

    Li, Keke; Liu, Anping; Wei, Dapeng; Yu, Keke; Sun, Xiaonan; Yan, Sheng; Huang, Yingzhou

    2018-04-25

    Benefiting from the induced image charge on metal film, the light energy is confined on a film surface under metal nanoparticle dimer, which is called electromagnetic field redistribution. In this work, electromagnetic field distribution of metal nanoparticle monomer or dimer on graphene is investigated through finite-difference time-domain method. The results point out that the electromagnetic field (EM) redistribution occurs in this nanoparticle/graphene hybrid system at infrared region where light energy could also be confined on a monolayer graphene surface. Surface charge distribution was analyzed using finite element analysis, and surface-enhanced Raman spectrum (SERS) was utilized to verify this phenomenon. Furthermore, the data about dielectric nanoparticle on monolayer graphene demonstrate this EM redistribution is attributed to strong coupling between light-excited surface charge on monolayer graphene and graphene plasmon-induced image charge on dielectric nanoparticle surface. Our work extends the knowledge of monolayer graphene plasmon, which has a wide range of applications in monolayer graphene-related film.

  15. METHODS OF TREATMENT OF COMPLEX SURFACES ON METAL CUTTING MACHINES (CHAPTERS 1 AND 12),

    DTIC Science & Technology

    FORGING, MOLDINGS, MANDRELS, MARINE PROPELLERS, AERIAL PROPELLERS, TURBINE BLADES, ABRASIVES, IMPELLERS, AIRCRAFT PANELS, METAL PLATES, CAMS, ELECTROEROSIVE MACHINING, CHEMICAL MILLING, MAGNETOSTRICTIVE ELEMENTS, USSR.

  16. Recent advances in nanoscale-metal assisted biochar derived from waste biomass used for heavy metals removal.

    PubMed

    Ho, Shih-Hsin; Zhu, Shishu; Chang, Jo-Shu

    2017-12-01

    Pollution of heavy metals (HMs) is a detrimental treat to human health and need to be cleaned up in a proper way. Biochar (BC), a low-cost and "green" adsorbent, has attracted significant attention due to its considerable HMs removal capacity. In particular, nano-metals have recently been used to assist BC in improving its reactivity, surface texture and magnetism. Synthesis methods and metal precursors greatly influence the properties and structures of the nanocomposites, thereby affecting their HMs removal performance. This review presents advances in synthesis methods, formation mechanisms and surface characteristics of BC nanocomposites, along with the discussions on HMs removal mechanisms and the effects of environmental factors on HMs removal efficiency. Performance of using BC nanocomposites to remediate real HMs-containing wastewater and issues associated with its process scale-up are also discussed. This review aims to provide useful information to facilitate the development of HMs removal by nanoscale-metal assisted BC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Method for fabricating a substrate having spaced apart microcapillaries thereon

    DOEpatents

    Jarvis, E.E.

    1995-01-24

    Methods are disclosed for manufacturing a self-supporting substrate having a plurality of spaced-apart needles (spikes or microcapillaries) projecting upwardly from a major surface of the substrate. In a preferred method, metal is deposited onto a porous membrane such that the metal extends into the pores, after which the membrane is dissolved. 9 figures.

  18. Broadband surface plasmon jets: direct observation of plasmon propagation for application to sensors and optical communications in microscale and nanoscale circuitry

    DOEpatents

    Bouhelier, Alexandre [Westmont, IL; Wiederrecht, Gary P [Elmhurst, IL

    2008-02-19

    A system and method for generating and using broadband surface plasmons in a metal film for characterization of analyte on or near the metal film. The surface plasmons interact with the analyte and generate leakage radiation which has spectral features which can be used to inspect, identify and characterize the analyte. The broadband plasmon excitation enables high-bandwidth photonic applications.

  19. Patterned structures of graphene and graphitic carbon and methods for their manufacture

    DOEpatents

    Polsky, Ronen; Xiao, Xiaoyin; Burckel, David Bruce; Wheeler, David R.; Brozik, Susan M.; Beechem, Thomas Edwin

    2017-01-03

    A patterned graphene or graphitic body is produced by providing a three-dimensionally patterned carbonaceous body; coating the body with a catalytic metal whereby is formed a coating having an inner surface proximal the body and an outer surface distal the body; and annealing the coated body under time and temperature conditions effective to form a graphene or graphitic layer on the outer surface of the catalytic metal coating.

  20. Patterned structures of graphene and graphitic carbon and methods for their manufacture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polsky, Ronen; Xiao, Xiaoyin; Burckel, David Bruce

    A patterned graphene or graphitic body is produced by providing a three-dimensionally patterned carbonaceous body; coating the body with a catalytic metal whereby is formed a coating having an inner surface proximal the body and an outer surface distal the body; and annealing the coated body under time and temperature conditions effective to form a graphene or graphitic layer on the outer surface of the catalytic metal coating.

  1. In Situ Structural Studies of the Underpotential Deposition of Copper onto an Iodine Covered Platinum Surface Using X-Ray Standing Waves

    DTIC Science & Technology

    1991-01-01

    electrocrystallization, catalysis, and surface chemistry. In this process, submonolayer to monolayer(s) amounts of a metal can be electrodeposited on a foreign...mechanisms involving nucleation and growth processes. Although electrochemical methods are invaluable in controlling and measuring thermodynamic...obtain direct atomic structural information about metal deposits on an iodine covered Pt(IIl) surface . They found that electrodeposition occurred in a

  2. Hydroxyapatite crystals biologically inspired on titanium by using an organic template based on the copolymer of acrylic acid and itaconic acid.

    PubMed

    Zhang, Chao; Li, Zhi-An; Cheng, Xiang-Rong; Xiao, Qun; Li, Hong-Bo

    2010-01-01

    Hydroxyapatite coating on metal implants is an effective method to enhance bioactive properties of the metal surface. We report here a method to coat the Ti-6Al-4V alloy with hydroxyapatite crystals. After alkaline/heat treatment, the spontaneous growth of organoapatite on titanium alloy surface involves sequential preadsorption of titanium isopropoxide (TIPO) and the copolymer of acrylic acid and itaconic acid on the metal, followed by exposure to simulated body fluid (SBF). The organoapatite characterization of the coating was carried out by scanning electron microscopy, energy dispersive spectrometer, and X-ray diffraction. The copolymer of acrylic acid and itaconic acid overlayer which is rich of carboxylate groups can lead to the deposition of needle-like and homogeneous HA on the surface after immersion in SBF.

  3. Determination of heat transfer coefficient for an interaction of sub-cooled gas and metal

    NASA Astrophysics Data System (ADS)

    Zaidi Sidek, Mohd; Syahidan Kamarudin, Muhammad

    2016-02-01

    Heat transfer coefficient (HTC) for a hot metal surface and their surrounding is one of the need be defined parameter in hot forming process. This study has been conducted to determine the HTC for an interaction between sub-cooled gas sprayed on a hot metal surface. Both experiments and finite element have been adopted in this work. Initially, the designated experiment was conducted to obtain temperature history of spray cooling process. Then, an inverse method was adopted to calculate the HTC value before we validate in a finite element simulation model. The result shows that the heat transfer coefficient for interaction of subcooled gas and hot metal surface is 1000 W/m2K.

  4. "Nickel Nanoflowers" with Surface-Attached Fluoropolymer Networks by C,H Insertion for the Generation of Metallic Superhydrophobic Surfaces.

    PubMed

    Hönes, Roland; Rühe, Jürgen

    2018-05-08

    Metallic superhydrophobic surfaces (SHSs) combine the attractive properties of metals, such as ductility, hardness, and conductivity, with the favorable wetting properties of nanostructured surfaces. Moreover, they promise additional benefits with respect to corrosion protection. For the modification of the intrinsically polar and hydrophilic surfaces of metals, a new method has been developed to deposit a long-term stable, highly hydrophobic coating, using nanostructured Ni surfaces as an example. Such substrates were chosen because the deposition of a thin Ni layer is a common choice for enhancing corrosion resistance of other metals. As the hydrophobic coating, we propose a thin film of an extremely hydrophobic fluoropolymer network. To form this network, a thin layer of a fluoropolymer precursor is deposited on the Ni substrate which includes a comonomer that is capable of C,H insertion cross-linking (CHic). Upon UV irradiation or heating, the cross-linker units become activated and the thin glassy film of the precursor is transformed into a polymer network that coats the surface conformally and permanently, as shown by extensive extraction experiments. To achieve an even higher stability, the same precursor film can also be transformed into a chemically surface-attached network by depositing a self-assembled monolayer of an alkane phosphonic acid on the Ni before coating with the precursor. During cross-linking, by the same chemical process, the growing polymer network will simultaneously attach to the alkane phosphonic acid layer at the surface of the metal. This strategy has been used to turn fractal Ni "nanoflower" surfaces grown by anisotropic electroplating into SHSs. The wetting characteristics of the obtained nanostructured metallic surfaces are studied. Additionally, the corrosion protection effect and the significant mechanical durability are demonstrated.

  5. Surface-enhanced Raman scattering and DFT investigation of 1,5-diphenylcarbazide and its metal complexes with Ca(II), Mn(II), Fe(III) and Cu(II)

    NASA Astrophysics Data System (ADS)

    Szabó, László; Herman, Krisztian; Mircescu, Nicoleta Elena; Tódor, István Szabolcs; Simon, Botond Lorand; Boitor, Radu Alex; Leopold, Nicolae; Chiş, Vasile

    2014-09-01

    In recent years, surface-enhanced Raman scattering (SERS) has become an increasingly viable method for the detection of metal ions, evidenced by the existing studies on metal complexes. In this study, 1,5-diphenylcarbazide (DPC) and its Ca(II), Mn(II), Fe(III) and Cu(II) complexes were investigated by FTIR/ATR, FT-Raman and surface-enhanced Raman spectroscopies. The hybrid B3LYP exchange-correlation functional was used for the molecular geometry optimizations, molecular electrostatic potential (MEP) distribution and vibrational frequencies calculations of the DPC molecule and its complexes. Based on experimental and theoretical data, we were able to accurately identify unique and representative features for each DPC-metal complex, features that enable the detection of said metal complexes in millimolar concentrations.

  6. Laser processing of metal surfaces for increasing paint adhesion

    NASA Astrophysics Data System (ADS)

    Hirose, Tomiyasu; Ichihara, Hideki; Sugimoto, Kenji; Sasazawa, Kazuo; Shibasaki, Shouji

    2000-01-01

    Painted metal exteriors of buildings begin to degrade in about 10 years due to solar heat, UV rays, the sea salt adhesion, the acid rain etc. When degradation and exfoliation of the paint film occurs, rust appears in the metal and replacement or repainting becomes necessary. The adhesion of paints on metal is usually achieved by chemical adhesion or by increasing the surface area by blast processing. In this study, the possibility of improving paint adhesion by forming minute holes on the metal surface by laser irradiation was studied through modeling of the adhesion of the paint film and adaptability to deformation. The viscosity and painting method depend on the size and location of the oles. The presence of the holes makes it possible to form complicated shapes by pressing because the holes absorb some of the strain caused by pressing.

  7. Template-directed assembly of metal-chalcogenide nanocrystals into ordered mesoporous networks.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vamvasakis, Ioannis; Subrahmanyam, Kota S.; Kanatzidis, Mercouri G.

    Although great progress in the synthesis of porous networks of metal and metal oxide nanoparticles with highly accessible pore surface and ordered mesoscale pores has been achieved, synthesis of assembled 3D mesostructures of metal-chalcogenide nanocrystals is still challenging. In this work we demonstrate that ordered mesoporous networks, which comprise well-defined interconnected metal sulfide nanocrystals, can be prepared through a polymer-templated oxidative polymerization process. The resulting self-assembled mesostructures that were obtained after solvent extraction of the polymer template impart the unique combination of light-emitting metal chalcogenide nanocrystals, three-dimensional open-pore structure, high surface area, and uniform pores. We show that the poremore » surface of these materials is active and accessible to incoming molecules, exhibiting high photocatalytic activity and stability, for instance, in oxidation of 1-phenylethanol into acetophenone. We demonstrate through appropriate selection of the synthetic components that this method is general to prepare ordered mesoporous materials from metal chalcogenide nanocrystals with various sizes and compositions.« less

  8. Method of making chalcogen catalysts for polymer electrolyte fuel cells

    DOEpatents

    Choi, Jong-Ho; Zelenay, Piotr; Wieckowski, Andrzej; Cao, Dianxue

    2010-12-14

    A method of making an electrode catalyst material using aqueous solutions. The electrode catalyst material includes a support comprising at least one transition metal and at least one chalcogen disposed on a surface of the transition metal. The method includes reducing a metal powder, mixing the metal powder with an aqueous solution containing at least one inorganic compound of the chalcogen to form a mixture, and providing a reducing agent to the mixture to form nanoparticles of the electrode catalyst. The electrode catalyst may be used in a membrane electrode assembly for a fuel cell.

  9. METHOD OF CLEANING METAL SURFACES

    DOEpatents

    Winkler, H.W.; Morfitt, J.W.; Little, T.H.

    1959-05-19

    Cleaning fluids for removing deposits from metal surfaces are described. The cleaning agents of the invention consist of aqueous nitric acid and an amhydrous nitrate salt of a metal which is lower in the electromotive series than the element of the deposit to be removed. In general, the salt content of thc cleaning agents ranged from 10 to 90%, preferably from 10 to 40% by weight; and the balance of the composition comprises nitric acid of any strength from extremely dilute up to concentrated strength.

  10. Massachusetts Lowell low speed wind tunnel (LSWT) test section

    NASA Astrophysics Data System (ADS)

    Anderson, Erik William

    The alumina and hybrid alumina-silica FT catalyst were prepared by one-step solgel/oil-drop methods using metal-nitrate-solutions (method-I), and nanoparticle-metaloxides (method-2). The nanoparticle-metal-oxides did not participate in solubility equilibria in contrast to metal nitrate in method-1 causing no metal ion seepage; therefore, method-2 yields higher XRF metal loading efficiency than method-1. The thermal analysis confirmed that the metal loading by method-1 and method-2 involved two different pathways. Method-1 involves solubility equilibria in the conversion of metal-nitrate to metal- hydroxide and finally to metal-oxide, while in method-2 nanoparticle-metal-oxide remained intact during sol-gel-oil-drop and calcination steps. The alumina supported catalysts were dominated by gamma-alumina PXRD peaks in alumina catalysts while amorphous alumino-silicate phase was the bulk of hybrid alumina-silica catalysts. The presence of cobalt oxides (CoO, Co3O4) and iron oxides (FeO, Fe2O3) phases are confirmed in the catalysts prepared by method-1 and method-2. The PXRD analysis indicated weak peak intensities in catalysts with 5 wt. % total metal loading. PXRD pattern confirmed alloy formation in the bimetallic catalysts (CoFe2O4) on alumina support phase gamma-A12 O3. The surface area and pore diameter of hybrid alumina-silica granules (301 - 372 m2/g and 7.3 nm) showed better values than the alumina granules (251 - 256 m2/g and 6.5 nm). The support pore diameter of both types of granules is within the mesoporous range (1 - 50 nm). The morphology of all the catalysts is preserved upon metal loading and heat treatments. The surface characteristics of the sol-gel-oil-drop method prepared catalysts indicate there was no significant pore blockage of the support below 10 wt % total metal loading. The CO conversion of the FT catalysts was measured to screen catalytic active metals and determine the optimum temperatures of the FT reaction for the alumina catalysts. The alumina FT catalysts showed an optimum reaction temperature of 250 °C. Hydrocarbon production and CO conversion of alumina and hybrid alumina-silica FT catalysts were investigated. Among monometallic alumina catalysts, Co(5%) showed a higher CO conversion. The incorporation of Fe to Co increased CO conversion and hydrocarbon production. Increased Fe content in the bimetallic catalysts prepared by combined method-1&2, decreased CO conversion and hydrocarbon production, and increased CO 2 production. The bimetallic nano-Co(2.5%)nano-Fe(2.5%) prepared by method-2 alone showed higher CO conversion comparable to the Co(4%)nano-Fe(l %). Hybrid alumina-silica FT catalysts showed a higher CO conversion than the alumina FT catalysts due to better surface characteristics. The monometallic catalysts showed higher selectivity to C1-C4 hydrocarbon than bimetallic. The bimetallic alumina FT catalysts prepared by method-2 showed slightly higher C5+ selectivity compared to the higher Co catalysts prepared by combined method- I &2. The Ru promotion showed a significant effect on the CO conversion and 11 product distribution of the monometallic catalysts. There was no significant effect on the CO conversion on the (Co-Fe) bimetallic catalysts, but hydrocarbon production slightly increased when promoted by 0.5 wt.% Ru.

  11. Synthesis, characterization, and activity of Co/Fe alumina/silica supported Ft catalysts and the study of promoter effect of ruthenium

    NASA Astrophysics Data System (ADS)

    Esumike, Sunday Azubike

    The alumina and hybrid alumina-silica FT catalyst were prepared by one-step solgel/oil-drop methods using metal-nitrate-solutions (method-I), and nanoparticle-metaloxides (method-2). The nanoparticle-metal-oxides did not participate in solubility equilibria in contrast to metal nitrate in method-1 causing no metal ion seepage; therefore, method-2 yields higher XRF metal loading efficiency than method-1. The thermal analysis confirmed that the metal loading by method-1 and method-2 involved two different pathways. Method-1 involves solubility equilibria in the conversion of metal-nitrate to metal- hydroxide and finally to metal-oxide, while in method-2 nanoparticle-metal-oxide remained intact during sol-gel-oil-drop and calcination steps. The alumina supported catalysts were dominated by gamma-alumina PXRD peaks in alumina catalysts while amorphous alumino-silicate phase was the bulk of hybrid alumina-silica catalysts. The presence of cobalt oxides (CoO, Co3O4) and iron oxides (FeO, Fe2O3) phases are confirmed in the catalysts prepared by method-1 and method-2. The PXRD analysis indicated weak peak intensities in catalysts with 5 wt. % total metal loading. PXRD pattern confirmed alloy formation in the bimetallic catalysts (CoFe2O4) on alumina support phase gamma-A12 O3. The surface area and pore diameter of hybrid alumina-silica granules (301 - 372 m2/g and 7.3 nm) showed better values than the alumina granules (251 - 256 m2/g and 6.5 nm). The support pore diameter of both types of granules is within the mesoporous range (1 - 50 nm). The morphology of all the catalysts is preserved upon metal loading and heat treatments. The surface characteristics of the sol-gel-oil-drop method prepared catalysts indicate there was no significant pore blockage of the support below 10 wt % total metal loading. The CO conversion of the FT catalysts was measured to screen catalytic active metals and determine the optimum temperatures of the FT reaction for the alumina catalysts. The alumina FT catalysts showed an optimum reaction temperature of 250 °C. Hydrocarbon production and CO conversion of alumina and hybrid alumina-silica FT catalysts were investigated. Among monometallic alumina catalysts, Co(5%) showed a higher CO conversion. The incorporation of Fe to Co increased CO conversion and hydrocarbon production. Increased Fe content in the bimetallic catalysts prepared by combined method-1&2, decreased CO conversion and hydrocarbon production, and increased CO 2 production. The bimetallic nano-Co(2.5%)nano-Fe(2.5%) prepared by method-2 alone showed higher CO conversion comparable to the Co(4%)nano-Fe(l %). Hybrid alumina-silica FT catalysts showed a higher CO conversion than the alumina FT catalysts due to better surface characteristics. The monometallic catalysts showed higher selectivity to C1-C4 hydrocarbon than bimetallic. The bimetallic alumina FT catalysts prepared by method-2 showed slightly higher C5+ selectivity compared to the higher Co catalysts prepared by combined method- I &2. The Ru promotion showed a significant effect on the CO conversion and 11 product distribution of the monometallic catalysts. There was no significant effect on the CO conversion on the (Co-Fe) bimetallic catalysts, but hydrocarbon production slightly increased when promoted by 0.5 wt.% Ru.

  12. Oxygen accumulation on metal surfaces investigated by XPS, AES and LEIS, an issue for sputter depth profiling under UHV conditions

    NASA Astrophysics Data System (ADS)

    Steinberger, R.; Celedón, C. E.; Bruckner, B.; Roth, D.; Duchoslav, J.; Arndt, M.; Kürnsteiner, P.; Steck, T.; Faderl, J.; Riener, C. K.; Angeli, G.; Bauer, P.; Stifter, D.

    2017-07-01

    Depth profiling using surface sensitive analysis methods in combination with sputter ion etching is a common procedure for thorough material investigations, where clean surfaces free of any contamination are essential. Hence, surface analytic studies are mostly performed under ultra-high vacuum (UHV) conditions, but the cleanness of such UHV environments is usually overrated. Consequently, the current study highlights the in principle known impact of the residual gas on metal surfaces (Fe, Mg, Al, Cr and Zn) for various surface analytics methods, like X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and low-energy ion scattering (LEIS). The investigations with modern, state-of-the-art equipment showed different behaviors for the metal surfaces in UHV during acquisition: (i) no impact for Zn, even after long time, (ii) solely adsorption of oxygen for Fe, slight and slow changes for Cr and (iii) adsorption accompanied by oxide formation for Al and Mg. The efficiency of different counter measures was tested and the acquired knowledge was finally used for ZnMgAl coated steel to obtain accurate depth profiles, which exhibited before serious artifacts when data acquisition was performed in an inconsiderate way.

  13. The dynamical properties of a Rydberg hydrogen atom between two parallel metal surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Li, Hong-Yun; Yang, Shan-Ying; Lin, Sheng-Lu

    2011-03-01

    This paper presents the dynamical properties of a Rydberg hydrogen atom between two metal surfaces using phase space analysis methods. The dynamical behaviour of the excited hydrogen atom depends sensitively on the atom—surface distance d. There exists a critical atom—surface distance dc = 1586 a.u. When the atom—surface distance d is larger than the critical distance dc, the image charge potential is less important than the Coulomb potential, the system is near-integrable and the electron motion is regular. As the distance d decreases, the system will tend to be non-integrable and unstable, and the electron might be captured by the metal surfaces. Project supported by the National Natural Science Foundation of China (Grant No. 10774093) and the Natural Science Foundation of Shandong Province (Grant No. ZR2009FZ006).

  14. Corrosion and surface modification on biocompatible metals: A review.

    PubMed

    Asri, R I M; Harun, W S W; Samykano, M; Lah, N A C; Ghani, S A C; Tarlochan, F; Raza, M R

    2017-08-01

    Corrosion prevention in biomaterials has become crucial particularly to overcome inflammation and allergic reactions caused by the biomaterials' implants towards the human body. When these metal implants contacted with fluidic environments such as bloodstream and tissue of the body, most of them became mutually highly antagonistic and subsequently promotes corrosion. Biocompatible implants are typically made up of metallic, ceramic, composite and polymers. The present paper specifically focuses on biocompatible metals which favorably used as implants such as 316L stainless steel, cobalt-chromium-molybdenum, pure titanium and titanium-based alloys. This article also takes a close look at the effect of corrosion towards the implant and human body and the mechanism to improve it. Due to this corrosion delinquent, several surface modification techniques have been used to improve the corrosion behavior of biocompatible metals such as deposition of the coating, development of passivation oxide layer and ion beam surface modification. Apart from that, surface texturing methods such as plasma spraying, chemical etching, blasting, electropolishing, and laser treatment which used to improve corrosion behavior are also discussed in detail. Introduction of surface modifications to biocompatible metals is considered as a "best solution" so far to enhanced corrosion resistance performance; besides achieving superior biocompatibility and promoting osseointegration of biocompatible metals and alloys. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Shape-Controlled Synthesis of Colloidal Metal Nanocrystals by Replicating the Surface Atomic Structure on the Seed.

    PubMed

    Gilroy, Kyle D; Yang, Xuan; Xie, Shuifen; Zhao, Ming; Qin, Dong; Xia, Younan

    2018-06-01

    Controlling the surface structure of metal nanocrystals while maximizing the utilization efficiency of the atoms is a subject of great importance. An emerging strategy that has captured the attention of many research groups involves the conformal deposition of one metal as an ultrathin shell (typically 1-6 atomic layers) onto the surface of a seed made of another metal and covered by a set of well-defined facets. This approach forces the deposited metal to faithfully replicate the surface atomic structure of the seed while at the same time serving to minimize the usage of the deposited metal. Here, the recent progress in this area is discussed and analyzed by focusing on the synthetic and mechanistic requisites necessary for achieving surface atomic replication of precious metals. Other related methods are discussed, including the one-pot synthesis, electrochemical deposition, and skin-layer formation through thermal annealing. To close, some of the synergies that arise when the thickness of the deposited shell is decreased controllably down to a few atomic layers are highlighted, along with how the control of thickness can be used to uncover the optimal physicochemical properties necessary for boosting the performance toward a range of catalytic reactions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Screenable contact structure and method for semiconductor devices

    DOEpatents

    Ross, Bernd

    1980-08-26

    An ink composition for deposition upon the surface of a semiconductor device to provide a contact area for connection to external circuitry is disclosed, the composition comprising an ink system containing a metal powder, a binder and vehicle, and a metal frit. The ink is screened onto the semiconductor surface in the desired pattern and is heated to a temperature sufficient to cause the metal frit to become liquid. The metal frit dissolves some of the metal powder and densifies the structure by transporting the dissolved metal powder in a liquid sintering process. The sintering process typically may be carried out in any type of atmosphere. A small amount of dopant or semiconductor material may be added to the ink systems to achieve particular results if desired.

  17. Nanostructuring of sapphire using time-modulated nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Lorenz, P.; Zagoranskiy, I.; Ehrhardt, M.; Bayer, L.; Zimmer, K.

    2017-02-01

    The nanostructuring of dielectric surfaces using laser radiation is still a challenge. The IPSM-LIFE (laser-induced front side etching using in-situ pre-structured metal layer) method allows the easy, large area and fast laser nanostructuring of dielectrics. At IPSM-LIFE a metal covered dielectric is irradiated where the structuring is assisted by a self-organized molten metal layer deformation process. The IPSM-LIFE can be divided into two steps: STEP 1: The irradiation of thin metal layers on dielectric surfaces results in a melting and nanostructuring process of the metal layer and partially of the dielectric surface. STEP 2: A subsequent high laser fluence treatment of the metal nanostructures result in a structuring of the dielectric surface. At this study a sapphire substrate Al2O3(1-102) was covered with a 10 nm thin molybdenum layer and irradiated by an infrared laser with an adjustable time-dependent pulse form with a time resolution of 1 ns (wavelength λ = 1064 nm, pulse duration Δtp = 1 - 600 ns, Gaussian beam profile). The laser treatment allows the fabrication of different surface structures into the sapphire surface due to a pattern transfer process. The resultant structures were investigated by scanning electron microscopy (SEM). The process was simulated and the simulation results were compared with experimental results.

  18. Method of inducing surface ensembles on a metal catalyst

    DOEpatents

    Miller, Steven S.

    1989-01-01

    A method of inducing surface ensembles on a transition metal catalyst used in the conversion of a reactant gas or gas mixture, such as carbon monoxide and hydrogen into hydrocarbons (the Fischer-Tropsch reaction) is disclosed which comprises adding a Lewis base to the syngas (CO+H.sub.2) mixture before reaction takes place. The formation of surface ensembles in this manner restricts the number and types of reaction pathways which will be utilized, thus greatly narrowing the product distribution and maximizing the efficiency of the Fischer-Tropsch reaction. Similarly, amines may also be produced by the conversion of reactant gas or gases, such as nitrogen, hydrogen, or hydrocarbon constituents.

  19. Method of inducing surface ensembles on a metal catalyst

    DOEpatents

    Miller, S.S.

    1987-10-02

    A method of inducing surface ensembles on a transition metal catalyst used in the conversion of a reactant gas or gas mixture, such as carbon monoxide and hydrogen into hydrocarbons (the Fischer-Tropsch reaction) is disclosed which comprises adding a Lewis base to the syngas (CO + H/sub 2/) mixture before reaction takes place. The formation of surface ensembles in this manner restricts the number and types of reaction pathways which will be utilized, thus greatly narrowing the product distribution and maximizing the efficiency of the Fischer-Tropsch reaction. Similarly, amines may also be produced by the conversion of reactant gas or gases, such as nitrogen, hydrogen, or hydrocarbon constituents.

  20. Surface texture and hardness of dental alloys processed by alternative technologies

    NASA Astrophysics Data System (ADS)

    Porojan, Liliana; Savencu, Cristina E.; Topală, Florin I.; Porojan, Sorin D.

    2017-08-01

    Technological developments have led to the implementation of novel digitalized manufacturing methods for the production of metallic structures in prosthetic dentistry. These technologies can be classified as based on subtractive manufacturing, assisted by computer-aided design/computer-aided manufacturing (CAD/CAM) systems, or on additive manufacturing (AM), such as the recently developed laser-based methods. The aim of the study was to assess the surface texture and hardness of metallic structures for dental restorations obtained by alternative technologies: conventional casting (CST), computerized milling (MIL), AM power bed fusion methods, respective selective laser melting (SLM) and selective laser sintering (SLS). For the experimental analyses metallic specimens made of Co-Cr dental alloys were prepared as indicated by the manufacturers. The specimen structure at the macro level was observed by an optical microscope and micro-hardness was measured in all substrates. Metallic frameworks obtained by AM are characterized by increased hardness, depending also on the surface processing. The formation of microstructural defects can be better controlled and avoided during SLM and MIL process. Application of power bed fusion techniques, like SLS and SLM, is currently a challenge in dental alloys processing.

