Sample records for metal uranium borates

  1. Uranium Hydridoborates: Synthesis, Magnetism, and X-ray/Neutron Diffraction Structures.

    PubMed

    Braunschweig, H; Gackstatter, A; Kupfer, T; Radacki, K; Franke, S; Meyer, K; Fucke, K; Lemée-Cailleau, M-H

    2015-08-17

    While uranium hydridoborate complexes containing the [BH4](-) moiety have been well-known in the literature for many years, species with functionalized borate centers remained considerably rare. We were now able to prepare several uranium hydridoborates (1-4) with amino-substituted borate moieties with high selectivity by smooth reaction of [Cp*2UMe2] (Cp* = C5Me5) and [Cp'2UMe2] (Cp' = 1,2,4-tBu3C5H2) with the aminoborane H2BN(SiMe3)2. A combination of nuclear magnetic resonance spectroscopy, deuteration experiments, magnetic SQUID measurements, and X-ray/neutron diffraction studies was used to verify the anticipated molecular structures and oxidation states of 1-4 and helped to establish a linear tridentate coordination mode of the borate anions.

  2. 40 CFR 721.10631 - Mixed metal borate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal borate (generic). 721... Substances § 721.10631 Mixed metal borate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal borate (PMN P-12-64...

  3. 40 CFR 721.10631 - Mixed metal borate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal borate (generic). 721... Substances § 721.10631 Mixed metal borate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal borate (PMN P-12-64...

  4. Spectroscopic properties of some borate glasses containg uranium

    NASA Astrophysics Data System (ADS)

    Culea, E.; Milea, I.; Bratu, I.

    1993-03-01

    Spectroscopic properties of some borate glasses containing 1-5%UO 3 have been studied in the fields of 700-1200 cm -1 and 10,000-30,000 cm -1 Absorption bands specific for U 6+ and U 4+ ions were observed. The increase of the melting time produces the reduction of U 6+ ions to U 4+.

  5. THE ACCURATE DETERMINATION OF MICROGRAM AMOUNTS OF BORON IN ALUMINUM AND ALUMINUM-URANIUM ALLOYS BY THE METHYL BORATE-CURCUMIN-OXALIC ACID METHOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crocker, I.H.

    1958-10-01

    A method was developed for the deternninntion of boron in aluminum and aluminum--uranium alloys in which the boron concentration is 30 ppm or more. Boron is separated by distillation as methyl borate from a hydrochloric acid solution of the alloy and is determined spectrophotometrically by the boric acid-- curcumin-oxalic acid color reaction. A precision of plus or minus 2% is attain able when the determination is penformed with the utmost care. The accuracy is such that no bias need be given when a calibration curve is used. (auth)

  6. Uranium(iii) complexes supported by hydrobis(mercaptoimidazolyl)borates: synthesis and oxidation chemistry.

    PubMed

    Maria, Leonor; Santos, Isabel C; Santos, Isabel

    2018-05-23

    The reaction of [UI3(thf)4] with the sodium or lithium salts of hydrobis(2-mercapto-1-methylimidazolyl)borate ligands ([H(R)B(timMe)2]-) in a 1 : 2 ratio, in tetrahydrofuran, gave the U(iii) complexes [UI{κ3-H,S,S'-H(R)B(timMe)2}2(thf)2] (R = H (1), Ph (2)) in good yields. Crystals of [UI{κ3-H,S,S'-H(Ph)B(timMe)2}2(thf)2] (2) were obtained by recrystallization from a tetrahydrofuran/acetonitrile solution, and the ion-separated uranium complex [U{κ3-H,S,S'-H(Ph)B(timMe)2}2(CH3CN)3][I] (3-I) was obtained by dissolution of 2 in acetonitrile followed by recrystallization. One-electron oxidation of 2 with AgBPh4 or I2 resulted in the formation of the cationic U(iv) complexes [U{κ3-H,S,S'-H(Ph)B(timMe)2}3][X] (X = BPh4 (6-BPh4), I (6-I)), due to a ligand redistribution process. These complexes are the first examples of homoleptic poly(azolyl)borate U(iv) complexes. Treatment of complex 2 with azobenzene led to the isolation of crystals of the U(iv) compound [UI{κ3-H(Ph)B(timMe)2}2(κ2-timMe)] (7). Treatment of 2 with pyridine-N oxide (pyNO) led to the formation of the uranyl complex [UO2{κ2-S,S'-H(Ph)B(timMe)2}2] (8) and of complex 6-I, while from the reaction of [U{κ3-H(Ph)B(timMe)2}2(thf)3][BPh4] (5) with pyNO, the oxo-bridged U(iv) complex [{U{κ3-H(Ph)B(timMe)2}2(pyNO)}2(μ-O)][BPh4]2 (9) was also obtained. In the U(iii) and U(iv) complexes, the bis(azolyl)borate ligands bind to the uranium center in a κ3-H,S,S' coordination mode, while in the U(vi) complex the ligands bind to the metal in a κ2-S,S' mode. The presence of UH-B interactions in the solid-state, for the nine-coordinate complexes 1, 2, 3, 6 and 7 and for the eight-coordinate complex 9, was supported by IR spectroscopy and/or X-ray diffraction analysis.

  7. Transition and post-transition metal ions in borate glasses: Borate ligand speciation, cluster formation, and their effect on glass transition and mechanical properties.

    PubMed

    Möncke, D; Kamitsos, E I; Palles, D; Limbach, R; Winterstein-Beckmann, A; Honma, T; Yao, Z; Rouxel, T; Wondraczek, L

    2016-09-28

    A series of transition and post-transition metal ion (Mn, Cu, Zn, Pb, Bi) binary borate glasses was studied with special consideration of the cations impact on the borate structure, the cations cross-linking capacity, and more generally, structure-property correlations. Infrared (IR) and Raman spectroscopies were used for the structural characterization. These complementary techniques are sensitive to the short-range order as in the differentiation of tetrahedral and trigonal borate units or regarding the number of non-bridging oxygen ions per unit. Moreover, vibrational spectroscopy is also sensitive to the intermediate-range order and to the presence of superstructural units, such as rings and chains, or the combination of rings. In order to clarify band assignments for the various borate entities, examples are given from pure vitreous B 2 O 3 to meta-, pyro-, ortho-, and even overmodified borate glass compositions. For binary metaborate glasses, the impact of the modifier cation on the borate speciation is shown. High field strength cations such as Zn 2+ enhance the disproportionation of metaborate to polyborate and pyroborate units. Pb 2+ and Bi 3+ induce cluster formation, resulting in PbO n - and BiO n -pseudophases. Both lead and bismuth borate glasses show also a tendency to stabilize very large superstructural units in the form of diborate polyanions. Far-IR spectra reflect on the bonding states of modifier cations in glasses. The frequency of the measured cation-site vibration band was used to obtain the average force constant for the metal-oxygen bonding, F M-O . A linear correlation between glass transition temperature (T g ) and F M-O was shown for the metaborate glass series. The mechanical properties of the glasses also correlate with the force constant F M-O , though for cations of similar force constant the fraction of tetrahedral borate units (N 4 ) strongly affects the thermal and mechanical properties. For paramagnetic Cu- and Mn-borate glasses, N 4 was determined from the IR spectra after deducing the relative absorption coefficient of boron tetrahedral versus boron trigonal units, α = α 4 /α 3 , using NMR literature data of the diamagnetic glasses.

  8. Reactivity of cyclopentadienyl transition metal(ii) complexes with borate ligands: structural characterization of the toluene-activated molybdenum complex [Cp*Mo(CO)2(η3-CH2C6H5)].

    PubMed

    Ramalakshmi, Rongala; Maheswari, K; Sharmila, Dudekula; Paul, Anamika; Roisnel, Thierry; Halet, Jean-François; Ghosh, Sundargopal

    2016-10-18

    Reactions of cyclopentadienyl transition-metal halide complexes [Cp*Mo(CO) 3 Cl], 1, and [CpFe(CO) 2 I], 2, (Cp = C 5 H 5 ; Cp* = η 5 -C 5 Me 5 ) with borate ligands are reported. Treatment of 1 with [NaBt 2 ] (Bt 2 = dihydrobis(2-mercapto-benzothiazolyl)borate) in toluene yielded [Cp*Mo(CO) 2 (C 7 H 4 S 2 N)], 3, and [Cp*Mo(CO) 2 (η 3 -CH 2 C 6 H 5 )], 4, with a selective binding of toluene through C-H activation followed by orthometallation. Note that compound 4 is a structurally characterized toluene-activated molecule in which the metal is in η 3 -coordination mode. Under similar reaction conditions, [NaPy 2 ] (Py 2 = dihydrobis(2-mercaptopyridyl)borate) produced only the mercaptopyridyl molybdenum complex [Cp*Mo(CO) 2 (C 5 H 4 SN)], 5, in good yield. On the other hand, when compound 2 was treated individually with [NaBt] (Bt = trihydro(2-mercapto-benzothiazolyl)borate) and [NaPy 2 ] in THF, formation of the η 1 -coordinated complexes [CpFe(CO) 2 (C 7 H 4 S 2 N)], 6, and [CpFe(CO) 2 (C 5 H 4 SN)], 7, was observed. The solid-state molecular structures of compounds 3, 4, 6, and 7 have been established by single-crystal X-ray crystallographic analyses.

  9. Process for continuous production of metallic uranium and uranium alloys

    DOEpatents

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  10. Process for continuous production of metallic uranium and uranium alloys

    DOEpatents

    Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  11. Plant rhamnogalacturonan II complexation of heavy metal cations

    DOEpatents

    O`Neill, M.A.; Pellerin, P.J.M.; Warrenfeltz, D.; Vidal, S.; Darvill, A.G.; Albersheim, P.

    1999-03-02

    The present invention provides rhamnogalacturonan-II (RG-II) and relates to its ability to complex specific multivalent heavy metal cations. In the presence of boric acid, RG-II monomers form dimers that are cross-linked by a borate ester. The yield of such borate ester cross-linked dimers of RG-II is enhanced in the presence of specific heavy metal cations. The present invention further relates to the utility of RG-II in assays for the detection of specific heavy metal contamination; as a reagent useful in the removal of specific heavy metal cations contaminating foods and liquids, for example, fish, wines, etc.; as a pharmaceutical composition useful as an antidote in specific heavy metal cation poisoning; as a treatment for the detoxification of specific heavy metal cations from blood and/or tissues; and in a method of remediation of waters and soils contaminated with specific heavy metal cations. 15 figs.

  12. Plant rhamnogalacturonan II complexation of heavy metal cations

    DOEpatents

    O'Neill, Malcolm A.; Pellerin, Patrice J. M.; Warrenfeltz, Dennis; Vidal, Stephane; Darvill, Alan G.; Albersheim, Peter

    1999-01-01

    The present invention provides rhamnogalacturonan-II (RG-II) and relates to its ability to complex specific multivalent heavy metal cations. In the presence of boric acid, RG-II monomers form dimers that are cross-linked by a borate ester. The yield of such borate ester cross-linked dimers of RG-II is enhanced in the presence of specific heavy metal cations. The present invention further relates to the utility of RG-II in assays for the detection of specific heavy metal contamination; as a reagent useful in the removal of specific heavy metal cations contaminating foods and liquids, for example, fish, wines, etc.; as a pharmaceutical composition useful as an antidote in specific heavy metal cation poisoning; as a treatment for the detoxification of specific heavy metal cations from blood and/or tissues; and in a method of remediation of waters and soils contaminated with specific heavy metal cations.

  13. Method for converting uranium oxides to uranium metal

    DOEpatents

    Duerksen, Walter K.

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  14. PRODUCTION OF URANIUM METAL BY CARBON REDUCTION

    DOEpatents

    Holden, R.B.; Powers, R.M.; Blaber, O.J.

    1959-09-22

    The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

  15. Low-energy vibrational dynamics of cesium borate glasses.

    PubMed

    Crupi, C; D'Angelo, G; Vasi, C

    2012-06-07

    Low-temperature specific heat and inelastic light scattering experiments have been performed on a series of cesium borate glasses and on a cesium borate crystal. Raman measurements on the crystalline sample have revealed the existence of cesium rattling modes in the same frequency region where glasses exhibit the boson peak (BP). These localized modes are supposed to overlap with the BP in cesium borate glasses affecting its magnitude. Their influence on the low frequency vibrational dynamics in glassy samples has been considered, and their contribution to the specific heat has been estimated. Evidence for a relation between the changes of the BP induced by the increased amount of metallic oxide and the variations of the elastic medium has been provided.

  16. CADMIUM-RARE EARTH BORATE GLASS AS REACTOR CONTROL MATERIAL

    DOEpatents

    Ploetz, G.L.; Ray, W.E.

    1958-11-01

    A reactor control rod fabricated from a cadmiumrare earth-borate glass is presented. The rare earth component of this glass is selected from among those rare earths having large neutron capture cross sections, such as samarium, gadolinium or europium. Partlcles of this glass are then dispersed in a metal matrix by standard powder metallurgy techniques.

  17. Extraction of heavy metal ions from waste colored glass through phase separation.

    PubMed

    Chen, Danping; Masui, Hirotsugu; Miyoshi, Hiroshi; Akai, Tomoko; Yazawa, Tetsuo

    2006-01-01

    A new method utilizing phase separation phenomena for the extraction of heavy metal ions used as colorants in colored glass is proposed. Colored soda-lime-silica glass containing Co or Cr as a colorant was remelted with B2O3 to yield soda-lime-borosilicate glass. The soda-lime-borosilicate glass thus obtained was leached in 1M nitric acid at 90 degrees C to dissolve the borate phase. All cations (Na, Ca, Cr and Co) concentrated in the borate phase are successfully leached out with the dissolution of the borate phase, when the amount of the B2O3 added to the glass and heat treatment conditions are properly chosen. Porous silicate glass powders with high SiO2 purity are obtained as the result of the leaching. Porous glass can also be formed as bulk material by controlling the composition of additives during the remelting.

  18. XRD and FTIR studies the effect of heat treatment and doping the transition metal oxide on LiNbO3 and LiNb3O8 nano-crystallite phases in lithium borate glass system.

    PubMed

    Kashif, Ismail; Soliman, Ashia A; Sakr, Elham M; Ratep, Asmaa

    2013-09-01

    Glasses of various compositions in the system 90 Li2B4O7-10 Nb2O5 mixed with T.M ions (where T.M is the transition metal) were prepared by quenching technique. Heat-treatment of the parent glasses was performed at 540, 570 and 620 °C, for 5 and 16 h. The glass structure evolution during the controlled crystallization was examined by XRD and FT-IR spectroscopy analysis. The crystalline phases present in the glass ceramics were identified via X-ray diffraction as a function of heat treatment. The FT-IR data propose for these glasses and heat-treated glass network structures mainly built by: di-, tri-, tetra-, penta-and ortho-borate groups. It was found that the quantitative evolution of these various borate species in the glass structures is influenced by the transition metal. A detailed discussion relating to the N4 evolution with the T.M content was made. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Titanium addition influences antibacterial activity of bioactive glass coatings on metallic implants.

    PubMed

    Rodriguez, Omar; Stone, Wendy; Schemitsch, Emil H; Zalzal, Paul; Waldman, Stephen; Papini, Marcello; Towler, Mark R

    2017-10-01

    In an attempt to combat the possibility of bacterial infection and insufficient bone growth around metallic, surgical implants, bioactive glasses may be employed as coatings. In this work, silica-based and borate-based glass series were synthesized for this purpose and subsequently characterized in terms of antibacterial behavior, solubility and cytotoxicity. Borate-based glasses were found to exhibit significantly superior antibacterial properties and increased solubility compared to their silica-based counterparts, with BRT0 and BRT3 (borate-based glasses with 0 and 15 mol% of titanium dioxide incorporated, respectively) outperforming the remainder of the glasses, both borate and silicate based, in these respects. Atomic Absorption Spectroscopy confirmed the release of zinc ions (Zn 2+ ), which has been linked to the antibacterial abilities of glasses SRT0, BRT0 and BRT3, with inhibition effectively achieved at concentrations lower than 0.7 ppm. In vitro cytotoxicity studies using MC3T3-E1 osteoblasts confirmed that cell proliferation was affected by all glasses in this study, with decreased proliferation attributed to a faster release of sodium ions over calcium ions in both glass series, factor known to slow cell proliferation in vitro .

  20. Process for electrolytically preparing uranium metal

    DOEpatents

    Haas, Paul A.

    1989-01-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  1. Process for electrolytically preparing uranium metal

    DOEpatents

    Haas, Paul A.

    1989-08-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  2. Trivalent uranium phenylchalcogenide complexes: exploring the bonding and reactivity with CS2 in the Tp*2UEPh series (E = O, S, Se, Te).

    PubMed

    Matson, Ellen M; Breshears, Andrew T; Kiernicki, John J; Newell, Brian S; Fanwick, Phillip E; Shores, Matthew P; Walensky, Justin R; Bart, Suzanne C

    2014-12-15

    The trivalent uranium phenylchalcogenide series, Tp*2UEPh (Tp* = hydrotris(3,5-dimethylpyrazolyl)borate, E = O (1), S (2), Se (3), Te (4)), has been synthesized to investigate the nature of the U-E bond. All compounds have been characterized by (1)H NMR, infrared and electronic absorption spectroscopies, and in the case of 4, X-ray crystallography. Compound 4 was also studied by SQUID magnetometry. Computational studies establish Mulliken spin densities for the uranium centers ranging from 3.005 to 3.027 (B3LYP), consistent for uranium-chalcogenide bonds that are primarily ionic in nature, with a small covalent contribution. The reactivity of 2-4 toward carbon disulfide was also investigated and showed reversible CS2 insertion into the U(III)-E bond, forming Tp*2U(κ(2)-S2CEPh) (E = S (5), Se (6), Te (7)). Compound 5 was characterized crystallographically.

  3. COATING URANIUM FROM CARBONYLS

    DOEpatents

    Gurinsky, D.H.; Storrs, S.S.

    1959-07-14

    Methods are described for making adherent corrosion resistant coatings on uranium metal. According to the invention, the uranium metal is heated in the presence of an organometallic compound such as the carbonyls of nickel, molybdenum, chromium, niobium, and tungsten at a temperature sufficient to decompose the metal carbonyl and dry plate the resultant free metal on the surface of the uranium metal body. The metal coated body is then further heated at a higher temperature to thermally diffuse the coating metal within the uranium bcdy.

  4. PROCESSING OF URANIUM-METAL-CONTAINING FUEL ELEMENTS

    DOEpatents

    Moore, R.H.

    1962-10-01

    A process is given for recovering uranium from neutronbombarded uranium- aluminum alloys. The alloy is dissolved in an aluminum halide--alkali metal halide mixture in which the halide is a mixture of chloride and bromide, the aluminum halide is present in about stoichiometric quantity as to uranium and fission products and the alkali metal halide in a predominant quantity; the uranium- and electropositive fission-products-containing salt phase is separated from the electronegative-containing metal phase; more aluminum halide is added to the salt phase to obtain equimolarity as to the alkali metal halide; adding an excess of aluminum metal whereby uranium metal is formed and alloyed with the excess aluminum; and separating the uranium-aluminum alloy from the fission- productscontaining salt phase. (AEC)

  5. ANALYTICAL METHOD FOR THE DETERMINATION OF BORON IN URANYL NITRATE SOLUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1962-01-01

    A method was developed for the determination of boron in uranyl nitrate solutions. The boron is separated from uranium and other impurities by distillation of methyl borate. It is determined absorptiometrically by means of curcumin in the presence of orthochlorophenol, perchloric acid, and acetic anhydride. The limit of detection is judged to be not greater than 0.05 mu g, but is dependent on the purity of the reagents used. The coefficient of variation on 210 results at the 0.2 mu g boron level was 26% with a bias of -25%. The method may be applied to depleted uranyl nitrate solutionsmore » and uranium slag recovery liquors. (auth)« less

  6. Green colorants based on energetic azole borates.

    PubMed

    Glück, Johann; Klapötke, Thomas M; Rusan, Magdalena; Stierstorfer, Jörg

    2014-11-24

    The investigation of green-burning boron-based compounds as colorants in pyrotechnic formulations as alternative for barium nitrate, which is a hazard to health and to the environment, is reported. Metal-free and nitrogen-rich dihydrobis(5-aminotetrazolyl)borate salts and dihydrobis(1,3,4-triazolyl)borate salts have been synthesized and characterized by NMR spectroscopy, elemental analysis, mass spectrometry, and vibrational spectroscopy. Their thermal and energetic properties have been determined as well. Several pyrotechnic compositions using selected azolyl borate salts as green colorants were investigated. Formulations with ammonium dinitramide and ammonium nitrate as oxidizers and boron and magnesium as fuels were tested. The burn time, dominant wavelength, spectral purity, luminous intensity, and luminous efficiency as well as the thermal and energetic properties of these compositions were measured. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The preparation and characterization of a lithium borate glass prepared by the gel technique

    NASA Technical Reports Server (NTRS)

    Weinberg, M. C.; Neilson, G. F.; Smith, G. L.; Dunn, B.; Moore, G. S.; Mackenzie, J. D.

    1985-01-01

    The preparation of an amorphous lithium borate gel by the metal organic procedure is described. In addition, a preliminary evaluation of the behavior of the gel upon heating is given. In particular the crystallization tendency of the gel is studied with the aid of DTA and X-ray diffraction, and the structural changes in the gel are monitored with the aid of IR spectroscopy. The glass produced from the lithium borate gel is compared to both the gel precursor material and a glass of similar composition prepared by conventional techniques. Specifically, the relevant water contents, crystallization behavior, and structural features are contrasted.

  8. Functionalization of carbon dioxide and carbon disulfide using a stable uranium(III) alkyl complex.

    PubMed

    Matson, Ellen M; Forrest, William P; Fanwick, Phillip E; Bart, Suzanne C

    2011-04-06

    A rare uranium(III) alkyl complex, Tp*(2)U(CH(2)Ph) (2) (Tp* = hydrotris(3,5-dimethylpyrazolyl)borate), was synthesized by salt metathesis from Tp*(2)UI (1) and KCH(2)Ph and fully characterized using (1)H NMR, infrared, and electronic absorption spectroscopies as well as X-ray crystallography. This complex has a uranium-carbon distance of 2.57(2) Å, which is comparable to other uranium alkyls reported. Treating this compound with either carbon dioxide or carbon disulfide results in insertion into the uranium-carbon bond to generate Tp*(2)U(κ(2)-O(2)CCH(2)Ph) (3) and Tp*(2)U(SC(S)CH(2)Ph) (4), respectively. These species, characterized spectroscopically and by X-ray crystallography, feature new carboxylate and dithiocarboxylate ligands. Analysis by electronic absorption spectroscopy supports the trivalent oxidation state of the uranium center in both of these derivatives. Addition of trimethylsilylhalides (Me(3)SiX; X = Cl, I) to 3 results in the release of the free silyl ester, Me(3)SiOC(O)CH(2)Ph, forming the initial uranium monohalide species, Tp*(2)UX, which can then be used over multiple cycles for the functionalization of carbon dioxide. © 2011 American Chemical Society

  9. PYROCHEMICAL DECONTAMINATION METHOD FOR REACTOR FUEL

    DOEpatents

    Buyers, A.G.

    1959-06-30

    A pyro-chemical method is presented for decontaminating neutron irradiated uranium and separating plutonium therefrom by contact in the molten state with a metal chloride salt. Uranium trichloride and uranium tetrachloride either alone or in admixture with alkaline metal and alkaline eanth metal fluorides under specified temperature and specified phase ratio conditions extract substantially all of the uranium from the irradiated uranium fuel together with certain fission products. The phases are then separated leaving purified uranium metal. The uranium and plutonium in the salt phase can be reduced to forin a highly decontaminated uraniumplutonium alloy. The present method possesses advantages for economically decontaminating irradiated nuclear fuel elements since irradiated fuel may be proccessed immediately after withdrawal from the reactor and the uranium need not be dissolved and later reduced to the metallic form. Accordingly, the uranium may be economically refabricated and reinserted into the reactor.

  10. PROCESS OF PREPARING A FLUORIDE OF TETRAVLENT URANIUM

    DOEpatents

    Wheelwright, E.J.

    1959-02-17

    A method is described for producing a fluoride salt pf tetravalent uranium suitable for bomb reduction to metallic uranium. An aqueous solution of uranyl nitrate is treated with acetic acid and a nitrite-suppressor and then contacted with metallic lead whereby uranium is reduced from the hexavalent to the tetravalent state and soluble lead acetate is formed. Sulfate ions are then added to the solution to precipitate and remove the lead values. Hydrofluoric acid and alkali metal ions are then added causing the formation of an alkali metal uranium double-fluoride in which the uranium is in the tetravalent state. After recovery, this precipitate is suitable for using in the limited production of metallic uranium.

  11. Method of synthesizing enriched decaborane for use in generating boron neutron capture therapy pharmaceuticals

    DOEpatents

    Cowan, Robert L.; Ginosar, Daniel M.; Dunks, Gary B.

    2000-01-01

    A method is described for synthesizing decaborane wherein at least about 90% of the boron atoms in the decaborane are the .sup.10 B isotope, comprising the steps of: (a) reacting boric acid with a C.sub.1 to C.sub.10 alkanol to form a .sup.10 B-alkyl borate wherein at least about 90% of the boron atoms in the boric acid are the .sup.10 B isotope; (b) reducing the .sup.10 B-alkyl borate to form an alkali metal .sup.10 B-borohydride; (c) converting the alkali metal .sup.10 B-borohydride to a .sup.10 B-tetradecahydroundecaborate ion; and (d) converting the .sup.10 B-tetradecahydroundecaborate ion to .sup.10 B-decaborane. Methods of preparing tetradecahydroundecaborate ions and decaborane from alkali metal borohydrides are also described.

  12. Influence of uranium hydride oxidation on uranium metal behaviour

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, N.; Hambley, D.; Clarke, S.A.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, ifmore » sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)« less

  13. Effect of 3d-transition metal doping on the shielding behavior of barium borate glasses: a spectroscopic study.

    PubMed

    ElBatal, H A; Abdelghany, A M; Ghoneim, N A; ElBatal, F H

    2014-12-10

    UV-visible and FT infrared spectra were measured for prepared samples before and after gamma irradiation. Base undoped barium borate glass of the basic composition (BaO 40%-B2O3 60mol.%) reveals strong charge transfer UV absorption bands which are related to unavoidable trace iron impurities (Fe(3+)) within the chemical raw materials. 3d transition metal (TM)-doped glasses exhibit extra characteristic absorption bands due to each TM in its specific valence or coordinate state. The optical spectra show that TM ions favor generally the presence in the high valence or tetrahedral coordination state in barium borate host glass. Infrared absorption bands of all prepared glasses reveal the appearance of both triangular BO3 units and tetrahedral BO4 units within their characteristic vibrational modes and the TM-ions cause minor effects because of the low doping level introduced (0.2%). Gamma irradiation of the undoped barium borate glass increases the intensity of the UV absorption together with the generation of an induced broad visible band at about 580nm. These changes are correlated with suggested photochemical reactions of trace iron impurities together with the generation of positive hole center (BHC or OHC) within the visible region through generated electrons and positive holes during the irradiation process. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Continuous process electrorefiner

    DOEpatents

    Herceg, Joseph E [Naperville, IL; Saiveau, James G [Hickory Hills, IL; Krajtl, Lubomir [Woodridge, IL

    2006-08-29

    A new device is provided for the electrorefining of uranium in spent metallic nuclear fuels by the separation of unreacted zirconium, noble metal fission products, transuranic elements, and uranium from spent fuel rods. The process comprises an electrorefiner cell. The cell includes a drum-shaped cathode horizontally immersed about half-way into an electrolyte salt bath. A conveyor belt comprising segmented perforated metal plates transports spent fuel into the salt bath. The anode comprises the conveyor belt, the containment vessel, and the spent fuel. Uranium and transuranic elements such as plutonium (Pu) are oxidized at the anode, and, subsequently, the uranium is reduced to uranium metal at the cathode. A mechanical cutter above the surface of the salt bath removes the deposited uranium metal from the cathode.

  15. Process for electroslag refining of uranium and uranium alloys

    DOEpatents

    Lewis, P.S. Jr.; Agee, W.A.; Bullock, J.S. IV; Condon, J.B.

    1975-07-22

    A process is described for electroslag refining of uranium and uranium alloys wherein molten uranium and uranium alloys are melted in a molten layer of a fluoride slag containing up to about 8 weight percent calcium metal. The calcium metal reduces oxides in the uranium and uranium alloys to provide them with an oxygen content of less than 100 parts per million. (auth)

  16. Process for producing enriched uranium having a .sup.235 U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOEpatents

    Horton, James A.; Hayden, Jr., Howard W.

    1995-01-01

    An uranium enrichment process capable of producing an enriched uranium, having a .sup.235 U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower .sup.235 U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF.sub.6 tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a .sup.235 U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % .sup.235 U; fluorinating this enriched metallic uranium isotopic mixture to form UF.sub.6 ; processing the resultant isotopic mixture of UF.sub.6 in a gaseous diffusion process to produce a final enriched uranium product having a .sup.235 U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low .sup.235 U content UF.sub.6 having a .sup.235 U content of about 0.71 wt. % of the total uranium content of the low .sup.235 U content UF.sub.6 ; and converting this low .sup.235 U content UF.sub.6 to metallic uranium for recycle to the atomic vapor laser isotope separation process.

  17. Process for producing enriched uranium having a {sup 235}U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOEpatents

    Horton, J.A.; Hayden, H.W. Jr.

    1995-05-30

    An uranium enrichment process capable of producing an enriched uranium, having a {sup 235}U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower {sup 235}U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF{sub 6} tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a {sup 235} U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % {sup 235} U; fluorinating this enriched metallic uranium isotopic mixture to form UF{sub 6}; processing the resultant isotopic mixture of UF{sub 6} in a gaseous diffusion process to produce a final enriched uranium product having a {sup 235}U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low {sup 235}U content UF{sub 6} having a {sup 235}U content of about 0.71 wt. % of the total uranium content of the low {sup 235}U content UF{sub 6}; and converting this low {sup 235}U content UF{sub 6} to metallic uranium for recycle to the atomic vapor laser isotope separation process. 4 figs.

  18. NUCLEAR REACTOR FUEL ELEMENTS AND METHOD OF PREPARATION

    DOEpatents

    Kingston, W.E.; Kopelman, B.; Hausner, H.H.

    1963-07-01

    A fuel element consisting of uranium nitride and uranium carbide in the form of discrete particles in a solid coherent matrix of a metal such as steel, beryllium, uranium, or zirconium and clad with a metal such as steel, aluminum, zirconium, or beryllium is described. The element is made by mixing powdered uranium nitride and uranium carbide with powdered matrix metal, then compacting and sintering the mixture. (AEC)

  19. Carcinogenicity and Immunotoxicity of Embedded Depleted Uranium and Heavy-Metal Tungsten Alloy in Rodents

    DTIC Science & Technology

    2006-10-01

    Embedded Depleted Uranium and Heavy-Metal Tungsten Alloy in Rodents PRINCIPAL INVESTIGATOR: John F. Kalinich, Ph.D...Carcinogenicity and Immunotoxicity of Embedded Depleted Uranium and Heavy- Metal Tungsten Alloy in Rodents 5b. GRANT NUMBER DAMD17-01-1-0821 5c...ABSTRACT This study investigated the carcinogenic and immunotoxic potential of embedded fragments of depleted uranium (DU) and a heavy-metal tungsten

  20. Method for the recovery of uranium values from uranium tetrafluoride

    DOEpatents

    Kreuzmann, Alvin B.

    1983-01-01

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions wherein the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  1. Method for the recovery of uranium values from uranium tetrafluoride

    DOEpatents

    Kreuzmann, A.B.

    1982-10-27

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions whereas the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  2. METHOD OF ELECTROPLATING ON URANIUM

    DOEpatents

    Rebol, E.W.; Wehrmann, R.F.

    1959-04-28

    This patent relates to a preparation of metallic uranium surfaces for receiving coatings, particularly in order to secure adherent electroplated coatings upon uranium metal. In accordance with the invention the uranium surface is pretreated by degreasing in trichloroethylene, followed by immersion in 25 to 50% nitric acid for several minutes, and then rinsed with running water, prior to pickling in trichloroacetic acid. The last treatment is best accomplished by making the uranium the anode in an aqueous solution of 50 per cent by weight trichloroacetic acid until work-distorted crystals or oxide present on the metal surface have been removed and the basic crystalline structure of the base metal has been exposed. Following these initial steps the metallic uranium is rinsed in dilute nitric acid and then electroplated with nickel. Adnerent firmly-bonded coatings of nickel are obtained.

  3. Optical stability of 3d transition metal ions doped-cadmium borate glasses towards γ-rays interaction

    NASA Astrophysics Data System (ADS)

    Marzouk, M.; ElBatal, H.; Eisa, W.

    2016-07-01

    This work reports the preparation of glasses of binary cadmium borate with the basic composition (mol% 45 CdO 55 B2O3) and samples of the same composition containing 0.2 wt% dopants of 3d transition metal (TM) oxides (TiO2 → CuO). The glasses have been investigated by combined optical and Fourier Transform infrared spectroscopic measurements before and after being subjected to gamma irradiation with a dose of 8 Mrad (8 × 104 Gy). Optical absorption of the undoped glass before irradiation reveals strong charge transfer UV absorption which is related to the presence of unavoidable contaminated trace iron impurities (mainly Fe3+) within the raw materials used for the preparation of the base cadmium borate glass. The optical spectra of the 3d TM ions exhibit characteristic bands which are related the stable oxidation state of the 3d TM ions within the host glass. Gamma irradiation produces some limited variations in the optical spectra due to the stability of the host glass containing high percent 45 mol% of heavy metal oxide (CdO) which causes some shielding effects towards irradiation. From the absorption edge data, the values of the optical band gap Eopt and Urbach energy (ΔE) have been calculated. The values of the optical energy gap are found to be dependent on the glass composition. Infrared absorption spectral measurements reveal characteristic absorption bands due to both triangular and tetrahedral borate groups with the BO3 units vibrations more intense than BO4 units due to the known limit value for the change of BO3 to BO4 groups. The introduction of 3d TM ions with the doping level (0.2 wt%) causes no changes in the number or position of the IR bands because of the presence of TM ions in modifying sites in the glass network. It is observed that gamma irradiation causes some limited changes in the FT-IR spectral bands due to the stability of the host heavy cadmium borate glass.

  4. Coated Metal Articles and Method of Making

    DOEpatents

    Boller, Ernest R.; Eubank, Lowell D.

    2004-07-06

    The method of protectively coating metallic uranium which comprises dipping the metallic uranium in a molten alloy comprising about 20-75% of copper and about 80-25% of tin, dipping the coated uranium promptly into molten tin, withdrawing it from the molten tin and removing excess molten metal, thereupon dipping it into a molten metal bath comprising aluminum until it is coated with this metal, then promptly withdrawing it from the bath.

  5. Removal of uranium from soil samples for ICP-OES analysis of RCRA metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wero, M.; Lederer-Cano, A.; Billy, C.

    1995-12-01

    Soil samples containing high levels of uranium present unique analytical problems when analyzed for toxic metals (Ag, As, Ba, Cd, Cr, Cu, Ni, Pb, Se and Tl) because of the spectral interference of uranium in the ICP-OES emission spectrometer. Methods to remove uranium from the digestates of soil samples, known to be high in uranium, have been developed that reduce the initial uranium concentration (1-3%) to less than 500 ppm. UTEVA ion exchange columns, used as an ICP-OES analytical pre-treatment, reduces uranium to acceptable levels, permitting good analytical results of the RCRA metals by ICP-OES.

  6. Study of structural, surface and hydrogen storage properties of boric acid mediated metal (sodium)-organic frameworks

    NASA Astrophysics Data System (ADS)

    Ozer, Demet; Köse, Dursun A.; Sahin, Onur; Oztas, Nursen A.

    2018-04-01

    Three boric acid mediated metal organic frameworks were synthesized by solution method with using succinic acid, fumaric acid and acetylene dicarboxylic acid as a ligand source and sodium as a metal source. The complexes were characterized by FT-IR, powder XRD, elemental analyses and single crystal measurements. The complexes with the formula, C4H18B2Na2O14, C4H16B2Na2O14 and C4H14B2Na2O14 were successfully obtained. BET surface area of complexes were calculated and found as 13.474 m2/g for catena-(tetrakis(μ2-hydroxo)-(μ2-trihydrogen borate)-(μ2-succinato)-di-sodium boric acid solvate), 1.692 m2/g for catena-(tetrakis(μ2-hydroxo)-(μ2-trihydrogen borate)-(μ2-fumarato)-di-sodium boric acid solvate) and 5.600 m2/g for catena-(tetrakis(μ2-hydroxo)-(μ2-trihydrogen borate)-(μ2-acetylenedicarboxylato)-di-sodium boric acid solvate). Hydrogen storage capacities of the complexes were also studied at 77 K 1 bar pressure and found as 0.108%, 0.033%, 0.021% by mass. When different ligands were used, the pore volume, pore width and surface area of the obtained complexes were changed. As a consequence, hydrogen storage capacities also changed.

  7. Feasibility study of a small, thorium-based fission power system for space and terrestrial applications

    NASA Astrophysics Data System (ADS)

    Worrall, Michael Jason

    One of the current challenges facing space exploration is the creation of a power source capable of providing useful energy for the entire duration of a mission. Historically, radioisotope batteries have been used to provide load power, but this conventional system may not be capable of sustaining continuous power for longer duration missions. To remedy this, many forays into nuclear powered spacecraft have been investigated, but no robust system for long-term power generation has been found. In this study, a novel spin on the traditional fission power system that represents a potential optimum solution is presented. By utilizing mature High Temperature Gas Reactor (HTGR) technology in conjunction with the capabilities of the thorium fuel cycle, we have created a light-weight, long-term power source capable of a continuous electric power output of up to 70kW for over 15 years. This system relies upon a combination of fissile, highly-enriched uranium dioxide and fertile thorium carbide Tri-Structural Isotropic (TRISO) fuel particles embedded in a hexagonal beryllium oxide matrix. As the primary fissile material is consumed, the fertile material breeds new fissile material leading to more steady fuel loading over the lifetime of the core. Reactor control is achieved through an innovative approach to the conventional boron carbide neutron absorber by utilizing sections of borated aluminum placed in rotating control drums within the reflector. Borated aluminum allows for much smaller boron concentrations, thus eliminating the potential for 10B(n,alpha)6Li heating issues that are common in boron carbide systems. A wide range of other reactivity control systems are also investigated, such as a radially-split rotating reflector. Lastly, an extension of the design to a terrestrial based system is investigated. In this system, uranium enrichment is dropped to 20 percent in order to meet current regulations, a solid uranium-zirconium hydride fissile driver replaces the uranium dioxide TRISO particles, and the moderating material is changed from beryllium oxide to graphite. These changes result in an increased core size, but the same long-term power generation potential is achieved. Additionally, small amounts of erbium are added to the hydride matrix to further extend core lifetime.

  8. Comparison of heavy metals and uranium removal using adsorbent in soil

    NASA Astrophysics Data System (ADS)

    Choi, Jaeyoung; Yun, Hunsik

    2017-04-01

    This study investigates heavy metals (As, Ni, Zn, Cd, and Pb) and uranium removal onto geomaterials (limestone, black shale, and concrete) and biosorbents (Pseudomonas putida and starfish) from waste in soil. Geomaterials or biosorbents with a high capacity for heavy metals and uranium can be obtained and employed of with little cost. For investigating the neutralization capacity, the change in pH, Eh, and EC as a function of time was quantified. The adsorption of heavy metals and uranium by the samples was influenced by pH, and increased with increasing heavy metals and uranium concentrations. Dead cells adsorbed the largest quantity of all heavy metals than lother sorbents. The adsorption capacity followed the order: U(VI) > Pb > Cd > Ni. The results also suggest that bacterial membrane cells can be used successfully in the treatment of high strength metal-contaminated soil.

  9. Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour.

    PubMed

    Martin, T L; Coe, C; Bagot, P A J; Morrall, P; Smith, G D W; Scott, T; Moody, M P

    2016-07-12

    Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour.

  10. Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour

    NASA Astrophysics Data System (ADS)

    Martin, T. L.; Coe, C.; Bagot, P. A. J.; Morrall, P.; Smith, G. D. W.; Scott, T.; Moody, M. P.

    2016-07-01

    Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour.

  11. Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour

    PubMed Central

    Martin, T. L.; Coe, C.; Bagot, P. A. J.; Morrall, P.; Smith, G. D. W; Scott, T.; Moody, M. P.

    2016-01-01

    Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour. PMID:27403638

  12. Spectroscopic and ultrasonic investigations on structural characterization of borate glass specimen doped with transition metal ions.

    PubMed

    Sathish, K; Thirumaran, S

    2015-08-05

    The present work describes the glass samples of composition (x% V₂O₅-(80-x)% B₂O₃-20% Na₂CO₃) VBS glass system and (x%MnO₂-(80-x)% B₂O₃-20% Na₂CO₃) in MBS glass system with mol% ranging from x=3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V₂O₅ doped glass system,(VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO₂ doped glass system (VBS glass system). The present study critically observes the doping of V₂O₅ with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO₂. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO₃ or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na₂CO₃, V₂O₅ and MnO₂ contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Spectroscopic and ultrasonic investigations on structural characterization of borate glass specimen doped with transition metal ions

    NASA Astrophysics Data System (ADS)

    Sathish, K.; Thirumaran, S.

    2015-08-01

    The present work describes the glass samples of composition (x% V2O5-(80-x)% B2O3-20% Na2CO3) VBS glass system and (x% MnO2-(80-x)% B2O3-20% Na2CO3) in MBS glass system with mol% ranging from x = 3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V2O5 doped glass system, (VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO2 doped glass system (VBS glass system). The present study critically observes the doping of V2O5 with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO2. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO3 or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na2CO3, V2O5 and MnO2 contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs.

  14. SURFACE TREATMENT OF METALLIC URANIUM

    DOEpatents

    Gray, A.G.; Schweikher, E.W.

    1958-05-27

    The treatment of metallic uranium to provide a surface to which adherent electroplates can be applied is described. Metallic uranium is subjected to an etchant treatment in aqueous concentrated hydrochloric acid, and the etched metal is then treated to dissolve the resulting black oxide and/or chloride film without destroying the etched metal surface. The oxide or chloride removal is effected by means of moderately concentrated nitric acid in 3 to 20 seconds.

  15. Compact reaction cell for homogenizing and down-blending highly enriched uranium metal

    DOEpatents

    McLean, W. II; Miller, P.E.; Horton, J.A.

    1995-05-02

    The invention is a specialized reaction cell for converting uranium metal to uranium oxide. In a preferred form, the reaction cell comprises a reaction chamber with increasing diameter along its length (e.g. a cylindrical chamber having a diameter of about 2 inches in a lower portion and having a diameter of from about 4 to about 12 inches in an upper portion). Such dimensions are important to achieve the necessary conversion while at the same time affording criticality control and transportability of the cell and product. The reaction chamber further comprises an upper port and a lower port, the lower port allowing for the entry of reactant gases into the reaction chamber, the upper port allowing for the exit of gases from the reaction chamber. A diffuser plate is attached to the lower port of the reaction chamber and serves to shape the flow of gas into the reaction chamber. The reaction cell further comprises means for introducing gases into the reaction chamber and a heating means capable of heating the contents of the reaction chamber. The present invention also relates to a method for converting uranium metal to uranium oxide in the reaction cell of the present invention. The invention is useful for down-blending highly enriched uranium metal by the simultaneous conversion of highly enriched uranium metal and natural or depleted uranium metal to uranium oxide within the reaction cell. 4 figs.

  16. Compact reaction cell for homogenizing and down-blanding highly enriched uranium metal

    DOEpatents

    McLean, II, William; Miller, Philip E.; Horton, James A.

    1995-01-01

    The invention is a specialized reaction cell for converting uranium metal to uranium oxide. In a preferred form, the reaction cell comprises a reaction chamber with increasing diameter along its length (e.g. a cylindrical chamber having a diameter of about 2 inches in a lower portion and having a diameter of from about 4 to about 12 inches in an upper portion). Such dimensions are important to achieve the necessary conversion while at the same time affording criticality control and transportability of the cell and product. The reaction chamber further comprises an upper port and a lower port, the lower port allowing for the entry of reactant gasses into the reaction chamber, the upper port allowing for the exit of gasses from the reaction chamber. A diffuser plate is attached to the lower port of the reaction chamber and serves to shape the flow of gas into the reaction chamber. The reaction cell further comprises means for introducing gasses into the reaction chamber and a heating means capable of heating the contents of the reaction chamber. The present invention also relates to a method for converting uranium metal to uranium oxide in the reaction cell of the present invention. The invention is useful for down-blending highly enriched uranium metal by the simultaneous conversion of highly enriched uranium metal and natural or depleted uranium metal to uranium oxide within the reaction cell.

  17. Nanostructured Metal Oxide Sorbents for the Collection and Recovery of Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chouyyok, Wilaiwan; Warner, Cynthia L.; Mackie, Katherine E.

    2016-02-07

    The ability to collect uranium from seawater offers the potential for a long-term green fuel supply for nuclear energy. However, extraction of uranium, and other trace minerals, is challenging due to the high ionic strength and low mineral concentrations in seawater. Herein we evaluate the use of nanostructured metal oxide sorbents for the collection and recovery of uranium from seawater. Chemical affinity, chemical adsorption capacity and kinetics of preferred sorbent materials were evaluated. High surface area manganese and iron oxide nanomaterials showed excellent performance for uranium collection from seawater. Inexpensive nontoxic carbonate solutions were demonstrated to be an effective andmore » environmental benign method of stripping the uranium from the metal oxide sorbents. Various formats for the utilization of the nanostructured metals oxide sorbent materials are discussed including traditional and nontraditional methods such as magnetic separation. Keywords: Uranium, nano, manganese, iron, sorbent, seawater, magnetic, separations, nuclear energy« less

  18. PROCESS OF PREPARING URANIUM CARBIDE

    DOEpatents

    Miller, W.E.; Stethers, H.L.; Johnson, T.R.

    1964-03-24

    A process of preparing uranium monocarbide is de scribed. Uranium metal is dissolved in cadmium, zinc, cadmium-- zinc, or magnesium-- zinc alloy and a small quantity of alkali metal is added. Addition of stoichiometric amounts of carbon at 500 to 820 deg C then precipitates uranium monocarbide. (AEC)

  19. PROCESS OF RECOVERING URANIUM

    DOEpatents

    Kilner, S.B.

    1959-12-29

    A method is presented for separating and recovering uranium from a complex mixure of impurities. The uranium is dissolved to produce an aqueous acidic solution including various impurities. In accordance with one method, with the uranium in the uranyl state, hydrogen cyanide is introduced into the solution to complex the impurities. Subsequently, ammonia is added to the solution to precipitate the uraniunn as ammonium diuranate away from the impurities in the solution. Alternatively, the uranium is precipitated by adding an alkaline metal hydroxide. In accordance with the second method, the uranium is reduced to the uranous state in the solution. The reduced solution is then treated with solid alkali metal cyanide sufficient to render the solution about 0.1 to 1.0 N in cyanide ions whereat cyanide complex ions of the metal impurities are produced and the uranium is simultaneously precipituted as uranous hydroxide. Alternatively, hydrogen cyanide may be added to the reduced solution and the uranium precipitated subsequently by adding ammonium hydroxide or an alkali metal hydroxide. Other refinements of the method are also disclosed.

  20. Metals other than uranium affected microbial community composition in a historical uranium-mining site.

    PubMed

    Sitte, Jana; Löffler, Sylvia; Burkhardt, Eva-Maria; Goldfarb, Katherine C; Büchel, Georg; Hazen, Terry C; Küsel, Kirsten

    2015-12-01

    To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 μg·g (dry weight) soil(-1), redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination.

  1. High-pressure synthesis and characterization of new actinide borates, AnB4O8 (An=Th, U).

    PubMed

    Hinteregger, Ernst; Hofer, Thomas S; Heymann, Gunter; Perfler, Lukas; Kraus, Florian; Huppertz, Hubert

    2013-11-18

    New actinide borates ThB4O8 and UB4O8 were synthesized under high-pressure, high-temperature conditions (5.5 GPa/1100 °C for thorium borate, 10.5 GPa/1100 °C for the isotypic uranium borate) in a Walker-type multianvil apparatus from their corresponding actinide oxide and boron oxide. The crystal structure was determined on basis of single-crystal X-ray diffraction data that were collected at room temperature. Both compounds crystallized in the monoclinic space group C2/c (Z=4). Lattice parameters for ThB4O8: a=1611.3(3), b=419.86(8), c=730.6(2) pm; β=114.70(3)°; V=449.0(2) Å(3); R1=0.0255, wR2=0.0653 (all data). Lattice parameters for UB4O8: a=1589.7(3), b=422.14(8), c=723.4(2) pm; β=114.13(3)°; V=443.1(2) Å(3); R1=0.0227, wR2=0.0372 (all data). The new AnB4O8 (An=Th, U) structure type is constructed from corner-sharing BO4 tetrahedra, which form layers in the bc plane. One of the four independent oxygen atoms is threefold-coordinated. The actinide cations are located between the boron-oxygen layers. In addition to Raman spectroscopic investigations, DFT calculations were performed to support the assignment of the vibrational bands. © 2013 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This isan open access article under the terms of the Creative Commons AttributionLicense, which permits use, distribution and reproduction in any medium,provided the original work is properly cited.

  2. Crystal Chemistry of the Potassium and Rubidium Uranyl Borate Families Derived from Boric Acid Fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shuao; Alekseev, Evgeny V.; Stritzinger, Jared T.

    2010-07-19

    The reaction of uranyl nitrate with a large excess of molten boric acid in the presence of potassium or rubidium nitrate results in the formation of three new potassium uranyl borates, K{sub 2}[(UO{sub 2}){sub 2}B{sub 12}O{sub 19}(OH){sub 4}]·0.3H{sub 2}O (KUBO-1), K[(UO{sub 2}){sub 2}B{sub 10}O{sub 15}(OH){sub 5}] (KUBO-2), and K[(UO{sub 2}){sub 2}B{sub 10}O{sub 16}(OH){sub 3}]·0.7H{sub 2}O (KUBO-3) and two new rubidium uranyl borates Rb{sub 2}[(UO{sub 2}){sub 2}B{sub 13}O{sub 20}(OH){sub 5}] (RbUBO-1) and Rb[(UO{sub 2}){sub 2}B{sub 10}O{sub 16}(OH){sub 3}]·0.7H{sub 2}O (RbUBO-2). The latter is isotypic with KUBO-3. These compounds share a common structural motif consisting of a linear uranyl, UO{sub 2}{sup 2+},more » cation surrounded by BO{sub 3} triangles and BO{sub 4} tetrahedra to create an UO{sub 8} hexagonal bipyramidal environment around uranium. The borate anions bridge between uranyl units to create sheets. Additional BO{sub 3} triangles extend from the polyborate layers and are directed approximately perpendicular to the sheets. All of these compounds adopt layered structures. With the exception of KUBO-1, the structures are all centrosymmetric. All of these compounds fluoresce when irradiated with long-wavelength UV light. The fluorescence spectrum yields well-defined vibronically coupled charge-transfer features.« less

  3. Silica-Based and Borate-Based, Titania-Containing Bioactive Coatings Characterization: Critical Strain Energy Release Rate, Residual Stresses, Hardness, and Thermal Expansion.

    PubMed

    Rodriguez, Omar; Matinmanesh, Ali; Phull, Sunjeev; Schemitsch, Emil H; Zalzal, Paul; Clarkin, Owen M; Papini, Marcello; Towler, Mark R

    2016-12-01

    Silica-based and borate-based glass series, with increasing amounts of TiO₂ incorporated, are characterized in terms of their mechanical properties relevant to their use as metallic coating materials. It is observed that borate-based glasses exhibit CTE (Coefficient of Thermal Expansion) closer to the substrate's (Ti6Al4V) CTE, translating into higher mode I critical strain energy release rates of glasses and compressive residual stresses and strains at the coating/substrate interface, outperforming the silica-based glasses counterparts. An increase in the content of TiO₂ in the glasses results in an increase in the mode I critical strain energy release rate for both the bulk glass and for the coating/substrate system, proving that the addition of TiO₂ to the glass structure enhances its toughness, while decreasing its bulk hardness. Borate-based glass BRT3, with 15 mol % TiO₂ incorporated, exhibits superior properties overall compared to the other proposed glasses in this work, as well as 45S5 Bioglass ® and Pyrex.

  4. Silica-Based and Borate-Based, Titania-Containing Bioactive Coatings Characterization: Critical Strain Energy Release Rate, Residual Stresses, Hardness, and Thermal Expansion

    PubMed Central

    Rodriguez, Omar; Matinmanesh, Ali; Phull, Sunjeev; Schemitsch, Emil H.; Zalzal, Paul; Clarkin, Owen M.; Papini, Marcello; Towler, Mark R.

    2016-01-01

    Silica-based and borate-based glass series, with increasing amounts of TiO2 incorporated, are characterized in terms of their mechanical properties relevant to their use as metallic coating materials. It is observed that borate-based glasses exhibit CTE (Coefficient of Thermal Expansion) closer to the substrate’s (Ti6Al4V) CTE, translating into higher mode I critical strain energy release rates of glasses and compressive residual stresses and strains at the coating/substrate interface, outperforming the silica-based glasses counterparts. An increase in the content of TiO2 in the glasses results in an increase in the mode I critical strain energy release rate for both the bulk glass and for the coating/substrate system, proving that the addition of TiO2 to the glass structure enhances its toughness, while decreasing its bulk hardness. Borate-based glass BRT3, with 15 mol % TiO2 incorporated, exhibits superior properties overall compared to the other proposed glasses in this work, as well as 45S5 Bioglass® and Pyrex. PMID:27916951

  5. PRODUCTION OF PURIFIED URANIUM

    DOEpatents

    Burris, L. Jr.; Knighton, J.B.; Feder, H.M.

    1960-01-26

    A pyrometallurgical method for processing nuclear reactor fuel elements containing uranium and fission products and for reducing uranium compound; to metallic uranium is reported. If the material proccssed is essentially metallic uranium, it is dissolved in zinc, the sulution is cooled to crystallize UZn/sub 9/ , and the UZn/sub 9/ is distilled to obtain uranium free of fission products. If the material processed is a uranium compound, the sollvent is an alloy of zinc and magnesium and the remaining steps are the same.

  6. Gulf War Illnesses: Understanding of Health Effects From Depleted Uranium Evolving But Safety Training Needed

    DTIC Science & Technology

    2000-03-01

    against enemy munitions. Depleted uranium is a low- level radioactive heavy metal , and concerns have surfaced about whether exposure to it could be a...radioactive heavy metal , the potential for health effects are twofold: effects from radiation and effects from chemical toxicity. Two recent expert...depleted uranium safety training. Background Depleted uranium (DU), a low-level radioactive heavy metal , is a by- product of the process used to

  7. Separation of uranium from (Th,U)O.sub.2 solid solutions

    DOEpatents

    Chiotti, Premo; Jha, Mahesh Chandra

    1976-09-28

    Uranium is separated from mixed oxides of thorium and uranium by a pyrometallurgical process in which the oxides are mixed with a molten chloride salt containing thorium tetrachloride and thorium metal which reduces the uranium oxide to uranium metal which can then be recovered from the molten salt. The process is particularly useful for the recovery of uranium from generally insoluble high-density sol-gel thoria-urania nuclear reactor fuel pellets.

  8. The passivation of uranium metal surfaces by nitrogen bombardment — the formation of uranium nitride

    NASA Astrophysics Data System (ADS)

    Allen, Geoffrey C.; Holmes, Nigel R.

    1988-05-01

    As part of a detailed investigation of the behaviour of metallic uranium in various atmospheres, we have examined the reaction between nitrogen gas and uranium metal. At room temperature there was no evidence of reaction between nitrogen gas and a clean metal surface; the only changes observed could be attributed to reaction between the metal and traces of oxygen (less than 0.1 ppm) in the nitrogen gas. Reaction between the metal and nitrogen was induced, however, by accelerating nitrogen towards the surface using a fast atom gun. The resulting nitrided surface was characterized by X-ray photoelectron spectroscopy, and its oxidation behaviour was monitored over an extended period in UHV and in air.

