Science.gov

Sample records for metal weld part

  1. Heat and fluid flow in complex joints during gas metal arc welding—Part I: Numerical model of fillet welding

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Kim, C.-H.; DebRoy, T.

    2004-05-01

    Gas metal arc (GMA) fillet welding is one of the most important processes for metal joining because of its high productivity and amiability to automation. This welding process is characterized by the complicated V-shaped joint geometry, a deformable weld pool surface, and the additions of hot metal droplets. In the present work, a three-dimensional numerical heat transfer and fluid flow model was developed to examine the temperature profiles, velocity fields, weld pool shape and size, and the nature of the solidified weld bead geometry during GMA fillet welding. The model solved the equations of conservation of mass, momentum, and energy using a boundary fitted curvilinear coordinate system. Apart from the direct transport of heat from the welding arc, additional heat from the metal droplets was modeled considering a volumetric heat source. The deformation of the weld pool surface was calculated by minimizing the total surface energy. Part I of this article is focused on the details of the numerical model such as coordinate transformation and calculation of volumetric heat source and free surface profile. An application of the model to GMA fillet welding of mild steel is described in an accompanying article (W. Zhang, C.-H. Kim and T. DebRoy, J. Appl Phys. 95, 5220 (2004)).

  2. Mechanics and mechanisms of ultrasonic metal welding

    NASA Astrophysics Data System (ADS)

    de Vries, Edgar

    During ultrasonic welding of sheet metal, normal and shear forces act on the parts to be welded and the weld interface. These forces are a result of the ultrasonic vibrations of the tool, pressed onto the parts to be welded. Furthermore they determine the weld quality and the power that is needed to produce the weld. The main goal in this study is to measure and calculate the tangential forces during ultrasonic metal welding that act on the parts and the weld interface and correlate them to weld quality. In this study a mechanics based model was developed which included a model for the temperature generation during welding and its effect on the mechanical material properties. This model was then used to calculate the interface forces during welding. The model results were in good agreement with the experimental results, which included the measured shear force during welding. With the knowledge of the forces that act at the interface it might be possible to control weld quality (strength) and avoid sonotrode welding (sticking of the sonotrode to the parts). Without a solution to these two problems USMW will never be applicable to large scale automated production use, despite its advantages. In the experiments the influence of part dimensions, friction coefficient, normal force and vibration amplitude on weld quality and sonotrode adhesion were examined. The presented model is capable of predicting and explaining unfavorable welding conditions, therefore making it possible to predetermine weld locations on larger parts or what surface preparation of the parts to be welded would lead to an improved welding result. Furthermore shear force at the anvil measured during welding could be correlated to changing welding conditions. This is a new approach of explaining the process of USMW, because it is based on mechanical considerations. The use of a shear force measuring anvil has the potential to be implemented into welding systems and the shear force would provide an

  3. Gas Metal Arc Welding. Welding Module 5. Instructor's Guide.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching an eight-unit module in gas metal arc welding. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The following topics are covered in the module: safety and testing, gas metal arc…

  4. Method of beam welding metallic parts together and apparatus for doing same

    DOEpatents

    Lewandowski, E.F.; Cassidy, D.A.; Sommer, R.G.

    1985-11-29

    This method provides for temporarily clamping a metallic piece to one side of a metallic plate while leaving the opposite side of the plate exposed, and providing a heat conductive heat sink body configured to engage the adjacent portions of such one side of the plate and the piece at all regions proximate to but not at the interface between these components. The exposed side of such plate is then subjected to an electron welding beam, in exact registry with but opposite to the piece. The electron welding beam is supplied with adequate energy for penetrating through the plate, across the interface, and into the piece, whereby the electron welding beam produces molten material from both the plate and the piece in the region of the interface. The molten material flows into any interstices that may exist in the interface, and upon cooling solidifies to provide a welded joint between the plate and piece, where the interface was, virtually without any interstices. The heat sink material prevents the molten material from extrucing beyond what was the interface, to provide a clean welded joint. The heat sink body also mechanically holds the plate and piece together prior to the actual welding.

  5. Method of beam welding metallic parts together and apparatus for doing same

    DOEpatents

    Lewandowski, Edward F.; Cassidy, Dale A.; Sommer, Robert G.

    1987-01-01

    The disclosed method provides for temporarily clamping a metallic piece to one side of a metallic plate while leaving the opposite side of the plate exposed, and providing a heat conductive heat sink body configured to engage the adjacent portions of such one side of the plate and the piece at all regions proximate to but not at the interface between these components. Such exposed side of such plate is then subjected to an electron welding beam, in exact registry with but opposite to the piece. The electron welding beam is supplied with adequate energy for penetrating through the plate, across the interface, and into the piece, whereby the electron welding beam produces molten material from both the plate and the piece in the region of the interface. The molten material flows into any interstices that may exist in the interface, and upon cooling solidifies to provide a welded joint between the plate and piece, where the interface was, virtually without any interstices. The heat sink material prevents the molten material from extruding beyond what was the interface, to provide a clean welded joint. The heat sink body also mechanically holds the plate and piece together prior to the actual welding.

  6. Shielded Metal Arc Welding. Welding Module 4. Instructor's Guide.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching an eight-unit module in shielded metal arc welding. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The following topics are covered in the module: safety; theory, power sources, and…

  7. Grinding Parts For Automatic Welding

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.; Hoult, William S.

    1989-01-01

    Rollers guide grinding tool along prospective welding path. Skatelike fixture holds rotary grinder or file for machining large-diameter rings or ring segments in preparation for welding. Operator grasps handles to push rolling fixture along part. Rollers maintain precise dimensional relationship so grinding wheel cuts precise depth. Fixture-mounted grinder machines surface to quality sufficient for automatic welding; manual welding with attendant variations and distortion not necessary. Developed to enable automatic welding of parts, manual welding of which resulted in weld bead permeated with microscopic fissures.

  8. A study of weld quality in ultrasonic spot welding of similar and dissimilar metals

    NASA Astrophysics Data System (ADS)

    Al-Sarraf, Z.; Lucas, M.

    2012-08-01

    Several difficulties are faced in joining thinner sheets of similar and dissimilar materials from fusion welding processes such as resistance welding and laser welding. Ultrasonic metal welding overcomes many of these difficulties by using high frequency vibration and applied pressure to create a solid-state weld. Ultrasonic metal welding is an effective technique in joining small components, such as in wire bonding, but is also capable of joining thicker sheet, depending on the control of welding conditions. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal welding device. The ultrasonic welding horn is modelled using finite element analysis and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. Control of the vibration amplitude profile through the weld cycle is used to enhance weld strength and quality, providing an opportunity to reduce part marking. Optical microscopic examination and scanning electron microscopy (SEM) were employed to investigate the weld quality. The results show how the weld quality is particularly sensitive to the combination of clamping force and vibration amplitude of the welding tip.

  9. Metal Working and Welding Operations.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by metal workers and welders. Addressed in the six individual units of the course are the following topics: weldable metals and their alloys, arc welding, gas welding,…

  10. Nature and evolution of the fusion boundary in ferritic-austenitic dissimilar weld metals. Part 1 -- Nucleation and growth

    SciTech Connect

    Nelson, T.W.; Lippold, J.C.; Mills, M.J.

    1999-10-01

    A fundamental investigation of fusion boundary microstructure evolution in dissimilar-metal welds (DMWs) between ferritic base metals and a face-centered-cubic (FCC) filler metal was conducted. The objective of the work presented here was to characterize the nature and character of the elevated-temperature fusion boundary to determine the nucleation and growth characteristics of DMWs. Type 409 ferritic stainless steel and 1080 pearlitic steel were utilized as base metal substrates, and Monel (70Ni-30Cu) was used as the filler metal. The Type 409 base metal provided a fully ferritic or body-centered-cubic (BCC) substrate at elevated temperatures and exhibited no on-cooling phase transformations to mask or disguise the original character of the fusion boundary. The 1080 pearlitic steel was selected because it is austenitic at the solidus temperature, providing an austenite substrate at the fusion boundary. The weld microstructure generated with each of the base metals in combination with Monel was fully austenitic. In the Type 409/Monel system, there was no evidence of epitaxial nucleation and growth as normally observed in homogeneous weld metal combinations. The fusion boundary in this system exhibited random grain boundary misorientations between the heat-affected zone (HAZ) and weld metal grains. In the 1080/Monel system, evidence of normal epitaxial growth was observed at the fusion boundary, where solidification and HAZ grain boundaries converged. The fusion boundary morphologies are a result of the crystal structure present along the fusion boundary during the initial stages of solidification. Based on the results of this investigation, a model for heterogeneous nucleation along the fusion boundary is proposed when the base and weld metals exhibit ferritic (BCC) and FCC crystal structures, respectively.

  11. Laser beam welding of any metal.

    SciTech Connect

    Leong, K. H.

    1998-10-01

    The effect of a metal's thermophysical properties on its weldability are examined. The thermal conductivity, melting point, absorptivity and thermal diffusivity of the metal and the laser beam focused diameter and welding speed influence the minimum beam irradiance required for melting and welding. Beam diameter, surface tension and viscosity of the molten metal affect weld pool stability and weld quality. Lower surface tension and viscosity increases weld pool instability. With larger beam diameters causing wider welds, dropout also increases. Effects of focused beam diameter and joint fitup on weldability are also examined. Small beam diameters are sensitive to beam coupling problems in relation to fitup precision in addition to beam alignment to the seam. Welding parameters for mitigating weld pool instability and increasing weld quality are derived from the above considerations. Guidelines are presented for the tailoring of welding parameters to achieve good welds. Weldability problems can also be anticipated from the properties of a metal.

  12. Characteristics comparison of weld metal zones welded to cast and forged steels for piston crown material

    NASA Astrophysics Data System (ADS)

    Moon, Kyung-Man; Kim, Yun-Hae; Lee, Myeong-Hoon; Baek, Tae-Sil

    2015-03-01

    An optimum repair welding for the piston crown which is one of the engine parts exposed to the combustion chamber is considered to be very important to prolong the engine lifetime from an economical point of view. In this study, two types of filler metals such as 1.25Cr-0.5Mo, 0.5Mo were welded with SMAW method and the other two types of filler metals such as Inconel 625 and 718 were welded with GTAW method, respectively, and the used base metals were the cast and forged steels of the piston crown material. The weld metal zones welded with Inconel 625 and 718 filler metals exhibited higher corrosion resistance compared to 1.25Cr-0.5Mo and 0.5Mo filler metals. In particular, the weld metal zone welded with Inconel 718 and 0.5Mo, filler metals indicated the best and worst corrosion resistance, respectively. Consequently, it is suggested that the corrosion resistance of the weld metal zone surely depends on the chemical components of each filler metal and welding method irrespective of the types of piston crown material.

  13. Method for controlling gas metal arc welding

    DOEpatents

    Smartt, Herschel B.; Einerson, Carolyn J.; Watkins, Arthur D.

    1989-01-01

    The heat input and mass input in a Gas Metal Arc welding process are controlled by a method that comprises calculating appropriate values for weld speed, filler wire feed rate and an expected value for the welding current by algorithmic function means, applying such values for weld speed and filler wire feed rate to the welding process, measuring the welding current, comparing the measured current to the calculated current, using said comparison to calculate corrections for the weld speed and filler wire feed rate, and applying corrections.

  14. Method for controlling gas metal arc welding

    DOEpatents

    Smartt, H.B.; Einerson, C.J.; Watkins, A.D.

    1987-08-10

    The heat input and mass input in a Gas Metal Arc welding process are controlled by a method that comprises calculating appropriate values for weld speed, filler wire feed rate and an expected value for the welding current by algorithmic function means, applying such values for weld speed and filler wire feed rate to the welding process, measuring the welding current, comparing the measured current to the calculated current, using said comparison to calculate corrections for the weld speed and filler wire feed rate, and applying corrections. 3 figs., 1 tab.

  15. Hybrid welding of dissimilar metals

    NASA Astrophysics Data System (ADS)

    Samigullin, A. D.; Bashmakov, D. A.; Israphilov, I. Kh; Turichin, G. A.

    2017-01-01

    The article addresses issues laser - plasma welding (LPW) dissimilar metals and the results of metallographic studies of the microstructure of welds ferrite - 40 steel and molybdenum - steel 40. Increasing potential opportunities the high-energy processing is carried out by integration the laser radiation (LR) and plasma, which allows you to create the desired spatial distribution of the energy flow for technological processes (TP) of laser-plasma heat treatment (LPT) of metals. The distribution of the thermal field is determined by the density distribution of energy flow LR and plasma exposure time, and the thermal characteristics of the treated metal. The most interesting is the treatment of details with ring flow of plasma and LR axial impact.

  16. Welding dissimilar metal microwires by Joule heating

    NASA Astrophysics Data System (ADS)

    Sunagawa, Takuya; Tohmyoh, Hironori

    2015-06-01

    In this paper we report on the Joule heat welding of dissimilar metal microwires. The current required for successful welding was investigated. Various combinations of 25 µm diameter Cu, Au and Al microwires were welded together using this technique. The welded dissimilar metal wire systems were then cut by supplying a higher current, and it was found that the position at which the wires cut was not at the midpoint, i.e., the position of the weld, of the wire system. This is because the temperature distributions formed in the dissimilar metal systems were asymmetrical. The positions at which the wires cut were in good agreement with those predicted by a heat conduction model. The lower limit for successful welding of the dissimilar metal microwire system was found to be determined by the lower of the two currents required to cut microwires of the individual materials.

  17. Wiping Metal Transfer in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Much evidence suggests that as the friction stir pin-tool moves along a weld seam the displacement of metal takes place by a wiping action at the surface of a plug of metal that rotates with the tool. The wiping model is explained and some consequences for the friction stir welding process are drawn.

  18. Evaluation of weld metal 82 and weld metal 152 stress corrosion cracking susceptibility

    SciTech Connect

    Psaila-Dombrowski, M.J.; Sarver, J.M.; Doherty, P.E.; Schneider, W.G.

    1995-12-31

    Welds are often an area of concern in steam generators (SG) because of the different materials in the welds, the residual stresses which result from the welding process and subsequent operational stresses. In general a weld is composed of a base metal, weld metal and the heat affected zone (HAZ). This study investigated the corrosion performance of welds connecting the divider plate to the weld buildup in a welded-in divider plate (WIDP) design. The materials of interest were Alloy 690 plate, Weld Metals (WM) 82 and WM 152. Weld test samples were fabricated in a manner that is consistent with SG fabrication practices in which WM 152 is used to attach the Alloy 690 plate to the WM 82 weld buildup. Round tensile specimens were used to evaluate WIDP welds. Specimens were manufactured parallel to the weld fusion lines, hence, the gauge length of each specimen contained either the base metal or a metal and a HAZ. Use of specimens of this orientation permitted evaluation of all the materials contained in the specimen for stress corrosion cracking (SCC) susceptibility, not just the weakest materials. Constant extension rate tests were performed in Pressurized Water Reactor (PWR) primary water chemistry and faulted primary water chemistry at 343 C and a strain rate of 1 {times} 10{sup {minus}6} sec{sup {minus}1}. No SCC was found in any specimen in either environment.

  19. Sensors control gas metal arc welding

    SciTech Connect

    Siewert, T.A.; Madigan, R.B.; Quinn, T.P.

    1997-04-01

    The response time of a trained welder from the time a weld problem is identified to the time action is taken is about one second--especially after a long, uneventful period of welding. This is acceptable for manual welding because it is close to the time it takes for the weld pool to solidify. If human response time were any slower, manual welding would not be possible. However, human response time is too slow to respond to some weld events, such as melting of the contact tube in gas metal arc welding (GMAW), and only automated intelligent control systems can react fast enough to correct or avoid these problems. Control systems incorporate welding knowledge that enables intelligent decisions to be made about weld quality and, ultimately, to keep welding parameters in the range where only high-quality welds are produced. This article discusses the correlation of electrical signals with contact-tube wear, changes in shielding gas, changes in arc length, and other weld process data.

  20. Sensing the gas metal arc welding process

    NASA Technical Reports Server (NTRS)

    Carlson, N. M.; Johnson, J. A.; Smartt, H. B.; Watkins, A. D.; Larsen, E. D.; Taylor, P. L.; Waddoups, M. A.

    1994-01-01

    Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-by-pass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.

  1. Sensing the gas metal arc welding process

    SciTech Connect

    Carlson, N.M.; Johnson, J.A.; Smartt, H.B.; Watkins, A.D.; Larsen, E.D.; Taylor, P.L. ); Waddoups, M.A. )

    1992-01-01

    Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-bypass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.

  2. Sensing the gas metal arc welding process

    SciTech Connect

    Carlson, N.M.; Johnson, J.A.; Smartt, H.B.; Watkins, A.D.; Larsen, E.D.; Taylor, P.L.; Waddoups, M.A.

    1992-10-01

    Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-bypass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.

  3. Welding.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This curriculum guide is designed for use by South Carolina vocational education teachers as a continuing set of lesson plans for a two-year course on welding. Covered in the individual sections of the guide are the following topics: an orientation to welding, oxyacetylene welding, advanced oxyacetylene welding, shielded metal arc welding, TIG…

  4. Metal Flow During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Guerra, M.; Schmidt, C.; McClure, J. C.; Murr, L. E.; Nunes, A. C.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    The flow of metal during Friction Stir Welding is clarified using a faying surface tracer and a nib frozen in place during welding. It is shown that material is transported by two processes. The first is a wiping of material from the advancing front side of the nib onto a plug of material that rotates and advances with the nib. The material undergoes a helical motion within the plug that both rotates and advances with the plug and descends in the wash of the threads on the nib and rises on the outer part of the plug. After one or more rotations, this material is sloughed off the plug in its wake, primarily on the advancing side. The second process is an entrainment of material from the front retreating side of the nib that fills in between the sloughed off pieces from the advancing side. These two processes produce material with different mechanical properties and the strength of a weld should depend on the relative importance of the processes.