  1. Metallic coatings on silicon substrates, and methods of forming metallic coatings on silicon substrates

    DOEpatents

    Branagan, Daniel J [Idaho Falls, ID; Hyde, Timothy A [Idaho Falls, ID; Fincke, James R [Los Alamos, NM

    2008-03-11

    The invention includes methods of forming a metallic coating on a substrate which contains silicon. A metallic glass layer is formed over a silicon surface of the substrate. The invention includes methods of protecting a silicon substrate. The substrate is provided within a deposition chamber along with a deposition target. Material from the deposition target is deposited over at least a portion of the silicon substrate to form a protective layer or structure which contains metallic glass. The metallic glass comprises iron and one or more of B, Si, P and C. The invention includes structures which have a substrate containing silicon and a metallic layer over the substrate. The metallic layer contains less than or equal to about 2 weight % carbon and has a hardness of at least 9.2 GPa. The metallic layer can have an amorphous microstructure or can be devitrified to have a nanocrystalline microstructure.

  2. Method of making gold thiolate and photochemically functionalized microcantilevers

    DOEpatents

    Boiadjiev, Vassil I [Knoxville, TN; Brown, Gilbert M [Knoxville, TN; Pinnaduwage, Lal A [Knoxville, TN; Thundat, Thomas G [Knoxville, TN; Bonnesen, Peter V [Knoxville, TN; Goretzki, Gudrun [Nottingham, GB

    2009-08-25

    Highly sensitive sensor platforms for the detection of specific reagents, such as chromate, gasoline and biological species, using microcantilevers and other microelectromechanical systems (MEMS) whose surfaces have been modified with photochemically attached organic monolayers, such as self-assembled monolayers (SAM), or gold-thiol surface linkage are taught. The microcantilever sensors use photochemical hydrosilylation to modify silicon surfaces and gold-thiol chemistry to modify metallic surfaces thereby enabling individual microcantilevers in multicantilever array chips to be modified separately. Terminal vinyl substituted hydrocarbons with a variety of molecular recognition sites can be attached to the surface of silicon via the photochemical hydrosilylation process. By focusing the activating UV light sequentially on selected silicon or silicon nitride hydrogen terminated surfaces and soaking or spotting selected metallic surfaces with organic thiols, sulfides, or disulfides, the microcantilevers are functionalized. The device and photochemical method are intended to be integrated into systems for detecting specific agents including chromate groundwater contamination, gasoline, and biological species.

  3. Investigation of the first-order phase transition kinetics using the method of pulsed photothermal surface deformation: radial measurements

    NASA Astrophysics Data System (ADS)

    Vintzentz, S. V.; Sandomirsky, V. B.

    1992-09-01

    An extension of the photothermal surface deformation (PTSD) method to study the macroscopic kinetics of the first-order phase transition (PTr) is given. The movement of the phase interface (PI) over a surface with a PTr locally induced in the subsurface volume by a focused laser pulse is investigated for the first time using radial measurements of the PTSD kinetics. For the known metal-to-semiconductor PTr in VO 2 (a good model system) a procedure is suggested for measuring the maximum size rsm of the "hot" (metal) phase on the surface (a parameter most difficult to determine) as well as for estimating the velocity of the PI movement over the surface, vs, and in the bulk, vb. Besides, it is shown that the PTSD method may be used to determine the "local" threshold energy E0 needed for the laser-induced PTr and the "local" latent heat L of the PTr. This demonstrates the feasibility of scanning surface E0- and L-microscopy.

  4. Dispersed metal cluster catalysts by design. Synthesis, characterization, structure, and performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arslan, Ilke; Dixon, David A.; Gates, Bruce C.

    2015-09-30

    To understand the class of metal cluster catalysts better and to lay a foundation for the prediction of properties leading to improved catalysts, we have synthesized metal catalysts with well-defined structures and varied the cluster structures and compositions systematically—including the ligands bonded to the metals. These ligands include supports and bulky organics that are being tuned to control both the electron transfer to or from the metal and the accessibility of reactants to influence catalytic properties. We have developed novel syntheses to prepare these well-defined catalysts with atomic-scale control the environment by choice and placement of ligands and applied state-of-themore » art spectroscopic, microscopic, and computational methods to determine their structures, reactivities, and catalytic properties. The ligands range from nearly flat MgO surfaces to enveloping zeolites to bulky calixarenes to provide controlled coverages of the metal clusters, while also enforcing unprecedented degrees of coordinative unsaturation at the metal site—thereby facilitating bonding and catalysis events at exposed metal atoms. With this wide range of ligand properties and our arsenal of characterization tools, we worked to achieve a deep, fundamental understanding of how to synthesize robust supported and ligand-modified metal clusters with controlled catalytic properties, thereby bridging the gap between active site structure and function in unsupported and supported metal catalysts. We used methods of organometallic and inorganic chemistry combined with surface chemistry for the precise synthesis of metal clusters and nanoparticles, characterizing them at various stages of preparation and under various conditions (including catalytic reaction conditions) and determining their structures and reactivities and how their catalytic properties depend on their compositions and structures. Key characterization methods included IR, NMR, and EXAFS spectroscopies to identify ligands on the metals and their reactions; EXAFS spectroscopy and high-resolution STEM to determine cluster framework structures and changes resulting from reactant treatment and locations of metal atoms on support surfaces; X-ray diffraction crystallography to determine full structures of cluster-ligand combinations in the absence of a support, and TEM with tomographic methods to observe individual metal atoms and determine three-dimensional structures of catalysts. Electronic structure calculations were used to verify and interpret spectra and extend the understanding of reactivity beyond what is measurable experimentally.« less

  5. Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets

    DOEpatents

    Makowiecki, Daniel M.; Ramsey, Philip B.; Juntz, Robert S.

    1995-01-01

    An improved method for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite's high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding.

  6. Method of bonding metals to ceramics

    DOEpatents

    Maroni, Victor A.

    1991-01-01

    A ceramic or glass having a thin layer of silver, gold or alloys thereof at the surface thereof. A first metal is bonded to the thin layer and a second metal is bonded to the first metal. The first metal is selected from the class consisting of In, Ga, Sn, Bi, Zn, Cd, Pb, Tl and alloys thereof, and the second metal is selected from the class consisting of Cu, Al, Pb, An and alloys thereof.

  7. Investigation of the crater-like microdefects induced by laser shock processing with aluminum foil as absorbent layer

    NASA Astrophysics Data System (ADS)

    Ye, Y. X.; Xuan, T.; Lian, Z. C.; Feng, Y. Y.; Hua, X. J.

    2015-06-01

    This paper reports that 3D crater-like microdefects form on the metal surface when laser shock processing (LSP) is applied. LSP was conducted on pure copper block using the aluminum foil as the absorbent material and water as the confining layer. There existed the bonding material to attach the aluminum foil on the metal target closely. The surface morphologies and metallographs of copper surfaces were characterized with 3D profiler, the optical microscopy (OM) or the scanning electron microscopy (SEM). Temperature increases of metal surface due to LSP were evaluated theoretically. It was found that, when aluminum foil was used as the absorbent material, and if there existed air bubbles in the bonding material, the air temperatures within the bubbles rose rapidly because of the adiabatic compression. So at the locations of the air bubbles, the metal materials melted and micromelting pool formed. Then under the subsequent expanding of the air bubbles, a secondary shock wave was launched against the micromelting pool and produced the crater-like microdefects on the metal surface. The temperature increases due to shock heat and high-speed deformation were not enough to melt the metal target. The temperature increase induced by the adiabatic compression of the air bubbles may also cause the gasification of the metal target. This will also help form the crater-like microdefects. The results of this paper can help to improve the surface quality of a metal target during the application of LSP. In addition, the results provide another method to fabricate 3D crater-like dents on metal surface. This has a potential application in mechanical engineering.

  8. The biological response to laser-aided direct metal-coated Titanium alloy (Ti6Al4V)

    PubMed Central

    Shin, T.; Lim, D.; Kim, Y. S.; Kim, S. C.; Jo, W. L.

    2018-01-01

    Objectives Laser-engineered net shaping (LENS) of coated surfaces can overcome the limitations of conventional coating technologies. We compared the in vitro biological response with a titanium plasma spray (TPS)-coated titanium alloy (Ti6Al4V) surface with that of a Ti6Al4V surface coated with titanium using direct metal fabrication (DMF) with 3D printing technologies. Methods The in vitro ability of human osteoblasts to adhere to TPS-coated Ti6Al4V was compared with DMF-coating. Scanning electron microscopy (SEM) was used to assess the structure and morphology of the surfaces. Biological and morphological responses to human osteoblast cell lines were then examined by measuring cell proliferation, alkaline phosphatase activity, actin filaments, and RUNX2 gene expression. Results Morphological assessment of the cells after six hours of incubation using SEM showed that the TPS- and DMF-coated surfaces were largely covered with lamellipodia from the osteoblasts. Cell adhesion appeared similar in both groups. The differences in the rates of cell proliferation and alkaline phosphatase activities were not statistically significant. Conclusions The DMF coating applied using metal 3D printing is similar to the TPS coating, which is the most common coating process used for bone ingrowth. The DMF method provided an acceptable surface structure and a viable biological surface. Moreover, this method is automatable and less complex than plasma spraying. Cite this article: T. Shin, D. Lim, Y. S. Kim, S. C. Kim, W. L. Jo, Y. W. Lim. The biological response to laser-aided direct metal-coated Titanium alloy (Ti6Al4V). Bone Joint Res 2018;7:357–361. DOI: 10.1302/2046-3758.75.BJR-2017-0222.R1. PMID:29922456

  9. Transient atomic behavior and surface kinetics of GaN

    NASA Astrophysics Data System (ADS)

    Moseley, Michael; Billingsley, Daniel; Henderson, Walter; Trybus, Elaissa; Doolittle, W. Alan

    2009-07-01

    An in-depth model for the transient behavior of metal atoms adsorbed on the surface of GaN is developed. This model is developed by qualitatively analyzing transient reflection high energy electron diffraction (RHEED) signals, which were recorded for a variety of growth conditions of GaN grown by molecular-beam epitaxy (MBE) using metal-modulated epitaxy (MME). Details such as the initial desorption of a nitrogen adlayer and the formation of the Ga monolayer, bilayer, and droplets are monitored using RHEED and related to Ga flux and shutter cycles. The suggested model increases the understanding of the surface kinetics of GaN, provides an indirect method of monitoring the kinetic evolution of these surfaces, and introduces a novel method of in situ growth rate determination.

  10. Laser removal of sludge from steam generators

    DOEpatents

    Nachbar, Henry D.

    1990-01-01

    A method of removing unwanted chemical deposits known as sludge from the metal surfaces of steam generators with laser energy is provided. Laser energy of a certain power density, of a critical wavelength and frequency, is intermittently focused on the sludge deposits to vaporize them so that the surfaces are cleaned without affecting the metal surface (sludge substrate). Fiberoptic tubes are utilized for laser beam transmission and beam direction. Fiberoptics are also utilized to monitor laser operation and sludge removal.

  11. Silicon micro-mold and method for fabrication

    DOEpatents

    Morales, Alfredo M.

    2005-01-11

    The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon micro-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.

  12. NO.sub.x catalyst and method of suppressing sulfate formation in an exhaust purification system

    DOEpatents

    Balmer-Millar, Mari Lou [Chillicothe, IL; Park, Paul W [Peoria, IL; Panov, Alexander G [Peoria, IL

    2007-06-26

    The activity and durability of a zeolite lean-burn NOx catalyst can be increased by loading metal cations on the outer surface of the zeolite. However, the metal loadings can also oxidize sulfur dioxide to cause sulfate formation in the exhaust. The present invention is a method of suppressing sulfate formation in an exhaust purification system including a NO.sub.x catalyst. The NO.sub.x catalyst includes a zeolite loaded with at least one metal. The metal is selected from among an alkali metal, an alkaline earth metal, a lanthanide metal, a noble metal, and a transition metal. In order to suppress sulfate formation, at least a portion of the loaded metal is complexed with at least one of sulfate, phosphate, and carbonate.

  13. NO.sub.x catalyst and method of suppressing sulfate formation in an exhaust purification system

    DOEpatents

    Balmer-Millar, Mari Lou; Park, Paul W.; Panov, Alexander G.

    2006-08-22

    The activity and durability of a zeolite lean-bum NOx catalyst can be increased by loading metal cations on the outer surface of the zeolite. However, the metal loadings can also oxidize sulfur dioxide to cause sulfate formation in the exhaust. The present invention is a method of suppressing sulfate formation in an exhaust purification system including a NO.sub.x catalyst. The NO.sub.x catalyst includes a zeolite loaded with at least one metal. The metal is selected from among an alkali metal, an alkaline earth metal, a lanthanide metal, a noble metal, and a transition metal. In order to suppress sulfate formation, at least a portion of the loaded metal is complexed with at least one of sulfate, phosphate, and carbonate.

  14. Micrographic detection of plastic deformation in nickel base alloys

    DOEpatents

    Steeves, Arthur F.; Bibb, Albert E.

    1984-01-01

    A method for detecting low levels of plastic deformation in metal articles comprising electrolytically etching a flow free surface of the metal article with nital at a current density of less than about 0.1 amp/cm.sup.2 and microscopically examining the etched surface to determine the presence of alternating striations. The presence of striations indicates plastic deformation in the article.

  15. Micrographic detection of plastic deformation in nickel-base alloys

    DOEpatents

    Steeves, A.F.; Bibb, A.E.

    1980-09-20

    A method for detecting low levels of plastic deformation in metal articles comprising electrolytically etching a flow free surface of the metal article with nital at a current density of less than about 0.1 amp/cm/sup 2/ and microscopically examining the etched surface to determine the presence of alternating striations. The presence of striations indicates plastic deformation in the article.

  16. Ab Initio Studies of Metal Hexaboride Materials

    NASA Astrophysics Data System (ADS)

    Schmidt, Kevin M.

    Metal hexaborides are refractory ceramics with several qualities relevant to materials design, such as low work functions, high hardness, low thermal expansion coefficients, and high melting points, among many other properties of interest for industrial applications. Thermal and mechanical stability is a common feature provided by the covalently-bonded network boron atoms, and electronic properties can vary significantly with the resident metal. While these materials are currently employed as electron emitters and abrasives, promising uses of these materials also include catalytic applications for chemical dissociation reactions of various molecules such as hydrogen, water and carbon monoxide, for example. However, these extensions require a thorough understanding of particular mechanical and electronic properties. This dissertation is a collection of studies focused on understanding the behavior of metal hexaboride materials using computational modeling methods to investigate materials properties of these from both classical and quantum mechanical points of view. Classical modeling is performed using molecular dynamics methods with interatomic potentials obtained from density functional theory (DFT) calculations. Atomic mean-square displacements from the quasi-harmonic approximation and lattice energetic data are produced with DFT for developing the potentials. A generalized method was also developed for the inversion of cohesive energy curves of crystalline materials; pairwise interatomic potentials are extracted using detailed geometrical descriptions of the atomic interactions and a list of atomic displacements and degeneracies. The surface structure of metal hexaborides is studied with DFT using several model geometries to describe the terminal cation layouts, and these provide a basis for further studies on metal hexaboride interactions with hydrogen. The surface electronic structure calculations show that segregated regions of metal and boron-terminations produce the lowest energies for di-cations of CaB6, SrB6 and BaB6, while tri-valent LaB6 minimizes its surface energy by arranging the metal ions in parallel rows on the surface. Studies involving hydrogen suggest that a single molecule per surface unit-cell is possible, and evidence is given for a dissociative adsorption pathway. Ternary mixtures of metal hexaborides containing two alkaline-earth cations in each crystal are also investigated with electronic structure methods. Multiple geometries are used to understand how spatial arrangements of cations within the mixture can affect properties related to stability. Bond-lengths within the boron framework are found to be heavily dependent upon the local cation environment, and energies taken at absolute zero suggest certain stoichiometries naturally lead to phase splitting.

  17. Multi-functional micro electromechanical devices and method of bulk manufacturing same

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor)

    2004-01-01

    A method of bulk manufacturing SiC sensors is disclosed and claimed. Materials other than SiC may be used as the substrate material. Sensors requiring that the SiC substrate be pierced are also disclosed and claimed. A process flow reversal is employed whereby the metallization is applied first before the recesses are etched into or through the wafer. Aluminum is deposited on the entire planar surface of the metallization. Photoresist is spun onto the substantially planar surface of the Aluminum which is subsequently masked (and developed and removed). Unwanted Aluminum is etched with aqueous TMAH and subsequently the metallization is dry etched. Photoresist is spun onto the still substantially planar surface of Aluminum and oxide and then masked (and developed and removed) leaving the unimidized photoresist behind. Next, ITO is applied over the still substantially planar surface of Aluminum, oxide and unimidized photoresist. Unimidized and exposed photoresist and ITO directly above it are removed with Acetone. Next, deep reactive ion etching attacks exposed oxide not protected by ITO. Finally, hot phosphoric acid removes the Al and ITO enabling wires to connect with the metallization. The back side of the SiC wafer may be also be etched.

  18. In situ fabrication of electrochemically grown mesoporous metallic thin films by anodic dissolution in deep eutectic solvents.

    PubMed

    Renjith, Anu; Roy, Arun; Lakshminarayanan, V

    2014-07-15

    We describe here a simple electrodeposition process of forming thin films of noble metallic nanoparticles such as Au, Ag and Pd in deep eutectic solvents (DES). The method consists of anodic dissolution of the corresponding metal in DES followed by the deposition on the cathodic surface. The anodic dissolution process in DES overcomes the problems associated with copious hydrogen and oxygen evolution on the electrode surface when carried out in aqueous medium. The proposed method utilizes the inherent abilities of DES to act as a reducing medium while simultaneously stabilizing the nanoparticles that are formed. The mesoporous metal films were characterized by SEM, XRD and electrochemical techniques. Potential applications of these substrates in surface enhanced Raman spectroscopy and electrocatalysis have been investigated. A large enhancement of Raman signal of analyte was achieved on the mesoporous silver substrate after removing all the stabilizer molecules from the surface by calcination. The highly porous texture of the electrodeposited film provides superior electro catalytic performance for hydrogen evolution reaction (HER). The mechanisms of HER on the fabricated substrates were studied by Tafel analysis and electrochemical impedance spectroscopy (EIS). Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Transmission characteristics of a subwavelength metallic slit with perpendicular groove

    NASA Astrophysics Data System (ADS)

    Jin, Li; Zhou, Jun; Zou, Weibo; Zhang, Haopeng; Zhang, Lingfen

    2011-12-01

    The transmission property of a subwavelength metallic slit with perpendicular groove is investigated by using finite element method. The lengths for the slits at both sides of the groove are set as the length of a metallic slit without groove at the surface plasmon fundamental mode resonance. In the grooved subwavelength metallic slit, enhanced transmission is found to be attributed to two kinds of resonance including surface plasmon waveguide resonance along the propagating direction and the transversely constructive interferential resonance. For the former resonance, integer antinodes of surface plasmon are formed in the groove. For the later resonance, there is a tradeoff between the maximum amplitude and the full width at half maximum of the transmitted peaks with the change of the groove width. And, the transmission enhancement of the grooved subwavelength metallic slit is related to the number of groove and the incident wavelength. Furthermore, the above resonances also exist in the structure whose lengths of metallic slits are set as the length of a slit without groove at the surface plasmon high-order mode resonance. By optimizing the geometric parameters, the transmission enhancement of the grooved subwavelength metallic slit as high as about 15367% is achieved.

  20. Spatial resolution versus contrast trade-off enhancement in high-resolution surface plasmon resonance imaging (SPRI) by metal surface nanostructure design.

    PubMed

    Banville, Frederic A; Moreau, Julien; Sarkar, Mitradeep; Besbes, Mondher; Canva, Michael; Charette, Paul G

    2018-04-16

    Surface plasmon resonance imaging (SPRI) is an optical near-field method used for mapping the spatial distribution of chemical/physical perturbations above a metal surface without exogenous labeling. Currently, the majority of SPRI systems are used in microarray biosensing, requiring only modest spatial resolution. There is increasing interest in applying SPRI for label-free near-field imaging of biological cells to study cell/surface interactions. However, the required resolution (sub-µm) greatly exceeds what current systems can deliver. Indeed, the attenuation length of surface plasmon polaritons (SPP) severely limits resolution along one axis, typically to tens of µm. Strategies to date for improving spatial resolution result in a commensurate deterioration in other imaging parameters. Unlike the smooth metal surfaces used in SPRI that support purely propagating surface modes, nanostructured metal surfaces support "hybrid" SPP modes that share attributes from both propagating and localized modes. We show that these hybrid modes are especially well-suited to high-resolution imaging and demonstrate how the nanostructure geometry can be designed to achieve sub-µm resolution while mitigating the imaging parameter trade-off according to an application-specific optimum.

  1. Quantitation of Surface Coating on Nanoparticles Using Thermogravimetric Analysis.

    PubMed

    Dongargaonkar, Alpana A; Clogston, Jeffrey D

    2018-01-01

    Nanoparticles are critical components in nanomedicine and nanotherapeutic applications. Some nanoparticles, such as metallic nanoparticles, consist of a surface coating or surface modification to aid in its dispersion and stability. This surface coating may affect the behavior of nanoparticles in a biological environment, thus it is important to measure. Thermogravimetric analysis (TGA) can be used to determine the amount of coating on the surface of the nanoparticle. TGA experiments run under inert atmosphere can also be used to determine residual metal content present in the sample. In this chapter, the TGA technique and experimental method are described.

  2. Ejection of Particles from the Free Surface of Shock-Loaded Lead into Vacuum and Gas Medium

    NASA Astrophysics Data System (ADS)

    Ogorodnikov, V. A.; Mikhailov, A. L.; Erunov, S. V.; Antipov, M. V.; Fedorov, A. V.; Syrunin, M. A.; Kulakov, E. V.; Kleshchevnikov, O. A.; Yurtov, I. V.; Utenkov, A. A.; Finyushin, S. A.; Chudakov, E. A.; Kalashnikov, D. A.; Pupkov, A. S.; Chapaev, A. V.; Mishanov, A. V.; Glushikhin, V. V.; Fedoseev, A. V.; Tagirov, R. R.; Kostyukov, S. A.; Tagirova, I. Yu.; Saprykina, E. V.

    2017-12-01

    The presence and behavior of a gas-metal interfacial layer at the free surface of shock-wave driven flying vehicles in gases of various compositions and densities has not been sufficiently studied so far. We present new comparative data on "dusting" from the free surface of lead into vacuum and gas as dependent on the surface roughness, pressure amplitude at the shock-wave front, and phase state of the material. Methods of estimating the mass flux of ejected particles in the presence of a gas medium at the free metal surface are proposed.

  3. Optical Production and Detection of Ultrasonic Waves in Metals for Nondestructive Testing

    NASA Technical Reports Server (NTRS)

    Morrison, R. A.

    1972-01-01

    Ultrasonic waves were produced by striking the surface of a metal with the focused one-joule pulse of a Q-switched ruby laser. Rayleigh (surface) waves and longitudinal waves were detected with conventional transducers. Optical methods of detection were tested and developed. Rayleigh waves were produced with an oscillator and transducer. They were optically detected on curved polished surfaces, and on unpolished surfaces. The technique uses a knife edge to detect small angle changes of the surface as the wave pulse passes the illuminated spot. Optical flaw detection using pulse echo and attenuation is demonstrated.

  4. Method and apparatus for rapid biohydrogen phenotypic screening of microorganisms using a chemochromic sensor

    DOEpatents

    Seibert, Michael; Benson, David K.; Flynn, Timothy Michael

    2001-01-01

    The invention provides an assay system for identifying a hydrogen-gas-producing organism, including a sensor film having a first layer comprising a transition metal oxide or oxysalt and a second layer comprising hydrogen-dissociative catalyst metal, the first and second layers having an inner and an outer surface wherein the inner surface of the second layer is deposited on the outer surface of the first layer, and a substrate disposed proximally to the outer surface of the second layer, the organism being isolated on the substrate.

  5. Ecological risk assessment of heavy metals in surface seawater and sediment near the outlet of a zinc factory in Huludao City, Liaoning Province, China

    NASA Astrophysics Data System (ADS)

    Feng, Yongliang; Chen, Yanzhen; Wang, Jing; Gong, Yufeng; Liu, Xigang; Mu, Gang; Tian, Hua

    2016-11-01

    At present, the methods widely applied to assess ecological risk of heavy metals are essentially single-point estimates in which exposure and toxicity data cannot be fully used and probabilities of adverse biological eff ects cannot be achieved. In this study, based on investigation of concentrations of six heavy metals (As, Hg, Pb, Cd, Cu, and Zn) in the surface seawater and sediment near the outlet of a zinc factory, located in Huludao City, Liaoning Province, China, a tiered approach consisting of several probabilistic options was used to refine ecological risk assessment for the individuals. A mixture of various heavy metals was detected in the surface seawater, and potential ecological risk index (PERI) was adopted to assess the potential ecological risk of heavy metals in the surface sediment. The results from all levels of aquatic ecological risk assessment in the tiered framework, ranging from comparison of single eff ects and exposure values to the use of distribution-based Hazard Quotient obtained through Monte Carlo simulation, are consistent with each other. Briefly, aquatic Zn and Cu posed a clear ecological risk, while Cd, Pb, Hg, and As in the water column posed potential risk. As expected, combined ecological risk of heavy metal mixture in the surface seawater was proved significantly higher than the risk caused by any individual heavy metal, calculated using the concept of total equivalent concentration. According to PERI, the severity of pollution by the six heavy metals in the surface sediment decreased in the following sequence: Cd>Hg>As>Pb>Cu>Zn, and the total heavy metals in the sediment posed a very high risk to the marine environment. This study provides a useful mathematical framework for ecological risk assessment of heavy metals.

  6. Using expansive grasses for monitoring heavy metal pollution in the vicinity of roads.

    PubMed

    Vachová, Pavla; Vach, Marek; Najnarová, Eva

    2017-10-01

    We propose a method for monitoring heavy metal deposition in the vicinity of roads using the leaf surfaces of two expansive grass species which are greatly abundant. A principle of the proposed procedure is to minimize the number of operations in collecting and preparing samples for analysis. The monitored elements are extracted from the leaf surfaces using dilute nitric acid directly in the sample-collection bottle. The ensuing steps, then, are only to filter the extraction solution and the elemental analysis itself. The verification results indicate that the selected grasses Calamagrostis epigejos and Arrhenatherum elatius are well suited to the proposed procedure. Selected heavy metals (Zn, Cu, Pb, Ni, Cr, and Cd) in concentrations appropriate for direct determination using methods of elemental analysis can be extracted from the surface of leaves of these species collected in the vicinity of roads with medium traffic loads. Comparing the two species showed that each had a different relationship between the amounts of deposited heavy metals and distance from the road. This disparity can be explained by specific morphological properties of the two species' leaf surfaces. Due to the abundant occurrence of the two species and the method's general simplicity and ready availability, we regard the proposed approach to constitute a broadly usable and repeatable one for producing reproducible results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Heavy-metal contamination on training ranges at the Grafenwoehr Training Area, Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zellmer, S.D.; Schneider, J.F.

    1993-05-01

    Large quantities of lead and other heavy metals are deposited in the environment of weapons ranges during training exercises. This study was conducted to determine the type, degree, and extent of heavy-metal contamination on selected handgun, rifle, and hand-grenade ranges at Grafenwoehr Training Area, Germany. Soil, vegetation, and surface-water samples were collected and analyzed using the inductively-coupled plasma atomic-emission spectroscopy (ICP-AES) method and the toxic characterization leaching procedure (TCLP). The ICP-AES results show that above-normal levels of lead and copper are in the surface soil at the handgun range, high concentrations of lead and copper are in the berm andmore » soil surface at the rifle range, and elevated levels of cadmium and above-normal concentrations of arsenic, copper, and zinc are present in the surface soil at the hand-grenade range. The TCLP results show that surface soils can be considered hazardous waste because of lead content at the rifle range and because of cadmium concentration at the hand-grenade range. Vegetation at the handgun and rifle ranges has above-normal concentrations of lead. At the hand-grenade range, both vegetation and surface water have high levels of cadmium. A hand-held X-ray fluorescence (XRF) spectrum analyzer was used to measure lead concentrations in soils in a field test of the method. Comparison of XRF readings with ICP-AES results for lead indicate that the accuracy and precision of the hand-held XRF unit must improve before the unit can be used as more than a screening tool. Results of this study show that heavy-metal contamination at all three ranges is limited to the surface soil; heavy metals are not being leached into the soil profile or transported into adjacent areas.« less

  8. 21 CFR 888.3540 - Knee joint patellofemoral polymer/metal semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...: Articulating Surfaces Made of Metal, Ceramic and Plastic Materials,” and (viii) ISO 9001:1994 “Quality Systems... of Porous Metal Coatings,” (v) F 1108-97 “Titanium-6 Aluminum-4 Vanadium Alloy Castings for Surgical Implants,” (vi) F 1147-95 “Test Method for Tension Testing of Porous Metal Coatings,” (vii) F 1537-94...

  9. 21 CFR 888.3540 - Knee joint patellofemoral polymer/metal semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...: Articulating Surfaces Made of Metal, Ceramic and Plastic Materials,” and (viii) ISO 9001:1994 “Quality Systems... of Porous Metal Coatings,” (v) F 1108-97 “Titanium-6 Aluminum-4 Vanadium Alloy Castings for Surgical Implants,” (vi) F 1147-95 “Test Method for Tension Testing of Porous Metal Coatings,” (vii) F 1537-94...

  10. 21 CFR 888.3540 - Knee joint patellofemoral polymer/metal semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...: Articulating Surfaces Made of Metal, Ceramic and Plastic Materials,” and (viii) ISO 9001:1994 “Quality Systems... of Porous Metal Coatings,” (v) F 1108-97 “Titanium-6 Aluminum-4 Vanadium Alloy Castings for Surgical Implants,” (vi) F 1147-95 “Test Method for Tension Testing of Porous Metal Coatings,” (vii) F 1537-94...