  9. Heat-induced redistribution of surface oxide in uranium

    NASA Astrophysics Data System (ADS)

    Swissa, Eli; Shamir, Noah; Mintz, Moshe H.; Bloch, Joseph

    1990-09-01

    The redistribution of oxygen and uranium metal at the vicinity of the metal-oxide interface of native and grown oxides due to vacuum thermal annealing was studied for uranium and uranium-chromium alloy using Auger depth profiling and metallographic techniques. It was found that uranium metal is segregating out through the uranium oxide layer for annealing temperatures above 450°C. At the same time the oxide is redistributed in the metal below the oxide-metal interface in a diffusion like process. By applying a diffusion equation of a finite source, the diffusion coefficients for the process were obtained from the oxygen depth profiles measured for different annealing times. An Arrhenius like behavior was found for the diffusion coefficient between 400 and 800°C. The activation energy obtained was Ea = 15.4 ± 1.9 kcal/mole and the pre-exponential factor, D0 = 1.1 × 10 -8cm2/ s. An internal oxidation mechanism is proposed to explain the results.

  10. METHOD OF DISSOLVING URANIUM METAL

    DOEpatents

    Slotin, L.A.

    1958-02-18

    This patent relates to an economicai means of dissolving metallic uranium. It has been found that the addition of a small amount of perchloric acid to the concentrated nitric acid in which the uranium is being dissolved greatly shortens the time necessary for dissolution of the metal. Thus the use of about 1 or 2 percent of perchioric acid based on the weight of the nitric acid used, reduces the time of dissolution of uranium by a factor of about 100.

  11. Fate of Noble Metals during the Pyroprocessing of Spent Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.R. Westphal; D. Vaden; S.X. Li

    During the pyroprocessing of spent nuclear fuel by electrochemical techniques, fission products are separated as the fuel is oxidized at the anode and refined uranium is deposited at the cathode. Those fission products that are oxidized into the molten salt electrolyte are considered active metals while those that do not react are considered noble metals. The primary noble metals encountered during pyroprocessing are molybdenum, zirconium, ruthenium, rhodium, palladium, and technetium. Pyroprocessing of spent fuel to date has involved two distinctly different electrorefiner designs, in particular the anode to cathode configuration. For one electrorefiner, the anode and cathode collector are horizontallymore » displaced such that uranium is transported across the electrolyte medium. As expected, the noble metal removal from the uranium during refining is very high, typically in excess of 99%. For the other electrorefiner, the anode and cathode collector are vertically collocated to maximize uranium throughput. This arrangement results in significantly less noble metals removal from the uranium during refining, typically no better than 20%. In addition to electrorefiner design, operating parameters can also influence the retention of noble metals, albeit at the cost of uranium recovery. Experiments performed to date have shown that as much as 100% of the noble metals can be retained by the cladding hulls while affecting the uranium recovery by only 6%. However, it is likely that commercial pyroprocessing of spent fuel will require the uranium recovery to be much closer to 100%. The above mentioned design and operational issues will likely be driven by the effects of noble metal contamination on fuel fabrication and performance. These effects will be presented in terms of thermal properties (expansion, conductivity, and fusion) and radioactivity considerations. Ultimately, the incorporation of minor amounts of noble metals from pyroprocessing into fast reactor metallic fuel will be shown to be of no consequence to reactor performance.« less

  12. PREPARATION OF METAL POWDER COMPACTS PRIOR TO PRESSING

    DOEpatents

    Mansfield, H.

    1958-08-26

    A method of fabricating uranium by a powder metallurgical technique is described. It consists in introducing powdered uranium hydride into a receptacle shaped to coincide with the coatour of the die cavity and heating the hydride so that it decomposes to uranium metal. The metal particles cohere in the shapw of the receptacle and thereafter the prefurmed metal powder is pressed and sintered to obtain a dense compact.

  13. ELECTROLYSIS OF THORIUM AND URANIUM

    DOEpatents

    Hansen, W.N.

    1960-09-01

    An electrolytic method is given for obtaining pure thorium, uranium, and thorium-uranium alloys. The electrolytic cell comprises a cathode composed of a metal selected from the class consisting of zinc, cadmium, tin, lead, antimony, and bismuth, an anode composed of at least one of the metals selected from the group consisting of thorium and uranium in an impure state, and an electrolyte composed of a fused salt containing at least one of the salts of the metals selected from the class consisting of thorium, uranium. zinc, cadmium, tin, lead, antimony, and bismuth. Electrolysis of the fused salt while the cathode is maintained in the molten condition deposits thorium, uranium, or thorium-uranium alloys in pure form in the molten cathode which thereafter may be separated from the molten cathode product by distillation.

  14. Radiochronological Age of a Uranium Metal Sample from an Abandoned Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, L A; Williams, R W; Glover, S E

    2012-03-16

    A piece of scrap uranium metal bar buried in the dirt floor of an old, abandoned metal rolling mill was analyzed using multi-collector inductively coupled plasma mass spectroscopy (MC-ICP-MS). The mill rolled uranium rods in the 1940s and 1950s. Samples of the contaminated dirt in which the bar was buried were also analyzed. The isotopic composition of uranium in the bar and dirt samples were both the same as natural uranium, though a few samples of dirt also contained recycled uranium; likely a result of contamination with other material rolled at the mill. The time elapsed since the uranium metalmore » bar was last purified can be determined by the in-growth of the isotope {sup 230}Th from the decay of {sup 234}U, assuming that only uranium isotopes were present in the bar after purification. The age of the metal bar was determined to be 61 years at the time of this analysis and corresponds to a purification date of July 1950 {+-} 1.5 years.« less

  15. U.sup.+4 generation in HTER

    DOEpatents

    Miller, William E [Naperville, IL; Gay, Eddie C [Park Forest, IL; Tomczuk, Zygmunt [Homer Glen, IL

    2006-03-14

    A improved device and process for recycling spent nuclear fuels, in particular uranium metal, that facilitates the refinement and recovery of uranium metal from spent metallic nuclear fuels. The electrorefiner device comprises two anodes in predetermined spatial relation to a cathode. The anodese have separate current and voltage controls. A much higher voltage than normal for the electrorefining process is applied to the second anode, thereby facilitating oxidization of uranium (III), U.sup.+, to uranium (IV), U.sup.+4. The current path from the second anode to the cathode is physically shorter than the similar current path from the second anode to the spent nuclear fuel contained in a first anode shaped as a basket. The resulting U.sup.+4 oxidizes and solubilizes rough uranium deposited on the surface of the cathode. A softer uranium metal surface is left on the cathode and is more readily removed by a scraper.

  16. URANIUM PRECIPITATION PROCESS

    DOEpatents

    Thunaes, A.; Brown, E.A.; Smith, H.W.; Simard, R.

    1957-12-01

    A method for the recovery of uranium from sulfuric acid solutions is described. In the present process, sulfuric acid is added to the uranium bearing solution to bring the pH to between 1 and 1.8, preferably to about 1.4, and aluminum metal is then used as a reducing agent to convert hexavalent uranium to the tetravalent state. As the reaction proceeds, the pH rises amd a selective precipitation of uranium occurs resulting in a high grade precipitate. This process is an improvement over the process using metallic iron, in that metallic aluminum reacts less readily than metallic iron with sulfuric acid, thus avoiding consumption of the reducing agent and a raising of the pH without accomplishing the desired reduction of the hexavalent uranium in the solution. Another disadvantage to the use of iron is that positive ferric ions will precipitate with negative phosphate and arsenate ions at the pH range employed.

  17. Magnesium and zinc borate enhance osteoblastic differentiation of stem cells from human exfoliated deciduous teeth in vitro.

    PubMed

    Liu, Yao-Jen; Su, Wen-Ta; Chen, Po-Hung

    2018-01-01

    Various biocompatible and biodegradable scaffolds blended with biochemical signal molecules with adequate osteoinductive and osteoconductive properties have attracted significant interest in hard tissue engineering regeneration. We evaluated the distinct effects of magnesium borate, zinc borate, and boric acid blended into chitosan scaffold for osteogenic differentiation of stem cells from exfoliated deciduous teeth. Stem cells from exfoliated deciduous teeth cells are a potential source of functional osteoblasts for applications in bone tissue engineering, but the efficiency of osteoblastic differentiation is low, thereby significantly limiting their clinical applications. Divalent metal borates have potential function in bone remodeling because they can simulate bone formation and decrease bone resorption. These magnesium, zinc, and B ions can gradually be released into the culture medium from the scaffold and induce advanced osteoblastic differentiation from stem cells from exfoliated deciduous teeth. Stem cells from exfoliated deciduous teeth with magnesium borate or zinc borate as inducer demonstrated more osteoblastic differentiation after 21 days of culture. Differentiated cells exhibited activity of alkaline phosphatase, bone-related gene expression of collagen type I, runt-related transcription factor 2, osteopontin, osteocalcin, vascular endothelial growth factor, and angiopoietin-1, as noted via real-time polymerase chain reaction analysis, as well as significant deposits of calcium minerals. Divalent mental magnesium and zinc and nonmetal boron can be an effective inducer of osteogenesis for stem cells from exfoliated deciduous teeth. This experiment might provide useful inducers for osteoblastic differentiation of stem cells from exfoliated deciduous teeth for tissue engineering and bone repair.

  18. PRODUCTION OF URANIUM

    DOEpatents

    Spedding, F.H.; Wilhelm, H.A.; Keller, W.H.

    1958-04-15

    The production of uranium metal by the reduction of uranium tetrafluoride is described. Massive uranium metal of high purily is produced by reacting uranium tetrafluoride with 2 to 20% stoichiometric excess of magnesium at a temperature sufficient to promote the reaction and then mantaining the reaction mass in a sealed vessel at temperature in the range of 1150 to 2000 d C, under a superatomospheric pressure of magnesium for a period of time sufficient 10 allow separation of liquid uranium and liquid magnesium fluoride into separate layers.

  19. FORMING TUBES AND RODS OF URANIUM METAL BY EXTRUSION

    DOEpatents

    Creutz, E.C.

    1959-01-27

    A method and apparatus are presented for the extrusion of uranium metal. Since uranium is very brittle if worked in the beta phase, it is desirable to extrude it in the gamma phase. However, in the gamma temperature range thc uranium will alloy with the metal of the extrusion dic, and is readily oxidized to a great degree. According to this patent, uranium extrusion in thc ganmma phase may be safely carried out by preheating a billet of uranium in an inert atmosphere to a trmperature between 780 C and 1100 C. The heated billet is then placed in an extrusion apparatus having dies which have been maintained at an elevated temperature for a sufficient length of time to produce an oxide film, and placing a copper disc between the uranium billet and the die.

  20. URANIUM BISMUTHIDE DISPERSION IN MOLTEN METAL

    DOEpatents

    Teitel, R.J.

    1959-10-27

    The formation of intermetallic bismuth compounds of thorium or uranium dispersed in a liquid media containing bismuth and lead is described. A bismuthide of uranium dispersed in a liquid metal medium is formed by dissolving uranium in composition of lead and bismuth containing less than 80% lead and lowering the temperature of the composition to a temperature below the point at which the solubility of uranium is exceeded and above the melting point of the composition.

  1. METAL COATED ARTICLES AND METHOD OF MAKING

    DOEpatents

    Eubank, L.D.

    1958-08-26

    A method for manufacturing a solid metallic uranium body having an integral multiple layer protective coating, comprising an inner uranium-aluminum alloy firmly bonded to the metallic uranium is presented. A third layer of silver-zinc alloy is bonded to the zinc-aluiminum layer and finally a fourth layer of lead-silver alloy is firmly bonded to the silver-zinc layer.

  2. In situ effects of metal contamination from former uranium mining sites on the health of the three-spined stickleback (Gasterosteus aculeatus, L.).

    PubMed

    Le Guernic, Antoine; Sanchez, Wilfried; Bado-Nilles, Anne; Palluel, Olivier; Turies, Cyril; Chadili, Edith; Cavalié, Isabelle; Delahaut, Laurence; Adam-Guillermin, Christelle; Porcher, Jean-Marc; Geffard, Alain; Betoulle, Stéphane; Gagnaire, Béatrice

    2016-08-01

    Human activities have led to increased levels of various pollutants including metals in aquatic ecosystems. Increase of metallic concentrations in aquatic environments represents a potential risk to exposed organisms, including fish. The aim of this study was to characterize the environmental risk to fish health linked to a polymetallic contamination from former uranium mines in France. This contamination is characterized by metals naturally present in the areas (manganese and iron), uranium, and metals (aluminum and barium) added to precipitate uranium and its decay products. Effects from mine releases in two contaminated ponds (Pontabrier for Haute-Vienne Department and Saint-Pierre for Cantal Department) were compared to those assessed at four other ponds outside the influence of mine tailings (two reference ponds/department). In this way, 360 adult three-spined sticklebacks (Gasterosteus aculeatus) were caged for 28 days in these six ponds before biomarker analyses (immune system, antioxidant system, biometry, histology, DNA integrity, etc.). Ponds receiving uranium mine tailings presented higher concentrations of uranium, manganese and aluminum, especially for the Haute-Vienne Department. This uranium contamination could explain the higher bioaccumulation of this metal in fish caged in Pontabrier and Saint-Pierre Ponds. In the same way, many fish biomarkers (antioxidant and immune systems, acetylcholinesterase activity and biometric parameters) were impacted by this environmental exposure to mine tailings. This study shows the interest of caging and the use of a multi-biomarker approach in the study of a complex metallic contamination.

  3. NEUTRONIC REACTOR FUEL ELEMENT AND METHOD OF MANUFACTURE

    DOEpatents

    Finniston, H.M.; Plail, O.S.

    1961-01-24

    BS>A uranium body for use in a nuclear fission reactor is described. It has a homogeneous rod of uranium metal enclosed in an envelope of aluminum, wherein a thin metallic layer of higher melting point than aluminum and of relatively low competitive neutron absorption between the uranium and the aluminum is bonded to the uranium and to the aluminum of the sheath.

  4. High Temperature Reactions of Uranium Dioxide with Various Metal Oxides

    DTIC Science & Technology

    1956-02-20

    manganese, nickel , lead, and tin. Subtracting the total of these impurities from the oxygen remainder would give a more nearly 1:2 uranium -oxygen ratio. The...Astin, Dire~ctor High -Temperature Reactions of Uranium Dioxide With Various Metal Oxides Acceson For NTIS CRAWI DTfC TAB Unannounced D JustifiCation...1 2. The uranium -oxygen system ------------------------------------- 1 3. Binary systems containing

  5. Reconnaissance of uranium and copper deposits in parts of New Mexico, Colorado, Utah, Idaho, and Wyoming

    USGS Publications Warehouse

    Gott, Garland B.; Erickson, Ralph L.

    1952-01-01

    Because of the common association of uranium and copper in several of the commercial uranium deposits in the Colorado Plateau Province, a reconnaissance was made of several known deposits of copper disseminated through sandstone to determine whether they might be a source of uranium. In order to obtain more information regarding the relationship between copper, uranium and carbonaceous materials, some of the uraniferious asphaltrite deposits in the Shinarump conglomerate along the west flank of the San Rafael Swell were also investigated briefly. During this reconnaissance 18 deposits were examined in New Mexico, eight in Utah, two in Idaho, and one each in Wyoming and Colorado. No uranium deposits of commercial grade are associated with the copper deposits that were examined. The uraniferous asphaltites in the Shinarump conglomerate of Triassic age on the west flank of the San Rafael Swell, however, are promising from the standpoint of commercial uranium production. Spectrographic analyses of crude oil, asphalt, and bituminous shales show a rather consistent suite of trace metals including vanadium, nickel, copper, cobalt, chromium, lead zinc, and molybdenum. The similarity of the metal assemblage, including uranium of the San Rafael Swell asphaltites, to the metal assemblage in crude oil and other bituminous materials suggests that these metals were concentrated in the asphaltites from petroleum. However, the hypothesis that uranium minerals were already present before the hydrocarbons were introduced and that some sort of replacement or uranium minerals by carbon compounds was effected after the petroleum migrated into the uranium deposit should not be disregarded. The widespread association of uranium with asphaltic material suggests that it also may have been concentrated by some agency connected with the formation of petroleum. The problem of the association of uranium and other trace metals with hydrocarbons should be studied further both in the field and in the laboratory.

  6. Uranium(III)-carbon multiple bonding supported by arene δ-bonding in mixed-valence hexauranium nanometre-scale rings.

    PubMed

    Wooles, Ashley J; Mills, David P; Tuna, Floriana; McInnes, Eric J L; Law, Gareth T W; Fuller, Adam J; Kremer, Felipe; Ridgway, Mark; Lewis, William; Gagliardi, Laura; Vlaisavljevich, Bess; Liddle, Stephen T

    2018-05-29

    Despite the fact that non-aqueous uranium chemistry is over 60 years old, most polarised-covalent uranium-element multiple bonds involve formal uranium oxidation states IV, V, and VI. The paucity of uranium(III) congeners is because, in common with metal-ligand multiple bonding generally, such linkages involve strongly donating, charge-loaded ligands that bind best to electron-poor metals and inherently promote disproportionation of uranium(III). Here, we report the synthesis of hexauranium-methanediide nanometre-scale rings. Combined experimental and computational studies suggest overall the presence of formal uranium(III) and (IV) ions, though electron delocalisation in this Kramers system cannot be definitively ruled out, and the resulting polarised-covalent U = C bonds are supported by iodide and δ-bonded arene bridges. The arenes provide reservoirs that accommodate charge, thus avoiding inter-electronic repulsion that would destabilise these low oxidation state metal-ligand multiple bonds. Using arenes as electronic buffers could constitute a general synthetic strategy by which to stabilise otherwise inherently unstable metal-ligand linkages.

  7. Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte

    DOEpatents

    Willit, James L [Ratavia, IL

    2007-09-11

    An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

  8. Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte

    DOEpatents

    Willit, James L [Batavia, IL

    2010-09-21

    An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

  9. PURIFICATION OF URANIUM FUELS

    DOEpatents

    Niedrach, L.W.; Glamm, A.C.

    1959-09-01

    An electrolytic process of refining or decontaminating uranium is presented. The impure uranium is made the anode of an electrolytic cell. The molten salt electrolyte of this cell comprises a uranium halide such as UF/sub 4/ or UCl/sub 3/ and an alkaline earth metal halide such as CaCl/sub 2/, BaF/sub 2/, or BaCl/sub 2/. The cathode of the cell is a metal such as Mn, Cr, Co, Fe, or Ni which forms a low melting eutectic with U. The cell is operated at a temperature below the melting point of U. In operation the electrodeposited uranium becomes alloyed with the metal of the cathode, and the low melting alloy thus formed drips from the cathode.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.R. Westphal; J.C. Price; R.D. Mariani

    The pyroprocessing of used nuclear fuel via electrorefining requires the continued addition of uranium trichloride to sustain operations. Uranium trichloride is utilized as an oxidant in the system to allow separation of uranium metal from the minor actinides and fission products. The inventory of uranium trichloride had diminished to a point that production was necessary to continue electrorefiner operations. Following initial experimentation, cupric chloride was chosen as a reactant with uranium metal to synthesize uranium trichloride. Despite the variability in equipment and charge characteristics, uranium trichloride was produced in sufficient quantities to maintain operations in the electrorefiner. The results andmore » conclusions from several experiments are presented along with a set of optimized operating conditions for the synthesis of uranium trichloride.« less

  11. Harnessing redox activity for the formation of uranium tris(imido) compounds

    NASA Astrophysics Data System (ADS)

    Anderson, Nickolas H.; Odoh, Samuel O.; Yao, Yiyi; Williams, Ursula J.; Schaefer, Brian A.; Kiernicki, John J.; Lewis, Andrew J.; Goshert, Mitchell D.; Fanwick, Phillip E.; Schelter, Eric J.; Walensky, Justin R.; Gagliardi, Laura; Bart, Suzanne C.

    2014-10-01

    Classically, late transition-metal organometallic compounds promote multielectron processes solely through the change in oxidation state of the metal centre. In contrast, uranium typically undergoes single-electron chemistry. However, using redox-active ligands can engage multielectron reactivity at this metal in analogy to transition metals. Here we show that a redox-flexible pyridine(diimine) ligand can stabilize a series of highly reduced uranium coordination complexes by storing one, two or three electrons in the ligand. These species reduce organoazides easily to form uranium-nitrogen multiple bonds with the release of dinitrogen. The extent of ligand reduction dictates the formation of uranium mono-, bis- and tris(imido) products. Spectroscopic and structural characterization of these compounds supports the idea that electrons are stored in the ligand framework and used in subsequent reactivity. Computational analyses of the uranium imido products probed their molecular and electronic structures, which facilitated a comparison between the bonding in the tris(imido) structure and its tris(oxo) analogue.

  12. METHOD FOR TESTING COATINGS

    DOEpatents

    Johns, I.B.; Newton, A.S.

    1958-09-01

    A method is described for detecting pin hole imperfections in coatings on uranium-metal objects. Such coated objects are contacted with a heated atmosphere of gaseous hydrogen and imperfections present in the coatings will allow the uranlum to react with the hydrogen to form uranium hydride. Since uranium hydride is less dense than uranium metal it will swell, causing enlargement of the coating defeot and rendering it visible.

  13. Separation of Depleted Uranium From Soil

    DTIC Science & Technology

    2009-03-01

    order to remove the metallic DU present in these soils. This procedure would re- duce the amount of time that metallic uranium could undergo corrosion ...slow corrosion is not sufficient to ignite the uranium . Unfired rod Weathered, unfired rod with yellow uranyl salt deposits Figure 1. Comparison...resulting in less downward movement. Interactions between uranium corrosion products and soil mineral and organic components can also affect

  14. THERMAL DECOMPOSITION OF URANIUM COMPOUNDS

    DOEpatents

    Magel, T.T.; Brewer, L.

    1959-02-10

    A method is presented of preparing uranium metal of high purity consisting contacting impure U metal with halogen vapor at between 450 and 550 C to form uranium halide vapor, contacting the uranium halide vapor in the presence of H/sub 2/ with a refractory surface at about 1400 C to thermally decompose the uranium halides and deposit molten U on the refractory surface and collecting the molten U dripping from the surface. The entire operation is carried on at a sub-atmospheric pressure of below 1 mm mercury.

  15. Distribution of uranium and some selected trace metals in human scalp hair from Balkans.

    PubMed

    Zunic, Z S; Tokonami, S; Mishra, S; Arae, H; Kritsananuwat, R; Sahoo, S K

    2012-11-01

    The possible consequences of the use of depleted uranium (DU) used in Balkan conflicts in 1995 and 1999 for the people and the environment of this reason need attention. The heavy metal content in human hair may serve as a good indicator of dietary, environmental and occupational exposures to the metal compounds. The present work summarises the distribution of uranium and some selected trace metals such as Mn, Ni, Cu, Zn, Sr, Cd and Cs in the scalp hair of inhabitants from Balkans exposed to DU directly and indirectly, i.e. Han Pijesak, Bratoselce and Gornja Stubla areas. Except U and Cs, all other metals were compared with the worldwide reported values of occupationally unexposed persons. Uranium concentrations show a wide variation ranging from 0.9 ± 0.05 to 449 ± 12 µg kg(-1). Although hair samples were collected from Balkan conflict zones, uranium isotopic measurement ((235)U/(238)U) shows a natural origin rather than DU.

  16. FUEL ELEMENTS AND METHOD OF MAKING

    DOEpatents

    Noland, R.A.; Marzano, C.

    1958-08-19

    A process is described of surface-impregnating bodies of metallic uranium with silicon. Silicon metal is added to or admixed with alkali metal selected from the group consisting of sodiunn, potassium, and sodiunnpotassium alloy. The uraniunn body is then immersed in the mixture obtained and the temperature is raised to between 425 and 600 deg C. The silicon is dissolved and deposits as a uranium-silicon compound on the uranium body.

  17. Temperature dependence of the dielectric response of anodized Al-Al2O3-metal capacitors

    NASA Astrophysics Data System (ADS)

    Hickmott, T. W.

    2003-03-01

    The temperature dependence of capacitance, CM, and conductance, GM, of Al-Al2O3-metal capacitors with Cu, Ag, and Au electrodes has been measured between 100 and 340 K at seven frequencies between 10 kHz and 1 MHz. Al2O3 films between 15 and 64 nm thick were formed by anodizing evaporated Al films in borate-glycol or borate-H2O electrolyte. The interface capacitance at the Al2O3-metal interface, CI, which is in series with the capacitance CD due to the Al2O3 dielectric, is determined from plots of 1/CM versus insulator thickness. CI is not fixed for a given metal-insulator interface but depends on the vacuum system used to deposit the metal electrode. CI is nearly temperature independent. When CI is taken into account the dielectric constant of Al2O3 determined from capacitance measurements is ˜8.3 at 295 K. The dielectric constant does not depend on anodizing electrolyte, insulator thickness, metal electrode, deposition conditions for the metal electrode or measurement frequency. By contrast, GM of Al-Al2O3-metal capacitors depends on both the deposition conditions of the metal and on the metal. For Al-Al2O3-Cu capacitors, GM is larger for capacitors with large values of 1/CI that result when Cu is evaporated in an oil-pumped vacuum system. For Al-Al2O3-Ag capacitors, GM does not depend on the Ag deposition conditions.

  18. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil.

    PubMed

    Sitte, Jana; Akob, Denise M; Kaufmann, Christian; Finster, Kai; Banerjee, Dipanjan; Burkhardt, Eva-Maria; Kostka, Joel E; Scheinost, Andreas C; Büchel, Georg; Küsel, Kirsten

    2010-05-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the (35)SO(4)(2-) radiotracer method, was restricted to reduced soil horizons with rates of < or =142 +/- 20 nmol cm(-3) day(-1). Concentrations of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that approximately 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [(13)C]acetate- and [(13)C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined < or =100% during anoxic soil incubations. In contrast to results in other studies, soluble uranium increased in carbon-amended treatments, reaching < or =1,407 nM in solution. Our results suggest that (i) ongoing sulfate reduction in contaminated soil resulted in in situ metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems.

  19. Microbial Links between Sulfate Reduction and Metal Retention in Uranium- and Heavy Metal-Contaminated Soil▿

    PubMed Central

    Sitte, Jana; Akob, Denise M.; Kaufmann, Christian; Finster, Kai; Banerjee, Dipanjan; Burkhardt, Eva-Maria; Kostka, Joel E.; Scheinost, Andreas C.; Büchel, Georg; Küsel, Kirsten

    2010-01-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the 35SO42− radiotracer method, was restricted to reduced soil horizons with rates of ≤142 ± 20 nmol cm−3 day−1. Concentrations of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that ∼80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [13C]acetate- and [13C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined ≤100% during anoxic soil incubations. In contrast to results in other studies, soluble uranium increased in carbon-amended treatments, reaching ≤1,407 nM in solution. Our results suggest that (i) ongoing sulfate reduction in contaminated soil resulted in in situ metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems. PMID:20363796

  20. 40 CFR 471.73 - New source performance standards (NSPS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Uranium Forming... achieve the following new source performance standards (NSPS). The mass of pollutants in the uranium... mg/off-kg (pounds per million off-pounds) of uranium extruded Cadmium 0.007 0.003 Chromium 0.013 0...

  1. 40 CFR 471.73 - New source performance standards (NSPS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Uranium Forming... achieve the following new source performance standards (NSPS). The mass of pollutants in the uranium... mg/off-kg (pounds per million off-pounds) of uranium extruded Cadmium 0.007 0.003 Chromium 0.013 0...

  2. Ytterbium-doped borate fluoride laser crystals and lasers

    DOEpatents

    Schaffers, Kathleen I.; DeLoach, Laura D.; Payne, Stephen A.; Keszler, Douglas A.

    1997-01-01

    A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM'(BO.sub.3)F, where M, M' are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO.sub.3 F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator.

  3. An introduction to boron: history, sources, uses, and chemistry.

    PubMed Central

    Woods, W G

    1994-01-01

    Following a brief overview of the terrestrial distribution of boron in rocks, soil, and water, the history of the discovery, early utilization, and geologic origin of borate minerals is summarized. Modern uses of borate-mineral concentrates, borax, boric acid, and other refined products include glass, fiberglass, washing products, alloys and metals, fertilizers, wood treatments, insecticides, and microbiocides. The chemistry of boron is reviewed from the point of view of its possible health effects. It is concluded that boron probably is complexed with hydroxylated species in biologic systems, and that inhibition and stimulation of enzyme and coenzymes are pivotal in its mode of action. Images Figure 1. PMID:7889881

  4. PROCESS FOR PREPARING URANIUM METAL

    DOEpatents

    Prescott, C.H. Jr.; Reynolds, F.L.

    1959-01-13

    A process is presented for producing oxygen-free uranium metal comprising contacting iodine vapor with crude uranium in a reaction zone maintained at 400 to 800 C to produce a vaporous mixture of UI/sub 4/ and iodine. Also disposed within the maction zone is a tungsten filament which is heated to about 1600 C. The UI/sub 4/, upon contacting the hot filament, is decomposed to molten uranium substantially free of oxygen.

  5. METHOD FOR THE REDUCTION OF URANIUM COMPOUNDS

    DOEpatents

    Cooke, W.H.; Crawford, J.W.C.

    1959-05-12

    An improved technique of preparing massive metallic uranium by the reaction at elevated temperature between an excess of alkali in alkaline earth metal and a uranium halide, such ss uranium tetrafluoride is presented. The improvement comprises employing a reducing atmosphere of hydrogen or the like, such as coal gas, in the vessel during the reduction stage and then replacing the reducing atmosphere with argon gas prior to cooling to ambient temperature.

  6. Uranium chloride extraction of transuranium elements from LWR fuel

    DOEpatents

    Miller, W.E.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Pierce, R.D.

    1992-08-25

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800 C to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein. 1 figure.

  7. Uranium chloride extraction of transuranium elements from LWR fuel

    DOEpatents

    Miller, William E.; Ackerman, John P.; Battles, James E.; Johnson, Terry R.; Pierce, R. Dean

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800.degree. C. to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein.

  8. Evidence for single metal two electron oxidative addition and reductive elimination at uranium.

    PubMed

    Gardner, Benedict M; Kefalidis, Christos E; Lu, Erli; Patel, Dipti; McInnes, Eric J L; Tuna, Floriana; Wooles, Ashley J; Maron, Laurent; Liddle, Stephen T

    2017-12-01

    Reversible single-metal two-electron oxidative addition and reductive elimination are common fundamental reactions for transition metals that underpin major catalytic transformations. However, these reactions have never been observed together in the f-block because these metals exhibit irreversible one- or multi-electron oxidation or reduction reactions. Here we report that azobenzene oxidises sterically and electronically unsaturated uranium(III) complexes to afford a uranium(V)-imido complex in a reaction that satisfies all criteria of a single-metal two-electron oxidative addition. Thermolysis of this complex promotes extrusion of azobenzene, where H-/D-isotopic labelling finds no isotopomer cross-over and the non-reactivity of a nitrene-trap suggests that nitrenes are not generated and thus a reductive elimination has occurred. Though not optimally balanced in this case, this work presents evidence that classical d-block redox chemistry can be performed reversibly by f-block metals, and that uranium can thus mimic elementary transition metal reactivity, which may lead to the discovery of new f-block catalysis.

  9. PROCESS OF ELECTROPLATING METALS WITH ALUMINUM

    DOEpatents

    Schickner, W.C.

    1960-04-26

    A process of electroplating aluminum on metals from a nonaqueous bath and a novel method of pretreating or conditioning the metal prior to electrodeposition of the aluminum are given. The process of this invention, as applied by way of example to the plating of uranium, comprises the steps of plating the uranium with the barrier inetal, immersing the barrier-coated uranium in fatty acid, and electrolyzing a water-free diethyl ether solution of aluminum chloride and lithium hydride while making the uranium the cathode until an aluminum deposit of the desired thickness has been formed. According to another preferred embodiment the barrier-coated uranium is immersed in an isopropyl alcohol solution of sterato chromic chloride prior to the fatty acid treatment of this invention.

  10. DIRECT INGOT PROCESS FOR PRODUCING URANIUM

    DOEpatents

    Leaders, W.M.; Knecht, W.S.

    1960-11-15

    A process is given in which uranium tetrafluoride is reduced to the metal with magnesium and in the same step the uranium metal formed is cast into an ingot. For this purpose a mold is arranged under and connected with the reaction bomb, and both are filled with the reaction mixture. The entire mixture is first heated to just below reaction temperature, and thereafter heating is restricted to the mixture in the mold. The reaction starts in the mold whereby heat is released which brings the rest of the mixture to reaction temperature. Pure uranium metal settles in the mold while the magnesium fluoride slag floats on top of it. After cooling, the uranium is separated from the slag by mechanical means.

  11. HEAT TREATMENT OF ELECTROPLATED URANIUM

    DOEpatents

    Hoglund, P.F.

    1958-07-01

    A method is described for improving electroplated coatings on uranium. Such coatings are often porous, and in an effort to remedy this, the coatings are heat treated by immersing the coated specimen ln a bath of fused salt or molten methl. Since the hase metal, uranium, is an active metal, such a procedure often results in reactions between the base metal and the heating medium. This difficulty can be overcome by using liquid organopolysiloxanes as the heating medium.

  12. SINTERING METAL OXIDES

    DOEpatents

    Roake, W.E.

    1960-09-13

    A process is given for producing uranium dioxide material of great density by preparing a compacted mixture of uranium dioxide and from 1 to 3 wt.% of calcium hydride, heating the mixture to at least 675 deg C for decomposition of the hydride and then for sintering, preferably in a vacuum, at from 1550 to 2000 deg C. Calcium metal is formed, some uranium is reduced by the calcium to the metal and a product of high density is obtained.

  13. FUEL ELEMENTS FOR NUCLEAR REACTORS AND PROCESS OF MAKING

    DOEpatents

    Roake, W.E.

    1958-08-19

    A process is described for producing uranium metal granules for use in reactor fuel elements. The granules are made by suspending powdered uramiunn metal or uranium hydride in a viscous, non-reactive liquid, such as paraffin oil, aad pouring the resulting suspension in droplet, on to a bed of powdered absorbent. In this manner the liquid vehicle is taken up by the sorbent and spherical pellets of uranium metal are obtained. The

  14. Isolation and characterization of a uranium(VI)-nitride triple bond

    NASA Astrophysics Data System (ADS)

    King, David M.; Tuna, Floriana; McInnes, Eric J. L.; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Liddle, Stephen T.

    2013-06-01

    The nature and extent of covalency in uranium bonding is still unclear compared with that of transition metals, and there is great interest in studying uranium-ligand multiple bonds. Although U=O and U=NR double bonds (where R is an alkyl group) are well-known analogues to transition-metal oxo and imido complexes, the uranium(VI)-nitride triple bond has long remained a synthetic target in actinide chemistry. Here, we report the preparation of a uranium(VI)-nitride triple bond. We highlight the importance of (1) ancillary ligand design, (2) employing mild redox reactions instead of harsh photochemical methods that decompose transiently formed uranium(VI) nitrides, (3) an electrostatically stabilizing sodium ion during nitride installation, (4) selecting the right sodium sequestering reagent, (5) inner versus outer sphere oxidation and (6) stability with respect to the uranium oxidation state. Computational analyses suggest covalent contributions to U≡N triple bonds that are surprisingly comparable to those of their group 6 transition-metal nitride counterparts.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fincke, J.R.; Swank, W.D.; Haggard, D.C.

    This paper describes the experimental demonstration of a process for the direct plasma reduction of depleted uranium hexafluoride to uranium metal. The process exploits the large departures from equilibrium that can be achieved in the rapid supersonic expansion of a totally dissociated and partially ionized mixture of UF{sub 6}, Ar, He, and H{sub 2}. The process is based on the rapid condensation of subcooled uranium vapor and the relatively slow rate of back reaction between metallic uranium and HF to F{sub 2} to reform stable fluorides. The high translational velocities and rapid cooling result in an overpopulation of atomic hydrogenmore » which persists throughout the expansion process. Atomic hydrogen shifts the equilibrium composition by inhibiting the reformation of uranium-fluorine compounds. This process has the potential to reduce the cost of reducing UF{sub 6} to uranium metal with the added benefit of being a virtually waste free process. The dry HF produced is a commodity which has industrial value.« less

  16. Effect of certain alkaline metals on Pr doped glasses to investigate spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Lenkennavar Susheela, K.; Madhu, A.; Eraiah, B.; Kokila, M. K.

    2018-02-01

    Incorporation of different Alkaline earth metal like Barium, Calcium and strontium in sodium lead borate glass doped with Pr3+ is studied. Physical parameters such as density, molar volume, molar refractivity etc have been evaluated. Effect of different atomic size of alkaline metal using optical and physical parameters is analysed. XRD and FTIR were carried out to know the structural behaviour of the glasses. Absorption and Emission spectra are recorded at room temperature and the results were discussed.

  17. LIQUID METAL COMPOSITIONS CONTAINING URANIUM

    DOEpatents

    Teitel, R.J.

    1959-04-21

    Liquid metal compositions containing a solid uranium compound dispersed therein is described. Uranium combines with tin to form the intermetallic compound USn/sub 3/. It has been found that this compound may be incorporated into a liquid bath containing bismuth and lead-bismuth components, if a relatively small percentage of tin is also included in the bath. The composition has a low thermal neutron cross section which makes it suitable for use in a liquid metal fueled nuclear reactor.

  18. Bioengineered Chimeric Spider Silk-Uranium Binding Proteins

    PubMed Central

    Krishnaji, Sreevidhya Tarakkad; Kaplan, David L.

    2014-01-01

    Heavy metals constitute a source of environmental pollution. Here, novel functional hybrid biomaterials for specific interactions with heavy metals are designed by bioengineering consensus sequence repeats from spider silk of Nephila clavipes with repeats of a uranium peptide recognition motif from a mutated 33-residue of calmodulin protein from Paramecium tetraurelia. The self-assembly features of the silk to control nanoscale organic/inorganic material interfaces provides new biomaterials for uranium recovery. With subsequent enzymatic digestion of the silk to concentrate the sequestered metals, options can be envisaged to use these new chimeric protein systems in environmental engineering, including to remediate environments contaminated by uranium. PMID:23212989

  19. Target and method for the production of fission product molybdenum-99

    DOEpatents

    Vandegrift, George F.; Vissers, Donald R.; Marshall, Simon L.; Varma, Ravi

    1989-01-01

    A target for the reduction of fission product Mo-99 is prepared from uranium of low U-235 enrichment by coating a structural support member with a preparatory coating of a substantially oxide-free substrate metal. Uranium metal is electrodeposited from a molten halide electrolytic bath onto a substrate metal. The electrodeposition is performed at a predetermined direct current rate or by using pulsed plating techniques which permit relaxation of accumulated uranium ion concentrations within the melt. Layers of as much as to 600 mg/cm.sup.2 of uranium can be prepared to provide a sufficient density to produce acceptable concentrations of fission product Mo-99.

  20. Ultraviolet-B radiation mobilizes uranium from uranium-dissolved organic carbon complexes in aquatic systems, demonstrated by asymmetrical flow field-flow fractionation.

    PubMed

    Nehete, Sachin Vilas; Christensen, Terje; Salbu, Brit; Teien, Hans-Christian

    2017-05-05

    Humic substances have a tendency to form complexes with metal ions in aquatic medium, impacting the metal mobility, decreasing bioavailability and toxicity. Ultraviolet-B (UV-B) radiation exposure degrades the humic substance, changes their molecular weight distribution and their metal binding capacity in aquatic medium. In this study, we experimented the effect of UV-B radiation on the uranium complexed with fulvic acids and humic acids in a soft water system at different pH, uranium concentrations and radiant exposure. The concentration and distribution of uranium in a complexed form were investigated by asymmetrical flow field-flow fractionation coupled to multi detection technique (AsFlFFF-UV-ICP-MS). The major concentration of uranium present in complexes was primarily associated with average and higher molecular weight fulvic and humic acids components. The concentration of uranium in a complexed form increased with increasing fulvic and humic acid concentrations as well as pH of the solution. The higher molecular weight fraction of uranium was degraded due to the UV-B exposure, transforming about 50% of the uranium-dissolved organic carbon complexes into low molecular weight uranium species in complex form with organic ligands and/or free form. The result also suggests AsFlFFF-UV-ICP-MS to be an important separation and detection technique for understanding the interaction of radionuclides with dissolved organic matter, tracking size distribution changes during degradation of organic complexes for understanding mobility, bioavailability and ecosystem transfer of radionuclides as well as metals. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Actinide metal processing

    DOEpatents

    Sauer, Nancy N.; Watkin, John G.

    1992-01-01

    A process of converting an actinide metal such as thorium, uranium, or plnium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrte. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  2. Actinide metal processing

    DOEpatents

    Sauer, N.N.; Watkin, J.G.

    1992-03-24

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  3. METHOD OF PURIFYING URANIUM METAL

    DOEpatents

    Blanco, R.E.; Morrison, B.H.

    1958-12-23

    The removal of lmpurities from uranlum metal can be done by a process conslstlng of contacting the metal with liquid mercury at 300 icient laborato C, separating the impunitycontalnlng slag formed, cooling the slag-free liquld substantlally below the point at which uranlum mercurlde sollds form, removlng the mercury from the solids, and recovering metallic uranium by heating the solids.

  4. Anodic behavior of uranium in AlCl3-1-ethyl-3-methyl-imidazolium chloride ionic liquid

    NASA Astrophysics Data System (ADS)

    Jiang, Yidong; Luo, Lizhu; Wang, Shaofei; Bin, Ren; Zhang, Guikai; Wang, Xiaolin

    2018-01-01

    The oxidation state of metals unambiguously affects its anodic behavior in ionic liquid. We systematically investigated the anodic behavior of uranium with different surface oxidation states by electrochemical measurements, spectroscopic methods and surface analysis techniques. In the anodic process, metal uranium can be oxidized to U3+. The corresponding products accumulated on the metal/ILs interface will form a viscous layer. The anodic behavior of uranium is also strongly dependent upon the surface oxide states including thickness and homogeneity of the oxide film. With an increase in the thickness of oxide film, it will be breached at potentials in excess of a critical value. A uniform oxide on uranium surface can be breached evenly, and then the underlying metal starts to dissolve forming a viscous layer which can facilitate uniformly stripping of oxide, thus giving an oxide-free surface. Otherwise, a nonuniform oxide can result in a severe pitted surface with residue oxygen.

  5. SEPARATION OF URANIUM FROM OTHER METALS

    DOEpatents

    Hyman, H.H.

    1959-07-01

    The separation of uranium from other elements, such as ruthenium, zirconium, niobium, cerium, and other rare earth metals is described. According to the invention, this is accomplished by adding hydrazine to an acid aqueous solution containing salts of uranium, preferably hexavalent uranium, and then treating the mixture with a substantially water immiscible ketone, such as hexone. A reaction takes place between the ketone and the hydrazine whereby a complex, a ketazine, is formed; this complex has a greater power of extraction for uranium than the ketone by itself. When contaminating elements are present, they substantially remain in ihe aqueous solution.

  6. PRODUCTION OF URANIUM

    DOEpatents

    Ruehle, A.E.; Stevenson, J.W.

    1957-11-12

    An improved process is described for the magnesium reduction of UF/sub 4/ to produce uranium metal. In the past, there have been undesirable premature reactions between the Mg and the bomb liner or the UF/sub 4/ before the actual ignition of the bomb reaction. Since these premature reactions impair the yield of uranium metal, they have been inhibited by forming a protective film upon the particles of Mg by reacting it with hydrated uranium tetrafluoride, sodium bifluoride, uranyl fluoride, or uranium trioxide. This may be accomplished by adding about 0.5 to 2% of the additive to the bomb charge.

  7. Plutonium recovery from spent reactor fuel by uranium displacement

    DOEpatents

    Ackerman, John P.

    1992-01-01

    A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  8. Ytterbium-doped borate fluoride laser crystals and lasers

    DOEpatents

    Schaffers, K.I.; DeLoach, L.D.; Payne, S.A.; Keszler, D.A.

    1997-10-14

    A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM{prime}(BO{sub 3})F, where M, M{prime} are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO{sub 3}F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator. 6 figs.

  9. METHOD OF PRODUCING URANIUM METAL BY ELECTROLYSIS

    DOEpatents

    Piper, R.D.

    1962-09-01

    A process is given for making uranium metal from oxidic material by electrolytic deposition on the cathode. The oxidic material admixed with two moles of carbon per one mole of uranium dioxide forms the anode, and the electrolyte is a mixture of from 40 to 75% of calcium fluoride or barium fluoride, 15 to 45% of uranium tetrafluoride, and from 10 to 20% of lithium fluoride or magnesium fluoride; the temperature of the electrolyte is between 1150 and 1175 deg C. (AEC)

  10. The Influence of Oxygen and Sulfur on Uranium Partitioning Into the Core

    NASA Astrophysics Data System (ADS)

    Moore, R. D., Jr.; Van Orman, J. A.; Hauck, S. A., II

    2017-12-01

    Uranium, along with K and Th, may provide substantial long-term heating in planetary cores, depending on the magnitude of their partitioning into the metal during differentiation. In general, non-metallic light elements are known to have a large influence on the partitioning of trace elements, and the presence of sulfur is known to enhance the partitioning of uranium into the metal. Data from the steelmaking literature indicate that oxygen also enhances the solubility of oxygen in liquid iron alloys. Here we present experimental data on the partitioning of U between immiscible liquids in the Fe-S-O system, and use these data along with published metal-silicate partitioning data to calibrate a quantitative activity model for U in the metal. We also determined partition coefficients for Th, K, Nb, Nd, Sm, and Yb, but were unable to fully constrain activity models for these elements with available data. A Monte Carlo fitting routine was used to calculate U-S, U-O, and U-S-O interaction coefficients, and their associated uncertainties. We find that the combined interaction of uranium with sulfur and oxygen is predominant, with S and O together enhancing the solubility of uranium to a far greater degree than either element in isolation. This suggests that uranium complexes with sulfite or sulfate species in the metal. For a model Mars core composition containing 14 at% S and 5 at% O, the metal/silicate partition coefficient for U is predicted to be an order of magnitude larger than for a pure Fe-Ni core.

  11. Target and method for the production of fission product molybdenum-99

    DOEpatents

    Vandegrift, G.F.; Vissers, D.R.; Marshall, S.L.; Varma, R.

    1987-10-26

    A target for the reduction of fission product Mo-99 is prepared from uranium of low U-235 enrichment by coating a structural support member with a preparatory coating of a substantially oxide-free substrate metal. Uranium metal is electrodeposited from a molten halide electrolytic bath onto a substrate metal. The electrodeposition is performed at a predetermined direct current rate or by using pulsed plating techniques which permit relaxation of accumulated uranium ion concentrations within the melt. Layers of as much as to 600 mg/cm/sup 2/ of uranium can be prepared to provide a sufficient density to produce acceptable concentrations of fission product Mo-99. 2 figs.

  12. Magnesium transport extraction of transuranium elements from LWR fuel

    DOEpatents

    Ackerman, John P.; Battles, James E.; Johnson, Terry R.; Miller, William E.; Pierce, R. Dean

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl.sub.2 and a U-Fe alloy containing not less than about 84% by weight uranium at a temperature in the range of from about 800.degree. C. to about 850.degree. C. to produce additional uranium metal which dissolves in the U-Fe alloy raising the uranium concentration and having transuranium actinide metals and rare earth fission product metals and the noble metal fission products dissolved therein. The CaCl.sub.2 having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO.sub.2. The Ca metal and CaCl.sub.2 is recycled to reduce additional oxide fuel. The U-Fe alloy having transuranium actinide metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with Mg metal which takes up the actinide and rare earth fission product metals. The U-Fe alloy retains the noble metal fission products and is stored while the Mg is distilled and recycled leaving the transuranium actinide and rare earth fission products isolated.

  13. PROCESS FOR REMOVING NOBLE METALS FROM URANIUM

    DOEpatents

    Knighton, J.B.

    1961-01-31

    A pyrometallurgical method is given for purifying uranium containing ruthenium and palladium. The uranium is disintegrated and oxidized by exposure to air and then the ruthenium and palladium are extracted from the uranium with molten zinc.

  14. Synthesis, Structure, and Conformational Dynamics of Rhodium and Iridium Complexes of Dimethylbis(2-pyridyl)borate.

    PubMed

    Pennington-Boggio, Megan K; Conley, Brian L; Richmond, Michael G; Williams, Travis J

    2014-12-14

    Rhodium(I) and Iridium(I) borate complexes of the structure [Me 2 B(2-py) 2 ]ML 2 (L 2 = (tBuNC) 2 , (CO) 2 , (C 2 H 4 ) 2 , cod, dppe) were prepared and structurally characterized (cod = 1,5-cyclooctadiene; dppe = 1,2-diphenylphosphinoethane). Each contains a boat-configured chelate ring that participates in a boat-to-boat ring flip. Computational evidence shows that the ring flip proceeds through a transition state that is near planarity about the chelate ring. We observe an empirical, quantitative correlation between the barrier of this ring flip and the π acceptor ability of the ancillary ligand groups on the metal. The ring flip barrier correlates weakly to the Tolman and Lever ligand parameterization schemes, apparently because these combine both σ and π effects while we propose that the ring flip barrier is dominated by π bonding. This observation is consistent with metal-ligand π interactions becoming temporarily available only in the near-planar transition state of the chelate ring flip and not the boat-configured ground state. Thus, this is a first-of-class observation of metal-ligand π bonding governing conformational dynamics.

  15. Measurement of thermal diffusivity of depleted uranium metal microspheres

    NASA Astrophysics Data System (ADS)

    Humrickhouse-Helmreich, Carissa J.; Corbin, Rob; McDeavitt, Sean M.

    2014-03-01

    The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time-temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal.

  16. 77 FR 51579 - Application for a License To Export High-Enriched Uranium

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... NUCLEAR REGULATORY COMMISSION Application for a License To Export High-Enriched Uranium Pursuant.... Complex, July 30, 2012, August Uranium (93.35%). uranium-235 high-enriched 1, 2012, XSNM3726, 11006037. contained in 7.5 uranium in the kilograms uranium. form of broken metal to the Atomic Energy of Canada...

  17. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOEpatents

    Horton, James A.; Hayden, H. Wayne

    1995-01-01

    An apparatus and method for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode.

  18. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOEpatents

    Horton, J.A.; Hayden, H.W.

    1995-01-10

    An apparatus and method are disclosed for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode. 2 figures.

  19. Reoxidation of uranium metal immersed in a Li2O-LiCl molten salt after electrolytic reduction of uranium oxide

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Young; Jeon, Min Ku; Lee, Jeong; Kim, Sung-Wook; Lee, Sang Kwon; Lee, Sung-Jai; Heo, Dong Hyun; Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok

    2017-03-01

    We present our findings that uranium (U) metal prepared by using the electrolytic reduction process for U oxide (UO2) in a Li2O-LiCl salt can be reoxidized into UO2 through the reaction between the U metal and Li2O in LiCl. Two salt types were used for immersion of the U metal: one was the salt used for electrolytic reduction, and the other was applied to the unused LiCl salts with various concentrations of Li2O and Li metal. Our results revealed that the degree of reoxidation increases with the increasing Li2O concentration in LiCl and that the presence of the Li metal in LiCl suppresses the reoxidation of the U metal.

  20. Method for the production of uranium chloride salt

    DOEpatents

    Westphal, Brian R.; Mariani, Robert D.

    2013-07-02

    A method for the production of UCl.sub.3 salt without the use of hazardous chemicals or multiple apparatuses for synthesis and purification is provided. Uranium metal is combined in a reaction vessel with a metal chloride and a eutectic salt- and heated to a first temperature under vacuum conditions to promote reaction of the uranium metal with the metal chloride for the production of a UCl.sub.3 salt. After the reaction has run substantially to completion, the furnace is heated to a second temperature under vacuum conditions. The second temperature is sufficiently high to selectively vaporize the chloride salts and distill them into a condenser region.

  1. METHOD OF HOT ROLLING URANIUM METAL

    DOEpatents

    Kaufmann, A.R.

    1959-03-10

    A method is given for quickly and efficiently hot rolling uranium metal in the upper part of the alpha phase temperature region to obtain sound bars and sheets possessing a good surface finish. The uranium metal billet is heated to a temperature in the range of 1000 deg F to 1220 deg F by immersion iii a molten lead bath. The heated billet is then passed through the rolls. The temperature is restored to the desired range between successive passes through the rolls, and the rolls are turned down approximately 0.050 inch between successive passes.

  2. Method for fabricating laminated uranium composites

    DOEpatents

    Chapman, L.R.

    1983-08-03

    The present invention is directed to a process for fabricating laminated composites of uranium or uranium alloys and at least one other metal or alloy. The laminated composites are fabricated by forming a casting of the molten uranium with the other metal or alloy which is selectively positioned in the casting and then hot-rolling the casting into a laminated plate in or around which the casting components are metallurgically bonded to one another to form the composite. The process of the present invention provides strong metallurgical bonds between the laminate components primarily since the bond disrupting surface oxides on the uranium or uranium alloy float to the surface of the casting to effectively remove the oxides from the bonding surfaces of the components.

  3. Uranium dioxide electrolysis

    DOEpatents

    Willit, James L [Batavia, IL; Ackerman, John P [Prescott, AZ; Williamson, Mark A [Naperville, IL

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  4. METAL COATING BATHS

    DOEpatents

    Robinson, J.W.

    1958-08-26

    A method is presented for restoring the effectiveness of bronze coating baths used for hot dip coating of uranium. Such baths, containing a high proportion of copper, lose their ability to wet uranium surfaces after a period of use. The ability of such a bath to wet uranium can be restored by adding a small amount of metallic aluminum to the bath, and skimming the resultant hard alloy from the surface.

  5. METHOD OF FABRICATING A URANIUM-ZIRCONIUM HYDRIDE REACTOR CORE

    DOEpatents

    Weeks, I.F.; Goeddel, W.V.

    1960-03-22

    A method is described of evenly dispersing uranlum metal in a zirconium hydride moderator to produce a fuel element for nuclear reactors. According to the invention enriched uranium hydride and zirconium hydride powders of 200 mesh particle size are thoroughly admixed to form a mixture containing 0.1 to 3% by weight of U/sup 235/ hydride. The mixed powders are placed in a die and pressed at 100 tons per square inch at room temperature. The resultant compacts are heated in a vacuum to 300 deg C, whereby the uranium hydride deoomposes into uranium metal and hydrogen gas. The escaping hydrogen gas forms a porous matrix of zirconium hydride, with uramum metal evenly dispersed therethrough. The advantage of the invention is that the porosity and uranium distribution of the final fuel element can be more closely determined and controlled than was possible using prior methods of producing such fuel ele- ments.

  6. METAL SHEATHED BODIES

    DOEpatents

    Finniston, H.M.; Wyatt, L.M.; Plail, O.S.

    1961-06-27

    An aluminum-cased uranium fuel element is patented for use in nuclear reactors. A layer of a substance such as graphite or a metallic film, preferably of relatively low thermal-neutron capture cross section, between the uranium and aluminum prevents their interdiffusion.

  7. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  8. Plutonium recovery from spent reactor fuel by uranium displacement

    DOEpatents

    Ackerman, J.P.

    1992-03-17

    A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  9. 4. VIEW OF ROOM 103 IN 1980. SIX OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF ROOM 103 IN 1980. SIX OF THE NINE URANIUM NITRATE STORAGE TANKS ARE SHOWN. HIGHLY ENRICHED URANIUM WAS INTRODUCED INTO THE BUILDING IN THE SUMMER OF 1965 AND THE FIRST EXPERIMENTS WERE PERFORMED IN SEPTEMBER OF 1965. EXPERIMENTS WERE PERFORMED ON ENRICHED URANIUM METAL AND SOLUTION, PLUTONIUM METAL, LOW ENRICHED URANIUM OXIDE, AND SEVERAL SPECIAL APPLICATIONS. AFTER 1983, EXPERIMENTS WERE CONDUCTED PRIMARILY WITH URANYL NITRATE SOLUTIONS, AND DID NOT INVOLVE SOLID MATERIALS. - Rocky Flats Plant, Critical Mass Laboratory, Intersection of Central Avenue & 86 Drive, Golden, Jefferson County, CO

  10. Experimental studies on metallic fuel relocation in a single-pin core structure of a sodium-cooled fast reactor

    DOE PAGES

    Kim, Taeil; Harbaruk, Dzmitry; Gerardi, Craig; ...