  5. Femtosecond fiber laser welding of dissimilar metals.

    PubMed

    Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2014-10-01

    In this paper, welding of dissimilar metals was demonstrated for the first time, to the best of our knowledge, by using a high-energy high-repetition-rate femtosecond fiber laser. Metallurgical and mechanical properties were investigated and analyzed under various processing parameters (pulse energy, repetition rate, and welding speed). Results showed that the formation of intermetallic brittle phases and welding defects could be effectively reduced. Strong welding quality with more than 210 MPa tensile strength for stainless steel-aluminum and 175 MPa tensile strength for stainless steel-magnesium has been demonstrated. A minimal heat affected zone and uniform and homogenous phase transformation in the welding region have been demonstrated. This laser-welding technique can be extended for various applications in semiconductor, automobile, aerospace, and biomedical industries.

  6. Metal Flow in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.

    2006-01-01

    The plastic deformation field in Friction Stir Welding (FSW) is compared to that in metal cutting. A shear surface around the FSW tool analogous to the metal cutting shear plane is identified and comprises the basis of the "rotating plug" flow field model and the "wiping" model of tool interaction with weld metal. Within the context of these models: The FSW shear rate is estimated to be comparable to metal cutting shear rates. The effect of tool geometry on the FSW shear surface is discussed and related to published torque measurements. Various FS W structural features are explained, including a difference in structure of bimetallic welds when alloys on the advancing and retreating sides of the weld seam are exchanged. The joining mechanism and critical parameters of the FSW process are made clear.

  7. Understanding metal vaporizaiton from laser welding.

    SciTech Connect

    DebRoy, Tarasankar; Fuerschbach, Phillip William; He, Xiuli; Norris, Jerome T.

    2003-09-01

    The production of metal vapor as a consequence of high intensity laser irradiation is a serious concern in laser welding. Despite the widespread use of lasers in manufacturing, little fundamental understanding of laser/material interaction in the weld pool exists. Laser welding experiments on 304 stainless steel have been completed which have advanced our fundamental understanding of the magnitude and the parameter dependence of metal vaporization in laser spot welding. Calculations using a three-dimensional, transient, numerical model were used to compare with the experimental results. Convection played a very important role in the heat transfer especially towards the end of the laser pulse. The peak temperatures and velocities increased significantly with the laser power density. The liquid flow is mainly driven by the surface tension and to a much less extent, by the buoyancy force. Heat transfer by conduction is important when the liquid velocity is small at the beginning of the pulse and during weld pool solidification. The effective temperature determined from the vapor composition was found to be close to the numerically computed peak temperature at the weld pool surface. At very high power densities, the computed temperatures at the weld pool surface were found to be higher than the boiling point of 304 stainless steel. As a result, vaporization of alloying elements resulted from both total pressure and concentration gradients. The calculations showed that the vaporization was concentrated in a small region under the laser beam where the temperature was very high.

  8. Forming Weld Lands On Metal Plates

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce

    1994-01-01

    Forming shoe pounds edge of newly inserted plate workpiece. After many passes of shoe and advances of plate, thick land builds up at edge. Workpiece heated to enable metal to flow without strain hardening. Proposed upset-forming process replaces relatively expensive, time-consuming, and wasteful process in which integral weld lands created by machining metal away from plates everywhere except at lands.

  9. Metal flow of a tailor-welded blank in deep drawing process

    NASA Astrophysics Data System (ADS)

    Yan, Qi; Guo, Ruiquan

    2005-01-01

    Tailor welded blanks were used in the automotive industry to consolidate parts, reduce weight, and increase safety. In recent years, this technology was developing rapidly in China. In Chinese car models, tailor welded blanks had been applied in a lot of automobile parts such as rail, door inner, bumper, floor panel, etc. Concerns on the properties of tailor welded blanks had become more and more important for automobile industry. A lot of research had shown that the strength of the welded seam was higher than that of the base metal, such that the weld failure in the aspect of strength was not a critical issue. However, formability of tailor welded blanks in the stamping process was complex. Among them, the metal flow of tailor welded blanks in the stamping process must be investigated thoroughly in order to reduce the scrap rate during the stamping process in automobile factories. In this paper, the behavior of metal flow for tailor welded blanks made by the laser welding process with two types of different thickness combinations were studied in the deep drawing process. Simulations and experiment verification of the movement of weld line for tailor welded blanks were discussed in detail. Results showed that the control on the movement of welded seam during stamping process by taking some measures in the aspect of blank holder was effective.

  10. Refractory metals welded or brazed with tungsten inert gas equipment

    NASA Technical Reports Server (NTRS)

    Wisner, J. P.

    1965-01-01

    Appropriate brazing metals and temperatures facilitate the welding or brazing of base metals with tungsten inert gas equipment. The highest quality bond is obtained when TIG welding is performed in an inert atmosphere.

  11. Extended electrode technique. [gas metal arc welding of metal plates

    NASA Technical Reports Server (NTRS)

    Schaper, V. D.; Pollack, A.

    1972-01-01

    The extended electrode technique is a unique welding process which utilizes manual gas-metal-arc (GMAW) semi-automatic equipment and close, square butt joints to effectively produce a weld. The technique takes advantage of the resistance heating of the electode extension to effect the root pass. Weldments as large as 72-X30-X2-inch have been fabricated with this technique under normal shipyard welding conditions. Mechanical properties and explosion bulge tests indicate that satisfactory results are obtained with this process. Potential savings of approximately 50 percent can be achieved in flat welding and repair of heavy structural steel members.

  12. High Strength Steel Weldment Reliability: Weld Metal Hydrogen Trapping.

    DTIC Science & Technology

    1998-02-01

    additions to welding consumables to control weld metal hydrogen and thus reduce susceptibility to cold cracking in high strength steel weldments. 14...applying weld metal hydrogen trapping to improve the resistance to hydrogen cracking in welding of high strength steels . Hydrogen cracking in high...requirements which are necessary to prevent hydrogen cracking in high strength steel welding. Common practices to prevent hydrogen cracking in steel

  13. Influence of Filler Metals in Welding Wires on the Phase and Chemical Composition of Weld Metal

    NASA Astrophysics Data System (ADS)

    Kozyrev, N. A.; Osetkovskiy, I. V.; Kozyreva, O. A.; Zernin, E. A.; Kartsev, D. S.

    2016-04-01

    The influence of filler metals used in welding wires on the phase and chemical composition of the metal, which is surfaced to mining equipment exposed to abrasive wear, has been investigated. Under a laboratory environment, samples of Mo-V-B and Cr-Mn-Mo-V wires were made. The performed experiments have revealed that fillers of the Cr-Mn-Mo-V system used in powder wire show better wear resistance of the weld metal than that of the Mn-Mo-V-B system; the absence of boron, which promotes grain refinement in the Mn-Mo-V-B system, significantly reduces wear resistance; the Mn-Mo-V-B weld metal has a finer structure than the Cr-Mn-Mo-V weld metal.

  14. Automatic laser welding of metal bellows with precision seam tracker

    SciTech Connect

    Chang, D.U.

    1996-12-31

    Metal bellows were laser edge-welded satisfactorily with the aid of a precision seam tracking system. The welding speed was five to ten times faster than conventional arc welding. The weld quality was excellent and the cost savings are expected to be substantial.

  15. Effect of Welding Heat Input on the Corrosion Resistance of Carbon Steel Weld Metal

    NASA Astrophysics Data System (ADS)

    Lu, Yongxin; Jing, Hongyang; Han, Yongdian; Xu, Lianyong

    2016-02-01

    The corrosion resistance of carbon steel weld metal with three different microstructures has been systematically evaluated using electrochemical techniques with the simulated produced water containing CO2 at 90 °C. Microstructures include acicular ferrite, polygonal ferrite, and a small amount of pearlite. With welding heat input increasing, weld metal microstructure becomes more uniform. Electrochemical techniques including potentiodynamic polarization curve, linear polarization resistance, and electrochemical impedance spectroscopy were utilized to characterize the corrosion properties on weld joint, indicating that the best corrosion resistance corresponded to the weld metal with a polygonal ferrite microstructure, whereas the weld metal with the acicular ferrite + polygonal ferrite microstructure showed the worst corrosion resistance. The samples with high welding heat input possessed better corrosion resistance. Results were discussed in terms of crystal plane orientation, grain size, and grain boundary type found in each weld metal by electron backscatter diffraction test.

  16. Wet underwater welding trials with commercial manual metal arc electrodes

    SciTech Connect

    Abson, D.J.; Cooper, M.J.

    1996-12-01

    Six commercial wet underwater welding manual metal arc electrodes were evaluated in trials which simulated repairs to structures in shallow water. Welding was carried out both vertically down and overhead, at a depth of approximately 5 meters. One of the electrodes was an austenitic stainless steel, and the remainder were ferritic steel, containing low levels of carbon and manganese. Two weld configurations were employed in 8 mm thick C-Mn steel plate. Each weld was radiographed, sectioned, and examined metallographically. Tensile, Charpy and hardness testing were carried out. The trials revealed significant differences in the handleability of the six commercial electrodes. Handleability was better when welding vertically than when welding overhead, and was also better for fillet welds than for butt welds. Worm-holes and porosity were common in the latter. Extensive cracking occurred in the panels welded with the stainless steel electrode, preventing the extraction of mechanical test specimens from them. For the weld metal of the ferritic steel butt welds, strength and hardness increased with increasing alloying. Weld metal Charpy toughness varied widely between the different deposits. HAZ toughness was higher than that of the weld metal, but followed the trend of the weld metal data. On the patch plates, failure occurred in the parent steel on cross weld tensile specimens for the ferritic consumables, and in weld metal for the panels welded with the stainless steel electrodes. Viewed overall, two of the ferritic electrodes gave the best handleability and mechanical properties. However, fine-scale cracking was observed in the vertical butt weld deposited with one of them, and thus the other ferritic electrode gave the best all-round behavior. The remaining electrodes showed poorer handleability and a higher incidence of weld defects, including the extensive cracking observed in the butt welds produced with the stainless steel electrode.

  17. Apparatus For Metal/Inert-Gas Welding In Vacuum

    NASA Technical Reports Server (NTRS)

    Stocks, C. O.

    1994-01-01

    Metal/inert-gas welding-torch assembly operates in vacuum. Plasma generated in interior chamber and focused onto workpiece in vacuum. Pinch rollers feed wire to weld puddle. Controlled flow of plasma reduces dispersal in vacuum, preventing extinction.

  18. Thermal insulation of wet shielded metal arc welds

    NASA Astrophysics Data System (ADS)

    Keenan, Patrick J.

    1993-06-01

    Computational and experimental studies were performed to determine the effect of static thermal insulation on the quality of wet shielded metal arc welds (SMAW). A commercially available heat flow and fluid dynamics spectral-element computer program was used to model a wet SMAW and to determine the potential effect on the weld cooling rate of placing thermal insulation adjacent to the weld line. Experimental manual welds were made on a low carbon equivalent (0.285) mild steel and on a higher carbon equivalent (0.410) high tensile strength steel, using woven fabrics of alumina-boria-silica fibers to insulate the surface of the plate being welded. The effect of the insulation on weld quality was evaluated through the use of post-weld Rockwell Scale hardness measurements on the surface of the weld heat affected zones (HAZ's) and by visual inspection of sectioned welds at 10 X magnification. The computational simulation demonstrated a 150% increase in surface HAZ peak temperature and a significant decrease in weld cooling rate with respect to uninsulated welds, for welds in which ideal insulation had been placed on the base plate surface adjacent to the weld line. Experimental mild steel welds showed a reduction in surface HAZ hardness attributable to insulation at a 77% significance level. A visual comparison of the cross-sections of two welds made in 0.410 carbon equivalent steel-with approximately equivalent heat input-revealed underbead cracking in the uninsulated weld but not in the insulated weld.

  19. Electrode formulation to reduce weld metal hydrogen and porosity

    SciTech Connect

    Liu, S.; Olson, D.L.; Ibarra, S.

    1994-12-31

    Residual weld metal hydrogen is a major concern in high strength steel welding, especially when the weld is performed under high cooling rate conditions. In the case of underwater wet welding, weld metal porosity is also of importance because of the water environment. The control of both problems can be achieved by means of pyrochemical reactions in the weld pool. The hydrogen-oxygen reaction and carbon-oxygen reaction are fundamental in the control of residual hydrogen in the weld metal and the amount of gas pores entrapped. A simple model was proposed to estimate weld metal residual hydrogen content by monitoring the weld pool deoxidation reactions. Potent deoxidizers such as aluminum will first react with oxygen in the liquid weld pool, followed by other elements present such as silicon and manganese. Carbon and hydrogen will be the last ones to react with oxygen prior to the iron atoms. The Ellingham-Richardson diagram frequently applied in describing steel and iron making processes was used in the modeling. Following the sequence of deoxidation, the chemical make-up of the gas pores and the amount of each chemical species in the pores could be estimated. Carbon monoxide and hydrogen were determined to be the major components in the weld pores. To minimize the amount of weld metal porosity and residual hydrogen content, specially designed consumables that will control the oxygen potential of the weld pool must be developed.

  20. Plutonium metal and oxide container weld development and qualification

    SciTech Connect

    Fernandez, R.; Horrell, D.R.; Hoth, C.W.; Pierce, S.W.; Rink, N.A.; Rivera, Y.M.; Sandoval, V.D.

    1996-01-01

    Welds were qualified for a container system to be used for long-term storage of plutonium metal and oxide. Inner and outer containers are formed of standard tubing with stamped end pieces gas-tungsten-arc (GTA) welded onto both ends. The weld qualification identified GTA parameters to produce a robust weld that meets the requirements of the Department of Energy standard DOE-STD-3013-94, ``Criteria for the Safe Storage of Plutonium Metals and Oxides.``

  1. Metal Transfer in Gas Metal Arc Welding

    DTIC Science & Technology

    1988-03-17

    their measurements. Predictions can also be compared to integral measurements as by Halmoy [1980] for melting rate and by Ueguri, Hara and Komura ...10 No. 3. Ue-,uri, S., K. Hara and H. Komura , 1985. Welding J., 64 pp. 242s-250s. van Doormaal, J.P. and G.D. Raithby, 1985. ASME paper 85-HT-9

  2. Microstructure Improvement in Weld Metal under the Ultrasonic Application

    SciTech Connect

    Cui, Yan; Xu, Cailu; Han, Qingyou

    2007-01-01

    When considering the operational performance of weldments in the engineering projects, the most important issues to be considered are weld metal mechanical properties, integrity of the welded joint, and weldability 1 . These issues are closely related to the microstructure of the weld metal. A significant amount of research has been carried out to alter the process variables and to use external devices to obtain microstructure control of the weldments. It has been reported that grain refined microstructure not only reduces cracking behavior of alloys including solidification cracking, cold cracking and reheat cracking, 2 - 5 but also improves the mechanical properties of the weld metal, such as toughness, ductility, strength, and fatigue life. 6, 7 Weld pool stirring, 8 arc oscillation, 9, 10 arc pulsation, 11 , and magnetic arc oscillator 12, 13 have been applied to fusion welding to refine the microstructures. This article describes initial experimental results on the use of power ultrasonic vibration to refine the microstructure of weld metals.

  3. Analysis of thermal stresses and metal movement during welding

    NASA Technical Reports Server (NTRS)

    Muraki, T.; Pattee, F. M.; Masubuchi, K.

    1974-01-01

    Finite element computer programs were developed to determine thermal stresses and metal movement during butt welding of flat plates and bead-on-plate welding along the girth of a cylindrical shell. Circular cylindrical shells of 6061 aluminum alloy were used for the tests. Measurements were made of changes in temperature and thermal strains during the welding process.

  4. Shielded Metal Arc Pipe Welding. Teacher Edition. Second Edition.

    ERIC Educational Resources Information Center

    Fortney, Clarence; And Others

    This second edition of the shielded metal arc pipe welding curriculum guide presents both basic and advanced pipe welding skills. All specifications for procedure and welder qualification are presented according to national standards. The standards also include the test position for both groove and fillet pipe welding. The guide contains three…

  5. Simulation on friction taper plug welding of AA6063-20Gr metal matrix composite

    NASA Astrophysics Data System (ADS)

    Hynes, N. Rajesh Jesudoss; Nithin, Abeyram M.

    2016-05-01

    Friction taper plug welding a variant of friction welding is useful in welding of similar and dissimilar materials. It could be used for joining of composites to metals in sophisticated aerospace applications. In the present work numerical simulation of friction taper plug welding process is carried out using finite element based software. Graphite reinforced AA6063 is modelled using the software ANSYS 15.0 and temperature distribution is predicted. Effect of friction time on temperature distribution is numerically investigated. When the friction time is increased to 30 seconds, the tapered part of plug gets detached and fills the hole in the AA6063 plate perfectly.

  6. Effect of Pulse Parameters on Weld Quality in Pulsed Gas Metal Arc Welding: A Review

    NASA Astrophysics Data System (ADS)

    Pal, Kamal; Pal, Surjya K.

    2011-08-01

    The weld quality comprises bead geometry and its microstructure, which influence the mechanical properties of the weld. The coarse-grained weld microstructure, higher heat-affected zone, and lower penetration together with higher reinforcement reduce the weld service life in continuous mode gas metal arc welding (GMAW). Pulsed GMAW (P-GMAW) is an alternative method providing a better way for overcoming these afore mentioned problems. It uses a higher peak current to allow one molten droplet per pulse, and a lower background current to maintain the arc stability. Current pulsing refines the grains in weld fusion zone with increasing depth of penetration due to arc oscillations. Optimum weld joint characteristics can be achieved by controlling the pulse parameters. The process is versatile and easily automated. This brief review illustrates the effect of pulse parameters on weld quality.

  7. Welding, bonding, and sealing of refractory metals by vapor deposition

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Plating process welds, bonds, and seals refractory metals without weakening or changing the structure of the base metals. A metal halide compound in the vapor phase is decomposed to deposit filler metal on the base metal. The resulting bond is a true metal-to-metal bond.