  11. Corrugated metal surface with pillars for terahertz surface plasmon polariton waveguide components

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Xu, Yuehong; Tian, Chunxiu; Xu, Quan; Zhang, Xueqian; Li, Yanfeng; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2018-01-01

    In the terahertz regime, due to perfect conductivity of most metals, it is hard to realize a strong confinement of Surface plasmon polaritons (SPPs) although a propagation loss could be sufficiently low. We experimentally demonstrated a structure with periodic pillars arranged on a thin metal surface that supports bound modes of spoof SPPs at terahertz (THz) frequencies. By using scanning near-field THz microscopy, the electric field distribution above the metal surface within a distance of 130 μm was mapped. The results proved that this structure could guide spoof SPPs propagating along subwavelength waveguides, and at the same time reduce field expansion into free space. Further, for the development of integrated optical circuits, several components including straight waveguide, S-bend, Y-splitter and directional couplers were designed and characterized by the same method. We believe that the waveguide components proposed here will pave a new way for the development of flexible, wideband and compact photonic circuits operating at THz frequencies.

  12. The Role of Electronic Excitations on Chemical Reaction Dynamics at Metal, Semiconductor and Nanoparticle Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tully, John C.

    Chemical reactions are often facilitated and steered when carried out on solid surfaces, essential for applications such as heterogeneous catalysis, solar energy conversion, corrosion, materials processing, and many others. A critical factor that can determine the rates and pathways of chemical reactions at surfaces is the efficiency and specificity of energy transfer; how fast does energy move around and where does it go? For reactions on insulator surfaces energy transfer generally moves in and out of vibrations of the adsorbed molecule and the underlying substrate. By contrast, on metal surfaces, metallic nanoparticles and semiconductors, another pathway for energy flow opensmore » up, excitation and de-excitation of electrons. This so-called “nonadiabatic” mechanism often dominates the transfer of energy and can directly impact the course of a chemical reaction. Conventional computational methods such as molecular dynamics simulation do not account for this nonadiabatic behavior. The current DOE-BES funded project has focused on developing the underlying theoretical foundation and the computational methodology for the prediction of nonadiabatic chemical reaction dynamics at surfaces. The research has successfully opened up new methodology and new applications for molecular simulation. In particular, over the last three years, the “Electronic Friction” theory, pioneered by the PI, has now been developed into a stable and accurate computational method that is sufficiently practical to allow first principles “on-the-fly” simulation of chemical reaction dynamics at metal surfaces.« less

  13. Adsorbed radioactivity and radiographic imaging of surfaces of stainless steel and titanium

    NASA Astrophysics Data System (ADS)

    Jung, Haijo

    1997-11-01

    Type 304 stainless steel used for typical surface materials of spent fuel shipping casks and titanium were exposed in the spent fuel storage pool of a typical PWR power plant. Adsorption characteristics, effectiveness of decontamination by water cleaning and by electrocleaning, and swipe effectiveness on the metal surfaces were studied. A variety of environmental conditions had been manipulated to stimulate the potential 'weeping' phenomenon that often occurs with spent fuel shipping casks during transit. In a previous study, few heterogeneous effects of adsorbed contamination onto metal surfaces were observed. Radiographic images of cask surfaces were made in this study and showed clearly heterogeneous activity distributions. Acquired radiographic images were digitized and further analyzed with an image analysis computer package and compared to calibrated images by using standard sources. The measurements of activity distribution by using the radiographic image method were consistent with that using a HPGe detector. This radiographic image method was used to study the effects of electrocleaning for total and specified areas. The Modulation Transfer Function (MTF) of a film-screen system in contact with a radioactive metal surface was studied with neutron activated gold foils and showed more broad resolution properties than general diagnostic x-ray film-screen systems. Microstructure between normal areas and hot spots showed significant differences, and one hot spot appearing as a dot on the film image consisted of several small hot spots (about 10 μm in diameter). These hot spots were observed as structural defects of the metal surfaces.

  14. COATING URANIUM FROM CARBONYLS

    DOEpatents

    Gurinsky, D.H.; Storrs, S.S.

    1959-07-14

    Methods are described for making adherent corrosion resistant coatings on uranium metal. According to the invention, the uranium metal is heated in the presence of an organometallic compound such as the carbonyls of nickel, molybdenum, chromium, niobium, and tungsten at a temperature sufficient to decompose the metal carbonyl and dry plate the resultant free metal on the surface of the uranium metal body. The metal coated body is then further heated at a higher temperature to thermally diffuse the coating metal within the uranium bcdy.

  15. High performance cermet electrodes

    DOEpatents

    Isenberg, Arnold O.; Zymboly, Gregory E.

    1986-01-01

    Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.

  16. Resolving colocalization of bacteria and metal(loid)s on plant root surfaces by combining fluorescence in situ hybridization (FISH) with multiple-energy micro-focused X-ray fluorescence (ME μXRF).

    PubMed

    Honeker, Linnea K; Root, Robert A; Chorover, Jon; Maier, Raina M

    2016-12-01

    Metal(loid)-contamination of the environment due to anthropogenic activities is a global problem. Understanding the fate of contaminants requires elucidation of biotic and abiotic factors that influence metal(loid) speciation from molecular to field scales. Improved methods are needed to assess micro-scale processes, such as those occurring at biogeochemical interfaces between plant tissues, microbial cells, and metal(loid)s. Here we present an advanced method that combines fluorescence in situ hybridization (FISH) with synchrotron-based multiple-energy micro-focused X-ray fluorescence microprobe imaging (ME μXRF) to examine colocalization of bacteria and metal(loid)s on root surfaces of plants used to phytostabilize metalliferous mine tailings. Bacteria were visualized on a small root section using SytoBC nucleic acid stain and FISH probes targeting the domain Bacteria and a specific group (Alphaproteobacteria, Gammaproteobacteria, or Actinobacteria). The same root region was then analyzed for elemental distribution and metal(loid) speciation of As and Fe using ME μXRF. The FISH and ME μXRF images were aligned using ImageJ software to correlate microbiological and geochemical results. Results from quantitative analysis of colocalization show a significantly higher fraction of As colocalized with Fe-oxide plaques on the root surfaces (fraction of overlap 0.49±0.19) than to bacteria (0.072±0.052) (p<0.05). Of the bacteria that colocalized with metal(loid)s, Actinobacteria, known for their metal tolerance, had a higher correlation with both As and Fe than Alphaproteobacteria or Gammaproteobacteria. This method demonstrates how coupling these micro-techniques can expand our understanding of micro-scale interactions between roots, metal(loid)s and microbes, information that should lead to improved mechanistic models of metal(loid) speciation and fate. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Method of Obtaining Uniform Coatings on Graphite

    DOEpatents

    Campbell, I. E.

    1961-04-01

    A method is given for obtaining uniform carbide coatings on graphite bodies. According to the invention a metallic halide in vapor form is passed over the graphite body under such conditions of temperature and pressure that the halide reacts with the graphite to form a coating of the metal carbide on the surface of the graphite.

  18. METHOD OF OBTAINING UNIFORM COATINGS ON GRAPHITE

    DOEpatents

    Campbell, I.E.

    1961-04-01

    A method is given for obtaining uniform carbide coatings on graphite bodies. According to the invention a metallic halide in vapor form is passed over the graphite body under such conditions of temperature and pressure that the halide reacts with the graphite to form a coating of the metal carbide on the surface of the graphite.

  19. Collaborative research in tunneling and field emission pumped surface wave local oscillators and amplifiers for infrared and submillimeter wavelengths under director's discretionary fund

    NASA Technical Reports Server (NTRS)

    Gustafson, T. K.

    1982-01-01

    Progress is reported in work towards the development of surface wave sources for the infrared and sub-millimeter portion of the spectrum to be based upon electron pumping by tunneling electrons in metal-barrier-metal or metal-barrier-semiconductor devices. Tunneling phenomena and the coupling of radiation to tunnel junctions were studied. The propagation characteristics of surface electro-magnetic modes in metal-insulator-p(++) semiconductor structures as a function of frequency were calculated. A model for the gain process based upon Tucker's formalism was developed and used to estimate what low frequency gain might be expected from such structures. The question of gain was addressed from a more fundamental viewpoint using the method of Lasher and Stern.

  20. Surface engineered nanoparticles for improved surface enhanced Raman scattering applications and method for preparing same

    DOEpatents

    Simmons, Blake A [San Francisco, CA; Talin, Albert Alec [Livermore, CA

    2009-11-27

    A method for producing metal nanoparticles that when associated with an analyte material will generate an amplified SERS spectrum when the analyte material is illuminated by a light source and a spectrum is recorded. The method for preparing the metal nanoparticles comprises the steps of (i) forming a water-in-oil microemulsion comprising a bulk oil phase, a dilute water phase, and one or more surfactants, wherein the water phase comprises a transition metal ion; (ii) adding an aqueous solution comprising a mild reducing agent to the water-in-oil microemulsion; (iii) stirring the water-in-oil microemulsion and aqueous solution to initiate a reduction reaction resulting in the formation of a fine precipitate dispersed in the water-in-oil microemulsion; and (iv) separating the precipitate from the water-in-oil microemulsion.

  1. Morphology and dispersion of FeCo alloy nanoparticles dispersed in a matrix of IR pyrolized polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Vasilev, A. A.; Dzidziguri, E. L.; Muratov, D. G.; Zhilyaeva, N. A.; Efimov, M. N.; Karpacheva, G. P.

    2018-04-01

    Metal-carbon nanocomposites consisting of FeCo alloy nanoparticles dispersed in a carbon matrix were synthesized by the thermal decomposition method of a precursor based on polyvinyl alcohol and metals salts. The synthesized powders were investigated by X-ray diffraction (XRD), X-ray fluorescent spectrometry (XRFS), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Surface characteristics of materials were measured by BET-method. The morphology and dispersity of metal nanoparticles were studied depending on the metals ratio in the composite.

  2. Method and apparatus for imparting strength to a material using sliding loads

    DOEpatents

    Hughes, Darcy Anne; Dawson, Daniel B.; Korellis, John S.

    1999-01-01

    A method of enhancing the strength of metals by affecting subsurface zones developed during the application of large sliding loads. Stresses which develop locally within the near surface zone can be many times larger than those predicted from the applied load and the friction coefficient. These stress concentrations arise from two sources: 1) asperity interactions and 2) local and momentary bonding between the two surfaces. By controlling these parameters more desirable strength characteristics can be developed in weaker metals to provide much greater strength to rival that of steel, for example.

  3. Method And Apparatus For Imparting Strength To Materials Using Sliding Loads

    DOEpatents

    Hughes, Darcy Anne; Dawson, Daniel B.; Korellis, John S.

    1999-03-16

    A method of enhancing the strength of metals by affecting subsurface zones developed during the application of large sliding loads. Stresses which develop locally within the near surface zone can be many times larger than those predicted from the applied load and the friction coefficient. These stress concentrations arise from two sources: 1) asperity interactions and 2) local and momentary bonding between the two surfaces. By controlling these parameters more desirable strength characteristics can be developed in weaker metals to provide much greater strength to rival that of steel, for example.

  4. Method for preparing a thick film conductor

    DOEpatents

    Nagesh, Voddarahalli K.; Fulrath, deceased, Richard M.

    1978-01-01

    A method for preparing a thick film conductor which comprises providing surface active glass particles, mixing the surface active glass particles with a thermally decomposable organometallic compound, for example, a silver resinate, and then decomposing the organometallic compound by heating, thereby chemically depositing metal on the glass particles. The glass particle mixture is applied to a suitable substrate either before or after the organometallic compound is thermally decomposed. The resulting system is then fired in an oxidizing atmosphere, providing a microstructure of glass particles substantially uniformly coated with metal.

  5. Nanophotonics of biomaterials and inorganic nanostructures

    NASA Astrophysics Data System (ADS)

    Petrik, P.; Agocs, E.; Kalas, B.; Fodor, B.; Lohner, T.; Nador, J.; Saftics, A.; Kurunczi, S.; Novotny, T.; Perez-Feró, E.; Nagy, R.; Hamori, A.; Horvath, R.; Hózer, Z.; Fried, M.

    2017-01-01

    Optical methods have been used for the sensitive characterization of surfaces and thin films for more than a century. The first ellipsometric measurement was conducted on metal surfaces by Paul Drude in 1889. The word ‘ellipsometer’ was first used by Rothen in a study of antigen-antibody interactions on polished metal surfaces in 1945. The ‘bible’ of ellipsometry has been published in the second half of the ‘70s. The publications in the topic of ellipsometry started to increase rapidly by the end of the ‘80s, together with concepts like surface plasmon resonance, later new topics like photonic crystals emerged. These techniques find applications in many fields, including sensorics or photovoltaics. In optical sensorics, the highest sensitivities were achieved by waveguide interferometry and plasmon resonance configurations. The instrumentation of ellipsometry is also being developed intensively towards higher sensitivity and performance by combinations with plasmonics, scatterometry, imaging or waveguide methods, utilizing the high sensitivity, high speed, non-destructive nature and mapping capabilities. Not only the instrumentation but also the methods of evaluation show a significant development, which leads to the characterization of structures with increasing complexity, including photonic, porous or metal surfaces. This article discusses a selection of interesting applications of photonics in the Centre for Energy Research of the Hungarian Academy of Sciences.

  6. Mesoporous metal oxide graphene nanocomposite materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Kou, Rong; Wang, Donghai

    2016-05-24

    A nanocomposite material formed of graphene and a mesoporous metal oxide having a demonstrated specific capacity of more than 200 F/g with particular utility when employed in supercapacitor applications. A method for making these nanocomposite materials by first forming a mixture of graphene, a surfactant, and a metal oxide precursor, precipitating the metal oxide precursor with the surfactant from the mixture to form a mesoporous metal oxide. The mesoporous metal oxide is then deposited onto a surface of the graphene.

  7. Method of bonding metals to ceramics

    DOEpatents

    Maroni, V.A.

    1991-04-23

    A ceramic or glass having a thin layer of silver, gold or alloys thereof at the surface thereof is disclosed. A first metal is bonded to the thin layer and a second metal is bonded to the first metal. The first metal is selected from the class consisting of In, Ga, Sn, Bi, Zn, Cd, Pb, Tl and alloys thereof, and the second metal is selected from the class consisting of Cu, Al, Pb, Au and alloys thereof. 3 figures.

  8. Platinum-coated non-noble metal-noble metal core-shell electrocatalysts

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang; Mo, Yibo; Vukmirovic, Miomir

    2015-04-14

    Core-shell particles encapsulated by a thin film of a catalytically active metal are described. The particles are preferably nanoparticles comprising a non-noble core with a noble metal shell which preferably do not include Pt. The non-noble metal-noble metal core-shell nanoparticles are encapsulated by a catalytically active metal which is preferably Pt. The core-shell nanoparticles are preferably formed by prolonged elevated-temperature annealing of nanoparticle alloys in an inert environment. This causes the noble metal component to surface segregate and form an atomically thin shell. The Pt overlayer is formed by a process involving the underpotential deposition of a monolayer of a non-noble metal followed by immersion in a solution comprising a Pt salt. A thin Pt layer forms via the galvanic displacement of non-noble surface atoms by more noble Pt atoms in the salt. The overall process is a robust and cost-efficient method for forming Pt-coated non-noble metal-noble metal core-shell nanoparticles.

  9. Modifying Surface Chemistry of Metal Oxides for Boosting Dissolution Kinetics in Water by Liquid Cell Electron Microscopy.

    PubMed

    Lu, Yue; Geng, Jiguo; Wang, Kuan; Zhang, Wei; Ding, Wenqiang; Zhang, Zhenhua; Xie, Shaohua; Dai, Hongxing; Chen, Fu-Rong; Sui, Manling

    2017-08-22

    Dissolution of metal oxides is fundamentally important for understanding mineral evolution and micromachining oxide functional materials. In general, dissolution of metal oxides is a slow and inefficient chemical reaction. Here, by introducing oxygen deficiencies to modify the surface chemistry of oxides, we can boost the dissolution kinetics of metal oxides in water, as in situ demonstrated in a liquid environmental transmission electron microscope (LETEM). The dissolution rate constant significantly increases by 16-19 orders of magnitude, equivalent to a reduction of 0.97-1.11 eV in activation energy, as compared with the normal dissolution in acid. It is evidenced from the high-resolution TEM imaging, electron energy loss spectra, and first-principle calculations where the dissolution route of metal oxides is dynamically changed by local interoperability between altered water chemistry and surface oxygen deficiencies via electron radiolysis. This discovery inspires the development of a highly efficient electron lithography method for metal oxide films in ecofriendly water, which offers an advanced technique for nanodevice fabrication.

  10. Facile self-assembly and stabilization of metal oxide nanoparticles.

    PubMed

    Charbonneau, Cecile; Holliman, Peter J; Davies, Matthew L; Watson, Trystan M; Worsley, David A

    2015-03-15

    This paper describes a facile method of self-assembling different metal oxide nanoparticles into nanostructured materials via di-carboxylate linkers (oxalic acid) using TiO2 as an example. In this method, the di-carboxylate linkers react with surface hydroxyls on metal oxide nanoparticles forming covalent, ester-like bonds, which enable the binding of two metal oxide particles, one at either end of the linker and facilitates efficient self-assembly of one group of metal oxide nanoparticles homogeneously distributed onto the surface of another group. The oxalate linkers can then be removed by thermal decomposition. This approach is shown to be effective using differently-sized TiO2 nanoparticles, namely in-house synthesized 3-5nm anatase nanocrystals and Degussa P25 titania particles (mean 21nm particle size). Our data show that the application of a high temperature heat treatment (450°C for 30min), conventionally applied to achieve a stable porous structure by thermal decomposition of the linker molecules and by inducing inter-particle necking, damages the surface area of the nanostructured material. However, here we show that sintering at 300°C for 30min or by flash near infrared radiation sintering for 12s efficiently decomposes the oxalate linkers and stabilizes the nanostructure of the material whilst maintaining its high surface area. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. THERMAL DECOMPOSITION OF URANIUM COMPOUNDS

    DOEpatents

    Magel, T.T.; Brewer, L.

    1959-02-10

    A method is presented of preparing uranium metal of high purity consisting contacting impure U metal with halogen vapor at between 450 and 550 C to form uranium halide vapor, contacting the uranium halide vapor in the presence of H/sub 2/ with a refractory surface at about 1400 C to thermally decompose the uranium halides and deposit molten U on the refractory surface and collecting the molten U dripping from the surface. The entire operation is carried on at a sub-atmospheric pressure of below 1 mm mercury.

  12. Surface Tension of Liquid Alkali, Alkaline, and Main Group Metals: Theoretical Treatment and Relationship Investigations

    NASA Astrophysics Data System (ADS)

    Aqra, Fathi; Ayyad, Ahmed

    2011-09-01

    An improved theoretical method for calculating the surface tension of liquid metals is proposed. A recently derived equation that allows an accurate estimate of surface tension to be made for the large number of elements, based on statistical thermodynamics, is used for a means of calculating reliable values for the surface tension of pure liquid alkali, alkaline earth, and main group metals at the melting point, In order to increase the validity of the model, the surface tension of liquid lithium was calculated in the temperature range 454 K to 1300 K (181 °C to 1027 °C), where the calculated surface tension values follow a straight line behavior given by γ = 441 - 0.15 (T-Tm) (mJ m-2). The calculated surface excess entropy of liquid Li (- dγ/ dT) was found to be 0.15 mJ m-2 K-1, which agrees well with the reported experimental value (0.147 mJ/m2 K). Moreover, the relations of the calculated surface tension of alkali metals to atomic radius, heat of fusion, and specific heat capacity are described. The results are in excellent agreement with the existing experimental data.

  13. Control of surface adatom kinetics for the growth of high-indium content InGaN throughout the miscibility gap

    NASA Astrophysics Data System (ADS)

    Moseley, Michael; Lowder, Jonathan; Billingsley, Daniel; Doolittle, W. Alan

    2010-11-01

    The surface kinetics of InGaN alloys grown via metal-modulated epitaxy (MME) are explored in combination with transient reflection high-energy electron diffraction intensities. A method for monitoring and controlling indium segregation in situ is demonstrated. It is found that indium segregation is more accurately associated with the quantity of excess adsorbed metal, rather than the metal-rich growth regime in general. A modified form of MME is developed in which the excess metal dose is managed via shuttered growth, and high-quality InGaN films throughout the miscibility gap are grown.

  14. Containerless Measurement of Thermophysical Properties of Ti-Zr-Ni Alloys

    NASA Technical Reports Server (NTRS)

    Hyers, Robert; Bradshaw, Richard C.; Rogers, Jan C.; Rathz, Thomas J.; Lee, Geun W.; Gangopadhyay, Anup K.; Kelton, Kenneth F.

    2004-01-01

    The surface tension, viscosity, density, and thermal expansion of Ti-Zr-Ni alloys were measured for a number of compositions by electrostatic levitation methods. Containerless methods greatly reduce heterogeneous nucleation, increasing access to the undercooled liquid regime at finite cooling rates. The density and thermal expansion are measured optically, while the surface tension and viscosity are measured by the oscillating drop method. The measured alloys include compositions which form a metastable quasicrystal phase from the undercooled liquid, and alloys close to the composition of several multi-component bulk metallic glass-forming alloys. Measurements of surface tension show behavior typical of transition metals at high temperature, but a sudden decrease in the deeply undercooled liquid for alloys near the quasicrystal-forming composition range, but not for compositions which form the solid-solution phase first.

  15. Adsorption structures and energetics of molecules on metal surfaces: Bridging experiment and theory

    NASA Astrophysics Data System (ADS)

    Maurer, Reinhard J.; Ruiz, Victor G.; Camarillo-Cisneros, Javier; Liu, Wei; Ferri, Nicola; Reuter, Karsten; Tkatchenko, Alexandre

    2016-05-01

    Adsorption geometry and stability of organic molecules on surfaces are key parameters that determine the observable properties and functions of hybrid inorganic/organic systems (HIOSs). Despite many recent advances in precise experimental characterization and improvements in first-principles electronic structure methods, reliable databases of structures and energetics for large adsorbed molecules are largely amiss. In this review, we present such a database for a range of molecules adsorbed on metal single-crystal surfaces. The systems we analyze include noble-gas atoms, conjugated aromatic molecules, carbon nanostructures, and heteroaromatic compounds adsorbed on five different metal surfaces. The overall objective is to establish a diverse benchmark dataset that enables an assessment of current and future electronic structure methods, and motivates further experimental studies that provide ever more reliable data. Specifically, the benchmark structures and energetics from experiment are here compared with the recently developed van der Waals (vdW) inclusive density-functional theory (DFT) method, DFT + vdWsurf. In comparison to 23 adsorption heights and 17 adsorption energies from experiment we find a mean average deviation of 0.06 Å and 0.16 eV, respectively. This confirms the DFT + vdWsurf method as an accurate and efficient approach to treat HIOSs. A detailed discussion identifies remaining challenges to be addressed in future development of electronic structure methods, for which the here presented benchmark database may serve as an important reference.

  16. METAL COATING BATHS

    DOEpatents

    Robinson, J.W.

    1958-08-26

    A method is presented for restoring the effectiveness of bronze coating baths used for hot dip coating of uranium. Such baths, containing a high proportion of copper, lose their ability to wet uranium surfaces after a period of use. The ability of such a bath to wet uranium can be restored by adding a small amount of metallic aluminum to the bath, and skimming the resultant hard alloy from the surface.

  17. Characterization, sorption, and exhaustion of metal oxide nanoparticles as metal adsorbents

    NASA Astrophysics Data System (ADS)

    Engates, Karen Elizabeth

    Safe drinking water is paramount to human survival. Current treatments do not adequately remove all metals from solution, are expensive, and use many resources. Metal oxide nanoparticles are ideal sorbents for metals due to their smaller size and increased surface area in comparison to bulk media. With increasing demand for fresh drinking water and recent environmental catastrophes to show how fragile water supplies are, new approaches to water conservation incorporating new technologies like metal oxide nanoparticles should be considered as an alternative method for metal contaminant adsorbents from typical treatment methods. This research evaluated the potential of manufactured iron, anatase, and aluminum nanoparticles (Al2O3, TiO2, Fe2O3) to remove metal contaminants (Pb, Cd, Cu, Ni, Zn) in lab-controlled and natural waters in comparison to their bulk counterparts by focusing on pH, contaminant and adsorbent concentrations, particle size, and exhaustive capabilities. Microscopy techniques (SEM, BET, EDX) were used to characterize the adsorbents. Adsorption experiments were performed using 0.01, 0.1, or 0.5 g/L nanoparticles in pH 8 solution. When results were normalized by mass, nanoparticles adsorbed more than bulk particles but when surface area normalized the opposite was observed. Adsorption was pH-dependent and increased with time and solid concentration. Aluminum oxide was found to be the least acceptable adsorbent for the metals tested, while titanium dioxide anatase (TiO2) and hematite (alpha-Fe2O3) showed great ability to remove individual and multiple metals from pH 8 and natural waters. Intraparticle diffusion was likely part of the complex kinetic process for all metals using Fe2O3 but not TiO 2 nanoparticles within the first hour of adsorption. Adsorption kinetics for all metals tested were described by a modified first order rate equation used to consider the diminishing equilibrium metal concentrations with increasing metal oxides, showing faster adsorption rates for nanoparticles compared to bulk particles. Isotherms were best fit with most correlations of r=0.99 or better using the Langmuir-Freundlich equation which describes a heterogeneous surface with monolayer adsorption. Calculated rate constants and distribution coefficients (Kd) showed TiO2 nanoparticles were very good sorbents and more rapid in removing metals than other nanoparticles studied here and reported in the literature. Desorption studies concluded Pb, Cd, and Zn appear to be irreversibly sorbed to TiO2 surfaces at pH 8. TiO2 and Fe2O3 nanoparticles were capable of multiple metal loadings, with exhaustion for both adsorbents at pH 6. Exhaustion studies at pH 8 showed hematite exhausted after four consecutive cycles while anatase showed no exhaustion after 8 cycles. Their bulk counterparts exhausted in earlier cycles indicating the lack of ability to adsorb much of the multiple metals in solution. The increased surface area of TiO2 and Fe 2O3 nanoparticles, coupled with strong adsorption at the pH of most natural waters and resistance to desorption of some metals, may offer a potential remediation method for removal of metals from water in the future.

  18. Development of AC impedance methods for evaluating corroding metal surfaces and coatings

    NASA Technical Reports Server (NTRS)

    Knockemus, Ward

    1986-01-01

    In an effort to investigate metal surface corrosion and the breakdown of metal protective coatings the AC Impedance Method was applied to zinc chromate primer coated 2219-T87 aluminum. The model 368-1 AC Impedance Measurement System recently acquired by the MSFC Corrosion Research Branch was used to monitor changing properties of coated aluminum disks immersed in 3.5% NaCl buffered at ph 5.5 over three to four weeks. The DC polarization resistance runs were performed on the same samples. The corrosion system can be represented by an electronic analog called an equivalent circuit that consists of transistors and capacitors in specific arrangements. This equivalent circuit parallels the impedance behavior of the corrosion system during a frequency scan. Values for resistances and capacities that can be assigned in the equivalent circuit following a least squares analysis of the data describe changes that occur on the corroding metal surface and in the protective coating. A suitable equivalent circuit was determined that predicts the correct Bode phase and magnitude for the experimental sample. The DC corrosion current density data are related to equivalent circuit element parameters.

  19. Modelling of Surfaces. Part 2: Metallic Alloy Surfaces Using the BFS Method

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John; Kobistek, Robert J.

    1994-01-01

    Using BFS, a new semiempirical method for alloys, we study the surface structure of fcc ordered binary alloys. We concentrate on the calculation of surface energies and surface relaxations for the L1(sub 0) and L1(sub 2) ordered structures. Different terminations of the low-index faces are studied. Also, we present results for the interlayer relaxations for planes close to the surface, revealing different relaxations for atoms of different species producing a rippled surface layer.

  20. A method for apportionment of natural and anthropogenic contributions to heavy metal loadings in the surface soils across large-scale regions.

    PubMed

    Hu, Yuanan; Cheng, Hefa

    2016-07-01

    Quantification of the contributions from anthropogenic sources to soil heavy metal loadings on regional scales is challenging because of the heterogeneity of soil parent materials and high variability of anthropogenic inputs, especially for the species that are primarily of lithogenic origin. To this end, we developed a novel method for apportioning the contributions of natural and anthropogenic sources by combining sequential extraction and stochastic modeling, and applied it to investigate the heavy metal pollution in the surface soils of the Pearl River Delta (PRD) in southern China. On the average, 45-86% of Zn, Cu, Pb, and Cd were present in the acid soluble, reducible, and oxidizable fractions of the surface soils, while only 12-24% of Ni, Cr, and As were partitioned in these fractions. The anthropogenic contributions to the heavy metals in the non-residual fractions, even the ones dominated by natural sources, could be identified and quantified by conditional inference trees. Combination of sequential extraction, Kriging interpolation, and stochastic modeling reveals that approximately 10, 39, 6.2, 28, 7.1, 15, and 46% of the As, Cd, Cr, Cu, Ni, Pb, and Zn, respectively, in the surface soils of the PRD were contributed by anthropogenic sources. These results were in general agreements with those obtained through subtraction of regional soil metal background from total loadings, and the soil metal inputs through atmospheric deposition as well. In the non-residual fractions of the surface soils, the anthropogenic contributions to As, Cd, Cr, Cu, Ni, Pb, and Zn, were 48, 42, 50, 51, 49, 24, and 70%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Surface polyPEGylation of Eu3+ doped luminescent hydroxyapatite nanorods through the combination of ligand exchange and metal free surface initiated atom transfer radical polymerization

    NASA Astrophysics Data System (ADS)

    Zeng, Guangjian; Liu, Meiying; Heng, Chunning; Huang, Qiang; Mao, Liucheng; Huang, Hongye; Hui, Junfeng; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-03-01

    The Eu3+ doped luminescent hydroxyapatite (HAp) nanorods with uniform size and morphology can be synthesized by hydrothermal route. However, these HAp nanorods are coated by hydrophobic oleylamine, which makes them difficult to be dispersed in aqueous solution and impede their biomedical applications. In this work, Eu3+ doped luminescent polymers functionalized HAp nanorods were prepared through the combination of ligand exchange reaction and metal free surface initiated atom transfer radical polymerization (ATRP) method. In this procedure, the amino group functionalized HAp nanorods were first prepared by ligand exchange reaction using adenosine monophosphate (AMP) as ligand. Then the Br-containing initiators (HAp-Br) were introduced onto the surface of HAp-AMP nanorods through the amidation reaction. Finally, polymers functionalized HAp nanorods were prepared by metal free ATRP method using poly(ethylene glycol) methacrylate (PEGMA) as monomer and 10-phenylphenothiazine (PTH) as organic photocatalyst. The properties of these obtained HAp nanocomposites (HAP-polyPEGMA nanorods) were characterized by means of transmission electron microscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis in detail. The cell imaging of these HAP-polyPEGMA nanorods was examined using laser scanning confocal microscope to evaluate their biomedical applications. We demonstrated for the first time that hydrophobic luminescent HAp nanorods can be functionalized with polyPEGMA through the combination of ligand exchange reaction and metal free surface initiated ATRP. As compared with the traditional ATRP, the metal free ATRP can overcome the toxic and fluorescence quenching effects of metal catalysts such as copper ions. More importantly, the strategy described in this work should also be utilized for fabrications of many other luminescent polymer nanocomposites due to its good monomer adoptability.