    2017-07-10

    Experiments dropping molten uranium into test sections of single fuel pin geometry filled with sodium were conducted to investigate relocation behavior of metallic fuel in the core structures of sodium-cooled fast reactors during a hypothetical core disruptive accident. Metallic uranium was used as a fuel material and HT-9M was used as a fuel cladding material in the experiment in order to accurately mock-up the thermo-physical behavior of the relocation. The fuel cladding failed due to eutectic formation between the uranium and HT-9M for all experiments. The extent of the eutectic formation increased with increasing molten uranium temperature. Voids in themore » relocated fuel were observed for all experiments and were likely formed by sodium boiling in contact with the fuel. In one experiment, numerous fragments of the relocated fuel were found. In conclusion, it could be concluded that the injected metallic uranium fuel was fragmented and dispersed in the narrow coolant channel by sodium boiling« less

  11. Experimental studies on metallic fuel relocation in a single-pin core structure of a sodium-cooled fast reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Taeil; Harbaruk, Dzmitry; Gerardi, Craig

    Experiments dropping molten uranium into test sections of single fuel pin geometry filled with sodium were conducted to investigate relocation behavior of metallic fuel in the core structures of sodium-cooled fast reactors during a hypothetical core disruptive accident. Metallic uranium was used as a fuel material and HT-9M was used as a fuel cladding material in the experiment in order to accurately mock-up the thermo-physical behavior of the relocation. The fuel cladding failed due to eutectic formation between the uranium and HT-9M for all experiments. The extent of the eutectic formation increased with increasing molten uranium temperature. Voids in themore » relocated fuel were observed for all experiments and were likely formed by sodium boiling in contact with the fuel. In one experiment, numerous fragments of the relocated fuel were found. In conclusion, it could be concluded that the injected metallic uranium fuel was fragmented and dispersed in the narrow coolant channel by sodium boiling« less

  12. Removal of uranium from soil sample digests for ICP-OES analysis of trace metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foust, R.D. Jr.; Bidabad, M.

    1996-10-01

    An analytical procedure has been developed to quantitatively remove uranium from soil sample digests, permitting ICP-OES analysis of trace metals. The procedure involves digesting a soil sample with standard procedures (EPA SW-846, Method 3050), and passing the sample digestate through commercially available resin (U/TEVA{sm_bullet}Spec, Eichrom Industries, Inc.) containing diarryl amylphosphonate as the stationary phase. Quantitative removal of uranium was achieved with soil samples containing up to 60% uranium, and percent recoveries averaged better than 85% for 9 of the 10 metals evaluated (Ag, As, Cd. Cr, Cu, Ni, Pb, Se and Tl). The U/TEVA{sm_bullet}Spec column was regenerated by washing withmore » 200 mL of a 0.01 M oxalic acid/0.02 M nitric acid solution, permitting re-use of the column. GFAAS analysis of a sample spiked with 56.5% uranium, after treatment of the digestate with a U/TEVA{sm_bullet}Spec resin column, resulted in percent recoveries of 97% or better for all target metals.« less

  13. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    DOEpatents

    Travelli, A.

    1985-10-25

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  14. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    DOEpatents

    Travelli, Armando

    1988-01-01

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  15. ANALYTICAL METHOD FOR THE ABSORPTIOMETRIC DETERMINATION OF BORON IN MAGNESIUM METAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1963-01-01

    Magnesium is dissolved in H/sub 2/SO/sub 4/ in the presence of CH/sub 3/ OH and B is separated by distillation as methyl borate. Rosocyanin is formed, separated from excess curcumin and dissolved in C/sub 2/H/sub 5/OH for absorptiometric measurement. (auth)

  16. Linking 1D Transition-Metal Coordination Polymers and Different Inorganic Boron Oxides To Construct a Series of 3D Inorganic-Organic Hybrid Borates.

    PubMed

    Zhi, Shao-Chen; Wang, Yue-Lin; Sun, Li; Cheng, Jian-Wen; Yang, Guo-Yu

    2018-02-05

    Three inorganic-organic hybrid borates, M(1,4-dab)[B 5 O 7 (OH) 3 ] [M = Zn (1), Cd (2), 1,4-dab = 1,4-diaminobutane)] and Co(1,3-dap)[B 4 O 7 ] (3, 1,3-dap = 1,3-diaminopropane), which integrated characteristics of 1D coordination polymers and 1D/3D inorganic boron oxides have been obtained under solvothermal conditions. Compounds 1 and 2 are isostructural and crystallize in a centrosymmetric space group P2 1 /c; the 3D achiral structures of 1 and 2 consist of the nonhelical Zn/Cd-1,4-dap coordination polymers and 1D B-O chains. Compound 3 crystallizes in a chiral space group P4 3 2 1 2; the helical Co-1,3-dap coordination polymer chains are entrained within a 3D B-O network and finally form the chiral framework. Compounds 1-3 represent good examples of using coordination polymers to construct mixed-motif inorganic-organic hybrid borates. Compounds 1 and 2 display blue luminescence when excited with UV light.

  17. HIGH ENERGY RATE EXTRUSION OF URANIUM

    DOEpatents

    Lewis, L.

    1963-07-23

    A method of extruding uranium at a high energy rate is described. Conditions during the extrusion are such that the temperature of the metal during extrusion reaches a point above the normal alpha to beta transition, but the metal nevertheless remains in the alpha phase in accordance with the Clausius- Clapeyron equation. Upon exiting from the die, the metal automatically enters the beta phase, after which the metal is permitted to cool. (AEC)

  18. Reclamation with Recovery of Radionuclides and Toxic Metals from Contaminated Materials, Soils, and Wastes

    NASA Technical Reports Server (NTRS)

    Francis, A. J.; Dodge, C. J.

    1993-01-01

    A process has been developed at Brookhaven National Laboratory (BNL) for the removal of metals and radionuclides from contaminated materials, soils, and waste sites. In this process, citric acid, a naturally occurring organic complexing agent, is used to extract metals such as Ba, Cd, Cr, Ni, Zn, and radionuclides Co, Sr, Th, and U from solid wastes by formation of water soluble, metal-citrate complexes. Citric acid forms different types of complexes with the transition metals and actinides, and may involve formation of a bidentate, tridentate, binuclear, or polynuclear complex species. The extract containing radionuclide/metal complex is then subjected to microbiological degradation followed by photochemical degradation under aerobic conditions. Several metal citrate complexes are biodegraded, and the metals are recovered in a concentrated form with the bacterial biomass. Uranium forms binuclear complex with citric acid and is not biodegraded. The supernatant containing uranium citrate complex is separated and upon exposure to light, undergoes rapid degradation resulting in the formation of an insoluble, stable polymeric form of uranium. Uranium is recovered as a precipitate (polyuranate) in a concentrated form for recycling or for appropriate disposal. This treatment process, unlike others which use caustic reagents, does not create additional hazardous wastes for disposal and causes little damage to soil which can then be returned to normal use.

  19. 49 CFR 176.84 - Other requirements for stowage and segregation for cargo vessels and passenger vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...” flammable liquids. 29 Stow “away from” ammonium compounds. 30 Stow “away from” animal or vegetable oils. 31... vegetable oils. 55 Stow “separated from” ammonia. 56 Stow “separated from” ammonium compounds. 57 Stow... hexahydrate solution, uranium metal hexahydrate solution, uranium metal pyrophoric and thorium metal...

  20. 49 CFR 176.84 - Other requirements for stowage and segregation for cargo vessels and passenger vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...” flammable liquids. 29 Stow “away from” ammonium compounds. 30 Stow “away from” animal or vegetable oils. 31... vegetable oils. 55 Stow “separated from” ammonia. 56 Stow “separated from” ammonium compounds. 57 Stow... hexahydrate solution, uranium metal hexahydrate solution, uranium metal pyrophoric and thorium metal...

  1. Operational Range Assessment Program (ORAP) Phase II Overview for Active Installations

    DTIC Science & Technology

    2011-05-01

    Dissolved Metals by EPA 1638M • Isotopic Uranium by EML A-01-R Mod  Sediment Analysis • None  Benthic Macroinvertebrates • Diversity Indices...Metals by EPA 200.8 • Dissolved Metals by EPA 200.8 (if turbid) • Isotopic Uranium by EML A-01- R Mod (if total U is > action limit) Groundwater

  2. Chemical composition and mineralogy of borate from Rio Grande deposit, Uyuni (Bolivia) as raw materials for industrial applications

    NASA Astrophysics Data System (ADS)

    Guillen Vargas, Julio; Arancibia, Jony Roger Hans; Alfonso, Pura; Garcia-Valles, Maite; Parcerisa, David; Martinez, Salvador

    2014-05-01

    Bolivia has large tailings as a result of the historic and present-day Sn mining activity developed extensively in that country. Tailings produced in these mining activities have an appropriate composition to reprocess them and make silicate glass and glass-ceramics, obtaining the valorization of wastes and reducing the visual and chemical impact. Reprocessing the wastes to make glass and glass-ceramics prevents the leaching of heavy metals from those wastes because they are retained in the structure of the glass. Furthermore, an option to increase the economic value of these glasses is the introduction of boron and other additives to produce borosilicate glass. In this study a characterization of the Rio Grande borate deposit for its use in the manufacture of borosilicate glass is presented. Mineralogy was determined by X-ray diffraction (XRD), and Fourier transforms infrared spectroscopy (FTIR); textures were observed by scanning electron microscopy (SEM) and chemical composition was determined by inductively coupled plasma mass spectrometry (ICP-MS). The Rio Grande borate deposit is located in an area of about 50 km2 close to the south of the Salar of Uyuni, in the Río Grande de Lípez Delta. Borates occur in the contact between fluvio-deltaic and lacustrine sediments from water raising the surface by capillarity. The borates crop out in an extent area but towards the west they are covered by fluvio-deltaic sediments, which can be up to 2 m thick. These borates occur as lenses 50-100 m in diameter and layers up to 1 m thick. They usually form brittle nodules with a cotton-ball texture. Chemical composition of the Rio Grande borates is CaO, 11.82-13.83 wt%; Na2O, 13.50-19.35 wt%; K2O, 0.05- 1.04 wt%; MgO, 0.42-1.46 wt%; B2O3, 36.21-42.60 wt%; SiO2, up to 0.53 wt% and SO2, up to 0.60 wt%. Trace elements are low: Sr content is between 151-786 ppm, Al 12-676 ppm, Mn between 1-17 ppm, As 2-10 ppm and Fe between 9-376 ppm. The most abundant borate mineral in this deposit is ulexite (NaCaB5.5H20), halite can reach up to 17 wt% and gypsum up to 1.2 wt.%. Calcite occurs in minor contents. Ulexite exhibits a fibrous morphology with fibers oriented parallel each other. Purity of borates from the Rio Grande deposits makes them suitable for the most restrictive applications. Chemistry of these borates is in accordance with the necessary composition for obtaining borosilicate glasses. Acknowledgements: This work was partly financed by the project AECID: A3/042750/11, and the SGR 2009SGR-00444.

  3. PROCESS FOR THE RECOVERY AND PURIFICATION OF URANIUM DEPOSITS

    DOEpatents

    Carter, J.M.; Kamen, M.D.

    1958-10-14

    A process is presented for recovering uranium values from UCl/sub 4/ deposits formed on calutrons. Such deposits are removed from the calutron parts by an aqueous wash solution which then contains the uranium values in addition to the following impurities: Ni, Cu, Fe, and Cr. This impurity bearing wash solution is treated with an oxidizing agent, and the oxidized solution is then treated with ammonia in order to precipitate the uranium as ammonium diuranate. The metal impurities of iron and chromium, which form insoluble hydroxides, are precipitated along with the uranium values. The precipitate is separated from the solution, dissolved in acid, and the solution again treated with ammonia and ammonium carbonate, which results in the precipitation of the metal impurities as hydroxides while the uranium values remain in solution.

  4. PROCESSES OF RECLAIMING URANIUM FROM SOLUTIONS

    DOEpatents

    Zumwalt, L.R.

    1959-02-10

    A process is described for reclaiming residual enriched uranium from calutron wash solutions containing Fe, Cr, Cu, Ni, and Mn as impurities. The solution is adjusted to a pH of between 2 and 4 and is contacted with a metallic reducing agent, such as iron or zinc, in order to reduce the copper to metal and thereby remove it from the solution. At the same time the uranium present is reduced to the uranous state The solution is then contacted with a precipitate of zinc hydroxide or barium carbonate in order to precipitate and carry uranium, iron, and chromium away from the nickel and manganese ions in the solution. The uranium is then recovered fronm this precipitate.

  5. Mountain wetlands: efficient uranium filters - potential impacts

    USGS Publications Warehouse

    Owen, D.E.; Otton, J.K.

    1995-01-01

    Sediments in 67 of 145 Colorado wetlands sampled by the US Geological Survey contain moderate (20 ppm) or greater concentrations of uranium (some as high as 3000 ppm) based on dry weight. The proposed maximum contaminant level (MCL) for uranium in drinking water is 20 ??g/l or 20 ppb. By comparison, sediments in many of these wetlands contain 3 to 5 orders of magnitude more uranium than the proposed MCL. Wetlands near the workings of old mines may be trapping any number of additional metals/elements including Cu, Pb, Zn, As and Ag. Anthropogenic disturbances and natural changes may release uranium and other loosely bound metals presently contained in wetland sediments. -from Authors

  6. Microbial Cells as Biosorbents for Heavy Metals: Accumulation of Uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa

    PubMed Central

    Strandberg, Gerald W.; Shumate, Starling E.; Parrott, John R.

    1981-01-01

    Uranium accumulated extracellularly on the surfaces of Saccharomyces cerevisiae cells. The rate and extent of accumulation were subject to environmental parameters, such as pH, temperature, and interference by certain anions and cations. Uranium accumulation by Pseudomonas aeruginosa occurred intracellularly and was extremely rapid (<10 s), and no response to environmental parameters could be detected. Metabolism was not required for metal uptake by either organism. Cell-bound uranium reached a concentration of 10 to 15% of the dry cell weight, but only 32% of the S. cerevisiae cells and 44% of the P. aeruginosa cells within a given population possessed visible uranium deposits when examined by electron microscopy. Rates of uranium uptake by S. cerevisiae were increased by chemical pretreatment of the cells. Uranium could be removed chemically from S. cerevisiae cells, and the cells could then be reused as a biosorbent. Images PMID:16345691

  7. Photon Interaction Parameters for Some Borate Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Nisha; Kaur, Updesh; Singh, Tejbir

    2010-11-06

    Some photon interaction parameters of dosimetric interest such as mass attenuation coefficients, effective atomic number, electron density and KERMA relative to air have been computed in the wide energy range from 1 keV to 100 GeV for some borate glasses viz. barium-lead borate, bismuth-borate, calcium-strontium borate, lead borate and zinc-borate glass. It has been observed that lead borate glass and barium-lead borate glass have maximum values of mass attenuation coefficient, effective atomic number and KERMA relative to air. Hence, these borate glasses are suitable as gamma ray shielding material, packing of radioactive sources etc.

  8. VOLATILE CHLORIDE PROCESS FOR THE RECOVERY OF METAL VALUES

    DOEpatents

    Hanley, W.R.

    1959-01-01

    A process is presented for recovering uranium, iron, and aluminum from centain shale type ores which contain uranium in minute quantities. The ore is heated wiih a chlorinating agent. such as chlorine, to form a volatilized stream of metal chlorides. The chloride stream is then passed through granular alumina which preferentially absorbs the volatile uranium chloride and from which the uranium may later be recovered. The remaining volatilized chlorides, chiefly those of iron and aluminum, are further treated to recover chlorine gas for recycle, and to recover ferric oxide and aluminum oxide as valuable by-products.

  9. FUSED SALT PROCESS FOR RECOVERY OF VALUES FROM USED NUCLEAR REACTOR FUELS

    DOEpatents

    Moore, R.H.

    1960-08-01

    A process is given for recovering plutonium from a neutron-irradiated uranium mass (oxide or alloy) by dissolving the mass in an about equimolar alkali metalaluminum double chloride, adding aluminum metal to the mixture obtained at a temperature of between 260 and 860 deg C, and separating a uranium-containing metal phase and a plutonium-chloride- and fission-product chloridecontaining salt phase. Dissolution can be expedited by passing carbon tetrachloride vapors through the double salt. Separation without reduction of plutonium from neutron- bombarded uranium and that of cerium from uranium are also discussed.

  10. Floquet Topological Insulators in Uranium Compounds

    NASA Astrophysics Data System (ADS)

    Pi, Shu-Ting; Savrasov, Sergey

    2014-03-01

    A major issue regarding the Uranium based nuclear fuels is to conduct the heat from the core area to its outer area. Unfortunately, those materials are notorious for their extremely low thermal conductivity due to the phonon-dominated-heat-transport properties in insulating states. Although metallic Uranium compounds are helpful in increasing the thermal conductivity, their low melting point still make those efforts in vain. In this report, we will figure out potential Uranium based Floquet topological insulators where the insulating bulk states accompanied with metallic surface states is achieved by applying periodic electrical fields which makes the coexistence of both benefits possible.

  11. Activation of carbon-hydrogen bonds via 1,2-addition across M-X (X = OH or NH(2)) bonds of d(6) transition metals as a potential key step in hydrocarbon functionalization: a computational study.

    PubMed

    Cundari, Thomas R; Grimes, Thomas V; Gunnoe, T Brent

    2007-10-31

    Recent reports of 1,2-addition of C-H bonds across Ru-X (X = amido, hydroxo) bonds of TpRu(PMe3)X fragments {Tp = hydridotris(pyrazolyl)borate} suggest opportunities for the development of new catalytic cycles for hydrocarbon functionalization. In order to enhance understanding of these transformations, computational examinations of the efficacy of model d6 transition metal complexes of the form [(Tab)M(PH3)2X]q (Tab = tris-azo-borate; X = OH, NH2; q = -1 to +2; M = TcI, Re(I), Ru(II), Co(III), Ir(III), Ni(IV), Pt(IV)) for the activation of benzene C-H bonds, as well as the potential for their incorporation into catalytic functionalization cycles, are presented. For the benzene C-H activation reaction steps, kite-shaped transition states were located and found to have relatively little metal-hydrogen interaction. The C-H activation process is best described as a metal-mediated proton transfer in which the metal center and ligand X function as an activating electrophile and intramolecular base, respectively. While the metal plays a primary role in controlling the kinetics and thermodynamics of the reaction coordinate for C-H activation/functionalization, the ligand X also influences the energetics. On the basis of three thermodynamic criteria characterizing salient energetic aspects of the proposed catalytic cycle and the detailed computational studies reported herein, late transition metal complexes (e.g., Pt, Co, etc.) in the d6 electron configuration {especially the TabCo(PH3)2(OH)+ complex and related Co(III) systems} are predicted to be the most promising for further catalyst investigation.

  12. FUSED SALT METHOD FOR COATING URANIUM WITH A METAL

    DOEpatents

    Eubank, L.D.

    1959-02-01

    A method is presented for coating uranium with a less active metal such as Cr, Ni, or Cu comprising immersing the U in a substantially anhydrous molten solution of a halide of these less active metals in a ternary chloride composition which consists of selected percentages of KCl, NaCl and another chloride such as LiCl or CaCl/sub 2/.

  13. Cell metal interactions: A comparison of natural uranium to other common metals in renal cells and bone osteoblasts

    NASA Astrophysics Data System (ADS)

    Milgram, S.; Carrière, M.; Thiebault, C.; Berger, P.; Khodja, H.; Gouget, B.

    2007-07-01

    Uranium acute intoxication has been documented to induce nephrotoxicity. Kidneys are the main target organs after short term exposures to high concentrations of the toxic, while chronic exposures lead to its accumulation in the skeleton. In this paper, chemical toxicity of uranium is investigated for rat osteoblastic bone cells and compared to results previously obtained on renal cells. We show that bone cells are less sensitive to uranium than renal cells. The influence of the chemical form on U cytotoxicity is demonstrated. For both cell types, a comparison of uranium toxicity with other metals or metalloids toxicities (Mn, Ni, Co, Cu, Zn, Se and Cd) permits classification of Cd, Zn, Se IV and Cu as the most toxic and Ni, Se VI, Mn and U as the least toxic. Chemical toxicity of natural uranium proves to be far less than that of cadmium. To try to explain the differences in sensitivities observed between metals and different cell types, cellular accumulations in cell monolayers are quantified by inductively coupled plasma-mass spectroscopy (ICP-MS), function of time or function of dose: lethal doses which simulate acute intoxications and sub-lethal doses which are more realistic with regard to environmentally metals concentrations. In addition to being more resistant, bone cells accumulated much more uranium than did renal cells. Moreover, for both cell models, Mn, U-citrate and U-bicarbonate are strongly accumulated whereas Cu, Zn and Ni are weakly accumulated. On the other hand, a strong difference in Cd behaviour between the two cell types is shown: whereas Cd is very weakly accumulated in bone cells, it is very strongly accumulated in renal cells. Finally, elemental distribution of the toxics is determined on a cellular scale using nuclear microprobe analysis. For both renal and osteoblastic cells, uranium was accumulated in as intracellular precipitates similar to those observed previously by SEM/EDS.

  14. PROCESSES OF RECOVERING URANIUM FROM A CALUTRON

    DOEpatents

    Baird, D.O.; Zumwalt, L.R.

    1958-07-15

    An improved process is described for recovering the residue of a uranium compound which has been subjected to treatment in a calutron, from the parts of the calutron disposed in the source region upon which the residue is deposited. The process may be utilized when the uranium compound adheres to a surface containing metals of the group consisting of copper, iron, chromium, and nickel. The steps comprise washing the surface with an aqueous acidic oxidizing solvent for the uranium whereby there is obtained an acidic aqueous Solution containing uranium as uranyl ions and metals of said group as impurities, treating the acidic solution with sodium acetate in the presenee of added sodium nitrate to precipitate the uranium as sodium uranyl acetate away from the impurities in the solution, and separating the sodium uranyl acetate from the solution.

  15. Processing and fabrication of mixed uranium/refractory metal carbide fuels with liquid-phase sintering

    NASA Astrophysics Data System (ADS)

    Knight, Travis W.; Anghaie, Samim

    2002-11-01

    Optimization of powder processing techniques were sought for the fabrication of single-phase, solid-solution mixed uranium/refractory metal carbide nuclear fuels - namely (U, Zr, Nb)C. These advanced, ultra-high temperature nuclear fuels have great potential for improved performance over graphite matrix, dispersed fuels tested in the Rover/NERVA program of the 1960s and early 1970s. Hypostoichiometric fuel samples with carbon-to-metal ratios of 0.98, uranium metal mole fractions of 5% and 10%, and porosities less than 5% were fabricated. These qualities should provide for the longest life and highest performance capability for these fuels. Study and optimization of processing methods were necessary to provide the quality assurance of samples for meaningful testing and assessment of performance for nuclear thermal propulsion applications. The processing parameters and benefits of enhanced sintering by uranium carbide liquid-phase sintering were established for the rapid and effective consolidation and formation of a solid-solution mixed carbide nuclear fuel.

  16. Method of removing arsenic and other anionic contaminants from contaminated water using enhanced coagulation

    DOEpatents

    Teter, David M.; Brady, Patrick V.; Krumhansl, James L.; Khandaker, Nadim R.

    2006-11-21

    An improved water decontamination process comprising contacting water containing anionic contaminants with an enhanced coagulant to form an enhanced floc, which more efficiently binds anionic species (e.g., arsenate, arsenite, chromate, fluoride, selenate, and borate, and combinations thereof) predominantly through the formation of surface complexes. The enhanced coagulant comprises a trivalent metal cation coagulant (e.g., ferric chloride or aluminum sulfate) mixed with a divalent metal cation modifier (e.g., copper sulfate or zinc sulfate).

  17. METHOD OF APPLYING COPPER COATINGS TO URANIUM

    DOEpatents

    Gray, A.G.

    1959-07-14

    A method is presented for protecting metallic uranium, which comprises anodic etching of the uranium in an aqueous phosphoric acid solution containing chloride ions, cleaning the etched uranium in aqueous nitric acid solution, promptly electro-plating the cleaned uranium in a copper electro-plating bath, and then electro-plating thereupon lead, tin, zinc, cadmium, chromium or nickel from an aqueous electro-plating bath.

  18. METAL COMPOSITIONS

    DOEpatents

    Seybolt, A.U.

    1959-02-01

    Alloys of uranium which are strong, hard, and machinable are presented, These alloys of uranium contain bctween 0.1 to 5.0% by weight of at least one noble metal such as rhodium, palladium, and gold. The alloys may be heat treated to obtain a product with iniproved tensile and compression strengths,

  19. Quantitative determination of copper in a glass matrix using double pulse laser induced breakdown and electron paramagnetic resonance spectroscopic techniques.

    PubMed

    Khalil, Ahmed A I; Morsy, Mohamed A

    2016-07-01

    A series of lithium-lead-borate glasses of a variable copper oxide loading were quantitatively analyzed in this work using two distinct spectroscopic techniques, namely double pulse laser induced breakdown spectroscopy (DP-LIBS) and electron paramagnetic resonance (EPR). DP-LIBS results measured upon a combined nanosecond lasers irradiation running at 266nm and 1064nm pulses of a collinear configuration directed to the surface of borate glass samples with a known composition. This arrangement was employed to predict the electron's temperature (Te) and density (Ne) of the excited plasma from the recorded spectra. The intensity of elements' responses using this scheme is higher than that of single-pulse laser induced breakdown spectroscopy (SP-LIBS) setup under the same experimental conditions. On the other hand, the EPR data shows typical Cu (II) EPR-signals in the borate glass system that is networked at a distorted tetragonal Borate-arrangement. The signal intensity of the Cu (II) peak at g⊥=2.0596 has been used to quantify the Cu-content accurately in the glass matrix. Both techniques produced linear calibration curves of Cu-metals in glasses with excellent linear regression coefficient (R(2)) values. This study establishes a good correlation between DP-LIBS analysis of glass and the results obtained using EPR spectroscopy. The proposed protocols prove the great advantage of DP-LIBS system for the detection of a trace copper on the surface of glasses. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Synthesis and crystal structure of the rhodium(I) cyclooctadiene complex with bis(3-tert-butylimidazol-2-ylidene)borate ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, F.; Shao, K.-J.; Xiao, Y.-C.

    2015-12-15

    The rhodium(I) cyclooctadiene complex with the bis(3-tert-butylimidazol-2-ylidene)borate ligand [H{sub 2}B(Im{sup t}Bu){sup 2}]Rh(COD) C{sup 22}H{sup 36}BN{sup 4}Rh, has been prepared, and its crystal structure is determined by X-ray diffraction. Complex exhibits slightly distorted square planar configurations around the metal center, which is coordinated by the bidentate H{sup 2}B(Im{sup t}Bu){sub 2} and one cyclooctadiene group. The Rh–C{sub carbene} bond lengths are 2.043(4) and 2.074(4) Å, and the bond angle C–Rh1–C is 82.59°. The dihedral angle between two imidazol-2-ylidene rings is 67.30°.

  1. Li{sub 2}Sr{sub 4}B{sub 12}O{sub 23}: A new alkali and alkaline-earth metal mixed borate with [B{sub 10}O{sub 18}]{sup 6-} network and isolated [B{sub 2}O{sub 5}]{sup 4-} unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Min; Graduate University of Chinese Academy of Sciences, Beijing 100049; Pan Shilie, E-mail: slpan@ms.xjb.ac.cn

    2012-06-15

    A novel ternary lithium strontium borate Li{sub 2}Sr{sub 4}B{sub 12}O{sub 23} crystal with size up to 20 mm Multiplication-Sign 10 mm Multiplication-Sign 4 mm has been grown via the top-seeded solution growth method below 730 Degree-Sign C. Single-crystal XRD analyses showed that Li{sub 2}Sr{sub 4}B{sub 12}O{sub 23} crystallizes in the monoclinic space group P2{sub 1}/c with a=6.4664(4) A, b=8.4878(4) A, c=15.3337(8) A, {beta}=102.02(3) Degree-Sign , Z=2. The crystal structure is composed of [B{sub 10}O{sub 18}]{sup 6-} network and isolated [B{sub 2}O{sub 5}]{sup 4-} unit. The IR spectrum further confirmed the presence of both BO{sub 3} and BO{sub 4} groups. TG-DSCmore » and Transmission spectrum were reported. Band structures and density of states were calculated. - Graphical abstract: A new phase, Li{sub 2}Sr{sub 4}B{sub 12}O{sub 23}, has been discovered in the ternary M{sub 2}O-M Prime O-B{sub 2}O{sub 3} (M=alkali-metal, M Prime =alkalineearth metal) system. The crystal structure consists of [B{sub 10}O{sub 18}]{sup 6-} network and isolated [B{sub 2}O{sub 5}]{sup 4-} unit. Highlights: Black-Right-Pointing-Pointer Li{sub 2}Sr{sub 4}B{sub 12}O{sub 23} is a a novel borate discovered in the M{sub 2}O-M Prime O-B{sub 2}O{sub 3} (M=alkali-metal, M Prime =alkaline-earth metal) system. Black-Right-Pointing-Pointer Li{sub 2}Sr{sub 4}B{sub 12}O{sub 23} crystal structure has a three-dimensional crystal structure with [B{sub 10}O{sub 18}]{sup 6-} network and isolated [B{sub 2}O{sub 5}]{sup 4-} unit. Black-Right-Pointing-Pointer Sr{sub 1} and Sr{sub 2} are located in two different channels constructed by {sup 3}{sub {infinity}}[B{sub 10}O{sub 18}] network.« less

  2. SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY

    DOEpatents

    Clark, H.M.; Duffey, D.

    1958-06-17

    A process is described for extracting uranium from uranium ore, wherein the uranium is substantially free from molybdenum contamination. In a solvent extraction process for recovering uranium, uranium and molybdenum ions are extracted from the ore with ether under high acidity conditions. The ether phase is then stripped with water at a lower controiled acidity, resaturated with salting materials such as sodium nitrate, and reextracted with the separation of the molybdenum from the uranium without interference from other metals that have been previously extracted.

  3. Comprehensive Evaluation of Soil Near Uranium Tailings, Beishan City, China.

    PubMed

    Xun, Yan; Zhang, Xinjia; Chaoliang, Chen; Luo, Xuegang; Zhang, Yu

    2018-06-01

    To evaluate the impact of uranium tailings on soil composition and soil microbial, six soil samples at different distance from the uranium tailings (Beishan City, China) were collected for further analysis. Concentrations of radionuclides ( 238 U and 232 Th), heavy metals (Mn, Cd, Cr, Ni, Zn, and Pb) and organochlorine pesticide were determined by ICP-MS and GC, they were significantly higher than those of the control. And the Average Well Color Development as well as the Shannon, the Evenness, and the Simpson index were calculated to evaluate the soil microbial diversity. The carbon utilization model of soil microbial community was also analyzed by Biolog-eco. All results indicated that uranium tailings leaded to excessive radionuclides and heavy metals, and decreased the diversity of the soil microbial community. Our study will provide a valuable basis for soil quality evaluation around uranium tailing repositories and lay a foundation for the management and recovery of uranium tailings.

  4. Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel

    DOEpatents

    Herrmann, Steven Douglas

    2014-05-27

    Used uranium oxide fuel is detoxified by extracting transuranic and reactive fission products into molten salt. By contacting declad and crushed used uranium oxide fuel with a molten halide salt containing a minor fraction of the respective uranium trihalide, transuranic and reactive fission products partition from the fuel to the molten salt phase, while uranium oxide and non-reactive, or noble metal, fission products remain in an insoluble solid phase. The salt is then separated from the fuel via draining and distillation. By this method, the bulk of the decay heat, fission poisoning capacity, and radiotoxicity are removed from the used fuel. The remaining radioactivity from the noble metal fission products in the detoxified fuel is primarily limited to soft beta emitters. The extracted transuranic and reactive fission products are amenable to existing technologies for group uranium/transuranic product recovery and fission product immobilization in engineered waste forms.

  5. Uranium extraction by complexation with siderophores

    NASA Astrophysics Data System (ADS)

    Bahamonde Castro, Cristina

    One of the major concerns of energy production is the environmental impact associated with the extraction of natural resources. Nuclear energy fuel is obtained from uranium, an abundant and naturally occurring element in the environment, but the currently used techniques for uranium extraction leave either a significant fingerprint (open pit mines) or a chemical residue that alters the pH of the environment (acid or alkali leaching). It is therefore clear that a new and greener approach to uranium extraction is needed. Bioleaching is one potential alternative. In bioleaching, complexants naturally produced from fungi or bacteria may be used to extract the uranium. In the following research, the siderophore enterobactin, which is naturally produced by bacteria to extract and solubilize iron from the environment, is evaluated to determine its potential for complexing with uranium. To determine whether enterobactin could be used for uranium extraction, its acid dissociation and its binding strength with the metal of interest must be determined. Due to the complexity of working with radioactive materials, lanthanides were used as analogs for uranium. In addition, polyprotic acids were used as structural and chemical analogs for the siderophore during method development. To evaluate the acid dissociation of enterobactin and the subsequent binding constants with lanthanides, three different analytical techniques were studied including: potentiometric titration, UltraViolet Visible (UV-Vis) spectrophotometry and Isothermal Titration Calorimetry (ITC). After evaluation of three techniques, a combination of ITC and potentiometric titrations was deemed to be the most viable way for studying the siderophore of interest. The results obtained from these studies corroborate the ideal pH range for enterobactin complexation to the lanthanide of interest and pave the way for determining the strength of complexation relative to other naturally occurring metals. Ultimately, this fundamental research enhances our current understanding of heavy metal complexation to naturally occurring complexants, which may enhance the metals mobility in the environment or potentially be used as a greener alternative in uranium extraction or remediation.

  6. Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field-Scale Subsurface Research Challenge Site at Rifle, Colorado, Quality Assurance Project Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, N. J.

    The U.S. Department of Energy (DOE) is cleaning up and/or monitoring large, dilute plumes contaminated by metals, such as uranium and chromium, whose mobility and solubility change with redox status. Field-scale experiments with acetate as the electron donor have stimulated metal-reducing bacteria to effectively remove uranium [U(VI)] from groundwater at the Uranium Mill Tailings Site in Rifle, Colorado. The Pacific Northwest National Laboratory and a multidisciplinary team of national laboratory and academic collaborators has embarked on a research proposed for the Rifle site, the object of which is to gain a comprehensive and mechanistic understanding of the microbial factors andmore » associated geochemistry controlling uranium mobility so that DOE can confidently remediate uranium plumes as well as support stewardship of uranium-contaminated sites. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Rifle Integrated Field-Scale Subsurface Research Challenge Project.« less

  7. Elution of Uranium and Transition Metals from Amidoxime-Based Polymer Adsorbents for Sequestering Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Horng-Bin; Kuo, Li-Jung; Wai, Chien M.

    2015-11-30

    High-surface-area amidoxime and carboxylic acid grafted polymer adsorbents developed at Oak Ridge National Laboratory were tested for sequestering uranium in a flowing seawater flume system at the PNNL-Marine Sciences Laboratory. FTIR spectra indicate that a KOH conditioning process is necessary to remove the proton from the carboxylic acid and make the sorbent effective for sequestering uranium from seawater. The alkaline conditioning process also converts the amidoxime groups to carboxylate groups in the adsorbent. Both Na 2CO 3-H 2O 2 and hydrochloric acid elution methods can remove ~95% of the uranium sequestered by the adsorbent after 42 days of exposure inmore » real seawater. The Na 2CO 3-H 2O 2 elution method is more selective for uranium than conventional acid elution. Iron and vanadium are the two major transition metals competing with uranium for adsorption to the amidoxime-based adsorbents in real seawater.« less

  8. Considerations on the Analytical Control of Sulfur Traces in Uranium Metal; CONSIDERACIONES SOBRE EL CONTROL ANALITICO DE TRAZAS DE AZUFRE (SULFURO) EN URANIO METAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cellini, R.F.; Sanchez, L.G.

    1956-01-01

    Volumetric and colorimetric determinations of sulfur in uranium were carried out by acid treatment and evaluation of SH/sup 2/. According to the experimental results a discussion of both methods was made. (auth)

  9. FY16 Status Report for the Uranium-Molybdenum Fuel Concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Wendy D.; Doherty, Ann L.; Henager, Charles H.

    2016-09-22

    The Fuel Cycle Research and Development program of the Office of Nuclear Energy has implemented a program to develop a Uranium-Molybdenum metal fuel for light water reactors. Uranium-Molybdenum fuel has the potential to provide superior performance based on its thermo-physical properties. With sufficient development, it may be able to provide the Light Water Reactor industry with a melt-resistant, accident-tolerant fuel with improved safety response. The Pacific Northwest National Laboratory has been tasked with extrusion development and performing ex-reactor corrosion testing to characterize the performance of Uranium-Molybdenum fuel in both these areas. This report documents the results of the fiscal yearmore » 2016 effort to develop the Uranium-Molybdenum metal fuel concept for light water reactors.« less

  10. Preliminary study of radioactive limonite localities in Colorado, Utah, and Wyoming

    USGS Publications Warehouse

    Lovering, T.G.; Beroni, E.P.

    1956-01-01

    Nine radioactive limonite localities of different types were sampled during the spring and fall of 1953 in an effort to establish criteria for differentiating limonite outcrops associated with uranium or thorium deposits from limonite outcrops not associated with such deposits. The samples were analyzed for uranium and thorium by standard chemical methods, for equivalent uranium by the radiometric method, and for a number of common metals by semiquantitative geochemical methods. Correlation coefficients were then calculated for each of the metals with respect to equivalent uranium, and to uranium where present, for all of the samples from each locality. The correlation coefficients may indicate a significant association between uranium or thorium and certain metals. Occurrences of specific that are interpreted as significant very considerably for different uranium localities but are more consistent for the thorium localities. Samples taken from radioactive outcrops in the vicinity of uranium or thorium deposits can be quickly analyzed by geochemical methods for various elements. Correlation coefficients can then be determined for the various elements with respect to uranium or thorium; if any significant correlations are obtained, the elements showing such correlation may be indicators of uranium or thorium. Soil samples of covered areas in the vicinity of the radioactive outcrop may then be analyzed for the indicator elements and any resulting anomalies used as a guide for prospecting where the depth of overburden is too great to allow the use of radiation-detecting instruments. Correlation coefficients of the associated indicator elements, used in conjunction with petrographic evidence, may also be useful in interpreting the origin and paragenesis of radioactive deposits. Changes in color of limonite stains on the outcrop may also be a useful guide to ore in some areas.

  11. Uranium speciation in biofilms studied by laser fluorescence techniques.

    PubMed

    Arnold, Thuro; Grossmann, Kay; Baumann, Nils

    2010-03-01

    Biofilms may immobilize toxic heavy metals in the environment and thereby influence their migration behaviour. The mechanisms of these processes are currently not understood, because the complexity of such biofilms creates many discrete geochemical microenvironments which may differ from the surrounding bulk solution in their bacterial diversity, their prevailing geochemical properties, e.g. pH and dissolved oxygen concentration, the presence of organic molecules, e.g. metabolites, and many more, all of which may affect metal speciation. To obtain such information, which is necessary for performance assessment studies or the development of new cost-effective strategies for cleaning waste waters, it is very important to develop new non-invasive methods applicable to study the interactions of metals within biofilm systems. Laser fluorescence techniques have some superior features, above all very high sensitivity for fluorescent heavy metals. An approach combining confocal laser scanning microscopy and laser-induced fluorescence spectroscopy for study of the interactions of biofilms with uranium is presented. It was found that coupling these techniques furnishes a promising tool for in-situ non-invasive study of fluorescent heavy metals within biofilm systems. Information on uranium speciation and uranium redox states can be obtained.

  12. Whole-genome transcriptional analysis of heavy metal stresses inCaulobacter crescentus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Ping; Brodie, Eoin L.; Suzuki, Yohey

    2005-09-21

    The bacterium Caulobacter crescentus and related stalkbacterial species are known for their distinctive ability to live in lownutrient environments, a characteristic of most heavy metal contaminatedsites. Caulobacter crescentus is a model organism for studying cell cycleregulation with well developed genetics. We have identified the pathwaysresponding to heavy metal toxicity in C. crescentus to provide insightsfor possible application of Caulobacter to environmental restoration. Weexposed C. crescentus cells to four heavy metals (chromium, cadmium,selenium and uranium) and analyzed genome wide transcriptional activitiespost exposure using a Affymetrix GeneChip microarray. C. crescentusshowed surprisingly high tolerance to uranium, a possible mechanism forwhich may be formationmore » of extracellular calcium-uranium-phosphateprecipitates. The principal response to these metals was protectionagainst oxidative stress (up-regulation of manganese-dependent superoxidedismutase, sodA). Glutathione S-transferase, thioredoxin, glutaredoxinsand DNA repair enzymes responded most strongly to cadmium and chromate.The cadmium and chromium stress response also focused on reducing theintracellular metal concentration, with multiple efflux pumps employed toremove cadmium while a sulfate transporter was down-regulated to reducenon-specific uptake of chromium. Membrane proteins were also up-regulatedin response to most of the metals tested. A two-component signaltransduction system involved in the uranium response was identified.Several differentially regulated transcripts from regions previously notknown to encode proteins were identified, demonstrating the advantage ofevaluating the transcriptome using whole genome microarrays.« less

  13. PROCESS FOR SEPARATION OF HEAVY METALS

    DOEpatents

    Duffield, R.B.

    1958-04-29

    A method is described for separating plutonium from aqueous acidic solutions of neutron-irradiated uranium and the impurities associated therewith. The separation is effected by adding, to the solution containing hexavalent uranium and plutonium, acetate ions and the ions of an alkali metal and those of a divalent metal and thus forming a complex plutonium acetate salt which is carried by the corresponding complex of uranium, such as sodium magnesium uranyl acetate. The plutonium may be separated from the precipitated salt by taking the same back into solution, reducing the plutonium to a lower valent state on reprecipitating the sodium magnesium uranyl salt, removing the latter, and then carrying the plutonium from ihe solution by means of lanthanum fluoride.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombardo, N.J.; Marseille, T.J.; White, M.D.

    TRUMP-BD (Boil Down) is an extension of the TRUMP (Edwards 1972) computer program for the analysis of nuclear fuel assemblies under severe accident conditions. This extension allows prediction of the heat transfer rates, metal-water oxidation rates, fission product release rates, steam generation and consumption rates, and temperature distributions for nuclear fuel assemblies under core uncovery conditions. The heat transfer processes include conduction in solid structures, convection across fluid-solid boundaries, and radiation between interacting surfaces. Metal-water reaction kinetics are modeled with empirical relationships to predict the oxidation rates of steam-exposed Zircaloy and uranium metal. The metal-water oxidation models are parabolic inmore » form with an Arrhenius temperature dependence. Uranium oxidation begins when fuel cladding failure occurs; Zircaloy oxidation occurs continuously at temperatures above 13000{degree}F when metal and steam are available. From the metal-water reactions, the hydrogen generation rate, total hydrogen release, and temporal and spatial distribution of oxide formations are computed. Consumption of steam from the oxidation reactions and the effect of hydrogen on the coolant properties is modeled for independent coolant flow channels. Fission product release from exposed uranium metal Zircaloy-clad fuel is modeled using empirical time and temperature relationships that consider the release to be subject to oxidation and volitization/diffusion ( bake-out'') release mechanisms. Release of the volatile species of iodine (I), tellurium (Te), cesium (Ce), ruthenium (Ru), strontium (Sr), zirconium (Zr), cerium (Cr), and barium (Ba) from uranium metal fuel may be modeled.« less

  15. Electrochemical assessment of water|ionic liquid biphasic systems towards cesium extraction from nuclear waste.

    PubMed

    Stockmann, T Jane; Zhang, Jing; Montgomery, Anne-Marie; Ding, Zhifeng

    2014-04-22

    A room temperature ionic liquid (IL) composed of a quaternary alkylphosphonium (trihexyltetradecylphosphonium, P66614(+)) and tetrakis(pentafluorophenyl)borate anion (TB(-)) was employed within a water|P66614TB (w|P66614TB or w|IL) biphasic system to evaluate cesium ion extraction in comparison to that with a traditional water|organic solvent (w|o) combination. (137)Cs is a major contributor to the radioactivity of spent nuclear fuel as it leaves the reactor, and its extraction efficiency is therefore of considerable importance. The extraction was facilitated by the ligand octyl(phenyl)-N,N'-diisobutylcarbamoylphosphine oxide (CMPO) used in TRans-Uranium EXtraction processes and investigated through well established liquid|liquid electrochemistry. This study gave access to the metal ion to ligand (1:n) stoichiometry and overall complexation constant, β, of the interfacial complexation reaction which were determined to be 1:3 and 1.6×10(11) at the w|P66614TB interface while the study at w|o elicited an n equal to 1 with β equal to 86.5. Through a straightforward relationship, these complexation constant values were converted to distribution coefficients, δ(α), with the ligand concentrations studied for comparison to other studies present in the literature; the w|o and w|IL systems gave δ(α) of 2 and 8.2×10(7), respectively, indicating a higher overall extraction efficiency for the latter. For the w|o system, the metal ion-ligand stoichiometries were confirmed through isotopic distribution analysis of mass spectra obtained by the direct injection of an emulsified water-organic solvent mixture into an electron spray ionization mass spectrometer. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Synthesis and evaluation of borates derived from boric acid and diols for the protection of wood against fungal decay and thermal degradation

    Treesearch

    George C. Chen

    2004-01-01

    N,N-dimethyl amino carbinol catechol borate(1). N,N-dimethyl amino carbinol-4-methyl catechol borate(2), N,N-dimethyl amino carbinol-4-t- butyl catechol borate(3). N,N-dimethyl amino carbinol-2,3-naphthyl borate 4) were synthesized by refluxing boric acid and diol in DMF(N,N-dimethyl formamide). The borates were characterized by NMR. Wood impregnated with borate 1,2 or...

  17. 11. VIEW OF DEPLETED URANIUM INGOT. THE METALS WERE PLACED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF DEPLETED URANIUM INGOT. THE METALS WERE PLACED IN CRUCIBLES, LOADED INTO ONE OF EIGHT INDUCTION FURNACES AND MELTED IN A VACUUM ATMOSPHERE. (11/11/57) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  18. Mineralogy and sedimentology of the Miocene Göcenoluk borate deposit, Kırka district, western Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    García-Veigas, Javier; Helvacı, Cahit

    2013-05-01

    The Miocene boratiferous district of Kırka, in western Anatolia (Turkey), is the most important Na-borate (borax) resource in the world. Two separate deposits in the Kırka district are located near the villages of Sarıkaya and Göcenoluk (Eskişehir Province). Borax is intensively exploited in open-pit mines in the Sarıkaya deposit while only small quarries of colemanite are known in the Göcenoluk deposit. Recent exploratory drilling in the Göcenoluk area intersected a thick succession of dolostones, tuffs and three borate-bearing units (Lower, Intermediate and Upper Borate Units). In them, the most abundant borate mineral is ulexite (Ca-Na-borate) passing at depth to probertite. Borax (Na-borate) is only present in the Intermediate Borate Unit. Minor amounts of colemanite (Ca-borate) and hydroboracite (Ca-Mg-borate) occur at the base, and/or top, of each mineralized unit. Pyroclastic layers within the borate units show intense alteration by alkaline, boron-bearing waters and formation of diagenetic clay minerals (smectites), zeolites (analcime) and borosilicates (searlesite). The Göcenoluk succession is interpreted as a shallow, ephemeral, alkaline lake deposit in which carbonates formed as stromatolites and travertines. Borate precipitation in the Göcenoluk area took place interstitially within muddy and carbonate sediments in a lateral progression from marginal Ca-borates towards Na-Ca-borates and rarely to Na-borates in the center of the lake. Authigenic silicate mineral distribution shows parallel changes toward the center of the lake that reflect increasing pH gradient.

  19. PRETREATING URANIUM FOR METAL PLATING

    DOEpatents

    Wehrmann, R.F.

    1961-05-01

    A process is given for anodically treating the surface of uranium articles, prior to metal plating. The metal is electrolyzed in an aqueous solution of about 10% polycarboxylic acid, preferably oxalic acid, from 1 to 5% by weight of glycerine and from 1 to 5% by weight of hydrochloric acid at from 20 to 75 deg C for from 30 seconds to 15 minutes. A current density of from 60 to 100 amperes per square foot is used.

  20. Identification and distribution of inclusions in derby and ingot uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, C.M.; Vaughan, D.A.

    1953-08-31

    Inclusions in derby and ingot uranium have been identified by X-ray diffraction methods. Metallographic and microradiographic examinations have shown that inclusions of MgF2, UO2, UN, and UO are concentrated at the top of derby and ingot metal by gravity separation. UC inclusions are distributed throughout the ingot metal. The amount of the carbide phase in the ingot varies with the temperature maintained during remelt of derby metal.

  1. Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-06-08

    Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate’s beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Testsmore » were run at ~60°C, 80°C, and 95°C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal corrosion rates in water alone and in simulated sludge were near or slightly below the metal-in-water rate while nitrate-free sludge/Aquaset II decreased rates by about a factor of 3. Addition of 1 M nitrate to simulated sludge decreased the corrosion rate by a factor of ~5 while 1 M nitrate in sludge/Aquaset II mixtures decreased the corrosion rate by ~2.5 compared with the nitrate-free analogues. Mixtures of simulated sludge with Aquaset II treated with 1 M nitrate had uranium corrosion rates about a factor of 8 to 10 lower than the water-only rate law. Nitrate was found to provide substantial hydrogen mitigation for immobilized simulant sludge waste forms containing Aquaset II or Aquaset II G clay. Hydrogen attenuation factors of 1000 or greater were determined at 60°C for sludge-clay mixtures at 1 M nitrate. Hydrogen mitigation for tests with PC and Aquaset II H (which contains PC) were inconclusive because of suspected failure to overcome induction times and fully enter into anoxic corrosion. Lessening of hydrogen attenuation at ~80°C and ~95°C for simulated sludge and Aquaset II was observed with attenuation factors around 100 to 200 at 1 M nitrate. Valuable additional information has been obtained on the ability of nitrate to attenuate hydrogen gas generation from solution, simulant K Basin sludge, and simulant sludge with immobilization agents. Details on characteristics of the associated reactions were also obtained. The present testing confirms prior work which indicates that nitrate is an effective agent to attenuate hydrogen from uranium metal corrosion in water and simulated K Basin sludge to show that it is also effective in potential candidate solidified K Basin waste forms for WIPP disposal. The hydrogen mitigation afforded by nitrate appears to be sufficient to meet the hydrogen generation limits for shipping various sludge waste streams based on uranium metal concentrations and assumed waste form loadings.« less

  2. 40 CFR 421.326 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Uranium Subcategory... wastewater pollutants in secondary uranium process wastewater introduced into a POTW shall not exceed the following values: (a) Refinery sump filtrate. PSNS for the Secondary Uranium Subcategory Pollutant or...

  3. 40 CFR 421.326 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Uranium Subcategory... wastewater pollutants in secondary uranium process wastewater introduced into a POTW shall not exceed the following values: (a) Refinery sump filtrate. PSNS for the Secondary Uranium Subcategory Pollutant or...

  4. 40 CFR 421.326 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Uranium Subcategory... wastewater pollutants in secondary uranium process wastewater introduced into a POTW shall not exceed the following values: (a) Refinery sump filtrate. PSNS for the Secondary Uranium Subcategory Pollutant or...

  5. Casting technology for manufacturing metal rods from simulated metallic spent fuels

    NASA Astrophysics Data System (ADS)

    Leeand, Y. S.; Lee, D. B.; Kim, C. K.; Shin, Y. J.; Lee, J. H.

    2000-09-01

    A uranium metal rod 13.5 mm in diameter and 1,150 mm long was produced from simulated metallic spent fuels with advanced casting equipment using the directional-solidification method. A vacuum casting furnace equipped with a four-zone heater to prevent surface oxidation and the formation of surface shrinkage holes was designed. By controlling the axial temperature gradient of the casting furnace, deformation by the surface shrinkage phenomena was diminished, and a sound rod was manufactured. The cooling behavior of the molten uranium was analyzed using the computer software package MAGMAsoft.

  6. Luminescent hybrid materials based on (8-hydroxyquinoline)-substituted metal-organic complexes and lead-borate glasses

    NASA Astrophysics Data System (ADS)

    Petrova, Olga B.; Anurova, Maria O.; Akkuzina, Alina A.; Saifutyarov, Rasim R.; Ermolaeva, Ekaterina V.; Avetisov, Roman I.; Khomyakov, Andrew V.; Taydakov, Ilya V.; Avetissov, Igor Ch.

    2017-07-01

    Novel luminescent organic-inorganic hybrid materials based on 8-hydroxyquinoline metal complexes (Liq, Kq, Naq, Rbq, Mgq2, Srq2, Znq2, Scq3, Alq3, Gaq3, and Inq3) have been synthesized by a high temperature exchange reaction with 80PbF2-20B2O3 inorganic low-melting glass. The mechanical and optical properties, transmission spectra, emission an excitation photoluminescence, and luminescence kinetic of hybrid materials were studied. All hybrid materials showed a wide luminescence band in the range 400-700 nm.

  7. LOFT. Containment building (TAN650) detail. Camera facing east. Service building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Containment building (TAN-650) detail. Camera facing east. Service building corner is at left of view above personnel access. Round feature at left of dome is tank that will contain borated water. Metal stack at right of view. Date: 1973. INEEL negative no. 73-1085 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  8. Spatial Variation and Assessment of Heavy Metal and Radioactive Risk in Farmland around a Retired Uranium Mine

    NASA Astrophysics Data System (ADS)

    Liang, Jie; Shi, Chen-hao; Zeng, Guang-ming; Zhong, Min-zhou; Yuan, Yu-jie

    2017-07-01

    In recent years, heavy metal contamination in the environment has been attracted worldwide attention due to their toxicity, persistence,extensive sources and non-biodegradable properties. We herein investigate variation trend and risk of heavy metal and radiation distribution in the former mine stope, former mineral ore stockyard, and mine road with surface soils of a retired uranium mine in the mid-south of China. The mean concentrations (mg/kg) of Pb,Cd,Cu,Zn,As,Hg,Cr,Mn,Ni,U, and 232Th were analyzed according to the corresponding background values in Hunan, China. The Geo-accumulation index (Igeo ) were used for the assessment of pollution level of heavy metals and the radioactive elements of U and 232Th. Then, Pollution load index (PLI) and GIS techniquewere integrated to assess spatial distribution of heavy metal contamination and radioactive contamination. Results confirmed that three areas in the retired uranium mine was a primary source of pollution, which showed anthropogenic origin mainly from agricultural runoff, hydrometallurgy from chemical industries, radioactive tailings, and electroplating industriesfinally drained into Zishui River and Xiangjiang River. Based on the actual situation, some suggestions were put forward for the treatment of the retired uranium mine in conclusion.

  9. Complexation of Nickel Ions by Boric Acid or (Poly)borates.

    PubMed

    Graff, Anais; Barrez, Etienne; Baranek, Philippe; Bachet, Martin; Bénézeth, Pascale

    2017-01-01

    An experiment based on electrochemical reactions and pH monitoring was performed in which nickel ions were gradually formed by oxidation of a nickel metal electrode in a solution of boric acid. Based on the experimental results and aqueous speciation modeling, the evolution of pH showed the existence of significant nickel-boron complexation. A triborate nickel complex was postulated at high boric acid concentrations when polyborates are present, and the equilibrium constants were determined at 25, 50 and 70 °C. The calculated enthalpy and entropy at 25 °C for the formation of the complex from boric acid and Ni 2+ ions are respectively equal to (65.6 ± 3.1) kJ·mol -1 and (0.5 ± 11.1) J·K -1 ·mol -1 . The results of this study suggest that complexation of nickel ions by borates can significantly enhance the solubility of nickel metal and nickel oxide depending on the concentration of boric acid and pH. First principles calculations were investigated and tend to show that the complex is thermodynamically stable and the nickel cation in solution should interact more strongly with the [Formula: see text] than with boric acid.