  8. Submodeling Simulations in Fusion Welds: Part II

    NASA Astrophysics Data System (ADS)

    Bonifaz, E. A.

    2013-11-01

    In part I, three-dimensional transient non-linear sub modeling heat transfer simulations were performed to study the thermal histories and thermal cycles that occur during the welding process at the macro, meso and micro scales. In the present work, the corresponding non-uniform temperature changes were imposed as load conditions on structural calculations to study the evolution of localized plastic strains and residual stresses at these sub-level scales. To reach the goal, a three-dimensional finite element elastic-plastic model (ABAQUS code) was developed. The sub-modeling technique proposed to be used in coupling phase-field (and/or digital microstructures) codes with finite element codes, was used to mesh a local part of the model with a refined mesh based on interpolation of the solution from an initial, relatively coarse, macro global model. The meso-sub-model is the global model for the subsequent micro sub-model. The strategy used to calculate temperatures, strains and residual stresses at the macro, meso and micro scale level, is very flexible to be used to any number of levels. The objective of this research was to initiate the development of microstructural models to identify fusion welding process parameters for preserving the single crystal nature of gas turbine blades during repair procedures. The multi-scale submodeling approach can be used to capture weld pool features at the macro-meso scale level, and micro residual stress and secondary dendrite arm spacing features at the micro scale level.

  9. Laser welding on trough panel: 3D body part

    NASA Astrophysics Data System (ADS)

    Shirai, Masato; Hisano, Hirohiko

    2003-03-01

    Laser welding for automotive bodies has been introduced mainly by European car manufacturers since more than 10 years ago. Their purposes of laser welding introduction were mainly vehicle performance improvement and lightweight. And laser welding was applied to limited portion where shapes of panels are simple and easy to fit welded flanges. Toyota also has introduced laser welding onto 3 dimensional parts named trough panel since 1999. Our purpose of the introduction was common use of equipment. Trough panel has a complex shape and different shapes in each car type. In order to realize common use of welding equipment, we introduced parts locating equipment which had unique, small & simple jigs fo each car type and NC (Numerical Controlled) locators and air-cooled small laser head developed by ourselves to the trough welding process. Laser welding replaced spot welding and was applied linearly like stitches. Length of laser welding was determined according to comparison with statistic tensile strength and fatigue strength of spot welding.

  10. Numerical modeling of electron-beam welding of dissimilar metals

    NASA Astrophysics Data System (ADS)

    Krektuleva, R. A.; Cherepanov, O. I.; Cherepanov, R. O.

    2016-11-01

    This paper is devoted to numerical modeling of heat transfer processes and estimation of thermal stresses in weld seams created by electron beam welding of heterogeneous metals. The mathematical model is based on a system of equations that includes the Lagrange's variational equation of theory of plasticity and variational equation of M. Biot's principle to simulate the heat transfer processes. The two-dimensional problems (plane strain and plane stress) are considered for estimation of thermal stresses in welds considering differences of mechanical properties of welded materials. The model is developed for simulation of temperature fields and stresses during electron beam welding.

  11. Carbide-Free Bainitic Weld Metal: A New Concept in Welding of Armor Steels

    NASA Astrophysics Data System (ADS)

    Krishna Murthy, N.; Janaki Ram, G. D.; Murty, B. S.; Reddy, G. M.; Rao, T. J. P.

    2014-12-01

    Carbide-free bainite, a fine mixture of bainitic ferrite and austenite, is a relatively recent development in steel microstructures. Apart from being very strong and tough, the microstructure is hydrogen-tolerant. These characteristics make it well-suited for weld metals. In the current work, an armor-grade quenched and tempered steel was welded such that the fusion zone developed a carbide-free bainitic microstructure. These welds showed very high joint efficiency and ballistic performance compared to those produced, as per the current industrial practice, using austenitic stainless steel fillers. Importantly, these welds showed no vulnerability to cold cracking, as verified using oblique Y-groove tests. The concept of carbide-free bainitic weld metal thus promises many useful new developments in welding of high-strength steels.

  12. A numerical and experimental study of ultrasonic metal welding

    NASA Astrophysics Data System (ADS)

    Al-Sarraf, Z.; Lucas, M.; Harkness, P.

    2012-12-01

    Ultrasonic metal welding has been the subject of ongoing research and development, most recently concentrating on metal joining in miniature devices, for example to allow solder-free wire bonding. As well as at the small scale, there are also opportunities to research the joining of thicker sheet metals and to widen the range of similar and dissimilar materials that can be successfully joined using this technology. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal spot welding device. The ultrasonic metal spot welding horn is modelled using finite element analysis (FEA) and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered effectively to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. The results show how the weld strength is particularly sensitive to the combination of clamping force and ultrasonic vibration amplitude of the welding tip, but there are optimal combinations of these and also limits that must be clearly identified.

  13. Localized weld metal corrosion in stainless steel water tanks

    SciTech Connect

    Strum, M.J.

    1995-05-25

    The rapidly developed leaks within the TFC and TFD tanks (LLNL groundwater treatment facilities) were caused by localized corrosion within the resolidified weld metal. The corrosion was initiated by the severe oxidation of the backsides of the welds which left the exposed surfaces in a condition highly susceptible to aqueous corrosion. The propagation of surface corrosion through the thickness of the welds occurred by localized corrosive attack. This localized attack was promoted by the presence of shielded aqueous environments provided by crevices at the root of the partial penetration welds. In addition to rapid corrosion of oxidized surfaces, calcium carbonate precipitation provided an additional source of physical shielding from the bulk tank environment. Qualification testing of alternate weld procedures showed that corrosion damage can be prevented in 304L stainless steel GTA welds by welding from both sides while preventing oxidation of the tank interior through the use of an inert backing gas such as argon. Corrosion resistance was also satisfactory in GMA welds in which oxidized surfaces were postweld cleaned by wire brushing and chemically passivated in nitric acid. Further improvements in corrosion resistance are expected from a Mo-containing grade of stainless steel such as type 316L, although test results were similar for type 304L sheet welded with type 308L filler metal and type 316L sheet welded with type 316L filler metal.

  14. Weld Metal Cooling Rate Indicator System.

    DTIC Science & Technology

    rate of change of weld temperature at the predetermined weld temperature. A range of...provided so that the rate of change of weld temperatures at the predetermined weld temperature can be compared with this range. A device is then provided...which is responsive to the comparing information for indicating whether the rate of change of weld temperature is within, above, or below the range

  15. An Assessment of Molten Metal Detachment Hazards During Electron Beam Welding in Space

    NASA Technical Reports Server (NTRS)

    Fragomeni, James M.; Nunes, Arthur C., Jr.

    1998-01-01

    the detached metal drops. It was not particularly easy to generate the detachments for this experiment. This document presents the details of the theoretical modeling effort and a summary of the experimental effort to measure molten metal drop detachments from terrestrial electron beam welding in the enclosed vacuum chamber. The results of the experimental effort have shown that molten metal detachments can occur from the sample/weld plate only if a sufficiently large impact force is applied to the weld plate. A "weld pool detachment parameter" was determined to indicate whether detachment would occur. Detachment can be either full or partial (dripping), Partial detachment means that the weld pool detached from one side of the liquid-solid boundary so as to leave a hole at the puddle site but remained attached over part of the liquid-solid boundary and dripped down the plate with no fully detached material detected. Full detachment, however, does not necessarily mean that the whole pool fully detached; in some cases only a smaller portion of the pool detached, the remainder dripping down the plate. The weld pool detachment parameter according to theory and according to the empirical data allows a determination of whether full detachments might occur. Theoretical calculations indicated titanium alloy would be the most difficult from which to detach molten metal droplets followed by stainless steel and then by aluminum. The experimental results were for the most part consistent with the theoretical analysis and predictions. The above theory is applicable to other situations as desired for assessing the potential for molten metal detachments.

  16. Influence of Aluminum Content on Grain Refinement and Strength of AZ31 Magnesium GTA Weld Metal

    SciTech Connect

    Babu, N. Kishore; Cross, Carl E.

    2012-06-28

    The goal is to characterize the effect of Al content on AZ31 weld metal, the grain size and strength, and examine role of Al on grain refinement. The approach is to systematically vary the aluminum content of AZ31 weld metal, Measure average grain size in weld metal, and Measure cross-weld tensile properties and hardness. Conclusions are that: (1) increased Al content in AZ31 weld metal results in grain refinement Reason: higher undercooling during solidification; (2) weld metal grain refinement resulted in increased strength & hardness Reason: grain boundary strengthening; and (3) weld metal strength can be raised to wrought base metal levels.

  17. Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade Martensitic Steel

    DTIC Science & Technology

    2013-06-01

    most of the commercially available metallic materials, in particular steels (including stainless steels ), super alloys, aluminum alloys, etc., can...REPORT Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade Martensitic Steel 14. ABSTRACT 16...Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade Martensitic Steel Report Title ABSTRACT A conventional gas metal

  18. Microstructural Development in HSLA-100 Steel Weld Metals

    DTIC Science & Technology

    1991-01-01

    AD-A2 3 7 931 MICROSTRUCTURAL DEVELOPMENT IN HSLA-100 STEEL WELD METALS A*.t - AI* Final Report Grant No. N00014-89-J-1958 -. .o, Submitted by j Paul...on pages 30-32. The microstructures that develop in the coarse-grained heat affected zone (CG- HAZ) of the welds are discussed on page 21 and figures...stringent welding procedures as well as reduce the mechanical property deterioration from welding operations. The development of the ultra low carbon

  19. The importance of spatter formed in shielded metal arc welding

    SciTech Connect

    Molleda, F. Mora, J.; Molleda, J.R.; Mora, E.; Mellor, B.G.

    2007-10-15

    Spatter results when droplets of liquid metal that have been ejected from the weld pool by the impact of small droplets from the covered electrode solidify and weld to the surface of the base material. The present paper studies spatter and reveals why these small droplets do not oxidise during their short trajectory and accounts for why they arrive with sufficient heat to weld to the adjacent base material. Welds were thus performed on mild steel using covered electrodes (rutile type) to obtain spatter on the adjacent base material. Scanning electron microscopy and X-ray mapping were used to study the above mentioned phenomena.

  20. Control of arc length during gas metal arc welding

    SciTech Connect

    Madigan, R.B.; Quinn, T.P.

    1994-12-31

    An arc-length control system has been developed for gas metal arc welding (GMAW) under spray transfer welding conditions. The ability to monitor and control arc length during arc welding allows consistent weld characteristics to be maintained and therefore improves weld quality. Arc length control has only been implemented for gas tungsten arc welding (GTAW), where an automatic voltage control (AVC) unit adjusts torch-to-work distance. The system developed here compliments the voltage- and current-sensing techniques commonly used for control of GMAW. The system consists of an arc light intensity sensor (photodiode), a Hall-effect current sensor, a personal computer and software implementing a data interpretation and control algorithms. Arc length was measured using both arc light and arc current signals. Welding current was adjusted to maintain constant arc length. A proportional-integral-derivative (PID) controller was used. Gains were automatically selected based on the desired welding conditions. In performance evaluation welds, arc length varied from 2.5 to 6.5 mm while welding up a sloped workpiece (ramp in CTWD) without the control. Arc length was maintained within 1 mm of the desired (5 mm ) with the control.

  1. The influence of oxygen on the impact toughness and microstructure of steel weld metal

    SciTech Connect

    Sato, Yoshihiro; Kuwana, Takeshi; Maie, Tsuyoshi

    1995-12-31

    A steel plate was welded in a low oxygen potential welding atmosphere. The weld metal obtained is classified in two groups on the oxygen content, very low oxygen content (less than 0.002 mass %) weld metal and relatively high oxygen content (over 0.015 mass%) weld metal. The effect of oxygen in steel weld metal on the Charpy v-notch impact values and the microstructure is investigated and discussed. Very low oxygen content steel weld metal shows superior impact toughness at 273 K as well as the well-known ``optimum oxygen`` containing steel weld metal. The very low oxygen weld metal has relatively large amounts of grain boundary ferrite and side plate ferrite microstructure, instead of upper bainite compared with the relatively high oxygen content weld metal.

  2. Application of welding science to welding engineering: A lumped parameter gas metal arc welding dynamic process model

    SciTech Connect

    Murray, P.E.; Smartt, H.B.; Johnson, J.A.

    1997-12-31

    We develop a model of the depth of penetration of the weld pool in gas metal arc welding (GMAW) which demonstrates interaction between the arc, filler wire and weld pool. This model is motivated by the observations of Essers and Walter which suggest a relationship between droplet momentum and penetration depth. A model of gas metal arc welding was augmented to include an improved model of mass transfer and a simple model of accelerating droplets in a plasma jet to obtain the mass and momentum of impinging droplets. The force of the droplets and depth of penetration is correlated by a dimensionless linear relation used to predict weld pool depth for a range of values of arc power and contact tip to workpiece distance. Model accuracy is examined by comparing theoretical predictions and experimental measurements of the pool depth obtained from bead on plate welds of carbon steel in an argon rich shielding gas. Moreover, theoretical predictions of pool depth are compared to the results obtained from the heat conduction model due to Christensen et al. which suggest that in some cases the momentum of impinging droplets is a better indicator of the depth of the weld pool and the presence of a deep, narrow penetration.

  3. Recommend design of filler metal to minimize carbon steel weld metal preferential corrosion in CO2-saturated oilfield produced water

    NASA Astrophysics Data System (ADS)

    Lu, Yongxin; Jing, Hongyang; Han, Yongdian; Feng, Zhicao; Xu, Lianyong

    2016-12-01

    The paper proposes a recommend design for the alloying elements in the filler metal to minimize preferential weld corrosion of carbon steel. The tensile and corrosion resistance properties of the weld metal are considerably improved by using a filler metal containing alloying elements according to the recommended design. Analysis of the morphology and composition of corrosion products on weld metals showed that the common weld metal suffered severe localized corrosion, whereas the weld metal with the alloying elements exhibited uniform corrosion. Based on these results, a tentative mechanism of CO2 corrosion resistance for both weld metals has been proposed.

  4. Joining of Dissimilar Metals By Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Firouzdor, Vahid

    The use of friction stir welding (FSW) as a new process for joining dissimilar metals has been studied frequently recently. The present study investigated dissimilar-metal FSW between Al and Mg alloys using the widely used alloys 6061 Al and AZ31B Mg. It focused on the issue of how the joint strength is affected by the welding conditions, including the positions of Al and Mg with respect to the welding tool, the tool travel speed and the tool rotation speed. In spite of studies conducted by many other investigators, understanding of this fundamental issue is still rather limited. Unlike those studies, the present study: (1) determined the heat input by torque and temperature measurements during welding and used it to explain the effect of the welding conditions on the joint strength, (2) used color metallography with Al, Mg, Al3Mg2 and Al12Mg17 shown in different colors to clearly revealed the effect of the welding conditions on the formation of intermetallic compounds and material flow, which are affected by the heat input and which in turn affect the joint strength, and (3) determined the windows for selecting the travel and rotation speeds to optimize the joint strength for various material positions. Furthermore, conventional lap FSW was modified and the joint strength and ductility of the resultant welds were both increased significantly. The modified lap FSW was applied subsequently to Al-to-Cu FSW. The intermetallic compounds in Al-Mg and Al-Cu welds were identified.

  5. An Assessment of Molten Metal Detachment Hazards During Electron Beam Welding in the Space Shuttle Bay at LEO for the International Space Welding Experiment

    NASA Technical Reports Server (NTRS)

    Fragomeni, James M.

    1996-01-01

    In 1997, the United States [NASA] and the Paton Electric Welding Institute are scheduled to cooperate in a flight demonstration on the U.S. Space Shuttle to demonstrate the feasibility of welding in space for a possible repair option for the International Space Station Alpha. This endeavor, known as the International Space Welding Experiment (ISWE), will involve astronauts performing various welding exercises such as brazing, cutting, welding, and coating using an electron beam space welding system that was developed by the E.O. Paton Electric Welding Institute (PWI), Kiev Ukraine. This electron beam welding system known as the "Universal Weld System" consists of hand tools capable of brazing, cutting, autogeneous welding, and coating using an 8 kV (8000 volts) electron beam. The electron beam hand tools have also been developed by the Paton Welding Institute with greater capabilities than the original hand tool, including filler wire feeding, to be used with the Universal Weld System on the U.S. Space Shuttle Bay as part of ISWE. The hand tool(s) known as the Ukrainian Universal Hand [Electron Beam Welding] Tool (UHT) will be utilized for the ISWE Space Shuttle flight welding exercises to perform welding on various metal alloy samples. A total of 61 metal alloy samples, which include 304 stainless steel, Ti-6AI-4V, 2219 aluminum, and 5456 aluminum alloys, have been provided by NASA for the ISWE electron beam welding exercises using the UHT. These samples were chosen to replicate both the U.S. and Russian module materials. The ISWE requires extravehicular activity (EVA) of two astronauts to perform the space shuttle electron beam welding operations of the 61 alloy samples. This study was undertaken to determine if a hazard could exist with ISWE during the electron beam welding exercises in the Space Shuttle Bay using the Ukrainian Universal Weld System with the UHT. The safety issue has been raised with regard to molten metal detachments as a result of several

  6. Room-Temperature Chemical Welding and Sintering of Metallic Nanostructures by Capillary Condensation.

    PubMed

    Yoon, Sung-Soo; Khang, Dahl-Young

    2016-06-08

    Room-temperature welding and sintering of metal nanostructures, nanoparticles and nanowires, by capillary condensation of chemical vapors have successfully been demonstrated. Nanoscale gaps or capillaries that are abundant in layers of metal nanostructures have been found to be the preferred sites for the condensation of chemically oxidizing vapor, H2O2 in this work. The partial dissolution and resolidification at such nanogaps completes the welding/sintering of metal nanostructures within ∼10 min at room-temperature, while other parts of nanostructures remain almost intact due to negligible amount of condensation on there. The welded networks of Ag nanowires have shown much improved performances, such as high electrical conductivity, mechanical flexibility, optical transparency, and chemical stability. Chemically sintered layers of metal nanoparticles, such as Ag, Cu, Fe, Ni, and Co, have also shown orders of magnitude increase in electrical conductivity and improved environmental stability, compared to nontreated ones. Pertinent mechanisms involved in the chemical welding/sintering process have been discussed. Room-temperature welding and sintering of metal nanostructures demonstrated here may find widespread application in diverse fields, such as displays, deformable electronics, wearable heaters, and so forth.