  2. Lapped substrate for enhanced backsurface reflectivity in a thermophotovoltaic energy conversion system

    DOEpatents

    Baldasaro, Paul F; Brown, Edward J; Charache, Greg W; DePoy, David M

    2000-01-01

    A method for fabricating a thermophotovoltaic energy conversion cell including a thin semiconductor wafer substrate (10) having a thickness (.beta.) calculated to decrease the free carrier absorption on a heavily doped substrate; wherein the top surface of the semiconductor wafer substrate is provided with a thermophotovoltaic device (11), a metallized grid (12) and optionally an antireflective (AR) overcoating; and, the bottom surface (10') of the semiconductor wafer substrate (10) is provided with a highly reflecting coating which may comprise a metal coating (14) or a combined dielectric/metal coating (17).

  3. Lapped substrate for enhanced backsurface reflectivity in a thermophotovoltaic energy conversion system

    DOEpatents

    Baldasaro, Paul F; Brown, Edward J; Charache, Greg W; DePoy, David M

    2000-09-05

    A method for fabricating a thermophotovoltaic energy conversion cell including a thin semiconductor wafer substrate (10) having a thickness (.beta.) calculated to decrease the free carrier absorption on a heavily doped substrate; wherein the top surface of the semiconductor wafer substrate is provided with a thermophotovoltaic device (11), a metallized grid (12) and optionally an antireflective (AR) overcoating; and, the bottom surface (10') of the semiconductor wafer substrate (10) is provided with a highly reflecting coating which may comprise a metal coating (14) or a combined dielectric/metal coating (17).

  4. Exploration on Wire Discharge Machining Added Powder for Metal-Based Diamond Grinding Wheel on Wire EDM Dressing and Truing of Grinding Tungsten Carbide Material

    NASA Astrophysics Data System (ADS)

    Chow, H. M.; Yang, L. D.; Lin, Y. C.; Lin, C. L.

    2017-12-01

    In this paper, the effects of material removal rate and abrasive grain protrusion on the metal-based diamond grinding wheel were studied to find the optimal parameters for adding powder and wire discharge. In addition, this kind of electric discharge method to add powder on the metal-based diamond grinding wheel on line after dressing and truing will be applied on tungsten carbide to study the grinding material removal rate, grinding wheel wear, surface roughness, and surface micro-hardness.

  5. Unidirectionally oriented nanocracks on metal surfaces irradiated by low-fluence femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Shimizu, Masahiro; Hashida, Masaki; Miyasaka, Yasuhiro; Tokita, Shigeki; Sakabe, Shuji

    2013-10-01

    We have investigated the origin of nanostructures formed on metals by low-fluence femtosecond laser pulses. Nanoscale cracks oriented perpendicular to the incident laser polarization are induced on tungsten, molybdenum, and copper targets. The number density of the cracks increases with the number of pulses, but crack length plateaus. Electromagnetic field simulation by the finite-difference time-domain method indicates that electric field is locally enhanced along the direction perpendicular to the incident laser polarization around a nanoscale hole on the metal surface. Crack formation originates from the hole.

  6. High surface area graphene-supported metal chalcogenide assembly

    DOEpatents

    Worsley, Marcus A.; Kuntz, Joshua; Orme, Christine A.

    2016-04-19

    A composition comprising at least one graphene-supported assembly, which comprises a three-dimensional network of graphene sheets crosslinked by covalent carbon bonds, and at least one metal chalcogenide compound disposed on said graphene sheets, wherein the chalcogen of said metal chalcogenide compound is selected from S, Se and Te. Also disclosed are methods for making and using the graphene-supported assembly, including graphene-supported MoS.sub.2. Monoliths with high surface area and conductivity can be achieved. Lower operating temperatures in some applications can be achieved. Pore size and volume can be tuned.

  7. Changes of electrical conductivity of the metal surface layer by the laser alloying with foreign elements

    NASA Astrophysics Data System (ADS)

    Kostrubiec, Franciszek; Pawlak, Ryszard; Raczynski, Tomasz; Walczak, Maria

    1994-09-01

    Laser treatment of the surface of materials is of major importance for many fields technology. One of the latest and most significant methods of this treatment is laser alloying consisting of introducing foreign atoms into the metal surface layer during the reaction of laser radiation with the surface. This opens up vast possibilities for the modification of properties of such a layer (obtaining layers of increased microhardness, increased resistance to electroerosion in an electric arc, etc.). Conductivity of the material is a very important parameter in case of conductive materials used for electrical contacts. The paper presents the results of studies on change in electrical conductivity of the surface layer of metals alloyed with a laser. A comparative analysis of conductivity of base metal surface layers prior to and following laser treatment has been performed. Depending on the base metal and the alloying element, optical treatment parameters allowing a required change in the surface layer conductivity have been selected. A very important property of the contact material is its resistance to plastic strain. It affects the real value of contact surface coming into contact and, along with the material conductivity, determines contact resistance and the amount of heat generated in place of contact. These quantities are directly related to the initiation and the course of an arc discharge, hence they also affect resistance to electroerosion. The parameter that reflects plastic properties with loads concentrated on a small surface, as is the case with a reciprocal contact force of two real surfaces with their irregularities being in contact, is microhardness. In the paper, the results of investigations into microhardness of modified surface layers compared with base metal microhardness have been presented.

  8. A novel fabrication method for surface integration of metal structures into polymers (SIMSIP)

    NASA Astrophysics Data System (ADS)

    Carrion-Gonzalez, Hector

    Recently developed flexible electronics applications require that the thin metal films embedded on elastomer substrates also be flexible. These electronic systems are radically different in terms of performance and functionality than conventional silicon-based devices. A key question is whether the metal deposited on flexible films can survive large strains without rupture. Cumbersome macro-fabrication methods have been developed for functional and bendable electronics (e.g., interconnects) encapsulated between layers of polymer films. However, future electronic applications may require electronic flexible devices to be in intimate contact with curved surfaces (e.g., retinal implants) and to be robust enough to withstand large and repeated mechanical deformations. In this research, a novel technique for surface integration of metal structures into polymers (SIMSIP) was developed. Surface embedding, as opposed to placing metal on polymers, provides better adherence while leaving the surface accessible for contacts. This was accomplished by first fabricating the micro-scale metal patterns on a quartz or Teflon mother substrate, and then embedding them to a flexible polyimide thin film. The technique was successfully used to embed micro-metal structures of gold (Au), silver (Ag), and copper (Cu) into polyimide films without affecting the functional properties of the either the metals or the polymers. Experimental results confirm the successful surface-embedding of metal structures as narrow as 0.6 microm wide for different geometries commonly used in circuit design. Although similar approaches exist in literature, the proposed methodology provides a simpler and more reliable way of producing flexible circuits/electronics that is also suitable for high volume manufacturing. In order to demonstrate the flexibility of metal interconnects fabricated using the SIMSIP technique, multiple Au electrodes (5 microm and 2.5 microm wide) were tested using the X-theta bending methodology. The X-theta bending test captures data on the electrical resistivity of micro Au electrodes fabricated using the proposed SIMSIP technique by bending them at different angles between 0o and 180o up to 50 times. The data shows that the electrical resistivity of the Au electrodes remains constant (<1% variation) despite the interconnects being repeatedly subjected to extreme tensile and compressive forces during the X-theta bending test. These results are significant from the perspective of flexible electronics and biotechnology applications since the fabricated thin films exhibit significant electrical stability, reliability and wear resistance. These surface-embedded, flexible, and mechanically stable metal interconnects will enable the further development of new electronic products with applications in biotechnology (e.g., e-skin), space exploration (e.g., satellites), and microelectronics (e.g., flat panel displays). The SIMSIP technique is also a suitable process for the nanofabrication of flexible electronic devices in applications that require intimate contact with bendable curved surfaces (e.g., retinal implants).

  9. Method of bonding metals to ceramics

    DOEpatents

    Maroni, Victor A.

    1992-01-01

    A method of forming a composite by providing a ceramic capable of having zero electrical resistance and complete diamagnetism at superconducting temperatures, bonding a thin layer of Ag, Au or alloys thereof with the ceramic. Thereafter, there is bonded a first metal to the ceramic surface at a temperature less than about 400.degree. C., and then a second metal is bonded to the first metal at a temperature less than about 400.degree. C. to form a composite wherein the first metal is selected from the class consisting of In, Ga, Sn, Bi, Zn, Cd, Pb, Ti and alloys thereof and wherein the second metal is selected from the class consisting of Al, Cu, Pb and Zn and alloys thereof.

  10. Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets

    DOEpatents

    Makowiecki, D.M.; Ramsey, P.B.; Juntz, R.S.

    1995-07-04

    An improved method is disclosed for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite`s high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding. 11 figs.

  11. Manipulating the architecture of bimetallic nanostructures and their plasmonic properties

    NASA Astrophysics Data System (ADS)

    DeSantis, Christopher John

    There has been much interest in colloidal noble metal nanoparticles due to their fascinating plasmonic and catalytic properties. These properties make noble metal nanoparticles potentially useful for applications such as targeted drug delivery agents and hydrogen storage devices. Historically, shape-controlled noble metal nanoparticles have been predominantly monometallic. Recent synthetic advances provide access to bimetallic noble metal nanoparticles wherein their inherent multifunctionality and ability to fine tune or expand their surface chemistry and light scattering properties of metal nanoparticles make them popular candidates for many applications. Even so, there are currently few synthetic strategies to rationally design shape-controlled bimetallic nanocrystals; for this reason, few architectures are accessible. For example, the "seed-mediated method" is a popular means of achieving monodisperse shape-controlled bimetallic nanocrystals. In this process, small metal seeds are used as platforms for additional metal addition, allowing for conformal core shell nanostructures. However, this method has only been applied to single metal core/single metal shell structures; therefore, the surface compositions and architectures achievable are limited. This thesis expands upon the seed-mediated method by coupling it with co-reduction. In short, two metal precursors are simultaneously reduced to deposit metal onto pre-formed seeds in hopes that the interplay between two metal species facilitates bimetallic shell nanocrystals. Au/Pd was used as a test system due to favorable reduction potentials of metal precursors and good lattice match between Au and Pd. Alloyed shelled Au Au/Pd nanocrystals were achieved using this "seed-mediated co-reduction" approach. Symmetric eight-branched Au/Pd nanocrystals (octopods) are also prepared using this method. This thesis investigates many synthetic parameters that determine the shape outcome in Au/Pd nanocrystals during seed-mediated co-reduction. Plasmonic, catalytic, and assembly properties are also investigated in relation to nanocrystal shape and architecture. This work provides a foundation for the rational design of architecturally defined bimetallic nanostructures.

  12. Fluidized reduction of oxides on fine metal powders without sintering

    NASA Technical Reports Server (NTRS)

    Hayashi, T.

    1985-01-01

    In the process of reducing extremely fine metal particles (av. particle size or = 1000 angstroms) covered with an oxide layer, the metal particles are fluidized by a gas flow contg. H, heated, and reduced. The method uniformly and easily reduces surface oxide layers of the extremely fine metal particles without causing sintering. The metal particles are useful for magnetic recording materials, conductive paste, powder metallurgy materials, chem. reagents, and catalysts.

  13. Method of melting metals to reduce contamination from crucibles

    DOEpatents

    Banker, John G.; Wigginton, Hubert L.

    1977-01-01

    Contamination of metals from crucible materials during melting operations is reduced by coating the interior surface of the crucible with a ceramic non-reactive with the metallic charge and disposing a metal liner formed from a portion of the metallic charge within the coated crucible. The liner protects the ceramic coating during loading of the remainder of the charge and expands against the ceramic coating during heat-up to aid in sintering the coating.

  14. Direct control and characterization of a Schottky barrier by scanning tunneling microscopy

    NASA Technical Reports Server (NTRS)

    Bell, L. D.; Kaiser, W. J.; Hecht, M. H.; Grunthaner, F. J.

    1988-01-01

    Scanning tunneling microscopy (STM) methods are used to directly control the barrier height of a metal tunnel tip-semiconductor tunnel junction. Barrier behavior is measured by tunnel current-voltage spectroscopy and compared to theory. A unique surface preparation method is used to prepare a low surface state density Si surface. Control of band bending with this method enables STM investigation of semiconductor subsurface properties.

  15. METHOD OF COATING SURFACES WITH BORON

    DOEpatents

    Martin, G.R.

    1949-10-11

    A method of forming a thin coating of boron on metallic, glass, or other surfaces is described. The method comprises heating the article to be coated to a temperature of about 550 d C in an evacuated chamber and passing trimethyl boron, triethyl boron, or tripropyl boron in the vapor phase and under reduced pressure into contact with the heated surface causing boron to be deposited in a thin film.

  16. Universal liquid-phase laser fabrication of various nano-metals encapsulated by ultrathin carbon shells for deep-UV plasmonics.

    PubMed

    Yu, Miao; Yang, Chao; Li, Xiao-Ming; Lei, Tian-Yu; Sun, Hao-Xuan; Dai, Li-Ping; Gu, Yu; Ning, Xue; Zhou, Ting; Wang, Chao; Zeng, Hai-Bo; Xiong, Jie

    2017-06-29

    The exploration of localized surface plasmon resonance (LSPR) beyond the usual visible waveband, for example within the ultraviolet (UV) or deep-ultraviolet (D-UV) regions, is of great significance due to its unique applications in secret communications and optics. However, it is still challenging to universally synthesize the corresponding metal nanostructures due to their high activity. Herein, we report a universal, eco-friendly, facile and rapid synthesis of various nano-metals encapsulated by ultrathin carbon shells, significantly with a remarkable deep-UV LSPR characteristic, via a liquid-phase laser fabrication method. Firstly, a new generation of the laser ablation in liquid (LAL) method has been developed with an emphasis on the elaborate selection of solvents to generate ultrathin carbon shells, and hence to stabilize the formed metal nanocrystals. As a result, a series of metal@carbon nanoparticles (NPs), including Cr@C, Ti@C, Fe@C, V@C, Al@C, Sn@C, Mn@C and Pd@C, can be fabricated by this modified LAL method. Interestingly, these NPs exhibit LSPR peaks in the range of 200-330 nm, which are very rare for localized surface plasmon resonance. Consequently, the UV plasmonic effects of these metal@carbon NPs were demonstrated both by the observed enhancement in UV photoluminescence (PL) from the carbon nanoshells and by the improvement of the photo-responsivity of UV GaN photodetectors. This work could provide a universal method for carbon shelled metal NPs and expand plasmonics into the D-UV waveband.

  17. Superhydrophobic films and methods for making superhydrophobic films

    DOEpatents

    Aytug, Tolga; Paranthaman, Mariappan Parans; Simpson, John T.; Bogorin, Daniela Florentina

    2017-09-26

    This disclosure relates to methods that include depositing a first component and a second component to form a film including a plurality of nanostructures, and coating the nanostructures with a hydrophobic layer to render the film superhydrophobic. The first component and the second component can be immiscible and phase-separated during the depositing step. The first component and the second component can be independently selected from the group consisting of a metal oxide, a metal nitride, a metal oxynitride, a metal, and combinations thereof. The films can have a thickness greater than or equal to 5 nm; an average surface roughness (Ra) of from 90 to 120 nm, as measured on a 5 .mu.m.times.5 .mu.m area; a surface area of at least 20 m.sup.2/g; a contact angle with a drop of water of at least 120 degrees; and can maintain the contact angle when exposed to harsh conditions.

  18. Evaluation of ultrasonic cavitation of metallic and non-metallic surfaces

    NASA Technical Reports Server (NTRS)

    Mehta, Narinder K.

    1992-01-01

    1,1,2 trichloro-1,2,2 trifluoro ethane (CFC-113) commercially known as Freon-113 is the primary test solvent used for validating the cleaned hardware at the Kennedy Space Center (KSC). Due to the ozone depletion problem, the current United States policy calls for the phase out of Freons by 1995. NASAs chlorofluorocarbon (CFC) replacement group at KSC has opted to use water as a replacement fluid for the validation process since water is non-toxic, inexpensive, and is environmentally friendly. The replacement validation method calls for the ultrasonification of the small parts with water at 52 C for a cycle or two of 10 min duration wash using commercial ultrasonic baths. In this project, experimental data was obtained to assess the applicability of the proposed validation method for any damage of the metallic and non-metallic surfaces resulting from ultrasonic cavitation.

  19. [GIS Spatial Distribution and Ecological Risk Assessment of Heavy Metals in Surface Sediments of Shallow Lakes in Jiangsu Province].

    PubMed

    Li, Ying-jie; Zhang, Lie-yu; Wu, Yi-wen; Li, Cao-le; Yang, Tian-xue; Tang, Jun

    2016-04-15

    To understand pollution of heavy metals in surface sediments of shallow lakes, surface sediments samples of 11 lakes in Jiangsu province were collected to determine the content of six heavy metals including As, Cr, Cu, Pb, Zn and Ni. GIS was used to analyze the spatial distribution of heavy metals, and geological accumulation index (Igeo), modified contamination index (mCd) pollution load index (PLI) and potential ecological risk index (RI) were used to evaluate heavy metal contamination in the sediments. The results showed that: in the lakes' surface sediments, the average content of As, Cu, Zn, Cr, Pb, Ni in multiples of soil background of Jiangsu province were 1.74-3.85, 0.65-2.66, 0.48-3.56, 0.43-1.52, 0.02-1.49 and 0.12-1.42. According to the evaluation results of Igeo and RI, As, which had high degree of enrichment and great potential ecological risk, was the main pollutant, followed by Cu, and pollution of the rest of heavy metals was relatively light. Combining the results of several evaluation methods, in surface sediments of Sanjiu Lake, Gaoyou Lake and Shaobo Lake, these heavy metals had the most serious pollution, the maximum pollution loading and moderate potential ecological risk; in surface sediments of Gehu Lake, Baima Lake and Hongze Lake, some regions were polluted by certain metals, the overall trend of pollution was aggravating, the pollution loading was large, and the potential ecological risk reached moderate; in the other 5 lakes, the risk of sediments polluted by heavy metals, as well as the pollution loading, was small, and the overall was not polluted.

  20. Studies of metal ion binding by apo-metallothioneins attached onto preformed self-assembled monolayers using a highly sensitive surface plasmon resonance spectrometer

    PubMed Central

    Zhang, Yintang; Xu, Maotian; Wang, Yanju; Toledo, Freddy; Zhou, Feimeng

    2007-01-01

    The use of a flow-injection surface plasmon resonance (FI-SPR) spectrometer equipped with a bicell detector or a position-sensitive device for determining coordination of heavy metal ions (Cd2+ and Hg2+) by surface-confined apo-metallothionein (apo-MT) molecules is described. To facilitate the formation of a compact MT adsorbate layer with a uniform surface orientation, MT molecules were attached onto a preformed alkanethiol self-assembled monolayer. The method resorts to the generation of apo-MT at the surface by treating the MT-covered sensor chip with glycine–HCl and the measurement of the apo-MT conformation changes upon metal ion incorporation. Domain-specific metal ion binding processes by the apo-MT molecules were observed. Competitive replacement of one metal ion by another can be monitored in real time by FI-SPR. The tandem use of an immobilization scheme for forming a sub-monolayer of MT molecules at the sensor surface and the highly sensitive FI-SPR instrument affords a low concentration detection level. The detection level for Cd2+ (0.1 μM or 15 ppb) compares favorably with similar studies and the methodology complements to other well-established sensitive analytical techniques. The extent of metal incorporation by apo-MT molecules was also determined. PMID:18493298

  1. Roman sophisticated surface modification methods to manufacture silver counterfeited coins

    NASA Astrophysics Data System (ADS)

    Ingo, G. M.; Riccucci, C.; Faraldi, F.; Pascucci, M.; Messina, E.; Fierro, G.; Di Carlo, G.

    2017-11-01

    By means of the combined use of X-ray photoelectron spectroscopy (XPS), optical microscopy (OM) and scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS) the surface and subsurface chemical and metallurgical features of silver counterfeited Roman Republican coins are investigated to decipher some aspects of the manufacturing methods and to evaluate the technological ability of the Roman metallurgists to produce thin silver coatings. The results demonstrate that over 2000 ago important advances in the technology of thin layer deposition on metal substrates were attained by Romans. The ancient metallurgists produced counterfeited coins by combining sophisticated micro-plating methods and tailored surface chemical modification based on the mercury-silvering process. The results reveal that Romans were able systematically to chemically and metallurgically manipulate alloys at a micro scale to produce adherent precious metal layers with a uniform thickness up to few micrometers. The results converge to reveal that the production of forgeries was aimed firstly to save expensive metals as much as possible allowing profitable large-scale production at a lower cost. The driving forces could have been a lack of precious metals, an unexpected need to circulate coins for trade and/or a combinations of social, political and economic factors that requested a change in money supply. Finally, some information on corrosion products have been achieved useful to select materials and methods for the conservation of these important witnesses of technology and economy.

  2. Coating system to permit direct brazing of ceramics

    DOEpatents

    Cadden, Charles H.; Hosking, F. Michael

    2003-01-01

    This invention relates to a method for preparing the surface of a ceramic component that enables direct brazing using a non-active braze alloy. The present invention also relates to a method for directly brazing a ceramic component to a ceramic or metal member using this method of surface preparation, and to articles produced by using this brazing method. The ceramic can be high purity alumina. The method comprises applying a first coating of a silicon-bearing oxide material (e.g. silicon dioxide or mullite (3Al.sub.2 O.sub.3.2SiO.sub.2) to the ceramic. Next, a thin coating of active metal (e.g. Ti or V) is applied. Finally, a thicker coating of a non-active metal (e.g. Au or Cu) is applied. The coatings can be applied by physical vapor deposition (PVD). Alternatively, the active and non-active metals can be co-deposited (e.g. by sputtering a target made of mullite). After all of the coatings have been applied, the ceramic can be fired at a high temperature in a non-oxidizing environment to promote diffusion, and to enhance bonding of the coatings to the substrate. After firing, the metallized ceramic component can be brazed to other components using a conventional non-active braze alloy. Alternatively, the firing and brazing steps can be combined into a single step. This process can replace the need to perform a "moly-manganese" metallization step.

  3. FAST TRACK COMMUNICATION: Poly(methyl methacrylate)-palladium clusters nanocomposite formation by supersonic cluster beam deposition: a method for microstructured metallization of polymer surfaces

    NASA Astrophysics Data System (ADS)

    Ravagnan, Luca; Divitini, Giorgio; Rebasti, Sara; Marelli, Mattia; Piseri, Paolo; Milani, Paolo

    2009-04-01

    Nanocomposite films were fabricated by supersonic cluster beam deposition (SCBD) of palladium clusters on poly(methyl methacrylate) (PMMA) surfaces. The evolution of the electrical conductance with cluster coverage and microscopy analysis show that Pd clusters are implanted in the polymer and form a continuous layer extending for several tens of nanometres beneath the polymer surface. This allows the deposition, using stencil masks, of cluster-assembled Pd microstructures on PMMA showing a remarkably high adhesion compared with metallic films obtained by thermal evaporation. These results suggest that SCBD is a promising tool for the fabrication of metallic microstructures on flexible polymeric substrates.

  4. Functionalizing the Surface of Lithium-Metal Anodes

    DOE PAGES

    Buonaiuto, Megan; Neuhold, Susanna; Schroeder, David J.; ...

    2014-09-03

    Metal-air batteries are an important aspect of many beyond lithium ion research efforts. However, as our understanding of how molecular oxygen can act as a rechargeable cathode has progressed; the problems associated with how these materials at various states of charge interact with the lithium metal anode are only beginning to come to the surface. In this study we have devised a method to coat the surface a lithium with a functional group to act as either an anchor for further derivation studies or be polymerized to create a nanometer thick polymer coating attached to the surface by silane groups.more » These stable films, formed by polymerization of vinyl substituents, lower cell impedance at the electrode and over the first 50 cycles, increase cycling efficiency and demonstrate lower capacity fade.« less

  5. Molecular metal catalysts on supports: organometallic chemistry meets surface science.

    PubMed

    Serna, Pedro; Gates, Bruce C

    2014-08-19

    Recent advances in the synthesis and characterization of small, essentially molecular metal complexes and metal clusters on support surfaces have brought new insights to catalysis and point the way to systematic catalyst design. We summarize recent work unraveling effects of key design variables of site-isolated catalysts: the metal, metal nuclearity, support, and other ligands on the metals, also considering catalysts with separate, complementary functions on supports. The catalysts were synthesized with the goal of structural simplicity and uniformity to facilitate incisive characterization. Thus, they are essentially molecular species bonded to porous supports chosen for their high degree of uniformity; the supports are crystalline aluminosilicates (zeolites) and MgO. The catalytic species are synthesized in reactions of organometallic precursors with the support surfaces; the precursors include M(L)2(acetylacetonate)1-2, with M = Ru, Rh, Ir, or Au and the ligands L = C2H4, CO, or CH3. Os3(CO)12 and Ir4(CO)12 are used as precursors of supported metal clusters, and some such catalysts are made by ship-in-a-bottle syntheses to trap the clusters in zeolite cages. The simplicity and uniformity of the supported catalysts facilitate precise structure determinations, even in reactive atmospheres and during catalysis. The methods of characterizing catalysts in reactive atmospheres include infrared (IR), extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and nuclear magnetic resonance (NMR) spectroscopies, and complementary methods include density functional theory and atomic-resolution aberration-corrected scanning transmission electron microscopy for imaging of individual metal atoms. IR, NMR, XANES, and microscopy data demonstrate the high degrees of uniformity of well-prepared supported species. The characterizations determine the compositions of surface metal complexes and clusters, including the ligands and the metal-support bonding and structure, which identify the supports as ligands with electron-donor properties that influence reactivity and catalysis. Each of the catalyst design variables has been varied independently, illustrated by mononuclear and tetranuclear iridium on zeolite HY and on MgO and by isostructural rhodium and iridium (diethylene or dicarbonyl) complexes on these supports. The data provide examples resolving the roles of the catalyst design variables and place the catalysis science on a firm foundation of organometallic chemistry linked with surface science. Supported molecular catalysts offer the advantages of characterization in the absence of solvents and with surface-science methods that do not require ultrahigh vacuum. Families of supported metal complexes have been made by replacement of ligands with others from the gas phase. Spectroscopically identified catalytic reaction intermediates help to elucidate catalyst performance and guide design. The methods are illustrated for supported complexes and clusters of rhodium, iridium, osmium, and gold used to catalyze reactions of small molecules that facilitate identification of the ligands present during catalysis: alkene dimerization and hydrogenation, H-D exchange in the reaction of H2 with D2, and CO oxidation. The approach is illustrated with the discovery of a highly active and selective MgO-supported rhodium carbonyl dimer catalyst for hydrogenation of 1,3-butadiene to give butenes.

  6. Repeatable hydrogen generation of 3D microporous nickel membrane using chemical milling

    NASA Astrophysics Data System (ADS)

    Seo, Keumyoung; Lim, Taekyung; Ju, Sanghyun

    2018-05-01

    In this study, we investigated a novel method of hydrogen generation through a chemical milling process. In the process of generating hydrogen with a thermochemical water-splitting method using a 3D microporous nickel membrane, the nickel surface is oxidized, leading to a decreased generation of hydrogen gas with time. To regenerate hydrogen from the oxidized catalysts, the oxidized metal surface was easily removed at room temperature, re-exposing a metal surface with abundant oxygen vacancies for continuous hydrogen generation. With this method, ~110 µmol · g‑1 of hydrogen gas was continuously produced per cycle. Since this method enabled us to create a fit state for hydrogen generation without extra heat, light, or electrical energy, it can solve the biggest commercialization challenge: inefficiency because the energy required for hydrogen generation is higher than the energy of the generated hydrogen.

  7. Method of using deuterium-cluster foils for an intense pulsed neutron source

    DOEpatents

    Miley, George H.; Yang, Xiaoling

    2013-09-03

    A method is provided for producing neutrons, comprising: providing a converter foil comprising deuterium clusters; focusing a laser on the foil with power and energy sufficient to cause deuteron ions to separate from the foil; and striking a surface of a target with the deuteron ions from the converter foil with energy sufficient to cause neutron production by a reaction selected from the group consisting of D-D fusion, D-T fusion, D-metal nuclear spallation, and p-metal. A further method is provided for assembling a plurality of target assemblies for a target injector to be used in the previously mentioned manner. A further method is provided for producing neutrons, comprising: splitting a laser beam into a first beam and a second beam; striking a first surface of a target with the first beam, and an opposite second surface of the target with the second beam with energy sufficient to cause neutron production.