  10. Magnesium fluoride reduction-vessel liners. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latham-Brown, C.E.

    1986-03-26

    The work described in this report details a program that demonstrated a method by which magnesium fluoride, the by-product of the reduction reaction of uranium tetrafluoride to uranium metal could be used to replace the present graphite used to line the reduction vessel. Utilization of magnesium fluoride (MgF2) as a reduction-vessel liner has the potential to decrease carbon contamination and thereby reduce DU derby rejects due to chemistry. Additionally, there would be the elimination of the cost of the graphite crucible liner and the associated disposal costs by replacement with the by-product of the reduction reaction, which is magnesium fluoride.more » The process would ultimately result in reduced manufacturing costs for derby metal and higher yield of finished penetrators. This was to be accomplished in such a manner as to produce uranium metal derbies which would be accommodated into the present Nuclear Metals-Carolina Metals penetrator production process with minimal changes in equipment and procedures.« less

  11. Mg- and K-bearing borates and associated evaporites at Eagle Borax spring, Death Valley, California: A spectroscopic exploration

    USGS Publications Warehouse

    Crowley, J.K.

    1996-01-01

    Efflorescent crusts at the Eagle Borax spring in Death Valley, California, contain an array of rare Mg and K borate minerals, several of which are only known from one or two other localities. The Mg- and/or K-bearing borates include aristarainite, hydroboracite, kaliborite, mcallisterite, pinnoite, rivadavite, and santite. Ulexite and probertite also occur in the area, although their distribution is different from that of the Mg and K borates. Other evaporite minerals in the spring vicinity include halite, thenardite, eugsterite, gypsum-anhydrite, hexahydrite, and bloedite. Whereas the first five of these minerals are found throughout Death Valley, the last two Mg sulfates are more restricted in occurrence and are indicative of Mg-enriched ground water. Mineral associations observed at the Eagle Borax spring, and at many other borate deposits worldwide, can be explained by the chemical fractionation of borate-precipitating waters during the course of evaporative concentration. The Mg sulfate and Mg borate minerals in the Eagle Borax efflorescent crusts point to the fractionation of Ca by the operation of a chemical divide involving Ca carbonate and Na-Ca borate precipitation in the subsurface sediments. At many other borate mining localities, the occurrence of ulexite in both Na borate (borax-kernite) and Ca borate (ulexite-colemanite) deposits similarly reflects ulexite's coprecipitation with Ca carbonate at an early concentration stage. Such ulexite may perhaps be converted to colemanite by later reaction with the coexisting Ca carbonate - the latter providing the additional Ca2+ ions needed for the conversion. Mg and Ca-Mg borates are the expected late-stage concentration products of waters forming ulexite-colemanite deposits and are therefore most likely to occur in the marginal zones or nearby mud facies of ulexite-colemanite orebodies. Under some circumstances, Mg and Ca-Mg borates might provide a useful prospecting guide for ulexite-colemanite deposits, although the high solubility of Mg borate minerals may prevent their formation in lacustrine settings and certainly inhibits their geologic preservation. The occurrence of Mg borates in borax-kernite deposits is also related to fractionation processes and points to the operation of an Mg borate chemical divide, characterized by Mg borate precipitation ahead of Mg carbonate. All of these considerations imply that Mg is a significant chemical component of many borate-depositing ground waters, even though Mg borate minerals may not be strongly evident in borate orebodies. The Eagle Borax spring borates and other evaporite minerals were studied using spectroscopic and X-ray powder diffraction methods, which were found to be highly complementary. Spectral reflectance measurements provide a sensitive means for detecting borates present in mixtures with other evaporites and can be used to screen samples rapidly for X-ray diffraction analysis. The apparently limited occurrence of Mg and K borate minerals compared to Ca and Na borates may stem partly from the inefficiency of X-ray diffraction methods for delineating the mineralogy of large and complex deposits. Spectral reflectance measurements can be made in the laboratory, in the field, on the mine face, and even remotely. Reflectance data should have an important role in studies of existing deposit mineralogy and related chemical fractionation processes, and perhaps in the discovery of new borate mineral resources.

  12. Factoring uncertainty into restoration modeling of in-situ leach uranium mines

    USGS Publications Warehouse

    Johnson, Raymond H.; Friedel, Michael J.

    2009-01-01

    Postmining restoration is one of the greatest concerns for uranium in-situ leach (ISL) mining operations. The ISL-affected aquifer needs to be returned to conditions specified in the mining permit (either premining or other specified conditions). When uranium ISL operations are completed, postmining restoration is usually achieved by injecting reducing agents into the mined zone. The objective of this process is to restore the aquifer to premining conditions by reducing the solubility of uranium and other metals in the ground water. Reactive transport modeling is a potentially useful method for simulating the effectiveness of proposed restoration techniques. While reactive transport models can be useful, they are a simplification of reality that introduces uncertainty through the model conceptualization, parameterization, and calibration processes. For this reason, quantifying the uncertainty in simulated temporal and spatial hydrogeochemistry is important for postremedial risk evaluation of metal concentrations and mobility. Quantifying the range of uncertainty in key predictions (such as uranium concentrations at a specific location) can be achieved using forward Monte Carlo or other inverse modeling techniques (trial-and-error parameter sensitivity, calibration constrained Monte Carlo). These techniques provide simulated values of metal concentrations at specified locations that can be presented as nonlinear uncertainty limits or probability density functions. Decisionmakers can use these results to better evaluate environmental risk as future metal concentrations with a limited range of possibilities, based on a scientific evaluation of uncertainty.

  13. 40 CFR 421.324 - Standards of performance for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Uranium... Uranium Subcategory Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/kg (pounds per million pounds) of uranium processed in the refinery Chromium (total) 27.14 11.00...

  14. 40 CFR 421.324 - Standards of performance for new sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Uranium... Uranium Subcategory Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/kg (pounds per million pounds) of uranium processed in the refinery Chromium (total) 27.14 11.00...

  15. 40 CFR 421.324 - Standards of performance for new sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Uranium... Uranium Subcategory Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/kg (pounds per million pounds) of uranium processed in the refinery Chromium (total) 27.14 11.00...

  16. Industrial Production of Uranium; PRODUCCION INDUSTRIAL DE URANIO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedregal, J.D.

    1956-01-01

    The purity requirements of uranium and the necessity of purifying the uranium compounds previous to its metallurgical treatment are briefly discussed as an introduction to the different methods reduction to the metal. The methods which are used by the Junta de Energia Nuclear are indicated. (tr-auth)

  17. Uranium oxidation: Characterization of oxides formed by reaction with water by infrared and sorption analyses

    NASA Astrophysics Data System (ADS)

    Fuller, E. L.; Smyrl, N. R.; Condon, J. B.; Eager, M. H.

    1984-04-01

    Three different uranium oxide samples have been characterized with respect to the different preparation techniques. The results show that the water reaction with uranium metal occurs cyclically forming laminar layers of oxide which spall off due to the strain at the oxide/metal interface. Single laminae are released if liquid water is present due to the prizing penetration at the reaction zone. The rate of reaction of water with uranium is directly proportional to the amount of adsorbed water on the oxide product. Rapid transport is effected through the open hydrous oxide product. Dehydration of the hydrous oxide irreversibly forms a more inert oxide which cannot be rehydrated to the degree that prevails in the original hydrous product of uranium oxidation with water. Inert gas sorption analyses and diffuse reflectance infrared studies combined with electron microscopy prove valuable in defining the chemistry and morphology of the oxidic products and hydrated intermediates.

  18. On the valence fluctuation in the early actinide metals

    DOE PAGES

    Soderlind, P.; Landa, A.; Tobin, J. G.; ...

    2015-12-15

    In this study, recent X-ray measurements suggest a degree of valence fluctuation in plutonium and uranium intermetallics. We are applying a novel scheme, in conjunction with density functional theory, to predict 5f configuration fractions of states with valence fluctuations for the early actinide metals. For this purpose we perform constrained integer f-occupation calculations for the α phases of uranium, neptunium, and plutonium metals. For plutonium we also investigate the δ phase. The model predicts uranium and neptunium to be dominated by the f 3 and f 4 configurations, respectively, with only minor contributions from other configurations. For plutonium (both αmore » and δ phase) the scenario is dramatically different. Here, the calculations predict a relatively even distribution between three valence configurations. The δ phase has a greater configuration fraction of f 6 compared to that of the α phase. The theory is consistent with the interpretations of modern X-ray experiments and we present resonant X-ray emission spectroscopy results for α-uranium.« less

  19. Method for producing uranium atomic beam source

    DOEpatents

    Krikorian, Oscar H.

    1976-06-15

    A method for producing a beam of neutral uranium atoms is obtained by vaporizing uranium from a compound UM.sub.x heated to produce U vapor from an M boat or from some other suitable refractory container such as a tungsten boat, where M is a metal whose vapor pressure is negligible compared to that of uranium at the vaporization temperature. The compound, for example, may be the uranium-rhenium compound, URe.sub.2. An evaporation rate in excess of about 10 times that of conventional uranium beam sources is produced.

  20. METHOD OF OPERATING A CALUTRON

    DOEpatents

    Davidson, P.H.

    1960-01-12

    A method of operating an electromagnetic isotope separator of the calutron class is reported whereby uranium tetrachloride is produced at a controlled rate within the source rather than betng introduced therein as was formerly practiced. This is accomplished by placing a uranium-bearing material, such as uranium metal, uranium trichloride, or uranium carbide in the charge receptacle of the calutron, heating this material to about to produce uranium tetrachloride vapor at a rate controlled by the chlorine gas flow into the source. The vapor is subsequently ionized by an electric arc and mass separated by conventional calutron methods.

  1. Effect of metal sulfide pulp density on gene expression of electron transporters in Acidithiobacillus sp. FJ2.

    PubMed

    Fatemi, Faezeh; Miri, Saba; Jahani, Samaneh

    2017-05-01

    In Acidithiobacillus ferrooxidans, one of the most important bioleaching bacterial species, the proteins encoded by the rus operon are involved in the electron transfer from Fe 2+ to O 2 . To obtain further knowledge about the mechanism(s) involved in the adaptive responses of the bacteria to growth on the different uranium ore pulp densities, we analyzed the expression of the four genes from the rus operon by real-time PCR, when Acidithiobacillus sp. FJ2 was grown in the presence of different uranium concentrations. The uranium bioleaching results showed the inhibitory effects of the metal pulp densities on the oxidation activity of the bacteria which can affect Eh, pH, Fe oxidation and uranium extractions. Gene expression analysis indicated that Acidithiobacillus sp. FJ2 tries to survive in the stress with increasing in the expression levels of cyc2, cyc1, rus and coxB, but the metal toxicity has a negative effect on the gene expression in different pulp densities. These results indicated that Acidithiobacillus sp. FJ2 could leach the uranium even in high pulp density (50%) by modulation in rus operon gene responses.

  2. Purification of uranium alloys by differential solubility of oxides and production of purified fuel precursors

    DOEpatents

    McLean, II, William; Miller, Philip E.

    1997-01-01

    A method for purifying metallic alloys of uranium for use as nuclear reactor fuels in which the metal alloy is first converted to an oxide and then dissolved in nitric acid. Initial removal of metal oxide impurities not soluble in nitric acid is accomplished by filtration or other physical means. Further purification can be accomplished by carbonate leaching of uranyl ions from the partially purified solution or using traditional methods such as solvent extraction.

  3. Purification of uranium alloys by differential solubility of oxides and production of purified fuel precursors

    DOEpatents

    McLean, W. II; Miller, P.E.

    1997-12-16

    A method is described for purifying metallic alloys of uranium for use as nuclear reactor fuels in which the metal alloy is first converted to an oxide and then dissolved in nitric acid. Initial removal of metal oxide impurities not soluble in nitric acid is accomplished by filtration or other physical means. Further purification can be accomplished by carbonate leaching of uranyl ions from the partially purified solution or using traditional methods such as solvent extraction. 3 figs.

  4. TOF-SIMS for Rapid Nuclear Forensics Evaluation of Uranium Oxide Particles

    DTIC Science & Technology

    2011-03-01

    Fraction U-238 nU U metal CRM 112-A NBL Metal Assay and Isotopic .000052458 .0072017 --- .9927458 nUO2 UO2 --- NBL Commercial material...0 .992745 dU U metal CRM 115 NBL Uranium Assay .0000076 .0020291 .0000322 .9979311 dUO2 UO2 --- IBI Labs Commercial material --- .002- .0035...U500* U3O8 CRM U500 NBL Isotopic .005181 .49696 .000755 .49711 U900* U3O8 CRM U900 NBL Isotopic .007777 .90196 .003327 .08693 *Sample

  5. Structural influence of mixed transition metal ions on lithium bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Yadav, Arti; Dahiya, Manjeet S.; Hooda, A.; Chand, Prem; Khasa, S.

    2017-08-01

    Lithium bismuth borate glasses containing mixed transition metals having composition 7CoO·23Li2O·20Bi2O3·50B2O3 (CLBB), 7V2O5·23Li2O·20Bi2O3·50B2O3 (VLBB) and x(2CoO·V2O5)·(30 - x)Li2O·20Bi2O3·50B2O3 (x = 0.0 (LBB) and x = 2.0, 5.0, 7.0, 10.0 mol% (CVLBB1-4)) are synthesized via melt quench route. The synthesized compositions are investigated for their physical properties using density (D) and molar volume (Vm), thermal properties by analyzing DSC/TG thermo-graphs, structural properties using IR absorption spectra in the mid-IR range and optical properties using UV-Vis-NIR spectroscopy. The Electron Paramagnetic Resonance (EPR) spectra of vanadyl and cobalt ion have been analyzed to study compositional effects on spin-Hamiltonian parameters. The non linear variations in physical properties depict a strong structural influence of Co/V- oxides on the glassy matrix. The compositional variations in characteristic temperatures (glass transition temperature Tg, glass crystallization temperature Tp and glass melting temperature Tm) reveals that Tg for glass samples CLBB is relatively less than that of pure lithium bismuth borate (LBB) glass sample wherein Tg for sample VLBB is higher than that of LBB. The increase in Tg (as compared with LBB) with an enhanced substitution of mixed transition metal oxides (2CoO·V2O5) shows a progressive structure modification of bismuth borate matrix. These predictions are very well corroborated by corresponding compositional trends of Tp and Tm. FTIR studies reveal that Co2+& VO2+ ions lead to structural rearrangements through the conversion of three-coordinated boron into four coordinated boron and thereby reducing number of non-bridging oxygen atoms. Bismuth is found to exist in [BiO6] octahedral units only, whereas boroxol rings are not present in the glass network. The theoretical values of optical basicity (Λth) and corresponding oxide ion polarizability (αo2-) have also been calculated to investigate oxygen covalency of glass matrix. Trends in both these parameters suggested an increase in ionic bonding on substitution of divalent transition metal cations causing a more bonding compaction in glass structure. The UV-Vis-NIR spectra suggest that cobalt ions exist as Co2+ states in octahedral coordination in glass network. Inter-electronic repulsion parameter and crystal field splitting energy were evaluated to understand the site symmetry around Co2+-ion in glass. X-band EPR spectra suggest that vanadium ions (V4+) exists as VO2+-ions in octahedral coordination with tetragonal compression. Spin Hamiltonian parameters g-values and A-values of VO2+ ions in glass were calculated. For sample CLBB two resonance lines in EPR spectrum attribute to octahedral symmetry around Co2+-ions were observed.

  6. Supercritical Fluid Extraction of Toxic Heavy Metals and Uranium from Acidic Solutions with Sulfur-Containing Organophosphorus Reagents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yuehe; Liu, Chongxuan; Wu, Hong

    2003-03-02

    The feasibility of using sulfur-containing organophosphorus reagents for the chelation-supercritical fluid extraction (SFE) of toxic heavy metals and uranium from acidic media was investigated. The SFE experiments were conducted in a specially-designed flow-through liquid extractor. Effective extraction of the metal ions from various acidic media was demonstrated. The effect of ligand concentration in supercritical CO{sub 2} on the kinetics of metal extraction was studied. A simplified model is used to describe the extraction kinetics and the good agreement of experimental data with the equilibrium-based model is achieved.

  7. Purification of Hydrogen

    DOEpatents

    Newton, A S

    1950-12-05

    Disclosed is a process for purifying hydrogen containing various gaseous impurities by passing the hydrogen over a large surface of uranium metal at a temperature above the decomposition temperature of uranium hydride, and below the decomposition temperature of the compounds formed by the combination of the uranium with the impurities in the hydrogen.

  8. Method for cleaning bomb-reduced uranium derbies

    DOEpatents

    Banker, John G.; Wigginton, Hubert L.; Beck, David E.; Holcombe, Cressie E.

    1981-01-01

    The concentration of carbon in uranium metal ingots induction cast from derbies prepared by the bomb-reduction of uranium tetrafluoride in the presence of magnesium is effectively reduced to less than 100 ppm by removing residual magnesium fluoride from the surface of the derbies prior to casting. This magnesium fluoride is removed from the derbies by immersing them in an alkali metal salt bath which reacts with and decomposes the magnesium fluoride. A water quenching operation followed by a warm nitric acid bath and a water rinse removes the residual salt and reaction products from the derbies.

  9. Method for cleaning bomb-reduced uranium derbies

    DOEpatents

    Banker, J.G.; Wigginton, H.L.; Beck, D.E.; Holcombe, C.E.

    The concentration of carbon in uranium metal ingots induction cast from derbies prepared by the bomb-reduction of uranium tetrafluoride in the presence of magnesium is effectively reduced to less than 100 ppM by removing residual magnesium fluoride from the surface of the derbies prior to casting. This magnesium fluoride is removed from the derbies by immersing them in an alkali metal salt bath which reacts with and decomposes the magnesium fluoride. A water quenching operation followed by a warm nitric acid bath and a water rinse removes the residual salt and reaction products from the derbies.

  10. Bioremediation of uranium contamination with enzymatic uranium reduction

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.

    1992-01-01

    Enzymatic uranium reduction by Desulfovibrio desulfuricans readily removed uranium from solution in a batch system or when D. desulfuricans was separated from the bulk of the uranium-containing water by a semipermeable membrane. Uranium reduction continued at concentrations as high as 24 mM. Of a variety of potentially inhibiting anions and metals evaluated, only high concentrations of copper inhibited uranium reduction. Freeze-dried cells, stored aerobically, reduced uranium as fast as fresh cells. D. desulfuricans reduced uranium in pH 4 and pH 7.4 mine drainage waters and in uraniumcontaining groundwaters from a contaminated Department of Energy site. Enzymatic uranium reduction has several potential advantages over other bioprocessing techniques for uranium removal, the most important of which are as follows: the ability to precipitate uranium that is in the form of a uranyl carbonate complex; high capacity for uranium removal per cell; the formation of a compact, relatively pure, uranium precipitate.

  11. Penetration of boron from topically applied borate solutions

    Treesearch

    Stan T. Lebow; Patricia K. Lebow; Steven A. Halverson

    2010-01-01

    Borate penetration relies on diffusion when borate and glycol-borate preservatives are applied to the surface of wood. This study evaluated the extent of borate penetration in framing lumber as a function of preservative formulation, wood moisture content, and diffusion time after treatment. In Phase I of the study, end-matched specimens were conditioned to target...

  12. Broad-spectrum antibacterial properties of metal-ion doped borate bioactive glasses for clinical applications

    NASA Astrophysics Data System (ADS)

    Ottomeyer, Megan

    Bioactive glasses with antimicrobial properties can be implemented as coatings on medical devices and implants, as well as a treatment for tissue repair and prevention of common hospital-acquired infections such as MRSA. A borate-containing glass, B3, is also undergoing clinical trials to assess wound-healing properties. The sensitivities of various bacteria to B3, B3-Ag, B3-Ga, and B3-I bioactive glasses were tested. In addition, the mechanism of action for the glasses was studied by spectroscopic enzyme kinetics experiments, Live-Dead staining fluorescence microscopy, and luminescence assays using two gene fusion strains of Escherichia coli. It was found that gram-positive bacteria were more sensitive to all four glasses than gram negative bacteria, and that a single mechanism of action for the glasses is unlikely, as the rates of catalysis for metabolic enzymes as well as membrane permeability were altered after glass exposure.

  13. METHOD OF RECOVERING URANIUM COMPOUNDS

    DOEpatents

    Poirier, R.H.

    1957-10-29

    S>The recovery of uranium compounds which have been adsorbed on anion exchange resins is discussed. The uranium and thorium-containing residues from monazite processed by alkali hydroxide are separated from solution, and leached with an alkali metal carbonate solution, whereby the uranium and thorium hydrorides are dissolved. The carbonate solution is then passed over an anion exchange resin causing the uranium to be adsorbed while the thorium remains in solution. The uranium may be recovered by contacting the uranium-holding resin with an aqueous ammonium carbonate solution whereby the uranium values are eluted from the resin and then heating the eluate whereby carbon dioxide and ammonia are given off, the pH value of the solution is lowered, and the uranium is precipitated.

  14. Method for providing uranium with a protective copper coating

    DOEpatents

    Waldrop, Forrest B.; Jones, Edward

    1981-01-01

    The present invention is directed to a method for providing uranium metal with a protective coating of copper. Uranium metal is subjected to a conventional cleaning operation wherein oxides and other surface contaminants are removed, followed by etching and pickling operations. The copper coating is provided by first electrodepositing a thin and relatively porous flash layer of copper on the uranium in a copper cyanide bath. The resulting copper-layered article is then heated in an air or inert atmosphere to volatilize and drive off the volatile material underlying the copper flash layer. After the heating step an adherent and essentially non-porous layer of copper is electro-deposited on the flash layer of copper to provide an adherent, multi-layer copper coating which is essentially impervious to corrosion by most gases.

  15. Elution of uranium and transition metals from amidoxime-based polymer adsorbents for sequestering uranium from seawater

    DOE PAGES

    Pan, Horng-Bin; Kuo, Li-Jung; Miyamoto, Naomi; ...

    2015-11-30

    High-surface-area amidoxime and carboxylic acid grafted polymer adsorbents developed at Oak Ridge National Laboratory were tested for sequestering uranium in a flowing seawater flume system at the PNNL-Marine Sciences Laboratory. FTIR spectra indicate that a KOH conditioning process is necessary to remove the proton from the carboxylic acid and make the sorbent effective for sequestering uranium from seawater. The alkaline conditioning process also converts the amidoxime groups to carboxylate groups in the adsorbent. Both Na 2CO 3 H 2O 2 and hydrochloric acid elution methods can remove ~95% of the uranium sequestered by the adsorbent after 42 days of exposuremore » in real seawater. The Na 2CO 3 H 2O 2 elution method is more selective for uranium than conventional acid elution. Iron and vanadium are the two major transition metals competing with uranium for adsorption to the amidoxime-based adsorbents in real seawater. Tiron (4,5-Dihydroxy-1,3-benzenedisulfonic acid disodium salt, 1 M) can remove iron from the adsorbent very effectively at pH around 7. The coordination between vanadium (V) and amidoxime is also discussed based on our 51V NMR data.« less

  16. METHOD OF SEPARATING FISSION PRODUCTS FROM FUSED BISMUTH-CONTAINING URANIUM

    DOEpatents

    Wiswall, R.H.

    1958-06-24

    A process is described for removing metal selectively from liquid metal compositions. The method effects separation of flssion product metals selectively from dilute solution in fused bismuth, which contains uraniunn in solution without removal of more than 1% of the uranium. The process comprises contacting the fused bismuth with a fused salt composition consisting of sodium, potassium and lithium chlorides, adding to fused bismuth and molten salt a quantity of bismuth chloride which is stoichiometrically required to convert the flssion product metals to be removed to their chlorides which are more stable in the fused salt than in the molten metal and are, therefore, preferentially taken up in the fused salt phase.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, D.K.; Yadav, K.K.; Varshney, L.

    The present study deals with the preparation and evaluation of the poly-ethersulfone (PES) based composite beads encapsulating synergistic mixture of D2EHPA and Cyanex 923 (at 4:1 mole ratio) for the separation of uranium from phosphoric acid medium. SEM was used for the characterization of the composite materials. Addition of 1% PVA (polyvinyl alcohol) improved the internal morphology and porosity of the beads. Additionally, microscopic examination of the composite bead confirmed central coconut type cavity surrounded by porous polymer layer of the beads through which exchange of metal ions take place. Effect of various experimental variables including aqueous acidity, metal ionmore » concentration in aqueous feed, concentration of organic extractant inside the beads, extractant to polymer ratio, liquid to solid (L/S) ratio and temperature on the extraction of uranium was studied. Increase in acidity (1-6 M), L/S ratio (1- 10), metal ion concentration (0.2-3 g/L U{sub 3}O{sub 8}) and polymer to extractant ratio (1:4 -1:10) led to decrease in extraction of uranium. At 5.5 M (comparable to wet process phosphoric acid concentration) the extraction of uranium was about 85% at L/S ratio 5. Increase in extractant concentration inside the bead resulted in enhanced extraction of metal ion. Increase in temperature in the range of 30 to 50 Celsius degrees increased the extraction, whereas further increase to 70 C degrees led to the decrease in extraction of uranium. Amongst various reagents tested, stripping of uranium was quantitative by 12% Na{sub 2}CO{sub 3} solution. Polymeric beads were found to be stable and reusable up-to 10 cycles of extraction/stripping. (authors)« less

  18. The Ames Project (1942-1946)

    ScienceCinema

    None

    2018-04-26

    The Ames Laboratory was officially founded on May 17, 1947, following development of a process to purify uranium metal for the historic Manhattan Project. From 1942 to 1946, Ames Lab scientists produced over two-million pounds of uranium metal. A U.S. Department of Energy national research laboratory, the Ames Laboratory creates materials and energy solutions. Iowa State University operates Ames Laboratory under contract with the DOE.

  19. Crucible cast from beryllium oxide and refractory cement is impervious to flux and molten metal

    NASA Technical Reports Server (NTRS)

    Jastrzebski, Z. D.

    1966-01-01

    Crucible from a mixture of a beryllium oxide aggregate and hydraulic refractory cement, and coated with an impervious refractory oxide will not deteriorate in the presence of fused salt- molten metal mixtures such as uranium- magnesium-zinc-halide salt systems. Vessels cast by this process are used in the flux reduction of oxides of thorium and uranium.

  20. METHOD OF APPLYING METALLIC COATINGS

    DOEpatents

    Robinson, J.W.; Eubank, L.D.

    1961-08-01

    A method for applying a protective coating to a uranium rod is described. The steps include preheating the unanium rod to the coating temperature, placement of the rod between two rotating rollers, pouring a coating metal such as aluminum-silicon in molten form between one of the rotating rollers and the uranium rod, and rotating the rollers continually until the coating is built up to the desired thickness. (AEC)

  1. PROCESS OF RECOVERING URANIUM

    DOEpatents

    Carter, J.M.; Larson, C.E.

    1958-10-01

    A process is presented for recovering uranium values from calutron deposits. The process consists in treating such deposits to produce an oxidlzed acidic solution containing uranium together with the following imparities: Cu, Fe, Cr, Ni, Mn, Zn. The uranium is recovered from such an impurity-bearing solution by adjusting the pH of the solution to the range 1.5 to 3.0 and then treating the solution with hydrogen peroxide. This results in the precipitation of uranium peroxide which is substantially free of the metal impurities in the solution. The peroxide precipitate is then separated from the solution, washed, and calcined to produce uranium trioxide.

  2. High loading uranium fuel plate

    DOEpatents

    Wiencek, Thomas C.; Domagala, Robert F.; Thresh, Henry R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.

  3. NITRIC ACID PICKLING PROCESS

    DOEpatents

    Boller, E.R.; Eubank, L.D.

    1958-08-19

    An improved process is described for the treatment of metallic uranium surfaces preparatory to being given hot dip coatings. The process consists in first pickling the uraniunn surInce with aqueous 50% to 70% nitric acid, at 60 to 70 deg C, for about 5 minutes, rinsing the acid solution from the uranium article, promptly drying and then passing it through a molten alkali-metal halide flux consisting of 42% LiCl, 53% KCla and 5% NaCl into a molten metal bath consisting of 85 parts by weight of zinc and 15 parts by weight of aluminum

  4. ELECTROLYTIC CLADDING OF ZIRCONIUM ON URANIUM

    DOEpatents

    Wick, J.J.

    1959-09-22

    A method is presented for coating uranium with zircoalum by rendering the uranium surface smooth and oxidefree, immersing it in a molten electrolytic bath in NaCI, K/sub 2/ZrF/sub 6/, KF, and ZrO/sub 2/, and before the article reaches temperature equilibrium with the bath, applying an electrolyzing current of 60 amperes per square dectmeter at approximately 3 volts to form a layer of zirconium metal on the uranium.

  5. Distribution behavior of uranium, neptunium, rare-earth elements ( Y, La, Ce, Nd, Sm, Eu, Gd) and alkaline-earth metals (Sr,Ba) between molten LiClKCI eutectic salt and liquid cadmium or bismuth

    NASA Astrophysics Data System (ADS)

    Kurata, M.; Sakamura, Y.; Hijikata, T.; Kinoshita, K.

    1995-12-01

    Distribution coefficients of uranium neptunium, eight rare-earth elements (Y, La, Ce, Pr, Nd, Sm, Eu and Gd) and two alkaline-earth metals (Sr and Ba) between molten LiCl-KCI eutectic salt and either liquid cadmium or bismuth were measured at 773 K. Separation factors of trivalent rare-earth elements to uranium or neptunium in the LiCl-KCl/Bi system were by one or two orders of magnitude larger than those in the LiCl-KCl/Cd system. On the contrary, the separation factors of alkaline-earth metals and divalent rare-earth elements to trivalent rare-earth elements were by one or two orders of magnitude smaller in the LiCl-KCl/Bi system.

  6. Advanced Ceramics for Use as Fuel Element Materials in Nuclear Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Allen, Lee R.; Shapiro, Alan P.

    2012-01-01

    With the recent start (October 2011) of the joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) Advanced Exploration Systems (AES) Nuclear Cryogenic Propulsion Stage (NCPS) Program, there is renewed interest in developing advanced ceramics for use as fuel element materials in nuclear thermal propulsion (NTP) systems. Three classes of fuel element materials are being considered under the NCPS Program: (a) graphite composites - consisting of coated graphite elements containing uranium carbide (or mixed carbide), (b) cermets (ceramic/metallic composites) - consisting of refractory metal elements containing uranium oxide, and (c) advanced carbides consisting of ceramic elements fabricated from uranium carbide and one or more refractory metal carbides [1]. The current development effort aims to advance the technology originally developed and demonstrated under Project Rover (1955-1973) for the NERVA (Nuclear Engine for Rocket Vehicle Application) [2].

  7. Electron-spectroscopy studies of clean thorium and uranium surfaces. Chemisorption and initial stages of reaction with O2, CO, and CO2

    NASA Astrophysics Data System (ADS)

    McLean, W.; Colmenares, C. A.; Smith, R. L.; Somorjai, G. A.

    1982-01-01

    The adsorption of O2, CO, and CO2 on the thorium (111) crystal face and on polycrystalline α-uranium has been investigated by x-ray photoelectron spectroscopy, Auger electron spectroscopy (AES), and secondary-ion mass spectroscopy (SIMS) at 300 K. Oxygen adsorption on both metals resulted in the formation of the metal dioxide. CO and CO2 adsorption on Th(111) produced species derived from atomic carbon and oxygen; the presence of molecular CO was also detected. Only atomic carbon and oxygen were observed on uranium. Elemental depth profiles by AES and SIMS indicated that the carbon produced by the dissociation of CO or CO2 diffused into the bulk of the metals to form a carbide, while the oxygen remained on their surfaces as an oxide.

  8. METHOD OF PROTECTIVELY COATING URANIUM

    DOEpatents

    Eubank, L.D.; Boller, E.R.

    1959-02-01

    A method is described for protectively coating uranium with zine comprising cleaning the U for coating by pickling in concentrated HNO/sub 3/, dipping the cleaned U into a bath of molten zinc between 430 to 600 C and containing less than 0 01% each of Fe and Pb, and withdrawing and cooling to solidify the coating. The zinccoated uranium may be given a; econd coating with another metal niore resistant to the corrosive influences particularly concerned. A coating of Pb containing small proportions of Ag or Sn, or Al containing small proportions of Si may be applied over the zinc coatings by dipping in molten baths of these metals.

  9. Oxygen potential of uranium--plutonium oxide as determined by controlled- atmosphere thermogravimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, Gerald C.

    1975-10-01

    The oxygen-to-metal atom ratio, or O/M, of solid solution uranium- plutonium oxide reactor fuel is a measure of the concentration of crystal defects in the oxide which affect many fuel properties, particularly, fuel oxygen potential. Fabrication of a high-temperature oxygen electrode, employing an electro-active tip of oxygen-deficient solid-state electrolyte, intended to confirm gaseous oxygen potentials is described. Uranium oxide and plutonium oxide O/M reference materials were prepared by in situ oxidation of high purity metals in the thermobalance. A solid solution uranium-plutonium oxide O/M reference material was prepared by alloying the uranium and plutonium metals in a yttrium oxide cruciblemore » at 1200°C and oxidizing with moist He at 250°C. The individual and solid solution oxides were isothermally equilibrated with controlled oxygen potentials between 800 and 1300°C and the equilibrated O/ M ratios calculated with corrections for impurities and buoyancy effects. Use of a reference oxygen potential of -100 kcal/mol to produce an O/M of 2.000 is confirmed by these results. However, because of the lengthy equilibration times required for all oxides, use of the O/M reference materials rather than a reference oxygen potential is recommended for O/M analysis methods calibrations.« less

  10. PROCESS FOR RECOVERY OF URANIUM VALUES FROM IMPURE SOLUTIONS THEREOF

    DOEpatents

    Kilner, S.B.

    1959-11-01

    A process is presented for the recovery of uraninm values from impure solutions which are obtained, for example, by washing residual uranium salt or uranium metal deposits from stainless steel surfaces using an aqueous or certain acidic aqueous solutions. The solutions include uranyl and oxidized iron, chromium, nickel, and copper ions and may contain manganese, zinc, and silver ions. In accordance with one procedure. the uranyl ions are reduced to the uranous state, and the impurity ions are complexed with cyanide under acidic conditions. The solution is then treated with ammonium hydroxide or alkali metal hydroxide to precipitate uranous hydroxide away from the complexed impurity ions in the solution. Alternatively, an excess of alkali metal cyanide is added to the reduced solution until the solution becomes sufficiently alkaline for the uranons hydroxide to precipitate. An essential feature in operating the process is in maintaining the pH of the solution sufficiently acid during the complexing operation to prevent the precipitation of the impurity metal hydroxides.

  11. Amount of leachant and water absorption levels of wood treated with borates and water repellents.

    PubMed

    Baysal, Ergun; Sonmez, Abdullah; Colak, Mehmet; Toker, Hilmi

    2006-12-01

    Wood protection efficacy of borates against biological agents, flame retardancy, and suitability to the environment is well known. Since borates can be applied to timber as water based solutions, they are preferred economically as well. Even though they are highly mobile in wood, boron compounds are widely used in timber preservation. Borates migrate in liquid and increase the hygroscopicity of wood in damp conditions. This study deals with the physical restriction of water access in wood by impregnating water repellent agents into wood to limit amount of leachant and water absorption levels of wood after boron treatment. Borates were incorporated with polyethylene glycol-400 (PEG-400) their bulking effect in wood was considered. Results indicated that the amount of leachates from wood treated with borates in PEG-400 was remarkably higher compared to those of wood treated with the aqueous solutions of borates. Water absorption (WA) levels of wood treated with aqueous solutions of borates were higher than those of their treated samples with the solutions in PEG-400. Secondary treatments of wood with the water repellent (WR) chemicals following borate impregnation reduced the leaching of chemicals from wood in water and also WA of the specimens were less than those of the wood treated with only borates from aqueous and PEG solutions. Styrene (St) was the most effective monomer among the other agents used in terms of immobility effect on borates and WA.

  12. Localization and toxic effects of cadmium, copper, and uranium in azolla.

    PubMed

    Sela, M; Tel-Or, E; Fritz, E; Huttermann, A

    1988-09-01

    The storage and distribution of copper, cadmium, and uranium and their effects on ionic contents in roots and shoots of Azolla filiculoides has been studied by x-ray microanalysis. The relative content of copper was eightfold higher in the root than in the shoot, suggesting low mobility of this metal in Azolla plant. Cadmium relative content in the shoot was similar to its content in the root, hence its mobility was relatively high. The absence of significant uranium quantities in the shoot and its relative high content in the root suggest the immobility of this metal from Azolla root. Cadmium formed precipitates with phosphate and calcium in xylem cells of the shoot bundle and caused a two- to threefold increase in the content of phosphate in the root. Uranium in roots and cadmium in shoots were associated with calcium. All three treatments caused losses of potassium, chloride, and magnesium from Azolla roots. Accumulation of heavy metals in Azolla and their mobility from the root to the shoot can be correlated with damage caused by the loss of essential nutrients.

  13. Effect of stress at dosing on organophosphate and heavy metal toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jortner, Bernard S.

    2008-11-15

    This paper reviews recent studies assessing the effect of well-defined, severe, transient stress at dosing on two classical models of toxicity. These are the acute (anticholinesterase) toxicity seen following exposure to the organophosphate insecticide chlorpyrifos, and the nephrotoxicity elicited by the heavy metal depleted uranium, in rats. Stress was induced by periods of restraint and forced swimming in days to weeks preceding toxicant exposure. Forced swimming was far more stressful, as measured by marked, if transient, elevation of plasma corticosterone. This form of stress was administered immediately prior to administration of chlorpyrifos or depleted uranium. Chlorpyrifos (single 60 mg/kg subcutaneously)more » elicited marked inhibition of brain acetylcholinesterase 4-day post-dosing. Depleted uranium (single intramuscular doses of 0.1, 0.3 or 1.0 mg/kg uranium) elicited dose-dependent increase in kidney concentration of the metal, with associated injury to proximal tubular epithelium and increases in serum blood urea nitrogen and creatinine during the 30-day post-dosing period. Stress at dosing had no effect on these toxicologic endpoints.« less

  14. In situ remediation of uranium contaminated groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwyer, B.P.; Marozas, D.C.

    1997-02-01

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptablemore » regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field results are discussed with regard to other potential contaminated groundwater treatment applications.« less

  15. In situ remediation of uranium contaminated groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwyer, B.P.; Marozas, D.C.

    1997-12-31

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment - various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ tomore » acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field preliminary results are discussed with regard to other potential contaminated groundwater treatment applications.« less

  16. Process and apparatus for recovery of fissionable materials from spent reactor fuel by anodic dissolution

    DOEpatents

    Tomczuk, Zygmunt; Miller, William E.; Wolson, Raymond D.; Gay, Eddie C.

    1991-01-01

    An electrochemical process and apparatus for the recovery of uranium and plutonium from spent metal clad fuel pins is disclosed. The process uses secondary reactions between U.sup.+4 cations and elemental uranium at the anode to increase reaction rates and improve anodic efficiency compared to prior art processes. In another embodiment of the process, secondary reactions between Cd.sup.+2 cations and elemental uranium to form uranium cations and elemental cadmium also assists in oxidizing the uranium at the anode.

  17. METHOD OF ROLLING URANIUM

    DOEpatents

    Smith, C.S.

    1959-08-01

    A method is described for rolling uranium metal at relatively low temperatures and under non-oxidizing conditions. The method involves the steps of heating the uranium to 200 deg C in an oil bath, withdrawing the uranium and permitting the oil to drain so that only a thin protective coating remains and rolling the oil coated uranium at a temperature of 200 deg C to give about a 15% reduction in thickness at each pass. The operation may be repeated to accomplish about a 90% reduction without edge cracking, checking or any appreciable increase in brittleness.

  18. Galvanic cell for processing of used nuclear fuel

    DOEpatents

    Garcia-Diaz, Brenda L.; Martinez-Rodriguez, Michael J.; Gray, Joshua R.; Olson, Luke C.

    2017-02-07

    A galvanic cell and methods of using the galvanic cell is described for the recovery of uranium from used nuclear fuel according to an electrofluorination process. The galvanic cell requires no input energy and can utilize relatively benign gaseous fluorinating agents. Uranium can be recovered from used nuclear fuel in the form of gaseous uranium compound such as uranium hexafluoride, which can then be converted to metallic uranium or UO.sub.2 and processed according to known methodology to form a useful product, e.g., fuel pellets for use in a commercial energy production system.

  19. Electrochemical fluorination for processing of used nuclear fuel

    DOEpatents

    Garcia-Diaz, Brenda L.; Martinez-Rodriguez, Michael J.; Gray, Joshua R.; Olson, Luke C.

    2016-07-05

    A galvanic cell and methods of using the galvanic cell is described for the recovery of uranium from used nuclear fuel according to an electrofluorination process. The galvanic cell requires no input energy and can utilize relatively benign gaseous fluorinating agents. Uranium can be recovered from used nuclear fuel in the form of gaseous uranium compound such as uranium hexafluoride, which can then be converted to metallic uranium or UO.sub.2 and processed according to known methodology to form a useful product, e.g., fuel pellets for use in a commercial energy production system.

  20. As-cast uranium-molybdenum based metallic fuel candidates and the effects of carbon addition

    NASA Astrophysics Data System (ADS)

    Blackwood, Van Stephen

    The objective of this research was to develop and recommend a metallic nuclear fuel candidate that lowered the onset temperature of gamma phase formation comparable or better than the uranium-10 wt. pct. molybdenum alloy, offered a solidus temperature as high or higher than uranium-10 wt. pct. zirconium (1250°C), and stabilized the fuel phase against interaction with iron and steel at least as much as uranium-10 wt. pct. zirconium stabilized the fuel phase. Two new as-cast alloy compositions were characterized to assess thermal equilibrium boundaries of the gamma phase field and the effect of carbon addition up to 0.22 wt. pct. The first system investigated was uranium- x wt. pct. M where x ranged between 5-20 wt. pct. M was held at a constant ratio of 50 wt. pct. molybdenum, 43 wt. pct. titanium, and 7 wt. pct. zirconium. The second system investigated was the uranium-molybdenum-tungsten system in the range 90 wt. pct. uranium - 10 wt. pct. molybdenum - 0 wt. pct. tungsten to 80 wt. pct. uranium - 10 wt. pct. molybdenum - 10 wt. pct. tungsten. The results showed that the solidus temperature increased with increased addition of M up to 12.5 wt. pct. for the uranium-M system. Alloy additions of titanium and zirconium were removed from uranium-molybdenum solid solution by carbide formation and segregation. The uranium-molybdenum-tungsten system solidus temperature increased to 1218°C at 2.5 wt. pct. with no significant change in temperature up to 5 wt. pct. tungsten suggesting the solubility limit of tungsten had been reached. Carbides were observed with surrounding areas enriched in both molybdenum and tungsten. The peak solidus temperatures for the alloy systems were roughly the same at 1226°C for the uranium-M system and 1218°C for the uranium-molybdenum-tungsten system. The uranium-molybdenum-tungsten system required less alloy addition to achieve similar solidus temperatures as the uranium-M system.

  1. Copper Doping Improves Hydroxyapatite Sorption for Arsenate in Simulated Groundwaters

    DTIC Science & Technology

    2010-02-15

    Sciences, Notre Dame, Indiana 46556; Department of Environmental and Civil Engineering, Dallas, Texas 75205; and U.S. Army Engineer Research and...widely used to immobilize a wide range of heavy metals in water and soils, including lead, cadmium , zinc, uranium, copper, and nickel (6-9). The...the copper doping technique also has the potential to promote the sorptions of heavy metals including cadmium , zinc, lead, and uranium, whose

  2. RECOVERY OF Pu VALUES BY FLUORINATION AND FRACTIONATION

    DOEpatents

    Brown, H.S.; Webster, D.S.

    1959-01-20

    A method is presented for the concentration and recovery of plutonium by fluorination and fractionation. A metallic mass containing uranium and plutonium is heated to 250 C and contacted with a stream of elemental fluorine. After fluorination of the metallic mass, the rcaction products are withdrawn and subjected to a distillation treatment to separate the fluorination products of uranium and to obtain a residue containing the fluorination products of plutonium.

  3. Ultrasound enhanced process for extracting metal species in supercritical fluids

    DOEpatents

    Wai, Chien M.; Enokida, Youichi

    2006-10-31

    Improved methods for the extraction or dissolution of metals, metalloids or their oxides, especially lanthanides, actinides, uranium or their oxides, into supercritical solvents containing an extractant are disclosed. The disclosed embodiments specifically include enhancing the extraction or dissolution efficiency with ultrasound. The present methods allow the direct, efficient dissolution of UO2 or other uranium oxides without generating any waste stream or by-products.

  4. Polonium (²¹⁰Po), uranium (²³⁴U, ²³⁸U) isotopes and trace metals in mosses from Sobieszewo Island, northern Poland.

    PubMed

    Boryło, Alicja; Nowicki, Waldemar; Olszewski, Grzegorz; Skwarzec, Bogdan

    2012-01-01

    The activity of polonium (210)Po and uranium (234)U, (238)U radionuclides, as well as trace metals in mosses, collected from Sobieszewo Island area (northern Poland), were determined using the alpha spectrometry, AAS (atomic absorption spectrometry) and OES-ICP (atomic emission spectrometry with inductively coupled plasma). The concentrations of mercury (directly from the solid sample) were determined by the cold vapor technique of CV AAS. The obtained results revealed that the concentrations of (210)Po, (234)U, and (238)U in the two analyzed kinds of mosses: schrebers big red stem moss (Pleurozium schreberi) and broom moss (Dicranum scoparium) were similar. The higher polonium concentrations were found in broom moss (Dicranum scoparium), but uranium concentrations were relatively low for both species of analyzed mosses. Among the analyzed trace metals the highest concentration in mosses was recorded for iron, while the lowest for nickel, cadmium and mercury. The obtained studies showed that the sources of polonium and uranium isotopes, as well as trace metals in analyzed mosses are air city contaminations transported from Gdańsk and from existing in the vicinity the phosphogypsum waste heap in Wiślinka (near Gdańsk).

  5. Biosorption of heavy metals and uranium from dilute solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, I.A.H.; Misra, M.; Smith, R.W.

    1995-08-01

    Eichhornia crassipes approaches being a scourge in many parts of the world, choking waterways and hindering transport upon them. At the same time it is known to readily abstract heavy metal ions from water and, thus, aids in the removal of heavy metals found in such waters. This paper considers the possibility of using specific parts of the plant as an inexpensive adsorbent for the removal of heavy metals from contaminated chemical and mining industry waste waters. In particular the root of the plant was found to be an excellent accumulator of heavy metal ions including uranium from solution. Itmore » is also suggested that dried roots of the plant might be placed in simple bags and used in a very low cost metal ion removal system.« less

  6. TERNARY ALLOYS OF URANIUM, COLUMBIUM, AND ZIRCONIUM

    DOEpatents

    Foote, F.G.

    1960-08-01

    Ternary alloys of uranium are described which are useful as neutron- reflecting materials in a fast neutron reactor. They are especially resistant to corrosion caused by oxidative processes of gascous or aqueous origin and comprise uranium as the predominant metal with zirconiunn and niobium wherein the total content of the minor alloying elements is between 2 and 8% by weight.

  7. ELUTION OF URANIUM VALUES FROM ION EXCHANGE RESINS

    DOEpatents

    Kennedy, R.H.

    1959-11-24

    A process is described for eluting complex uranium ions absorbed on ion exchange resins. The resin is subjected to the action of an aqueous eluting solution contuining sulfuric acid and an alkali metal, ammonium, or magnesium chloride or nitrate, the elution being carried out until the desired amount of the uranium is removed from the resin.

  8. Plutonium Decontamination of Uranium using CO2 Cleaning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blau, M

    A concern of the Department of Energy (DOE) Environmental Management (EM) and Defense Programs (DP), and of the Los Alamos National Laboratory (LANL) and the Lawrence Livermore National Laboratory (LLNL), is the disposition of thousands of legacy and recently generated plutonium (Pu)-contaminated, highly enriched uranium (HEU) parts. These parts take up needed vault space. This presents a serious problem for LLNL, as site limit could result in the stoppage of future weapons work. The Office of Fissile Materials Disposition (NN-60) will also face a similar problem as thousands of HEU parts will be created with the disassembly of site-return pitsmore » for plutonium recovery when the Pit Disassembly and Conversion Facility (PDCF) at the Savannah River Site (SRS) becomes operational. To send HEU to the Oak Ridge National Laboratory and the Y-12 Plant for disposition, the contamination for metal must be less than 20 disintegrations per minute (dpm) of swipable transuranic per 100 cm{sup 2} of surface area or the Pu bulk contamination for oxide must be less than 210 parts per billion (ppb). LANL has used the electrolytic process on Pu-contaminated HEU weapon parts with some success. However, this process requires that a different fixture be used for every configuration; each fixture cost approximately $10K. Moreover, electrolytic decontamination leaches the uranium metal substrate (no uranium or plutonium oxide) from the HEU part. The leaching rate at the uranium metal grain boundaries is higher than that of the grains and depends on the thickness of the uranium oxide layer. As the leaching liquid flows past the HEU part, it carries away plutonium oxide contamination and uranium oxide. The uneven uranium metal surface created by the leaching becomes a trap for plutonium oxide contamination. In addition, other DOE sites have used CO{sub 2} cleaning for Pu decontamination successfully. In the 1990's, the Idaho National Engineering Laboratory investigated this technology and showed that CO{sub 2} pellet blasting (or CO{sub 2} cleaning) reduced both fixed and smearable contamination on tools. In 1997, LLNL proved that even tritium contamination could be removed from a variety of different matrices using CO{sub 2}cleaning. CO{sub 2} cleaning is a non-toxic, nonconductive, nonabrasive decontamination process whose primary cleaning mechanisms are: (1) Impact of the CO{sub 2} pellets loosens the bond between the contaminant and the substrate. (2) CO{sub 2} pellets shatter and sublimate into a gaseous state with large expansion ({approx}800 times). The expanding CO{sub 2} gas forms a layer between the contaminant and the substrate that acts as a spatula and peels off the contaminant. (3) Cooling of the contaminant assists in breaking its bond with the substrate. Thus, LLNL conducted feasibility testing to determine if CO{sub 2} pellet blasting could remove Pu contamination (e.g., uranium oxide) from uranium metal without abrading the metal matrix. This report contains a summary of events and the results of this test.« less

  9. Combined effects of lithium and borate ions on the hydration of calcium sulfoaluminate cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cau Dit Coumes, Céline, E-mail: celine.cau-dit-coumes@cea.fr; Dhoury, Mélanie; Champenois, Jean-Baptiste

    This work investigates the combined influence of borate and lithium ions on the hydration of two calcium sulfoaluminate (CSA) cements containing 0 or 10 wt% gypsum. On the one hand, borates are known to retard CSA cement hydration due to the rapid precipitation of ulexite. On the other hand, lithium ions accelerate CSA cement hydration thanks to the fast precipitation of Li-containing aluminum hydroxide. When borates and lithium are present simultaneously, these two mechanisms are superimposed. With a gypsum-free cement, a third process is additionally observed: lithium promotes the initial precipitation of a borated AFm phase which is later convertedmore » into a borated AFt phase when hydration accelerates. Lithium salts can counteract the retardation by sodium borate. However, their influence is limited once a sufficient amount of Li-containing Al(OH){sub 3} seeds is formed. For the CSA cements under investigation, the threshold lithium concentration is close to 0.03 mmol/g of cement and similar with or without borate.« less

  10. WELDING PROCESS

    DOEpatents

    Zambrow, J.; Hausner, H.

    1957-09-24

    A method of joining metal parts for the preparation of relatively long, thin fuel element cores of uranium or alloys thereof for nuclear reactors is described. The process includes the steps of cleaning the surfaces to be jointed, placing the sunfaces together, and providing between and in contact with them, a layer of a compound in finely divided form that is decomposable to metal by heat. The fuel element members are then heated at the contact zone and maintained under pressure during the heating to decompose the compound to metal and sinter the members and reduced metal together producing a weld. The preferred class of decomposable compounds are the metal hydrides such as uranium hydride, which release hydrogen thus providing a reducing atmosphere in the vicinity of the welding operation.

  11. Borates

    USGS Publications Warehouse

    Crangle, R.D.

    2013-01-01

    Four minerals represent 90 percent of the borates used by industry worldwide — the sodium borates (tincal and kernite), calcium borate (colemanite) and the sodium-calcium borate (ulexite). Borax is a white crystalline substance, chemically known as sodium tetraborate decahydrate, and is found naturally as the mineral tincal. Boric acid is a colorless crystalline solid sold in technical, national formulary and special quality grades as granules or powder and marketed most often as anhydrous boric acid. Deposits of borates are associated with volcanic activity and arid climates, with the largest economically viable deposits located in the Mojave Desert of the United States near Boron, CA, the Alpide belt in southern Asia and the Andean belt of South America.

  12. Uranium hydrogeochemical and stream sediment reconnaissance of the Cortez NTMS Quadrangle, Colorado/Utah, including concentrations of forty-three additional elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, R.G.

    1979-05-01

    During the summers of 1976, 1977, and 1978, 598 water and 1657 sediment samples were collected from 1775 locations within the 19,600-km/sup 2/ area of the Cortez Quadrangle, Colorado and Utah. Water samples were collected from streams, springs, and wells; sediment samples were collected from stream channels (wet and dry) and from springs. Each water sample was analyzed for 13 elements, and each sediment sample was analyzed for 43 elements. Uranium concentrations in water samples range from below the detection limit of 0.02 to 241.47 ppB and have a median of 0.87 ppB and a mean of 3.80 ppB. Backgroundmore » uranium concentrations are 2 to 5 ppB in several nonmountainous regions but are much lower in mountainous areas, particularly in the northeastern portion of the quadrangle. Water samples containing high uranium concentrations (>20 ppB) generally are associated with high conductivities, high concentrations of other metallic elements, and geologic units, such as the Mancos shale, that are unfavorable for uranium mineralization. However, four ground-water samples exhibit high uranium concentrations without concomitant high conductivities or high concentrations of other metallic elements. Two of these samples were collected from sites in the Slick Rock U--V district, and two were collected in the Morrison formation in the southern portion of the quadrangle where large uranium deposits are not known. Water samples collected from the northwestern corner of the quadrangle uniformly exhibit background uranium values but generally contain high nickel concentrations. In this area, U--Cu (White Canyon-type) deposits are hosted primarily by the Shinarump member of the Chinle formation. Uranium concentrations in sediment samples range from 0.51 to 76.41 ppM and have a median of 2.76 ppM and a mean of 3.08 ppM. Background uranium and metallic element concentrations decrease to the southwest from the highest values in the northeastern portion of the quadrangle.« less

  13. Evaluation of residual uranium contamination in the dirt floor of an abandoned metal rolling mill.

    PubMed

    Glassford, Eric; Spitz, Henry; Lobaugh, Megan; Spitler, Grant; Succop, Paul; Rice, Carol

    2013-02-01

    A single, large, bulk sample of uranium-contaminated material from the dirt floor of an abandoned metal rolling mill was separated into different types and sizes of aliquots to simulate samples that would be collected during site remediation. The facility rolled approximately 11,000 tons of hot-forged ingots of uranium metal approximately 60 y ago, and it has not been used since that time. Thirty small mass (≈ 0.7 g) and 15 large mass (≈ 70 g) samples were prepared from the heterogeneously contaminated bulk material to determine how measurements of the uranium contamination vary with sample size. Aliquots of bulk material were also resuspended in an exposure chamber to produce six samples of respirable particles that were obtained using a cascade impactor. Samples of removable surface contamination were collected by wiping 100 cm of the interior surfaces of the exposure chamber with 47-mm-diameter fiber filters. Uranium contamination in each of the samples was measured directly using high-resolution gamma ray spectrometry. As expected, results for isotopic uranium (i.e., U and U) measured with the large-mass and small-mass samples are significantly different (p < 0.001), and the coefficient of variation (COV) for the small-mass samples was greater than for the large-mass samples. The uranium isotopic concentrations measured in the air and on the wipe samples were not significantly different and were also not significantly different (p > 0.05) from results for the large- or small-mass samples. Large-mass samples are more reliable for characterizing heterogeneously distributed radiological contamination than small-mass samples since they exhibit the least variation compared to the mean. Thus, samples should be sufficiently large in mass to insure that the results are truly representative of the heterogeneously distributed uranium contamination present at the facility. Monitoring exposure of workers and the public as a result of uranium contamination resuspended during site remediation should be evaluated using samples of sufficient size and type to accommodate the heterogeneous distribution of uranium in the bulk material.