  7. Precipitation of Niobium Boride Phases at the Base Metal/Weld Metal Interface in Dissimilar Weld Joints

    NASA Astrophysics Data System (ADS)

    Výrostková, Anna; Kepič, Ján; Homolová, Viera; Falat, Ladislav

    2015-07-01

    In this work, the analysis of failure mechanism in the heat affected zone is described in dissimilar weld joints between advanced martensitic steel T92 and Ni-base weld metal. The joints were treated with two different post-weld heat treatments and tested. For the creep, tensile, and Charpy impact tests, the samples with interfacially located notch were used. Moreover long term aging at 625 °C was applied before the tensile and notch toughness tests. Decohesion fractures ran along carbides at the T92 BM/WM interfaces in case of the modified PWHT, whereas type IV cracking was the prevailing failure mechanism after the classical PWHT in the creep test. In the notch tensile and Charpy impact tests, with the notch at T92 base metal/weld metal interface, fractures ran along the interface with a hard phase on the fracture surface along with the ductile dimple and brittle quasi-cleavage fracture. The phase identified as niobium boride (either NbB and/or Nb3B2) was produced during welding at the end of the solidification process. It was found in the welds regardless of the post-weld heat treatment and long-term aging.

  8. Electrical upsetting of metal sheet forms weld edge

    NASA Technical Reports Server (NTRS)

    Scherba, E. S.

    1966-01-01

    Electric gathering of sheet stock edges forms metal sheets in the shape of gore sections with heavier edge areas that can be welded without loss of strength. The edges are gathered by progressive resistance heating and upsetting, and are formed automatically. This process avoids disturbance of the metals internal structure.

  9. Optimization of Gas Metal Arc Welding Process Parameters

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Khurana, M. K.; Yadav, Pradeep K.

    2016-09-01

    This study presents the application of Taguchi method combined with grey relational analysis to optimize the process parameters of gas metal arc welding (GMAW) of AISI 1020 carbon steels for multiple quality characteristics (bead width, bead height, weld penetration and heat affected zone). An orthogonal array of L9 has been implemented to fabrication of joints. The experiments have been conducted according to the combination of voltage (V), current (A) and welding speed (Ws). The results revealed that the welding speed is most significant process parameter. By analyzing the grey relational grades, optimal parameters are obtained and significant factors are known using ANOVA analysis. The welding parameters such as speed, welding current and voltage have been optimized for material AISI 1020 using GMAW process. To fortify the robustness of experimental design, a confirmation test was performed at selected optimal process parameter setting. Observations from this method may be useful for automotive sub-assemblies, shipbuilding and vessel fabricators and operators to obtain optimal welding conditions.

  10. 77 FR 60478 - Control of Ferrite Content in Stainless Steel Weld Metal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... COMMISSION Control of Ferrite Content in Stainless Steel Weld Metal AGENCY: Nuclear Regulatory Commission... Ferrite Content in Stainless Steel Weld Metal.'' This guide describes a method that the NRC staff considers acceptable for controlling ferrite content in stainless steel weld metal. Revision 4 updates...

  11. Metal Cutting Theory and Friction Stir Welding Tool Design

    NASA Technical Reports Server (NTRS)

    Payton, Lewis N.

    2003-01-01

    Friction Stir Welding (FSW) is a relatively new industrial process that was invented at The Weld Institute (TWI, United Kingdom) and patented in 1992 under research funded by in part by the National Aeronautics and Space Administration (NASA). Often quoted advantages of the process include good strength and ductility along with minimization of residual stress and distortion. Less well advertised are the beneficial effects of this solid state welding process in the field of occupational and environmental safety. It produces superior weld products in difficult to weld materials without producing any toxic fumes or solid waste that must be controlled as hazardous waste. In fact, it reduces noise pollution in the workspace as well. In the early days of FSW, most welding was performed on modified machine tools, in particular on milling machines with modified milling cutters. In spite of the obvious milling heritage of the process, the techniques and lessons learned from almost 250 years of successful metalworking with milling machines have not been applied in the field of modern Friction Stir Welding. The goal of the current research was to study currently successful FSW tools and parameterize the process in such a way that the design of new tools for new materials could be accelerated. Along the way, several successful new tooling designs were developed for current issues at the Marshall Space Flight Center with accompanying patent disclosures

  12. Effect of rhenium on the structure and properties of the weld metal of a molybdenum alloy

    NASA Technical Reports Server (NTRS)

    Dyachenko, V. V.; Morozov, B. P.; Tylkina, M. A.; Savitskiy, Y. M.; Nikishanov, V. V.

    1984-01-01

    The structure and properties of welds made in molybdenum alloy VM-1 as a function of rhenium concentrations in the weld metal were studied. Rhenium was introduced into the weld using rhenium wire and tape or wires of Mo-47Re and Mo-52Re alloys. The properties of the weld metal were studied by means of metallographic techniques, electron microscopy, X-ray analysis, and autoradiography. The plasticity of the weld metal sharply was found to increase with increasing concentration of rhenium up to 50%. During welding, a decarburization process was observed which was more pronounced at higher concentrations of rhenium.

  13. Gas metal arc welding in refurbishment of cobalt base superalloys

    NASA Astrophysics Data System (ADS)

    Shahriary, M. S.; Miladi Gorji, Y.; Kolagar, A. M.

    2017-01-01

    Refurbishments of superalloys which are used in manufacturing gas turbine hot components usually consists of removing cracks and other defects by blending and then repair welding in order to reconstruct damaged area. In this study, the effects of welding parameters on repair of FSX-414 superalloy, as the most applicable cobalt base superalloy in order to manufacture gas turbine nozzles, by use of Gas Metal Arc Welding (GMAW) technic were investigated. Results then were compared by Gas Tungsten Arc Welding (GTAW). Metallographic and SEM studies of the microstructure of the weld and HAZ showed that there are no noticeable defects in the microstructure by use of GMAW. Also, chemical analysis and morphologies of carbide in both methods are similar. Hardness profile of the GM AW structure then also compared with GTAW and no noticeable difference was observed between the profiles. Also, proper tensile properties, compared with GTAW, can be achieved by use of optimum parameters that can be obtained by examining the current and welding speed. Tensile properties of optimized condition of the GMAW then were compared with GTAW. It was seen that the room and high temperature tensile properties of the GMAW structure is very similar and results confirmed that changing the technic did not have any significant influence on the properties.

  14. Career Preparation Program Curriculum Guide for: Metal Fabrication, Welding.

    ERIC Educational Resources Information Center

    British Columbia Dept. of Education, Victoria. Curriculum Development Branch.

    This curriculum outline provides secondary and postsecondary instructors with detailed information on student learning outcomes for completion of the welding/metal fabrication program requirements. A program overview discusses the aims of education; secondary school philosophy; and career preparation programs and their goals, organization, and…

  15. Analysis of thermal stresses and metal movement during welding

    NASA Technical Reports Server (NTRS)

    Muraki, T.; Masubuchi, K.

    1973-01-01

    The research is reported concerning the development of a system of mathematical solutions and computer programs for one- and two-dimensional analyses for thermal stresses. Reports presented include: the investigation of thermal stress and buckling of tantalum and columbium sheet; and analysis of two dimensional thermal strains and metal movement during welding.

  16. The effect of weld stresses on weld quality. [stress fields and metal cracking

    NASA Technical Reports Server (NTRS)

    Chihoski, R. A.

    1972-01-01

    A narrow heat source raises the temperature of a spot on a solid piece of material like metal. The high temperature of the spot decreases with distance from the spot. This is true whether the heat source is an arc, a flame, an electron beam, a plasma jet, a laser beam, or any other source of intense, narrowly defined heat. Stress and strain fields around a moving heat source are organized into a coherent visible system. It is shown that five stresses act across the weld line in turn as an arc passes. Their proportions and positions are considerably altered by weld parameters or condition changes. These pushes and pulls affect the metallurgical character and integrity of the weld area even when there is no apparent difference between after-the-fact examples.

  17. Resistance-Welding Test Fixture

    NASA Technical Reports Server (NTRS)

    Brennan, Andrew D.

    1990-01-01

    Realistic welding conditions produce reliable specimens. Simple fixture holds resistance-welding test specimens. Specimen holder includes metallic holder and clamps to provide electrical and thermal paths and plastic parts providing thermal and electrical isolation.

  18. Shielded Metal Arc Welding Consumables for Advanced High Strength Steels

    DTIC Science & Technology

    1992-02-01

    100 ksi) depends on the availability of adequate welding consumables. In the case of shielded metal arc welding, the electrodes must provide...associated with the potassium silicate binder (K2 SiO3 .nH2 0). The fluxes were then crushed and sized to 14# Tyler mesh (1.7 mm screen aperture) to...determined that the hydrated potassium silicate binder (K2 SiO3 .nH20) used in this investi- gation was 50 wt. pct. potassium silicate (K 2SiO 3 ) and

  19. Stability of a pendant droplet in gas metal arc welding

    SciTech Connect

    Murray, P.E.

    1998-07-01

    The authors develop a model of metal transfer in gas metal arc welding and compute the critical mass of a pendant droplet in order to ascertain the size and frequency of droplets detaching from the consumable metal electrode. These results are used to predict the mode of metal transfer for a range of voltage and current encompassing free flight transfer, and the transition between globular and spray transfer. This model includes an efficient method to compute the stability of a pendant droplet and the location of the liquid bridge connecting the primary droplet and the residual liquid remaining after detachment of the primary droplet.

  20. The Diagnostic Method of Inner Parts of Welded Joints at Nuclear Power Plant

    SciTech Connect

    Bednarova, O.; Janovec, J.

    2010-06-22

    There is no possibility to check any inner part at real welded joint at nuclear power station (NPS) during operation because any destructive test cannot be used. In practice there is checked surface of weld. There are used four methodical instructions for the check of real welds: 1. The visual inspection, 2. The measurement of hardness, 3. The chemical composition checking and 4. The microstructure replica analysis. It is necessary to know how these information of weld surface are in accordance with characteristics of inner parts of weld. If there is not any difference between surface weld microstructure and internal weld microstructure of experimental weld it is supposed to that there is not any difference in other measured properties of welds. If is changed structural characteristics of microstructure, it is changed also hardness, chemical analysis etc. It was observed that the microstructure of real welds is almost the same with simulated weld and also the surface microstructure of experimental weld is in accordance with microstructure of inner parts of this weld. It can be supposed extension of lifetime of NPS if there is not any difference between replicas microstructure taken after six year operation of NPS and microstructure of inner parts of simulated weld is almost the same with surface microstructure.

  1. Control of Structure in Conventional Friction Stir Welds Through a Kinematic Theory of Metal Flow

    DTIC Science & Technology

    2009-02-01

    suggested a “chaotic-dynamic mixing” in the material [2]. Later tracer studies, using steel shot [3], aluminum shims [4], copper foil [5], bi-metallic...35812 Keywords: friction stir welding, AA2219, material flow Abstract In friction stir welding ( FSW ), a rotating pin is translated along a...welding, by a shoulder on the pin. In conventional FSW , the weld metal rests on an “anvil”, which supports the heavy “plunge” load on the tool. In

  2. Multiple exposure to metals in eight types of welding.

    PubMed

    Apostoli, P; Porru, S; Brunelli, E; Alessio, L

    1997-01-01

    This article evaluates multiple exposures to metals in different types of metal welding such as manual metal arc for mild and stainless steel, continuous wire, submerged arc, laser and brazing. Environmental monitoring was carried out in eight different occupational situations and the inductively coupled plasma mass spectrometry technique was adopted in order to characterize exposure to several elements simultaneously and with high accuracy. The results showed that up to 23 elements could be measured. The highest concentrations were found for Al, Mn, Fr, Ni, Cr, Cu and Zn. For some elements such as In, Nd, I, Rb the concentrations were very low. A qualitative and quantitative variation in fume composition was observed at a certain distance from the welding point, which should be to taken into account when evaluating indirect exposures. It would also be possible, with this technique, to identify specific elements in the mixture which could also be measured in biological fluids.

  3. Quantitative metal magnetic memory reliability modeling for welded joints

    NASA Astrophysics Data System (ADS)

    Xing, Haiyan; Dang, Yongbin; Wang, Ben; Leng, Jiancheng

    2016-03-01

    Metal magnetic memory(MMM) testing has been widely used to detect welded joints. However, load levels, environmental magnetic field, and measurement noises make the MMM data dispersive and bring difficulty to quantitative evaluation. In order to promote the development of quantitative MMM reliability assessment, a new MMM model is presented for welded joints. Steel Q235 welded specimens are tested along the longitudinal and horizontal lines by TSC-2M-8 instrument in the tensile fatigue experiments. The X-ray testing is carried out synchronously to verify the MMM results. It is found that MMM testing can detect the hidden crack earlier than X-ray testing. Moreover, the MMM gradient vector sum K vs is sensitive to the damage degree, especially at early and hidden damage stages. Considering the dispersion of MMM data, the K vs statistical law is investigated, which shows that K vs obeys Gaussian distribution. So K vs is the suitable MMM parameter to establish reliability model of welded joints. At last, the original quantitative MMM reliability model is first presented based on the improved stress strength interference theory. It is shown that the reliability degree R gradually decreases with the decreasing of the residual life ratio T, and the maximal error between prediction reliability degree R 1 and verification reliability degree R 2 is 9.15%. This presented method provides a novel tool of reliability testing and evaluating in practical engineering for welded joints.

  4. Microstructure, Texture, and Mechanical Property Analysis of Gas Metal Arc Welded AISI 304 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Saha, Saptarshi; Mukherjee, Manidipto; Pal, Tapan Kumar

    2015-03-01

    The present study elaborately explains the effect of welding parameters on the microstructure, texture, and mechanical properties of gas metal arc welded AISI 304 austenitic stainless steel sheet (as received) of 4 mm thickness. The welded joints were prepared by varying welding speed (WS) and current simultaneously at a fixed heat input level using a 1.2-mm-diameter austenitic filler metal (AISI 316L). The overall purpose of this study is to investigate the effect of the variation of welding conditions on: (i) Microstructural constituents using optical microscope and transmission electron microscope; (ii) Micro-texture evolution, misorientation distributions, and grain boundaries at welded regions by measuring the orientation data from electron back scattered diffraction; and (iii) Mechanical properties such as hardness and tensile strength, and their correlation with the microstructure and texture. It has been observed that the higher WS along with the higher welding current (weld metal W1) can enhance weld metal mechanical properties through alternation in microstructure and texture of the weld metal. Higher δ-ferrite formation and high-angle boundaries along with the <101> + <001> grain growth direction of the weld metal W1 were responsible for dislocation pile-ups, SFs, deformation twinning, and the induced martensite with consequent strain hardening during tensile deformation. Also, fusion boundary being the weakest link in the welded structure, failure took place mainly at this region.

  5. Optimization of Laser Keyhole Welding Strategies of Dissimilar Metals by FEM Simulation

    NASA Astrophysics Data System (ADS)

    Garcia Navas, Virginia; Leunda, Josu; Lambarri, Jon; Sanz, Carmen

    2015-07-01

    Laser keyhole welding of dissimilar metals has been simulated to study the effect of welding strategies (laser beam displacements and tilts) and combination of metals to be welded on final quality of the joints. Molten pool geometry and welding penetration have been studied but special attention has been paid to final joint material properties, such as microstructure/phases and hardness, and especially to the residual stress state because it greatly conditions the service life of laser-welded components. For a fixed strategy (laser beam perpendicular to the joint) austenitic to carbon steel laser welding leads to residual stresses at the joint area very similar to those obtained in austenitic to martensitic steel welding, but welding of steel to Inconel 718 results in steeper residual stress gradients and higher area at the joint with detrimental tensile stresses. Therefore, when the difference in thermo-mechanical properties of the metals to be welded is higher, the stress state generated is more detrimental for the service life of the component, and consequently more relevant is the optimization of welding strategy. In laser keyhole welding of austenitic to martensitic stainless steel and austenitic to carbon steel, the optimum welding strategy is displacing the laser beam 1 mm toward the austenitic steel. In the case of austenitic steel to Inconel welding, the optimum welding strategy consists in setting the heat source tilted 45 deg and moved 2 mm toward the austenitic steel.

  6. Etchant for incoloy-903 welds

    NASA Technical Reports Server (NTRS)

    Gerstmeyer, J. A.

    1980-01-01

    Special reagent consists of 1 part 90% lactic acid, 1 part 70% nitric acid, and 4 part, 37% hydrochloric acid. Solution etches parent and weld metals at same rate, without overetching. Underlying grain structure of both metals is revealed.

  7. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  8. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  9. Fractal Analysis of Metal Transfer in Mig/mag Welding

    NASA Astrophysics Data System (ADS)

    Vieira, A. P.; Vasconcelos, H. H. M.; Gonçalves, L. L.; de Miranda, H. C.