  8. Multiple internal seal ring micro-electro-mechanical system vacuum packaging method

    NASA Technical Reports Server (NTRS)

    Hayworth, Ken J. (Inventor); Yee, Karl Y. (Inventor); Shcheglov, Kirill V. (Inventor); Bae, Youngsam (Inventor); Wiberg, Dean V. (Inventor); Challoner, A. Dorian (Inventor); Peay, Chris S. (Inventor)

    2008-01-01

    A Multiple Internal Seal Ring (MISR) Micro-Electro-Mechanical System (MEMS) vacuum packaging method that hermetically seals MEMS devices using MISR. The method bonds a capping plate having metal seal rings to a base plate having metal seal rings by wafer bonding the capping plate wafer to the base plate wafer. Bulk electrodes may be used to provide conductive paths between the seal rings on the base plate and the capping plate. All seals are made using only metal-to-metal seal rings deposited on the polished surfaces of the base plate and capping plate wafers. However, multiple electrical feed-through metal traces are provided by fabricating via holes through the capping plate for electrical connection from the outside of the package through the via-holes to the inside of the package. Each metal seal ring serves the dual purposes of hermetic sealing and providing the electrical feed-through metal trace.

  9. Many-body dispersion effects in the binding of adsorbates on metal surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurer, Reinhard J.; Ruiz, Victor G.; Tkatchenko, Alexandre

    2015-09-14

    A correct description of electronic exchange and correlation effects for molecules in contact with extended (metal) surfaces is a challenging task for first-principles modeling. In this work, we demonstrate the importance of collective van der Waals dispersion effects beyond the pairwise approximation for organic–inorganic systems on the example of atoms, molecules, and nanostructures adsorbed on metals. We use the recently developed many-body dispersion (MBD) approach in the context of density-functional theory [Tkatchenko et al., Phys. Rev. Lett. 108, 236402 (2012) and Ambrosetti et al., J. Chem. Phys. 140, 18A508 (2014)] and assess its ability to correctly describe the binding ofmore » adsorbates on metal surfaces. We briefly review the MBD method and highlight its similarities to quantum-chemical approaches to electron correlation in a quasiparticle picture. In particular, we study the binding properties of xenon, 3,4,9,10-perylene-tetracarboxylic acid, and a graphene sheet adsorbed on the Ag(111) surface. Accounting for MBD effects, we are able to describe changes in the anisotropic polarizability tensor, improve the description of adsorbate vibrations, and correctly capture the adsorbate–surface interaction screening. Comparison to other methods and experiment reveals that inclusion of MBD effects improves adsorption energies and geometries, by reducing the overbinding typically found in pairwise additive dispersion-correction approaches.« less

  10. Kinetics of pulse photothermal surface deformation as a method of studying the phase interface movement in a first-order phase transition

    NASA Astrophysics Data System (ADS)

    Vintzentz, S. V.; Kiselev, V. F.; Levshin, N. L.; Sandomirskii, V. B.

    1991-01-01

    The photothermal surface deformation (PTSD) method is used for characterization of the first-order phase transition (PT) for the first time. The advantages of the method are demonstrated experimentally for the well known metal-to-semiconductor PT in VO 2. It is found that near the PT temperature the PTSD pulse in a VO 2 film has a sign opposite to that of the thermoelastic response. The conclusion is drawn that this phenomenon is determined primarily by the contribution of the decrease in the specific volume (Δ V/ V) of the substance involved in the semiconductor-to-metal PT. The sign of Δ V/ V for a submicron polycrystalline VO 2 film is determined. Besides, analysis shows that in the PTSD kinetics measured as a whole we can "separate" a law for the metal-semicon- ductor interface movement (i.e. the interface moves towards the interior of the film when the latter is heated and back towards the surface when it is cooling down). The relative density change due to the PT is estimated based on this law.

  11. Method for producing functionally graded nanocrystalline layer on metal surface

    DOEpatents

    Ajayi, Oyelayo O.; Hershberger, Jeffrey G.

    2010-03-23

    An improved process for the creation or formation of nanocrystalline layers on substrates' surfaces is provided. The process involves "prescuffing" the surface of a substrate such as a metal by allowing friction to occur on the surface by a load-bearing entity making rubbing contact and moving along and on the substrate's surface. The "prescuffing" action is terminated when the coefficient of friction between the surface and the noise is rising significantly. Often, the significant rise in the coefficient of friction is signaled by a change in pitch of the scuffing action sound emanating from the buffeted surface. The "prescuffing" gives rise to a harder and smoother surface which withstands better any inadequate lubrication that may take place when the "prescuffed" surface is contacted by other surfaces.

  12. Metal shadowing for electron microscopy.

    PubMed

    Hendricks, Gregory M

    2014-01-01

    Metal shadowing of bacteria, viruses, isolated molecules, and macromolecular assemblies is another high-resolution method for observing the ultrastructure of biological specimens. The actual procedure for producing a metal shadow is relatively simple; a heavy metal is evaporated from a source at an oblique angle to the specimen. The metal atoms pile up on the surfaces that face the source, but the surfaces away from the source are shielded and receive little metal deposit, creating a "shadow." However, the process of producing biological specimens that are suitable for metal shadowing can be very complex. There are a whole host of specimen preparation techniques that can precede metal shadowing, and all provide superior preservation in comparison to air drying, a required step in negative staining procedures. The physical forces present during air drying (i.e., surface tension of the water-air interface) will literally crush most biological specimens as they dry. In this chapter I explain the development of and procedures for the production of biological specimens from macromolecular assemblies (e.g., DNA and RNA), purified isolated molecules (e.g., proteins), and isolated viruses and bacteria preparations suitable for metal shadowing. A variation on this basic technique is to rotate the specimen during the metal deposition to produce a high-resolution three-dimensional rendering of the specimen.

  13. Inverse metal-assisted chemical etching produces smooth high aspect ratio InP nanostructures.

    PubMed

    Kim, Seung Hyun; Mohseni, Parsian K; Song, Yi; Ishihara, Tatsumi; Li, Xiuling

    2015-01-14

    Creating high aspect ratio (AR) nanostructures by top-down fabrication without surface damage remains challenging for III-V semiconductors. Here, we demonstrate uniform, array-based InP nanostructures with lateral dimensions as small as sub-20 nm and AR > 35 using inverse metal-assisted chemical etching (I-MacEtch) in hydrogen peroxide (H2O2) and sulfuric acid (H2SO4), a purely solution-based yet anisotropic etching method. The mechanism of I-MacEtch, in contrast to regular MacEtch, is explored through surface characterization. Unique to I-MacEtch, the sidewall etching profile is remarkably smooth, independent of metal pattern edge roughness. The capability of this simple method to create various InP nanostructures, including high AR fins, can potentially enable the aggressive scaling of InP based transistors and optoelectronic devices with better performance and at lower cost than conventional etching methods.

  14. Effect of Extreme Wettability on Platelet Adhesion on Metallic Implants: From Superhydrophilicity to Superhydrophobicity.

    PubMed

    Moradi, Sona; Hadjesfandiari, Narges; Toosi, Salma Fallah; Kizhakkedathu, Jayachandran N; Hatzikiriakos, Savvas G

    2016-07-13

    In order to design antithrombotic implants, the effect of extreme wettability (superhydrophilicity to superhydrophobicity) on the biocompatibility of the metallic substrates (stainless steel and titanium) was investigated. The wettability of the surface was altered by chemical treatments and laser ablation methods. The chemical treatments generated different functionality groups and chemical composition as evident from XPS analysis. The micro/nanopatterning by laser ablation resulted in three different pattern geometry and different surface roughness and consequently wettability. The patterned surface were further modified with chemical treatments to generate a wide range of surface wettability. The influence of chemical functional groups, pattern geometry, and surface wettability on protein adsorption and platelet adhesion was studied. On chemically treated flat surfaces, the type of hydrophilic treatment was shown to be a contributing factor that determines the platelet adhesion, since the hydrophilic oxidized substrates exhibit less platelet adhesion in comparison to the control untreated or acid treated surfaces. Also, the surface morphology, surface roughness, and superhydrophobic character of the surfaces are contributing factors to platelet adhesion on the surface. Our results show that superhydrophobic cauliflower-like patterns are highly resistant to platelet adhesion possibly due to the stability of Cassie-Baxter state for this pattern compared to others. Our results also show that simple surface treatments on metals offer a novel way to improve the hemocompatibility of metallic substrates.

  15. Method for producing hydrophobic aerogels

    DOEpatents

    Hrubesh, Lawrence W.; Poco, John F.; Coronado, Paul R.

    1999-01-01

    A method for treating a dried monolithic aerogel containing non-dispersed particles, with an organometallic surface modifying agent to produce hydrophobic aerogels. The dried, porous hydrophobic aerogels contain a protective layer of alkyl groups, such as methyl groups, on the modified surfaces of the pores of the aerogel. The alkyl groups at the aerogel surface typically contain at least one carbon-metal bond per group.

  16. Nondestructive, fast, and cost-effective image processing method for roughness measurement of randomly rough metallic surfaces.

    PubMed

    Ghodrati, Sajjad; Kandi, Saeideh Gorji; Mohseni, Mohsen

    2018-06-01

    In recent years, various surface roughness measurement methods have been proposed as alternatives to the commonly used stylus profilometry, which is a low-speed, destructive, expensive but precise method. In this study, a novel method, called "image profilometry," has been introduced for nondestructive, fast, and low-cost surface roughness measurement of randomly rough metallic samples based on image processing and machine vision. The impacts of influential parameters such as image resolution and filtering approach for elimination of the long wavelength surface undulations on the accuracy of the image profilometry results have been comprehensively investigated. Ten surface roughness parameters were measured for the samples using both the stylus and image profilometry. Based on the results, the best image resolution was 800 dpi, and the most practical filtering method was Gaussian convolution+cutoff. In these conditions, the best and worst correlation coefficients (R 2 ) between the stylus and image profilometry results were 0.9892 and 0.9313, respectively. Our results indicated that the image profilometry predicted the stylus profilometry results with high accuracy. Consequently, it could be a viable alternative to the stylus profilometry, particularly in online applications.

  17. Method of polishing nickel-base alloys and stainless steels

    DOEpatents

    Steeves, Arthur F.; Buono, Donald P.

    1981-01-01

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels. The chemical attack polish comprises Fe(NO.sub.3).sub.3, concentrated CH.sub.3 COOH, concentrated H.sub.2 SO.sub.4 and H.sub.2 O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  18. Refraction-reflection of electrons at lateral metallic interfaces

    NASA Astrophysics Data System (ADS)

    Kher-Elden, M. A.; El-Fattah, Z. M. Abd; Yassin, O.; El-Okr, M. M.

    2017-11-01

    Electron boundary element method (EBEM) has been employed to simulate electron refraction at the lateral interface between two homogenous metals featuring surface states characterized by isotropic constant energy surfaces. A decent agreement was achieved between the real-space EBEM simulations and the wave-space analysis obtained from electron plane wave expansion (EPWE) method. Calculations were performed for three different electron energies, being -0.05, -0.15, and -0.25 eV, where the reference energy is set to -0.4 eV, i.e., the band minimum of the Cu(111) surface state. For an interface separating two metals with the same effective mass (0.41 me) and a potential difference of 0.2 eV, we demonstrate that electrons with the first two energies exhibit refraction at the interface, following the Snell's law, and total internal reflections occur beyond energy-dependent critical angles, whereas for the third electron energy, a total internal reflection occurs at all incident angles. These findings were used to simulate optical elements such as convex lenses and possible guiding through perfect electron mirrors, in contrast to Bragg-based guiding. Given the varieties of possible means of manipulating the dispersion parameters via surface adsorbates and thin-film growth, the degree of electron refraction-reflection at metallic interfaces could be precisely tuned.

  19. Reflectance properties of one-dimensional metal-dielectric ternary photonic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, G. N., E-mail: gnpandey2009@gmail.com; Kumar, Narendra; Thapa, Khem B.

    2016-05-06

    Metallic photonic crystal has a very important application in absorption enhancement in solar cells. It has been found that an ultra-thin metallic layer becomes transparent due to internal scattering of light through the each interface of the dielectric and metal surfaces. The metal has absorption due to their surface plasmon and the plasmon has important parameters for changing optical properties of the metal. We consider ternary metallic-dielectric photonic crystal (MDPC) for having large probabilities to change the optical properties of the MDPC and the photonic crystals may be changed by changing dimensionality, symmetry, lattice parameters, Filling fraction and effective refractivemore » index refractive index contrast. In this present communication, we try to show that the photonic band gap in ternary metal-dielectric photonic crystal can be significantly enlarged when air dielectric constant is considered. All the theoretical analyses are made based on the transfer matrix method together with the Drude model of metal.« less

  20. Atomic scale characterization and surface chemistry of metal modified titanate nanotubes and nanowires

    NASA Astrophysics Data System (ADS)

    Kukovecz, Ákos; Kordás, Krisztián; Kiss, János; Kónya, Zoltán

    2016-10-01

    Titanates are salts of polytitanic acid that can be synthesized as nanostructures in a great variety concerning crystallinity, morphology, size, metal content and surface chemistry. Titanate nanotubes (open-ended hollow cylinders measuring up to 200 nm in length and 15 nm in outer diameter) and nanowires (solid, elongated rectangular blocks with length up to 1500 nm and 30-60 nm diameter) are the most widespread representatives of the titanate nanomaterial family. This review covers the properties and applications of these two materials from the surface science point of view. Dielectric, vibrational, electron and X-ray spectroscopic results are comprehensively discussed first, then surface modification methods including covalent functionalization, ion exchange and metal loading are covered. The versatile surface chemistry of one-dimensional titanates renders them excellent candidates for heterogeneous catalytic, photocatalytic, photovoltaic and energy storage applications, therefore, these fields are also reviewed.

  1. Method for producing iron-based catalysts

    DOEpatents

    Farcasiu, Malvina; Kaufman, Phillip B.; Diehl, J. Rodney; Kathrein, Hendrik

    1999-01-01

    A method for preparing an acid catalyst having a long shelf-life is provided comprising doping crystalline iron oxides with lattice-compatible metals and heating the now-doped oxide with halogen compounds at elevated temperatures. The invention also provides for a catalyst comprising an iron oxide particle having a predetermined lattice structure, one or more metal dopants for said iron oxide, said dopants having an ionic radius compatible with said lattice structure; and a halogen bound with the iron and the metal dopants on the surface of the particle.

  2. Optimized Hypernetted-Chain Solutions for Helium -4 Surfaces and Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Qian, Guo-Xin

    This thesis is a study of inhomogeneous Bose systems such as liquid ('4)He slabs and inhomogeneous Fermi systems such as the electron gas in metal films, at zero temperature. Using a Jastrow-type many-body wavefunction, the ground state energy is expressed by means of Bogoliubov-Born-Green-Kirkwood -Yvon and Hypernetted-Chain techniques. For Bose systems, Euler-Lagrange equations are derived for the one- and two -body functions and systematic approximation methods are physically motivated. It is shown that the optimized variational method includes a self-consistent summation of ladder- and ring-diagrams of conventional many-body theory. For Fermi systems, a linear potential model is adopted to generate the optimized Hartree-Fock basis. Euler-Lagrange equations are derived for the two-body correlations which serve to screen the strong bare Coulomb interaction. The optimization of the pair correlation leads to an expression of correlation energy in which the state averaged RPA part is separated. Numerical applications are presented for the density profile and pair distribution function for both ('4)He surfaces and metal surfaces. Both the bulk and surface energies are calculated in good agreement with experiments.

  3. Microchannel plate detector and methods for their fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elam, Jeffrey W.; Mane, Anil U.; Peng, Qing

    A multi-component tunable resistive coating and methods of depositing the coating on the surfaces of a microchannel plate (MCP) detector. The resistive coating composed of a plurality of alternating layers of a metal oxide resistive component layer and a conductive component layer composed of at least one of a metal, a metal nitride and a metal sulfide. The coating may further include an emissive layer configured to produce a secondary electron emission in response to a particle interacting with the MCP and a neutron-absorbing layer configured to respond to a neutron interacting with the MCP.

  4. Synthesizing new types of ultrathin 2D metal oxide nanosheets via half-successive ion layer adsorption and reaction

    NASA Astrophysics Data System (ADS)

    Gao, Linjie; Li, Yaguang; Xiao, Mu; Wang, Shufang; Fu, Guangsheng; Wang, Lianzhou

    2017-06-01

    Two-dimensional (2D) metal oxide nanosheets have demonstrated their great potential in a broad range of applications. The existing synthesis strategies are mainly preparing 2D nanosheets from layered and specific transition metal oxides. How to prepare the other types of metal oxides as ultrathin 2D nanosheets remains unsolved, especially for metal oxides containing alkali, alkaline earth metal, and multiple metal elements. Herein, we developed a half-successive ion layer adsorption and reaction (SILAR) method, which could synthesize those types of metal oxides as ultrathin 2D nanosheets. The synthesized 2D metal oxides nanosheets are within 1 nm level thickness and 500 m2 · g-1 level surface area. This method allows us to develop many new types of ultrathin 2D metal oxides nanosheets that have never been prepared before.

  5. Nanosecond multi-pulse laser milling for certain area removal of metal coating on plastics surface

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Jia, Zhenyuan; Ma, Jianwei; Liu, Wei; Wang, Ling

    2014-12-01

    Metal coating with functional pattern on engineering plastics surface plays an important role in industry applications; it can be obtained by adding or removing certain area of metal coating on engineering plastics surface. However, the manufacturing requirements are improved continuously and the plastic substrate presents three-dimensional (3D) structure-many of these parts cannot be fabricated by conventional processing methods, and a new manufacturing method is urgently needed. As the laser-processing technology has many advantages like high machining accuracy and constraints free substrate structure, the machining of the parts is studied through removing certain area of metal coating based on the nanosecond multi-pulse laser milling. To improve the edge quality of the functional pattern, generation mechanism and corresponding avoidance strategy of the processing defects are studied. Additionally, a prediction model for the laser ablation depth is proposed, which can effectively avoid the existence of residual metal coating and reduces the damage of substrate. With the optimal machining parameters, an equiangular spiral pattern on copper-clad polyimide (CCPI) is machined based on the laser milling at last. The experimental results indicate that the edge of the pattern is smooth and consistent, the substrate is flat and without damage. The achievements in this study could be applied in industrial production.

  6. Evaluation of Surface Roughness and Tensile Strength of Base Metal Alloys Used for Crown and Bridge on Recasting (Recycling)

    PubMed Central

    Hashmi, Syed W.; Rao, Yogesh; Garg, Akanksha

    2015-01-01

    Background Dental casting alloys play a prominent role in the restoration of the partial dentition. Casting alloys have to survive long term in the mouth and also have the combination of structure, molecules, wear resistance and biologic compatibility. According to ADA system casting alloys were divided into three groups (wt%); high noble, Noble and predominantly base metal alloys. Aim To evaluate the mechanical properties such as tensile strength and surface roughness of the new and recast base metal (nickel-chromium) alloys. Materials and Methods Recasting of the base metal alloys derived from sprue and button, to make it reusable has been done. A total of 200 test specimens were fabricated using specially fabricated jig of metal and divided into two groups- 100 specimens of new alloy and 100 specimens of recast alloys, which were tested for tensile strength on universal testing machine and surface roughness on surface roughness tester. Results Tensile strength of new alloy showed no statistically significant difference (p-value>0.05) from recast alloy whereas new alloy had statistically significant surface roughness (Maximum and Average surface roughness) difference (p-value<0.01) as compared to recast alloy. Conclusion Within the limitations of the study it is concluded that the tensile strength will not be affected by recasting of nickel-chromium alloy whereas surface roughness increases markedly. PMID:26393194

  7. Evaluation of trace metals bioavailability in Japanese river waters using DGT and a chemical equilibrium model.

    PubMed

    Han, Shuping; Naito, Wataru; Hanai, Yoshimichi; Masunaga, Shigeki

    2013-09-15

    To develop efficient and effective methods of assessing and managing the risk posed by metals to aquatic life, it is important to determine the effects of water chemistry on the bioavailability of metals in surface water. In this study, we employed the diffusive gradients in thin-films (DGT) to determine the bioavailability of metals (Ni, Cu, Zn, and Pb) in Japanese water systems. The DGT results were compared with a chemical equilibrium model (WHAM 7.0) calculation to examine its robustness and utility to predict dynamic metal speciation. The DGT measurements showed that biologically available fractions of metals in the rivers impacted by mine drainage and metal industries were relatively high compared with those in urban rivers. Comparison between the DGT results and the model calculation indicated good agreement for Zn. The model calculation concentrations for Ni and Cu were higher than the DGT concentrations at most sites. As for Pb, the model calculation depended on whether the precipitated iron(III) hydroxide or precipitated aluminum(III) hydroxide was assumed to have an active surface. Our results suggest that the use of WHAM 7.0 combined with the DGT method can predict bioavailable concentrations of most metals (except for Pb) with reasonable accuracy. Copyright © 2013. Published by Elsevier Ltd.

  8. Enhanced and tunable electric dipole-dipole interactions near a planar metal film

    NASA Astrophysics Data System (ADS)

    Zhou, Lei-Ming; Yao, Pei-Jun; Zhao, Nan; Sun, Fang-Wen

    2017-08-01

    We investigate the enhanced electric dipole-dipole interaction of surface plasmon polaritons (SPPs) supported by a planar metal film waveguide. By taking two nitrogen-vacancy (NV) center electric dipoles in diamond as an example, both the coupling strength and collective relaxation of two dipoles are studied with the numerical Green Function method. Compared to two-dipole coupling on a planar surface, metal film provides stronger and tunable coupling coefficients. Enhancement of the interaction between coupled NV center dipoles could have applications in both quantum information and energy transfer investigation. Our investigation provides systematic results for experimental applications based on a dipole-dipole interaction mediated with SPPs on a planar metal film.

  9. Method and apparatus for imparting strength to a material using sliding loads

    DOEpatents

    Hughes, D.A.; Dawson, D.B.; Korellis, J.S.

    1999-03-16

    A method of enhancing the strength of metals by affecting subsurface zones developed during the application of large sliding loads is disclosed. Stresses which develop locally within the near surface zone can be many times larger than those predicted from the applied load and the friction coefficient. These stress concentrations arise from two sources: (1) asperity interactions and (2) local and momentary bonding between the two surfaces. By controlling these parameters more desirable strength characteristics can be developed in weaker metals to provide much greater strength to rival that of steel, for example. 11 figs.

  10. Temperature and emissivity determination of liquid steel S235

    NASA Astrophysics Data System (ADS)

    Schöpp, H.; Sperl, A.; Kozakov, R.; Gött, G.; Uhrlandt, D.; Wilhelm, G.

    2012-06-01

    Temperature determination of liquid metals is difficult but a necessary tool for improving materials and processes such as arc welding in the metal-working industry. A method to determine the surface temperature of the weld pool is described. A TIG welding process and absolute calibrated optical emission spectroscopy are used. This method is combined with high-speed photography. 2D temperature profiles are obtained. The emissivity of the radiating surface has an important influence on the temperature determination. A temperature dependent emissivity for liquid steel is given for the spectral region between 650 and 850 nm.

  11. Mesoporous metallic rhodium nanoparticles

    NASA Astrophysics Data System (ADS)

    Jiang, Bo; Li, Cuiling; Dag, Ömer; Abe, Hideki; Takei, Toshiaki; Imai, Tsubasa; Hossain, Md. Shahriar A.; Islam, Md. Tofazzal; Wood, Kathleen; Henzie, Joel; Yamauchi, Yusuke

    2017-05-01

    Mesoporous noble metals are an emerging class of cutting-edge nanostructured catalysts due to their abundant exposed active sites and highly accessible surfaces. Although various noble metal (e.g. Pt, Pd and Au) structures have been synthesized by hard- and soft-templating methods, mesoporous rhodium (Rh) nanoparticles have never been generated via chemical reduction, in part due to the relatively high surface energy of rhodium (Rh) metal. Here we describe a simple, scalable route to generate mesoporous Rh by chemical reduction on polymeric micelle templates [poly(ethylene oxide)-b-poly(methyl methacrylate) (PEO-b-PMMA)]. The mesoporous Rh nanoparticles exhibited a ~2.6 times enhancement for the electrocatalytic oxidation of methanol compared to commercially available Rh catalyst. Surprisingly, the high surface area mesoporous structure of the Rh catalyst was thermally stable up to 400 °C. The combination of high surface area and thermal stability also enables superior catalytic activity for the remediation of nitric oxide (NO) in lean-burn exhaust containing high concentrations of O2.

  12. Systems and Methods for Designing and Fabricating Contact-Free Support Structures for Overhang Geometries of Parts in Powder-Bed Metal Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Cooper, Kenneth (Inventor); Chou, Yuag-Shan (Inventor)

    2017-01-01

    Systems and methods are provided for designing and fabricating contact-free support structures for overhang geometries of parts fabricated using electron beam additive manufacturing. One or more layers of un-melted metallic powder are disposed in an elongate gap between an upper horizontal surface of the support structure and a lower surface of the overhang geometry. The powder conducts heat from the overhang geometry to the support structure. The support structure acts as a heat sink to enhance heat transfer and reduce the temperature and severe thermal gradients due to poor thermal conductivity of metallic powders underneath the overhang. Because the support structure is not connected to the part, the support structure can be removed freely without any post-processing step.

  13. The enhancement of heavy metal removal from polluted river water treatment by integrated carbon-aluminium electrodes using electrochemical method

    NASA Astrophysics Data System (ADS)

    Yussuf, N. M.; Embong, Z.; Abdullah, S.; Masirin, M. I. M.; Tajudin, S. A. A.; Ahmad, S.; Sahari, S. K.; Anuar, A. A.; Maxwell, O.

    2018-01-01

    The heavy metal removal enhancement from polluted river water was investigated using two types of electrodes consist of integrated carbon-aluminium and a conventional aluminium plate electrode at laboratory-scale experiments. In the integrated electrode systems, the aluminium electrode surface was coated with carbon using mixed slurry containing carbon black, polyvinyl acetate and methanol. The electrochemical treatment was conducted on the parameter condition of 90V applied voltage, 3cm of electrode distance and 60 minutes of electrolysis operational time. Surface of both electrodes was investigated for pre and post electrolysis treatment by using SEM-EDX analytical technique. Comparison between both of the electrode configuration exhibits that more metals were accumulated on carbon integrated electrode surfaces for both anode and cathode, and more heavy metals were detected on the cathode. The atomic percentage of metals distributed on the cathode conventional electrode surface consist of Al (94.62%), Zn (1.19%), Mn (0.73%), Fe (2.81%) and Cu (0.64%), while on the anode contained O (12.08%), Al (87.63%) and Zn (0.29%). Meanwhile, cathode surface of integrated electrode was accumulated with more metals; O (75.40%), Al (21.06%), Zn (0.45%), Mn (0.22), Fe (0.29%), Cu (0.84%), Pb (0.47%), Na (0.94%), Cr (0.08%), Ni (0.02%) and Ag (0.22%), while on anode contain Al (3.48%), Fe (0.49 %), C (95.77%), and Pb (0.26%). According to this experiment, it was found that integrated carbon-aluminium electrodes have a great potential to accumulate more heavy metal species from polluted water compare to the conventional aluminium electrode. Here, heavy metal accumulation process obviously very significant on the cathode surface.

  14. A theoretical prediction of the paradoxical surface free energy for FCC metallic nanosolids

    NASA Astrophysics Data System (ADS)

    Abdul-Hafidh, Esam H.; Aïssa, Brahim

    2016-08-01

    We report on the development of an efficient and simple method to calculate the surface free energy (surface tension) of a general-shaped metallic nanosolid. Both nanoparticles and nanostructures that account for the crystal structure and size were considered. The surface free energy of a face-centered cubic structure of a metallic nanoparticles was found to decrease as the size decreases, for a shape factor equal to 1.0 (i.e., spherical). However, when the shape factor exceeds this value, which includes disk-like, regular tetrahedral, regular hexahedral, regular octahedral, nanorod, and regular quadrangular structures, the behavior of the surface free energy was found to reverse, especially for small nanoparticles and then increases as the size decreases. Moreover, this behavior was systematically recorded for large nanoparticles when the mechanical distortion was appreciable. As a matter of fact, this model was also applied to the noble transition metals, including gold and silver nanoparticles. This work is a clear step forward establishing a systematic mechanism for controlling the mechanical properties of nanoscale particles by controlling the shape, size and structure.

  15. [Pollution characteristics and ecological risk assessment of heavy metals in surface sediments of Qingshan Reservoir in Lin' an City, Zhejiang Province of East China].