  14. Method of recycling lithium borate to lithium borohydride through methyl borate

    DOEpatents

    Filby, Evan E.

    1977-01-01

    This invention provides a method for the recycling of lithium borate to lithium borohydride which can be reacted with water to generate hydrogen for utilization as a fuel. The lithium borate by-product of the hydrogen generation reaction is reacted with hydrogen chloride and water to produce boric acid and lithium chloride. The boric acid and lithium chloride are converted to lithium borohydride through a methyl borate intermediate to complete the recycle scheme.

  15. ELECTRODEPOSITION OF NICKEL ON URANIUM

    DOEpatents

    Gray, A.G.

    1958-08-26

    A method is described for preparing uranium objects prior to nickel electroplating. The process consiats in treating the surface of the uranium with molten ferric chloride hexahydrate, at a slightiy elevated temperature. This treatment etches the metal surface providing a structure suitable for the application of adherent electrodeposits and at the same time plates the surface with a thin protective film of iron.

  16. Actinides in metallic waste from electrometallurgical treatment of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Janney, D. E.; Keiser, D. D.

    2003-09-01

    Argonne National Laboratory has developed a pyroprocessing-based technique for conditioning spent sodium-bonded nuclear-reactor fuel in preparation for long-term disposal. The technique produces a metallic waste form whose nominal composition is stainless steel with 15 wt.% Zr (SS-15Zr), up to ˜ 11 wt.% actinide elements (primarily uranium), and a few percent metallic fission products. Actual and simulated waste forms show similar eutectic microstructures with approximately equal proportions of iron solid solution phases and Fe-Zr intermetallics. This article reports on an analysis of simulated waste forms containing uranium, neptunium, and plutonium.

  17. Study of the Dry Processing of Uranium Ores; ETUDE DES TRAITEMENTS DE MINERAIS D'URANIUM PAR VOIE SECHE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillet, H.

    1959-02-01

    A description is given of direct fluorination of preconcentrated uranium ores in order to obtain the hexafluoride. After normal sulfuric acid treatment of the ore to eliminate silica, the uranium is precipitated by lime to obtain either impure calcium uranate of medium grade, or containing around 10% of uranium. This concentrate is dried in an inert atmosphere and then treated with a current of elementary fluorine. The uranium hexafluoride formed is condensed at the outlet of the reaction vessel and may be used either for reduction to tetrafluoride and the subsequent manufacture of uranium metal or as the initial productmore » in a diffusion plant. (auth)« less

  18. NUCLEAR REACTOR FUEL ELEMENT AND METHOD OF MANUFACTURE

    DOEpatents

    Brooks, H.

    1960-04-26

    A description is given for a fuel element comprising a body of uranium metal or an uranium compound dispersed in a matrix material made from magnesium, calcium, or barium and a stainless steel jacket enclosing the body.

  19. Carbon-free induction furnace

    DOEpatents

    Holcombe, Cressie E.; Masters, David R.; Pfeiler, William A.

    1985-01-01

    An induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of carbon free materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloy. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an RF induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650.degree. C. for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  20. Non-carbon induction furnace

    DOEpatents

    Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.

    1984-01-06

    The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  1. Economic Geology (Metals)

    ERIC Educational Resources Information Center

    Gair, Jacob E.

    1972-01-01

    Reviews metalliferous ore-deposit research reported in 1971. Research was dominated by isotopic studies, and worldwide metals exploration was marked by announcements of important new discoveries of base metals, iron ore, nickel, titanium, and uranium. (Author/PR)

  2. 21 CFR 872.3400 - Karaya and sodium borate with or without acacia denture adhesive.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... denture adhesive. 872.3400 Section 872.3400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... and sodium borate with or without acacia denture adhesive. (a) Identification. A karaya and sodium borate with or without acacia denture adhesive is a device composed of karaya and sodium borate with or...

  3. METHOD OF SEPARATING URANIUM FROM ALLOYS

    DOEpatents

    Chiotti, P.; Shoemaker, H.E.

    1960-06-28

    Uranium can be recovered from metallic uraniumthorium mixtures containing uranium in comparatively small amounts. The method of recovery comprises adding a quantity of magnesium to a mass to obtain a content of from 48 to 85% by weight; melting and forming a magnesium-thorium alloy at a temperature of between 585 and 800 deg C; agitating the mixture, allowing the mixture to settle whereby two phases, a thorium-containing magnesium-rich liquid phase and a solid uranium-rich phase, are formed; and separating the two phases.

  4. The Problem of Preconcentration of Uranium Ores by Physical Processes; LES PROBLEMES DE LA PRECONCENTRATION DES MINERAIS D'URANIUM PAR VOIE PHYSIQUE. LE TRIAGE ELECTRONIQUE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuchot, L.; Ginocchio, A. et al.

    1959-10-31

    As uranium ores, like most other ores, are not definite substances which can be treated directly for the production of the metal, the ores must be concentrated. The common physical processes used for all ores, such as sieving, gravimetric separation, flotation, electromagnetic separation, and electrostatic separation, are applicable to the beneficiation of uranium. The radioactivity of uranium ores has led to a radiometric method for the concentration. This method is described in detail. As an example, the preconcentration of Forez ores is discussed. (J.S.R.)

  5. LIQUID PHASE SINTERING OF METALLIC CARBIDES

    DOEpatents

    Hammond, J.; Sease, J.D.

    1964-01-21

    An improved method is given for fabricating uranium carbide composites, The method comprises forming a homogeneous mixture of powdered uranium carbide, a uranium intermetallic compound which wets and forms a eutectic with said carbide and has a non-uranium component which has a relatively high vapor pressure at a temperature in the range 1200 to 1500 deg C, and an organic binder, pressing said mixture to a composite of desired green strength, and then vacuum sintering said composite at the eutectic forming temperature for a period sufficient to remove at least a portion of the non-uranium containing component of said eutectic. (AEC)

  6. Polarized localization and borate-dependent degradation of the Arabidopsis borate transporter BOR1 in tobacco BY-2 cells

    PubMed Central

    Matsuoka, Ken

    2013-01-01

    In Arabidopsis the borate transporter BOR1, which is located in the plasma membrane, is degraded in the presence of excess boron by an endocytosis-mediated mechanism. A similar mechanism was suggested in rice as excess boron decreased rice borate transporter levels, although in this case whether the decrease was dependent on an increase in degradation or a decrease in protein synthesis was not elucidated. To address whether the borate-dependent degradation mechanism is conserved among plant cells, we analyzed the fate of GFP-tagged BOR1 (BOR1-GFP) in transformed tobacco BY-2 cells. Cells expressing BOR1-GFP displayed GFP fluorescence at the plasma membrane, especially at the membrane between two attached cells. The plasma membrane signal was abolished when cells were incubated in medium with a high concentration of borate (3 to 5 mM). This decrease in BOR1-GFP signal was mediated by a specific degradation of the protein after internalization by endocytosis from the plasma membrane. Pharmacological analysis indicated that the decrease in BOR1-GFP largely depends on the increase in degradation rate and that the degradation was mediated by a tyrosine-motif and the actin cytoskeleton. Tyr mutants of BOR1-GFP, which has been shown to inhibit borate-dependent degradation in Arabidopsis root cells, did not show borate-dependent endocytosis in tobacco BY-2 cells. These findings indicate that the borate-dependent degradation machinery of the borate transporter is conserved among plant species. PMID:24715955

  7. Polarized localization and borate-dependent degradation of the Arabidopsis borate transporter BOR1 in tobacco BY-2 cells.

    PubMed

    Yamauchi, Noboru; Gosho, Tadashi; Asatuma, Satoru; Toyooka, Kiminori; Fujiwara, Toru; Matsuoka, Ken

    2013-01-01

    In Arabidopsis the borate transporter BOR1, which is located in the plasma membrane, is degraded in the presence of excess boron by an endocytosis-mediated mechanism. A similar mechanism was suggested in rice as excess boron decreased rice borate transporter levels, although in this case whether the decrease was dependent on an increase in degradation or a decrease in protein synthesis was not elucidated. To address whether the borate-dependent degradation mechanism is conserved among plant cells, we analyzed the fate of GFP-tagged BOR1 (BOR1-GFP) in transformed tobacco BY-2 cells. Cells expressing BOR1-GFP displayed GFP fluorescence at the plasma membrane, especially at the membrane between two attached cells. The plasma membrane signal was abolished when cells were incubated in medium with a high concentration of borate (3 to 5 mM). This decrease in BOR1-GFP signal was mediated by a specific degradation of the protein after internalization by endocytosis from the plasma membrane. Pharmacological analysis indicated that the decrease in BOR1-GFP largely depends on the increase in degradation rate and that the degradation was mediated by a tyrosine-motif and the actin cytoskeleton. Tyr mutants of BOR1-GFP, which has been shown to inhibit borate-dependent degradation in Arabidopsis root cells, did not show borate-dependent endocytosis in tobacco BY-2 cells. These findings indicate that the borate-dependent degradation machinery of the borate transporter is conserved among plant species.

  8. Effect of silver nanoparticles on the fluorescence of Pb2+ and compositional dependence of Sm3+ fluorescence in borate glasses

    NASA Astrophysics Data System (ADS)

    Olumoroti, Akinloluwa T.

    Borate glasses have been widely studied due to their good optical and mechanical properties. Lead and bismuth (PbO/Bi2O 3:B2O3) borate glasses belong to a family of heavy metal oxide (HMO) glasses which are well known to be chemically durable, stable against atmospheric moisture, have low melting temperatures and good corrosion resistance. The first part of this work deals with lead borate glasses with silver nanoparticles (NPs) introduced into the glass matrix. Transmission electron microscopy characterization is done to verify the nucleation of NPs. Fluorescence and optical absorption experiments are then carried out after different heat treatment duration to investigate the influence of silver NPs on the optical properties of lead (Pb2+) by comparing with a glass sample without silver NPs. Optical absorption experiments show that a well-defined surface plasmon resonance (SPR) peak due to Ag NPs can be observed only for samples that were annealed for 36 hrs. Pb2+ fluorescence spectra reveal that the presence of silver NPs creates new emission centers for Pb2+ ions by altering their chemical environment. The second part of the work involves the use of samarium (a rare earth ion) as a dopant in lead and bismuth borate glasses. The concentration of samarium (Sm3+) is fixed and the base glass composition is varied. The goal is to investigate the compositional dependence of optical properties of samarium in the base glass (PbO/Bi2O3:B 2O3). Optical absorption spectra have been collected and the oscillator strength of each transition - including the hypersensitive - is obtained. The Optical absorption edge is found to shift toward lower energies with increasing PbO/Bi2O3 concentration. Both the oscillator strength and the peak position of the hypersensitive transition show significant variation with glass composition. Strong interaction between Sm3+ ions and Pb2+/Bi3+ ions can also be seen from the variations in the fluorescence emission properties of Sm3+ as a function of base glass composition. Studying the variation of these optical properties will help to create the optimum rare-earth ion-host configuration for possible technological applications. This is the thrust of our future investigations of these glass systems. Keywords: Borate glasses, nanoparticles, fluorescence, transmission electron microscopy, optical absorption, surface plasmon resonance, rare-earth (RE) ions, oscillator strength, hypersensitive transition (HST).

  9. Pyrophoric behaviour of uranium hydride and uranium powders

    NASA Astrophysics Data System (ADS)

    Le Guyadec, F.; Génin, X.; Bayle, J. P.; Dugne, O.; Duhart-Barone, A.; Ablitzer, C.

    2010-01-01

    Thermal stability and spontaneous ignition conditions of uranium hydride and uranium metal fine powders have been studied and observed in an original and dedicated experimental device placed inside a glove box under flowing pure argon. Pure uranium hydride powder with low amount of oxide (<0.5 wt.%) was obtained by heat treatment at low temperature in flowing Ar/5%H2. Pure uranium powder was obtained by dehydration in flowing pure argon. Those fine powders showed spontaneous ignition at room temperature in air. An in situ CCD-camera displayed ignition associated with powder temperature measurement. Characterization of powders before and after ignition was performed by XRD measurements and SEM observations. Oxidation mechanisms are proposed.

  10. Fate and transport of heavy metals and radioelements in groundwater aquifers of Al-Qunfudhah and Wadi Haliy quadrangles, southwest of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Bajabaa, S. A.; Abd El-Naby, H.; Dawood, Y.

    2009-12-01

    The fate and transport of heavy metals and radioelements in groundwater aquifers in five wadis located in the Al Qunfudhah and Wadi Haliy quadrangles were investigated. These wadis are an important source of water to the Red Sea coastal plain. Copper, zinc and other base-metals mineralization occur at eastern parts of these quadrangles that dominates the water catchments area of these wadis. Water, rock and soil samples were collected from all wadis and they were analyzed for major, trace elements, heavy metals and stable isotopes. The chemical and isotopic results showed active water/rock interaction. The preliminary investigation of the data analyses showed some samples with high heavy metals and uranium contents. Generally, the uranium and heavy metal contents are higher in samples collected from the upstream area of each wadi where the crystalline rocks are exposed and direct contact with the runoff. The uranium contents were as high as 120 ppb in some water samples. These elevated values are mainly due to two factors water rock interaction and concentration through evaporation. It was also observed to have elevated heavy metal contents near mining activates, which suggests that these mining activates are playing an important role in mobilizing the heavy elements and in turn affecting the water quality in these wadis.

  11. SEPARATION OF PLUTONIUM FROM URANIUM

    DOEpatents

    Feder, H.M.; Nuttall, R.L.

    1959-12-15

    A process is described for extracting plutonium from powdered neutron- irradiated urarium metal by contacting the latter, while maintaining it in the solid form, with molten magnesium which takes up the plutonium and separating the molten magnesium from the solid uranium.

  12. Evaluation of Settler Tank Thermal Stability during Solidification and Disposition to ERDF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephenson, David E.; Delegard, Calvin H.; Schmidt, Andrew J.

    2015-03-30

    Ten 16-foot-long and 20-inch diameter horizontal tanks currently reside in a stacked 2×5 (high) array in the ~20,000-gallon water-filled Weasel Pit of the 105-KW Fuel Storage Basin on the US-DOE Hanford Site. These ten tanks are part of the Integrated Water Treatment System used to manage water quality in the KW Basin and are called “settler” tanks because of their application in removing particles from the KW Basin waters. Based on process knowledge, the settler tanks are estimated to contain about 124 kilograms of finely divided uranium metal, 22 kg of uranium dioxide, and another 55 kg of other radioactivemore » sludge. The Sludge Treatment Project (STP), managed by CH2MHill Plateau Remediation Company (CHPRC) is charged with managing the settler tanks and arranging for their ultimate disposal by burial in ERDF. The presence of finely divided uranium metal in the sludge is of concern because of the potential for thermal runaway reaction of the uranium metal with water and the formation of flammable hydrogen gas as a product of the uranium-water reaction. Thermal runaway can be instigated by external heating. The STP commissioned a formal Decision Support Board (DSB) to consider options and provide recommendations to manage and dispose of the settler tanks and their contents. Decision criteria included consideration of the project schedule and longer-term deactivation, decontamination, decommissioning, and demolition (D4) of the KW Basin. The DSB compared the alternatives and recommended in-situ grouting, size-reduction, and ERDF disposal as the best of six candidate options for settler tank treatment and disposal. It is important to note that most grouts contain a complement of Portland cement as the binding agent and that Portland cement curing reactions generate heat. Therefore, concern is raised that the grouting of the settler tank contents may produce heating sufficient to instigate thermal runaway reactions in the contained uranium metal sludge.« less

  13. Localization and Toxic Effects of Cadmium, Copper, and Uranium in Azolla1

    PubMed Central

    Sela, Mordechai; Tel-Or, Elisha; Fritz, Eberhardt; Huttermann, Aloys

    1988-01-01

    The storage and distribution of copper, cadmium, and uranium and their effects on ionic contents in roots and shoots of Azolla filiculoides has been studied by x-ray microanalysis. The relative content of copper was eightfold higher in the root than in the shoot, suggesting low mobility of this metal in Azolla plant. Cadmium relative content in the shoot was similar to its content in the root, hence its mobility was relatively high. The absence of significant uranium quantities in the shoot and its relative high content in the root suggest the immobility of this metal from Azolla root. Cadmium formed precipitates with phosphate and calcium in xylem cells of the shoot bundle and caused a two- to threefold increase in the content of phosphate in the root. Uranium in roots and cadmium in shoots were associated with calcium. All three treatments caused losses of potassium, chloride, and magnesium from Azolla roots. Accumulation of heavy metals in Azolla and their mobility from the root to the shoot can be correlated with damage caused by the loss of essential nutrients. Images Fig. 1 Fig. 2 Fig. 5 Fig. 7 PMID:16666274

  14. A review of the high temperature oxidation of uranium oxides in molten salts and in the solid state to form alkali metal uranates, and their composition and properties

    NASA Astrophysics Data System (ADS)

    Griffiths, Trevor R.; Volkovich, Vladimir A.

    An extensive review of the literature on the high temperature reactions (both in melts and in the solid state) of uranium oxides (UO 2, U 3O 8 and UO 3) resulting in the formation of insoluble alkali metal (Li to Cs) uranates is presented. Their uranate(VI) and uranate(V) compounds are examined, together with mixed and oxygen-deficient uranates. The reactions of uranium oxides with carbonates, oxides, per- and superoxides, chlorides, sulfates, nitrates and nitrites under both oxidising and non-oxidising conditions are critically examined and systematised, and the established compositions of a range of uranate(VI) and (V) compounds formed are discussed. Alkali metal uranates(VI) are examined in detail and their structural, physical, thermodynamic and spectroscopic properties considered. Chemical properties of alkali metal uranates(VI), including various methods for their reduction, are also reported. Errors in the current theoretical treatment of uranate(VI) spectra are identified and the need to develop routes for the preparation of single crystals is stressed.

  15. History of fast reactor fuel development

    NASA Astrophysics Data System (ADS)

    Kittel, J. H.; Frost, B. R. T.; Mustelier, J. P.; Bagley, K. Q.; Crittenden, G. C.; Van Dievoet, J.

    1993-09-01

    The first fast breeder reactors, constructed in the 1945-1960 time period, used metallic fuels composed of uranium, plutonium, or their alloys. They were chosen because most existing reactor operating experience had been obtained on metallic fuels and because they provided the highest breeding ratios. Difficulties in obtaining adequate dimensional stability in metallic fuel elements under conditions of high fuel burnup led in the 1960s to the virtual worldwide choice of ceramic fuels. Although ceramic fuels provide lower breeding performance, this objective is no longer an important consideration in most national programs. Mixed uranium and plutonium dioxide became the ceramic fuel that has received the widest use. The more advanced ceramic fuels, mixed uranium and plutonium carbides and nitrides, continue under development. More recently, metal fuel elements of improved design have joined ceramic fuels in achieving goal burnups of 15 to 20 percent. Low-swelling fuel cladding alloys have also been continuously developed to deal with the unexpected problem of void formation in stainless steels subjected to fast neutron irradiation, a phenomenon first observed in the 1960s.

  16. Effect of mineral constituents in the bioleaching of uranium from uraniferous sedimentary rock samples, Southwestern Sinai, Egypt.

    PubMed

    Amin, Maisa M; Elaassy, Ibrahim E; El-Feky, Mohamed G; Sallam, Abdel Sattar M; Talaat, Mona S; Kawady, Nilly A

    2014-08-01

    Bioleaching, like Biotechnology uses microorganisms to extract metals from their ore materials, whereas microbial activity has an appreciable effect on the dissolution of toxic metals and radionuclides. Bioleaching of uranium was carried out with isolated fungi from uraniferous sedimentary rocks from Southwestern Sinai, Egypt. Eight fungal species were isolated from different grades of uraniferous samples. The bio-dissolution experiments showed that Aspergillus niger and Aspergillus terreus exhibited the highest leaching efficiencies of uranium from the studied samples. Through monitoring the bio-dissolution process, the uranium grade and mineralogic constituents of the ore material proved to play an important role in the bioleaching process. The tested samples asserted that the optimum conditions of uranium leaching are: 7 days incubation time, 3% pulp density, 30 °C incubation temperature and pH 3. Both fungi produced the organic acids, namely; oxalic, acetic, citric, formic, malonic, galic and ascorbic in the culture filtrate, indicating an important role in the bioleaching processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. SOLVENT EXTRACTION PROCESS FOR SEPARATING URANIUM AND PLUTONIUM FROM AQUEOUS ACIDIC SOLUTIONS OF NEUTRON IRRADIATED URANIUM

    DOEpatents

    Bruce, F.R.

    1962-07-24

    A solvent extraction process was developed for separating actinide elements including plutonium and uranium from fission products. By this method the ion content of the acidic aqueous solution is adjusted so that it contains more equivalents of total metal ions than equivalents of nitrate ions. Under these conditions the extractability of fission products is greatly decreased. (AEC)

  18. ANODIC TREATMENT OF URANIUM

    DOEpatents

    Kolodney, M.

    1959-02-01

    A method is presented for effecting eloctrolytic dissolution of a metallic uranium article at a uniform rate. The uranium is made the anode in an aqueous phosphoric acid solution containing nitrate ions furnished by either ammonium nitrate, lithium nitrate, sodium nitrate, or potassium nitrate. A stainless steel cathode is employed and electrolysls carried out at a current density of about 0.1 to 1 ampere per square inch.

  19. 10 CFR Appendix F to Part 110 - Illustrative List of Laser-Based Enrichment Plant Equipment and Components Under NRC Export...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... come into direct contact with uranium metal vapor or liquid or with process gas consisting of UF6 or a mixture of UF6 and other gases: (1) Uranium vaporization systems (AVLIS). Especially designed or prepared... laser-based enrichment items, the materials resistant to corrosion by the vapor or liquid of uranium...

  20. 10 CFR Appendix F to Part 110 - Illustrative List of Laser-Based Enrichment Plant Equipment and Components Under NRC Export...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... come into direct contact with uranium metal vapor or liquid or with process gas consisting of UF6 or a mixture of UF6 and other gases: (1) Uranium vaporization systems (AVLIS). Especially designed or prepared... laser-based enrichment items, the materials resistant to corrosion by the vapor or liquid of uranium...

  1. 10 CFR Appendix F to Part 110 - Illustrative List of Laser-Based Enrichment Plant Equipment and Components Under NRC Export...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... come into direct contact with uranium metal vapor or liquid or with process gas consisting of UF6 or a mixture of UF6 and other gases: (1) Uranium vaporization systems (AVLIS). Especially designed or prepared... laser-based enrichment items, the materials resistant to corrosion by the vapor or liquid of uranium...

  2. 10 CFR Appendix F to Part 110 - Illustrative List of Laser-Based Enrichment Plant Equipment and Components Under NRC Export...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... come into direct contact with uranium metal vapor or liquid or with process gas consisting of UF6 or a mixture of UF6 and other gases: (1) Uranium vaporization systems (AVLIS). Especially designed or prepared... laser-based enrichment items, the materials resistant to corrosion by the vapor or liquid of uranium...

  3. 10 CFR Appendix F to Part 110 - Illustrative List of Laser-Based Enrichment Plant Equipment and Components Under NRC Export...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... come into direct contact with uranium metal vapor or liquid or with process gas consisting of UF6 or a mixture of UF6 and other gases: (1) Uranium vaporization systems (AVLIS). Especially designed or prepared... laser-based enrichment items, the materials resistant to corrosion by the vapor or liquid of uranium...

  4. Investigation of molybdate melts as an alternative method of reprocessing used nuclear fuel

    DOE PAGES

    Hames, Amber L.; Tkac, Peter; Paulenova, Alena; ...

    2017-01-17

    Here, an investigation of molybdate melts containing sodium molybdate (Na 2MoO 4) and molybdenum trioxide (MoO 3) to achieve the separation of uranium from fission products by crystallization has been performed. The separation is based on the difference in solubility of the fission product metal oxides compared to the uranium oxide or molybdate in the molybdate melt. The molybdate melt dissolves uranium dioxide at high temperatures, and upon cooling, uranium precipitates as uranium dioxide or molybdate, whereas the fission product metals remain soluble in the melt. Small-scale experiments using gram quantities of uranium dioxide have been performed to investigate themore » feasibility of UO 2 purification from the fission products. The composition of the uranium precipitate as well as data for partitioning of several fission product surrogates between the uranium precipitate and molybdate melt for various melt compositions are presented and discussed. The fission products Cs, Sr, Ru and Rh all displayed very large distribution ratios. The fission products Zr, Pd, and the lanthanides also displayed good distribution ratios (D > 10). A melt consisting of 20 wt% MoO 3-50 wt% Na 2MoO 4-30 wt% UO 2 heated to 1313 K and cooled to 1123 K for the physical separation of the UO 2 product from the melt, and washed once with Na 2MoO 4 displays optimum conditions for separation of the UO 2 from the fission products.« less

  5. PROCESS OF PRODUCING ACTINIDE METALS

    DOEpatents

    Magel, T.T.

    1959-07-14

    The preparation of actinide metals in workable, coherent form is described. In general, the objects of the invention are achieved by heating a mixture of an oxide and a halide of an actinide metal such as uranium with an alkali metal on alkaline earth metal reducing agent in the presence of iodine.

  6. Effective binding of perhalogenated closo-borates to serum albumins revealed by spectroscopic and ITC studies

    NASA Astrophysics Data System (ADS)

    Kuperman, Marina V.; Losytskyy, Mykhaylo Yu.; Bykov, Alexander Yu.; Yarmoluk, Sergiy M.; Zhizhin, Konstantin Yu.; Kuznetsov, Nikolay T.; Varzatskii, Oleg A.; Gumienna-Kontecka, Elzbieta; Kovalska, Vladyslava B.

    2017-08-01

    The interactions of boron cluster compounds closo-borates with biomolecules are widely studied due to their efficiency as agents for boron neutron capture therapy of cancer. In present work the binding abilities of anionic halogen closo-borates [B10Hal10]2- (Hal = Cl, Br, I) and [B12Hal12]2- (Hal = Cl, I) towards bovine and human serum albumins were investigated by spectroscopic and isothermal titration calorimetry (ITC) methods. The protein fluorescence quenching method and ITC studies confirmed the complex formation. The degree of protein fluorescence quenching increased from chlorine to iodine boron derivatives that is attributed to external heavy atom effect. The ITC data point on the existence in the protein structure of two types of binding sites: with higher and lower affinity to closo-borates. Albumin-closo-borate complex binding ratio, n (4-5 anions per protein molecule) is higher than for the parent hydrogen closo-borates (2 anions per protein molecule). Binding constants estimated by fluorescent and ITC methods indicate higher affinity of halogen closo-borates to albumins (K in the range of 104-106 M-1) comparing to that of the hydrogen closo-borate (K about 103 M-1). Due to their high affinity and high binding ratio to albumins halogen closo-borates are proposed for further studies as agents for boron neutron capture therapy.

  7. Improving the Performance at Elevated Temperature of High Voltage Graphite/LiNi 0.5Mn 1.5O 4 Cells with Added Lithium Catechol Dimethyl Borate

    DOE PAGES

    Dong, Yingnan; Demeaux, Julien; Zhang, Yuzi; ...

    2016-12-13

    Performance of LiNi 0.5Mn 1.5O 4/graphite cells cycled to 4.8 V at 55°C with the 1.2 M LiPF 6 in EC/EMC (3/7, STD electrolyte) with and without added lithium catechol dimethyl borate (LiCDMB) has been investigated. The incorporation of 0.5 wt% LiCDMB to the STD electrolyte results in an improved capacity retention and coulombic efficiency upon cycling at 55°C. Ex-situ analysis of the electrode surfaces via a combination of SEM, TEM, and XPS reveals that oxidation of LiCDMB at high potential results in the deposition of a passivation layer on the electrode surface, preventing transition metal ion dissolution from themore » cathode and subsequent deposition on the anode. NMR investigations of the bulk electrolyte stored at 85°C reveals that added LiCDMB prevents the thermal decomposition of LiPF 6.« less

  8. Structural investigation of Zn doped sodium bismuth borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatia, V., E-mail: vijetabhatia0712@gmail.com; Kumar, D.; Singh, D.

    2016-05-06

    A series of Bismuth Borate Oxide Glass samples with composition x(ZnO):(15-x)Na{sub 2}O:15Bi{sub 2}O{sub 3}:70B{sub 2}O{sub 3} (variation in x is from 6 to 12 mole %) have been prepared by conventional melt quenching technique. All the chemicals used were of Analytical Grade. In order to verify the amorphous nature of the prepared samples the X-Ray Diffraction (XRD) was done. The physical and structural properties have been explored by using the techniques such as density, molar volume and FTIR in order to understand the effect of alkali and transition metal ions on the structure of these glasses. The results obtained bymore » these techniques are in good agreement to one another and with literature as well. With the increase in the content of ZnO, the increase in density and some variations in structural coordination (ratio of BO{sub 3} & BO{sub 4} structural units) have been observed.« less

  9. Improving the Performance at Elevated Temperature of High Voltage Graphite/LiNi 0.5Mn 1.5O 4 Cells with Added Lithium Catechol Dimethyl Borate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Yingnan; Demeaux, Julien; Zhang, Yuzi

    Performance of LiNi 0.5Mn 1.5O 4/graphite cells cycled to 4.8 V at 55°C with the 1.2 M LiPF 6 in EC/EMC (3/7, STD electrolyte) with and without added lithium catechol dimethyl borate (LiCDMB) has been investigated. The incorporation of 0.5 wt% LiCDMB to the STD electrolyte results in an improved capacity retention and coulombic efficiency upon cycling at 55°C. Ex-situ analysis of the electrode surfaces via a combination of SEM, TEM, and XPS reveals that oxidation of LiCDMB at high potential results in the deposition of a passivation layer on the electrode surface, preventing transition metal ion dissolution from themore » cathode and subsequent deposition on the anode. NMR investigations of the bulk electrolyte stored at 85°C reveals that added LiCDMB prevents the thermal decomposition of LiPF 6.« less

  10. An Investigation on the Persistence of Uranium Hydride during Storage of Simulant Nuclear Waste Packages.

    PubMed

    Stitt, C A; Harker, N J; Hallam, K R; Paraskevoulakos, C; Banos, A; Rennie, S; Jowsey, J; Scott, T B

    2015-01-01

    Synchrotron X-rays have been used to study the oxidation of uranium and uranium hydride when encapsulated in grout and stored in de-ionised water for 10 months. Periodic synchrotron X-ray tomography and X-ray powder diffraction have allowed measurement and identification of the arising corrosion products and the rates of corrosion. The oxidation rates of the uranium metal and uranium hydride were slower than empirically derived rates previously reported for each reactant in an anoxic water system, but without encapsulation in grout. This was attributed to the grout acting as a physical barrier limiting the access of oxidising species to the uranium surface. Uranium hydride was observed to persist throughout the 10 month storage period and industrial consequences of this observed persistence are discussed.

  11. SLURRY SOLVENT EXTRACTION PROCESS FOR THE RECOVERY OF METALS FROM SOLID MATERIALS

    DOEpatents

    Grinstead, R.R.

    1959-01-20

    A solvent extraction process is described for recovering uranium from low grade uranium bearing minerals such as carnotit or shale. The finely communited ore is made up as an aqueous slurry containing the necessary amount of acid to solubilize the uranium and simultaneously or subsequently contacted with an organic solvent extractant such as the alkyl ortho-, or pyro phosphoric acids, alkyl phosphites or alkyl phosphonates in combination with a diluent such as kerosene or carbon tetrachlorids. The extractant phase is separated from the slurry and treated by any suitable process to recover the uranium therefrom. One method for recovering the uranium comprises treating the extract with aqueous HF containing a reducing agent such as ferrous sulfate, which reduces the uranium and causes it to be precipitated as uranium tetrafluoride.

  12. An Investigation on the Persistence of Uranium Hydride during Storage of Simulant Nuclear Waste Packages

    PubMed Central

    Harker, N. J.; Hallam, K. R.; Paraskevoulakos, C.; Banos, A.; Rennie, S.; Jowsey, J.

    2015-01-01

    Synchrotron X-rays have been used to study the oxidation of uranium and uranium hydride when encapsulated in grout and stored in de-ionised water for 10 months. Periodic synchrotron X-ray tomography and X-ray powder diffraction have allowed measurement and identification of the arising corrosion products and the rates of corrosion. The oxidation rates of the uranium metal and uranium hydride were slower than empirically derived rates previously reported for each reactant in an anoxic water system, but without encapsulation in grout. This was attributed to the grout acting as a physical barrier limiting the access of oxidising species to the uranium surface. Uranium hydride was observed to persist throughout the 10 month storage period and industrial consequences of this observed persistence are discussed. PMID:26176551

  13. Uranium extremophily is an adaptive, rather than intrinsic, feature for extremely thermoacidophilic Metallosphaera species

    PubMed Central

    Mukherjee, Arpan; Wheaton, Garrett H.; Blum, Paul H.; Kelly, Robert M.

    2012-01-01

    Thermoacidophilic archaea are found in heavy metal-rich environments, and, in some cases, these microorganisms are causative agents of metal mobilization through cellular processes related to their bioenergetics. Given the nature of their habitats, these microorganisms must deal with the potentially toxic effect of heavy metals. Here, we show that two thermoacidophilic Metallosphaera species with nearly identical (99.99%) genomes differed significantly in their sensitivity and reactivity to uranium (U). Metallosphaera prunae, isolated from a smoldering heap on a uranium mine in Thüringen, Germany, could be viewed as a “spontaneous mutant” of Metallosphaera sedula, an isolate from Pisciarelli Solfatara near Naples. Metallosphaera prunae tolerated triuranium octaoxide (U3O8) and soluble uranium [U(VI)] to a much greater extent than M. sedula. Within 15 min following exposure to “U(VI) shock,” M. sedula, and not M. prunae, exhibited transcriptomic features associated with severe stress response. Furthermore, within 15 min post-U(VI) shock, M. prunae, and not M. sedula, showed evidence of substantial degradation of cellular RNA, suggesting that transcriptional and translational processes were aborted as a dynamic mechanism for resisting U toxicity; by 60 min post-U(VI) shock, RNA integrity in M. prunae recovered, and known modes for heavy metal resistance were activated. In addition, M. sedula rapidly oxidized solid U3O8 to soluble U(VI) for bioenergetic purposes, a chemolithoautotrophic feature not previously reported. M. prunae, however, did not solubilize solid U3O8 to any significant extent, thereby not exacerbating U(VI) toxicity. These results point to uranium extremophily as an adaptive, rather than intrinsic, feature for Metallosphaera species, driven by environmental factors. PMID:23010932

  14. Environmental Metals and Cardiovascular Disease in Adults: A Systematic Review beyond Lead and Cadmium

    PubMed Central

    Nigra, Anne E; Ruiz-Hernandez, Adrian; Redon, Josep; Navas-Acien, Ana; Tellez-Plaza, Maria

    2018-01-01

    Published systematic reviews concluded that there is moderate to strong evidence to infer a potential role of lead and cadmium, widespread metal exposures, as cardiovascular risk factors. For other non-essential metals, the evidence has not been appraised systematically. Our objective was to systematically review epidemiologic studies on the association between cardiovascular disease in adults and the environmental metals antimony, barium, chromium, nickel, tungsten, uranium, and vanadium. We identified a total of 4 articles on antimony, 1 on barium, 5 on chromium, 1 on nickel, 4 on tungsten, 1 on uranium and 0 on vanadium. We concluded that the current evidence is not sufficient to inform on the cardiovascular role of these metals because the small number of studies. Few experimental studies have also evaluated the role of these metals in cardiovascular outcomes. Additional epidemiologic and experimental studies, including prospective cohort studies, are needed to understand the role of metals, including exposure to metal mixtures, in cardiovascular disease development. PMID:27783356

  15. METHOD OF PRODUCING URANIUM

    DOEpatents

    Foster, L.S.; Magel, T.T.

    1958-05-13

    A modified process is described for the production of uranium metal by means of a bomb reduction of UF/sub 4/. Difficulty is sometimes experienced in obtaining complete separation of the uranium from the slag when the process is carried out on a snnall scale, i.e., for the production of 10 grams of U or less. Complete separation may be obtained by incorporating in the reaction mixture a quantity of MnCl/sub 2/, so that this compound is reduced along with the UF/sub 4/ . As a result a U--Mn alloy is formed which has a melting point lower than that of pure U, and consequently the metal remains molten for a longer period allowing more complete separation from the slag.

  16. PROTECTIVELY COVERED ARTICLE AND METHOD OF MANUFACTURE

    DOEpatents

    Plott, R.F.

    1958-10-28

    A method of casting a protective jacket about a ura nium fuel element that will bond completely to the uranium without the use of stringers or supports that would ordinarily produce gaps in the cast metal coating and bond is presented. Preformed endcaps of alumlnum alloyed with 13% silicon are placed on the ends of the uranium fuel element. These caps will support the fuel element when placed in a mold. The mold is kept at a ing alloy but below that of uranium so the cast metal jacket will fuse with the endcaps forming a complete covering and bond to the fuel element, which would otherwise oxidize at the gaps or discontinuities lefi in the coating by previous casting methods.

  17. Uranium droplet core nuclear rocket

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim

    1991-01-01

    Uranium droplet nuclear rocket is conceptually designed to utilize the broad temperature range ofthe liquid phase of metallic uranium in droplet configuration which maximizes the energy transfer area per unit fuel volume. In a baseline system dissociated hydrogen at 100 bar is heated to 6000 K, providing 2000 second of Isp. Fission fragments and intense radian field enhance the dissociation of molecular hydrogen beyond the equilibrium thermodynamic level. Uranium droplets in the core are confined and separated by an axisymmetric vortex flow generated by high velocity tangential injection of hydrogen in the mid-core regions. Droplet uranium flow to the core is controlled and adjusted by a twin flow nozzle injection system.

  18. URANIUM RECOVERY PROCESS

    DOEpatents

    Stevenson, J.W.; Werkema, R.G.

    1959-07-28

    The recovery of uranium from magnesium fluoride slag obtained as a by- product in the production of uranium metal by the bomb reduction prccess is presented. Generally the recovery is accomplished by finely grinding the slag, roasting ihe ground slag air, and leaching the roasted slag with a hot, aqueous solution containing an excess of the sodium bicarbonate stoichiometrically required to form soluble uranium carbonate complex. The roasting is preferably carried out at between 425 and 485 deg C for about three hours. The leaching is preferably done at 70 to 90 deg C and under pressure. After leaching and filtration the uranium may be recovered from the clear leach liquor by any desired method.

  19. Universal fuel basket for use with an improved oxide reduction vessel and electrorefiner vessel

    DOEpatents

    Herrmann, Steven D.; Mariani, Robert D.

    2002-01-01

    A basket, for use in the reduction of UO.sub.2 to uranium metal and in the electrorefining of uranium metal, having a continuous annulus between inner and outer perforated cylindrical walls, with a screen adjacent to each wall. A substantially solid bottom and top plate enclose the continuous annulus defining a fuel bed. A plurality of scrapers are mounted adjacent to the outer wall extending longitudinally thereof, and there is a mechanism enabling the basket to be transported remotely.

  20. The Toxicity of Depleted Uranium

    PubMed Central

    Briner, Wayne

    2010-01-01

    Depleted uranium (DU) is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a clear and defined set of symptoms. Chronic low-dose, or subacute, exposure to depleted uranium alters the appearance of milestones in developing organisms. Adult animals that were exposed to depleted uranium during development display persistent alterations in behavior, even after cessation of depleted uranium exposure. Adult animals exposed to depleted uranium demonstrate altered behaviors and a variety of alterations to brain chemistry. Despite its reduced level of radioactivity evidence continues to accumulate that depleted uranium, if ingested, may pose a radiologic hazard. The current state of knowledge concerning DU is discussed. PMID:20195447

  1. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDeavitt, Sean M

    2011-04-29

    Overview Fast reactors were evaluated to enable the transmutation of transuranic isotopes generated by nuclear energy systems. The motivation for this was that TRU isotopes have high radiotoxicity and relatively long half-lives, making them unattractive for disposal in a long-term geologic repository. Fast reactors provide an efficient means to utilize the energy content of the TRUs while destroying them. An enabling technology that requires research and development is the fabrication metallic fuel containing TRU isotopes using powder metallurgy methods. This project focused upon developing a powder metallurgical fabrication method to produce U-Zr-transuranic (TRU) alloys at relatively low processing temperatures (500ºCmore » to 600ºC) using either hot extrusion or alpha-phase sintering for charecterization. Researchers quantified the fundamental aspects of both processing methods using surrogate metals to simulate the TRU elements. The process produced novel solutions to some of the issues relating to metallic fuels, such as fuel-cladding chemical interactions, fuel swelling, volatility losses during casting, and casting mold material losses. Workscope There were two primary tasks associated with this project: 1. Hot working fabrication using mechanical alloying and extrusion • Design, fabricate, and assemble extrusion equipment • Extrusion database on DU metal • Extrusion database on U-10Zr alloys • Extrusion database on U-20xx-10Zr alloys • Evaluation and testing of tube sheath metals 2. Low-temperature sintering of U alloys • Design, fabricate, and assemble equipment • Sintering database on DU metal • Sintering database on U-10Zr alloys • Liquid assisted phase sintering on U-20xx-10Zr alloys Appendices Outline Appendix A contains a Fuel Cycle Research & Development (FCR&D) poster and contact presentation where TAMU made primary contributions. Appendix B contains MSNE theses and final defense presentations by David Garnetti and Grant Helmreich outlining the beginning of the materials processing setup. Also included within this section is a thesis proposal by Jeff Hausaman. Appendix C contains the public papers and presentations introduced at the 2010 American Nuclear Society Winter Meeting. Appendix A—MSNE theses of David Garnetti and Grant Helmreich and proposal by Jeff Hausaman A.1 December 2009 Thesis by David Garnetti entitled “Uranium Powder Production Via Hydride Formation and Alpha Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications” A.2 September 2009 Presentation by David Garnetti (same title as document in Appendix B.1) A.3 December 2010 Thesis by Grant Helmreich entitled “Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications” A.4 October 2010 Presentation by Grant Helmreich (same title as document in Appendix B.3) A.5 Thesis Proposal by Jeffrey Hausaman entitled “Hot Extrusion of Alpha Phase Uranium-Zirconium Alloys for TRU Burning Fast Reactors” Appendix B—External presentations introduced at the 2010 ANS Winter Meeting B.1 J.S. Hausaman, D.J. Garnetti, and S.M. McDeavitt, “Powder Metallurgy of Alpha Phase Uranium Alloys for TRU Burning Fast Reactors,” Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.2 PowerPoint Presentation Slides from C.1 B.3 G.W. Helmreich, W.J. Sames, D.J. Garnetti, and S.M. McDeavitt, “Uranium Powder Production Using a Hydride-Dehydride Process,” Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.4. PowerPoint Presentation Slides from C.3 B.5 Poster Presentation from C.3 Appendix C—Fuel cycle research and development undergraduate materials and poster presentation C.1 Poster entitled “Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys” presented at the Fuel Cycle Technologies Program Annual Meeting C.2 April 2011 Honors Undergraduate Thesis by William Sames, Research Fellow, entitled “Uranium Metal Powder Production, Particle Distribution Analysis, and Reaction Rate Studies of a Hydride-Dehydride Process"« less

  2. PROCESS FOR SEPARATING PLUTONIUM FROM IMPURITIES

    DOEpatents

    Wahl, A.C.

    1957-11-12

    A method is described for separating plutonium from aqueous solutions containing uranium. It has been found that if the plutonium is reduced to its 3+ valence state, and the uranium present is left in its higher valence state, then the differences in solubility between certain salts (e.g., oxalates) of the trivalent plutonium and the hexavalent uranium can be used to separate the metals. This selective reduction of plutonium is accomplished by adding iodide ion to the solution, since iodide possesses an oxidation potential sufficient to reduce plutonium but not sufficient to reduce uranium.

  3. METHOD AND APPARATUS FOR MAKING URANIUM-HYDRIDE COMPACTS

    DOEpatents

    Wellborn, W.; Armstrong, J.R.

    1959-03-10

    A method and apparatus are presented for making compacts of pyrophoric hydrides in a continuous operation out of contact with air. It is particularly useful for the preparation of a canned compact of uranium hydride possessing high density and purity. The metallic uranium is enclosed in a container, positioned in a die body evacuated and nvert the uranium to the hydride is admitted and the container sealed. Heat is applied to bring about the formation of the hydride, following which compression is used to form the compact sealed in a container ready for use.

  4. Electrolytic process for preparing uranium metal

    DOEpatents

    Haas, Paul A.

    1990-01-01

    An electrolytic process for making uranium from uranium oxide using Cl.sub.2 anode product from an electrolytic cell to react with UO.sub.2 to form uranium chlorides. The chlorides are used in low concentrations in a melt comprising fluorides and chlorides of potassium, sodium and barium in the electrolytic cell. The electrolysis produces Cl.sub.2 at the anode that reacts with UO.sub.2 in the feed reactor to form soluble UCl.sub.4, available for a continuous process in the electrolytic cell, rather than having insoluble UO.sub.2 fouling the cell.

  5. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobecky, Patricia A; Taillefert, Martial

    This final technical report describes results and findings from a research project to examine the role of microbial phosphohydrolase enzymes in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of the radionuclide uranium through the production of insoluble uranium phosphate minerals. The research project investigated the microbial mechanisms and the physical and chemical processes promoting uranium biomineralization and sequestration in oxygenated subsurface soils. Uranium biomineralization under aerobic conditions can provide a secondary biobarrier strategy to immobilize radionuclides should the metal precipitates formed by microbial dissimilatory mechanisms remobilize due to a change in redox state.

  6. Pressure-driven insulator-metal transition in cubic phase UO 2

    DOE PAGES

    Huang, Li; Wang, Yilin; Werner, Philipp

    2017-09-21

    Understanding the electronic properties of actinide oxides under pressure poses a great challenge for experimental and theoretical studies. Here, we investigate the electronic structure of cubic phase uranium dioxide at different volumes using a combination of density functional theory and dynamical mean-field theory. The ab initio calculations predict an orbital-selective insulator-metal transition at a moderate pressure of ~45 GPa. At this pressure the uranium's 5f 5/2 state becomes metallic, while the 5f 7/2 state remains insulating up to about 60 GPa. In the metallic state, we observe a rapid decrease of the 5f occupation and total angular momentum with pressure.more » Simultaneously, the so-called "Zhang-Rice state", which is of predominantly 5f 5/2 character, quickly disappears after the transition into the metallic phase.« less

  7. Pressure-driven insulator-metal transition in cubic phase UO2

    NASA Astrophysics Data System (ADS)

    Huang, Li; Wang, Yilin; Werner, Philipp

    2017-09-01

    Understanding the electronic properties of actinide oxides under pressure poses a great challenge for experimental and theoretical studies. Here, we investigate the electronic structure of cubic phase uranium dioxide at different volumes using a combination of density functional theory and dynamical mean-field theory. The ab initio calculations predict an orbital-selective insulator-metal transition at a moderate pressure of ∼45 GPa. At this pressure the uranium's 5f 5/2 state becomes metallic, while the 5f 7/2 state remains insulating up to about 60 GPa. In the metallic state, we observe a rapid decrease of the 5f occupation and total angular momentum with pressure. Simultaneously, the so-called “Zhang-Rice state”, which is of predominantly 5f 5/2 character, quickly disappears after the transition into the metallic phase.

  8. JACKETED FUEL ELEMENT

    DOEpatents

    Wigner, E.P.; Szilard, L.; Creutz, E.C.

    1959-02-01

    These fuel elements are comprised of a homogeneous metallic uranium body completely enclosed and sealed in an aluminum cover. The uranium body and aluminum cover are bonded together by a layer of zinc located between them. The bonding layer serves to improve transfer of heat, provides an additional protection against corrosion of the uranium by the coolant, and also localizes any possible corrosion by preventing travel of corrosive material along the surface of the fuel element.

  9. Uranium from German Nuclear Power Projects of the 1940s— A Nuclear Forensic Investigation

    PubMed Central

    Mayer, Klaus; Wallenius, Maria; Lützenkirchen, Klaus; Horta, Joan; Nicholl, Adrian; Rasmussen, Gert; van Belle, Pieter; Varga, Zsolt; Buda, Razvan; Erdmann, Nicole; Kratz, Jens-Volker; Trautmann, Norbert; Fifield, L Keith; Tims, Stephen G; Fröhlich, Michaela B; Steier, Peter

    2015-01-01

    Here we present a nuclear forensic study of uranium from German nuclear projects which used different geometries of metallic uranium fuel.3b,d, 4 Through measurement of the 230Th/234U ratio, we could determine that the material had been produced in the period from 1940 to 1943. To determine the geographical origin of the uranium, the rare-earth-element content and the 87Sr/86Sr ratio were measured. The results provide evidence that the uranium was mined in the Czech Republic. Trace amounts of 236U and 239Pu were detected at the level of their natural abundance, which indicates that the uranium fuel was not exposed to any major neutron fluence. PMID:26501922

  10. Ternary borate-nucleoside complex stabilization by Ribonuclease A demonstrates phosphate mimicry

    PubMed Central

    Gabel, Scott A.; London, Robert E.

    2010-01-01

    Phosphate esters play a central role in cellular energetics, biochemical activation, signal transduction and conformational switching. The structural homology of the borate anion with phosphate, combined with its ability to spontaneously esterify hydroxyl groups, suggested that phosphate-ester recognition sites on proteins might exhibit significant affinity for non-enzymatically formed borate esters. 11B NMR studies and activity measurements on ribonuclease A in the presence of borate and several cytidine analogs demonstrate the formation of a stable ternary RNase A•3′-deoxycytidine-2′-borate ternary complex that mimics the complex formed between RNase A and a 2′-cytidine monophosphate (2′-CMP) inhibitor. Alternatively, no slowly exchanging borate resonance is observed for a ternary RNase A, borate, 2′-deoxycytidine mixture, demonstrating the critical importance of the 2′-hydroxyl group for complex formation. Titration of the ternary complex with 2′-CMP shows that it can displace the bound borate ester with a binding constant that is close to the reported inhibition constant of RNase A by 2′CMP. RNase A binding of a cyclic cytidine-2′,3′-borate ester, which is a structural homolog of the cytidine-2′,3′-cyclic phosphate substrate, could also be demonstrated. The apparent dissociation constant for the cytidine-2′,3′-borate•RNase A complex is 0.8 mM, which compares with a Michaelis constant of 11 mM for cCMP at pH 7, indicating considerably stronger binding. However, the value is 1000-fold larger than the reported dissociation constant of the RNase A complex with uridine-vanadate. These results are consistent with recent reports suggesting that in situ formation of borate esters that mimic the corresponding phosphate esters support enzyme catalysis. PMID:17957392

  11. 14. VIEW OF METAL ROLLING OPERATION. THE METALS ARE BEING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF METAL ROLLING OPERATION. THE METALS ARE BEING PREPARED TO BE ROLLED INTO SHEETS OF SPECIFIC THICKNESS. COMPONENT PARTS WERE FABRICATED FROM THE METAL SHEETS. (11/82) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  12. A crystal-chemical classification of borate structures with emphasis on hydrated borates

    USGS Publications Warehouse

    Christ, C.L.; Clark, J.R.

    1977-01-01

    The rules governing formation of hydrated borate polyanions that were proposed by C.L. Christ in 1960 are critically reviewed and new rules added on the basis of recent crystal structure determinations. Principles and classifications previously published by others are also critically reviewed briefly. The fundamental building blocks from which borate polyanions can be constructed are defined on the basis of the number n of boron atoms, and the fully hydrated polyanions are illustrated. Known structures are grouped accordingly, and a shorthand notation using n and symbols ?? = triangle, T = tetrahedron is introduced so that the polyanions can be easily characterized. For example, 3:??+2T describes [B3O3(OH)5]2-. Correct structural formulas are assigned borates with known structures whereas borates of unknown structure are grouped separately. ?? 1977 Springer-Verlag.

  13. Simultaneous immobilization of borate, arsenate, and silicate from geothermal water derived from mining activity by co-precipitation with hydroxyapatite.

    PubMed

    Sasaki, Keiko; Hayashi, Yoshikazu; Toshiyuki, Kenta; Guo, Binglin

    2018-09-01

    The treatment of the geothermal water discharged through mining activity is a critical issue because the rate of discharge is 12,000 m 3 per day and the discharge contains high concentrations of borate (>20 mg/L) and arsenate (ca. 0.4 mg/L) as well as silicate and carbonate. The simultaneous reduction of borate and arsenate concentrations to acceptable levels was successfully performed by co-precipitation with hydroxyapatite (HAp). Although the coexisting high concentrations of carbonate act as a disturbing element, the co-precipitation equilibrium of borate was shifted to lower values by adjusting the P/Ca molar ratio, and the removal rate of borate was accelerated by using Al 3+ additives, resulting in the efficient reduction of borate within 1 h. The initially immobilized boron in HAp is in the tetragonal form, which probably occupies the hydroxyl sites in HAp, gradually transforming into the trigonal form in the solid state, as interpreted by 1 H NMR and 11 B-NMR. The coexisting silicate was also immobilized in an ellestadite form, as confirmed by 29 Si-NMR measurements. Arsenate and silicate were immobilized before borate in geothermal water. A dissolution assay of borate in the solid residues after co-precipitation with HAp verified the acceptable stability of borate, which is independent of the amount of added Al 3+ . Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. CONTINUOUS CHELATION-EXTRACTION PROCESS FOR THE SEPARATION AND PURIFICATION OF METALS

    DOEpatents

    Thomas, J.R.; Hicks, T.E.; Rubin, B.; Crandall, H.W.

    1959-12-01

    A continuous process is presented for separating metal values and groups of metal values from each other. A complex mixture. e.g., neutron-irradiated uranium, can be resolved into component parts. In the present process the values are dissolved in an acidic solution and adjusted to the proper oxidation state. Thenceforth the solution is contacted with an extractant phase comprising a fluorinated beta -diketone in an organic solvent under centain pH conditions whereupon plutonium and zirconium are extracted. Plutonium is extracted from the foregoing extract with reducing aqueous solutions or under specified acidic conditions and can be recovered from the aqueous solution. Zirconium is then removed with an oxalic acid aqueous phase. The uranium is recovered from the residual original solution using hexone and hexone-diketone extractants leaving residual fission products in the original solution. The uranium is extracted from the hexone solution with dilute nitric acid. Improved separations and purifications are achieved using recycled scrub solutions and the "self-salting" effect of uranyl ions.

  15. A database of radionuclide activity and metal concentrations for the Alligator Rivers Region uranium province.

    PubMed

    Doering, Che; Bollhöfer, Andreas

    2016-10-01

    This paper presents a database of radionuclide activity and metal concentrations for the Alligator Rivers Region (ARR) uranium province in the Australian wet-dry tropics. The database contains 5060 sample records and 57,473 concentration values. The data are for animal, plant, soil, sediment and water samples collected by the Environmental Research Institute of the Supervising Scientist (ERISS) as part of its statutory role to undertake research and monitoring into the impacts of uranium mining on the environment of the ARR. Concentration values are provided in the database for 11 radionuclides ( 227 Ac, 40 K, 210 Pb, 210 Po, 226 Ra, 228 Ra, 228 Th, 230 Th, 232 Th, 234 U, 238 U) and 26 metals (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, P, Pb, Rb, S, Sb, Se, Sr, Th, U, V, Zn). Potential uses of the database are discussed. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  16. Borates

    USGS Publications Warehouse

    Angulo, M.A.

    2011-01-01

    The article discusses the latest developments in the borates industry, particularly in the U.S., as of June 2011. It claims that the biggest economically feasible deposits of borates are seen in the U.S.' Mojave Desert, the Alpide belt in southern Asia and the Andean belt of South America. Turkish state-owned mining firm Eti Maden AS reported that borates were mainly used in the manufacture of glass, ceramics, fertilizer and detergent in 2009.