    2009-03-01

    We apply techniques of fractal analysis in order to classify metal-transfer mode in MIG/MAG (metal inert/active gas) welding, which are among the most commonly employed arc-fusion processes for industrial applications. We work with voltage and current time series obtained during welding, and evaluate statistical fluctuations present in those series by Hurst, detrended-fluctuation, and detrended-cross-correlation analyses, for each of three different metal-transfer modes: short-circuiting, globular, and spray. For a given total timespan of each series, curves of fluctuation as a funtion of the time-window size are processed by using pattern-classification techniques, such as principal-component analysis and Karhunen-Loève expansions. We obtain near 100% success rate for the classification, with timespans as small as 100 miliseconds, with a processing time of the same order. This suggests that our set of tools can be incorporated into an industrial welding apparatus in order to guarantee automatic correction of a process requiring a single metal-transfer mode.

  10. STRESS CORROSION CRACK GROWTH RESPONSE FOR ALLOY 152/52 DISSIMILAR METAL WELDS IN PWR PRIMARY WATER

    SciTech Connect

    Toloczko, Mychailo B.; Olszta, Matthew J.; Overman, Nicole R.; Bruemmer, Stephen M.

    2015-08-15

    As part of ongoing research into primary water stress corrosion cracking (PWSCC) susceptibility of alloy 690 and its welds, SCC tests have been conducted on alloy 152/52 dissimilar metal (DM) welds with cracks positioned with the goal to assess weld dilution and fusion line effects on SCC susceptibility. No increased crack growth rate was found when evaluating a 20% Cr dilution zone in alloy 152M joined to carbon steel (CS) that had not undergone a post-weld heat treatment (PWHT). However, high SCC crack growth rates were observed when the crack reached the fusion line of that material where it propagated both on the fusion line and in the heat affected zone (HAZ) of the carbon steel. Crack surface and crack profile examinations of the specimen revealed that cracking in the weld region was transgranular (TG) with weld grain boundaries not aligned with the geometric crack growth plane of the specimen. The application of a typical pressure vessel PWHT on a second set of alloy 152/52 – carbon steel DM weld specimens was found to eliminate the high SCC susceptibility in the fusion line and carbon steel HAZ regions. PWSCC tests were also performed on alloy 152-304SS DM weld specimens. Constant K crack growth rates did not exceed 5x10-9 mm/s in this material with post-test examinations revealing cracking primarily on the fusion line and slightly into the 304SS HAZ.

  11. Experimental Investigation of Laser Transmission Welding of Thermoplastics with Part-Adapted Temperature Fields

    NASA Astrophysics Data System (ADS)

    Devrient, M.; Kern, M.; Jaeschke, P.; Stute, U.; Haferkamp, H.; Schmidt, M.

    Laser transmission welding is known for high flexibility, extraordinary potential for process automation and outstanding weld seam properties. Problems may occur due to the poor gap-bridging capability of contour welding. Gaps of a few tens of microns can lead to processing issues such as welding failures, poor achievable process speed or low weld seam strengths. To overcome this, laser transmission welding with part-adapted temperature fields was developed, and is experimentally investigated here. Results concerning the process behavior, dependent on several oscillation types of the laser beam, as well as achieved tensile shear strengths and the monitored gap-bridging capability are presented.

  12. Control of Structure in Conventional Friction Stir Welds through a Kinematic Theory of Metal Flow

    NASA Technical Reports Server (NTRS)

    Rubisoff, H.A.; Schneider, J.A.; Nunes, A.C.

    2009-01-01

    In friction stir welding (FSW), a rotating pin is translated along a weld seam so as to stir the sides of the seam together. Metal is prevented from flowing up the pin, which would result in plowing/cutting instead of welding, by a shoulder on the pin. In conventional FSW, the weld metal rests on an "anvil", which supports the heavy "plunge" load on the tool. In this study, both embedded tungsten wires along and copper plating on the faying surfaces were used to trace the flow of AA2219 weld metal around the C-FSW tool. The effect of tool rotational speed, travel speed, plunge load, and pin thread pitch on the resulting weld metal flow was evaluated. Plan, longitudinal, and transverse section x-ray radiographs were examined to trace the metal flow paths. The results are interpreted in terms of a kinematic theory of metal flow in FSW.

  13. Effect of Welding Current on the Structure and Properties of Resistance Spot Welded Dissimilar (Austenitic Stainless Steel and Low Carbon Steel) Metal Joints

    NASA Astrophysics Data System (ADS)

    Shawon, M. R. A.; Gulshan, F.; Kurny, A. S. W.

    2015-04-01

    1.5 mm thick sheet metal coupons of austenitic stainless steel and plain low carbon steel were welded by resistance spot welding technique. The effects of welding current in the range 3-9 kA on the structure and mechanical properties of welded joint were investigated. The structure was studied by macroscopic, microscopic and scanning electron microscopy techniques. Mechanical properties were determined by tensile testing and microhardness measurements. Asymmetrical shape weld nugget was found to have formed in the welded joint which increased in size with an increase in welding current. The fusion zone showed cast structure with coarse columnar grain and dendritic with excess delta ferrite in austenitic matrix. Microhardness of the weld nugget was maximum because of martensite formation. An increase in welding current also increased tensile strength of the weld coupon. An attempt has also been made to relate the mode of fracture with the welding current.

  14. The temporal nature of forces acting on metal drops in gas metal arc welding

    SciTech Connect

    Jones, L.A.; Eagar, T.W.; Lang, J.H.

    1996-12-31

    At moderate and high welding currents, the most important forces in gas metal arc welding acting on the molten electrode are magnetic forces arising from the interaction between the welding current and its own magnetic field. These forces drive the dynamic evolution of the drop and also depend on the instantaneous shape of the drop. In this paper, experimentally observed manifestations of magnetic forces are shown, and a technique for approximating the temporal evolution of these forces from experimentally measured drop shapes is reported. The technique provides quantitative data illustrating the large increase in the magnetic forces as a drop detaches from the electrode.

  15. Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma

    SciTech Connect

    Ribic, B.; DebRoy, T.; Burgardt, P.

    2011-04-15

    During laser-arc hybrid welding, plasma properties affect the welding process and the weld quality. However, hybrid welding plasmas have not been systematically studied. Here we examine electron temperatures, species densities, and electrical conductivity for laser, arc, and laser-arc hybrid welding using optical emission spectroscopy. The effects of arc currents and heat source separation distances were examined because these parameters significantly affect weld quality. Time-average plasma electron temperatures, electron and ion densities, electrical conductivity, and arc stability decrease with increasing heat source separation distance during hybrid welding. Heat source separation distance affects these properties more significantly than the arc current within the range of currents considered. Improved arc stability and higher electrical conductivity of the hybrid welding plasma result from increased heat flux, electron temperatures, electron density, and metal vapor concentrations relative to arc or laser welding.

  16. Computational Modeling of Microstructural-Evolution in AISI 1005 Steel During Gas Metal Arc Butt Welding

    DTIC Science & Technology

    2013-05-01

    of the commercially available metallic materials, in particular, steels (including stainless steels ), super alloys, aluminum alloys, etc.; (b) welding...REPORT Computational Modeling of Microstructural-Evolution in AISI 1005 Steel During Gas Metal Arc Butt Welding 14. ABSTRACT 16. SECURITY...Computational Modeling of Microstructural-Evolution in AISI 1005 Steel During Gas Metal Arc Butt Welding Report Title ABSTRACT A fully coupled (two-way

  17. Friction welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon

    DOEpatents

    Byrne, Stephen C.; Ray, Siba P.; Rapp, Robert A.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor and a ceramic electrode body connected by a friction weld between a portion of the body having a level of free metal or metal alloy sufficient to effect such a friction weld and a portion of the metal conductor.

  18. Elements of arc welding

    SciTech Connect

    Not Available

    1993-07-01

    This paper looks at the following arc welding techniques: (1) shielded metal-arc welding; (2) submerged-arc welding; (3) gas metal-arc welding; (4) flux-cored arc welding; (5) electrogas welding; (6) gas tungsten-arc welding; and (7) plasma-arc welding.

  19. Factors affecting the strength of multipass low-alloy steel weld metal

    NASA Technical Reports Server (NTRS)

    Krantz, B. M.

    1972-01-01

    The mechanical properties of multipass high-strength steel weld metals depend upon several factors, among the most important being: (1) The interaction between the alloy composition and weld metal cooling rate which determines the as-deposited microstructure; and (2) the thermal effects of subsequent passes on each underlying pass which alter the original microstructure. The bulk properties of a multipass weld are therefore governed by both the initial microstructure of each weld pass and its subsequent thermal history. Data obtained for a high strength low alloy steel weld metal confirmed that a simple correlation exists between mechanical properties and welding conditions if the latter are in turn correlated as weld cooling rate.

  20. Effect of PTA Hardfaced Interlayer Thickness on Ballistic Performance of Shielded Metal Arc Welded Armor Steel Welds

    NASA Astrophysics Data System (ADS)

    Balakrishnan, M.; Balasubramanian, V.; Madhusudhan Reddy, G.

    2013-03-01

    Ballistic performance of armor steel welds is very poor due to the usage of low strength and low hardness austenitic stainless steel fillers, which are traditionally used to avoid hydrogen induced cracking. In the present investigation, an attempt has been made to study the effect of plasma transferred arc hardfaced interlayer thickness on ballistic performance of shielded metal arc welded armor steel weldments. The usefulness of austenitic stainless steel buttering layer on the armor grade quenched and tempered steel base metal was also considered in this study. Joints were fabricated using three different thickness (4, 5.5, and 7 mm) hardfaced middle layer by plasma transferred arc hardfacing process between the top and bottom layers of austenitic stainless steel using shielded metal arc welding process. Sandwiched joint, in addition with the buttering layer served the dual purpose of weld integrity and ballistic immunity due to the high hardness of hardfacing alloy and the energy absorbing capacity of soft backing weld deposits. This paper will provide some insight into the usefulness of austenitic stainless steel buttering layer on the weld integrity and plasma transferred arc hardfacing layer on ballistic performance enhancement of armor steel welds.

  1. Hydrogen-induced cracking along the fusion boundary of dissimilar metal welds

    SciTech Connect

    Rowe, M.D.; Nelson, T.W.; Lippold, J.C.

    1999-02-01

    Presented here are the results from a series of experiments in which dissimilar metals welds were made using the gas tungsten arc welding process with pure argon or argon-6% hydrogen shielding gas. The objective was to determine if cracking near the fusion boundary of dissimilar metal welds could be caused by hydrogen absorbed during welding and to characterize the microstructures in which cracking occurred. Welds consisted of ER308 and ER309LSi austenitic stainless steel and ERNiCr-3-nickel-based filler metals deposited on A36 steel base metal. Cracking was observed in welds made with all three filler metals. A ferrofluid color metallography technique revealed that cracking was confined to regions in the weld metal containing martensite. Microhardness indentations indicated that martensitic regions in which cracking occurred had hardness values from 400 to 550 HV. Cracks did not extend into bulk weld metal with hardness less than 350 HV. Martensite formed near the fusion boundary in all three filler metals due to regions of locally increased base metal dilution.

  2. Automatic Submerged ARC Welding With Metal Power Additions to Increase Productivity and Maintain Quality

    DTIC Science & Technology

    1986-06-01

    Manager of Welding Engineering PROPOSAL WELDING OF CARBON STEEL AND HY80 UTILIZING THE BULK WELDING PROCESS May 9, 1983 PREPARED BY: NEWPORT NEwS...12 joints with carbon steel and 12 with HY80 , utilizing three The joints will requirements of Benefits 1. Deposition times that different size double...of Joint Variations and Deposition Rates Filler Metal/Base Material Chemical Analyses; Carbon Steel /HIS Filler Metal/Base Material Chemical Analyses

  3. The effect of weld metal matching on girth weld performance: Volume III - an ECA analysis. Final report

    SciTech Connect

    Denys, R.M.; Martin, J.T.

    1995-02-01

    Modern pipeline standards contain alternative methodologies for determining the acceptable defect size in pipeline welds. Through the use of fracture mechanics and plastic collapse assessments, the mechanical and toughness properties of the defective region relate to the applied stress at the defect and defect geometry. The assumptions made in these methodologies are not always representative of the situation accurring in pipeline girth welds. To determine the effect of the various input parameters on acceptable defect size, The Welding Supervisory Committee of the American Gas Association commenced in 1990, in collaboration with the Laboratorium Soete of the University Gent, Belgium, a series of small scale (Charpy V impact and CTOD) and large scale (fatigue pre-cracked wide plate) tests. All the experimental investigations were intended to evaluate the effects of weld metal mis-match, temperature, defect size, defect type, defect interaction, pipe wall thickness and yield to tensile ratio on girth weld fracture behaviour. The aim of this report was to determine how weld metal yield strength overmatching or undermatching influences girth weld defect size prediction. A further analysis was conducted using the newly revised PD6493:1991 to provide a critical analysis with the objective of explaining the behaviour of the wide plate tests.

  4. Sheet metal welding using a pulsed Nd: YAG laser-robot

    NASA Astrophysics Data System (ADS)

    Huang, Qi; Kullberg, Gunnar; Skoog, Hans

    This paper presents a pulsed Nd: YAG laser-robot system for spot and seam welding of mild steel sheets. The study evaluates the laser beams behaviour for welding, and then investigates pulsed Nd: YAG laser spot and seam welding processes. High pulse power intensity is needed to initiate the key-hole welding process and a threshold pulse energy to reach full penetration. In seam welding, a weld consists of successive overlapping spots. Both high pulse energy and high average power are needed to keep the key-hole welding going. A 70% overlap is used to define overlapping spot welding as seam welding and to optimize process parameters because a high tensile strength joint compatible with the strength of the base material can be obtained when the overlap is ≥ 70%; at the same time a smooth seam with full penetration is obtained. In these cases, the joints in pulsed Nd: YAG laser welding are comparable in strength to those obtained with CO 2 laser welding. Robot positioning and motion accuracies can meet the demands of Nd: YAG laser sheet metal welding, but its cornering accuracy affects the welding processes. The purpose of the study is to evaluate the YAG laser-robot system for production in the automotive industry.

  5. Diffusion welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon

    DOEpatents

    Byrne, Stephen C.; Vasudevan, Asuri K.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor diffusion welded to a portion of a ceramic electrode body having a level of free metal or metal alloy sufficient to effect a metal bond.

  6. Numerical investigation of electromagnetic pulse welded interfaces between dissimilar metals

    SciTech Connect

    Xu, Wei; Sun, Xin

    2016-05-11

    Electromagnetic pulse welding (EMPW), an innovative high-speed joining technique, is a potential method for the automotive industry in joining and assembly of dissimilar lightweight metals with drastically different melting temperatures and other thermal physical properties, such as thermal conductivity and thermal expansion coefficients. The weld quality of EMPW is significantly affected by a variety of interacting physical phenomena including large plastic deformation, materials mixing, localized heating and rapid cooling, possible localized melting and subsequent diffusion and solidification, micro-cracking and void, etc. In the present study, a thermo-mechanically coupled dynamic model has been developed to quantitatively resolve the high-speed impact joining interface characteristics as well as the process-induced interface temperature evolution, defect formation and possible microstructural composition variation. Reasonably good agreement has been obtained between the predicted results and experimental measurements in terms of interfacial morphology characteristics. The modeling framework is expected to provide further understanding of the hierarchical interfacial features of the non-equilibrium material joining process and weld formation mechanisms involved in the EMPW operation, thus accelerating future development and deployment of this advanced joining technology.

  7. 78 FR 63517 - Control of Ferrite Content in Stainless Steel Weld Metal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... Information The NRC published DG-1279 in the Federal Register on October 3, 2012 (77 FR 60479), for a 60-day... COMMISSION Control of Ferrite Content in Stainless Steel Weld Metal AGENCY: Nuclear Regulatory Commission... revision to Regulatory Guide (RG) 1.31, ``Control of Ferrite Content in Stainless Steel Weld Metal.''...

  8. Occupational asthma due to gas metal arc welding on mild steel.

    PubMed Central

    Vandenplas, O.; Dargent, F.; Auverdin, J. J.; Boulanger, J.; Bossiroy, J. M.; Roosels, D.; Vande Weyer, R.

    1995-01-01

    Occupational asthma has been documented in electric arc welders exposed to manual metal arc welding on stainless steel. A subject is described who developed late and dual asthmatic reactions after occupational-type challenge exposure to gas metal arc welding on uncoated mild steel. PMID:7597679

  9. Metal cutting analogy for establishing Friction Stir Welding process parameters

    NASA Astrophysics Data System (ADS)

    Stafford, Sylvester Allen

    A friction stir weld (FSW) is a solid state joining operation whose processing parameters are currently determined by lengthy trial and error methods. To implement FSWing rapidly in various applications will require an approach for predicting process parameters based on the physics of the process. Based on hot working conditions for metals, a kinematic model has been proposed for calculating the shear strain and shear strain rates during the FSW process, validation of the proposed model with direct measuring is difficult however. Since the shear strain and shear strain rates predicted for the FSW process, are similar to those predicted in metal cutting, validation of the FSW algorithms with microstructural studies of metal chips may be possible leading to the ability to predict FSW processing parameters.

  10. Precise Truss Assembly using Commodity Parts and Low Precision Welding

    NASA Technical Reports Server (NTRS)

    Komendera, Erik; Reishus, Dustin; Dorsey, John T.; Doggett, William R.; Correll, Nikolaus

    2013-01-01

    We describe an Intelligent Precision Jigging Robot (IPJR), which allows high precision assembly of commodity parts with low-precision bonding. We present preliminary experiments in 2D that are motivated by the problem of assembling a space telescope optical bench on orbit using inexpensive, stock hardware and low-precision welding. An IPJR is a robot that acts as the precise "jigging", holding parts of a local assembly site in place while an external low precision assembly agent cuts and welds members. The prototype presented in this paper allows an assembly agent (in this case, a human using only low precision tools), to assemble a 2D truss made of wooden dowels to a precision on the order of millimeters over a span on the order of meters. We report the challenges of designing the IPJR hardware and software, analyze the error in assembly, document the test results over several experiments including a large-scale ring structure, and describe future work to implement the IPJR in 3D and with micron precision.