    PubMed

    Zhang, Fen; Yang, Chang-Ming; Pan, Rui-Jie

    2013-09-01

    A total of 8 representative surface sediment sampling sites were collected from the Qingshan Reservoir in Lin'an City of Zhejiang Province to investigate the differences in the total concentrations of As, Cr, Cu, Ni, Mn, Pb, and Zn among the sampling sites. The different forms of the heavy metals, i. e., acid soluble, easily reducible, easily oxidizable, and residual, were determined by BCR sequential extraction method, and the pollution degrees and potential ecological risk, of the heavy metals in the surface sediments at different sampling sites of the Reservoir were assessed by using geo-accumulation index (I(geo)) and Hakanson potential ecological risk index. There existed obvious spatial differences in the total concentrations of the heavy metals in the surface sediments of the Reservoir. The sampling sites nearby the estuaries of the tributaries flowing through downtowns and heavy industrial parks to the Reservoir had obviously higher heavy metals concentrations in surface sediments, as compared to the other sampling sites. In the sediments, Mn was mainly in acid extractable form, Cu and Pb were mainly in reducible form, and As was mainly in residual form. The surface sediments at the sampling sites nearby the estuaries of the tributaries flowing through downtowns to the Reservoir had higher proportions of acid extractable and reducibles forms of the heavy metals, which would have definite potential toxic risk to aquatic organisms. Among the 7 heavy metals in the surface sediments, As showed the highest pollution degree, followed by Cu, Ni, Mn, Pb, and Zn, which were at moderate pollution degree, while Cr was at non-pollution degree, with relatively low potential ecological risk. Through the comparison of the sampling sites, it was observed that the surface sediments at the sites nearby the estuaries of Jinxi River and Hengxi River flowing through downtowns and heavy industrial parks to the Reservoir showed obviously higher heavy metals pollution degree and potential ecological risk.

  16. Microfluidic platforms for gallium-based liquid metal alloy

    NASA Astrophysics Data System (ADS)

    Kim, Daeyoung

    As an alternative to toxic mercury, non-toxic gallium-based liquid metal alloy has been gaining popularity due to its higher thermal and electrical conductivities, and low toxicity along with liquid property. However, it is difficult to handle as the alloy becomes readily oxidized in atmospheric air environment. This instant oxidation causes the gallium-based liquid metal alloy to wet almost any solid surface. Therefore, it has been primarily limited to applications which rely only on its deformability, not on its mobility. In this research, various approaches to mobilize gallium-based liquid metal alloy were investigated. Multi-scale surface patterned with polydimethylsiloxane (PDMS) micro pillar array showed super-lyophobic property against gallium-based liquid metal alloy by minimizing the contact area between the solid surface and the liquid metal, and it was expanded to a three-dimensional tunnel shaped microfluidic channel. Vertically-aligned carbon nanotube forest leads to another promising super-lyophobic surface due to its hierarchical micro/nano scale combined structures and chemical inertness. When the carbon nanotubes were transferred onto flexible PDMS by imprinting, the super-lyophobic property was still maintained even under the mechanical deformation such as stretching and bending. Alternatively, the gallium-based liquid metal can be manipulated by modifying the surface of liquid metal itself. With chemical reaction with HCl 'vapor', the oxidized surface (mainly Ga2O3/Ga2O) of gallium-based liquid metal was converted to GaCl3/InCl 3 resulting in the recovery of non-wetting characteristics. Paper which is intrinsically porous is attractive as a super-lyophobic surface and it was found that hydrochloric acid (HCl) impregnation enhanced the anti-wetting property by the chemical reaction. As another alternative method, by coating the viscoelastic oxidized surface of liquid metal with ferromagnetic materials (CoNiMnP or Fe), it showed non-wetting property and became moveable by applying a magnetic field. Finally, using its metallic and liquid properties, microfluidic-based applications of gallium-based liquid metal alloy such as inkjet printing and reconfigurable photomask were investigated. A clog-free and oxide-free inkjet printing technique was developed by incorporating HCl-impregnated paper as orifice. Inkjet-printed liquid metal line can be used as a metallic interconnect even with significant deformation of the flexible substrate. Additionally, based on its ultraviolet light blocking property, a reconfigurable photolithography using gallium-based liquid metal alloy was demonstrated in a PDMS-based 7-segments microfluidic channel by showing single digit numbers ('0'˜'9') with attainable minimum feature size of 10 microm.

  17. Nanoscale patterning of colloidal quantum dots on transparent and metallic planar surfaces.

    PubMed

    Park, Yeonsang; Roh, Young-Geun; Kim, Un Jeong; Chung, Dae-Young; Suh, Hwansoo; Kim, Jineun; Cheon, Sangmo; Lee, Jaesoong; Kim, Tae-Ho; Cho, Kyung-Sang; Lee, Chang-Won

    2012-09-07

    The patterning of colloidal quantum dots with nanometer resolution is essential for their application in photonics and plasmonics. Several patterning approaches, such as the use of polymer composites, molecular lock-and-key methods, inkjet printing and microcontact printing of quantum dots have been recently developed. Herein, we present a simple method of patterning colloidal quantum dots for photonic nanostructures such as straight lines, rings and dot patterns either on transparent or metallic substrates. Sub-10 nm width of the patterned line could be achieved with a well-defined sidewall profile. Using this method, we demonstrate a surface plasmon launcher from a quantum dot cluster in the visible spectrum.

  18. Ru-decorated Pt surfaces as model fuel cell electrocatalysts for CO electrooxidation.

    PubMed

    Maillard, F; Lu, G-Q; Wieckowski, A; Stimming, U

    2005-09-01

    This feature article concerns Pt surfaces modified (decorated) by ruthenium as model fuel cell electrocatalysts for electrooxidation processes. This work reveals the role of ruthenium promoters in enhancing electrocatalytic activity toward organic fuels for fuel cells, and it particularly concerns the methanol decomposition product, surface CO. A special focus is on surface mobility of the CO as it is catalytically oxidized to CO(2). Different methods used to prepare Ru-decorated Pt single crystal surfaces as well as Ru-decorated Pt nanoparticles are reviewed, and the methods of characterization and testing of their activity are discussed. The focus is on the origin of peak splitting involved in the voltammetric electrooxidation of CO on Ru-decorated Pt surfaces, and on the interpretative consequences of the splitting for single crystal and nanoparticle Pt/Ru bimetallic surfaces. Apparently, screening through the literature allows formulating several models of the CO stripping reaction, and the validity of these models is discussed. Major efforts are made in this article to compare the results reported by the Urbana-Champaign group and the Munich group, but also by other groups. As electrocatalysis is progressively more and more driven by theory, our review of the experimental findings may serve to summarize the state of the art and clarify the roads ahead. Future studies will deal with highly dispersed and reactive nanoscale surfaces and other more advanced catalytic materials for fuel cell catalysis and related energy applications. It is expected that the metal/metal and metal/substrate interactions will be increasingly investigated on atomic and electronic levels, with likewise increasing participation of theory, and the structure and reactivity of various monolayer catalytic systems involving more than two metals (that is ternary and quaternary systems) will be interrogated.

  19. Operation of mixed conducting metal oxide membrane systems under transient conditions

    DOEpatents

    Carolan, Michael Francis [Allentown, PA

    2008-12-23

    Method of operating an oxygen-permeable mixed conducting membrane having an oxidant feed side, an oxidant feed surface, a permeate side, and a permeate surface, which method comprises controlling the differential strain between the permeate surface and the oxidant feed surface at a value below a selected maximum value by varying the oxygen partial pressure on either or both of the oxidant feed side and the permeate side of the membrane.

  20. Epitaxial-Growth-Induced Junction Welding of Silver Nanowire Network Electrodes.

    PubMed

    Kang, Hyungseok; Song, Sol-Ji; Sul, Young Eun; An, Byeong-Seon; Yin, Zhenxing; Choi, Yongsuk; Pu, Lyongsun; Yang, Cheol-Woong; Kim, Youn Sang; Cho, Sung Min; Kim, Jung-Gu; Cho, Jeong Ho

    2018-05-22

    In this study, we developed a roll-to-roll Ag electroplating process for metallic nanowire electrodes using a galvanostatic mode. Electroplating is a low-cost and facile method for deposition of metal onto a target surface with precise control of both the composition and the thickness. Metallic nanowire networks [silver nanowires (AgNWs) and copper nanowires (CuNWs)] coated onto a polyethylene terephthalate (PET) film were immersed directly in an electroplating bath containing AgNO 3 . Solvated silver ions (Ag + ions) were deposited onto the nanowire surface through application of a constant current via an external circuit between the nanowire networks (cathode) and a Ag plate (anode). The amount of electroplated Ag was systematically controlled by changing both the applied current density and the electroplating time, which enabled precise control of the sheet resistance and optical transmittance of the metallic nanowire networks. The optimized Ag-electroplated AgNW (Ag-AgNW) films exhibited a sheet resistance of ∼19 Ω/sq at an optical transmittance of 90% (550 nm). A transmission electron microscopy study confirmed that Ag grew epitaxially on the AgNW surface, but a polycrystalline Ag structure was formed on the CuNW surface. The Ag-electroplated metallic nanowire electrodes were successfully applied to various electronic devices such as organic light-emitting diodes, triboelectric nanogenerators, and a resistive touch panel. The proposed roll-to-roll Ag electroplating process provides a simple, low-cost, and scalable method for the fabrication of enhanced transparent conductive electrode materials for next-generation electronic devices.

  1. Electrolytic etch for preventing electrical shorts in solar cells on polymer surfaces

    DOEpatents

    Weber, Michael F.

    1991-10-08

    A method for preventing shorts and shunts in solar cells having in order, an insulating substrate, a conductive metal layer on the substrate, an amorphous silicon layer and a transparent conductive layer. The method includes anodic etching of exposed portions of the metal layer after deposition of the amorphous silicon and prior to depositing the transparent conductive layer.

  2. Method of forming impermeable carbide coats on graphite

    DOEpatents

    Wohlberg, C.

    1973-12-11

    A method of forming an impermeable refractory metal carbide coating on graphite is described in which a metal containing oxidant and a carbide former are applied to the surface of the graphite, heated to a temperature of between 1200 and 1500 deg C in an inert gas, under a vacuum and continuing to heat to about 2300 deg C. (Official Gazette)

  3. Development of large-surface Nafion-metal composite actuator and its electrochemical characterization

    NASA Astrophysics Data System (ADS)

    Noh, Taegeun; Tak, Yong Suk; Nam, Jaedo; Jeon, Jaewook; Kim, Hunmo; Choi, Hyoukryeol; Bae, Sang Sik

    2001-07-01

    Behaviors of nafion-based actuators are significantly affected by interfacial area between electrode and polymer electrolyte. Replication method was utilized to manufacture a large surface-area composite actuator. Etched aluminum foil was used as a template for replication using liquid nafion solution. Measurement of double layer charging and scanning electron microscopy indicated that interfacial area was greatly increased by replication method. Higher surface area induced a better bending performance of ionic polymer metal composite (IPMC). In parallel, the effect of cations on IPMC was interpreted with constant current experiment, linear sweep voltammetry and electrochemical impedance spectroscopy. For univalent cations, ion size is the most influencing parameter on ionic mobility inside membrane. However, ion-ion interaction affects an ionic mobility for divalent cations.

  4. Ceramic membranes with enhanced thermal stability

    DOEpatents

    Anderson, Marc A.; Xu, Qunyin; Bischoff, Brian L.

    1993-01-01

    A method of creating a ceramic membrane with enhanced thermal stability is disclosed. The method involves combining quantities of a first metal alkoxide with a second metal, the quantities selected to give a preselected metal ratio in the resultant membrane. A limited amount of water and acid is added to the combination and stirred until a colloidal suspension is formed. The colloid is dried to a gel, and the gel is fired at a temperature greater than approximately 400.degree. C. The porosity and surface area of ceramic membranes formed by this method are not adversely affected by this high temperature firing.

  5. Photobiomolecular deposition of metallic particles and films

    DOEpatents

    Hu, Zhong-Cheng

    2005-02-08

    The method of the invention is based on the unique electron-carrying function of a photocatalytic unit such as the photosynthesis system I (PSI) reaction center of the protein-chlorophyll complex isolated from chloroplasts. The method employs a photo-biomolecular metal deposition technique for precisely controlled nucleation and growth of metallic clusters/particles, e.g., platinum, palladium, and their alloys, etc., as well as for thin-film formation above the surface of a solid substrate. The photochemically mediated technique offers numerous advantages over traditional deposition methods including quantitative atom deposition control, high energy efficiency, and mild operating condition requirements.

  6. Photobiomolecular metallic particles and films

    DOEpatents

    Hu, Zhong-Cheng

    2003-05-06

    The method of the invention is based on the unique electron-carrying function of a photocatalytic unit such as the photosynthesis system I (PSI) reaction center of the protein-chlorophyll complex isolated from chloroplasts. The method employs a photo-biomolecular metal deposition technique for precisely controlled nucleation and growth of metallic clusters/particles, e.g., platinum, palladium, and their alloys, etc., as well as for thin-film formation above the surface of a solid substrate. The photochemically mediated technique offers numerous advantages over traditional deposition methods including quantitative atom deposition control, high energy efficiency, and mild operating condition requirements.

  7. Evaluating nanoscale ultra-thin metal films by means of lateral photovoltaic effect in metal-semiconductor structure.

    PubMed

    Zheng, Diyuan; Yu, Chongqi; Zhang, Qian; Wang, Hui

    2017-12-15

    Nanoscale metal-semiconductor (MS) structure materials occupy an important position in semiconductor and microelectronic field due to their abundant physical phenomena and effects. The thickness of metal films is a critical factor in determining characteristics of MS devices. How to detect or evaluate the metal thickness is always a key issue for realizing high performance MS devices. In this work, we propose a direct surface detection by use of the lateral photovoltaic effect (LPE) in MS structure, which can not only measure nanoscale thickness, but also detect the fluctuation of metal films. This method is based on the fact that the output of lateral photovoltaic voltage (LPV) is closely linked with the metal thickness at the laser spot. We believe this laser-based contact-free detection is a useful supplement to the traditional methods, such as AFM, SEM, TEM or step profiler. This is because these traditional methods are always incapable of directly detecting ultra-thin metal films in MS structure materials.

  8. Evaluating nanoscale ultra-thin metal films by means of lateral photovoltaic effect in metal-semiconductor structure

    NASA Astrophysics Data System (ADS)

    Zheng, Diyuan; Yu, Chongqi; Zhang, Qian; Wang, Hui

    2017-12-01

    Nanoscale metal-semiconductor (MS) structure materials occupy an important position in semiconductor and microelectronic field due to their abundant physical phenomena and effects. The thickness of metal films is a critical factor in determining characteristics of MS devices. How to detect or evaluate the metal thickness is always a key issue for realizing high performance MS devices. In this work, we propose a direct surface detection by use of the lateral photovoltaic effect (LPE) in MS structure, which can not only measure nanoscale thickness, but also detect the fluctuation of metal films. This method is based on the fact that the output of lateral photovoltaic voltage (LPV) is closely linked with the metal thickness at the laser spot. We believe this laser-based contact-free detection is a useful supplement to the traditional methods, such as AFM, SEM, TEM or step profiler. This is because these traditional methods are always incapable of directly detecting ultra-thin metal films in MS structure materials.

  9. Alkali-metal induced band structure deformation investigated by angle-resolved photoemission spectroscopy and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Ito, S.; Feng, B.; Arita, M.; Someya, T.; Chen, W.-C.; Takayama, A.; Iimori, T.; Namatame, H.; Taniguchi, M.; Cheng, C.-M.; Tang, S.-J.; Komori, F.; Matsuda, I.

    2018-04-01

    Alkali-metal adsorption on the surface of materials is widely used for in situ surface electron doping, particularly for observing unoccupied band structures by angle-resolved photoemission spectroscopy (ARPES). However, the effects of alkali-metal atoms on the resulting band structures have yet to be fully investigated, owing to difficulties in both experiments and calculations. Here, we combine ARPES measurements on cesium-adsorbed ultrathin bismuth films with first-principles calculations of the electronic charge densities and demonstrate a simple method to evaluate alkali-metal induced band deformation. We reveal that deformation of bismuth surface bands is directly correlated with vertical charge-density profiles at each electronic state of bismuth. In contrast, a change in the quantized bulk bands is well described by a conventional rigid-band-shift picture. We discuss these two aspects of the band deformation holistically, considering spatial distributions of the electronic states and cesium-bismuth hybridization, and provide a prescription for applying alkali-metal adsorption to a wide range of materials.

  10. Excited-state potential-energy surfaces of metal-adsorbed organic molecules from linear expansion Δ-self-consistent field density-functional theory (ΔSCF-DFT).

    PubMed

    Maurer, Reinhard J; Reuter, Karsten

    2013-07-07

    Accurate and efficient simulation of excited state properties is an important and much aspired cornerstone in the study of adsorbate dynamics on metal surfaces. To this end, the recently proposed linear expansion Δ-self-consistent field method by Gavnholt et al. [Phys. Rev. B 78, 075441 (2008)] presents an efficient alternative to time consuming quasi-particle calculations. In this method, the standard Kohn-Sham equations of density-functional theory are solved with the constraint of a non-equilibrium occupation in a region of Hilbert-space resembling gas-phase orbitals of the adsorbate. In this work, we discuss the applicability of this method for the excited-state dynamics of metal-surface mounted organic adsorbates, specifically in the context of molecular switching. We present necessary advancements to allow for a consistent quality description of excited-state potential-energy surfaces (PESs), and illustrate the concept with the application to Azobenzene adsorbed on Ag(111) and Au(111) surfaces. We find that the explicit inclusion of substrate electronic states modifies the topologies of intra-molecular excited-state PESs of the molecule due to image charge and hybridization effects. While the molecule in gas phase shows a clear energetic separation of resonances that induce isomerization and backreaction, the surface-adsorbed molecule does not. The concomitant possibly simultaneous induction of both processes would lead to a significantly reduced switching efficiency of such a mechanism.

  11. Characterization of heavy-metal-contaminated sediment by using unsupervised multivariate techniques and health risk assessment.

    PubMed

    Wang, Yeuh-Bin; Liu, Chen-Wuing; Wang, Sheng-Wei

    2015-03-01

    This study characterized the sediment quality of the severely contaminated Erjen River in Taiwan by using multivariate analysis methods-including factor analysis (FA), self-organizing maps (SOMs), and positive matrix factorization (PMF)-and health risk assessment. The SOMs classified the dataset with similar heavy-metal-contaminated sediment into five groups. FA extracted three major factors-traditional electroplating and metal-surface processing factor, nontraditional heavy-metal-industry factor, and natural geological factor-which accounted for 80.8% of the variance. The SOMs and FA revealed the heavy-metal-contaminated-sediment hotspots in the middle and upper reaches of the major tributary in the dry season. The hazardous index value for health risk via ingestion was 0.302. PMF further qualified the source apportionment, indicating that traditional electroplating and metal-surface-processing industries comprised 47% of the health risk posed by heavy-metal-contaminated sediment. Contaminants discharged from traditional electroplating and metal-surface-processing industries in the middle and upper reaches of the major tributary must be eliminated first to improve the sediment quality in Erjen River. The proposed assessment framework for heavy-metal-contaminated sediment can be applied to contaminated-sediment river sites in other regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Perfect coupling of light to a periodic dielectric/metal/dielectric structure

    NASA Astrophysics Data System (ADS)

    Wang, Zhengling; Li, Shiqiang; Chang, R. P. H.; Ketterson, John B.

    2014-07-01

    Using the finite difference time domain method, it is demonstrated that perfect coupling can be achieved between normally incident light and a periodic dielectric/metal/dielectric structure. The structure serves as a diffraction grating that excites modes related to the long range surface plasmon and short range surface plasmon modes that propagate on continuous metallic films. By optimizing the structural dimensions, perfect coupling is achieved between the incident light and these modes. A high Q of 697 and an accompanying ultrasharp linewidth of 0.8 nm are predicted for a 10 nm silver film for optimal conditions.

  13. Bioassembled layered silicate-metal nanoparticle hybrids.

    PubMed

    Drummy, Lawrence F; Jones, Sharon E; Pandey, Ras B; Farmer, B L; Vaia, Richard A; Naik, Rajesh R

    2010-05-01

    Here we report on the bioenabled assembly of layered nanohybrids using peptides identified with regard to their affinity to the nanoparticle surface. A dodecamer peptide termed M1, determined from a phage peptide display library, was found to bind to the surface of a layered aluminosilicate (montmorillonite, MMT). Fusion of a metal binding domain to the M1 peptide or the M1 peptide by itself was able to direct the growth of metal nanoparticles, such as gold and cobalt-platinum, respectively, on the MMT. This method of producing hybrid nanoclay materials will have utility in catalytic, optical, biomedical, and composite materials applications.

  14. Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings

    DOEpatents

    Farmer, Joseph C; Wong, Frank M.G.; Haslam, Jeffery J; Ji, Xiaoyan; Day, Sumner D; Blue, Craig A; Rivard, John D.K.; Aprigliano, Louis F; Kohler, Leslie K; Bayles, Robert; Lemieux, Edward J; Yang, Nancy; Perepezko, John H; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J

    2013-09-03

    A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

  15. Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings

    DOEpatents

    Farmer, Joseph C.; Wong, Frank M. G.; Haslam, Jeffery J.; Ji, Xiaoyan; Day, Sumner D.; Blue, Craig A.; Rivard, John D. K.; Aprigliano, Louis F.; Kohler, Leslie K.; Bayles, Robert; Lemieux, Edward J.; Yang, Nancy; Perepezko, John H.; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J.

    2013-07-09

    A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

  16. A general strategy toward the rational synthesis of metal tungstate nanostructures using plasma electrolytic oxidation method

    NASA Astrophysics Data System (ADS)

    Jiang, Yanan; Liu, Baodan; Zhai, Zhaofeng; Liu, Xiaoyuan; Yang, Bing; Liu, Lusheng; Jiang, Xin

    2015-11-01

    A new method based on conventional plasma electrolytic oxidation (PEO) technology has been developed for the rational synthesis of metal tungstate nanostructures. Using this method, ZnWO4 and NiWO4 nanostructures with controllable morphologies (nanorods, nanosheets and microsheets) and superior crystallinity have been synthesized. It has been found that the morphology diversity of ZnWO4 nanostructures can be selectively tailored through tuning the electrolyte concentration and annealing temperatures, showing obvious advantages in comparison to traditional hydrothermal and sol-gel methods. Precise microscopy analyses on the cross section of the PEO coating and ZnWO4 nanostructures confirmed that the precursors initially precipitated in the PEO coating and its surface during plasma discharge process are responsible for the nucleation and subsequent growth of metal tungstate nanostructures by thermal annealing. The method developed in this work represents a general strategy toward the rational synthesis of metal oxide nanostructures and the formation mechanism of metal tungstate nanostructures fabricated by the PEO method is finally discussed.

  17. Fabrication of large area nanoprism arrays and their application for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Cui, B.; Clime, L.; Li, K.; Veres, T.

    2008-04-01

    This work demonstrates the fabrication of metallic nanoprism (triangular nanostructure) arrays using a low-cost and high-throughput process. In the method, the triangular structure is defined by the shadow of a pyramid during angle evaporation of a metal etching mask. The pyramids were created by nanoimprint lithography in polymethylmethacrylate (PMMA) using a mould having an inverse-pyramid-shaped hole array formed by KOH wet etching of silicon. Silver and gold nanoprism arrays with a period of 200 nm and an edge length of 100 nm have been fabricated and used as effective substrates for surface enhanced Raman spectroscopy (SERS) detection of rhodamine 6G (R6G) molecules. Numerical calculations confirmed the great enhancement of electric field near the sharp nanoprism corners, as well as the detrimental effect of the chromium adhesion layer on localized surface plasmon resonance. The current method can also be used to fabricate non-equilateral nanoprism and three-dimensional (3D) nanopyramid arrays, and it can be readily extended to other metals.

  18. Fabrication of large area nanoprism arrays and their application for surface enhanced Raman spectroscopy.

    PubMed

    Cui, B; Clime, L; Li, K; Veres, T

    2008-04-09

    This work demonstrates the fabrication of metallic nanoprism (triangular nanostructure) arrays using a low-cost and high-throughput process. In the method, the triangular structure is defined by the shadow of a pyramid during angle evaporation of a metal etching mask. The pyramids were created by nanoimprint lithography in polymethylmethacrylate (PMMA) using a mould having an inverse-pyramid-shaped hole array formed by KOH wet etching of silicon. Silver and gold nanoprism arrays with a period of 200 nm and an edge length of 100 nm have been fabricated and used as effective substrates for surface enhanced Raman spectroscopy (SERS) detection of rhodamine 6G (R6G) molecules. Numerical calculations confirmed the great enhancement of electric field near the sharp nanoprism corners, as well as the detrimental effect of the chromium adhesion layer on localized surface plasmon resonance. The current method can also be used to fabricate non-equilateral nanoprism and three-dimensional (3D) nanopyramid arrays, and it can be readily extended to other metals.

  19. A facile route towards large area self-assembled nanoscale silver film morphologies and their applications towards metal enhanced fluorescence

    DOE PAGES

    Hohenberger, Erik; Freitag, Nathan; Rosenmann, Daniel; ...

    2017-04-19

    Here, we present a facile method for fabricating nanostructured silver films containing a high density of nanoscopic gap features through a surface directed phenomenon utilizing nanoporous scaffolds rather than through traditional lithographic patterning processes. This method enables tunability of the silver film growth by simply adjusting the formulation and processing conditions of the nanoporous film prior to metallization. We further demonstrate that this process can produce nanoscopic gaps in thick (100 nm) silver films supporting localized surface plasmon resonance with large field amplification within the gaps while enabling launching of propagating surface plasmons within the silver grains. These enhanced fieldsmore » provide metal enhanced fluorescence with enhancement factors as high as 21 times compared to glass, as well as enable visualization of single fluorophore emission. This work provides a low-cost rapid approach for producing novel nanostructures capable of broadband fluorescence amplification, with potential applications including plasmonic and fluorescence based optical sensing and imaging applications.« less

  20. Electroless deposition process for zirconium and zirconium alloys

    DOEpatents

    Donaghy, R. E.; Sherman, A. H.

    1981-08-18

    A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer. 1 fig.

  1. Electroless deposition process for zirconium and zirconium alloys

    DOEpatents

    Donaghy, Robert E.; Sherman, Anna H.

    1981-01-01

    A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer.

  2. Surface studies of novel oxide-free biocompatible coatings on metals

    NASA Astrophysics Data System (ADS)

    GAO, FENG

    The valence band and core-level X-ray Photoelectron Spectroscopy (XPS) was used to probe biocompatible films formed on the surface of metals. The key to the successful adhesion of these biocompatible films is shown to be the initial formation of a thin, oxide free, etidronate film on the metal. It was not found possible to prepare the biocompatible films directly on the metal surfaces. These films formed on metals may find application in medical implants. The biocompatible films were exposed to air, water and sodium chloride for corrosion studies. The thin hydroxyapatite and etidronate film on the metal show differential charging effects that caused a doubling of the peaks in some core level spectra. This shows the coating has some electric properties such as dielectric or piezoelectric characters. This coating may have application in the insulating materials of electronic circuits or dielectric/ piezoelectric layer in bio-sensors. Experiment and calculation method of X-ray Photoelectron Spectroscopy is one powerful technology in surface and interface analysis. The valence band spectra proved especially valuable in the identification of the surface chemistry of the films, and these spectra were interpreted by comparing the experimental spectra with spectra calculated using band structure calculations which showed good agreement with experiment. The calculated spectrum could also be used to compare with the difference of experiment spectra for the investigation of the interface layers.

  3. A study of the possibility of predicting the threshold of plasma formation on a metal surface by the optoacoustic method

    NASA Astrophysics Data System (ADS)

    Aver'ianov, N. E.; Baloshin, Iu. A.; Martiukhina, L. I.; Pavlishin, I. V.; Sud'Enkov, Iu. V.

    1987-09-01

    The amplitudes of the acoustic signals excited in metal reflectors by laser pulses are analyzed as a function of the energy density of target irradiation. It is shown that the slope of the resulting plot is related to the threshold of plasma generation near the specimen surface. Results are presented for the emission wavelengths of Nd-glass and CO2 lasers.

  4. Surface-enhanced Raman scattering from metal and transition metal nano-caped arrays

    NASA Astrophysics Data System (ADS)

    Sun, Huanhuan; Gao, Renxian; Zhu, Aonan; Hua, Zhong; Chen, Lei; Wang, Yaxin; Zhang, Yongjun

    2018-03-01

    The metal and transition metal cap-shaped arrays on polystyrene colloidal particle (PSCP) templates were fabricated to study the surface-enhanced Raman scattering (SERS) effect. We obtained the Ag and Fe complex film by a co-sputtering deposition method. The size of the deposited Fe particle was changed by the sputtering power. We also study the SERS enhancement mechanism by decorating the PATP probe molecule on the different films. The SERS signals increased firstly, and then decreased as the size of Fe particles grows gradually. The finite-difference time domain (FDTD) simulation and experimental Raman results manifest that SERS enhancement was mainly attributed to surface plasma resonance (SPR) between Ag and Ag nanoparticles. The SERS signals of PATP molecule were enhanced to reach a lowest detectable concentration of 10-8 mol/L. The research demonstrates that the SERS substrates with Ag-Fe cap-shaped arrays have a high sensitivity.

  5. Electrocatalyst for alcohol oxidation at fuel cell anodes

    DOEpatents

    Adzic, Radoslav [East Setauket, NY; Kowal, Andrzej [Cracow, PL

    2011-11-02

    In some embodiments a ternary electrocatalyst is provided. The electrocatalyst can be used in an anode for oxidizing alcohol in a fuel cell. In some embodiments, the ternary electrocatalyst may include a noble metal particle having a surface decorated with clusters of SnO.sub.2 and Rh. The noble metal particles may include platinum, palladium, ruthenium, iridium, gold, and combinations thereof. In some embodiments, the ternary electrocatalyst includes SnO.sub.2 particles having a surface decorated with clusters of a noble metal and Rh. Some ternary electrocatalysts include noble metal particles with clusters of SnO.sub.2 and Rh at their surfaces. In some embodiments the electrocatalyst particle cores are nanoparticles. Some embodiments of the invention provide a fuel cell including an anode incorporating the ternary electrocatalyst. In some aspects a method of using ternary electrocatalysts of Pt, Rh, and SnO.sub.2 to oxidize an alcohol in a fuel cell is described.