  17. Non-enzymatic U(VI) interactions with biogenic mackinawite

    NASA Astrophysics Data System (ADS)

    Veeramani, H.; Qafoku, N. P.; Kukkadapu, R. K.; Murayama, M.; Hochella, M. F.

    2011-12-01

    Reductive immobilization of hexavalent uranium [U(VI)] by stimulation of dissimilatory metal and/or sulfate reducing bacteria (DMRB or DSRB) has been extensively researched as a remediation strategy for subsurface U(VI) contamination. These bacteria derive energy by reducing oxidized metals as terminal electron acceptors, often utilizing organic substrates as electron donors. Thus, when evaluating the potential for in-situ uranium remediation in heterogeneous subsurface media, it is important to understand how the presence of alternative electron acceptors such as Fe(III) and sulfate affect U(VI) remediation and the long term behavior and reactivity of reduced uranium. Iron, an abundant subsurface element, represents a substantial sink for electrons from DMRB, and the reduction of Fe(III) leads to the formation of dissolved Fe(II) or to reactive biogenic Fe(II)- and mixed Fe(II)/Fe(III)- mineral phases. Consequently, abiotic U(VI) reduction by reactive forms of biogenic Fe(II) minerals could be a potentially important process for uranium immobilization. In our study, the DMRB Shewanella putrefaciens CN32 was used to synthesize a biogenic Fe(II)-bearing sulfide mineral: mackinawite, that has been characterized by XRD, SEM, HRTEM and Mössbauer spectroscopy. Batch experiments involving treated biogenic mackinawite and uranium (50:1 molar ratio) were carried out at room temperature under strict anoxic conditions. Following complete removal of uranium from solution, the biogenic mackinawite was analyzed by a suite of analytical techniques including XAS, HRTEM and Mössbauer spectroscopy to determine the speciation of uranium and investigate concomitant Fe(II)-phase transformation. Determining the speciation of uranium is critical to success of a remediation strategy. The present work elucidates non-enzymatic/abiotic molecular scale redox interactions between biogenic mackinawite and uranium.

  18. Unexpected Interactions of the Cyanobacterial Metallothionein SmtA with Uranium.

    PubMed

    Acharya, Celin; Blindauer, Claudia A

    2016-02-15

    Molecules for remediating or recovering uranium from contaminated environmental resources are of high current interest, with protein-based ligands coming into focus recently. Metallothioneins either bind or redox-silence a range of heavy metals, conferring protection against metal stress in many organisms. Here, we report that the cyanobacterial metallothionein SmtA competes with carbonate for uranyl binding, leading to formation of heterometallic (UO2)(n)Zn4SmtA species, without thiol oxidation, zinc loss, or compromising secondary or tertiary structure of SmtA. In turn, only metalated and folded SmtA species were found to be capable of uranyl binding. (1)H NMR studies and molecular modeling identified Glu34/Asp38 and Glu12/C-terminus as likely adventitious, but surprisingly strong, bidentate binding sites. While it is unlikely that these interactions correspond to an evolved biological function of this metallothionein, their occurrence may offer new possibilities for designing novel multipurpose bacterial metallothioneins with dual ability to sequester both soft metal ions including Cu(+), Zn(2+), Cd(2+), Hg(2+), and Pb(2+) and hard, high-oxidation state heavy metals such as U(VI). The concomitant protection from the chemical toxicity of uranium may be valuable for the development of bacterial strains for bio-remediation.

  19. Photochemical route to actinide-transition metal bonds: synthesis, characterization and reactivity of a series of thorium and uranium heterobimetallic complexes.

    PubMed

    Ward, Ashleigh L; Lukens, Wayne W; Lu, Connie C; Arnold, John

    2014-03-05

    A series of actinide-transition metal heterobimetallics has been prepared, featuring thorium, uranium, and cobalt. Complexes incorporating the binucleating ligand N[ο-(NHCH2P(i)Pr2)C6H4]3 with either Th(IV) (4) or U(IV) (5) and a carbonyl bridged [Co(CO)4](-) unit were synthesized from the corresponding actinide chlorides (Th: 2; U: 3) and Na[Co(CO)4]. Irradiation of the resulting isocarbonyls with ultraviolet light resulted in the formation of new species containing actinide-metal bonds in good yields (Th: 6; U: 7); this photolysis method provides a new approach to a relatively unusual class of complexes. Characterization by single-crystal X-ray diffraction revealed that elimination of the bridging carbonyl and formation of the metal-metal bond is accompanied by coordination of a phosphine arm from the N4P3 ligand to the cobalt center. Additionally, actinide-cobalt bonds of 3.0771(5) Å and 3.0319(7) Å for the thorium and uranium complexes, respectively, were observed. The solution-state behavior of the thorium complexes was evaluated using (1)H, (1)H-(1)H COSY, (31)P, and variable-temperature NMR spectroscopy. IR, UV-vis/NIR, and variable-temperature magnetic susceptibility measurements are also reported.

  20. The effect of hydrogen peroxide on uranium oxide films on 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Wilbraham, Richard J.; Boxall, Colin; Goddard, David T.; Taylor, Robin J.; Woodbury, Simon E.

    2015-09-01

    For the first time the effect of hydrogen peroxide on the dissolution of electrodeposited uranium oxide films on 316L stainless steel planchets (acting as simulant uranium-contaminated metal surfaces) has been studied. Analysis of the H2O2-mediated film dissolution processes via open circuit potentiometry, alpha counting and SEM/EDX imaging has shown that in near-neutral solutions of pH 6.1 and at [H2O2] ⩽ 100 μmol dm-3 the electrodeposited uranium oxide layer is freely dissolving, the associated rate of film dissolution being significantly increased over leaching of similar films in pH 6.1 peroxide-free water. At H2O2 concentrations between 1 mmol dm-3 and 0.1 mol dm-3, formation of an insoluble studtite product layer occurs at the surface of the uranium oxide film. In analogy to corrosion processes on common metal substrates such as steel, the studtite layer effectively passivates the underlying uranium oxide layer against subsequent dissolution. Finally, at [H2O2] > 0.1 mol dm-3 the uranium oxide film, again in analogy to common corrosion processes, behaves as if in a transpassive state and begins to dissolve. This transition from passive to transpassive behaviour in the effect of peroxide concentration on UO2 films has not hitherto been observed or explored, either in terms of corrosion processes or otherwise. Through consideration of thermodynamic solubility product and complex formation constant data, we attribute the transition to the formation of soluble uranyl-peroxide complexes under mildly alkaline, high [H2O2] conditions - a conclusion that has implications for the design of both acid minimal, metal ion oxidant-free decontamination strategies with low secondary waste arisings, and single step processes for spent nuclear fuel dissolution such as the Carbonate-based Oxidative Leaching (COL) process.

  1. FUSED REACTOR FUELS

    DOEpatents

    Mayer, S.W.

    1962-11-13

    This invention relates to a nuciear reactor fuel composition comprising (1) from about 0.01 to about 50 wt.% based on the total weight of said composition of at least one element selected from the class consisting of uranium, thorium, and plutonium, wherein said eiement is present in the form of at least one component selected from the class consisting of oxides, halides, and salts of oxygenated anions, with components comprising (2) at least one member selected from the class consisting of (a) sulfur, wherein the sulfur is in the form of at least one entity selected irom the class consisting of oxides of sulfur, metal sulfates, metal sulfites, metal halosulfonates, and acids of sulfur, (b) halogen, wherein said halogen is in the form of at least one compound selected from the class of metal halides, metal halosulfonates, and metal halophosphates, (c) phosphorus, wherein said phosphorus is in the form of at least one constituent selected from the class consisting of oxides of phosphorus, metal phosphates, metal phosphites, and metal halophosphates, (d) at least one oxide of a member selected from the class consisting of a metal and a metalloid wherein said oxide is free from an oxide of said element in (1); wherein the amount of at least one member selected from the class consisting of halogen and sulfur is at least about one at.% based on the amount of the sum of said sulfur, halogen, and phosphorus atom in said composition; and wherein the amount of said 2(a), 2(b) and 2(c) components in said composition which are free from said elements of uranium, thorium, arid plutonium, is at least about 60 wt.% based on the combined weight of the components of said composition which are free from said elements of uranium, thorium, and plutonium. (AEC)

  2. Materials. Section 1 of Symposium on the peaceful uses of atomic energy in Australia, 1958, held in Sydney, in June 1958

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The environments of the known uranium occurences in South Australia arc described, and the relation of uranium mineralization with sodic granitic rocks is emphasized. The problems in designing equipment for radiometric prospecting are reviewed. The fabrication and properties of BeO, UO/sub 2/, ThO/sub 2/, and mixed oxides are discussed. The use of pulsing in a uranium extraction pilot plant ion exchange column is described. The wetting of metals by liquid metals is reviewed with emphasis on liquid sodium. The geological nature, extent, and future prospects of minerals with atomic energy applications, occurring in New South Wales are outlined. The developmentmore » of a process for uranium recovery from Mary Kathleen ores is described. Techniques and processes involved in locating, mining, and concentrating davidite-type ores at Radium Hill, South Australia are described. The uranium deposits of the Northern Territory, Australia, are classified and described. The flotation behavior of the simple oxide minerals, uraninite and the colloform variety is discussed. The Port Pirie Treatment Plant for uranium recovery from refractory Radium Hill concentrates is described. The plant utilizes the sulfuric acid-ion exchange process. The uranium deposits of Queensland are described. the details of the production of uranium ore concentrates at Rum jungle near Darwin, Australia, are given. A brief account of the use of neutron diffraction analysis in crystallography is given, and the neutron spectrometers installed on the High Flux Australian Research Reactor are described. (T.R.H.)« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Li; Wang, Yilin; Werner, Philipp

    Understanding the electronic properties of actinide oxides under pressure poses a great challenge for experimental and theoretical studies. Here, we investigate the electronic structure of cubic phase uranium dioxide at different volumes using a combination of density functional theory and dynamical mean-field theory. The ab initio calculations predict an orbital-selective insulator-metal transition at a moderate pressure of ~45 GPa. At this pressure the uranium's 5f 5/2 state becomes metallic, while the 5f 7/2 state remains insulating up to about 60 GPa. In the metallic state, we observe a rapid decrease of the 5f occupation and total angular momentum with pressure.more » Simultaneously, the so-called "Zhang-Rice state", which is of predominantly 5f 5/2 character, quickly disappears after the transition into the metallic phase.« less

  4. JACKETING URANIUM

    DOEpatents

    Saller, H.A.; Keeler, J.R.

    1959-07-14

    The bonding to uranium of sheathing of iron or cobalt, or nickel, or alloys thereof is described. The bonding is accomplished by electro-depositing both surfaces to be joined with a coating of silver and amalgamating or alloying the silver layer with mercury or indium. Then the silver alloy is homogenized by exerting pressure on an assembly of the uranium core and the metal jacket, reducing the area of assembly and heating the assembly to homogenize by diffusion.

  5. Preliminary Numerical Simulation of IR Structure Development in a Hypothetical Uranium Release.

    DTIC Science & Technology

    1981-11-16

    art Identify by block nAsb.’) IR Structure Power spectrum Uranium release Parallax effects Numerical simulation PHARO code Isophots LWIR 20. _PSTRACT...release at 200 km altitude. Of interest is the LWIR emission from uranium oxide ions, induced by sunlight and earthshine. Assuming a one-level fluid...defense systems of long wave infrared ( LWIR ) emissions from metallic oxides in the debris from a high altitude nuclear explosion (HANE) is an

  6. MELTING AND PURIFICATION OF URANIUM

    DOEpatents

    Spedding, F.H.; Gray, C.F.

    1958-09-16

    A process is described for treating uranium ingots having inner metal portions and an outer oxide skin. The method consists in partially supporting such an ingot on the surface of a grid or pierced plate. A sufficient weight of uranium is provided so that when the mass becomes molten, the oxide skin bursts at the unsupported portions of its bottom surface, allowing molten urantum to flow through the burst skin and into a container provided below.

  7. Synthesis and evaluation of aminoborates derived from boric acid and diols for protecting wood against fungal and thermal degradation

    Treesearch

    George C. Chen

    2008-01-01

    N-methyl amino catechol borate (1), N-methyl amino-4-methyl catechol borate (2), N-methyl amino-4-t-butyl catechol borate (3), and N-methyl amino-2, 3-naphthyl borate (4) were synthesized by reflux of boric acid with a diol in solvent N,N-dimethyl formamide. The aminoborates were characterized by proton nuclear magnetic resonance spectroscopy, FTIR spectroscopy and...

  8. Mono- and binuclear molybdenum and tungsten complexes containing asymmetric bridging ligands: Effects of ligand conjugation and conformation on metal-metal interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, A.; Jeffery, J.C.; Maher, J.P.

    The authors have prepared the new monodentate ligands 4-(4-methoxyphenyl)pyridine, 1-(4-pyridyl)-2-(4-methoxyphenyl)ethene, 1-(4-pyridyl)-2-(3-methoxyphenyl)ethene, and 1-(3-pyridyl)-2-(4-methoxyphenyl)ethene (L[sup 5]-L[sup 8]); demethylation of the methoxy group in each case afforded the new bridging bidentate ligands HL[sup 1]-HL[sup 4], which contain one pyridyl and one phenolate donor. Attachment of a MoL*(NO)Cl [L* = hydrotris(3,5-dimethylpyrazolyl)borate] moiety to the pyridyl groups of L[sup 5]-L[sup 8] gave the 17-electron complexes [Mo(NO)L*ClL[prime

  9. Recent advances in rare earth doped alkali-alkaline earth borates for solid state lighting applications

    NASA Astrophysics Data System (ADS)

    Verma, Shefali; Verma, Kartikey; Kumar, Deepak; Chaudhary, Babulal; Som, Sudipta; Sharma, Vishal; Kumar, Vijay; Swart, Hendrik C.

    2018-04-01

    As a novel class of inorganic phosphor, the alkali-alkaline earth borate phosphors have gained huge attention due to their charming applications in solid-state lighting (SSL) and display devices. The current research drive shows that phosphors based on the alkali-alkaline earth borates have transformed the science and technology due to their high transparency over a broad spectral range, their flexibility in structure and durability for mechanical and high-laser applications. Recent advances in various aspects of rare-earth (RE) doped borate based phosphors and their utilizations in SSL and light emitting diodes are summarized in this review article. Moreover, the present status and upcoming scenario of RE-doped borate phosphors were reviewed in general along with the proper credential from the existing literature. It is believed that this review is a sole compilation of crucial information about the RE-doped borate phosphors in a single platform.

  10. An aerosol particle containing enriched uranium encountered during routine sampling

    NASA Astrophysics Data System (ADS)

    Murphy, Daniel; Froyd, Karl; Evangeliou, NIkolaos; Stohl, Andreas

    2017-04-01

    The composition of single aerosol particles has been measured using a laser ionization mass spectrometer during the global Atmospheric Tomography mission. The measurements were targeting the background atmosphere, not radiochemical emissions. One sub-micron particle sampled at about 7 km altitude near the Aleutian Islands contained uranium with approximately 3% 235U. It is the only particle with enriched uranium out of millions of particles sampled over several decades of measurements with this instrument. The particle also contained vanadium, alkali metals, and organic material similar to that present in emissions from combustion of heavy oil. No zirconium or other metals that might be characteristic of nuclear reactors were present, probably suggesting a source other than Fukushima or Chernobyl. Back trajectories suggest several areas in Asia that might be sources for the particle.

  11. Phase transformations and equation of state of praseodymium metal to 103 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesnut, Gary N.; Vohra, Yogesh K.

    2000-08-01

    Pressure-induced structural phase transformations in a trivalent rare-earth metal praseodymium (Pr) were studied at room temperature in a diamond anvil cell to 103 GPa by energy dispersive x-ray diffraction using a synchrotron source. Our x-ray diffraction studies document the following crystal structure sequence: dhcp{yields}fcc{yields}distorted fcc(hR24 type){yields}monoclinic(C2/m){yields}{alpha}-uranium with increasing pressure. We measure a 16.7% volume collapse at the transition to the {alpha}-uranium phase at 20 GPa. The high-pressure {alpha}-uranium phase in Pr was found to be stable to the highest pressure of 103 GPa, which corresponds to a volume compression V/V{sub 0}=0.407. (c) 2000 The American Physical Society.

  12. Thermal reactions of uranium metal, UO 2, U 3O 8, UF 4, and UO 2F 2 with NF 3 to produce UF 6

    NASA Astrophysics Data System (ADS)

    McNamara, Bruce; Scheele, Randall; Kozelisky, Anne; Edwards, Matthew

    2009-11-01

    This paper demonstrates that NF 3 fluorinates uranium metal, UO 2, UF 4, UO 3, U 3O 8, and UO 2F 2·2H 2O to produce the volatile UF 6 at temperatures between 100 and 550 °C. Thermogravimetric and differential thermal analysis reaction profiles are described that reflect changes in the uranium fluorination/oxidation state, physiochemical effects, and instances of discrete chemical speciation. Large differences in the onset temperatures for each system investigated implicate changes in mode of the NF 3 gas-solid surface interaction. These studies also demonstrate that NF 3 is a potential replacement fluorinating agent in the existing nuclear fuel cycle and in actinide volatility reprocessing.

  13. The oxidative corrosion of carbide inclusions at the surface of uranium metal during exposure to water vapour.

    PubMed

    Scott, T B; Petherbridge, J R; Harker, N J; Ball, R J; Heard, P J; Glascott, J; Allen, G C

    2011-11-15

    The reaction between uranium and water vapour has been well investigated, however discrepancies exist between the described kinetic laws, pressure dependence of the reaction rate constant and activation energies. Here this problem is looked at by examining the influence of impurities in the form of carbide inclusions on the reaction. Samples of uranium containing 600 ppm carbon were analysed during and after exposure to water vapour at 19 mbar pressure, in an environmental scanning electron microscope (ESEM) system. After water exposure, samples were analysed using secondary ion mass spectrometry (SIMS), focused ion beam (FIB) imaging and sectioning and transmission electron microscopy (TEM) with X-ray diffraction (micro-XRD). The results of the current study indicate that carbide particles on the surface of uranium readily react with water vapour to form voluminous UO(3) · xH(2)O growths at rates significantly faster than that of the metal. The observation may also have implications for previous experimental studies of uranium-water interactions, where the presence of differing levels of undetected carbide may partly account for the discrepancies observed between datasets. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  14. Thermal radiative and thermodynamic properties of solid and liquid uranium and plutonium carbides in the visible-near-infrared range

    NASA Astrophysics Data System (ADS)

    Fisenko, Anatoliy I.; Lemberg, Vladimir F.

    2016-09-01

    The knowledge of thermal radiative and thermodynamic properties of uranium and plutonium carbides under extreme conditions is essential for designing a new metallic fuel materials for next generation of a nuclear reactor. The present work is devoted to the study of the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides at their melting/freezing temperatures. The Stefan-Boltzmann law, total energy density, number density of photons, Helmholtz free energy density, internal energy density, enthalpy density, entropy density, heat capacity at constant volume, pressure, and normal total emissivity are calculated using experimental data for the frequency dependence of the normal spectral emissivity of liquid and solid uranium and plutonium carbides in the visible-near infrared range. It is shown that the thermal radiative and thermodynamic functions of uranium carbide have a slight difference during liquid-to-solid transition. Unlike UC, such a difference between these functions have not been established for plutonium carbide. The calculated values for the normal total emissivity of uranium and plutonium carbides at their melting temperatures is in good agreement with experimental data. The obtained results allow to calculate the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides for any size of samples. Based on the model of Hagen-Rubens and the Wiedemann-Franz law, a new method to determine the thermal conductivity of metals and carbides at the melting points is proposed.

  15. Development of UO2/PuO2 dispersed in uranium matrix CERMET fuel system for fast reactors

    NASA Astrophysics Data System (ADS)

    Sinha, V. P.; Hegde, P. V.; Prasad, G. J.; Pal, S.; Mishra, G. P.

    2012-08-01

    CERMET fuel with either PuO2 or enriched UO2 dispersed in uranium metal matrix has a strong potential of becoming a fuel for the liquid metal cooled fast breeder reactors (LMR's). In fact it may act as a bridge between the advantages and disadvantages associated with the two extremes of fuel systems (i.e. ceramic fuel and metallic fuel) for fast reactors. At Bhabha Atomic Research Centre (BARC), R & D efforts are on to develop this CERMET fuel by powder metallurgy route. This paper describes the development of flow sheet for preparation of UO2 dispersed in uranium metal matrix pellets for three different compositions i.e. U-20 wt%UO2, U-25 wt%UO2 and U-30 wt%UO2. It was found that the sintered pellets were having excellent integrity and their linear mass was higher than that of carbide fuel pellets used in Fast Breeder Test Reactor programme (FBTR) in India. The pellets were characterized by X-ray diffraction (XRD) technique for phase analysis and lattice parameter determination. The optical microstructures were developed and reported for all the three different U-UO2 compositions.

  16. Maternal exposure to metals—Concentrations and predictors of exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callan, A.C., E-mail: a.callan@ecu.edu.au; Hinwood, A.L.; Ramalingam, M.

    2013-10-15

    A variety of metals are important for biological function but have also been shown to impact health at elevated concentrations, whereas others have no known biological function. Pregnant women are a vulnerable population and measures to reduce exposure in this group are important. We undertook a study of maternal exposure to the metals, aluminium, arsenic, copper, cobalt, chromium, lithium, manganese, nickel, selenium, tin, uranium and zinc in 173 participants across Western Australia. Each participant provided a whole blood and urine sample, as well as drinking water, residential soil and dust samples and completed a questionnaire. In general the concentrations ofmore » metals in all samples were low with the notable exception of uranium (blood U mean 0.07 µg/L, range <0.01–0.25 µg/L; urinary U mean 0.018 µg/g creatinine, range <0.01–0.199 µg/g creatinine). Factors that influenced biological concentrations were consumption of fish which increased urinary arsenic concentrations, hobbies (including mechanics and welding) which increased blood manganese concentrations and iron/folic acid supplement use which was associated with decreased concentrations of aluminium and nickel in urine and manganese in blood. Environmental concentrations of aluminium, copper and lithium were found to influence biological concentrations, but this was not the case for other environmental metals concentrations. Further work is underway to explore the influence of diet on biological metals concentrations in more detail. The high concentrations of uranium require further investigation. -- Highlights: • High concentrations of uranium with respect to international literature. • Environmental concentrations of Al, Cu and Li influenced urinary concentrations. • Exposure to mechanics/welding hobbies increased blood Mn concentrations. • Iron/Folic acid supplements reduced biological concentrations of Al, Ni and Mn.« less

  17. Room temperature electrodeposition of actinides from ionic solutions

    DOEpatents

    Hatchett, David W.; Czerwinski, Kenneth R.; Droessler, Janelle; Kinyanjui, John

    2017-04-25

    Uranic and transuranic metals and metal oxides are first dissolved in ozone compositions. The resulting solution in ozone can be further dissolved in ionic liquids to form a second solution. The metals in the second solution are then electrochemically deposited from the second solutions as room temperature ionic liquid (RTIL), tri-methyl-n-butyl ammonium n-bis(trifluoromethansulfonylimide) [Me.sub.3N.sup.nBu][TFSI] providing an alternative non-aqueous system for the extraction and reclamation of actinides from reprocessed fuel materials. Deposition of U metal is achieved using TFSI complexes of U(III) and U(IV) containing the anion common to the RTIL. TFSI complexes of uranium were produced to ensure solubility of the species in the ionic liquid. The methods provide a first measure of the thermodynamic properties of U metal deposition using Uranium complexes with different oxidation states from RTIL solution at room temperature.

  18. A Heterobimetallic Complex With an Unsupported Uranium(III)-Aluminum(I) Bond: (CpSiMe3)3U-AlCp* (Cp* = C5Me5)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minasian, Stefan; Krinsky Ph.D., Jamin; Williams, Valerie

    2008-07-23

    The discovery of molecular metal-metal bonds has been of fundamental importance to the understanding of chemical bonding. For the actinides, examples of unsupported metal-metal bonds are relatively uncommon, consisting of Cp{sub 3}U-SnPh{sub 3}, and several actinide-transition metal complexes. Traditionally, bonding in the f-elements has been described as electrostatic; however, elucidating the degree of covalency is a subject of recent research. In carbon monoxide complexes of the trivalent uranium metallocenes, decreased {nu}{sub CO} values relative to free CO suggest that the U(III) atom acts as a {pi}-donor. Ephritikhine and coworkers have demonstrated that {pi}-accepting ligands can differentiate trivalent lanthanide and actinidemore » ions, an effect that renders this chemistry of interest in the context of nuclear waste separation technology.« less

  19. Uranium from German Nuclear Power Projects of the 1940s--A Nuclear Forensic Investigation.

    PubMed

    Mayer, Klaus; Wallenius, Maria; Lützenkirchen, Klaus; Horta, Joan; Nicholl, Adrian; Rasmussen, Gert; van Belle, Pieter; Varga, Zsolt; Buda, Razvan; Erdmann, Nicole; Kratz, Jens-Volker; Trautmann, Norbert; Fifield, L Keith; Tims, Stephen G; Fröhlich, Michaela B; Steier, Peter

    2015-11-02

    Here we present a nuclear forensic study of uranium from German nuclear projects which used different geometries of metallic uranium fuel. Through measurement of the (230)Th/(234)U ratio, we could determine that the material had been produced in the period from 1940 to 1943. To determine the geographical origin of the uranium, the rare-earth-element content and the (87)Sr/(86)Sr ratio were measured. The results provide evidence that the uranium was mined in the Czech Republic. Trace amounts of (236)U and (239)Pu were detected at the level of their natural abundance, which indicates that the uranium fuel was not exposed to any major neutron fluence. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Following the electroreduction of uranium dioxide to uranium in LiCl-KCl eutectic in situ using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Brown, L. D.; Abdulaziz, R.; Jervis, R.; Bharath, V. J.; Atwood, R. C.; Reinhard, C.; Connor, L. D.; Simons, S. J. R.; Inman, D.; Brett, D. J. L.; Shearing, P. R.

    2015-09-01

    The electrochemical reduction of uranium dioxide to metallic uranium has been investigated in lithium chloride-potassium chloride eutectic molten salt. Laboratory based electrochemical studies have been coupled with in situ energy dispersive X-ray diffraction, for the first time, to deduce the reduction pathway. No intermediate phases were identified using the X-ray diffraction before, during or after electroreduction to form α-uranium. This suggests that the electrochemical reduction occurs via a single, 4-electron-step, process. The rate of formation of α-uranium is seen to decrease during electrolysis and could be a result of a build-up of oxygen anions in the molten salt. Slow transport of O2- ions away from the UO2 working electrode could impede the electrochemical reduction.

  1. METAL SURFACE TREATMENT

    DOEpatents

    Eubank, L.D.

    1958-08-12

    Improved flux baths are described for use in conjunction with hot dipped coatings for uranium. The flux bath consists of molten alkali metal, or alkaline earth metal halides. One preferred embodiment comprises a bath containing molten KCl, NaCl, and LiCl in proportions approximating the triple eutectic.

  2. Tris-borate is a poor counterion for RNA: a cautionary tale for RNA folding studies

    PubMed Central

    Buchmueller, Karen L.; Weeks, Kevin M.

    2004-01-01

    Native polyacrylamide gel electrophoresis is a powerful approach for visualizing RNA folding states and folding intermediates. Tris-borate has a high-buffering capacity and is therefore widely used in electrophoresis-based investigations of RNA structure and folding. However, the effectiveness of Tris-borate as a counterion for RNA has not been systematically investigated. In a recirculated Hepes/KCl buffer, the catalytic core of the bI5 group I intron RNA undergoes a conformational collapse characterized by a bulk transition midpoint, or Mg1/2, of ∼3 mM, consistent with extensive independent biochemical experiments. In contrast, in Tris-borate, RNA collapse has a much smaller apparent Mg1/2, equal to 0.1 mM, because in this buffer the RNA undergoes a different, large amplitude, folding transition at low Mg2+ concentrations. Analysis of structural neighbors using a short-lived, RNA-tethered, photocrosslinker indicates that the global RNA structure eventually converges in the two buffer systems, as the divalent ion concentration approaches ∼1 mM Mg2+. The weak capacity of Tris-borate to stabilize RNA folding may reflect relatively unfavorable interactions between the bulky Tris-borate ion and RNA or partial coordination of RNA functional groups by borate. Under some conditions, Tris-borate is a poor counterion for RNA and its use merits careful evaluation in RNA folding studies. PMID:15601995

  3. Recovery of protactinium from molten fluoride nuclear fuel compositions

    DOEpatents

    Baes, C.F. Jr.; Bamberger, C.; Ross, R.G.

    1973-12-25

    A method is provided for separating protactinium from a molten fluonlde salt composition consisting essentially of at least one alkali and alkaline earth metal fluoride and at least one soluble fluoride of uranium or thorium which comprises oxidizing the protactinium in said composition to the + 5 oxidation state and contacting said composition with an oxide selected from the group consisting of an alkali metal oxide, an alkaline earth oxide, thorium oxide, and uranium oxide, and thereafter isolating the resultant insoluble protactinium oxide product from said composition. (Official Gazette)

  4. High frequency EMI sensing for estimating depleted uranium radiation levels in soil

    NASA Astrophysics Data System (ADS)

    Shubitidze, Fridon; Barrowes, Benjamin E.; Ballard, John; Unz, Ron; Randle, Adam; Larson, Steve L.; O'Neill, Kevin A.

    2018-04-01

    This paper studies high (100 kHz up to 15 MHz) frequency electromagnetic responses (HFEMI) for DU metallic pieces and DU contaminated soils and derives a simple empirical expression from the measured HFEMI data for estimating DU contamination levels in soil. Depleted uranium (DU) is the byproduct of uranium enrichment and contains 33% less radioactive isotopes than natural uranium. There are at least thirty facilities at fourteen separate locations in the US, where munitions containing DU have been evaluated or used for training. At these sites, which vary in size, evaluation studies have been conducted with and without catch boxes. In addition, the DoD used DU at open firing ranges as large as thousands of acres (hundreds of hectares), for both artillery and aircraft training. These activities have left a legacy of DU contamination. Currently at military sites where DU munitions have been or are being used, cleanup activities mainly are done by excavating and shipping large volumes of site soil and berm materials to a hazardous material radiation disposal site. This approach is very time consuming, costly, and associated with the potential for exposure of personnel performing excavation and transportation. It also limits range use during the operation. So, there is an urgent need for technologies for rapid surveying of large areas to detect, locate, and removal of DU contaminants at test sites. Additionally, the technologies are needed to detect material at a depth of at least 30 cm as well as discriminate between DU metals and oxides from natural uranium and from other conductive metals such as natural and man-made range clutter. One of the potential technologies for estimating DU radiation levels in soils is HFEMI sensing. In this paper, HFEMI signals are collected for DU metal pieces, sodium diunarate (Na2U2 O3) and tri-uranium octoxide (U3O8). The EMI signal's sensitivity with respect to DU material composition and conditions are illustrated and analyzed. A new scheme for extracting near-surface soil's EM parameters is formulated.

  5. Hydrothermal Crystal Growth of Lithium Tetraborate and Lithium Gamma-Metaborate

    DTIC Science & Technology

    2014-03-27

    could be atomic nuclei, the center of mass of some complex—those details are immaterial. Both the rectangle and lozenge form potential cross-sections...HR y d L Figure 10. The red lines are the various contours of solution of 9, using a = 10 Bohr radii and the mass of coefficients on the LHS forced to...absorptivity is significantly below that of the transition metals or the actinides [9]. The lithium borate crystals are therefore a strong candidate for

  6. LOFT. Containment and service building (TAN650). Section through east/west axis ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Containment and service building (TAN-650). Section through east/west axis of building as viewed from the north. Shows steel ladder to top of dome, gable roof of borated water tank enclosure, pumice block siding of pre-amp tower, metal siding of duct enclosure. Kaiser engineers 6413-11-STEP/LOFT-650-A-6. Date: October 1964. INEEL index code no. 036-650-00-486-122218 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  7. Efficacy of Biostimulation for Uranium Sequestration: Coupled Effects Sediment/Groundwater Geochemistry and Microbiology

    NASA Astrophysics Data System (ADS)

    Xu, J.; Veeramani, H.; Qafoku, N. P.; Singh, G.; Pruden, A.; Kukkadapu, R. K.; Hochella, M. F., Jr.

    2015-12-01

    A systematic flow-through column study was conducted using sediments and groundwater from the subsurface at the U.S. Department of Energy's Integrated Field Research Challenge (IFRC) site in Rifle, Colorado, to better understand the efficacy of uranium removal from the groundwater with and without biostimulation in the form of acetate amendments. The interactive effects of acetate amendment, groundwater/sediment geochemistry, and intrinsic bacterial community composition were evaluated using four types of sediments, collected from different uranium-contaminated (D08, LQ107, CD) or non-contaminated (RABS) aquifers. Subtle variations in the sediments' geochemistry in terms of mineral compositions, particle sizes, redox conditions, and metal(loid) co-contaminants had a marked effect on the uranium removal efficiency, following a descending trend of D08 (~ 90 to 95%) >> RABS (~ 20 to 25) ≥ LQ107 (~ 15 to 20%) > CD (~ -10 to 0%). Overall, biostimulation of the sediments with acetate drove deeper anoxic conditions and observable shifts in bacterial population structures. The abundance of dissimilatory sulfate-reduction genes (i.e., drsA), markers of sulfate-reducing bacteria, were highest in the sediments that performed best in terms of uranium removal. By comparison, no obvious associations were found between the uranium removal efficiency and the abundance of typical iron-reducing microorganisms, e.g., Geobacter spp. In the sediments where bacterial biomass was relatively low and sulfate-reduction was not detected (i.e., CD), abiotic adsorption onto fine mineral surfaces such as phyllosilates likely played a dominant role in the attenuation of aqueous uranium. In these scenarios, however, acetate amendment induced significant remobilization of the sequestered uranium and other heavy metals (e.g., strontium), leading to zero or negative uranium removal efficiencies (i.e., CD). The results of this study suggest that reductive immobilization of uranium can be effectively achieved under predominantly sulfate-reducing conditions in sediment microenvironments when bioavailable iron (III) (oxyhydr)oxides are mostly depleted, and provide insight into the integrated roles of sediment geochemistry, mineralogy, and bacterial population dynamics.

  8. FLUORINATION PROCESS

    DOEpatents

    McMillan, T.S.

    1957-10-29

    A process for the fluorination of uranium metal is described. It is known that uranium will react with liquid chlorine trifluoride but the reaction proceeds at a slow rate. However, a mixture of a halogen trifluoride together with hydrogen fluoride reacts with uranium at a significantly faster rate than does a halogen trifluoride alone. Bromine trifluoride is suitable for use in the process, but chlorine trifluoride is preferred. Particularly suitable is a mixture of ClF/sub 3/ and HF having a mole ratio (moles

  9. Microbial communities in low permeability, high pH uranium mine tailings: characterization and potential effects.

    PubMed

    Bondici, V F; Lawrence, J R; Khan, N H; Hill, J E; Yergeau, E; Wolfaardt, G M; Warner, J; Korber, D R

    2013-06-01

    To describe the diversity and metabolic potential of microbial communities in uranium mine tailings characterized by high pH, high metal concentration and low permeability. To assess microbial diversity and their potential to influence the geochemistry of uranium mine tailings using aerobic and anaerobic culture-based methods, in conjunction with next generation sequencing and clone library sequencing targeting two universal bacterial markers (the 16S rRNA and cpn60 genes). Growth assays revealed that 69% of the 59 distinct culturable isolates evaluated were multiple-metal resistant, with 15% exhibiting dual-metal hypertolerance. There was a moderately positive correlation coefficient (R = 0·43, P < 0·05) between multiple-metal resistance of the isolates and their enzyme expression profile. Of the isolates tested, 17 reduced amorphous iron, 22 reduced molybdate and seven oxidized arsenite. Based on next generation sequencing, tailings depth was shown to influence bacterial community composition, with the difference in the microbial diversity of the upper (0-20 m) and middle (20-40 m) tailings zones being highly significant (P < 0·01) from the lower zone (40-60 m) and the difference in diversity of the upper and middle tailings zone being significant (P < 0·05). Phylotypes closely related to well-known sulfate-reducing and iron-reducing bacteria were identified with low abundance, yet relatively high diversity. The presence of a population of metabolically-diverse, metal-resistant micro-organisms within the tailings environment, along with their demonstrated capacity for transforming metal elements, suggests that these organisms have the potential to influence the long-term geochemistry of the tailings. This study is the first investigation of the diversity and functional potential of micro-organisms present in low permeability, high pH uranium mine tailings. © 2013 The Society for Applied Microbiology.

  10. Characterization of uranium bearing material using x-ray fluorescence and direct gamma-rays measurement techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mujaini, M., E-mail: madihah@uniten.edu.my; Chankow, N.; Yusoff, M. Z.

    2016-01-22

    Uranium ore can be easily detected due to various gamma-ray energies emitted from uranium daughters particularly from {sup 238}U daughters such as {sup 214}Bi, {sup 214}Pb and {sup 226}Ra. After uranium is extracted from uranium ore, only low energy gamma-rays emitted from {sup 235}U may be detected if the detector is placed in close contact to the specimen. In this research, identification and characterization of uranium bearing materials is experimentally investigated using direct measurement of gamma-rays from {sup 235}U in combination with the x-ray fluorescence (XRF) technique. Measurement of gamma-rays can be conducted by using high purity germanium (HPGe) detectormore » or cadmium telluride (CdTe) detector while a {sup 57}Coradioisotope-excited XRF spectrometer using CdTe detector is used for elemental analysis. The proposed technique was tested with various uranium bearing specimens containing natural, depleted and enriched uranium in both metallic and powder forms.« less

  11. LEVELING METAL COATINGS

    DOEpatents

    Gage, H.A.

    1959-02-10

    A method is described for applying metallic coatings to a cylinder of uranium. An aluminum-silicon coat is applied by a process consisting of first cleaning the article by immersion for 5 minutes in 50% nitric acid at 65 C. The article then is dipped through a flux, prepared by adding 10% sodium fluoride to 90% of a flux comprising 53% potassium chloride, 42% lithium chloride, and 5% sodium chloride at 560 for 2 minutes and then directly into a molten metal bath comprising 99% aluminun and 12% silicon at 620 C for 3 minutes. While the coating is yet molten the article is transferred to a pair of steel rollers and rolled until the coating solidifies. By varying the composition of the flux other metals such as zinc, lead or the like may be coated on uranium in a similar manner.

  12. Transient phytoextraction agents: establishing criteria for the use of chelants in phytoextraction of recalcitrant metals.

    PubMed

    Parra, R; Ulery, A L; Elless, M P; Blaylock, M J

    2008-01-01

    The phytoremediation of recalcitrant metals such as lead and uranium rely on soil amendments to enhance metal availability within the rhizosphere. Because these amendments may persist in soils, agents that not only biodegrade rapidly but also are effective in triggering metal uptake in plants are needed for metals phytoextraction to be considered as an accepted practice. In this study, several biodegradable organic acids and chelating agents were assessed to determine if these amendments can be used in an effective manner, and if their activity and use is consistent with a proposed class of soil amendments for phytoextraction, here termed transient phytoextraction agents (TPAs). A TPA is proposed as an agent that would exhibit both effectiveness in triggering plant accumulation of the targeted metal while minimizing the risk of migration through rapid degradation or inactivation of the soluble complex. Eleven candidate TPAs (acetic acid, ascorbic acid, citric acid, malic acid, oxalic acid, succinic acid, ethylenediaminedisuccinic acid, dicarboxymethylglutamic acid, nitrilotriacetic acid, BayPure CX 100, and the siderophore desferrioxamine B) were tested in batch studies to evaluate their complexation behavior using contaminated soils, with uranium and lead as the target metals. A growth chamber study was then conducted with Brassica juncea (Indian mustard), Helianthus annuus (sunflower), and Festuca arundinacea (tall fescue) grown in a lead-contaminated soil that was treated with the candidate TPAs to assess phytoextraction effectiveness. For the soils tested, citric acid, oxalic acid, and succinic acid were found to be effective complexing agents for uranium phytoextraction, whereas Baypure CX 100 and citric acid exhibited effectiveness for lead phytoextraction.

  13. Self-assembled 3D zinc borate florets via surfactant assisted synthesis under moderate pressures: Process temperature dependent morphology study

    NASA Astrophysics Data System (ADS)

    Mahajan, Dhiraj S.; Deshpande, Tushar; Bari, Mahendra L.; Patil, Ujwal D.; Narkhede, Jitendra S.

    2018-04-01

    In the present study, we prepared zinc borates using aqueous phase synthesis under moderate pressures (MP) (<150 psi) with ethanol as a co-solvent in the presence of a quaternary ammonium surfactant-Cetyltrimethylammonium bromide (CTAB). 3D morphologies of self-assembled zinc borate (Zn(H2O)B2O4 · 0.12 H2O, Zn3B6O12 · 3.5H2O, ZnB2O4) resembling flower-like structures were obtained by varying temperature under moderate pressure conditions. Synthesized zinc borates’ florets were morphologically characterized by Field Emission Scanning Electron Microscopy. The x-ray diffractions of borate species reveal rhombohydra, monoclinic and cubic phases of zinc borate crystals as a function of process temperature. Additionally, thermal analysis confirms excellent dehydration/degradation behavior for the zinc borate crystals synthesized at moderate pressures and elevated temperatures and could be utilized as potential flame retardant fillers in the polymer matrices.

  14. Bioactive borate glass coatings for titanium alloys.

    PubMed

    Peddi, Laxmikanth; Brow, Richard K; Brown, Roger F

    2008-09-01

    Bioactive borate glass coatings have been developed for titanium and titanium alloys. Glasses from the Na(2)O-CaO-B(2)O(3) system, modified by additions of SiO(2), Al(2)O(3), and P(2)O(5), were characterized and compositions with thermal expansion matches to titanium were identified. Infrared and X-ray diffraction analyses indicate that a hydroxyapatite surface layer forms on the borate glasses after exposure to a simulated body fluid for 2 weeks at 37 degrees C; similar layers form on 45S5 Bioglass((R)) exposed to the same conditions. Assays with MC3T3-E1 pre-osteoblastic cells show the borate glasses exhibit in vitro biocompatibility similar to that of the 45S5 Bioglass((R)). An enameling technique was developed to form adherent borate glass coatings on Ti6Al4V alloy, with adhesive strengths of 36 +/- 2 MPa on polished substrates. The results show these new borate glasses to be promising candidates for forming bioactive coatings on titanium substrates.

  15. Real-time monitoring of plutonium content in uranium-plutonium alloys

    DOEpatents

    Li, Shelly Xiaowei; Westphal, Brian Robert; Herrmann, Steven Douglas

    2015-09-01

    A method and device for the real-time, in-situ monitoring of Plutonium content in U--Pu Alloys comprising providing a crucible. The crucible has an interior non-reactive to a metallic U--Pu alloy within said interior of said crucible. The U--Pu alloy comprises metallic uranium and plutonium. The U--Pu alloy is heated to a liquid in an inert or reducing atmosphere. The heated U--Pu alloy is then cooled to a solid in an inert or reducing atmosphere. As the U--Pu alloy is cooled, the temperature of the U--Pu alloy is monitored. A solidification temperature signature is determined from the monitored temperature of the U--Pu alloy during the step of cooling. The amount of Uranium and the amount of Plutonium in the U--Pu alloy is then determined from the determined solidification temperature signature.

  16. Diversity, metal resistance and uranium sequestration abilities of bacteria from uranium ore deposit in deep earth stratum.

    PubMed

    Islam, Ekramul; Sar, Pinaki

    2016-05-01

    Metal resistance and uranium (U) sequestration abilities of bacteria residing in subsurface U ore was investigated using 122 pure culture strains isolated through enrichment. The cumulative frequencies of isolates resistant to each metal tested were as follows: As(V), 74%; Zn, 58%; Ni, 53%; Cd, 47%; Cr(VI), 41%; Co, 40%; Cu, 20%; and Hg, 4%. 16S rRNA gene analysis revealed that isolated bacteria belonged to 14 genera with abundance of Arthrobacter, Microbacterium, Acinetobacter and Stenotrophomonas. Cobalt did not interfere with the growth of most of the bacterial isolates belonging to different groups while U allowed growth of four different genera of which Stenotrophomonas and Microbacterium showed high U tolerance. Interestingly, tolerance to Ni, Zn, Cu, and Hg was observed only in Microbacterium, Arthrobacter, Paenibacillus¸ and Acinetobacter, respectively. However, Microbacterium was found to be dominant when isolated from other five different metal enrichments including U. Uranium removal study showed that 84% of the test bacteria could remove more than 50mgUg(-1) dry weight from 80 or 160mgL(-1) U within 48h. In general, Microbacterium, Arthrobacter and Acinetobacter could remove a higher amount of U. High resolution transmission electron microscopy (HRTEM) study of U exposed cells revealed that accumulated U sequestered mostly around the cell periphery. The study highlights that indigenous U ore deposit bacteria have the potential to interact with U, and thus could be applied for bioremediation of U contaminated sites or wastes. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Biosorption of metal and salt tolerant microbial isolates from a former uranium mining area. Their impact on changes in rare earth element patterns in acid mine drainage.

    PubMed

    Haferburg, Götz; Merten, Dirk; Büchel, Georg; Kothe, Erika

    2007-12-01

    The concentration of metals in microbial habitats influenced by mining operations can reach enormous values. Worldwide, much emphasis is placed on the research of resistance and biosorptive capacities of microorganisms suitable for bioremediation purposes. Using a collection of isolates from a former uranium mining area in Eastern Thuringia, Germany, this study presents three Gram-positive bacterial strains with distinct metal tolerances. These strains were identified as members of the genera Bacillus, Micrococcus and Streptomyces. Acid mine drainage (AMD) originating from the same mining area is characterized by high metal concentrations of a broad range of elements and a very low pH. AMD was analyzed and used as incubation solution. The sorption of rare earth elements (REE), aluminum, cobalt, copper, manganese, nickel, strontium, and uranium through selected strains was studied during a time course of four weeks. Biosorption was investigated after one hour, one week and four weeks by analyzing the concentrations of metals in supernatant and biomass. Additionally, dead biomass was investigated after four weeks of incubation. The maximum of metal removal was reached after one week. Up to 80% of both Al and Cu, and more than 60% of U was shown to be removed from the solution. High concentrations of metals could be bound to the biomass, as for example 2.2 mg/g U. The strains could survive four weeks of incubation. Distinct and different patterns of rare earth elements of the inoculated and non-inoculated AMD water were observed. Changes in REE patterns hint at different binding types of heavy metals regarding incubation time and metabolic activity of the cells. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Volatile fluoride process for separating plutonium from other materials

    DOEpatents

    Spedding, F. H.; Newton, A. S.

    1959-04-14

    The separation of plutonium from uranium and/or fission products by formation of the higher fluorides off uranium and/or plutonium is described. Neutronirradiated uranium metal is first converted to the hydride. This hydrided product is then treated with fluorine at about 315 deg C to form and volatilize UF/sub 6/ leaving plutonium behind. Thc plutonium may then be separated by reacting the residue with fluorine at about 5004DEC and collecting the volatile plutonium fluoride thus formed.

  19. VOLATILE FLUORIDE PROCESS FOR SEPARATING PLUTONIUM FROM OTHER MATERIALS

    DOEpatents

    Spedding, F.H.; Newton, A.S.

    1959-04-14

    The separation of plutonium from uranium and/or tission products by formation of the higher fluorides of uranium and/or plutonium is discussed. Neutronirradiated uranium metal is first convcrted to the hydride. This hydrided product is then treatced with fluorine at about 315 deg C to form and volatilize UF/sup 6/ leaving plutonium behind. The plutonium may then be separated by reacting the residue with fluorine at about 500 deg C and collecting the volatile plutonium fluoride thus formed.

  20. Preparation and benchmarking of ANSL-V cross sections for advanced neutron source reactor studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arwood, J.W.; Ford, W.E. III; Greene, N.M.

    1987-01-01

    Validity of selected data from the fine-group neutron library was satisfactorily tested in performance parameter calculations for the BAPL-1, TRX-1, and ZEEP-1 thermal lattice benchmarks. BAPL-2 is an H/sub 2/O moderated, uranium oxide lattice; TRX-1 is an H/sub 2/O moderated, 1.31 weight percent enriched uranium metal lattice; ZEEP-1 is a D/sub 2/O-moderated, natural uranium lattice. 26 refs., 1 tab.

  1. An unusual temperature dependence in the oxidation of oxycarbide layers on uranium

    NASA Astrophysics Data System (ADS)

    Ellis, Walton P.

    1981-09-01

    An anomalous temperature dependence has been observed for the oxidation kinetics of outermost oxycarbide layers on polycrystalline uranium metal. Normally, oxidation or corrosion reactions are expected to proceed more rapidly as the temperature is elevated. Thus, it came as a surprise when we observed that the removal of the outermost atomic layers of carbon from uranium oxycarbide by O 2 reproducibly proceeds at a much faster rate at 25°C than at 280°C.

  2. An unusual temperature dependence in the oxidation of oxycarbide layers on uranium

    NASA Astrophysics Data System (ADS)

    Ellis, Walton P.

    An anomalous temperature dependence has been observed for the oxidation kinetics of outermost oxycarbide layers on polycrystalline uranium metal. Normally, oxidation or corrosion reactions are expected to proceed more rapidly as the temperature is elevated. Thus, it came as a surprise when we observed that the removal of the outermost atomic layers of carbon from uranium oxycarbide by O 2 reproducibly proceeds at a much faster rate at 25°C than at 280°C.

  3. High Useful Yield and Isotopic Analysis of Uranium by Resonance Ionization Mass Spectrometry

    DOE PAGES

    Savina, Michael R.; Isselhardt, Brett H.; Kucher, Andrew; ...

    2017-05-09

    Useful yields from resonance ionization mass spectrometry can be extremely high compared to other mass spectrometry techniques, but uranium analysis shows strong matrix effects arising from the tendency of uranium to form strongly bound oxide molecules that do not dissociate appreciably on energetic ion bombardment. Here, we demonstrate a useful yield of 24% for metallic uranium. Modeling the laser ionization and ion transmission processes shows that the high useful yield is attributable to a high ion fraction achieved by resonance ionization. We quantify the reduction of uranium oxide surface layers by Ar + and Ga + sputtering. The useful yieldmore » for uranium atoms from a uranium dioxide matrix is 0.4% and rises to 2% when the surface is in sputter equilibrium with the ion beam. The lower useful yield from the oxide is almost entirely due to uranium oxide molecules reducing the neutral atom content of the sputtered flux. We also demonstrate rapid isotopic analysis of solid uranium oxide at a precision of <0.5% relative standard deviation using relatively broadband lasers to mitigate spectroscopic fractionation.« less

  4. High Useful Yield and Isotopic Analysis of Uranium by Resonance Ionization Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savina, Michael R.; Isselhardt, Brett H.; Kucher, Andrew

    Useful yields from resonance ionization mass spectrometry can be extremely high compared to other mass spectrometry techniques, but uranium analysis shows strong matrix effects arising from the tendency of uranium to form strongly bound oxide molecules that do not dissociate appreciably on energetic ion bombardment. Here, we demonstrate a useful yield of 24% for metallic uranium. Modeling the laser ionization and ion transmission processes shows that the high useful yield is attributable to a high ion fraction achieved by resonance ionization. We quantify the reduction of uranium oxide surface layers by Ar + and Ga + sputtering. The useful yieldmore » for uranium atoms from a uranium dioxide matrix is 0.4% and rises to 2% when the surface is in sputter equilibrium with the ion beam. The lower useful yield from the oxide is almost entirely due to uranium oxide molecules reducing the neutral atom content of the sputtered flux. We also demonstrate rapid isotopic analysis of solid uranium oxide at a precision of <0.5% relative standard deviation using relatively broadband lasers to mitigate spectroscopic fractionation.« less

  5. Geochemical reconnaissance study of Vassar Meadow (Adams Rib) wetlands and vicinity, Eagle County, Colorado

    USGS Publications Warehouse

    Owen, Douglass E.; Breit, George N.

    1995-01-01

    Wetlands are known to be efficient filters of metals dissolved in ground and surface waters. This paper presents the results of geochemical reconnaissance sampling done at the request of the U.S. Environmental Protection Agency in wetlands in Vassar Meadow, Eagle County, Colorado. Ten wetlands were sampled and found to be variously enriched in chromium, molybdenum, and uranium. The uranium and chromium concentrations (and, to a lesser extent, molybdenum) represent an environmental concern should they be released as a result of anthropogenic disturbance. The metal accumulation in these wetlands documents that the wetlands have been functioning as filters that protect water quality in East Brush Creek by lowering the dissolved metal content in water.

  6. Hydrodesulfurization reactions of atmospheric gas oil over CoMo/alumina-aluminum borate catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiuping Li; Jungchung Wu; Yuwen Chen

    1993-08-01

    A precipitation technique at constant pH value was used to prepare a series of alumina-aluminum borates (AABs) with various Al/B atomic ratios. These materials were used as the supports of Co-Mo catalysts. Hydrodesulfurization (HDS) of Kuwait atmospheric gas (AGO) oil was carried out over these presulfided catalysts in a bench-scale trickle bed reactor at 400 psi and 340 C. All CoMo/AAB catalysts are much more active than the conventional CoMo/Al[sub 2]O[sub 3] catalyst on HDS reactions. A correlation exists between the acidity and the HDS activity of the catalysts. The high activities of the CoMo/AAB catalysts can be rationalized onmore » the presence of boron. On one hand, it can increase the metal dispersions and hydrogenation capabilities. On the other hand, it can enhance the acidities and cracking abilities of the catalysts. The desulfurization data can be fitted with a pseudo-second-order rate equation. The activation energy for desulfurization is found to be 26 kcal/mol.« less

  7. Optical characterization of Eu3+ and Tb3+ ions doped zinc lead borate glasses.

    PubMed

    Thulasiramudu, A; Buddhudu, S

    2007-02-01

    This paper reports on the spectral analysis of Eu3+ or Tb3+ ions (0.5 mol%) doped heavy metal oxide (HMO) based zinc lead borate glasses from the measurement of their absorption, emission spectra and also different physical properties. From the XRD, DSC profiles, the glass nature and glass thermal properties have been studied. The measured emission spectrum of Eu3+ glass has revealed five transitions (5D0-->7F0, 7F1, 7F2, 7F3 and 7F4) at 578, 591, 613, 654 and 702 nm, respectively, with lambdaexci=392 nm (7F0-->5L6). In the case of Tb3+:ZLB glass, four emission transitions such as (5D4-->7F6, 7F5, 7F4 and 7F3) that are located at 489, 542, 585 and 622 nm, respectively, have been measured with lambdaexci=374 nm. For all these emission bands decay curves have been plotted to evaluate their lifetimes and the emission processes that arise in the glasses have been explained in terms of energy level schemes.

  8. A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity.

    PubMed

    Liu, Juewen; Brown, Andrea K; Meng, Xiangli; Cropek, Donald M; Istok, Jonathan D; Watson, David B; Lu, Yi

    2007-02-13

    Here, we report a catalytic beacon sensor for uranyl (UO2(2+)) based on an in vitro-selected UO2(2+)-specific DNAzyme. The sensor consists of a DNA enzyme strand with a 3' quencher and a DNA substrate with a ribonucleotide adenosine (rA) in the middle and a fluorophore and a quencher at the 5' and 3' ends, respectively. The presence of UO2(2+) causes catalytic cleavage of the DNA substrate strand at the rA position and release of the fluorophore and thus dramatic increase of fluorescence intensity. The sensor has a detection limit of 11 parts per trillion (45 pM), a dynamic range up to 400 nM, and selectivity of >1-million-fold over other metal ions. The most interfering metal ion, Th(IV), interacts with the fluorescein fluorophore, causing slightly enhanced fluorescence intensity, with an apparent dissociation constant of approximately 230 microM. This sensor rivals the most sensitive analytical instruments for uranium detection, and its application in detecting uranium in contaminated soil samples is also demonstrated. This work shows that simple, cost-effective, and portable metal sensors can be obtained with similar sensitivity and selectivity as much more expensive and sophisticated analytical instruments. Such a sensor will play an important role in environmental remediation of radionuclides such as uranium.