  11. Precise Truss Assembly Using Commodity Parts and Low Precision Welding

    NASA Technical Reports Server (NTRS)

    Komendera, Erik; Reishus, Dustin; Dorsey, John T.; Doggett, W. R.; Correll, Nikolaus

    2014-01-01

    Hardware and software design and system integration for an intelligent precision jigging robot (IPJR), which allows high precision assembly using commodity parts and low-precision bonding, is described. Preliminary 2D experiments that are motivated by the problem of assembling space telescope optical benches and very large manipulators on orbit using inexpensive, stock hardware and low-precision welding are also described. An IPJR is a robot that acts as the precise "jigging", holding parts of a local structure assembly site in place, while an external low precision assembly agent cuts and welds members. The prototype presented in this paper allows an assembly agent (for this prototype, a human using only low precision tools), to assemble a 2D truss made of wooden dowels to a precision on the order of millimeters over a span on the order of meters. The analysis of the assembly error and the results of building a square structure and a ring structure are discussed. Options for future work, to extend the IPJR paradigm to building in 3D structures at micron precision are also summarized.

  12. Designing shielded metal arc consumables for underwater wet welding in offshore applications

    SciTech Connect

    Sanchez-Osio, A.; Liu, S.; Olson, D.L.; Ibarra, S.

    1995-08-01

    The use of underwater wet welding for offshore repairs has been limited mainly because of porosity and low toughness in the resulting welds. With appropriate consumable design, however, it is possible to reduce porosity and to enhance weld metal toughness through microstructural refinement. New titanium and boron-based consumables have been developed with which high toughness acicular ferrite (AF) can be produced in underwater wet welds. Titanium, by means of oxide formation, promoted an increase in the amount of acicular ferrite in the weld metal, while boron additions decreased the amount of grain boundary ferrite (GBF), further improving the microstructure. Porosity reduction was possible through the addition of calcium carbonate at approximately 13 wt percent in the electrode coating. However, weld metal decarbonization also resulted with the addition of carbonate.

  13. Advanced Testing Techniques to Measure the PWSCC Resistance of Alloy 690 and its Weld Metals

    SciTech Connect

    P.Andreson

    2004-10-01

    Wrought Alloy 600 and its weld metals (Alloy 182 and Alloy 82) were originally used in pressurized water reactors (PWRs) due to the material's inherent resistance to general corrosion in a number of aggressive environments and because of a coefficient of thermal expansion that is very close to that of low alloy and carbon steel. Over the last thirty years, stress corrosion cracking in PWR primary water (PWSCC) has been observed in numerous Alloy 600 component items and associated welds, sometimes after relatively long incubation times. The occurrence of PWSCC has been responsible for significant downtime and replacement power costs. As part of an ongoing, comprehensive program involving utilities, reactor vendors and engineering/research organizations, this report will help to ensure that corrosion degradation of nickel-base alloys does not limit service life and that full benefit can be obtained from improved designs for both replacement components and new reactors.

  14. Fracture toughness of austenitic stainless steel weld metal at 4 K

    SciTech Connect

    Goodwin, G.M.

    1984-08-01

    Selection of the welding processess and weld filler metals for fabrication of a large toroidal superconducting magnet is described. Data available in the literature are collected and compared with data generated in this study for three welding processes, shielded metal arc (SMA), gas tungsten arc (GTA), and flux cored arc (FCA) welds had the highest fracture toughness as measured by K/sub Ic/ estimated from J/sub Ic/. The SMA and FCA welds had about the same toughness, below the GTA values but above the average from the literature. The fracture mode for all three processes was typified by ductile dimples. The fracture morphology of the FCA weld specimens was influenced by the solidification substructure, and small particles were found to be nucleation sites for void formation, especially for the GTA welds. All three welding processes were deemed adequate for the intended service and were used to fabricate the large magnet. A trunnion-type turning fixture eliminated the need for welding in the vertical and overhead positions. The GTA process was used for all root passes, and the horizontal welds were filled by the SMA process. Over 80% of the welds were done in the flat position with the FCA process, and its high deposition rate and ease of operation are credited with contributing greatly to the success of the effort.

  15. Welding.

    ERIC Educational Resources Information Center

    Lehigh County Area Vocational-Technical School, Schnecksville, PA.

    This curriculum guide provides materials for a 12-unit secondary course in welding. Purpose stated for the flexible entry and exit course is to help students master manipulative skills to develop successful welding techniques and to gain an understanding of the specialized tools and equipment used in the welding field. Units cover oxyacetylene…

  16. Effect of Heat Treatment on Low Temperature Toughness of Reduced Pressure Electron Beam Weld Metal of Type 316L Stainless Steel

    SciTech Connect

    Nakagawa, H.; Fujii, H.; Tamura, M.

    2006-03-31

    Austenitic stainless steels are considered to be the candidate materials for liquid hydrogen vessels and the related equipments, and those welding parts that require high toughness at cryogenic temperature. The authors have found that the weld metal of Type 316L stainless steel processed by reduced pressure electron beam (RPEB) welding has high toughness at cryogenic temperature, which is considered to be due to the single-pass welding process without reheating effect accompanied by multi-pass welding process.In this work, the effect of heat treatment on low temperature toughness of the RPEB weld metal of Type 316L was investigated by Charpy impact test at 77K. The absorbed energy decreased with higher temperature and longer holding time of heat treatment. The remarkable drop in the absorbed energy was found with heat treatment at 1073K for 2 hours, which is as low as that of conventional multi-pass weld metal such as tungsten inert gas welding. The observations of fracture surface and microstructure revealed that the decrease in the absorbed energy with heat treatment resulted from the precipitation of intermetallic compounds near delta-ferrite phase.

  17. Effect of Boric Acid Concentration on Viscosity of Slag and Property of Weld Metal Obtained from Underwater Wet Welding

    NASA Astrophysics Data System (ADS)

    Guo, Ning; Guo, Wei; Xu, Changsheng; Du, Yongpeng; Feng, Jicai

    2015-06-01

    Underwater wet welding is a crucial repair and maintenance technology for nuclear plant. A boric acid environment raises a new challenge for the underwater welding maintenance of nuclear plant. This paper places emphasis on studying the influence of a boric acid environment in nuclear plant on the underwater welding process. Several groups of underwater wet welding experiments have been conducted in boric acid aqueous solution with different concentration (0-35000 ppm). The viscosity of the welding slag and the mechanical properties of welds, such as the hardness, strength, and elongation, have been studied. The results show that with increasing boric acid concentration, the viscosity of the slag decreases first and then increases at a lower temperature (less than 1441 °C). However, when the temperature is above 1480 °C, the differences between the viscosity measurements become less pronounced, and the viscosity tends to a constant value. The hardness and ductility of the joints can be enhanced significantly, and the maximum strength of the weld metal can be reached at 2300 ppm.

  18. Optimization of Gas Metal Arc Welding (GMAW) Process for Maximum Ballistic Limit in MIL A46100 Steel Welded All-Metal Armor

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Yavari, R.; Yen, C.-F.; Cheeseman, B. A.

    2015-01-01

    Our recently developed multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process has been upgraded with respect to its predictive capabilities regarding the process optimization for the attainment of maximum ballistic limit within the weld. The original model consists of six modules, each dedicated to handling a specific aspect of the GMAW process, i.e., (a) electro-dynamics of the welding gun; (b) radiation-/convection-controlled heat transfer from the electric arc to the workpiece and mass transfer from the filler metal consumable electrode to the weld; (c) prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; (d) the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; (e) spatial distribution of the as-welded material mechanical properties; and (f) spatial distribution of the material ballistic limit. In the present work, the model is upgraded through the introduction of the seventh module in recognition of the fact that identification of the optimum GMAW process parameters relative to the attainment of the maximum ballistic limit within the weld region entails the use of advanced optimization and statistical sensitivity analysis methods and tools. The upgraded GMAW process model is next applied to the case of butt welding of MIL A46100 (a prototypical high-hardness armor-grade martensitic steel) workpieces using filler metal electrodes made of the same material. The predictions of the upgraded GMAW process model pertaining to the spatial distribution of the material microstructure and ballistic limit-controlling mechanical properties within the MIL A46100 butt weld are found to be consistent with general expectations and prior observations.

  19. ARc Welding (Industrial Processing Series).

    DTIC Science & Technology

    ARC WELDING , *BIBLIOGRAPHIES), (*ARC WELDS, BIBLIOGRAPHIES), ALUMINUM ALLOYS, TITANIUM ALLOYS, CHROMIUM ALLOYS, METAL PLATES, SPOT WELDING , STEEL...INERT GAS WELDING , MARAGING STEELS, MICROSTRUCTURE, HEAT RESISTANT ALLOYS, HEAT RESISTANT METALS, WELDABILITY, MECHANICAL PROPERTIES, MOLYBDENUM ALLOYS, NICKEL ALLOYS, RESISTANCE WELDING

  20. Fracture mechanics characterization of welds: Fatigue life analysis of notches at welds: J(sub Ic) fracture toughness tests for weld metal

    NASA Astrophysics Data System (ADS)

    Underwood, John H.

    1995-03-01

    In this report two methods of fracture analysis of welds will be emphasized, one addressing fatigue life testing and analysis of notches at welds, and the other addressing the final fracture of the welded component and the fracture toughness tests used to characterize final fracture. These fatigue and fracture methods will be described by referring to recent work from the technical literature and from the U.S. Army Armament Research, Development, and Engineering Center, primarily fracture case study and fracture test method development investigations. A brief general summary will be given of fatigue and fracture methods and concepts that have application to welded structures. Specific fatigue crack initiation tests and analysis methods will be presented, using example results from a welded stainless steel box beam of a cannon carriage. Recent improvements and simplifications in J.integral fracture toughness tests will be described, particularly those related to welds. Fracture toughness measurements for various stainless steel weld metals and heat treatments will also be described.

  1. Microstructures and Mechanical Properties of Weld Metal and Heat-Affected Zone of Electron Beam-Welded Joints of HG785D Steel

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Han, Jianmin; Tan, Caiwang; Yang, Zhiyong; Wang, Junqiang

    2016-12-01

    Vacuum electron beam welding (EBW) process was employed to butt weld 10-mm-thick HG785D high-strength steels. The penetration into the steel was adjusted by beam current. Microstructures at weld metal and heat-affected zone (HAZ) regions were comparatively observed. Mechanical properties of the EBWed joints including Vickers hardness, tensile and Charpy impact tests were evaluated. The results indicated that microstructures at the weld metal consisted of coarse lath martensite and a small amount of acicular martensite, while that in the HAZ was tempered sorbite and martensite. The grain size in the weld metal was found to be larger than that in the HAZ, and its proportion in weld metal was higher. The hardness in the weld metal was higher than the HAZ and base metal. The tensile strength and impact toughness in the HAZ was higher than that in the weld metal. All the behaviors were related to microstructure evolution caused by higher cooling rates and state of base metal. The fracture surfaces of tensile and impact tests on the optimized joint were characterized by uniform and ductile dimples. The results differed significantly from that obtained using arc welding process.

  2. Design for low-cost gas metal arc weld-based aluminum 3-D printing

    NASA Astrophysics Data System (ADS)

    Haselhuhn, Amberlee S.

    Additive manufacturing, commonly known as 3-D printing, has the potential to change the state of manufacturing across the globe. Parts are made, or printed, layer by layer using only the materials required to form the part, resulting in much less waste than traditional manufacturing methods. Additive manufacturing has been implemented in a wide variety of industries including aerospace, medical, consumer products, and fashion, using metals, ceramics, polymers, composites, and even organic tissues. However, traditional 3-D printing technologies, particularly those used to print metals, can be prohibitively expensive for small enterprises and the average consumer. A low-cost open-source metal 3-D printer has been developed based upon gas metal arc weld (GMAW) technology. Using this technology, substrate release mechanisms have been developed, allowing the user to remove a printed metal part from a metal substrate by hand. The mechanical and microstructural properties of commercially available weld alloys were characterized and used to guide alloy development in 4000 series aluminum-silicon alloys. Wedge casting experiments were performed to screen magnesium, strontium, and titanium boride alloying additions in hypoeutectic aluminum-silicon alloys for their properties and the ease with which they could be printed. Finally, the top performing alloys, which were approximately 11.6% Si modified with strontium and titanium boride were cast, extruded, and drawn into wire. These wires were printed and the mechanical and microstructural properties were compared with those of commercially available alloys. This work resulted in an easier-to-print aluminum-silicon-strontium alloy that exhibited lower porosity, equivalent yield and tensile strengths, yet nearly twice the ductility compared to commercial alloys.

  3. Influence of high-temperature exposure on the microstructure and mechanical properties of dissimilar metal welds between modified 9Cr-1Mo steel and alloy 800

    NASA Astrophysics Data System (ADS)

    Sireesha, M.; Albert, Shaju K.; Sundaresan, S.

    2005-06-01

    Transition joints between ferritic steel and austenitic stainless steel are commonly encountered in high-temperature components of power plants. Service failures in these are known to occur as a result, mainly, of thermal stresses due to expansion coefficient differentials. In order to mitigate the problem, a trimetallic configuration involving an intermediate piece of a material such as Alloy 800 between the ferritic and austenitic steels has been suggested. In our work, modified 9Cr-1Mo steel and 316LN stainless steel are used as the ferritic and austenitic components and the thermal behavior of the joints between modified 9Cr-1Mo steel and Alloy 800 is described in this article. The joints, made using the nickel-base filler material INCONEL 82/182 (INCONEL 82 for the root pass by gas-tungsten arc welding and INCONEL 182 for the filler passes by shielded-metal arc welding), were aged at 625 °C for periods up to 5000 hours. The microstructural changes occurring in the weld metal as well as at the interfaces with the two parent materials are characterized in detail. Results of across-the-weld hardness surveys and cross-weld tension tests and weld metal Charpy impact tests are correlated with the structural changes observed. Principally, the results show that (1) the tendency for carbon to diffuse from the ferritic steel into the weld metal is much less pronounced than when 2.25Cr-1Mo steel is used as the ferritic part; and (2) intermetallic precipitation occurs in the weld metal for aging durations longer than 2000 hours, but the weld metal toughness still remains adequate in terms of the relevant specification.

  4. Interfacial microstructure and properties of copper clad steel produced using friction stir welding versus gas metal arc welding

    SciTech Connect

    Shen, Z.; Chen, Y.; Haghshenas, M.; Nguyen, T.; Galloway, J.; Gerlich, A.P.

    2015-06-15

    A preliminary study compares the feasibility and microstructures of pure copper claddings produced on a pressure vessel A516 Gr. 70 steel plate, using friction stir welding versus gas metal arc welding. A combination of optical and scanning electron microscopy is used to characterize the grain structures in both the copper cladding and heat affected zone in the steel near the fusion line. The friction stir welding technique produces copper cladding with a grain size of around 25 μm, and no evidence of liquid copper penetration into the steel. The gas metal arc welding of copper cladding exhibits grain sizes over 1 mm, and with surface microcracks as well as penetration of liquid copper up to 50 μm into the steel substrate. Transmission electron microscopy reveals that metallurgical bonding is produced in both processes. Increased diffusion of Mn and Si into the copper cladding occurs when using gas metal arc welding, although some nano-pores were detected in the FSW joint interface. - Highlights: • Cladding of steel with pure copper is possible using either FSW or GMAW. • The FSW yielded a finer grain structure in the copper, with no evidence of cracking. • The FSW joint contains some evidence of nano-pores at the interface of the steel/copper. • Copper cladding by GMAW contained surface cracks attributed to high thermal stresses. • The steel adjacent to the fusion line maintained a hardness value below 248 HV.

  5. The Concept of Electrically Assisted Friction Stir Welding (EAFSW) and Application to the Processing of Various Metals

    DTIC Science & Technology

    2008-09-01

    TZM) 2617 5.2 Good for Al, some success with mild steel , bronze & Ti- 6-4 Steel (SS, tool, mild) -1540 10-70 Good for aluminum alloys Tantalum 2996...lbs. This compares with forces of about 1000 lbs or so for conventional FSW welds in aluminum . With optimization of parameters, a higher weld speed...welding ( FSW ). Since 1991, friction stir welding provides an alternative to arc welding as a metal joining method in numerous applications. In FSW

  6. 30 CFR 57.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Protective equipment or clothing for welding... equipment or clothing for welding, cutting, or working with molten metal. Protective clothing or equipment and face shields or goggles shall be worn when welding, cutting, or working with molten metal....

  7. 30 CFR 56.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Protective equipment or clothing for welding... METAL AND NONMETAL MINES Personal Protection § 56.15007 Protective equipment or clothing for welding... be worn when welding, cutting, or working with molten metal....

  8. 30 CFR 56.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Protective equipment or clothing for welding... METAL AND NONMETAL MINES Personal Protection § 56.15007 Protective equipment or clothing for welding... be worn when welding, cutting, or working with molten metal....

  9. 30 CFR 57.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Protective equipment or clothing for welding... equipment or clothing for welding, cutting, or working with molten metal. Protective clothing or equipment and face shields or goggles shall be worn when welding, cutting, or working with molten metal....

  10. 30 CFR 56.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Protective equipment or clothing for welding... METAL AND NONMETAL MINES Personal Protection § 56.15007 Protective equipment or clothing for welding... be worn when welding, cutting, or working with molten metal....

  11. 30 CFR 57.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Protective equipment or clothing for welding... equipment or clothing for welding, cutting, or working with molten metal. Protective clothing or equipment and face shields or goggles shall be worn when welding, cutting, or working with molten metal....

  12. 30 CFR 57.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protective equipment or clothing for welding... equipment or clothing for welding, cutting, or working with molten metal. Protective clothing or equipment and face shields or goggles shall be worn when welding, cutting, or working with molten metal....

  13. 30 CFR 56.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protective equipment or clothing for welding... METAL AND NONMETAL MINES Personal Protection § 56.15007 Protective equipment or clothing for welding... be worn when welding, cutting, or working with molten metal....