  6. Adsorption of pentacene on (100) vicinal surfaces: role of coordination, surface chemistry and vdWs effects

    NASA Astrophysics Data System (ADS)

    Matos, Jeronimo; Kara, Abdelkader

    2015-03-01

    In contrast to low miller index surfaces, vicinal surfaces are characterized by steps and step edges that not only present an interesting atomic landscape for the adsorption organic molecules, but also a unique electronic structure resulting in part from the low coordinated atoms at the step edges. The adsorption of pentacene on the stepped (511), (711), (911) surfaces (respectively 3, 4 and 5-atom wide terraces) of Cu and Ag (coinage transition metals); Pt (reactive transition metal); and Ni (reactive, magnetic transition metal) are studied using density functional theory, in order to investigate the support effects arising from differing surface chemistry. We compare the adsorption energy, adsorption geometry and electronic structure predicted by the PBE functional with those obtained from one of the optimized vdW-DF methods: optB88-vdW. Work supported by the U.S. Department of Energy Basic Energy Science under Contract No. DE-FG02-11ER16243.

  7. Study of the Effect of Molten Copper Chloride Immersion Test on Alloys with High Nickel Content with and without Surface Coatings

    NASA Astrophysics Data System (ADS)

    Siantar, Edwin

    The demand for hydrogen as a clean energy carrier has increased greatly. The Cu-Cl cycle is a promising thermochemical cycle that is currently being developed to be the large-scale method of hydrogen production. The lifetime of materials for the pipes transporting molten CuCl is an important parameter for an economic design of a commercial thermochemical Cu-Cl hydrogen plant. This research is an examination of candidate materials following an immersion test in molten CuCl at 500 °C for 100 h. Two alloys, Ni based super-alloy (Inconel 625) and super austenitic stainless steel (AL6XN) were selected as the base metal. There were two types of coating applied to improve the corrosion resistance of the base metals during molten CuCl exposure. A metallic of Diamalloy 4006 and two ceramic of yttria stabilized zirconia and alumina coatings were applied to the base metal using thermal spray methods. An immersion apparatus was designed and constructed to perform an immersion test that has a condition similar to those in a hydrogen plant. After the immersion test, the materials were evaluated using an electrochemical method in combination with ex-situ surface analysis. The surface condition including elemental composition, film structure and resistivity of the materials were examined and compared. The majority of the coatings were damaged and fell off. Cracks were found in the original coated specimens indicating the sample geometry may have affected the integrity of the sprayed coating. When the coating cracked, it provided a pathway for the molten CuCl to go under the coating and react with the surface underneath the coating. Copper deposits and iron chloride that were found on the sample surfaces suggest that there were corrosion reactions that involved the metal dissolution and reduction of copper during immersion test. The results also suggest that Inconel 625 performed better than stainless steel AL6XN. Both Diamalloy 4006 and YSZ (ZrO2 18TiO2 10Y2O3) coatings seemed to provide better protection to the underlying base metal than alumina (Al2O3 3TiO2) coating.

  8. [Spatial Distribution and Potential Ecological Risk Assessment of Heavy Metals in Soils and Sediments in Shunde Waterway, Southern China].

    PubMed

    Cai, Yi-min; Chen, Wei-ping; Peng, Chi; Wang, Tie-yu; Xiao, Rong-bo

    2016-05-15

    Environmental quality of soils and sediments around water source area can influence the safety of potable water of rivers. In order to study the pollution characteristics, the sources and ecological risks of heavy metals Zn, Cr, Pb, Cu, Ni and Cd in water source area, surface soils around the waterway and sediments in the estuary of main tributaries were collected in Shunde, and ecological risks of heavy metals were assessed by two methods of potential ecological risk assessment. The mean contents of Zn, Cr, Pb, Cu, Ni and Cd in the surface soils were 186.80, 65.88, 54.56, 32.47, 22.65 and 0.86 mg · kg⁻¹ respectively, and they were higher than their soil background values except those of Cu and Ni. The mean concentrations of Zn, Cr, Pb, Cu, Ni and Cd in the sediments were 312.11, 111.41, 97.87, 92.32, 29.89 and 1.72 mg · kg⁻¹ respectively, and they were higher than their soil background values except that of Ni. The results of principal component analysis illustrated that the main source of Cr and Ni in soils was soil parent materials, and Zn, Pb, Cu and Cd in soils mainly came from wastewater discharge of local manufacturing industry. The six heavy metals in sediments mainly originated from industry emissions around the Shunde waterway. The results of potential ecological risk assessment integrating environmental bioavailability of heavy metals showed that Zn, Cu, Pb and Ni had a slight potential ecological risk. Cd had a slight potential ecological risk in surface soils, but a moderate potential ecological risk in surfaces sediments. Because the potential ecological risk assessment integrating environmental bioavailability of heavy metals took the soil properties and heavy metal forms into account, its results of risks were lower than those of Hakanson methods, and it could avoid overestimating the potential risks of heavy metals.

  9. Study of solid/liquid and solid/gas interfaces in Cu-isoleucine complex by surface X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Ferrer, Pilar; Rubio-Zuazo, Juan; Castro, German R.

    2013-02-01

    The enzymes could be understood like structures formed by amino acids bonded with metals, which act as active sites. The research on the coordination of metal-amino acid complexes will bring light on the behavior of metal enzymes, due to the close relation existing between the atomic structure and the functionality. The Cu-isoleucine bond is considered as a good model system to attain a better insight into the characteristics of naturally occurring copper metalloproteins. The surface structure of metal-amino acid complex could be considered as a more realistic model for real systems under biologic working conditions, since the molecular packing is decreased. In the surface, the structural constrains are reduced, keeping the structural capability of surface complex to change as a function of the surrounding environment. In this work, we present a surface X-ray diffraction study on Cu-isoleucine complex under different ambient conditions. Cu(Ile)2 crystals of about 5 mm × 5 mm × 1 mm have been growth, by seeding method in a supersaturated solution, presenting a surface of high quality. The sample for the surface diffraction study was mounted on a cell specially designed for solid/liquid or solid/gas interface analysis. The Cu-isoleucine crystal was measured under a protective dry N2 gas flow and in contact with a saturated metal amino acid solution. The bulk and the surface signals were compared, showing different atomic structures. In both cases, from surface diffraction data, it is observed that the atomic structure of the top layer undergoes a clear structural deformation. A non-uniform surface relaxation is observed producing an inhomogeneous displacement of the surface atoms towards the surface normal.

  10. Anti-diffusion metal coated O-rings

    DOEpatents

    Biallas, George Herman; Boyce, James Reid

    2016-03-22

    A method for inhibiting diffusion of gases and/or transmission of photons through elastomeric seals and a diffusion inhibiting elastomeric seal wherein at least a portion of the surface of a diffusion inhibiting elastomeric seal is coated with a compatibly-deformable, malleable metal coating.

  11. Size-Dependent Surface Energy Density of Spherical Face-Centered-Cubic Metallic Nanoparticles.

    PubMed

    Wei, Yaochi; Chen, Shaohua

    2015-12-01

    The surface energy density of nano-sized elements exhibits a significantly size-dependent behavior. Spherical nanoparticle, as an important element in nano-devices and nano-composites, has attracted many interesting studies on size effect, most of which are molecular dynamics (MD) simulations. However, the existing MD calculations yield two opposite size-dependent trends of surface energy density of nanoparticles. In order to clarify such a real underlying problem, atomistic calculations are carried out in the present paper for various spherical face-centered-cubic (fcc) metallic nanoparticles. Both the embedded atom method (EAM) potential and the modified embedded atom method (MEAM) one are adopted. It is found that the size-dependent trend of surface energy density of nanoparticles is not governed by the chosen potential function or variation trend of surface energy, but by the defined radius of spherical nanoparticles in MD models. The finding in the present paper should be helpful for further theoretical studies on surface/interface effect of nanoparticles and nanoparticle-reinforced composites.

  12. Mechanically durable underwater superoleophobic surfaces based on hydrophilic bulk metals for oil/water separation

    NASA Astrophysics Data System (ADS)

    Yu, Huadong; Lian, Zhongxu; Xu, Jinkai; Wan, Yanling; Wang, Zuobin; Li, Yiquan; Yu, Zhanjiang; Weng, Zhankun

    2018-04-01

    Despite the success of previous methods for fabricating underwater superoleophobic surfaces, most of the surfaces based on soft materials are prone to collapse and deformation due to their mechanically fragile nature, and they fail to perform their designed functions after the surface materials are damaged in water. In this work, the nanosecond laser-induced oxide coatings on hydrophilic bulk metals are reported which overcomes the limitation and shows the robust underwater superoleophobicity to a mechanical challenge encountered by surfaces deployed in water environment. The results show that the surface materials have the advantage that the underwater superoleophobicity is still preserved after the surfaces are scratched by knife or sandpaper and even completely destroyed because of the hydrophilic property of damaged materials in water. It is important that the results provide a guide for the design of durable underwater superoleophobic surfaces, and the development of superoleophobic materials in many potential applications such as the oil-repellent and the oil/water separation. Additionally, the nanosecond laser technology is simple, cost-effective and suitable for the large-area and mass fabrication of mechanically durable underwater superoleophobic metal materials.

  13. Chemical Ni-C Bonding in Ni-Carbon Nanotube Composite by a Microwave Welding Method and Its Induced High-Frequency Radar Frequency Electromagnetic Wave Absorption.

    PubMed

    Sha, Linna; Gao, Peng; Wu, Tingting; Chen, Yujin

    2017-11-22

    In this work, a microwave welding method has been used for the construction of chemical Ni-C bonding at the interface between carbon nanotubes (CNTs) and metal Ni to provide a different surface electron distribution, which determined the electromagnetic (EM) wave absorption properties based on a surface plasmon resonance mechanism. Through a serial of detailed examinations, such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectrum, the as-expected chemical Ni-C bonding between CNTs and metal Ni has been confirmed. And the Brunauer-Emmett-Teller and surface zeta potential measurements uncovered the great evolution of structure and electronic density compared with CNTs, metal Ni, and Ni-CNT composite without Ni-C bonding. Correspondingly, except the EM absorption due to CNTs and metal Ni in the composite, another wide and strong EM absorption band ranging from 10 to 18 GHz was found, which was induced by the Ni-C bonded interface. With a thinner thickness and more exposed Ni-C interfaces, the Ni-CNT composite displayed less reflection loss.

  14. Mathematical Modeling of an Oscillating Droplet

    NASA Technical Reports Server (NTRS)

    Berry, S.; Hyers, R. W.; Racz, L. M.; Abedian, B.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Oscillating droplets are of interest in a number of disciplines. A practical application is the oscillating drop method, which is a technique for measuring surface tension and viscosity of liquid metals. It is especially suited to undercooled and highly reactive metals, because it is performed by electromagnetic levitation. The natural oscillation frequency of the droplets is related to the surface tension of the material, and the decay of oscillations is related to its viscosity. The fluid flow inside the droplet must be laminar in order for this technique to yield good results. Because no experimental method has yet been developed to visualize flow in electromagnetically-levitated oscillating metal droplets, mathematical modeling is required to determine whether or not turbulence occurs. Three mathematical models of the flow: (1) assuming laminar conditions, (2) using the k-epsilon turbulence model, and (3) using the RNG turbulence model, respectively, are compared and contrasted to determine the physical characteristics of the flow. It is concluded that the RNG model is the best suited for describing this problem. The goal of the presented work was to characterize internal flow in an oscillating droplet of liquid metal, and to verify the accuracy of the characterization by comparing calculated surface tension and viscosity.

  15. Photovoltaic enhancement due to surface-plasmon assisted visible-light absorption at the inartificial surface of lead zirconate-titanate film

    NASA Astrophysics Data System (ADS)

    Zheng, Fengang; Zhang, Peng; Wang, Xiaofeng; Huang, Wen; Zhang, Jinxing; Shen, Mingrong; Dong, Wen; Fang, Liang; Bai, Yongbin; Shen, Xiaoqing; Sun, Hua; Hao, Jianhua

    2014-02-01

    PZT film of 300 nm thickness was deposited on tin indium oxide (ITO) coated quartz by a sol-gel method. Four metal electrodes, such as Pt, Au, Cu and Ag, were used as top electrodes deposited on the same PZT film by sputtering at room temperature. In ITO-PZT-Ag and ITO-PZT-Au structures, the visible light (400-700 nm) can be absorbed partially by a PZT film, and the maximum efficiency of photoelectric conversion of the ITO-PZT-Ag structure was enhanced to 0.42% (100 mW cm-2, AM 1.5G), which is about 15 times higher than that of the ITO-PZT-Pt structure. Numerical simulations show that the natural random roughness of polycrystalline-PZT-metal interface can offer a possibility of coupling between the incident photons and SPs at the metal surface. The coincidence between the calculated SP properties and the measured EQE spectra reveals the SP origin of the photovoltaic enhancement in these ITO-PZT-metal structures, and the improved photocurrent output is caused by the enhanced optical absorption in the PZT region near the metal surface, rather than by the direct charge-transfer process between two materials.PZT film of 300 nm thickness was deposited on tin indium oxide (ITO) coated quartz by a sol-gel method. Four metal electrodes, such as Pt, Au, Cu and Ag, were used as top electrodes deposited on the same PZT film by sputtering at room temperature. In ITO-PZT-Ag and ITO-PZT-Au structures, the visible light (400-700 nm) can be absorbed partially by a PZT film, and the maximum efficiency of photoelectric conversion of the ITO-PZT-Ag structure was enhanced to 0.42% (100 mW cm-2, AM 1.5G), which is about 15 times higher than that of the ITO-PZT-Pt structure. Numerical simulations show that the natural random roughness of polycrystalline-PZT-metal interface can offer a possibility of coupling between the incident photons and SPs at the metal surface. The coincidence between the calculated SP properties and the measured EQE spectra reveals the SP origin of the photovoltaic enhancement in these ITO-PZT-metal structures, and the improved photocurrent output is caused by the enhanced optical absorption in the PZT region near the metal surface, rather than by the direct charge-transfer process between two materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05757g

  16. Methods of producing porous platinum-based catalysts for oxygen reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erlebacher, Jonah D.; Snyder, Joshua D.

    A porous metal that comprises platinum and has a specific surface area that is greater than 5 m 2/g and less than 75 m 2/g. A fuel cell includes a first electrode, a second electrode spaced apart from the first electrode, and an electrolyte arranged between the first and the second electrodes. At least one of the first and second electrodes is coated with a porous metal catalyst for oxygen reduction, and the porous metal catalyst comprises platinum and has a specific surface area that is greater than 5 m 2/g and less than 75 m 2/g. A method ofmore » producing a porous metal according to an embodiment of the current invention includes producing an alloy consisting essentially of platinum and nickel according to the formula Pt xNi 1-x, where x is at least 0.01 and less than 0.3; and dealloying the alloy in a substantially pH neutral solution to reduce an amount of nickel in the alloy to produce the porous metal.« less

  17. Self-disintegrating Raney metal alloys

    DOEpatents

    Oden, Laurance L.; Russell, James H.

    1979-01-01

    A method of preparing a Raney metal alloy which is capable of self-disintegrating when contacted with water vapor. The self-disintegrating property is imparted to the alloy by incorporating into the alloy from 0.4 to 0.8 weight percent carbon. The alloy is useful in forming powder which can be converted to a Raney metal catalyst with increased surface area and catalytic activity.

  18. A method for increase abrasive wear resistance parts by obtaining on methods casting on gasifying models

    NASA Astrophysics Data System (ADS)

    Sedukhin, V. V.; Anikeev, A. N.; Chumanov, I. V.

    2017-11-01

    Method optimizes hardening working layer parts’, working in high-abrasive conditions looks in this work: bland refractory particles WC and TiC in respect of 70/30 wt. % prepared by beforehand is applied on polystyrene model in casting’ mould. After metal poured in mould, withstand for crystallization, and then a study is carried out. Study macro- and microstructure received samples allows to say that thickness and structure received hardened layer depends on duration interactions blend harder carbides and liquid metal. Different character interactions various dispersed particles and matrix metal observed under the same conditions. Tests abrasive wear resistance received materials of method calculating residual masses was conducted in laboratory’ conditions. Results research wear resistance showed about that method obtaining harder coating of blend carbide tungsten and carbide titanium by means of drawing on surface foam polystyrene model before moulding, allows receive details with surface has wear resistance in 2.5 times higher, than details of analogy steel uncoated. Wherein energy costs necessary for transformation units mass’ substances in powder at obtained harder layer in 2.06 times higher, than materials uncoated.

  19. Tubular hydrogen permeable metal foil membrane and method of fabrication

    DOEpatents

    Paglieri, Stephen N.; Birdsell, Stephen A.; Barbero, Robert S.; Snow, Ronny C.; Smith, Frank M.

    2006-04-04

    A tubular hydrogen permeable metal membrane and fabrication process comprises obtaining a metal alloy foil having two surfaces, coating the surfaces with a metal or metal alloy catalytic layer to produce a hydrogen permeable metal membrane, sizing the membrane into a sheet with two long edges, wrapping the membrane around an elongated expandable rod with the two long edges aligned and overlapping to facilitate welding of the two together, placing the foil wrapped rod into a surrounding fixture housing with the two aligned and overlapping foil edges accessible through an elongated aperture in the surrounding fixture housing, expanding the elongated expandable rod within the surrounding fixture housing to tighten the foil about the expanded rod, welding the two long overlapping foil edges to one another generating a tubular membrane, and removing the tubular membrane from within the surrounding fixture housing and the expandable rod from with the tubular membrane.

  20. Observation of the Amorphous-to-Crystalline Surface Transition in Al-AlxOy Using Slow Positrons

    NASA Astrophysics Data System (ADS)

    Lynn, K. G.

    1980-05-01

    The amorphous-to-crystalline surface transition of AlxOy on the Al(111) surface is observed between 650 and 800 K with different O2 exposures by measuring the positronium (Ps) fraction produced by e+ impinging on the surface. The data are interpreted in terms of vacancy-type defects in the film or at the metal-metal-oxide interface which as trapping sites for e+ or Ps. As the ordering process proceeds to completion the trapping centers anneal out and the Ps fraction increases, showing an irreversible transition. This technique provides a new experimental method to study interfaces.

  1. Methods and energy storage devices utilizing electrolytes having surface-smoothing additives

    DOEpatents

    Xu, Wu; Zhang, Jiguang; Graff, Gordon L; Chen, Xilin; Ding, Fei

    2015-11-12

    Electrodeposition and energy storage devices utilizing an electrolyte having a surface-smoothing additive can result in self-healing, instead of self-amplification, of initial protuberant tips that give rise to roughness and/or dendrite formation on the substrate and anode surface. For electrodeposition of a first metal (M1) on a substrate or anode from one or more cations of M1 in an electrolyte solution, the electrolyte solution is characterized by a surface-smoothing additive containing cations of a second metal (M2), wherein cations of M2 have an effective electrochemical reduction potential in the solution lower than that of the cations of M1.

  2. Piercing mandrel strengthening by surfacing with nickel aluminide-based alloy

    NASA Astrophysics Data System (ADS)

    Zorin, I. V.; Dubtsov, Yu N.; Sokolov, G. N.; Artem'ev, A. A.; Lysak, V. I.; Elsukov, S. N.

    2017-02-01

    Electrode composite wire (CW) was used for argon-arc surfacing of a thermal-resisting nickel aluminide-based alloy (Ni-Al-Cr-W-Mo-Ta system) on the butt-end surface of the non-water-cooled piercing mandrel. It was shown that multipassing surfacing forms a defect-free deposited metal based on the γ’-Ni3Al phase of various structural origins. Using high-temperature sclerometry and thermal fatigue testing methods, the metal deposited with CW containing ultrafine particle of 0.3-0.4 % wt. WC carbide features increased resistance to thermal and force effects at temperatures up to 1200 °C.

  3. Effect of metal conditioner on bonding of porcelain to cobalt-chromium alloy

    PubMed Central

    Kajihara, Yutaro; Takenouchi, Yoshihisa; Tanaka, Takuo; Suzuki, Shiro; Minami, Hiroyuki

    2016-01-01

    PURPOSE The purpose of this study was to evaluate the efficacy of two different metal conditioners for non-precious metal alloys for the bonding of porcelain to a cobalt-chromium (Co-Cr) alloy. MATERIALS AND METHODS Disk-shaped specimens (2.5×10.0 mm) were cast with Co-Cr alloy and used as adherend materials. The bonding surfaces were polished with a 600-grid silicon carbide paper and airborne-particle abraded using 110 µm alumina particles. Bonding specimens were fabricated by applying and firing either of the metal conditioners on the airborne-particle abraded surface, followed by firing porcelain into 5 mm in diameter and 3 mm in height. Specimens without metal conditioner were also fabricated. Shear bond strength for each group (n=8) were measured and compared (α=.05). Sectional view of bonding interface was observed by SEM. EDS analysis was performed to determine the chemical elements of metal conditioners and to determine the failure modes after shear test. RESULTS There were significant differences among three groups, and two metal conditioner-applied groups showed significantly higher values compared to the non-metal conditioner group. The SEM observation of the sectional view at bonding interface revealed loose contact at porcelain-alloy surface for non-metal conditioner group, however, close contact at both alloy-metal conditioner and metal conditioner-porcelain interfaces for both metal conditioner-applied groups. All the specimens showed mixed failures. EDS analysis showed that one metal conditioner was Si-based material, and another was Ti-based material. Si-based metal conditioner showed higher bond strengths compared to the Ti-based metal conditioner, but exhibited more porous failure surface failure. CONCLUSION Based on the results of this study, it can be stated that the application of metal conditioner is recommended for the bonding of porcelain to cobalt-chromium alloys. PMID:26949481

  4. [Accumulation, distribution and pollution assessment of heavy metals in surface sediment of Caohai plateau wetland, Guizhou province].

    PubMed

    Zhang, Qing-Hai; Lin, Chang-Hu; Tan, Hong; Lin, Shao-Xia; Yang, Hong-Bo

    2013-03-01

    The objective of this paper is to investigate the concentrations and distribution characteristics of heavy metals in surface sediments of different areas in the Caohai plateau wetland. 16 samples of surface sediments were collected and 7 heavy metals were analyzed. Heavy metal pollution in surface sediments of different areas in the Caohai plateau wetland was estimated by the Tomlinson Pollution Load Index (PLI) method. The analyzed results indicated that the average contents of Cd, Hg, As, Pb, Cr, Cu, Zn were 0.985, 0.345, 15.8, 38.9, 38.6, 22.8 and 384 mg x kg(-1), respectively. The heavy metal distributions varied with regional environment changes, the order of average contents of Cd and Hg in different regions was E (the eastern region) > S (the southern region) > N (the northern region), the order of the average content of Pb was N > E > S, and that of Zn was S > E > N. The results also suggested a medium heavy metal pollution level in the surface sediment of the Caohai plateau wetland with the PLI(zone) reaching 1.17. The order of pollution level in surface sediments of different regions was E > S > N. The results showed medium pollution levels in E and Hg which reached the extreme intensity pollution level were also the major polluted elements in surface sediments of the Caohai plateau wetland. And also, results showed medium pollution levels of Cd and Pb in surface sediments of Caohai plateau wetland. Cluster analysis results showed similar pollution sources of Cd, Zn, Pb and Hg, which should be attached great importance in terms of the prevention of the Caohai plateau wetland.

  5. Relative extraction ratio (RER) for arsenic and heavy metals in soils and tailings from various metal mines, Korea.

    PubMed

    Son, Hye Ok; Jung, Myung Chae

    2011-01-01

    This study focused on the evaluation of leaching behaviours for arsenic and heavy metals (Cd, Cu, Ni, Pb and Zn) in soils and tailings contaminated by mining activities. Ten representative mine soils were taken at four representative metal mines in Korea. To evaluate the leaching characteristics of the samples, eight extraction methods were adapted namely 0.1 M HCl, 0.5 M HCl, 1.0 M HCl, 3.0 M HCl, Korean Standard Leaching Procedure for waste materials (KSLP), Synthetic Precipitation Leaching Procedure (SPLP), Toxicity Characteristic Leaching Procedure (TCLP) and aqua regia extraction (AR) methods. In order to compare element concentrations as extraction methods, relative extraction ratios (RERs, %), defined as element concentration extracted by the individual leaching method divided by that extracted by aqua regia based on USEPA method 3050B, were calculated. Although the RER values can vary upon sample types and elements, they increase with increasing ionic strength of each extracting solution. Thus, the RER for arsenic and heavy metals in the samples increased in the order of KSLP < SPLP < TCLP < 0.1 M HCl < 0.5 M HCl < 1.0 M HCl < 3.0 M HCl. In the same extraction method, the RER values for Cd and Zn were relatively higher than those for As, Cu, Ni and Pb. This may be due to differences in geochemical behaviour of each element, namely high solubility of Cd and Zn and low solubility of As, Cu, Ni and Pb in surface environment. Thus, the extraction results can give important information on the degree and extent of arsenic and heavy metal dispersion in the surface environment.

  6. Bio-inspired silicon nanospikes fabricated by metal-assisted chemical etching for antibacterial surfaces

    NASA Astrophysics Data System (ADS)

    Hu, Huan; Siu, Vince S.; Gifford, Stacey M.; Kim, Sungcheol; Lu, Minhua; Meyer, Pablo; Stolovitzky, Gustavo A.

    2017-12-01

    The recently discovered bactericidal properties of nanostructures on wings of insects such as cicadas and dragonflies have inspired the development of similar nanostructured surfaces for antibacterial applications. Since most antibacterial applications require nanostructures covering a considerable amount of area, a practical fabrication method needs to be cost-effective and scalable. However, most reported nanofabrication methods require either expensive equipment or a high temperature process, limiting cost efficiency and scalability. Here, we report a simple, fast, low-cost, and scalable antibacterial surface nanofabrication methodology. Our method is based on metal-assisted chemical etching that only requires etching a single crystal silicon substrate in a mixture of silver nitrate and hydrofluoric acid for several minutes. We experimentally studied the effects of etching time on the morphology of the silicon nanospikes and the bactericidal properties of the resulting surface. We discovered that 6 minutes of etching results in a surface containing silicon nanospikes with optimal geometry. The bactericidal properties of the silicon nanospikes were supported by bacterial plating results, fluorescence images, and scanning electron microscopy images.

  7. Laser shock wave and its applications

    NASA Astrophysics Data System (ADS)

    Yang, Chaojun; Zhang, Yongkang; Zhou, Jianzhong; Zhang, Fang; Feng, Aixin

    2007-12-01

    The technology of laser shock wave is used to not only surface modification but also metal forming. It can be divided into three parts: laser shock processing, laser shock forming (LSF) and laser peenforming(LPF). Laser shock processing as a surface treatment to metals can make engineering components have a residual compressive stress so that it obviously improves their fatigue strength and stress corrosion performances, while laser shock forming (LSF) is a novel technique that is used in plastic deformation of sheet metal recently and Laser peen forming (LPF) is another new sheet metal forming process presented in recent years. They all can be carried out by a high-power and repetition pulse Nd:Glass laser device made by Jiangsu University. Laser shock technology has characterized of ultrahigh pressure and high strain rate (10 6 - 10 7s -1). Now, for different materials, we are able to form different metals to contours and shapes and simultaneity leave their surfaces in crack-resistant compressive stress state. The results show that the technology of laser shock wave can strengthen surface property and prolong fatigue life and especially can deform metals to shapes that could not be adequately made using conventional methods. With the development of the technology of laser shock wave, the applied fields of laser will become greater and greater.

  8. Nanoscale patterning of two metals on silicon surfaces using an ABC triblock copolymer template.

    PubMed

    Aizawa, Masato; Buriak, Jillian M

    2006-05-03

    Patterning technologically important semiconductor interfaces with nanoscale metal films is important for applications such as metallic interconnects and sensing applications. Self-assembling block copolymer templates are utilized to pattern an aqueous metal reduction reaction, galvanic displacement, on silicon surfaces. Utilization of a triblock copolymer monolayer film, polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) (PS-b-P2VP-b-PEO), with two blocks capable of selective transport of different metal complexes to the surface (PEO and P2VP), allows for chemical discrimination and nanoscale patterning. Different regions of the self-assembled structure discriminate between metal complexes at the silicon surface, at which time they undergo the spontaneous reaction at the interface. Gold deposition from gold(III) compounds such as HAuCl4(aq) in the presence of hydrofluoric acid mirrors the parent block copolymer core structure, whereas silver deposition from Ag(I) salts such as AgNO3(aq) does the opposite, localizing exclusively under the corona. By carrying out gold deposition first and silver second, sub-100-nm gold features surrounded by silver films can be produced. The chemical selectivity was extended to other metals, including copper, palladium, and platinum. The interfaces were characterized by a variety of methods, including scanning electron microscopy, scanning Auger microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy.

  9. Technological capabilities of surface layers formation on implant made of Ti-6Al-4V ELI alloy.

    PubMed

    Kiel-Jamrozik, Marta; Szewczenko, Janusz; Basiaga, Marcin; Nowińska, Katarzyna

    2015-01-01

    The aim of the presented research was to find a combination of surface modification methods of implants made of the Ti-6Al-4V ELI alloy, that lead to formation of effective barrier for metallic ions that may infiltrate into solution. To this end, the following tests were carried out: roughness measurement, the voltamperometric tests (potentiodynamic and potentiostatic), and the ion infiltration test. The electropolishing process resulted in the lowering of surface roughness in comparison with mechanical treatment of the surface layer. The anodization process and steam sterilization increased corrosion resistance regardless of the mechanical treatment or electropolishing. The crevice corrosion tests revealed that independent of the modification method applied, the Ti-6Al-4V ELI alloy has excellent crevice corrosion resistance. The smallest quantity of ions infiltrated to the solution was observed for surface modification consisting in the mechanical treatment and anodization with the potential of 97 V. Electric parameters deter- mined during studies were the basis for effectiveness estimation of particular surface treatment methods. The research has shown that the anodization process significantly influences the pitting corrosion resistance of the Ti-6Al-4V ELI alloy independent of the previous surface treatment methods (mechanical and electrochemical). The surface layer after such modification is a protective barrier for metallic ions infiltrated to solution and protects titanium alloy against corrosive environment influence.