  9. A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity

    PubMed Central

    Liu, Juewen; Brown, Andrea K.; Meng, Xiangli; Cropek, Donald M.; Istok, Jonathan D.; Watson, David B.; Lu, Yi

    2007-01-01

    Here, we report a catalytic beacon sensor for uranyl (UO22+) based on an in vitro-selected UO22+-specific DNAzyme. The sensor consists of a DNA enzyme strand with a 3′ quencher and a DNA substrate with a ribonucleotide adenosine (rA) in the middle and a fluorophore and a quencher at the 5′ and 3′ ends, respectively. The presence of UO22+ causes catalytic cleavage of the DNA substrate strand at the rA position and release of the fluorophore and thus dramatic increase of fluorescence intensity. The sensor has a detection limit of 11 parts per trillion (45 pM), a dynamic range up to 400 nM, and selectivity of >1-million-fold over other metal ions. The most interfering metal ion, Th(IV), interacts with the fluorescein fluorophore, causing slightly enhanced fluorescence intensity, with an apparent dissociation constant of ≈230 μM. This sensor rivals the most sensitive analytical instruments for uranium detection, and its application in detecting uranium in contaminated soil samples is also demonstrated. This work shows that simple, cost-effective, and portable metal sensors can be obtained with similar sensitivity and selectivity as much more expensive and sophisticated analytical instruments. Such a sensor will play an important role in environmental remediation of radionuclides such as uranium. PMID:17284609

  10. Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Mark C.; Brumfield, Brian E.; LaHaye, Nicole

    Here, we demonstrate measurement of uranium isotopes in femtosecond laser ablation plumes using two-dimensional fluorescence spectroscopy (2DFS). The high-resolution, tunable CW-laser spectroscopy technique clearly distinguishes atomic absorption from 235U and 238U in natural and highly enriched uranium metal samples. We present analysis of spectral resolution and analytical performance of 2DFS as a function of ambient pressure. Simultaneous measurement using time-resolved absorption spectroscopy provides information on temporal dynamics of the laser ablation plume and saturation behavior of fluorescence signals. The rapid, non-contact measurement is promising for in-field, standoff measurements of uranium enrichment for nuclear safety and security.

  11. Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Mark C.; Brumfield, Brian E.; LaHaye, Nicole L.

    We demonstrate measurement of uranium isotopes in femtosecond laser ablation plumes using two-dimensional fluorescence spectroscopy (2DFS). The high-resolution, tunable CW-laser spectroscopy technique clearly distinguishes atomic absorption from 235U and 238U in natural and highly enriched uranium metal samples. We present analysis of spectral resolution and analytical performance of 2DFS as a function of ambient pressure. Simultaneous measurement using time-resolved absorption spectroscopy provides information on temporal dynamics of the laser ablation plume and saturation behavior of fluorescence signals. The rapid, non-contact measurement is promising for in-field, standoff measurements of uranium enrichment for nuclear safety and security applications.

  12. PREPARATION OF REFRACTORY OXIDE CRYSTALS

    DOEpatents

    Grimes, W.R.; Shaffer, J.H.; Watson, G.M.

    1962-11-13

    A method is given for preparing uranium dioxide, thorium oxide, and beryllium oxide in the form of enlarged individual crystals. The surface of a fused alkali metal halide melt containing dissolved uranium, thorium, or beryllium values is contacted with a water-vapor-bearing inert gas stream at a rate of 5 to 10 cubic centimeters per minute per square centimeter of melt surface area. Growth of individual crystals is obtained by prolonged contact. Beryllium oxide-coated uranium dioxide crystals are prepared by disposing uranium dioxide crystals 5 to 20 microns in diameter in a beryllium-containing melt and contacting the melt with a water-vapor-bearing inert gas stream in the same manner. (AEC)

  13. Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes

    DOE PAGES

    Phillips, Mark C.; Brumfield, Brian E.; LaHaye, Nicole; ...

    2017-06-19

    Here, we demonstrate measurement of uranium isotopes in femtosecond laser ablation plumes using two-dimensional fluorescence spectroscopy (2DFS). The high-resolution, tunable CW-laser spectroscopy technique clearly distinguishes atomic absorption from 235U and 238U in natural and highly enriched uranium metal samples. We present analysis of spectral resolution and analytical performance of 2DFS as a function of ambient pressure. Simultaneous measurement using time-resolved absorption spectroscopy provides information on temporal dynamics of the laser ablation plume and saturation behavior of fluorescence signals. The rapid, non-contact measurement is promising for in-field, standoff measurements of uranium enrichment for nuclear safety and security.

  14. 46 CFR 148.04-1 - Radioactive material, Low Specific Activity (LSA).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Radioactive material, Low Specific Activity (LSA). 148... § 148.04-1 Radioactive material, Low Specific Activity (LSA). (a) Authorized materials are limited to: (1) Uranium or thorium ores and physical or chemical concentrates of such ores; (2) Uranium metal...

  15. O-Pu-U (Oxygen-Plutonium-Uranium)

    NASA Astrophysics Data System (ADS)

    Materials Science International Team MSIT

    This document is part of Subvolume C4 'Non-Ferrous Metal Systems. Part 4: Selected Nuclear Materials and Engineering Systems' of Volume 11 'Ternary Alloy Systems - Phase Diagrams, Crystallographic and Thermodynamic Data critically evaluated by MSIT®' of Landolt-Börnstein - Group IV 'Physical Chemistry'. It provides data of the ternary system Oxygen-Plutonium-Uranium.

  16. 40 CFR 180.1121 - Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Boric acid and its salts, borax... salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride... its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric...

  17. 40 CFR 180.1121 - Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Boric acid and its salts, borax... salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride... its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric...

  18. 40 CFR 180.1121 - Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Boric acid and its salts, borax... salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride... its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric...

  19. 40 CFR 180.1121 - Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Boric acid and its salts, borax... salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride... its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric...

  20. 76 FR 74831 - Aging Management of Stainless Steel Structures and Components in Treated Borated Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ... exposed to treated borated water. In response to a request from the Nuclear Energy Institute (NEI), the... NUCLEAR REGULATORY COMMISSION [NRC-2011-0256] Aging Management of Stainless Steel Structures and Components in Treated Borated Water AGENCY: Nuclear Regulatory Commission. ACTION: Draft interim staff...

  1. Structure and luminescence spectra of lutetium and yttrium borates synthesized from ammonium nitrate melt

    NASA Astrophysics Data System (ADS)

    Klassen, Nikolay V.; Shmurak, Semion Z.; Shmyt'ko, Ivan M.; Strukova, Galina K.; Derenzo, Stephen E.; Weber, Marvin J.

    2005-01-01

    Lutetium and yttrium borates doped with europium, terbium, gadolinium, etc. have been synthesized by dissolving initial oxides and nitrates in ammonium nitrate melt and thermal decomposition of the solvent. Annealings in the range of 500-1100°C modified the dimensions of the grains from 2 to 3 nm to more than 100 nm. Significant dependence of the structure of lutetium borate on slight doping with rare earth ions has been found: terbium makes high-temperature vaterite phase preferential at room temperature, whereas europium stabilizes low-temperature calcite phase. Influence of the structure of the borates on the pattern of the luminescence spectra of europium dopant was observed. Possibilities for manufacturing of scintillating lutetium borate ceramics by means of this method of synthesis are discussed.

  2. Angiogenic effects of borate glass microfibers in a rodent model.

    PubMed

    Lin, Yinan; Brown, Roger F; Jung, Steven B; Day, Delbert E

    2014-12-01

    The primary objective of this research was to evaluate the use of bioactive borate-based glass microfibers for angiogenesis in soft tissue repair applications. The effect of these fibers on growth of capillaries and small blood vessels was compared to that of 45S5 silica glass microfibers and sham implant controls. Compressed mats of three types of glass microfibers were implanted subcutaneously in rats and tissues surrounding the implant sites histologically evaluated 2-4 weeks post surgery. Bioactive borate glass 13-93B3 supplemented with 0.4 wt % copper promoted extensive angiogenesis as compared to silica glass microfibers and sham control tissues. The angiogenic responses suggest the copper-containing 13-93B3 microfibers may be effective for treating chronic soft tissue wounds. A second objective was to assess the possible systemic cytotoxicity of dissolved borate ions and other materials released from implanted borate glass microfibers. Cytotoxicity was assessed via histological evaluation of kidney tissue collected from animals 4 weeks after subcutaneously implanting high amounts of the borate glass microfibers. The evaluation of the kidney tissue from these animals showed no evidence of chronic histopathological changes in the kidney. The overall results indicate the borate glass microfibers are safe and effective for soft tissue applications. © 2014 Wiley Periodicals, Inc.

  3. Patch testing with uranyl acetate in veterans exposed to depleted uranium during the 1991 Gulf war and the Iraqi conflict.

    PubMed

    Shvartsbeyn, Marianna; Tuchinda, Papapit; Gaitens, Joanna; Squibb, Katherine S; McDiarmid, Melissa A; Gaspari, Anthony A

    2011-01-01

    The Depleted Uranium Follow-Up Program is a clinical surveillance program run by the Baltimore Veterans Affairs Medical Center since 1993 for veterans of the Gulf and Iraqi wars who were exposed to depleted uranium (DU) as a result of "friendly-fire" incidents. In 2009, 40 veterans from this cohort were screened for skin reactivity to metals by patch-testing with extended metal series and uranyl acetate (0.25%, 2.5%, and 25%). A control arm comprised 46 patients without any known occupational exposures to DU who were seen at the University of Maryland Dermatology Clinic for evaluation of allergic contact dermatitis. Excluding irritant reactions, no patch-test reactions to uranyl acetate were observed in the participants. Irritant reactions to DU were more common in the clinic cohort, likely reflective of the demographic differences between the two arms of the study. Biologic monitoring of urine uranium concentrations in the DU program participants with 24-hour urine samples showed evidence of percutaneous uranium absorption from the skin patches. We conclude that dermatitis observed in a subset of the veterans was unrelated to their military DU exposure. Our data suggest that future studies of skin testing with uranyl acetate should utilize 0.25%, the least irritating concentration.

  4. Mechanistic approach for nitride fuel evolution and fission product release under irradiation

    NASA Astrophysics Data System (ADS)

    Dolgodvorov, A. P.; Ozrin, V. D.

    2017-01-01

    A model for describing uranium-plutonium mixed nitride fuel pellet burning was developed. Except fission products generating, the model includes impurities of oxygen and carbon. Nitrogen behaviour in nitride fuel was analysed and the nitrogen chemical potential in solid solution with uranium-plutonium nitride was constructed. The chemical program module was tested with the help of thermodynamic equilibrium phase distribution calculation. Results were compared with analogous data in literature, quite good agreement was achieved, especially for uranium sesquinitride, metallic species and some oxides. Calculation of a process of nitride fuel burning was also conducted. Used mechanistic approaches for fission product evolution give the opportunity to find fission gas release fractions and also volumes of intergranular secondary phases. Calculations present that the most massive secondary phases are the oxide and metallic phases. Oxide phase contain approximately 1 % wt of substance over all time of burning with slightly increasing of content. Metallic phase has considerable rising of mass and by the last stage of burning it contains about 0.6 % wt of substance. Intermetallic phase has less increasing rate than metallic phase and include from 0.1 to 0.2 % wt over all time of burning. The highest element fractions of released gaseous fission products correspond to caesium and iodide.

  5. Influence of a doping by Al stainless steel on kinetics and character of interaction with the metallic nuclear fuel

    NASA Astrophysics Data System (ADS)

    Nikitin, S. N.; Shornikov, D. P.; Tarasov, B. A.; Baranov, V. G.

    2016-04-01

    Metallic nuclear fuel is a perspective kind of fuel for fast reactors. In this paper we conducted a study of the interaction between uranium-molybdenum alloy and ferritic- martensitic steels with additions of aluminum at a temperature of 700 ° C for 25 hours. The rate constants of the interaction layer growth at 700 °C is about 2.8.10-14 m2/s. It is established that doping Al stainless steel leads to decrease in interaction with uranium-molybdenum alloys. The phase composition of the interaction layer is determined.

  6. Powder-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2016-05-03

    A powder-based adsorbent and a related method of manufacture are provided. The powder-based adsorbent includes polymer powder with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the powder-based adsorbent includes irradiating polymer powder, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Powder-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  7. Foam-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2015-06-02

    Foam-based adsorbents and a related method of manufacture are provided. The foam-based adsorbents include polymer foam with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the foam-based adsorbents includes irradiating polymer foam, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Foam-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  8. Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part II: responses in the leaves and general conclusions.

    PubMed

    Vanhoudt, Nathalie; Cuypers, Ann; Horemans, Nele; Remans, Tony; Opdenakker, Kelly; Smeets, Karen; Bello, Daniel Martinez; Havaux, Michel; Wannijn, Jean; Van Hees, May; Vangronsveld, Jaco; Vandenhove, Hildegarde

    2011-06-01

    The cellular redox balance seems an important modulator under heavy metal stress. While for other heavy metals these processes are well studied, oxidative stress related responses are also known to be triggered under uranium stress but information remains limited. This study aimed to further unravel the mechanisms by which plants respond to uranium stress. Seventeen-day-old Arabidopsis thaliana seedlings, grown on a modified Hoagland solution under controlled conditions, were exposed to 0, 0.1, 1, 10 and 100 μM uranium for 1, 3 and 7 days. While in Part I of this study oxidative stress related responses in the roots were discussed, this second Part II discusses oxidative stress related responses in the leaves and general conclusions drawn from the results of the roots and the leaves will be presented. As several responses were already visible following 1 day exposure, when uranium concentrations in the leaves were negligible, a root-to-shoot signaling system was suggested in which plastids could be important sensing sites. While lipid peroxidation, based on the amount of thiobarbituric acid reactive compounds, was observed after exposure to 100 μM uranium, affecting membrane structure and function, a transient concentration dependent response pattern was visible for lipoxygenase initiated lipid peroxidation. This transient character of uranium stress responses in leaves was emphasized by results of lipoxygenase (LOX2) and antioxidative enzyme transcript levels, enzyme capacities and glutathione concentrations both in time as with concentration. The ascorbate redox balance seemed an important modulator of uranium stress responses in the leaves as in addition to the previous transient responses, the total ascorbate concentration and ascorbate/dehydroascorbate redox balance increased in a concentration and time dependent manner. This could represent either a slow transient response or a stable increase with regard to plant acclimation to uranium stress. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Biogeochemical behaviour and bioremediation of uranium in waters of abandoned mines.

    PubMed

    Mkandawire, Martin

    2013-11-01

    The discharges of uranium and associated radionuclides as well as heavy metals and metalloids from waste and tailing dumps in abandoned uranium mining and processing sites pose contamination risks to surface and groundwater. Although many more are being planned for nuclear energy purposes, most of the abandoned uranium mines are a legacy of uranium production that fuelled arms race during the cold war of the last century. Since the end of cold war, there have been efforts to rehabilitate the mining sites, initially, using classical remediation techniques based on high chemical and civil engineering. Recently, bioremediation technology has been sought as alternatives to the classical approach due to reasons, which include: (a) high demand of sites requiring remediation; (b) the economic implication of running and maintaining the facilities due to high energy and work force demand; and (c) the pattern and characteristics of contaminant discharges in most of the former uranium mining and processing sites prevents the use of classical methods. This review discusses risks of uranium contamination from abandoned uranium mines from the biogeochemical point of view and the potential and limitation of uranium bioremediation technique as alternative to classical approach in abandoned uranium mining and processing sites.

  10. In situ spectroscopy and spectroelectrochemistry of uranium in high-temperature alkali chloride molten salts.

    PubMed

    Polovov, Ilya B; Volkovich, Vladimir A; Charnock, John M; Kralj, Brett; Lewin, Robert G; Kinoshita, Hajime; May, Iain; Sharrad, Clint A

    2008-09-01

    Soluble uranium chloride species, in the oxidation states of III+, IV+, V+, and VI+, have been chemically generated in high-temperature alkali chloride melts. These reactions were monitored by in situ electronic absorption spectroscopy. In situ X-ray absorption spectroscopy of uranium(VI) in a molten LiCl-KCl eutectic was used to determine the immediate coordination environment about the uranium. The dominant species in the melt was [UO 2Cl 4] (2-). Further analysis of the extended X-ray absorption fine structure data and Raman spectroscopy of the melts quenched back to room temperature indicated the possibility of ordering beyond the first coordination sphere of [UO 2Cl 4] (2-). The electrolytic generation of uranium(III) in a molten LiCl-KCl eutectic was also investigated. Anodic dissolution of uranium metal was found to be more efficient at producing uranium(III) in high-temperature melts than the cathodic reduction of uranium(IV). These high-temperature electrolytic processes were studied by in situ electronic absorption spectroelectrochemistry, and we have also developed in situ X-ray absorption spectroelectrochemistry techniques to probe both the uranium oxidation state and the uranium coordination environment in these melts.

  11. Why is weapons grade plutonium more hazardous to work with than highly enriched uranium?

    DOE PAGES

    Cournoyer, Michael E.; Costigan, Stephen A.; Schake, Bradley S.

    2015-08-01

    Highly Enriched Uranium and Weapons grade plutonium have assumed positions of dominant importance among the actinide elements because of their successful uses as explosive ingredients in nuclear weapons and the place they hold as key materials in the development of industrial use of nuclear power. While most chemists are familiar with the practical interest concerning HEU and WG Pu, fewer know the subtleties among their hazards. In this study, a primer is provided regarding the hazards associated with working with HEU and WG Pu metals and oxides. The care that must be taken to safely handle these materials is emphasizedmore » and the extent of the hazards is described. The controls needed to work with HEU and WG Pu metals and oxides are differentiated. Given the choice, one would rather work with HEU metal and oxides than WG Pu metal and oxides.« less

  12. Why is weapons grade plutonium more hazardous to work with than highly enriched uranium?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cournoyer, Michael E.; Costigan, Stephen A.; Schake, Bradley S.

    Highly Enriched Uranium and Weapons grade plutonium have assumed positions of dominant importance among the actinide elements because of their successful uses as explosive ingredients in nuclear weapons and the place they hold as key materials in the development of industrial use of nuclear power. While most chemists are familiar with the practical interest concerning HEU and WG Pu, fewer know the subtleties among their hazards. In this study, a primer is provided regarding the hazards associated with working with HEU and WG Pu metals and oxides. The care that must be taken to safely handle these materials is emphasizedmore » and the extent of the hazards is described. The controls needed to work with HEU and WG Pu metals and oxides are differentiated. Given the choice, one would rather work with HEU metal and oxides than WG Pu metal and oxides.« less

  13. Processing of solid solution, mixed uranium/refractory metal carbides for advanced space nuclear power and propulsion systems

    NASA Astrophysics Data System (ADS)

    Knight, Travis Warren

    Nuclear thermal propulsion (NTP) and space nuclear power are two enabling technologies for the manned exploration of space and the development of research outposts in space and on other planets such as Mars. Advanced carbide nuclear fuels have been proposed for application in space nuclear power and propulsion systems. This study examined the processing technologies and optimal parameters necessary to fabricate samples of single phase, solid solution, mixed uranium/refractory metal carbides. In particular, the pseudo-ternary carbide, UC-ZrC-NbC, system was examined with uranium metal mole fractions of 5% and 10% and corresponding uranium densities of 0.8 to 1.8 gU/cc. Efforts were directed to those methods that could produce simple geometry fuel elements or wafers such as those used to fabricate a Square Lattice Honeycomb (SLHC) fuel element and reactor core. Methods of cold uniaxial pressing, sintering by induction heating, and hot pressing by self-resistance heating were investigated. Solid solution, high density (low porosity) samples greater than 95% TD were processed by cold pressing at 150 MPa and sintering above 2600 K for times longer than 90 min. Some impurity oxide phases were noted in some samples attributed to residual gases in the furnace during processing. Also, some samples noted secondary phases of carbon and UC2 due to some hyperstoichiometric powder mixtures having carbon-to-metal ratios greater than one. In all, 33 mixed carbide samples were processed and analyzed with half bearing uranium as ternary carbides of UC-ZrC-NbC. Scanning electron microscopy, x-ray diffraction, and density measurements were used to characterize samples. Samples were processed from powders of the refractory mono-carbides and UC/UC 2 or from powders of uranium hydride (UH3), graphite, and refractory metal carbides to produce hypostoichiometric mixed carbides. Samples processed from the constituent carbide powders and sintered at temperatures above the melting point of UC showed signs of liquid phase sintering and were shown to be largely solid solutions. Pre-compaction of mixed carbide powders prior to sintering was shown to be necessary to achieve high densities. Hypostoichiometric, samples processed at 2500 K exhibited only the initial stage of sintering and solid solution formation. Based on these findings, a suggested processing methodology is proposed for producing high density, solid solution, mixed carbide fuels. Pseudo-binary, refractory carbide samples hot pressed at 3100 K and 6 MPa showed comparable densities (approximately 85% of the theoretical value) to samples processed by cold pressing and sintering at temperatures of 2800 K.

  14. Uranium oxide catalysts: environmental applications for treatment of chlorinated organic waste from nuclear industry.

    PubMed

    Lazareva, Svetlana; Ismagilov, Zinfer; Kuznetsov, Vadim; Shikina, Nadezhda; Kerzhentsev, Mikhail

    2018-02-05

    Huge amounts of nuclear waste, including depleted uranium, significantly contribute to the adverse environmental situation throughout the world. An approach to the effective use of uranium oxides in catalysts for the deep oxidation of chlorine-containing hydrocarbons is suggested. Investigation of the catalytic activity of the synthesized supported uranium oxide catalysts doped with Cr, Mn and Co transition metals in the chlorobenzene oxidation showed that these catalysts are comparable with conventional commercial ones. Physicochemical properties of the catalysts were studied by X-ray diffraction, temperature-programmed reduction with hydrogen (H 2 -TPR), and Fourier transform infrared spectroscopy. The higher activity of Mn- and Co-containing uranium oxide catalysts in the H 2 -TPR and oxidation of chlorobenzene in comparison with non-uranium catalysts may be related to the formation of a new disperse phase represented by uranates. The study of chlorobenzene adsorption revealed that the surface oxygen is involved in the catalytic process.

  15. Analysis of solid uranium samples using a small mass spectrometer

    NASA Astrophysics Data System (ADS)

    Kahr, Michael S.; Abney, Kent D.; Olivares, José A.

    2001-07-01

    A mass spectrometer for isotopic analysis of solid uranium samples has been constructed and evaluated. This system employs the fluorinating agent chlorine trifluoride (ClF 3) to convert solid uranium samples into their volatile uranium hexafluorides (UF 6). The majority of unwanted gaseous byproducts and remaining ClF 3 are removed from the sample vessel by condensing the UF 6 and then pumping away the unwanted gases. The UF 6 gas is then introduced into a quadrupole mass spectrometer and ionized by electron impact ionization. The doubly charged bare metal uranium ion (U 2+) is used to determine the U 235/U 238 isotopic ratio. Precision and accuracy for several isotopic standards were found to be better than 12%, without further calibration of the system. The analysis can be completed in 25 min from sample loading, to UF 6 reaction, to mass spectral analysis. The method is amenable to uranium solid matrices, and other actinides.

  16. Pyroprocessing of Fast Flux Test Facility Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.R. Westphal; G.L. Fredrickson; G.G. Galbreth

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primarymore » fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.« less

  17. Pyroprocessing of fast flux test facility nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westphal, B.R.; Wurth, L.A.; Fredrickson, G.L.

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primarymore » fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electro-refined uranium products exceeded 99%. (authors)« less

  18. RECOVERY OF URANIUM AND THORIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Calkins, G.D.

    1958-06-10

    >A process is described for the recovery of uranium and thorium from monazite sand, which is frequently processed by treating it with a hot sodium hydroxide solution whereby a precipitate forms consisting mainly of oxides or hydroxides of the rare earths, thorium and uranium. The precipitate is dissolved in mineral acid, and the acid solution is then neutralized to a pH value of between 5.2 and 6.2 whereby both the uranium and thorium precipitate as the hydroxides, while substantially all the rare earth metal values present remain in the solution. The uranium and thoriunn can then be separated by dissolving the precipitate in a solution containing a mixture of alkali carbonate and alkali bicarbonate: and contacting the carbonate solution with a strong-base anion exchange resin whereby the uranium values are adsorbed on the resin while the thorium remains in solution.

  19. Preliminary report on the Comet area, Jefferson County, Montana

    USGS Publications Warehouse

    Becraft, George Earle

    1953-01-01

    Several radioactivity anomalies and a few specimens of sooty pitchblende and other uranium minerals have been found on the mine dumps of formerly productive base- and precious-metal mines along the Comet-Gray Eagle shear zone in the Comet area in southwestern Montana. The shear zone is from 50 to 200 feet wide and has been traced for at least 5? miles. It trends N. 80 ? W. across the northern part of the area and cuts the quartz monzonitic rocks of the Boulder batholith and younger silicic intrusive rocks, as well as prebatholithic volcanic rocks, and is in turn cut by dacite and andesite dikes. The youngest period of mineralization is represented by chalcedonic vein zones comprising one or more discontinuous stringers and veins of cryptocrystalline silica in silicified quartz monzonite and in alaskite that has not been appreciably silicified. In some places these zones contain no distinct chalcedonic veins but are represented only by silicified quartz monzonite. These zones locally contain uranium in association with very small amounts of pyrite, galena, ruby silver, arqentite, native silver, molybdenite, chalcopyrite, arsenopyrite, and barite. At the Free Enterprise mine, uranium has been produced from a narrow chalcedonic vein that contains disseminated secondary uranium minerals and local small pods of pitchblende and also from disseminated secondary uranium ,minerals in the adjacent quartz monzonite. Undiscovered deposits of uranium ore may occur spatially associated with the base- and precious-metal deposits along the Comet-Gray Eagle shear zone and with chalcedonic vein zones similar to the Free Enterprise.

  20. SOLVENT EXTRACTION PROCESS

    DOEpatents

    Jonke, A.A.

    1957-10-01

    In improved solvent extraction process is described for the extraction of metal values from highly dilute aqueous solutions. The process comprises contacting an aqueous solution with an organic substantially water-immiscible solvent, whereby metal values are taken up by a solvent extract phase; scrubbing the solvent extract phase with an aqueous scrubbing solution; separating an aqueous solution from the scrubbed solvent extract phase; and contacting the scrubbed solvent phase with an aqueous medium whereby the extracted metal values are removed from the solvent phase and taken up by said medium to form a strip solution containing said metal values, the aqueous scrubbing solution being a mixture of strip solution and an aqueous solution which contains mineral acids anions and is free of the metal values. The process is particularly effective for purifying uranium, where one starts with impure aqueous uranyl nitrate, extracts with tributyl phosphate dissolved in carbon tetrachloride, scrubs with aqueous nitric acid and employs water to strip the uranium from the scrubbed organic phase.

  1. Method for producing a borohydride

    DOEpatents

    Kong, Peter C [Idaho Falls, ID

    2008-09-02

    A method for producing a borohydride is described and which includes the steps of providing a source of borate; providing a material which chemically reduces the source of the borate to produce a borohydride; and reacting the source of borate and the material by supplying heat at a temperature which substantially effects the production of the borohydride.

  2. Method for producing a borohydride

    DOEpatents

    Kong, Peter C.

    2010-06-22

    A method for producing a borohydride is described that includes the steps of providing a source of borate; providing a material that chemically reduces the source of the borate to produce a borohydride; and reacting the source of the borate and the material by supplying heat at a temperature that substantially effects the production of the borohydride.

  3. RECONDITIONING FUEL ELEMENTS

    DOEpatents

    Brandt, H.L.

    1962-02-20

    A process is given for decanning fuel elements that consist of a uranium core, an intermediate section either of bronze, silicon, Al-Si, and uranium silicide layers or of lead, Al-Si, and uranium silicide layers around said core, and an aluminum can bonded to said intermediate section. The aluminum can is dissolved in a solution of sodium hydroxide (9 to 20 wt%) and sodium nitrate (35 to 12 wt %), and the layers of the intermediate section are dissolved in a boiling sodium hydroxide solution of a minimum concentration of 50 wt%. (AEC) A method of selectively reducing plutonium oxides and the rare earth oxides but not uranium oxides is described which comprises placing the oxides in a molten solvent of zinc or cadmium and then adding metallic uranium as a reducing agent. (AEC)

  4. Volumetric determination of uranium titanous sulfate as reductant before oxidimetric titration

    USGS Publications Warehouse

    Wahlberg, J.S.; Skinner, D.L.; Rader, L.F.

    1957-01-01

    Need for a more rapid volumetric method for the routine determination of uranium in uranium-rich materials has led to the development of a method that uses titanous sulfate as a reductant before oxidimetric titration. Separation of the hydrogen sulfide group is not necessary. Interfering elements precipitated by cupferron are removed by automatic filtrations made simultaneously rather than by the longer chloroform extraction method. Uranium is reduced from VI to IV by addition of an excess of titanous sulfate solution, cupric ion serving as an indicator by forming red metallic copper when reduction is complete. The copper is reoxidized by addition of mercuric perchlorate. The reduced uranium is then determined by addition of excess ferric sulfate and titration with ceric sulfate. The method has proved to be rapid, accurate, and economical.

  5. The role of chemical reactions in the Chernobyl accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grishanin, E. I., E-mail: egrishanin@orexovo.net

    2010-12-15

    It is shown that chemical reactions played an essential role in the Chernobyl accident at all of its stages. It is important that the reactor before the explosion was at maximal xenon poisoning, and its reactivity, apparently, was not destroyed by the explosion. The reactivity release due to decay of Xe-235 on the second day after the explosion led to a reactor power of 80-110 MW. Owing to this power, the chemical reactions of reduction of uranium, plutonium, and other metals at a temperature of about 2000 Degree-Sign C occurred in the core. The yield of fission products thus sharplymore » increased. Uranium and other metals flew down in the bottom water communications and rooms. After reduction of the uranium and its separation from the graphite, the chain reaction stopped, the temperature of the core decreased, and the activity yield stopped.« less

  6. A report on emergent uranyl binding phenomena by an amidoxime phosphonic acid co-polymer

    DOE PAGES

    Abney, C. W.; Das, S.; Mayes, R. T.; ...

    2016-08-01

    Development of technology to harvest the uranium dissolved in seawater would enable access to vast quantities of this critical metal for nuclear power generation. Amidoxime polymers are the most promising platform for achieving this separation, yet design of advanced adsorbents is hindered by uncertainty regarding the uranium binding mode. In this work we use XAFS to investigate the uranium coordination environment in an amidoxime-phosphonic acid copolymer adsorbent. In contrast to the binding mode predicted computationally and from small molecule studies, a cooperative chelating model is favoured, attributable to emergent behavior resulting from inclusion of amidoxime in a polymer. Samples exposedmore » to seawater also display a feature consistent with a 2-oxo-bridged transition metal, suggesting formation of an in situ specific binding site. As a result, these findings challenge long held assumptions and provide new opportunities for the design of advanced adsorbent materials.« less

  7. APPARATUS FOR HIGH PURITY METAL RECOVERY

    DOEpatents

    Magel, T.T.

    1959-02-10

    An apparatus is described for preparing high purity metal such as uranium, plutonium and the like from an impure mass of the same metal. The apparatus is arranged so that the impure metal is heated and swept by a stream of hydrogen gas bearing a halogen such as iodine. The volatiie metal halide formed is carried on to a hot filament where the metal halide is decomposed and the molten high purity metal is collected in a rceeiver below

  8. Chemical aspects of uranium behavior in soils: A review

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.

    2011-08-01

    Uranium has varying degrees of oxidation (+4 and +6) and is responsive to changes in the redox potential of the environment. It is deposited at the reduction barrier with the participation of biota and at the sorption barrier under oxidative conditions. Iron (hydr)oxides are the strongest sorbents of uranium. Uranium, being an element of medium biological absorption, can accumulate (relative to thorium) in the humus horizons of some soils. The high content of uranium in uncontaminated soils is most frequently inherited from the parent rocks in the regions of positive U anomalies: in the soils developed on oil shales and in the marginal zone of bogs at the reduction barrier. The development of nuclear and coal-fired power engineering resulted in the environmental contamination with uranium. The immobilization of anthropogenic uranium at artificial geochemical barriers is based on two preconditions: the stimulation of on-site metal-reducing bacteria or the introduction of strong mineral reducers, e.g., Fe at low degrees of oxidation.

  9. Hydrothermal Testing of K Basin Sludge and N Reactor Fuel at Sludge Treatment Project Operating Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delegard, Calvin H.; Schmidt, Andrew J.; Thornton, Brenda M.

    The Sludge Treatment Project (STP), managed for the U. S. DOE by Fluor Hanford (FH), was created to design and operate a process to eliminate uranium metal from K Basin sludge prior to packaging for Waste Isolation Pilot Plant (WIPP). The STP process uses high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. Under nominal process conditions, the sludge will be heated in pressurized water at 185°C for as long as 72 hours to assure the complete reaction (corrosion) of up to 0.25-inch diameter uranium metal pieces. Under contractmore » to FH, the Pacific Northwest National Laboratory (PNNL) conducted bench-scale testing of the STP hydrothermal process in November and December 2006. Five tests (~50 ml each) were conducted in sealed, un-agitated reaction vessels under the hydrothermal conditions (e.g., 7 to 72 h at 185°C) of the STP corrosion process using radioactive sludge samples collected from the K East Basin and particles/coupons of N Reactor fuel also taken from the K Basins. The tests were designed to evaluate and understand the chemical changes that may be occurring and the effects that any changes would have on sludge rheological properties. The tests were not designed to evaluate engineering aspects of the process. The hydrothermal treatment affected the chemical and physical properties of the sludge. In each test, significant uranium compound phase changes were identified, resulting from dehydration and chemical reduction reactions. Physical properties of the sludge were significantly altered from their initial, as-settled sludge values, including, shear strength, settled density, weight percent water, and gas retention.« less

  10. Effects of dietary uranium on reproductive endpoints--fecundity, survival, reproductive success--of the fish Danio rerio.

    PubMed

    Simon, Olivier; Mottin, Elmina; Geffroy, Benjamin; Hinton, Thomas

    2011-01-01

    Exposure to metal-contaminated water has been shown to result in a number of reproductive abnormalities in adult and larvae fish, such as failure of oocyte maturation and teratogenic effects. Recently, dietary uptake of metals by fish has been recognized as a critical route of exposure, however, the mechanisms of metal uptake and toxicity are poorly understood and in need of further investigation. The objectives of the present study are to quantify uranium (U dietary transfers from spiked artificial diets) in Danio rerio tissues and embryos, as well as establish its effect on reproduction and embryonic development. Uranium's environmental prominence is currently increasing because of new mining and milling activities. Uranium concentrations range from 0.02 µg/L in natural waters to 2 mg/L. The focus of this study was to examine the trophic transfer and effects of U following exposure modalities (dose, exposure duration 1 to 20 d). Two different isotopes were used to distinguish between chemical and radioactivity toxicity of U. Results showed that U trophic transfer was low (0.52%). Uranium tissue distributions showed that accumulation occurred in digestive organs (liver, digestive tract) following dietary exposure. High levels of U were measured in the gonads (female in particular, >20% of relative burden). High U accumulation levels in eggs indicated maternal transfer of the contaminant. Moreover, U trophic exposure led to a reduction in reproduction success as a function of U accumulated levels. High U exposure conditions strongly reduced the total number of eggs (50%) and their viability at 10 d (reduction of the clutch number, low quality of eggs). © 2010 SETAC.

  11. Health effects of uranium: new research findings.

    PubMed

    Brugge, Doug; Buchner, Virginia

    2011-01-01

    Recent plans for a nuclear renaissance in both established and emerging economies have prompted increased interest in uranium mining. With the potential for more uranium mining worldwide and a growth in the literature on the toxicology and epidemiology of uranium and uranium mining, we found it timely to review the current state of knowledge. Here, we present a review of the health effects of uranium mining, with an emphasis on newer findings (2005-2011). Uranium mining can contaminate air, water, and soil. The chemical toxicity of the metal constitutes the primary environmental health hazard, with the radioactivity of uranium a secondary concern. The update of the toxicologic evidence on uranium adds to the established findings regarding nephrotoxicity, genotoxicity, and developmental defects. Additional novel toxicologic findings, including some at the molecular level, are now emerging that raise the biological plausibility of adverse effects on the brain, on reproduction, including estrogenic effects, on gene expression, and on uranium metabolism. Historically, most epidemiology on uranium mining has focused on mine workers and radon exposure. Although that situation is still overwhelmingly true, a smaller emerging literature has begun to form around environmental exposure in residential areas near uranium mining and processing facilities. We present and critique such studies. Clearly, more epidemiologic research is needed to contribute to causal inference. As much damage is irreversible, and possibly cumulative, present efforts must be vigorous to limit environmental uranium contamination and exposure.

  12. Concept Feasibility Report for Electroplating Zirconium onto Uranium Foil - Year 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffey, Greg W.; Meinhardt, Kerry D.; Joshi, Vineet V.

    2015-03-01

    The Fuel Fabrication Capability within the U.S. High Performance Research Reactor Conversion Program is funded through the National Nuclear Security Administration (NNSA) NA-26 (Office of Material Management and Minimization). An investigation was commissioned to determine the feasibility of using electroplating techniques to apply a coating of zirconium onto depleted uranium/molybdenum alloy (U-10Mo). Electroplating would provide an alternative method to the existing process of hot roll-bonding zirconium foil onto the U-10Mo fuel foil during the fabrication of fuel elements for high-performance research reactors. The objective of this research was to develop a reproducible and scalable plating process that will produce amore » uniform, 25 μm thick zirconium metal coating on U-10Mo foil. In previous work, Pacific Northwest National Laboratory (PNNL) established a molten salt electroplating apparatus and protocol to plate zirconium metal onto molybdenum foil (Coffey 2015). During this second year of the research, PNNL furthered this work by moving to the U-10Mo alloy system (90 percent uranium:10 percent molybdenum). The original plating apparatus was disassembled and re-assembled in a laboratory capable of handling low-level radioactive materials. Initially, the work followed the previous year’s approach, and the salt bath composition was targeted at the eutectic composition (LiF:NaF:ZrF4 = 26:37:37 mol%). Early results indicated that the formation of uranium fluoride compounds would be problematic. Other salt bath compositions were investigated in order to eliminate the uranium fluoride production (LiF:NaF = 61:39 mol% and LiF:NaF:KF = 46.5:11.5:42 mol% ). Zirconium metal was used as the crucible for the molten salt. Three plating methods were used—isopotential, galvano static, and pulsed plating. The molten salt method for zirconium metal application provided high-quality plating on molybdenum in PNNL’s previous work. A key advantage of this approach is that plating can be performed under conditions that would greatly reduce the quantity of intermetallics that form at the interface between the zirconium and U-10Mo; unlike roll bonding, the molten salt plating approach would allow for complete coverage of the U-10Mo foil with zirconium. When utilizing the experimental parameters developed for zirconium plating onto molybdenum, a uranium fluoride reaction product was formed at the Zr/U-10Mo interface. By controlling the initial plating potential, the uranium fluoride could be prevented; however, the targeted zirconium thickness (25 ±12.5 μm) could not be achieved while maintaining 100% coverage.« less

  13. First Observations of Boron on Mars and Implications for Gale Crater Geochemistry

    NASA Astrophysics Data System (ADS)

    Gasda, P. J.; Haldeman, E. B.; Wiens, R. C.; Rapin, W.; Frydenvang, J.; Maurice, S.; Clegg, S. M.; Delapp, D.; Sanford, V.; McInroy, R.

    2016-12-01

    Borates are potentially important precursor materials for the origin of life on Earth. It has been shown that borates are required to stabilize ribose, a component of RNA, when produced by the formose reaction, a prebiotically plausible mechanism to produce ribose from formaldehyde. Evaporites, including borates, also shed light on the history of aqueous activity on Mars. The ChemCam instrument onboard the NASA Curiosity rover provides quantitative elemental compositions of targets in Gale Crater, Mars, using laser-induced breakdown spectroscopy (LIBS). Laboratory observations of Fe-free targets indicate that a LIBS emission line is visible with as little as 10 ppm B. We have observed B lines in 23 calcium sulfate veins in Gale Crater: 3 in Yellowknife Bay and 20 in the Murray lacustrine mudstone and the Stimson eolian sandstone units since sol 727, as Curiosity arrived at the base of Mt. Sharp, a 5 km sedimentary mound in the center of Gale Crater. To calibrate these observations, samples composed of borates diluted with Hawaiian basalt have been analyzed using the LANL ChemCam engineering model. Preliminary results show that the Gale Crater veins have between 10-100 ppm B. One possible explanation for borates in veins is that Gale Lake evaporated, depositing evaporites, including borates. Later, Gale Crater was partially buried and its lacustrine and overlying eolian units were lithified and fractured. Water flowed through the evaporite-rich layers, partially dissolving them. Fluid moved through the fractures, re-precipitating the borates and sulfates as veins. ChemCam cannot directly determine mineralogy, but B is likely present as borax as the dominate borate phase in these veins, based on previous estimates of vein fluid temperature. Borates forming in this environment tend to precipitate from mildly alkaline fluids. The fluid temperature and pH implies these veins were potentially habitable environments.

  14. Improved synthesis of fine zinc borate particles using seed crystals

    NASA Astrophysics Data System (ADS)

    Gürhan, Deniz; Çakal, Gaye Ö.; Eroğlu, İnci; Özkar, Saim

    2009-03-01

    Zinc borate is a flame retardant additive used in polymers, wood applications and textile products. There are different types of zinc borate having different chemical compositions and structures. In this study, the production of zinc borate having the molecular formula of 2ZnO·3B 2O 3·3.5H 2O was reexamined by studying the effects of reaction parameters on the properties of product as well as the reaction kinetics. Production of zinc borate from the reaction of boric acid and zinc oxide in the presence of seed crystals was performed in a continuously stirred, temperature-controlled batch reactor having a volume of 1.5 L. Samples taken in regular time intervals during the experiments were analyzed for the concentration of zinc oxide and boron oxide in the solid as well as for the conversion of zinc oxide to zinc borate versus time. The zinc borate production reaction was fit to the logistic model. The reaction rate, reaction completion time, composition and particle size distribution of zinc borate product were determined by varying the following parameters: the boric acid to zinc oxide ratio (H 3BO 3:ZnO=3:1, 3.5:1, 5:1 and 7:1), the particle size of zinc oxide (10 and 25 μm), stirring rate (275, 400, 800 and 1600 rpm), temperature (75, 85 and 95 °C) and the size of seed crystals (10 and 2 μm). The products were also analyzed for particle size distribution. The experimental results showed that the reaction rate increases with the increase in H 3BO 3:ZnO ratio, particle size of zinc oxide, stirring rate and temperature. Concomitantly, the reaction completion time is decreased by increasing the H 3BO 3:ZnO ratio, stirring rate and temperature. The average particle sizes of the zinc borate products are in the range 4.3-16.6 μm (wet dispersion analysis).

  15. Immobilization of uranium into magnetite from aqueous solution by electrodepositing approach.

    PubMed

    Lu, Bing-Qing; Li, Mi; Zhang, Xiao-Wen; Huang, Chun-Mei; Wu, Xiao-Yan; Fang, Qi

    2018-02-05

    Immobilization of uranium into magnetite (Fe 3 O 4 ), which was generated from metallic iron by electrochemical method, was proposed to rapidly remove uranium from aqueous solution. The effects of electrochemical parameters such as electrode materials, voltage, electrode gap, reaction time and pH value on the crystallization of Fe 3 O 4 and uranium removal efficiencies were investigated. More than 90% uranium in the solution was precipitated with Fe 3 O 4 under laboratory conditions when uranium concentration range from 0.5mg/L to 10mg/L. The Fe 3 O 4 crystallization mechanism and immobilization of uranium was proved by XPS, XRD, TEM, FTIR and VSM methods. The results indicated that the cationic (including Fe 2+ , Fe 3+ and U(VI)) migrate to cathode side under the electric field and the uranium was incorporated or adsorbed by Fe 3 O 4 which was generated at cathode while the pH ranges between 2-7. The uranium-containing precipitate of Fe 3 O 4 can exist stably at the acid concentration below 60g/L. Furthermore, the precipitate may be used as valuable resources for uranium or iron recycling, which resulted in no secondary pollution in the removal of uranium from aqueous solution. Copyright © 2017. Published by Elsevier B.V.

  16. Behavior and Distribution of Heavy Metals Including Rare Earth Elements, Thorium, and Uranium in Sludge from Industry Water Treatment Plant and Recovery Method of Metals by Biosurfactants Application

    PubMed Central

    Gao, Lidi; Kano, Naoki; Sato, Yuichi; Li, Chong; Zhang, Shuang; Imaizumi, Hiroshi

    2012-01-01

    In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid) elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals. Consequently, the following matters have been largely clarified. (1) Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil. (2) Nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge. Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates) and F5 (the fraction bound to Fe-Mn oxides). (3) The recovery efficiency of heavy metals (Pb, Ni, and Cr) reached about 90–100% using a precipitation method with alkaline solution. PMID:22693485

  17. Soft-Templating Synthesis of Mesoporous Silica-Based Materials for Environmental Applications

    NASA Astrophysics Data System (ADS)

    Gunathilake, Chamila Asanka

    Dissertation research is mainly focus on: 1) the development of mesoporous silica materials with organic pendant and bridging groups (isocyanurate, amidoxime, benzene) and incorporated metal (aluminum, zirconium, calcium, and magnesium) species for high temperature carbon dioxide (CO2) sorption, 2) phosphorous-hydroxy functionalized mesoporous silica materials for water treatment, and 3) amidoxime-modified ordered mesoporous silica materials for uranium sorption under seawater conditions. The goal is to design composite materials for environmental applications with desired porosity, surface area, and functionality by selecting proper metal oxide precursors, organosilanes, tetraethylorthosilicate, (TEOS), and block copolymer templates and by adjusting synthesis conditions. The first part of dissertation presents experimental studies on the merge of aluminum, zirconium, calcium, and magnesium oxides with mesoporous silica materials containing organic pendant (amidoxime) and bridging groups (isocyanurate, benzene) to obtain composite sorbents for CO2 sorption at ambient (0-25 °C) and elevated (60-120 °C) temperatures. These studies indicate that the aforementioned composite sorbents are fairly good for CO2 capture at 25 °C via physisorption mechanism and show a remarkably high affinity toward CO2 chemisorption at 60-120 °C. The second part of dissertation is devoted to silica-based materials with organic functionalities for removal of heavy metal ions such as lead from contaminated water and for recovery of metal ions such as uranium from seawater. First, ordered mesoporous organosilica (OMO) materials with diethylphosphatoethyl and hydroxyphosphatoethyl surface groups were examined for Pb2+ adsorption and showed unprecedented adsorption capacities up to 272 mg/g and 202 mg/g, respectively However, the amidoxime-modified OMO materials were explored for uranium extraction under seawater conditions and showed remarkable capacities reaching 57 mg of uranium per gram of adsorbent.

  18. 10 CFR 171.16 - Annual fees: Materials licensees, holders of certificates of compliance, holders of sealed source...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in devices used in industrial measuring systems, including x-ray fluorescence analyzers [Program Code... of ores containing source material for extraction of metals other than uranium or thorium, including.... 4 Other facilities include licenses for extraction of metals, heavy metals, and rare earths. 5 There...

  19. 10 CFR 171.16 - Annual fees: Materials licensees, holders of certificates of compliance, holders of sealed source...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... contained in devices used in industrial measuring systems, including x-ray fluorescence analyzers [Program... ores containing source material for extraction of metals other than uranium or thorium, including.... 4 Another license includes licenses for extraction of metals, heavy metals, and rare earths. 5 There...

  20. Bioaccumulation and Toxicity of Uranium, Arsenic and Nickel to Juveniles and Adults Hyalella azteca in Spiked Sediment Bioassays.

    PubMed

    Goulet, Richard R; Thompson, Patsy-A

    2018-05-26

    Uranium mining and milling release arsenic (As), nickel (Ni) and uranium (U) to receiving waters, which accumulate in sediments. The objective of this study was to investigate if As, Ni and U concentrations in tissue residue of Hyalella azteca, overlying water, sediment pore water and solids could predict juvenile and adult survival and growth in similar conditions to lake sediments downstream of Uranium mines and mills. We conducted 14 day, static sediment toxicity tests spiked with uranium, arsenic and nickel salts. For uranium, we spiked uranyl nitrate with sodium bicarbonate to limit U precipitation once in contact with circumneutral sediment. LC 50 for As, Ni and U of juveniles and adults based on measured concentrations in sediments were 1.8 and 2.2 µmol As/g dw, 6.3 and 13.4 µmol Ni/g dw and 0.2 and 0.9 µmol U/g dw, respectively. Adult survival and growth linearly decreased with increasing bioaccumulation. For juveniles, metal accumulation linearly predicted survival. We calculated lethal body concentrations (LBC 50 ) for juveniles and adults of 70 and 485 nmol As/g dw, 246 and 832 nmol Ni/g dw and 1.7 and 4.4 nmol U/g dw, respectively. The concentrations of As, Ni and U in tissue residue leading to a 20% decrease in growth were 427 nmol As/g, 755 nmol Ni/g and 5 nmol U/g. Overall, this study showed that Uranium was the most toxic element followed by As and Ni, that juveniles were more sensitive to the three metals tested than adults and that threshold body concentrations can support assessment of benthic invertebrate community impairment. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Different pattern of brain pro-/anti-oxidant activity between depleted and enriched uranium in chronically exposed rats.

    PubMed

    Lestaevel, P; Romero, E; Dhieux, B; Ben Soussan, H; Berradi, H; Dublineau, I; Voisin, P; Gourmelon, P

    2009-04-05

    Uranium is not only a heavy metal but also an alpha particle emitter. The main toxicity of uranium is expected to be due to chemiotoxicity rather than to radiotoxicity. Some studies have demonstrated that uranium induced some neurological disturbances, but without clear explanations. A possible mechanism of this neurotoxicity could be the oxidative stress induced by reactive oxygen species imbalance. The aim of the present study was to determine whether a chronic ingestion of uranium induced anti-oxidative defence mechanisms in the brain of rats. Rats received depleted (DU) or 4% enriched (EU) uranyl nitrate in the drinking water at 2mg(-1)kg(-1)day(-1) for 9 months. Cerebral cortex analyses were made by measuring mRNA and protein levels and enzymatic activities. Lipid peroxidation, an oxidative stress marker, was significantly enhanced after EU exposure, but not after DU. The gene expression or activity of the main antioxidant enzymes, i.e. superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), increased significantly after chronic exposure to DU. On the contrary, oral EU administration induced a decrease of these antioxidant enzymes. The NO-ergic pathway was almost not perturbed by DU or EU exposure. Finally, DU exposure increased significantly the transporters (Divalent-Metal-Transporter1; DMT1), the storage molecule (ferritin) and the ferroxidase enzyme (ceruloplasmin), but not EU. These results illustrate that oxidative stress plays a key role in the mechanism of uranium neurotoxicity. They showed that chronic exposure to DU, but not EU, seems to induce an increase of several antioxidant agents in order to counteract the oxidative stress. Finally, these results demonstrate the importance of the double toxicity, chemical and radiological, of uranium.

  2. 40 CFR 721.1880 - Borate(1-), tris(acetato-.kappa.O)hydro-, sodium, (T-4)-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)hydro-, sodium, (T-4)-. 721.1880 Section 721.1880 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.1880 Borate(1-), tris(acetato-.kappa.O)hydro-, sodium... substance identified as borate(1-), tris(acetato-.kappa.O)hydro-, sodium, (T-4)- (PMN P-00-0922; CAS No...

  3. 40 CFR 721.1880 - Borate(1-), tris(acetato-.kappa.O)hydro-, sodium, (T-4)-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...)hydro-, sodium, (T-4)-. 721.1880 Section 721.1880 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.1880 Borate(1-), tris(acetato-.kappa.O)hydro-, sodium... substance identified as borate(1-), tris(acetato-.kappa.O)hydro-, sodium, (T-4)- (PMN P-00-0922; CAS No...

  4. 40 CFR 180.1121 - Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride), sodium borate and sodium metaborate; exemptions from the requirement of a tolerance. 180.1121 Section 180.1121 Protection of Environment ENVIRONMENTAL PROTECTION...

  5. Ion Mobility Spectrometer Field Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Nicholas; McLain, Derek; Steeb, Jennifer

    The Morpho Saffran Itemizer 4DX Ion Mobility Spectrometer previously used to detect uranium signatures in FY16 was used at the former New Brunswick Facility, a past uranium facility located on site at Argonne National Laboratory. This facility was chosen in an attempt to detect safeguards relevant signatures and has a history of processing uranium at various enrichments, chemical forms, and purities; various chemicals such as nitric acid, uranium fluorides, phosphates and metals are present at various levels. Several laboratories were sampled for signatures of nuclear activities around the laboratory. All of the surfaces that were surveyed were below background levelsmore » of the radioanalytical instrumentation and determined to be radiologically clean.« less

  6. Investigation of metal-dithiolate fold angle effects: implications for molybdenum and tungsten enzymes.

    PubMed

    Joshi, Hemant K; Cooney, J Jon A; Inscore, Frank E; Gruhn, Nadine E; Lichtenberger, Dennis L; Enemark, John H

    2003-04-01

    Gas-phase photoelectron spectroscopy and density functional theory have been used to investigate the interactions between the sulfur pi-orbitals of arene dithiolates and high-valent transition metals as minimum molecular models of the active site features of pyranopterin MoW enzymes. The compounds (Tp*)MoO(bdt) (compound 1), Cp(2)Mo(bdt) (compound 2), and Cp(2)Ti(bdt) (compound 3) [where Tp* is hydrotris(3,5-dimethyl-1-pyrazolyl)borate, bdt is 1,2-benzenedithiolate, and Cp is eta(5)- cyclopentadienyl] provide access to three different electronic configurations of the metal, formally d(1), d(2), and d(0), respectively. The gas-phase photoelectron spectra show that ionizations from occupied metal and sulfur based valence orbitals are more clearly observed in compounds 2 and 3 than in compound 1. The observed ionization energies and characters compare very well with those calculated by density functional theory. A "dithiolate-folding-effect" involving an interaction of the metal in-plane and sulfur-pi orbitals is proposed to be a factor in the electron transfer reactions that regenerate the active sites of molybdenum and tungsten enzymes.

  7. Corrosion-resistant uranium

    DOEpatents

    Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

    1981-10-21

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  8. Corrosion-resistant uranium

    DOEpatents

    Hovis, Jr., Victor M.; Pullen, William C.; Kollie, Thomas G.; Bell, Richard T.

    1983-01-01

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  9. Assessment of Radioactive Materials and Heavy Metals in the Surface Soil around the Bayanwula Prospective Uranium Mining Area in China

    PubMed Central

    Bai, Haribala; Hu, Bitao; Wang, Chengguo; Bao, Shanhu; Sai, Gerilemandahu; Xu, Xiao; Zhang, Shuai; Li, Yuhong

    2017-01-01

    The present work is the first systematic and large scale study on radioactive materials and heavy metals in surface soil around the Bayanwula prospective uranium mining area in China. In this work, both natural and anthropogenic radionuclides and heavy metals in 48 surface soil samples were analyzed using High Purity Germanium (HPGe) γ spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS). The obtained mean activity concentrations of 238U, 226Ra, 232Th, 40K, and 137Cs were 25.81 ± 9.58, 24.85 ± 2.77, 29.40 ± 3.14, 923.0 ± 47.2, and 5.64 ± 4.56 Bq/kg, respectively. The estimated average absorbed dose rate and annual effective dose rate were 76.7 ± 3.1 nGy/h and 83.1 ± 3.8 μSv, respectively. The radium equivalent activity, external hazard index, and internal hazard index were also calculated, and their mean values were within the acceptable limits. The estimated lifetime cancer risk was 3.2 × 10−4/Sv. The heavy metal contents of Cr, Ni, Cu, Zn, As, Cd, and Pb from the surface soil samples were measured and their health risks were then assessed. The concentrations of all heavy metals were much lower than the average backgrounds in China except for lead which was about three times higher than that of China’s mean. The non-cancer and cancer risks from the heavy metals were estimated, which are all within the acceptable ranges. In addition, the correlations between the radionuclides and the heavy metals in surface soil samples were determined by the Pearson linear coefficient. Strong positive correlations between radionuclides and the heavy metals at the 0.01 significance level were found. In conclusion, the contents of radionuclides and heavy metals in surface soil around the Bayanwula prospective uranium mining area are at a normal level. PMID:28335450

  10. Assessment of Radioactive Materials and Heavy Metals in the Surface Soil around the Bayanwula Prospective Uranium Mining Area in China.