  14. Determinants of occupational exposure to metals by gas metal arc welding and risk management measures: a biomonitoring study.

    PubMed

    Persoons, Renaud; Arnoux, Damien; Monssu, Théodora; Culié, Olivier; Roche, Gaëlle; Duffaud, Béatrice; Chalaye, Denis; Maitre, Anne

    2014-12-01

    Welding fumes contain various toxic metals including chromium (Cr), nickel (Ni) and manganese (Mn). An assessment of the risk to health of local and systemic exposure to welding fumes requires the assessment of both external and internal doses. The aims of this study were to test the relevance in small and medium sized enterprises of a biomonitoring strategy based on urine spot-samples, to characterize the factors influencing the internal doses of metals in gas metal arc welders and to recommend effective risk management measures. 137 welders were recruited and urinary levels of metals were measured by ICP-MS on post-shift samples collected at the end of the working week. Cr, Ni and Mn mean concentrations (respectively 0.43, 1.69 and 0.27 μg/g creatinine) were well below occupational health guidance values, but still higher than background levels observed in the general population, confirming the absorption of metals generated in welding fumes. Both welding parameters (nature of base metal, welding technique) and working conditions (confinement, welding and grinding durations, mechanical ventilation and welding experience) were predictive of occupational exposure. Our results confirm the interest of biomonitoring for assessing health risks and recommending risk management measures for welders.

  15. Ultrasonic Evaluation of Two Dissimilar Metal Weld Overlay Specimens

    SciTech Connect

    Crawford, Susan L.; Cinson, Anthony D.; Prowant, Matthew S.; Moran, Traci L.; Anderson, Michael T.

    2012-06-30

    Two dissimilar metal weld (DMW) pipe-to-nozzle specimens were implanted with thermal fatigue cracks in the 13% to 90% through-wall depth range. The specimens were ultrasonically evaluated with phased-array probes having center frequencies of 0.8, 1.0, 1.5, and 2.0 megahertz (MHz). An Alloy 82/182 weld overlay (WOL) was applied and the specimens were ultrasonically re-evaluated for flaw detection and characterization. The Post-WOL flaw depths were approximately 10% to 56% through-wall. This study has shown the effectiveness of ultrasonic examinations of Alloy 82/182 overlaid DMW specimens. Phased-array probes with center frequency in the 0.8- to 1.0-MHz range provide a strong coherent signal but the greater ultrasonic wavelength and larger beam spot size prevent the reliable detection of small flaws. These small flaws had nominal through-wall depths of less than 15% and length in the 50-60 mm (2-2.4 in.) range. Flaws in the 19% and greater through-wall depth range were readily detected with all four probes. At the higher frequencies, the reflected signals are less coherent but still provide adequate signal for flaw detection and characterization. A single inspection at 2.0 MHz could provide adequate detection and sizing information but a supplemental inspection at 1.0 or 1.5 MHz is recommended.

  16. The impulse resistance welding: A new technique for joining advanced thermoplastic composite parts

    SciTech Connect

    Arias, M.; Ziegmann, G.

    1996-12-31

    Welding is a joining technique suitable for thermoplastic composites. This paper presents the development of a new, fast joining technique, which is based on the common resistance welding process. Heat is introduced by using electrical power pulses into the heating area and therefore this technique was called the Impulse Resistance Welding (IRW). The new technique will be described and discussed and the application of this technique by joining ribs to the skin of an aerodynamic spoiler part is demonstrated. The potential of an automation of the Impulse resistance welding process will be shown. Carbon fibre /PEEK (APC-2/AS4) has been selected as the material both for the skin and the rib.

  17. Modeling of Fume Formation from Shielded Metal Arc Welding Process

    NASA Astrophysics Data System (ADS)

    Sivapirakasam, S. P.; Mohan, Sreejith; Santhosh Kumar, M. C.; Surianarayanan, M.

    2017-01-01

    In this study, a semi-empirical model of fume formation rate (FFR) from a shielded metal arc welding (SMAW) process has been developed. The model was developed for a DC electrode positive (DCEP) operation and involves the calculations of droplet temperature, surface area of the droplet, and partial vapor pressures of the constituents of the droplet to predict the FFR. The model was further extended for predicting FFR from nano-coated electrodes. The model estimates the FFR for Fe and Mn assuming constant proportion of other elements in the electrode. Fe FFR was overestimated, while Mn FFR was underestimated. The contribution of spatters and other mechanism in the arc responsible for fume formation were neglected. A good positive correlation was obtained between the predicted and experimental FFR values which highlighted the usefulness of the model.

  18. Modeling of Fume Formation from Shielded Metal Arc Welding Process

    NASA Astrophysics Data System (ADS)

    Sivapirakasam, S. P.; Mohan, Sreejith; Santhosh Kumar, M. C.; Surianarayanan, M.

    2017-04-01

    In this study, a semi-empirical model of fume formation rate (FFR) from a shielded metal arc welding (SMAW) process has been developed. The model was developed for a DC electrode positive (DCEP) operation and involves the calculations of droplet temperature, surface area of the droplet, and partial vapor pressures of the constituents of the droplet to predict the FFR. The model was further extended for predicting FFR from nano-coated electrodes. The model estimates the FFR for Fe and Mn assuming constant proportion of other elements in the electrode. Fe FFR was overestimated, while Mn FFR was underestimated. The contribution of spatters and other mechanism in the arc responsible for fume formation were neglected. A good positive correlation was obtained between the predicted and experimental FFR values which highlighted the usefulness of the model.

  19. Development of welded metal bellows having minimum effective diameter change

    NASA Technical Reports Server (NTRS)

    Henschel, J. K.; Stevens, J. B.; Harvey, A. C.; Howland, J. S.; Rhee, S. S.

    1972-01-01

    A program of analysis, design, and fabrication was conducted to develop welded metal bellows having a minimum change in effective diameter for cryogenic turbomachinery face seal applications. Linear analysis of the principle types of bellows provided identification of concepts capable of meeting basic operation requirements. For the 6-inch (.152 m) mean diameter, 1.5-inch free length bellows studied, nonlinear analysis showed that opposed and nested toroidal bellows plates stiffened by means of alternating stiffener rings were capable of maintaining constant effective diameter within 0.3% and 0.1% respectively under the operating conditions of interest. Changes in effective diameter were due principally to bellows axial deflection with pressure differential having a lesser influence. Fabrication problems associated with joining the thin bellows plates to the relatively heavy stiffener rings were encountered and precluded assembly and testing of a bellows core. Fabrication problems are summarized and recommended fabrication methods for future effort are presented.

  20. High power X-ray welding of metal-matrix composites

    SciTech Connect

    Rosenberg, Richard A.; Goeppner, George A.; Noonan, John R.; Farrell, William J.; Ma, Qing

    1997-12-01

    A method for joining metal-matrix composites (MMCs) by using high power x-rays as a volumetric heat source is provided. The method involves directing an x-ray to the weld line between two adjacent MMCs materials to create an irradiated region or melt zone. The x-rays have a power density greater than about 10{sup 4} watts/cm{sup 2} and provide the volumetric heat required to join the MMC materials. Importantly, the reinforcing material of the metal-matrix composites remains uniformly distributed in the melt zone, and the strength of the MMCs are not diminished. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys.

  1. High power x-ray welding of metal-matrix composites

    DOEpatents

    Rosenberg, Richard A.; Goeppner, George A.; Noonan, John R.; Farrell, William J.; Ma, Qing

    1999-01-01

    A method for joining metal-matrix composites (MMCs) by using high power x-rays as a volumetric heat source is provided. The method involves directing an x-ray to the weld line between two adjacent MMCs materials to create an irradiated region or melt zone. The x-rays have a power density greater than about 10.sup.4 watts/cm.sup.2 and provide the volumetric heat required to join the MMC materials. Importantly, the reinforcing material of the metal-matrix composites remains uniformly distributed in the melt zone, and the strength of the MMCs are not diminished. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys.

  2. Novel concepts in weld metal science: Role of gradients and composite structure

    SciTech Connect

    Matlock, D.K.; Olson, D.L.

    1991-12-01

    The effects of compositional and microstructural gradients on weld metal properties are being investigated. Crack propagation is solidified alloy structures is being characterized as to solidification orientation and the profile of the compositional variations. The effects of compositional gradients, are considered based on a thermodynamic analysis, referred to as the Cahn-Hillard analysis, which describes the degree to which a local surface energy is modified by the presence of a compositional gradient. The analysis predicts that both ductile and brittle fracture mechanisms are enhanced by the presence of a composition gradient. Special techniques to produce laboratory samples with microstructures which simulate the composition and microstructure gradients in solidified weld metal are used, along with appropriate mathematical models, to evaluate the properties of the composite weld metals. The composite modeling techniques are being applied to describe the effects of compositional and microstructural gradients on weld metal properties in Ni-Cu alloys. The development of metal matrix composition weld deposits on austenitic stainless steels has been studied. The particulate metal matrix composites were produced with ceramic or refractory metal powder filled cored wire, which was gas tungsten arc and gas metal arc welded.

  3. Effect of Shoulder Size on Weld Properties of Dissimilar Metal Friction Stir Welds

    NASA Astrophysics Data System (ADS)

    Akinlabi, E. T.

    2012-07-01

    This article reports a research study that shows the effect of shoulder diameter size on the resulting weld properties of dissimilar friction stir welds between 5754 aluminum alloy (AA) and C11000 copper (Cu). Welds were produced using three different shoulder diameter tools: 15, 18, and 25 mm by varying the rotational speed between 600 and 1200 rpm and the traverse speed between 50 and 300 mm/min to achieve the best result. Each parameter combination was chosen to represent different heat input conditions (low, intermediates and high). The welds were characterized through microstructural evaluation, tensile testing, microhardness measurements, x-ray diffraction analysis, and electrical resistivity. Microstructural evaluation of the welds revealed that the welds produced consisted of all the friction stir welding (FSW) microstructure zones with organized flow lines comprising mixture layers of aluminum (Al) and copper (Cu) at the Stir Zones. The average Ultimate Tensile Strength (UTS) of the welds considered ranged from 178 to 208 MPa. Higher Vickers microhardness values were measured at the joint interfaces of all the welds because of the presence of intermetallic compounds in these regions. The x-ray diffraction analysis revealed the presence of Al4Cu9 and Al2Cu intermetallics at the interfacial regions, and low electrical resistivities were obtained at the joint interfaces. An optimized parameter setting for FSW of Al and Cu was obtained at the weld produced at 950 rpm and 50 mm/min with the 18-mm shoulder diameter tool.

  4. 3D display and image processing system for metal bellows welding

    NASA Astrophysics Data System (ADS)

    Park, Min-Chul; Son, Jung-Young

    2010-04-01

    Industrial welded metal Bellows is in shape of flexible pipeline. The most common form of bellows is as pairs of washer-shaped discs of thin sheet metal stamped from strip stock. Performing arc welding operation may cause dangerous accidents and bad smells. Furthermore, in the process of welding operation, workers have to observe the object directly through microscope adjusting the vertical and horizontal positions of welding rod tip and the bellows fixed on the jig, respectively. Welding looking through microscope makes workers feel tired. To improve working environment that workers sit in an uncomfortable position and productivity we introduced 3D display and image processing. Main purpose of the system is not only to maximize the efficiency of industrial productivity with accuracy but also to keep the safety standards with the full automation of work by distant remote controlling.

  5. Investigation of dissimilar metal welds by energy-resolved neutron imaging.

    PubMed

    Tremsin, Anton S; Ganguly, Supriyo; Meco, Sonia M; Pardal, Goncalo R; Shinohara, Takenao; Feller, W Bruce

    2016-08-01

    A nondestructive study of the internal structure and compositional gradient of dissimilar metal-alloy welds through energy-resolved neutron imaging is described in this paper. The ability of neutrons to penetrate thick metal objects (up to several cm) provides a unique possibility to examine samples which are opaque to other conventional techniques. The presence of Bragg edges in the measured neutron transmission spectra can be used to characterize the internal residual strain within the samples and some microstructural features, e.g. texture within the grains, while neutron resonance absorption provides the possibility to map the degree of uniformity in mixing of the participating alloys and intermetallic formation within the welds. In addition, voids and other defects can be revealed by the variation of neutron attenuation across the samples. This paper demonstrates the potential of neutron energy-resolved imaging to measure all these characteristics simultaneously in a single experiment with sub-mm spatial resolution. Two dissimilar alloy welds are used in this study: Al autogenously laser welded to steel, and Ti gas metal arc welded (GMAW) to stainless steel using Cu as a filler alloy. The cold metal transfer variant of the GMAW process was used in joining the Ti to the stainless steel in order to minimize the heat input. The distributions of the lattice parameter and texture variation in these welds as well as the presence of voids and defects in the melt region are mapped across the welds. The depth of the thermal front in the Al-steel weld is clearly resolved and could be used to optimize the welding process. A highly textured structure is revealed in the Ti to stainless steel joint where copper was used as a filler wire. The limited diffusion of Ti into the weld region is also verified by the resonance absorption.

  6. Investigation of dissimilar metal welds by energy-resolved neutron imaging

    PubMed Central

    Tremsin, Anton S.; Ganguly, Supriyo; Meco, Sonia M.; Pardal, Goncalo R.; Shinohara, Takenao; Feller, W. Bruce

    2016-01-01

    A nondestructive study of the internal structure and compositional gradient of dissimilar metal-alloy welds through energy-resolved neutron imaging is described in this paper. The ability of neutrons to penetrate thick metal objects (up to several cm) provides a unique possibility to examine samples which are opaque to other conventional techniques. The presence of Bragg edges in the measured neutron transmission spectra can be used to characterize the internal residual strain within the samples and some microstructural features, e.g. texture within the grains, while neutron resonance absorption provides the possibility to map the degree of uniformity in mixing of the participating alloys and intermetallic formation within the welds. In addition, voids and other defects can be revealed by the variation of neutron attenuation across the samples. This paper demonstrates the potential of neutron energy-resolved imaging to measure all these characteristics simultaneously in a single experiment with sub-mm spatial resolution. Two dissimilar alloy welds are used in this study: Al autogenously laser welded to steel, and Ti gas metal arc welded (GMAW) to stainless steel using Cu as a filler alloy. The cold metal transfer variant of the GMAW process was used in joining the Ti to the stainless steel in order to minimize the heat input. The distributions of the lattice parameter and texture variation in these welds as well as the presence of voids and defects in the melt region are mapped across the welds. The depth of the thermal front in the Al–steel weld is clearly resolved and could be used to optimize the welding process. A highly textured structure is revealed in the Ti to stainless steel joint where copper was used as a filler wire. The limited diffusion of Ti into the weld region is also verified by the resonance absorption. PMID:27504075

  7. WELDING PROCESS

    DOEpatents

    Zambrow, J.; Hausner, H.

    1957-09-24

    A method of joining metal parts for the preparation of relatively long, thin fuel element cores of uranium or alloys thereof for nuclear reactors is described. The process includes the steps of cleaning the surfaces to be jointed, placing the sunfaces together, and providing between and in contact with them, a layer of a compound in finely divided form that is decomposable to metal by heat. The fuel element members are then heated at the contact zone and maintained under pressure during the heating to decompose the compound to metal and sinter the members and reduced metal together producing a weld. The preferred class of decomposable compounds are the metal hydrides such as uranium hydride, which release hydrogen thus providing a reducing atmosphere in the vicinity of the welding operation.

  8. Real-time sensing and monitoring in robotic gas metal arc welding

    NASA Astrophysics Data System (ADS)

    Wu, C. S.; Gao, J. Q.; Hu, J. K.

    2007-01-01

    A real-time monitoring system is developed for detecting abnormal conditions in robotic gas metal arc welding. The butt-joint test pieces with simulated large gaps are used to intentionally introduce step disturbance of welding conditions. During the welding process, the welding voltage and current signals are sampled and processed on-line to extract the characteristic information reflecting the process quality. After the first statistical processing, it is found that seven statistical parameters (the mean, standard deviation, coefficient of variance and kurtosis of welding voltage; the mean, coefficient of variance and kurtosis of welding current) show variations during the step disturbance. Through the second statistical processing of the means of the welding voltage for subgroups of continuous measurement, the statistical control chart is obtained, and an SPC (statistical process control)-based on-line identifying method is developed. Ten robotic welding experiments are conducted to verify the real-time monitoring system. It is found that the correct identification rates for normal and abnormal welding conditions are 100% and 95%, respectively.

  9. Hydrogen Assisted Crack in Dissimilar Metal Welds for Subsea Service under Cathodic Protection

    NASA Astrophysics Data System (ADS)

    Bourgeois, Desmond

    Dissimilar metal welds (DMWs) are routinely used in the oil and gas industries for structural joining of high strength steels in order to eliminate the need for post weld heat treatment (PWHT) after field welding. There have been reported catastrophic failures in these DMWs, particularly the AISI 8630 steel - Alloy 625 DMW combination, during subsea service while under cathodic protection (CP). This is due to local embrittlement that occurs in susceptible microstructures that are present at the weld fusion boundary region. This type of cracking is known as hydrogen assisted cracking (HAC) and it is influenced by base/filler metal combination, and welding and PWHT procedures. DMWs of two material combinations (8630 steel -- Alloy 625 and F22 steel -- Alloy 625), produced with two welding procedures (BS1 and BS3) in as welded and PWHT conditions were investigated in this study. The main objectives included: 1) evaluation of the effect of materials composition, welding and PWHT procedures on the gradients of composition, microstructure, and properties in the dissimilar transition region and on the susceptibility to HAC; 2) investigation of the influence of microstructure on the HAC failure mechanism and identification of microstructural constituents acting as crack nucleation and propagation sites; 3) assessment of the applicability of two-step PWHT to improve the resistance to HAC in DMWs; 4) establishment of non-failure criterion for the delayed hydrogen cracking test (DHCT) that is applicable for qualification of DMWs for subsea service under cathodic protection (CP).