  10. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOEpatents

    Li, Ting [Ventura, CA

    2011-04-26

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  11. Shielding gas effect to diffusion activities of magnesium and copper on aluminum clad

    NASA Astrophysics Data System (ADS)

    Manurung, Charles SP; Napitupulu, Richard AM

    2017-09-01

    Aluminum is the second most metal used in many application, because of its corrosion resistance. The Aluminum will be damaged in over time if it’s not maintained in good condition. That is important to give protection to the Aluminums surface. Cladding process is one of surface protection methodes, especially for metals. Aluminum clad copper (Al/Cu) or copper clad aluminum (Cu/Al) composite metals have been widely used for many years. These mature protection method and well tested clad metal systems are used industrially in a variety application. The inherent properties and behavior of both copper and aluminum combine to provide unique performance advantages. In this paper Aluminum 2024 series will be covered with Aluminum 1100 series by hot rolling process. Observations will focus on diffusion activities of Mg and Cu that not present on Aluminum 1100 series. The differences of clad material samples is the use of shielding gas during heating before hot rolling process. The metallurgical characteristics will be examined by using optical microscopy. Transition zone from the interface cannot be observed but from Energy Dispersive Spectrometry it’s found that Mg and Cu are diffused from base metal (Al 2024) to the clad metal (Al 1100). Hardness test proved that base metals hardness to interface was decrease.

  12. Optical surface evaluation by soft X-ray scattering

    NASA Technical Reports Server (NTRS)

    Green, James C.; Finley, David S.; Bowyer, Stuart; Malina, Roger F.

    1986-01-01

    During the fabrication of the mirrors for the Extreme Ultraviolet Explorer (EUVE), methods for evaluating the surface quality of the optics have been developed. Measurement of soft X-ray scattering profiles allows for the determination of the surface roughness and correlation lengths for highly polished metal surfaces. With this method, the surface parameters for one of the Wolter Schwarzschild type I mirrors that had been fabricated for the EUVE mission have been determined. The techniques employed, the theoretical basis for the method, and the data that had been taken are presented. The measurements show that the best mirrors have a surface roughness of 20A rms or less.

  13. Surface geophysical investigation of the areal and vertical extent of metallic waste at the former Tyson Valley Powder Farm near Eureka, Missouri, Spring 2004

    USGS Publications Warehouse

    Ball, Lyndsay B.; Kress, Wade H.; Anderson, Eric D.; Teeple, Andrew; Ferguson, James W.; Colbert, Charles R.

    2004-01-01

    The former Tyson Valley Powder Farm near Eureka, Missouri, was used primarily as a storage facility for the production of small arms ammunition during 1941?47 and 1951?61. A secondary use of the site was for munitions testing and disposal. Surface exposures of small arms waste, characterized by brass shell casings and fragments, as well as other miscellaneous scrap metal are remnants of disposal practices that took place during U.S. Army operation and can be found throughout the site. Little historical information exists describing disposal practices, and more debris is believed to be buried in the subsurface. The U.S. Army Corps of Engineers has identified several areas of concern throughout the former Tyson Valley Powder Farm. A surface-geophysical investigation was performed by the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, to evaluate the areal and vertical extent of metallic debris in the subsurface within three of these areas of concern. Electromagnetic and magnetic methods were used to locate anomalies indicating relatively large concentrations of buried metallic debris within the selected areas of concern. Maps were created identifying twelve anomalous zones in the three areas of concern, and three of these zones were selected for further investigation. The extent and depth of the anomalies within these zones were explored using two-dimensional direct-current resistivity methods. Resistivity and time-domain induced polarization data were compared to the anomalous locations of the electromagnetic and magnetic surveys. The geophysical methods selected for this study were useful in determining the areal and vertical extent of metallic waste within the former Tyson Valley Powder Farm. However, electromagnetic and magnetic methods were not able to differentiate magnetic scrap metal from non-magnetic metallic small arms waste, most likely due to the small size and scattered distribution of the small arms waste, in addition to the mixing of both types of debris in the subsurface. Electromagnetic and magnetic data showed some zones of concentrated anomalies, while there was a general scattering of small anomalies throughout the site. Inverted resistivity sections, as well as induced polarization sections, showed the debris to have a maximum depth of approximately 1 to 2 meters below the surface.

  14. Elucidating ultrafast electron dynamics at surfaces using extreme ultraviolet (XUV) reflection-absorption spectroscopy.

    PubMed

    Biswas, Somnath; Husek, Jakub; Baker, L Robert

    2018-04-24

    Here we review the recent development of extreme ultraviolet reflection-absorption (XUV-RA) spectroscopy. This method combines the benefits of X-ray absorption spectroscopy, such as element, oxidation, and spin state specificity, with surface sensitivity and ultrafast time resolution, having a probe depth of only a few nm and an instrument response less than 100 fs. Using this technique we investigated the ultrafast electron dynamics at a hematite (α-Fe2O3) surface. Surface electron trapping and small polaron formation both occur in 660 fs following photoexcitation. These kinetics are independent of surface morphology indicating that electron trapping is not mediated by defects. Instead, small polaron formation is proposed as the likely driving force for surface electron trapping. We also show that in Fe2O3, Co3O4, and NiO, band gap excitation promotes electron transfer from O 2p valence band states to metal 3d conduction band states. In addition to detecting the photoexcited electron at the metal M2,3-edge, the valence band hole is directly observed as transient signal at the O L1-edge. The size of the resulting charge transfer exciton is on the order of a single metal-oxygen bond length. Spectral shifts at the O L1-edge correlate with metal-oxygen bond covalency, confirming the relationship between valence band hybridization and the overpotential for water oxidation. These examples demonstrate the unique ability to measure ultrafast electron dynamics with element and chemical state resolution using XUV-RA spectroscopy. Accordingly, this method is poised to play an important role to reveal chemical details of previously unseen surface electron dynamics.

  15. Surface and catalytic properties of acid metal carbons prepared by the sol gel method

    NASA Astrophysics Data System (ADS)

    Aguado-Serrano, J.; Rojas-Cervantes, M. L.; Martín-Aranda, R. M.; López-Peinado, A. J.; Gómez-Serrano, V.

    2006-06-01

    The sol-gel method has been applied for the synthesis of a series of acid metal-carbon xerogels (with M = V, Cr, Mo and Ni) by polymerisation of resorcinol with formaldehyde in the presence of metallic precursors. A blank sample was also prepared without any metal addition. The xerogels were heated in nitrogen at 1000 °C to obtain the pyrolysed products. The samples were characterised by different techniques such as thermal-mass spectrometry analysis, gas physisorption, and mercury porosimetry. In addition, the acid character of the pyrolysed products was tested by the Claisen-Schmidt condensation between benzaldehyde and acetophenone for the formation of chalcones.

  16. Solid polymer electrolyte composite membrane comprising a porous support and a solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide

    DOEpatents

    Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B

    2015-02-24

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.

  17. Ammonia-treated phosphate glasses useful for sealing to metals metals

    DOEpatents

    Brow, Richard K.; Day, Delbert E.

    1991-01-01

    A method of improving surface-dependent properties of phosphate glass such as durability and wear resistance without significantly affecting its thermal expansion coefficient is provided which comprises annealing the glass in a dry ammonia atmosphere at temperatures approximating the transition temperature of the glass. The ammonia annealing treatment of the present invention is carried out for a time sufficient to allow incorporation of a thin layer of nitrogen into the surface of the phosphate glass, and the treatment improves the durability of the glass without the reduction in the thermal expansion coefficient that has restricted the effectiveness of prior ammonia treatments. The improved phosphate glass resulting from this method is superior in wear resistance, yet maintains suitable thermal expansion properties so that it may be used effectively in a variety of applications requiring hermetic glass-metal seals.

  18. The stability boundary of group-III transition metal diboride ScB 2 (0 0 0 1) surfaces

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Qin, Na

    2012-01-01

    Experimental observations and theoretical investigations exhibit that a group-IV(V) transition metal diboride (0 0 0 1) surface is terminated with a 1 × 1 TM(B) layer. As to a group-III transition metal diboride, we have investigated the stability boundary of ScB2 (0 0 0 1) surfaces using first principles total energy plane-wave pseudopotential method based on density functional theory. The Mulliken charge population analysis shows that Sc atoms in the second layer cannot provide B atoms in the first layer with sufficient electrons to form a complete graphene-like boron layer. We also found that the charge transfer between the first and the second layer for the B-terminated surface is more than that for Sc-terminated surface. It elucidates the reason that the outermost interlayer spacing contract more strongly in the B-terminated surface than in the Sc-terminated surface. The surface energies of both terminated ScB2 (0 0 0 1) surfaces as a function of the chemical potential of B are also calculated to check the relative stability of the two surface structures.

  19. Metal-oxide assisted surface treatment of polyimide gate insulators for high-performance organic thin-film transistors.

    PubMed

    Kim, Sohee; Ha, Taewook; Yoo, Sungmi; Ka, Jae-Won; Kim, Jinsoo; Won, Jong Chan; Choi, Dong Hoon; Jang, Kwang-Suk; Kim, Yun Ho

    2017-06-14

    We developed a facile method for treating polyimide-based organic gate insulator (OGI) surfaces with self-assembled monolayers (SAMs) by introducing metal-oxide interlayers, called the metal-oxide assisted SAM treatment (MAST). To create sites for surface modification with SAM materials on polyimide-based OGI (KPI) surfaces, the metal-oxide interlayer, here amorphous alumina (α-Al 2 O 3 ), was deposited on the KPI gate insulator using spin-coating via a rapid sol-gel reaction, providing an excellent template for the formation of a high-quality SAM with phosphonic acid anchor groups. The SAM of octadecylphosphonic acid (ODPA) was successfully treated by spin-coating onto the α-Al 2 O 3 -deposited KPI film. After the surface treatment by ODPA/α-Al 2 O 3 , the surface energy of the KPI thin film was remarkably decreased and the molecular compatibility of the film with an organic semiconductor (OSC), 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-C 10 ), was increased. Ph-BTBT-C 10 molecules were uniformly deposited on the treated gate insulator surface and grown with high crystallinity, as confirmed by atomic force microscopy (AFM) and X-ray diffraction (XRD) analysis. The mobility of Ph-BTBT-C 10 thin-film transistors (TFTs) was approximately doubled, from 0.56 ± 0.05 cm 2 V -1 s -1 to 1.26 ± 0.06 cm 2 V -1 s -1 , after the surface treatment. The surface treatment of α-Al 2 O 3 and ODPA significantly decreased the threshold voltage from -21.2 V to -8.3 V by reducing the trap sites in the OGI and improving the interfacial properties with the OSC. We suggest that the MAST method for OGIs can be applied to various OGI materials lacking reactive sites using SAMs. It may provide a new platform for the surface treatment of OGIs, similar to that of conventional SiO 2 gate insulators.

  20. METHOD OF HOT ROLLING URANIUM METAL

    DOEpatents

    Kaufmann, A.R.

    1959-03-10

    A method is given for quickly and efficiently hot rolling uranium metal in the upper part of the alpha phase temperature region to obtain sound bars and sheets possessing a good surface finish. The uranium metal billet is heated to a temperature in the range of 1000 deg F to 1220 deg F by immersion iii a molten lead bath. The heated billet is then passed through the rolls. The temperature is restored to the desired range between successive passes through the rolls, and the rolls are turned down approximately 0.050 inch between successive passes.

  1. Powder Metallurgy Reconditioning of Food and Processing Equipment Components

    NASA Astrophysics Data System (ADS)

    Nafikov, M. Z.; Aipov, R. S.; Konnov, A. Yu.

    2017-12-01

    A powder metallurgy method is developed to recondition the worn surfaces of food and processing equipment components. A combined additive is composed to minimize the powder losses in sintering. A technique is constructed to determine the powder consumption as a function of the required metallic coating thickness. A rapid method is developed to determine the porosity of the coating. The proposed technology is used to fabricate a wear-resistant defectless metallic coating with favorable residual stresses, and the adhesive strength of this coating is equal to the strength of the base metal.

  2. New insights into pre-lithiation kinetics of graphite anodes via nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Holtstiege, Florian; Schmuch, Richard; Winter, Martin; Brunklaus, Gunther; Placke, Tobias

    2018-02-01

    Pre-lithiation of anode materials can be an effective method to compensate active lithium loss which mainly occurs in the first few cycles of a lithium ion battery (LIB), due to electrolyte decomposition and solid electrolyte interphase (SEI) formation at the surface of the anode. There are many different pre-lithiation methods, whereas pre-lithiation using metallic lithium constitutes the most convenient and widely utilized lab procedure in literature. In this work, for the first time, solid state nuclear magnetic resonance spectroscopy (NMR) is applied to monitor the reaction kinetics of the pre-lithiation process of graphite with lithium. Based on static 7Li NMR, we can directly observe both the dissolution of lithium metal and parallel formation of LiCx species in the obtained NMR spectra with time. It is also shown that the degree of pre-lithiation as well as distribution of lithium metal on the electrode surface have a strong impact on the reaction kinetics of the pre-lithiation process and on the remaining amount of lithium metal. Overall, our findings are highly important for further optimization of pre-lithiation methods for LIB anode materials, both in terms of optimized pre-lithiation time and appropriate amounts of lithium metal.

  3. Domain growth of carbon nanotubes assisted by dewetting of thin catalyst precursor films

    NASA Astrophysics Data System (ADS)

    Srivastava, Alok Kumar; Sachan, Priyanka; Samanta, Chandan; Mukhopadhyay, Kingsuk; Sharma, Ashutosh

    2014-01-01

    We explore self-organized dewetting of ultrathin films of a novel metal complex as a one step surface patterning method to create nanoislands of iron, using which spatially separated carbon nanostructures were synthesized. Dewetting of ultrathin metal complex films was induced by two different methods: liquid solvent exposure and thermal annealing to engender surface patterning. For thermal dewetting, thin films of the iron oleate complex were dewetted at high temperature. In the case of liquid solvent assisted dewetting, the metal complex, mixed with a sacrificial polymer (polystyrene) was spin coated as thin films (<40 nm) and then dewetted under an optimal solution mixture consisting of methyl ethyl ketone, acetone and water. The carrier polymer was then selectively removed to produce the iron metal islands. These metal islands were used for selective growth of discrete patches of multiwall CNTs and CNFs by a chemical vapor deposition (CVD) process. Solvent induced dewetting showed clear advantages over thermal dewetting owing to reduced size of catalyst domains formed by dewetting, an improved control over CNT growth as well as in its ability to immobilize the seed particles. The generic solution mediated dewetting and pattern generation in thin films of various catalytic precursors can thus be a powerful method for selective domain growth of a variety of functional nanomaterials.

  4. Bio-inspired immobilization of metal oxides on monolithic microreactor for continuous Knoevenagel reaction.

    PubMed

    Song, Wentong; Shi, Da; Tao, Shengyang; Li, Zhaoliang; Wang, Yuchao; Yu, Yongxian; Qiu, Jieshan; Ji, Min; Wang, Xinkui

    2016-11-01

    A facile method is reported to construct monolithic microreactor with high catalytic performance for Knoevenagel reaction. The microreactor is based on hierarchically porous silica (HPS) which has interconnected macro- and mesopores. Then the HPS is surface modified by pyrogallol (PG) polymer. Al(NO3)3 and Mg(NO3)2 are loaded on the surface of HPS through coordination with -OH groups of PG. After thermal treatment, Al(NO3)3 and Mg(NO3)2 are converted Al2O3 and MgO. The as-synthesized catalytic microreactor shows a high and stable performance in Knoevenagel reaction. The microreactor possess large surface area and interconnected pore structures which are beneficial for reactions. Moreover, this economic, facile and eco-friendly surface modification method can be used in loading more metal oxides for more reactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Synthesis and immobilization of Ag(0) nanoparticles on diazonium modified electrodes: SECM and cyclic voltammetry studies of the modified interfaces.

    PubMed

    Noël, Jean-Marc; Zigah, Dodzi; Simonet, Jacques; Hapiot, Philippe

    2010-05-18

    A versatile method was used to prepare modified surfaces on which metallic silver nanoparticles are immobilized on an organic layer. The preparation method takes advantage, on one hand, of the activated reactivity of some alkyl halides with Ag-Pd alloys to produce metallic silver nanoparticles and, on the other hand, of the facile production of an anchoring polyphenyl acetate layer by the electrografting of substituted diazonium salts on carbon surfaces. Transport properties inside such modified layers were investigated by cyclic voltammetry, scanning electrochemical microscopy (SECM) in feedback mode, and conducting AFM imaging for characterizing the presence and nature of the conducting pathways. The modification of the blocking properties of the surface (or its conductivity) was found to vary to a large extent on the solvents used for surface examination (H(2)O, CH(2)Cl(2), and DMF).

  6. Forward impact extrusion of surface textured steel blanks using coated tooling

    NASA Astrophysics Data System (ADS)

    Hild, Rafael; Feuerhack, Andreas; Trauth, Daniel; Arghavani, Mostafa; Kruppe, Nathan C.; Brögelmann, Tobias; Bobzin, Kirsten; Klocke, Fritz

    2017-10-01

    A method to enable dry metal forming by the means of a self-lubricating coating and surface textures was researched using an innovative Pin-On-Cylinder-Tribometer. The experimental analysis was complemented by a numerical model of the complex contact conditions between coated tools and the surface textured specimen at the micro-level. Based on the results, the explanation of the tribological interactions between surface textured specimens and the tool in dry full forward extrusion is the objective of this work. Therefore, experimental dry extrusion tests were performed using a tool system. The extruded specimens were evaluated regarding their geometry as well as by the required punch force. Thereby, the effectiveness and the feasibility of dry metal forming on the example of full forward extrusion was evaluated. Thus, one more step towards the technical realization of dry metal forming of low alloy steels under industrial conditions was realized.

  7. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Novel Route to Fabrication of Metal-Sandwiched Nanoscale Tapered Structures

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Yu, Da-Peng

    2009-08-01

    Tapered dielectric structures in metal have exhibited extraordinary performance in both surface plasmon polariton (SPP) waveguiding and SPP focusing. This is crucial to plasmonic research and industrial plasmonic device integration. We present a method that facilitates easy fabrication of smooth-surfaced sub-micron tapered structures in large scale simply with electron beam lithography (EBL). When a PMMA layer is spin-coated on previously-EBL-defined PMMA structures, steep edges can be transformed into a declining slope to form tapered PMMA structures, scaled from 10 nm to 1000 nm. Despite the simplicity of our method, patterns with PMMA surface smoothness can be well-positioned and replicated in large numbers, which therefore gives scientists easy access to research on the properties of tapered structures.

  8. Fiber-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2016-09-06

    A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  9. Fiber-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J; Dai, Sheng; Oyola, Yatsandra

    2014-05-13

    A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  10. Sorption properties of algae Spirogyra sp. and their use for determination of heavy metal ions concentrations in surface water.

    PubMed

    Rajfur, Małgorzata; Kłos, Andrzej; Wacławek, Maria

    2010-11-01

    Kinetics of heavy-metal ions sorption by alga Spirogyra sp. was evaluated experimentally in the laboratory, using both the static and the dynamic approach. The metal ions--Mn(2+), Cu(2+), Zn(2+) and Cd(2+)--were sorbed from aqueous solutions of their salts. The static experiments showed that the sorption equilibria were attained in 30 min, with 90-95% of metal ions sorbed in first 10 min of each process. The sorption equilibria were approximated with the Langmuir isotherm model. The algae sorbed each heavy metal ions proportionally to the amount of this metal ions in solution. The experiments confirmed that after 30 min of exposition to contaminated water, the concentration of heavy metal ions in the algae, which initially contained small amounts of these metal ions, increased proportionally to the concentration of metal ions in solution. The presented results can be used for elaboration of a method for classification of surface waters that complies with the legal regulations. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Metallization of Kevlar fibers with gold.

    PubMed

    Little, Brian K; Li, Yunfeng; Cammarata, V; Broughton, R; Mills, G

    2011-06-01

    Electrochemical gold plating processes were examined for the metallization of Kevlar yarn. Conventional Sn(2+)/Pd(2+) surface activation coupled with electroless Ni deposition rendered the fibers conductive enough to serve as cathodes for electrochemical plating. The resulting coatings were quantified gravimetrically and characterized via adhesion tests together with XRD, SEM, TEM; the coatings effect on fiber strength was also probed. XRD data showed that metallic Pd formed during surface activation whereas amorphous phases and trace amounts of pure Ni metal were plated via the electroless process. Electrodeposition in a thiosulfate bath was the most efficient Au coating process as compared with the analogous electroless procedure, and with electroplating using a commercial cyanide method. Strongly adhering coatings resulted upon metallization with three consecutive electrodepositions, which produced conductive fibers able to sustain power outputs in the range of 1 W. On the other hand, metallization affected the tensile strength of the fiber and defects present in the metal deposits make questionable the effectiveness of the coatings as protective barriers. © 2011 American Chemical Society

  12. A high figure of merit localized surface plasmon sensor based on a gold nanograting on the top of a gold planar film

    NASA Astrophysics Data System (ADS)

    Zhang, Zu-Yin; Wang, Li-Na; Hu, Hai-Feng; Li, Kang-Wen; Ma, Xun-Peng; Song, Guo-Feng

    2013-10-01

    We investigate the sensitivity and figure of merit (FOM) of a localized surface plasmon (LSP) sensor with gold nanograting on the top of planar metallic film. The sensitivity of the localized surface plasmon sensor is 317 nm/RIU, and the FOM is predicted to be above 8, which is very high for a localized surface plasmon sensor. By employing the rigorous coupled-wave analysis (RCWA) method, we analyze the distribution of the magnetic field and find that the sensing property of our proposed system is attributed to the interactions between the localized surface plasmon around the gold nanostrips and the surface plasmon polarition on the surface of the gold planar metallic film. These findings are important for developing high FOM localized surface plasmon sensors.

  13. Mathematical modelling of convective processes in a weld pool under electric arc surfacing

    NASA Astrophysics Data System (ADS)

    Sarychev, V. D.; Granovskii, A. Yu; Nevskii, S. A.; Konovalov, S. V.

    2017-01-01

    The authors develop the mathematical model of convective processes in a molten pool under electric arc surfacing with flux-cored wire. The model is based on the ideas of how convective flows appear due to temperature gradient and action of electromagnetic forces. Influence of alloying elements in the molten metal was modeled as a non-linear dependence of surface tension upon temperature. Surface tension and its temperature coefficient were calculated according to the electron density functional method with consideration to asymmetric electron distribution at the interface “molten metal / shielding gas”. Simultaneous solution of Navier-Stokes and Maxwell equations according to finite elements method with consideration to the moving heat source at the interface showed that there is a multi-vortex structure in the molten metal. This structure gives rise to a downward heat flux which, at the stage of heating, moves from the centre of the pool and stirs it full width. At the cooling stage this flux moves towards the centre of the pool and a single vortex is formed near the symmetry centre. This flux penetration is ∼ 10 mm. Formation of the downward heat flux is determined by sign reversal of the temperature coefficient of surface tension due to the presence of alloying elements.

  14. Superhydrophobic surfaces by electrochemical processes.

    PubMed

    Darmanin, Thierry; Taffin de Givenchy, Elisabeth; Amigoni, Sonia; Guittard, Frederic

    2013-03-13

    This review is an exhaustive representation of the electrochemical processes reported in the literature to produce superhydrophobic surfaces. Due to the intensive demand in the elaboration of superhydrophobic materials using low-cost, reproducible and fast methods, the use of strategies based on electrochemical processes have exponentially grown these last five years. These strategies are separated in two parts: the oxidation processes, such as oxidation of metals in solution, the anodization of metals or the electrodeposition of conducting polymers, and the reduction processed such as the electrodeposition of metals or the galvanic deposition. One of the main advantages of the electrochemical processes is the relative easiness to produce various surface morphologies and a precise control of the structures at a micro- or a nanoscale. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Evaluation of thermal behavior during laser metal deposition using optical pyrometry and numerical simulation

    NASA Astrophysics Data System (ADS)

    Dubrov, Alexander V.; Zavalov, Yuri N.; Mirzade, Fikret K.; Dubrov, Vladimir D.

    2017-06-01

    3D mathematical model of non-stationary processes of heat and mass transfer was developed for additive manufacturing of materials by direct laser metal deposition. The model takes into account self-consistent dynamics of free surface, temperature fields, and melt flow speeds. Evolution of free surface is modelled using combined Volume of Fluid and Level-Set method. Article presents experimental results of the measurement of temperature distribution in the area of bead formation by direct laser metal deposition, using multi-channel pyrometer, that is based on two-color sensors line. A comparison of experimental data with the results of numerical modeling was carried out. Features of thermal dynamics on the surface of melt pool have been detected, which were caused by thermo-capillary convection.

  16. Molecular receptors in metal oxide sol-gel materials prepared via molecular imprinting

    DOEpatents

    Sasaki, Darryl Y.; Brinker, C. Jeffrey; Ashley, Carol S.; Daitch, Charles E.; Shea, Kenneth J.; Rush, Daniel J.

    2000-01-01

    A method is provided for molecularly imprinting the surface of a sol-gel material, by forming a solution comprised of a sol-gel material, a solvent, an imprinting molecule, and a functionalizing siloxane monomer of the form Si(OR).sub.3-n X.sub.n, wherein n is an integer between zero and three and X is a functional group capable of reacting with the imprinting molecule, evaporating the solvent, and removing the imprinting molecule to form the molecularly imprinted metal oxide sol-gel material. The use of metal oxide sol-gels allows the material porosity, pore size, density, surface area, hardness, electrostatic charge, polarity, optical density, and surface hydrophobicity to be tailored and be employed as sensors and in catalytic and separations operations.

  17. An Exploration of Geometric and Electronic Effects in Metal Nanoparticle Catalysts

    NASA Astrophysics Data System (ADS)

    Childers, David

    The goal of this thesis is to investigate the influence geometric and electronic effects on metal nanoparticle catalysis. There are three main methods which alter a catalyst's properties: changing support material, changing nanoparticle size and alloying a second metal. This work will focus on the latter two methods using Pt-group metals and alloys. Platinum and palladium were chosen as the active metals due to a large amount of industry significance and prior literature to draw upon. Neopentane conversion and propane dehydrogenation were the two probe reactions used to evaluate these catalysts mainly due to their relative simplicity and ease of operation on a laboratory scale. The effect of particle size was studied with Pt and Pd monometallic catalysts using neopentane hydrogenolysis/isomerization as the probe reaction. Particle size studies have been done previously using this reaction so there is literature data to compare this study's results. This data will also be used as comparison for the bimetallic studies conducted later so that particle size effects can be accounted for when attempting to determine the effect of alloying a second metal. Bimetallic catalysts have several different possible structures depending on a number of factors from the identity of the two metals to the synthesis procedure. Homogeneous, core-shell and intermetallic alloys are the three structures evaluated in this work. Determining the surface composition of a homogeneous alloy can be difficult especially if both metals adsorb CO. PtPd homogeneous alloys were used to evaluate the ability of EXAFS to give information about surface composition using CO adsorption. These catalysts were also tested using neopentane conversion to evaluate changes in catalytic performance. Core-shell catalysts can also exhibit unique properties although it is not clear whether the identity of the core metal is relevant or if surface changes are most important to changing catalytic behavior. PdAu catalysts were synthesized with varying Pd loadings to determine if the Au-rich core would continue to influence neopentane conversion performance with increasing Pd layers on the surface of the nanoparticle. Finally, intermetallic alloys have produced some very interesting literature results and can drastically alter catalyst surface structure. PdZn showed the potential to improve neopentane isomerization selectivity past that of Pt based on calculated electronic properties. Two PdZn catalysts with different loadings were synthesized to evaluate the electronic and geometric effects using both neopentane conversion and propane dehydrogenation.

  18. Polymer network/carbon layer on monolith support and monolith catalytic reactor

    DOEpatents

    Nordquist, Andrew Francis; Wilhelm, Frederick Carl; Waller, Francis Joseph; Machado, Reinaldo Mario

    2003-08-26

    The present invention relates to an improved monolith catalytic reactor and a monolith support. The improvement in the support resides in a polymer network/carbon coating applied to the surface of a porous substrate and a catalytic metal, preferably a transition metal catalyst applied to the surface of the polymer network/carbon coating. The monolith support has from 100 to 800 cells per square inch and a polymer network/carbon coating with surface area of from 0.1 to 15 m.sup.2 /gram as measured by adsorption of N.sub.2 or Kr using the BET method.

  19. Metal substrates with nanometer scale surface roughness for flexible electronics

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Lam; Kim, Kisoo

    2012-09-01

    In this work, we present a novel way in fabricating a metal substrate with nanometer scale in surface roughness (Ra < 1 nm) using a surface roughness transfer method without any polishing or planarization process. Ag film (8 inch, Ra = 0.57 nm) and an INVAR (Invariable alloy) one (20 cm × 20 cm, Ra = 1.40 nm) were demonstrated. The INVAR film was used as a substrate for fabricating organic light emitting diodes (OLED) and organic photovoltaic (OPV). The optical and electrical characteristics of OLEDs and OPVs using the INVAR were comparable to those using a conventional ITO glass substrate.

  20. New concept in brazing metallic honeycomb panels

    NASA Technical Reports Server (NTRS)

    Carter, P. D.; Layton, R. E.; Stratton, F. W.

    1973-01-01

    Aluminum oxide coating provides surface which will not be wetted by brazing alloy and which stops metallic diffusion welding of tooling materials to part being produced. This method eliminates loss of tooling materials and parts from braze wetting and allows fall-apart disassembly of tooling after brazing.

Top