    PubMed

    Bai, Haribala; Hu, Bitao; Wang, Chengguo; Bao, Shanhu; Sai, Gerilemandahu; Xu, Xiao; Zhang, Shuai; Li, Yuhong

    2017-03-14

    The present work is the first systematic and large scale study on radioactive materials and heavy metals in surface soil around the Bayanwula prospective uranium mining area in China. In this work, both natural and anthropogenic radionuclides and heavy metals in 48 surface soil samples were analyzed using High Purity Germanium (HPGe) γ spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS). The obtained mean activity concentrations of 238 U, 226 Ra, 232 Th, 40 K, and 137 Cs were 25.81 ± 9.58, 24.85 ± 2.77, 29.40 ± 3.14, 923.0 ± 47.2, and 5.64 ± 4.56 Bq/kg, respectively. The estimated average absorbed dose rate and annual effective dose rate were 76.7 ± 3.1 nGy/h and 83.1 ± 3.8 μ Sv, respectively. The radium equivalent activity, external hazard index, and internal hazard index were also calculated, and their mean values were within the acceptable limits. The estimated lifetime cancer risk was 3.2 × 10 -4 /Sv. The heavy metal contents of Cr, Ni, Cu, Zn, As, Cd, and Pb from the surface soil samples were measured and their health risks were then assessed. The concentrations of all heavy metals were much lower than the average backgrounds in China except for lead which was about three times higher than that of China's mean. The non-cancer and cancer risks from the heavy metals were estimated, which are all within the acceptable ranges. In addition, the correlations between the radionuclides and the heavy metals in surface soil samples were determined by the Pearson linear coefficient. Strong positive correlations between radionuclides and the heavy metals at the 0.01 significance level were found. In conclusion, the contents of radionuclides and heavy metals in surface soil around the Bayanwula prospective uranium mining area are at a normal level.

  11. Highly Efficient Interception and Precipitation of Uranium(VI) from Aqueous Solution by Iron-Electrocoagulation Combined with Cooperative Chelation by Organic Ligands.

    PubMed

    Li, Peng; Zhun, Bao; Wang, Xuegang; Liao, PingPing; Wang, Guanghui; Wang, Lizhang; Guo, Yadan; Zhang, Weimin

    2017-12-19

    A new strategy combining iron-electrocoagulation and organic ligands (OGLs) cooperative chelation was proposed to screen and precipitate low concentrations (0-18.52 μmol/L) of uranium contaminant in aqueous solution. We hypothesized that OGLs with amino, hydroxyl, and carboxyl groups hydrophobically/hydrophilically would realize precuring of uranyl ion at pH < 3.0, and the following iron-electrocoagulation would achieve faster and more efficient uranium precipitation. Experimentally, the strategy demonstrated highly efficient uranium(VI) precipitation efficiency, especially with hydrophilic macromolecular OGLs. The uranium removal efficiency at optimized experimental condition reached 99.65%. The decrease of zeta potential and the lattice enwrapping between U-OGLs chelates and flocculation precursor were ascribed to the enhanced uranium precipitation activity. Uranium was precipitated as oxides of U(VI) or higher valences that were easily captured in aggregated micelles under low operation current potential. The actual uranium tailing wastewater was treated, and a satisfied uranium removal efficiency of 99.02% was discovered. After elution of the precipitated flocs, a concentrated uranium solution (up to 106.52 μmol/L) with very few other metallic impurities was obtained. Therefore, the proposed strategy could remove uranium and concentrate it concurrently. This work could provide new insights into the purification and recovery of uranium from aqueous solutions in a cost-effective and environmentally friendly process.

  12. Method for preparing hydride configurations and reactive metal surfaces

    DOEpatents

    Silver, G.L.

    1984-05-18

    A method for preparing reactive metal surfaces, particularly uranium surfaces is disclosed, whereby the metal is immediately reactive to hydrogen gas at room temperature and low pressure. The metal surfaces are first pretreated by exposure to an acid which forms an adherent hydride-bearing composition on the metal surface. Subsequent heating of the pretreated metal at a temperature sufficient to decompose the hydride coating in vacuum or inert gas renders the metal surface instantaneously reactive to hydrogen gas at room temperature and low pressure.

  13. Influence of sodium borate on the early age hydration of calcium sulfoaluminate cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Champenois, Jean-Baptiste; Dhoury, Mélanie; Cau Dit Coumes, Céline, E-mail: celine.cau-dit-coumes@cea.fr

    Calcium sulfoaluminate (CSA) cements are potential candidates for the conditioning of radioactive wastes with high sodium borate concentrations. This work thus investigates early age hydration of two CSA cements with different gypsum contents (0 to 20%) as a function of the mixing solution composition (borate and NaOH concentrations). Gypsum plays a key role in controlling the reactivity of cement. When the mixing solution is pure water, increasing the gypsum concentration accelerates cement hydration. However, the reverse is observed when the mixing solution contains sodium borate. Until gypsum exhaustion, the pore solution pH remains constant at ~ 10.8, and a poorlymore » crystallized borate compound (ulexite) precipitates. A correlation is established between this transient precipitation and the hydration delay. Decreasing the gypsum content in the binder, or increasing the sodium content in the mixing solution, are two ways of reducing the stability of ulexite, thus decreasing the hydration delay.« less

  14. Preservation of tissue specimens during transport to mycobacteriology laboratories.

    PubMed Central

    Richards, W D; Wright, H S

    1983-01-01

    Chloramine-T and sodium borate solutions were evaluated for their effectiveness in preserving Mycobacterium bovis and controlling the growth of non-mycobacterial contaminants on tissue specimens during transport to laboratories. The number of culturable M. bovis cells in suspension was reduced by 5.1 log10 upon exposure to chloramine-T solution and by less than 1 log10 upon exposure to sodium borate solution for 7 days. Reinoculation of laboratory media (because of overgrowth by non-mycobacterial contaminants) was required for 52.6% of 190 routine bovine tissue specimens shipped refrigerated in chloramine-T solution and for 6.1% of 520 specimens shipped unrefrigerated in sodium borate solution. M. bovis was isolated from bovine tissue stored in sodium borate solution at 23 degrees C for 17 weeks and at 4 degrees C for 25 weeks. Unrefrigerated sodium borate solution has been used successfully to ship tissue specimens to our laboratory for the past 11 years. PMID:6341397

  15. Phase separation of metal-added corium and its effect on a steam explosion

    NASA Astrophysics Data System (ADS)

    Min, B. T.; Kim, J. H.; Hong, S. W.; Hong, S. H.; Park, I. K.; Song, J. H.; Kim, H. D.

    2008-07-01

    To simulate a relocation of molten core material and its interaction phenomenon with water during a severe accident in a nuclear reactor, a typical corium of UO 2/ZrO 2/Zr/Stainless steel mixed at a 62 wt%, 15 wt%, 12 wt% and 11 wt%, respectively, was melted and then cooled down to become a solidified ingot. It was shown that the molten corium was separated into two layers, of which the upper layer was oxide mixtures and the lower layer was metal alloys. The upper layer was UO 2 and ZrO 2 and the lower layer mostly consisted of metal mixtures such as uranium, zirconium and stainless steel. Iron content varied with the positions and about a half of it existed as an alloy such as Fe 2U. Uranium metal was produced by reduction of UO 2 by zirconium metal. The average densities of the upper oxide layer and the lower metal layer were 8.802 and 9.411 g/cm 3, respectively. In another test, metal-added molten corium was poured into water and it showed that a steam explosion could occur by applying an external trigger.

  16. Potential Aquifer Vulnerability in Regions Down-Gradient from ...

    EPA Pesticide Factsheets

    Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are instrumental in leaching uranium from source rocks and transporting it in low concentrations to a chemical redox interface where it is deposited in an ore zone typically containing the uranium minerals uraninite, pitchblende, and/or coffinite; various iron sulfides; native selenium; clays; and calcite. In situ recovery (ISR) of these uranium ores is a process of contacting the uranium mineral deposit with leaching (lixiviant) fluids via injection of the lixiviant into wells drilled into the subsurface aquifer that hosts uranium ore, while other extraction wells pump the dissolved uranium after dissolution of the uranium minerals. Environmental concerns during and after ISR include water quality impacts from: 1) potential excursions of leaching solutions away from the injection zone into down-dip, underlying, or overlying aquifers; 2) potential migration of uranium and its decay products (e.g., Ra, Rn, Pb); and, 3) potential migration of redox-sensitive trace metals (e.g., Fe, Mn, Mo, Se, V), metalloids (e.g., As), and anions (e.g., sulfate). This review describes the geochemical processes that control roll-front uranium transport and fate in groundwater systems, identifies potential aquifer vulnerabilities to ISR operations, identifies

  17. Caulobacter crescentus as a Whole-Cell Uranium Biosensor▿ †

    PubMed Central

    Hillson, Nathan J.; Hu, Ping; Andersen, Gary L.; Shapiro, Lucy

    2007-01-01

    We engineered a strain of the bacterium Caulobacter crescentus to fluoresce in the presence of micromolar levels of uranium at ambient temperatures when it is exposed to a hand-held UV lamp. Previous microarray experiments revealed that several Caulobacter genes are significantly upregulated in response to uranium but not in response to other heavy metals. We designated one of these genes urcA (for uranium response in caulobacter). We constructed a reporter that utilizes the urcA promoter to produce a UV-excitable green fluorescent protein in the presence of the uranyl cation, a soluble form of uranium. This reporter is specific for uranium and has little cross specificity for nitrate (<400 μM), lead (<150 μM), cadmium (<48 μM), or chromium (<41.6 μM). The uranium reporter construct was effective for discriminating contaminated groundwater samples (4.2 μM uranium) from uncontaminated groundwater samples (<0.1 μM uranium) collected at the Oak Ridge Field Research Center. In contrast to other uranium detection methodologies, the Caulobacter reporter strain can provide on-demand usability in the field; it requires minimal sample processing and no equipment other than a hand-held UV lamp, and it may be sprayed directly on soil, groundwater, or industrial surfaces. PMID:17905881

  18. METAL EXTRACTION PROCESS

    DOEpatents

    Lewis, G.W. Jr.; Rhodes, D.E.

    1957-11-01

    An improved method for extracting uranium from aqueous solutions by solvent extraction is presented. A difficulty encountered in solvent extraction operations using an organic extractant (e.g., tributyl phosphate dissolved in kerosene or carbon tetrachloride) is that emulsions sometimes form, and phase separation is difficult or impossible. This difficulty is overcome by dissolving the organic extractant in a molten wax which is a solid at operating temperatures. After cooling, the wax which now contains the extractant, is broken into small particles (preferably flakes) and this wax complex'' is used to contact the uranium bearing solutions and extract the metal therefrom. Microcrystalline petroleum wax and certain ethylene polymers have been found suitable for this purpose.

  19. Laboratory evaluation of borate:amine:copper derivatives In wood for fungal decay protection

    Treesearch

    George Chen

    2011-01-01

    This study aimed to evaluate borate:amine:copper derivatives in wood for fungal decay protection as well as the permanence of copper and boron in wood. Each of four derivatives of borate:amine:copper prevented fungal decay in wood. Disodium tetraborate decahydrate (borax):amine:copper derivatives with 0.61-0.63% retention after water leaching prevented decay by...

  20. Corrosion studies of titanium in borated water for TPX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, D.F.; Pawel, S.J.; DeVan, J.H.

    1995-12-31

    Corrosion testing was performed to demonstrate the compatibility of the titanium vacuum vessel with borated water. Borated water is proposed to fill the annulus of the double wall vacuum vessel to provide effective radiation shielding. Borating the water with 110 grams of boric acid per liter is sufficient to reduce the nuclear heating in the Toroidal Field Coil set and limit the activation of components external to the vacuum vessel. Constant extension rate tensile (CERT) and electrochemical potentiodynamic tests were performed. Results of the CERT tests confirm that stress corrosion cracking is not significant for Ti-6Al4V or Ti-3AI-2.5V. Welded andmore » unwelded specimens were tested in air and in borated water at 150{degree}C. Strength, elongation, and time to failure were nearly identical for all test conditions, and all the samples exhibited ductile failure. Potentiodynamic tests on Ti-6A1-4V and Ti in borated water as a function of temperature showed low corrosion rates over a wide passive potential range. Further, this passivity appeared stable to anodic potentials substantially greater than those expected from MHD effects.« less

  1. Effect of modifying agents on the hydrophobicity and yield of zinc borate synthesized by zinc oxide

    NASA Astrophysics Data System (ADS)

    Acarali, Nil Baran; Bardakci, Melek; Tugrul, Nurcan; Derun, Emek Moroydor; Piskin, Sabriye

    2013-06-01

    The aim of this study was to synthesize zinc borate using zinc oxide, reference boric acid, and reference zinc borate (reference ZB) as the seed, and to investigate the effects of modifying agents and reaction parameters on the hydrophobicity and yield, respectively. The reaction parameters include reaction time (1-5 h), reactant ratio (H3BO3/ZnO by mass: 2-5), seed ratio (seed crystal/(H3BO3+ZnO) by mass: 0-2wt%), reaction temperature (50-120°C), cooling temperature (10-80°C), and stirring rate (400-700 r/min); the modifying agents involve propylene glycol (PG, 0-6wt%), kerosene (1wt%-6wt%), and oleic acid (OA, 1wt%-6wt%) with solvents (isopropyl alcohol (IPA), ethanol, and methanol). The results of reaction yield obtained from either magnetically or mechanically stirred systems were compared. Zinc borate produced was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and contact angle tests to identify the hydrophobicity. In conclusion, zinc borate is synthesized successfully under the optimized reaction conditions, and the different modifying agents with various solvents affect the hydrophobicity of zinc borate.

  2. Novel method for early investigation of bioactivity in different borate bio-glasses

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.

    Some ternary borate glasses were prepared and corrosion behavior of such ternary borate glasses after immersion in aqueous dilute phosphate solution was studied using different immersion times. Fourier transform infrared (FTIR) absorption spectral measurements were done before and after immersion in the mentioned solution for extended times up to 2 days to justify the appearance of the characteristic FTIR bands due to calcium phosphate (hydroxyapatite (HA)) which is considered as the potential indication of bioactivity. Experimental IR data confirm the beginning of the appearance of FTIR bands at about 580 and 620 cm-1 after 3 days and the complete resolution with its characteristic split form after 1 week and more. Deconvolution analysis technique (DAT) of the FTIR spectrum was employed to investigate the bioactivity of such ternary borate system after a short period of immersion. The corrosion behavior of such glasses is explained in relation to a suggested hydrolysis followed by direct dissolution mechanism. The ease of dissolution of all the borate glasses constituents explains the formation of calcium phosphate and conversion to crystalline hydroxyapatite within the borate glass matrix. X-ray diffraction may be used to retrace the structural changes and degree of crystallinity of the prepared glasses.

  3. Development of Natural Anthocyanin Dye-Doped Silica Nanoparticles for pH and Borate-Sensing Applications

    NASA Astrophysics Data System (ADS)

    Ha, Chu T.; Lien, Nghiem T. Ha; Anh, Nguyen D.; Lam, Nguyen L.

    2017-12-01

    Anthocyanin belongs to a large group of phenolic compounds called flavonoids. It is found primarily in fruits, flowers, roots and other parts of higher plants. Within the black carrot, it has been found that the cyanidin component 1,2 diol was the major anthocyanine. Since the terminal thiols potentially display chemical interactions with borate additives, anthocyanin from the black carrot can act as a sensing material for detecting borate in the environment. As a natural dye, anthocyanin responds to pH change of the medium. Here, we present an application of black carrot dyes for pH sensing and for the detection of borate additives within meats. The dyes were encapsulated within a mesoporous silica (SiO2) matrix in order to prevent the sensing materials from dissolution into the aqueous medium. The encapsulation was done in situ during preparation of silica nanoparticles (size from 100 nm to 500 nm) following an advanced Stöber method. These anthocyanin-encapsulated silica nanoparticles show a clear color change from green in an aqueous solution free of borate to GRAY-red in the presence of borate additive and red (pH 2) to green (pH 10).

  4. A medium range order structural connection to the configurational heat capacity of borate-silicate mixed glasses.

    PubMed

    Liu, Hao; Smedskjaer, Morten M; Tao, Haizheng; Jensen, Lars R; Zhao, Xiujian; Yue, Yuanzheng

    2016-04-28

    It has been reported that the configurational heat capacity (C(p,conf)) first increases and then becomes saturated with increasing B2O3/SiO2 ratio in borate-silicate mixed glasses. Through Raman spectroscopy measurements, we have, in this work, found an implication for the intermediate range order (IRO) structural connection to the composition dependence of the C(p,conf) of borate-silicate mixed glasses. In the silica-rich compositions, the C(p,conf) rapidly increases with increasing B2O3 content. This is attributed to the increase of the content of the B-O-Si network units ([B2Si2O8](2-)) and 6-membered borate rings with 1 or 2 B(4). In the boron-rich compositions, the C(p,conf) is almost constant, independent of the increase in the B2O3/SiO2 ratio. This is likely attributed to the counteraction between the decrease of the fraction of two types of metaborate groups and the increase of the fraction of other borate superstructural units (particularly 6-membered borate rings). The overall results suggest that the glasses containing more types of superstructural units have a larger C(p,conf).

  5. VIEW OF THE HYDROSPINNING EQUIPMENT IN BUILDING 865. THE HYDROSPINNING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE HYDROSPINNING EQUIPMENT IN BUILDING 865. THE HYDROSPINNING PROCESS FORMED METALS INTO DESIRED SHAPES BY ROLLERS WHILE THE METAL WAS ROTATED AT HIGH SPEED. BERYLLIUM, URANIUM, REFRACTORY METALS, AND OTHER NONFERROUS METALS WERE SPUN EITHER HOT OR COLD, INTO A VARIETY OF SHAPES. (11/9/73) - Rocky Flats Plant, Metal Research & Development Laboratory, South of Central Avenue at south end of terminus of Ninth Avenue, Golden, Jefferson County, CO

  6. Potential impact of seawater uranium extraction on marine life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jiyeon; Jeters, Robert T.; Kuo, Li-Jung

    A variety of adsorbent materials have been developed to extract uranium from seawater as an alternative traditional terrestrial mining. A large-scale deployment of these adsorbents would be necessary to recover useful quantities of uranium and this raises a number of concerns regarding potential impacts on the surrounding marine environment. Two concerns are whether or not the adsorbent materials are toxic and any potentially harmful effects that may result from depleting uranium or vanadium (also highly concentrated by the adsorbents) from the local environment. To test the potential toxicity of the adsorbent with or without bound metals, Microtox assays were usedmore » to test both direct contact toxicity and the toxicity of any leachate in the seawater. The Microtox assay was chosen because it the detection of non-specific mechanisms of toxicity. Toxicity was not observed with leachates from any of 68 adsorbent materials that were tested, but direct contact with some adsorbents at very high adsorbent con-centrations exhibited toxicity. These concentrations are, however, very unlikely to be seen in the actual marine deployment. Adsor-bents that accumulated uranium and trace metals were also tested for toxicity, and no toxic effect was observed. Biofouling on the adsorbents and in columns or flumes containing the adsorbents also indicates that the adsorbents are not toxic and that there may not be an obvious deleterious effect resulting from removing uranium and vanadium from seawater. An extensive literature search was also performed to examine the potential impact of uranium and vanadium extraction from seawater on marine life using the Pacific Northwest National Laboratory’s (PNNL’s) document analysis tool, IN-SPIRE™. Although other potential environmental effects must also be considered, results from both the Microtox assay and the literature search provide preliminary evidence that uranium extraction from seawater could be performed with minimal impact on marine fauna.« less

  7. Mineral resource potential map of the Pyramid Roadless Area, El Dorado County, Colorado

    USGS Publications Warehouse

    Armstrong, Augustus K.; Chaffee, Maurice A.; Scott, Douglas F.

    1983-01-01

    Studies show., there is low potential for small deposits of gold, silver, and base metals in the Pyramid Roadless Area. There are two uranium claims (Cliff Ridge mining claims) located within the roadless area, but samples from this site showed no uranium. There are no indications of geothermal resources, coal, oil, or gas.

  8. IRON COATED URANIUM AND ITS PRODUCTION

    DOEpatents

    Gray, A.G.

    1960-03-15

    A method of applying a protective coating to a metallic uranium article is given. The method comprises etching the surface of the article with an etchant solution containlng chloride ions, such as a solution of phosphoric acid and hydrochloric acid, cleaning the etched surface, electroplating iron thereon from a ferrous ammonium sulfate electroplating bath, and soldering an aluminum sheath to the resultant iron layer.

  9. Biosorption of uranium by Pseudomonas aeruginosa strain CSU: Characterization and comparison studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, M.Z.C.; Norman, J.M.; Faison, B.D.

    1996-07-20

    Pseudomonas aeruginosa strain CSU, a nongenetically engineered bacterial strain known to bind dissolved hexavalent uranium (as UO{sub 2}{sup 2+} and/or its cationic hydroxo complexes) was characterized with respect to its sorptive activity. The uranium biosorption equilibrium could be described by the Langmuir isotherm. The rate of uranium adsorption increased following permeabilization of the outer and/or cytoplasmic membrane by organic solvents such as acetone. P. aeruginosa CSU biomass was significantly more sorptive toward uranium than certain novel, patented biosorbents derived from algal or fungal biomass sources. P. aeruginosa CSU biomass was also competitive with commercial cation-exchange resins, particularly in the presencemore » of dissolved transition metals. Uranium binding by P. aeruginosa CSU was clearly pH dependent. Uranium loading capacity increased with increasing pH under acidic conditions, presumably as a function of uranium speciation and due to the H{sup +} competition at some binding sites. Nevertheless, preliminary evidence suggests that this microorganism is also capable of binding anionic hexavalent uranium complexes. Ferric iron was a strong inhibitor of uranium binding to P. aeruginosa CSU biomass, and the presence of uranium also decreased the Fe{sup 3+} loading when the biomass was not saturated with Fe{sup 3+}. Thus, a two-state process in which iron and uranium are removed in consecutive steps was proposed for efficient use of the biomass as a biosorbent in uranium removal from mine wastewater, especially acidic leachates.« less

  10. Borate minerals and origin of the RNA world.

    PubMed

    Grew, Edward S; Bada, Jeffrey L; Hazen, Robert M

    2011-08-01

    The RNA World is generally thought to have been an important link between purely prebiotic (>3.7 Ga) chemistry and modern DNA/protein biochemistry. One concern about the RNA World hypothesis is the geochemical stability of ribose, the sugar moiety of RNA. Prebiotic stabilization of ribose by solutions associated with borate minerals, notably colemanite, ulexite, and kernite, has been proposed as one resolution to this difficulty. However, a critical unresolved issue is whether borate minerals existed in sufficient quantities on the primitive Earth, especially in the period when prebiotic synthesis processes leading to RNA took place. Although the oldest reported colemanite and ulexite are 330 Ma, and the oldest reported kernite, 19 Ma, boron isotope data and geologic context are consistent with an evaporitic borate precursor to 2400-2100 Ma borate deposits in the Liaoning and Jilin Provinces, China, as well as to tourmaline-group minerals at 3300-3450 Ma in the Barberton belt, South Africa. The oldest boron minerals for which the age of crystallization could be determined are the metamorphic tourmaline species schorl and dravite in the Isua complex (metamorphism between ca. 3650 and ca. 3600 Ma). Whether borates such as colemanite, ulexite and kernite were present in the Hadean (>4000 Ma) at the critical juncture when prebiotic molecules such as ribose required stabilization depends on whether a granitic continental crust had yet differentiated, because in its absence we see no means for boron to be sufficiently concentrated for borates to be precipitated.

  11. Preliminary report on the Comet area, Jefferson County, Montana

    USGS Publications Warehouse

    Becraft, George Earle

    1952-01-01

    Several radioactivity anomalies and a few specimens of sooty pitchblende and other uranium minerals have been found on the mine dumps of formerly productive base-and precious-metal mines along the Comet-Gray Eagle shear zone in the Comet area in southwestern Montana. The shear zone is from 50 to 200 feet wide and has been traced for at least 5 1/2 miles. It trends N. 80° W. across the northern part of the area and cuts the quartz monzonitic rocks of the Boulder batholith and younger silicic intrusive rocks, as well as the pre-batholitic volcanic rocks, and is in turn cut by dacite and andesite dikes. The youngest period of mineralization is represented by chalcedonic vein zones comprising one or more discontinuous stringers and veins of cryptocrystalline silica in silicified quartz monzonite and in alaskite that has not been appreciably silicified. In some places these zones contain no distinct chalcedonic veins, but are represented only by silicified quartz monzonite. These zones locally contain uranium in association with very small amounts of the following minerals: pyrite, galena, ruby silver, argentite, native silver, molybdenite, chalcopyrite, arsenopyrite, and barite. At the Free Enterprise mine, uranium has been produced from a narrow chalcedonic vein that contains disseminated secondary uranium minerals and local small pods of pitchblende and from disseminated secondary uranium minerals in the adjacent quartz monzonite. Undiscovered commercial deposits of uranium ore may occur spatially associated with the base-and precious-metal deposits along the Comet-Gray Eagle shear zone, and chalcedonic vein zones similar to the Free Enterprise.

  12. Radionuclides and trace metals in Canadian moose near uranium mines: comparison of radiation doses and food chain transfer with cattle and caribou.

    PubMed

    Thomas, Patricia; Irvine, James; Lyster, Jane; Beaulieu, Rhys

    2005-05-01

    Tissues from 45 moose and 4 cattle were collected to assess the health of country foods near uranium mines in northern Saskatchewan. Bone, liver, kidney, muscle and rumen contents were analyzed for uranium, radium-226 (226Ra), lead-210 (210Pb), and polonium-210 (210Po). Cesium-137 (137Cs), potassium-40 (40K), and 27 trace metals were also measured in some tissues. Within the most active mining area, Po in liver and muscle declined significantly with distance from tailings, possibly influenced by nearby natural uranium outcrops. Moose from this area had significantly higher 226Ra, 210Pb, 210Po, and 137Cs in some edible soft tissues vs. one control area. However, soil type and diet may influence concentrations as much as uranium mining activities, given that a) liver levels of uranium, 226Ra, and 210Po were similar to a second positive control area with mineral-rich shale hills and b) 210Po was higher in cattle kidneys than in all moose. Enhanced food chain transfer from rumen contents to liver was found for selenium in the main mining area and for copper, molybdenum and cadmium in moose vs. cattle. Although radiological doses to moose in the main mining area were 2.6 times higher than doses to control moose or cattle, low moose intakes yielded low human doses (0.0068 mSv y(-1)), a mere 0.3% of the dose from intake of caribou (2.4 mSv y(-1)), the dietary staple in the area.

  13. The luminescence and decay enhancement by variation in atomic size of alkaline earth metals in Pr3+ incorporated sodium lead borate glass

    NASA Astrophysics Data System (ADS)

    Lenkennavar, Susheela K.; Madhu, A.; Eraiah, B.; Kokila, M. K.

    2018-05-01

    The glasses used for the present study are prepared by the melting and quenching techniques of composition 20Na2O-10PbO-10MO-60B2O3-xPr2O3 (where, M=Ba, Ca, Sr and x= 0.5 mol% of Pr3+). For different alkaline considered with same Pr3+ concemtartion incorporation on present work as resulted in interesting facts. Due to the effect of different atomic size, the luminescence and life time of glasses are affected. Only for calcium alkaline earth metal incorporated samples has proved to have highest intensity in emission and longer life time. The detailed studies of them have been reported for the better understanding.

  14. 17. VIEW OF FORMING EQUIPMENT, DISCS CUT FROM METAL SHEETS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW OF FORMING EQUIPMENT, DISCS CUT FROM METAL SHEETS WERE FORMED INTO SHAPES. (7/2/86) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  15. Uranium Associations with Kidney Outcomes Vary by Urine Concentration Adjustment Method

    PubMed Central

    Shelley, Rebecca; Kim, Nam-Soo; Parsons, Patrick J.; Lee, Byung-Kook; Agnew, Jacqueline; Jaar, Bernard G.; Steuerwald, Amy J.; Matanoski, Genevieve; Fadrowski, Jeffrey; Schwartz, Brian S.; Todd, Andrew C.; Simon, David; Weaver, Virginia M.

    2017-01-01

    Uranium is a ubiquitous metal that is nephrotoxic at high doses. Few epidemiologic studies have examined the kidney filtration impact of chronic environmental exposure. In 684 lead workers environmentally exposed to uranium, multiple linear regression was used to examine associations of uranium measured in a four-hour urine collection with measured creatinine clearance, serum creatinine- and cystatin-C-based estimated glomerular filtration rates, and N-acetyl-β-D-glucosaminidase (NAG). Three methods were utilized, in separate models, to adjust uranium levels for urine concentration - μg uranium/g creatinine; μg uranium/L and urine creatinine as separate covariates; and μg uranium/4 hr. Median urine uranium levels were 0.07 μg/g creatinine and 0.02 μg/4 hr and were highly correlated (rs =0.95). After adjustment, higher ln-urine uranium was associated with lower measured creatinine clearance and higher NAG in models that used urine creatinine to adjust for urine concentration but not in models that used total uranium excreted (μg/4 hr). These results suggest that, in some instances, associations between urine toxicants and kidney outcomes may be statistical, due to the use of urine creatinine in both exposure and outcome metrics, rather than nephrotoxic. These findings support consideration of non-creatinine-based methods of adjustment for urine concentration in nephrotoxicant research. PMID:23591699

  16. Synthesis and characterization of γ-irradiated cadmium-borate glasses doped V2O5

    NASA Astrophysics Data System (ADS)

    Bahammam, S.; Abd El Al, S.; Ezz-Eldin, F. M.

    In this work, we study the relationship between the optical and magnetic properties for the irradiated and unirradiated V2O5-doped cadmium borate glasses and examined their optical band energy that has compromise of non-bridging oxygen (NBO) and bridging oxygen (BO), V3+, V4+ and V5+, and BO3 units and BO4 units. The induced defects created by γ-rays were characterized by optical and EPR spectroscopy. The dependability of the defects and the tendency for recombination or conversion of the defects besides the environment of optically dynamic V centers was also discussed. It is concluded that the development of both optical and magnetic intensity is related to V4+ ions at tetrahedral sites whereas the decrease in their intensity is recognized to the ligand-metal charge transfer transitions of V4+ ions coupled to V5+. The optical band gap energy (Eg) has been observed to decrease with increasing either V2O5 content or γ-doses. High γ-dose reduces the values of the allowed direct optical band gap Eg of 0.5 Mol% V2O5 glass up to 45 kGy after which Eg increases, but remain lower than that of un-irradiated glass. Borate glasses under this study showed linear optical absorption response over the dose range of 5-80 kG. Fading under dark and room light in 2 h after exposure in the course of 30 days have been studied in detail and presented. Our results and findings indicate that, the investigated samples may be seemed to be a good candidate for radiation processing purposes.

  17. Laboratory evaluation of borate/amine/zinc formulations for fungal decay protection

    Treesearch

    George C. Chen; Rebecca E. Ibach

    2010-01-01

    The goals of this study were to evaluate borate/amine/zinc formulations in wood for fungal decay protection as well as the permanence of zinc and boron in wood. Wood treated with each of four formulations of borate/amine/zinc prevented or decreased fungal degradation after a 12-week AWPA Standard soil-block test. For non-leached specimens, wood treated with borax/amine...

  18. A mechanistic study of the interaction of water-soluble borate glass with apatite-bound heterocyclic nitrogen-containing bisphosphonates.

    PubMed

    Pramanik, Chandrani; Sood, Parveen; Niu, Li-Na; Yuan, He; Ghoshal, Sushanta; Henderson, Walter; Liu, Yaodong; Jang, Seung Soon; Kumar, Satish; Pashley, David H; Tay, Franklin R

    2016-02-01

    Long-term oral and intravenous use of nitrogen-containing bisphosphonates (N-BPs) is associated with osteonecrosis of the jaw. Although N-BPs bind strongly to bone surfaces via non-covalent bonds, it is possible for extrinsic ions to dissociate bound N-BPs from mineralized bone by competitive desorption. Here, we investigate the effects and mechanism of using an ionic cocktail derived from borate bioactive glass for sequestration of heterocyclic N-BPs bound to apatite. By employing solid-state and solution-state analytical techniques, we confirmed that sequestration of N-BPs from bisphosphonate-bound apatite occurs in the presence of the borate-containing ionic cocktail. Simulations by density functional theory computations indicate that magnesium cation and borate anion are well within the extent of the risedronate or zoledronate anion to form precipitate complexes. The sequestration mechanism is due to the borate anion competing with bisphosphonates for similar electron-deficient sites on the apatite surface for binding. Thus, application of the borate-containing ionic cocktail represents a new topical lavage approach for removing apatite-bound heterocyclic N-BPs from exposed necrotic bone in bisphosphonate-related osteonecrosis of the jaw. Long-term oral consumption and injections of nitrogen-containing bisphosphonates (N-BPs) may result in death of the jaw bone when there is traumatic injury to the bone tissues. To date, there is no effective treatment for such a condition. This work reported the use of an ionic cocktail derived from water-soluble borate glass microfibers to displace the most potent type of N-BPs that are bound strongly to the mineral component on bone surfaces. The mechanism responsible for such an effect has been identified to be cation-mediated complexation of borate anions with negatively-charged N-BPs, allowing them to be released from the mineral surface. This borate-containing cocktail may be developed into a novel topical rinse for removing mineral-bound N-BPs from exposed dead bone. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Determination of Depleted Uranium in Environmental Bio-monitor Samples and Soil from Target sites in Western Balkan Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, Sarata K.; Enomoto, Hiroko; Tokonami, Shinji

    2008-08-07

    Lichen and Moss are widely used to assess the atmospheric pollution by heavy metals and radionuclides. In this paper, we report results of uranium and its isotope ratios using mass spectrometric measurements (followed by chemical separation procedure) for mosses, lichens and soil samples from a depleted uranium (DU) target site in western Balkan region. Samples were collected in 2003 from Han Pijesak (Republika Srpska in Bosnia and Hercegovina). Inductively coupled plasma mass spectrometry (ICP-MS) measurements show the presence of high concentration of uranium in some samples. Concentration of uranium in moss samples ranged from 5.2-755.43 Bq/Kg. We have determined {supmore » 235}U/{sup 238}U isotope ratio using thermal ionization mass spectrometry (TIMS) from the samples with high uranium content and the ratios are in the range of 0.002097-0.002380. TIMS measurement confirms presence of DU in some samples. However, we have not noticed any traces of DU in samples containing lesser amount of uranium or from any samples from the living environment of same area.« less

  20. Modeling of point defects and rare gas incorporation in uranium mono-carbide

    NASA Astrophysics Data System (ADS)

    Chartier, A.; Van Brutzel, L.

    2007-02-01

    An embedded atom method (EAM) potential has been established for uranium mono-carbide. This EAM potential was fitted on structural properties of metallic uranium and uranium mono-carbide. The formation energies of point defects, as well as activation energies for self migration, have been evaluated in order to cross-check the suitability of the potential. Assuming that the carbon vacancies are the main defects in uranium mono-carbide compounds, the migration paths and energies are consistent with experimental data selected by Catlow[C.R.A. Catlow, J. Nucl. Mater. 60 (1976) 151]. The insertion and migration energies for He, Kr and Xe have also been evaluated with available inter-atomic potentials [H.H. Andersen, P. Sigmund, Nucl. Instr. and Meth. B 38 (1965) 238]. Results show that the most stable defect configuration for rare gases is within uranium vacancies. The migration energy of an interstitial Xe is 0.5 eV, in agreement with the experimental value of 0.5 eV [Hj. Matzke, Science of advanced LMFBR fuels, Solid State Physics, Chemistry and Technology of Carbides, Nitrides and Carbonitrides of Uranium and Plutonium, North-Holland, 1986].

  1. Macroporous monoliths for trace metal extraction from seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Yanfeng; Mayes, Richard; Gill, Gary A.

    2015-05-29

    The viability of seawater-based uranium recovery depends on the uranium adsorption rate and capacity, since the concentration of uranium in the oceans is relatively low (3.3 μgL⁻¹). An important consideration for a fast adsorption is to maximize the adsorption properties of adsorbents such as surface areas and pore structures, which can greatly improve the kinetics of uranium extraction and the adsorption capacity simultaneously. Following this consideration, macroporous monolith adsorbents were prepared from the copolymerization of acrylonitrile (AN) and N, N’-methylenebis(acrylamide) (MBAAm) based on a cryogel method using both hydrophobic and hydrophilic monomers. The monolithic sorbents were tested with simulated seawatermore » containing a high uranyl concentration (–6 ppm) and the uranium adsorption results showed that the adsorption capacities are strongly influenced by the ratio of monomer to the crosslinker, i.e., the density of the amidoxime groups. The preliminary seawater testing indicates the high salinity content of seawater does not hinder the adsorption of uranium.« less

  2. Macroporous monoliths for trace metal extraction from seawater

    DOE PAGES

    Yue, Yanfeng; Mayes, Richard T.; Gill, Gary; ...

    2015-05-29

    The viability of seawater-based uranium recovery depends on the uranium adsorption rate and capacity, since the concentration of uranium in the oceans is relatively low (3.3 gL -1). An important consideration for a fast adsorption is to maximize the adsorption properties of adsorbents such as surface areas and pore structures, which can greatly improve the kinetics of uranium extraction and the adsorption capacity simultaneously. Following this consideration, macroporous monolith adsorbents were prepared from the copolymerization of acrylonitrile (AN) and N,N -methylenebis(acrylamide) (MBAAm) based on a cryogel method using both hydrophobic and hydrophilic monomers. The monolithic sorbents were tested with simulatedmore » seawater containing a high uranyl concentration (–6 ppm) and the uranium adsorption results showed that the adsorption capacities are strongly influenced by the ratio of monomer to the crosslinker, i.e., the density of the amidoxime groups. Furthermore, the preliminary seawater testing indicates the high salinity content of seawater does not hinder the adsorption of uranium.« less

  3. Evolution of uranium monoxide in femtosecond laser-induced uranium plasmas

    DOE PAGES

    Hartig, Kyle C.; Harilal, Sivanandan S.; Phillips, Mark C.; ...

    2017-05-09

    We report on the observation of uranium monoxide (UO) emission following fs laser ablation (LA) of a uranium metal sample. The formation and evolution of the molecular emission are studied under various ambient air pressures. Observation of UO emission spectra at a rarefied residual air pressure of ~1 Torr indicates that the UO molecule is readily formed in the expanding plasma with trace concentrations of oxygen present within the vacuum chamber. Furthermore, the persistence of the UO emission exceeded that of the atomic emission; however, the molecular emission was delayed in time compared to the atomic emission due to themore » necessary cooling and expansion of the plasma before the UO molecules can form.« less

  4. Evolution of uranium monoxide in femtosecond laser-induced uranium plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartig, Kyle C.; Harilal, Sivanandan S.; Phillips, Mark C.

    We report on the observation of uranium monoxide (UO) emission following fs laser ablation (LA) of a uranium metal sample. The formation and evolution of the molecular emission are studied under various ambient air pressures. Observation of UO emission spectra at a rarefied residual air pressure of ~1 Torr indicates that the UO molecule is readily formed in the expanding plasma with trace concentrations of oxygen present within the vacuum chamber. Furthermore, the persistence of the UO emission exceeded that of the atomic emission; however, the molecular emission was delayed in time compared to the atomic emission due to themore » necessary cooling and expansion of the plasma before the UO molecules can form.« less

  5. Elevated Arsenic and Uranium Concentrations in Unregulated Water Sources on the Navajo Nation, USA.

    PubMed

    Hoover, Joseph; Gonzales, Melissa; Shuey, Chris; Barney, Yolanda; Lewis, Johnnye

    2017-01-01

    Regional water pollution and use of unregulated water sources can be an important mixed metals exposure pathway for rural populations located in areas with limited water infrastructure and an extensive mining history. Using censored data analysis and mapping techniques we analyzed the joint geospatial distribution of arsenic and uranium in unregulated water sources throughout the Navajo Nation, where over 500 abandoned uranium mine sites are located in the rural southwestern United States. Results indicated that arsenic and uranium concentrations exceeded national drinking water standards in 15.1 % (arsenic) and 12.8 % (uranium) of tested water sources. Unregulated sources in close proximity (i.e., within 6 km) to abandoned uranium mines yielded significantly higher concentrations of arsenic or uranium than more distant sources. The demonstrated regional trends for potential co-exposure to these chemicals have implications for public policy and future research. Specifically, to generate solutions that reduce human exposure to water pollution from unregulated sources in rural areas, the potential for co-exposure to arsenic and uranium requires expanded documentation and examination. Recommendations for prioritizing policy and research decisions related to the documentation of existing health exposures and risk reduction strategies are also provided.

  6. Enhanced uranium immobilization and reduction by Geobacter sulfurreducens biofilms.

    PubMed

    Cologgi, Dena L; Speers, Allison M; Bullard, Blair A; Kelly, Shelly D; Reguera, Gemma

    2014-11-01

    Biofilms formed by dissimilatory metal reducers are of interest to develop permeable biobarriers for the immobilization of soluble contaminants such as uranium. Here we show that biofilms of the model uranium-reducing bacterium Geobacter sulfurreducens immobilized substantially more U(VI) than planktonic cells and did so for longer periods of time, reductively precipitating it to a mononuclear U(IV) phase involving carbon ligands. The biofilms also tolerated high and otherwise toxic concentrations (up to 5 mM) of uranium, consistent with a respiratory strategy that also protected the cells from uranium toxicity. The enhanced ability of the biofilms to immobilize uranium correlated only partially with the biofilm biomass and thickness and depended greatly on the area of the biofilm exposed to the soluble contaminant. In contrast, uranium reduction depended on the expression of Geobacter conductive pili and, to a lesser extent, on the presence of the c cytochrome OmcZ in the biofilm matrix. The results support a model in which the electroactive biofilm matrix immobilizes and reduces the uranium in the top stratum. This mechanism prevents the permeation and mineralization of uranium in the cell envelope, thereby preserving essential cellular functions and enhancing the catalytic capacity of Geobacter cells to reduce uranium. Hence, the biofilms provide cells with a physically and chemically protected environment for the sustained immobilization and reduction of uranium that is of interest for the development of improved strategies for the in situ bioremediation of environments impacted by uranium contamination. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Enhanced Uranium Immobilization and Reduction by Geobacter sulfurreducens Biofilms

    PubMed Central

    Cologgi, Dena L.; Speers, Allison M.; Bullard, Blair A.; Kelly, Shelly D.

    2014-01-01

    Biofilms formed by dissimilatory metal reducers are of interest to develop permeable biobarriers for the immobilization of soluble contaminants such as uranium. Here we show that biofilms of the model uranium-reducing bacterium Geobacter sulfurreducens immobilized substantially more U(VI) than planktonic cells and did so for longer periods of time, reductively precipitating it to a mononuclear U(IV) phase involving carbon ligands. The biofilms also tolerated high and otherwise toxic concentrations (up to 5 mM) of uranium, consistent with a respiratory strategy that also protected the cells from uranium toxicity. The enhanced ability of the biofilms to immobilize uranium correlated only partially with the biofilm biomass and thickness and depended greatly on the area of the biofilm exposed to the soluble contaminant. In contrast, uranium reduction depended on the expression of Geobacter conductive pili and, to a lesser extent, on the presence of the c cytochrome OmcZ in the biofilm matrix. The results support a model in which the electroactive biofilm matrix immobilizes and reduces the uranium in the top stratum. This mechanism prevents the permeation and mineralization of uranium in the cell envelope, thereby preserving essential cellular functions and enhancing the catalytic capacity of Geobacter cells to reduce uranium. Hence, the biofilms provide cells with a physically and chemically protected environment for the sustained immobilization and reduction of uranium that is of interest for the development of improved strategies for the in situ bioremediation of environments impacted by uranium contamination. PMID:25128347

  8. Pumped lithium loop test to evaluate advanced refractory metal alloys and simulated nuclear fuel elements

    NASA Technical Reports Server (NTRS)

    Brandenburf, G. P.; Hoffman, E. E.; Smith, J. P.

    1974-01-01

    The performance was determined of refractory metal alloys and uranium nitride fuel element specimens in flowing 1900F (1083C) lithium. The results demonstrate the suitability of the selected materials to perform satisfactorily from a chemical compatibility standpoint.

  9. A novel molten-salt electrochemical cell for investigating the reduction of uranium dioxide to uranium metal by lithium using in situ synchrotron radiation

    PubMed Central

    Brown, Leon D.; Abdulaziz, Rema; Jervis, Rhodri; Bharath, Vidal; Mason, Thomas J.; Reinhard, Christina; Connor, Leigh D.; Inman, Douglas; Brett, Daniel J. L.; Shearing, Paul R.

    2017-01-01

    A novel electrochemical cell has been designed and built to allow for in situ energy-dispersive X-ray diffraction measurements to be made during reduction of UO2 to U metal in LiCl–KCl at 500°C. The electrochemical cell contains a recessed well at the bottom of the cell into which the working electrode sits, reducing the beam path for the X-rays through the molten-salt and maximizing the signal-to-noise ratio from the sample. Lithium metal was electrodeposited onto the UO2 working electrode by exposing the working electrode to more negative potentials than the Li deposition potential of the LiCl–KCl eutectic electrolyte. The Li metal acts as a reducing agent for the chemical reduction of UO2 to U, which appears to proceed to completion. All phases were fitted using Le Bail refinement. The cell is expected to be widely applicable to many studies involving molten-salt systems. PMID:28244437

  10. A novel molten-salt electrochemical cell for investigating the reduction of uranium dioxide to uranium metal by lithium using in situ synchrotron radiation.

    PubMed

    Brown, Leon D; Abdulaziz, Rema; Jervis, Rhodri; Bharath, Vidal; Mason, Thomas J; Atwood, Robert C; Reinhard, Christina; Connor, Leigh D; Inman, Douglas; Brett, Daniel J L; Shearing, Paul R

    2017-03-01

    A novel electrochemical cell has been designed and built to allow for in situ energy-dispersive X-ray diffraction measurements to be made during reduction of UO 2 to U metal in LiCl-KCl at 500°C. The electrochemical cell contains a recessed well at the bottom of the cell into which the working electrode sits, reducing the beam path for the X-rays through the molten-salt and maximizing the signal-to-noise ratio from the sample. Lithium metal was electrodeposited onto the UO 2 working electrode by exposing the working electrode to more negative potentials than the Li deposition potential of the LiCl-KCl eutectic electrolyte. The Li metal acts as a reducing agent for the chemical reduction of UO 2 to U, which appears to proceed to completion. All phases were fitted using Le Bail refinement. The cell is expected to be widely applicable to many studies involving molten-salt systems.

  11. New perspectives on a 140-year legacy of mining and abandoned mine cleanup in the San Juan Mountains, Colorado

    USGS Publications Warehouse

    Yager, Douglas B.; Fey, David L.; Chapin, Thomas; Johnson, Raymond H.

    2016-01-01

    The Gold King mine water release that occurred on 5 August 2015 near the historical mining community of Silverton, Colorado, highlights the environmental legacy that abandoned mines have on the environment. During reclamation efforts, a breach of collapsed workings at the Gold King mine sent 3 million gallons of acidic and metal-rich mine water into the upper Animas River, a tributary to the Colorado River basin. The Gold King mine is located in the scenic, western San Juan Mountains, a region renowned for its volcano-tectonic and gold-silver-base metal mineralization history. Prior to mining, acidic drainage from hydrothermally altered areas was a major source of metals and acidity to streams, and it continues to be so. In addition to abandoned hard rock metal mines, uranium mine waste poses a long-term storage and immobilization challenge in this area. Uranium resources are mined in the Colorado Plateau, which borders the San Juan Mountains on the west. Uranium processing and repository sites along the Animas River near Durango, Colorado, are a prime example of how the legacy of mining must be managed for the health and well-being of future generations. The San Juan Mountains are part of a geoenvironmental nexus where geology, mining, agriculture, recreation, and community issues converge. This trip will explore the geology, mining, and mine cleanup history in which a community-driven, watershed-based stakeholder process is an integral part. Research tools and historical data useful for understanding complex watersheds impacted by natural sources of metals and acidity overprinted by mining will also be discussed.

  12. PROCESS FOR PRODUCTION OF URANIUM

    DOEpatents

    Crawford, J.W.C.

    1959-09-29

    A process is described for the production of uranium by the autothermic reduction of an anhydrous uranium halide with an alkaline earth metal, preferably magnesium One feature is the initial reduction step which is brought about by locally bringing to reaction temperature a portion of a mixture of the reactants in an open reaction vessel having in contact with the mixture a lining of substantial thickness composed of calcium fluoride. The lining is prepared by coating the interior surface with a plastic mixture of calcium fluoride and water and subsequently heating the coating in situ until at last the exposed surface is substantially anhydrous.

  13. Low-energy collisionally activated dissociation of pentose-borate complexes

    NASA Astrophysics Data System (ADS)

    Pepi, Federico; Garzoli, Stefania; Tata, Alessandra; Giacomello, Pierluigi

    2010-01-01

    Pentose-borate 1:1 complexes were generated in the ESI source of a triple quadrupole and ion trap mass spectrometer by electrospray ionization of Na2B4O7 and pentose (arabinose, lyxose, ribose, xylose) 2:1 solution in CH3CN/H2O. The study of their low-energy collisionally activated dissociation (CAD) demonstrated that ribose and lyxose are preferentially complexed at the C2-C3 cis-diol function whereas arabinose and xylose are esterified at the C1-C2 hydroxyl groups. No evidence was found of the stronger affinity for ribose to borate. The ribose probiotic rule can be explained by considering its peculiar capability, among the investigated pentoses, to almost totally complex the borate anion at the C2-C3 hydroxyl group, thus enabling the subsequent stages of nucleotide assembly, such as phosphorylation and linkage to the nucleobases. Finally, the differences observed in the pentose-borate complex CAD spectra can be used for the mass spectrometric discrimination of isomeric pentoses in complex mixtures.

  14. Study on Microstructure and Electrochemical Corrosion Behavior of PEO Coatings Formed on Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Xiang, N.; Song, R. G.; Li, H.; Wang, C.; Mao, Q. Z.; Xiong, Y.

    2015-12-01

    Plasma electrolytic oxidation (PEO) treated 6063 aluminum alloy was applied in a silicate- and borate-based alkaline solution. The microstructure and electrochemical corrosion behavior were studied by scanning electron microscopy, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization techniques. The results showed that the silicate-based PEO coating was of a denser structure compared with that of borate-based PEO coating. In addition, the silicate-based PEO coating was composed of more phased (Al9Si) than borate-based PEO coating. The results of corrosion test indicated that the silicate-based PEO coating provided a superior protection to 6063 aluminum alloy substrate, while borate-based PEO coating with a porous structure showed an inferior conservancy against corrosive electrolyte. Furthermore, the EIS tests proved that both coatings were capable to resist the aggressive erosion in 0.5 M NaCl solution after 72 h of immersion. However, the borate-based PEO coating could not provide sufficient protection to the substrate after 72-h immersion in 1 M NaCl solution.

  15. Synthesis of hydrophobic zinc borate nanoflakes and its effect on flame retardant properties of polyethylene

    NASA Astrophysics Data System (ADS)

    Li, Shengli; Long, Beihong; Wang, Zichen; Tian, Yumei; Zheng, Yunhui; Zhang, Qian

    2010-04-01

    Zinc borate (2ZnO·3B 2O 3·3.5H 2O) has relatively high dehydration on-set temperature which property permits processing in a wide range of polymer system. But zinc borate particles are hardly dispersed in a polymer matrix so that they prevent their using in industry. To address this problem, we synthesized hydrophobic zinc borate (2ZnO·3B 2O 3·3.5H 2O) nanoflakes by employing solid-liquid reaction of zinc oxide (ZnO) and boric acid (H 3BO 3) in the presence of oleic acid. This method does not bring pollution. By conducting morphological and microscopic analyses, we found that this compound displayed nanoflake morphology with particle size of around 100-200 nm, thickness less than 100 nm and there were uniform mesopores with the diameter about 10 nm within the particles. Furthermore, our products had an effect on flame retardant of polyethylene, especially when the zinc borate was modified by oleic acid.

  16. Boron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozen, L.F.

    1991-05-01

    This paper reports that borate minerals and refined borates are used extensively for the manufacture of vitreous materials such as insulation and textile fiberglasses, borosilicate glass, and porcelain enamels and frits. In North America, these applications are estimated to account for over 54% of the borate consumption. Other substantial uses are in soaps and detergents, metallurgy, fire retardants, industrial biocides, agriculture, and various miscellaneous applications. Reported domestic borate consumption in 1990 was estimated by the U.S. Bureau of Mines to be 320 000 metric tons B{sub 2}O{sub 3} versus 354 000 metric tons B{sub 2}O{sub 3} in 1989. Consumption ismore » projected to remain essentially static in 1991. Imports were estimated by the Bureau to be 50 000 metric tons B{sub 2}O{sub 3} in 1990. Exports of boric acid and refined borates were approximately 650 000 metric tons of product, a 15 000 metric ton increase from the 1989 level. This increase partially offsets the drop in the 1990 consumption level.« less

  17. Materials for the Recovery of Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abney, Carter W.; Mayes, Richard T.; Saito, Tomonori

    More than 1000× uranium exists in the oceans than exists in terrestrial ores. With nuclear power generation expected to increase over the coming decades, access to this unconventional reserve is a matter of energy security. With origins in the mid-1950’s, materials have been developed for the selective recovery of seawater uranium for more than six decades, with a renewed interest in particular since 2010. This review comprehensively surveys materials developed from 2000 – 2016 for recovery of seawater uranium, in particular including recent developments in inorganic materials, polymer adsorbents and related research pertaining to amidoxime, and nanostructured materials such asmore » metal-organic frameworks, porous-organic polymers, and mesoporous carbons. In conclusion, challenges of performing reliable and reproducible uranium adsorption studies are also discussed, as well as the standardization of parameters necessary to ensure valid comparisons between different adsorbents.« less

  18. Materials for the Recovery of Uranium from Seawater

    DOE PAGES

    Abney, Carter W.; Mayes, Richard T.; Saito, Tomonori; ...

    2017-11-22

    More than 1000× uranium exists in the oceans than exists in terrestrial ores. With nuclear power generation expected to increase over the coming decades, access to this unconventional reserve is a matter of energy security. With origins in the mid-1950’s, materials have been developed for the selective recovery of seawater uranium for more than six decades, with a renewed interest in particular since 2010. This review comprehensively surveys materials developed from 2000 – 2016 for recovery of seawater uranium, in particular including recent developments in inorganic materials, polymer adsorbents and related research pertaining to amidoxime, and nanostructured materials such asmore » metal-organic frameworks, porous-organic polymers, and mesoporous carbons. In conclusion, challenges of performing reliable and reproducible uranium adsorption studies are also discussed, as well as the standardization of parameters necessary to ensure valid comparisons between different adsorbents.« less

  19. China and Proliferation of Weapons of Mass Destruction and Missiles: Policy Issues

    DTIC Science & Technology

    2010-08-16

    nuclear weapons facilities, while experts from China worked at a uranium mine at Saghand and a centrifuge facility (for uranium enrichment) near...brief interruptions.”85 84 Barbara Opall -Rome and Vago Muradian, “Bush Privately Lauds...confiscated a rare metal used to produce alloy steel (called vanadium) being smuggled to North Korea. In the same month, China’s NHI Shenyang Mining

  20. PLURAL METALLIC COATINGS ON URANIUM AND METHOD OF APPLYING SAME

    DOEpatents

    Gray, A.G.

    1958-09-16

    A method is described of applying protective coatings to uranlum articles. It consists in applying chromium plating to such uranium articles by electrolysis in a chromic acid bath and subsequently applying, to this minum containing alloy. This aluminum contalning alloy (for example one of aluminum and silicon) may then be used as a bonding alloy between the chromized surface and an aluminum can.

Top