  10. Weld electrode cooling study

    NASA Astrophysics Data System (ADS)

    Masters, Robert C.; Simon, Daniel L.

    1999-03-01

    The U.S. auto/truck industry has been mandated by the Federal government to continuously improve their fleet average gas mileage, measured in miles per gallon. Several techniques are typically used to meet these mandates, one of which is to reduce the overall mass of cars and trucks. To help accomplish this goal, lighter weight sheet metal parts, with smaller weld flanges, have been designed and fabricated. This paper will examine the cooling characteristics of various water cooled weld electrodes and shanks used in resistance spot welding applications. The smaller weld flanges utilized in modern vehicle sheet metal fabrications have increased industry's interest in using one size of weld electrode (1/2 inch diameter) for certain spot welding operations. The welding community wants more data about the cooling characteristics of these 1/2 inch weld electrodes. To hep define the cooling characteristics, an infrared radiometer thermal vision system (TVS) was used to capture images (thermograms) of the heating and cooling cycles of several size combinations of weld electrodes under typical production conditions. Tests results will show why the open ended shanks are more suitable for cooling the weld electrode assembly then closed ended shanks.

  11. Friction Stir Welding of Al Alloy 2219-T8: Part II-Mechanical and Corrosion

    NASA Astrophysics Data System (ADS)

    Kang, Ju; Feng, Zhi-Cao; Li, Ji-Chao; Frankel, G. S.; Wang, Guo-Qing; Wu, Ai-Ping

    2016-09-01

    In Part I of this series, abnormal agglomerations of θ particles with size of about 100 to 1000 µm were observed in friction stir welded AA2219-T8 joints. In this work, the effects of these agglomerated θ particles on the mechanical and corrosion properties of the joints are studied. Tensile testing with in situ SEM imaging was utilized to monitor crack initiation and propagation in base metal and weld nugget zone (WNZ) samples. These tests showed that cracks initiated in the θ particles and at the θ/matrix interfaces, but not in the matrix. The WNZ samples containing abnormal agglomerated θ particles had a similar ultimate tensile stress but 3 pct less elongation than other WNZ samples with only normal θ particles. Measurements using the microcell technique indicated that the agglomerated θ particles acted as a cathode causing the dissolution of adjacent matrix. The abnormal θ particle agglomerations led to more severe localized attack due to the large cathode/anode ratio. Al preferential dissolution occurred in the abnormal θ particle agglomerations, which was different from the corrosion behavior of normal size θ particles.

  12. Picosecond laser welding of optical to metal components

    NASA Astrophysics Data System (ADS)

    Carter, Richard M.; Troughton, Michael; Chen, Jinanyong; Elder, Ian; Thomson, Robert R.; Lamb, Robert A.; Esser, M. J. Daniel; Hand, Duncan P.

    2016-03-01

    We report on practical, industrially relevant, welding of optical components to themselves and aluminum alloy components. Weld formation is achieved through the tight focusing of a 5.9ps, 400kHz Trumpf laser operating at 1030nm. By selecting suitable surface preparation, clamping and laser parameters, the plasma can be confined, even with comparatively rough surfaces, by exploiting the melt properties of the glass. The short interaction time allows for a permanent weld to form between the two materials with heating limited to a region ~300 µm across. Practical application of these weld structures is typically limited due to the induced stress within the glass and, critically, the issues surrounding post-weld thermal expansion. We report on the measured strength of the weld, with a particular emphasis on laser parameters and surface preparation.

  13. A new technique for the strengthening of aluminum tungsten inert gas weld metals: using carbon nanotube/aluminum composite as a filler metal.

    PubMed

    Fattahi, M; Nabhani, N; Rashidkhani, E; Fattahi, Y; Akhavan, S; Arabian, N

    2013-01-01

    The effect of multi-walled carbon nanotube (MWCNT) on the mechanical properties of aluminum multipass weld metal prepared by the tungsten inert gas (TIG) welding process was investigated. High energy ball milling was used to disperse MWCNT in the aluminum powder. Carbon nanotube/aluminum composite filler metal was fabricated for the first time by hot extrusion of ball-milled powders. After welding, the tensile strength, microhardness and MWCNT distribution in the weld metal were investigated. The test results showed that the tensile strength and microhardness of weld metal was greatly increased when using the filler metal containing 1.5 wt.% MWCNT. Therefore, according to the results presented in this paper, it can be concluded that the filler metal containing MWCNT can serve as a super filler metal to improve the mechanical properties of TIG welds of Al and its alloys.

  14. The ways of reliability enhancement of welded metal structures for critical applications in the conditions of low climatic temperatures

    NASA Astrophysics Data System (ADS)

    Saraev, Yu. N.; Bezborodov, V. P.; Gladkovsky, S. V.; Golikov, N. I.

    2016-11-01

    The paper studies how the energy parameters of an effective welding technology based on adaptive pulse-arc welding method influence the microstructure, mechanical characteristics and fatigue strength of low carbon steel 09G2S welded joint. It is established that the application of the adaptive pulse-arc welding method with modulated current (CMW) as compared to the welding method with direct current (DCW) allows one to obtain a welded joint of this steel with high reserve impact strength, dynamic fracture toughness and fatigue strength of metallic structures at operation temperatures up to -60°C.

  15. Characterization of tool wear and weld optimization in the friction-stir welding of cast aluminum 359+20% SiC metal-matrix composite

    SciTech Connect

    Fernandez, G.J.; Murr, L.E

    2004-03-15

    Tool wear for threaded steel pin tools declines with decreasing rotation speed and increasing traverse or weld speeds for the friction-stir welding (FSW) of Al 359+20% SiC metal-matrix composite (MMC). Less than 10% tool wear occurs when the threaded tool erodes to a self-optimized shape resembling a pseudo-hour glass at weld traverse distances in excess of 3 m. There is only a 7% reduction in the SiC mean particle size in the weld zone for self-optimized pin tools with no threads as compared with a 25% variation for threaded tools wearing significantly at the start of welding. The weld zone becomes more homogeneous for efficient welding with self-optimized tools, and there is a reduction in the weld zone grain size due to dynamic recrystallization, which facilitates the solid-state flow. Transmission electron microscopy shows little difference in the dislocation density from the base material to the weld zone, but there is a propensity of dislocation loops in the weld zone. The weld zone is observed to harden by as much as 30%, in contrast to the base material, as a consequence of the recrystallized grain size reduction and the SiC particles distributed therein.

  16. Possibility of Underwater Explosive Welding for Making Large-Sized Thin Metal Plate Clad by Overlapping Plates

    NASA Astrophysics Data System (ADS)

    Hokamoto, Kazuyuki; Mori, Akihisa; Fujita, Masahiro

    The authors have developed a new method of explosive welding using underwater shock wave for the welding of thin plate on a substrate. Considering the size limitation of the welding area in using the technique, the possibility of overlapping thin plates to make large-sized welding area is investigated. In general, the results for the welding of Inconel 600 on 304 stainless steel show a macroscopically successful weld, but the microstructure shows some melting spots caused due to the trapping of metal jet during the welding process when the welding condition is changed. The welding process is discussed based on the experimental results in comparison with some numerically simulated results obtained by AUTODYN-2D code.

  17. 30 CFR 57.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., cutting, or working with molten metal. 57.15007 Section 57.15007 Mineral Resources MINE SAFETY AND HEALTH... equipment or clothing for welding, cutting, or working with molten metal. Protective clothing or equipment and face shields or goggles shall be worn when welding, cutting, or working with molten metal....

  18. Weld line detection and process control for welding automation

    NASA Astrophysics Data System (ADS)

    Yang, Sang-Min; Cho, Man-Ho; Lee, Ho-Young; Cho, Taik-Dong

    2007-03-01

    Welding has been widely used as a process to join metallic parts. But because of hazardous working conditions, workers tend to avoid this task. Techniques to achieve the automation are the recognition of joint line and process control. A CCD (charge coupled device) camera with a laser stripe was applied to enhance the automatic weld seam tracking in GMAW (gas metal arc welding). The adaptive Hough transformation having an on-line processing ability was used to extract laser stripes and to obtain specific weld points. The three-dimensional information obtained from the vision system made it possible to generate the weld torch path and to obtain information such as the width and depth of the weld line. In this study, a neural network based on the generalized delta rule algorithm was adapted to control the process of GMAW, such as welding speed, arc voltage and wire feeding speed. The width and depth of the weld joint have been selected as neurons in the input layer of the neural-network algorithm. The input variables, the width and depth of the weld joint, are determined by image information. The voltage, weld speed and wire feed rate are represented as the neurons in the output layer. The results of the neural-network learning applied to the welding are as follows: learning ratio 0.5, momentum ratio 0.7, the number of hidden layers 2 and the number of hidden units 8. They have significant influence on the weld quality.

  19. Development of an intelligent system for cooling rate and fill control in GMAW. [Gas Metal Arc Welding (GMAW)

    SciTech Connect

    Einerson, C.J.; Smartt, H.B.; Johnson, J.A.; Taylor, P.L. ); Moore, K.L. )

    1992-01-01

    A control strategy for gas metal arc welding (GMAW) is developed in which the welding system detects certain existing conditions and adjusts the process in accordance to pre-specified rules. This strategy is used to control the reinforcement and weld bead centerline cooling rate during welding. Relationships between heat and mass transfer rates to the base metal and the required electrode speed and welding speed for specific open circuit voltages are taught to a artificial neural network. Control rules are programmed into a fuzzy logic system. TRADITOINAL CONTROL OF THE GMAW PROCESS is based on the use of explicit welding procedures detailing allowable parameter ranges on a pass by pass basis for a given weld. The present work is an exploration of a completely different approach to welding control. In this work the objectives are to produce welds having desired weld bead reinforcements while maintaining the weld bead centerline cooling rate at preselected values. The need for this specific control is related to fabrication requirements for specific types of pressure vessels. The control strategy involves measuring weld joint transverse cross-sectional area ahead of the welding torch and the weld bead centerline cooling rate behind the weld pool, both by means of video (2), calculating the required process parameters necessary to obtain the needed heat and mass transfer rates (in appropriate dimensions) by means of an artificial neural network, and controlling the heat transfer rate by means of a fuzzy logic controller (3). The result is a welding machine that senses the welding conditions and responds to those conditions on the basis of logical rules, as opposed to producing a weld based on a specific procedure.

  20. A Comparison of Weld-Repaired and Base Metal for Inconel 718 and CRES 321 at Cryogenic and Room Temperatures

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Smith, Stephen W.; Willard, Scott A.; Piascik, Robert S.

    2004-01-01

    Fatigue crack growth tests were conducted to characterize the performance of Inconel 718 and CRES 321 welds, weld heat-affect-zone and parent metal at room temperature laboratory air and liquid nitrogen (-196oC) environments. The results of this study were required to predict the damage tolerance behavior of proposed orbiter main engine hydrogen fuel liner weld repairs. Experimental results show that the room and cryogenic temperature fatigue crack growth characteristics of both alloys are not significantly degraded by the weld repair process. However, both Inconel 718 and CRES 321 exhibited lower apparent toughness within the weld repair region compared to the parent metal.

  1. Nuclear Technology. Course 28: Welding Inspection. Module 28-3, Tungsten Inert Gas (TIG), Metal Inert Gas (MIG) and Submerged Arc Welding.

    ERIC Educational Resources Information Center

    Espy, John

    This third in a series of ten modules for a course titled Welding Inspection presents the apparatus, process techniques, procedures, applications, associated defects, and inspection for the tungsten inert gas, metal inert gas, and submerged arc welding processes. The module follows a typical format that includes the following sections: (1)…

  2. Hazard of ultraviolet radiation emitted in gas metal arc welding of mild steel

    PubMed Central

    Nakashima, Hitoshi; Utsunomiya, Akihiro; Takahashi, Jyunya; Fujii, Nobuyuki; Okuno, Tsutomu

    2016-01-01

    Objectives: Ultraviolet radiation (UVR) emitted during arc welding frequently causes keratoconjunctivitis and erythema in the workplace. The degree of hazard from UVR exposure depends on the welding method and conditions. Therefore, it is important to identify the UVR levels present under various conditions. Methods: We experimentally evaluated the UVR levels emitted in gas metal arc welding (GMAW) of mild steel. We used both a pulsed welding current and a non-pulsed welding current. The shielding gases were 80% Ar + 20% CO2 and 100% CO2. The effective irradiance defined in the American Conference of Governmental Industrial Hygienists guidelines was used to quantify the UVR hazard. Results: The effective irradiance measured in this study was in the range of 0.51-12.9 mW/cm2 at a distance of 500 mm from the arc. The maximum allowable exposure times at these levels are only 0.23-5.9 s/day. Conclusions: The following conclusions were made regarding the degree of hazard from UVR exposure during the GMAW of mild steel: (1) It is more hazardous at higher welding currents than at lower welding currents. (2) At higher welding currents, it is more hazardous when 80% Ar + 20% CO2 is used as a shielding gas than when 100% CO2 is used. (3) It is more hazardous for pulsed welding currents than for non-pulsed welding currents. (4) It appears to be very hazardous when metal transfer is the spray type. This study demonstrates that unprotected exposure to UVR emitted by the GMAW of mild steel is quite hazardous. PMID:27488036

  3. Chemical composition effect on VVER-1000 RPV weld metal thermal aging

    NASA Astrophysics Data System (ADS)

    Gurovich, B. A.; Chernobaeva, A. A.; Erak, D. Yu; Kuleshova, E. A.; Zhurko, D. A.; Papina, V. B.; Skundin, M. A.; Maltsev, D. A.

    2015-10-01

    Temperature and fast neutron flux simultaneously affect the material of welded joints of reactor pressure vessels under irradiation. Understanding thermal aging effects on the weld metal allows for an explanation of the mechanisms that govern an increase in the ductile-to-brittle transition temperature of the reactor pressure vessel materials under long term irradiation at operation temperature. This paper reports on new results and reassessment of the VVER-1000 weld metal surveillance specimen database performed at the National Research Center "Kurchatov Institute". The current database of VVER-1000 weld metal thermal aging at 310-320 °C includes 50 transition temperature values with the maximum holding time of 208,896 h. The updated database completed with the information on intergranular fracture shear and phosphorous content in the grain boundaries has allowed us to propose a new mechanism of VVER-1000 weld materials thermal aging at 310-320 °C and develop models of ductile-to-brittle transition temperature shift for VVER-1000 weld metal during a long-term exposure at 310-320 °C.

  4. Fatigue crack growth properties of the base metal and weld metal of a 9% Ni steel for LNG storage tank

    NASA Astrophysics Data System (ADS)

    Kim, Young-Kyun; Shim, Kyu-Taek; Kim, Jae-Hoon

    2009-07-01

    Newly developed heavy thick plates of 9% Ni steel for large capacity of LNG tank were fabricated to conduct a fatigue crack growth test. The weld metal specimens were also fabricated by taking the same weld procedures which are applied to actual LNG storage tank inner shell. The effect of changes in load ratio, R, and test temperature on the fatigue crack growth rate has been investigated. Separate fatigue crack growth experiments were performed at load ratio of 0.1 and 0.5 at -162°C and compared to the behavior at room temperature. The fatigue crack growth rates of weld metal were nearly the same as those of the base metal irrespective of load ratio change at room temperature. A decrease in temperature decreased the fatigue crack growth rates of base metal but in the case of weld metal only small scatters appeared in the fatigue crack growth rate compared with those of base metals. The fatigue crack growth rates were dominated by residual stress due to welding processes rather than temperature effects.

  5. Pressure Resistance Welding of High Temperature Metallic Materials

    SciTech Connect

    N. Jerred; L. Zirker; I. Charit; J. Cole; M. Frary; D. Butt; M. Meyer; K. L. Murty

    2010-10-01

    Pressure Resistance Welding (PRW) is a solid state joining process used for various high temperature metallic materials (Oxide dispersion strengthened alloys of MA957, MA754; martensitic alloy HT-9, tungsten etc.) for advanced nuclear reactor applications. A new PRW machine has been installed at the Center for Advanced Energy Studies (CAES) in Idaho Falls for conducting joining research for nuclear applications. The key emphasis has been on understanding processing-microstructure-property relationships. Initial studies have shown that sound joints can be made between dissimilar materials such as MA957 alloy cladding tubes and HT-9 end plugs, and MA754 and HT-9 coupons. Limited burst testing of MA957/HT-9 joints carried out at various pressures up to 400oC has shown encouraging results in that the joint regions do not develop any cracking. Similar joint strength observations have also been made by performing simple bend tests. Detailed microstructural studies using SEM/EBSD tools and fatigue crack growth studies of MA754/HT-9 joints are ongoing.

  6. Pressure Resistance Welding of High Temperature Metallic Materials

    SciTech Connect

    Larry Zirker; Craig Tyler

    2010-08-01

    Engineers from the Idaho National Laboratory (INL) have demonstrated an innovative method for seal or pinch welding stainless steel tubing. Sometimes a tube has fuel or contamination that must be contained, or the tube needs to be shortened or cut for handling, and the tube needs to have a guaranteed sealed weld that is both quick and easy. This technique was demonstrated in a laboratory using a resistance welding system with specially designed electrodes to ensure a tube end is seal welded or if a long tube is to be shortened, the severed ends are seal welded. The unique electrodes design is integral to achieving the sealed ends. This process could readily be adapted for robotic--remote handling or for contact handling in a glovebox or hood.

  7. Achieving High Strength Joint of Pure Copper Via Laser-Cold Metal Transfer Arc Hybrid Welding

    NASA Astrophysics Data System (ADS)

    Chen, Yulong; Chen, Cong; Gao, Ming; Zeng, Xiaoyan

    2016-06-01

    Fiber laser-cold metal transfer arc hybrid welding of pure copper was studied. Weld porosity was tested by X-ray nondestructive testing. Microstructure and fracture features were observed by scanning electron microscopy. Mechanical properties were evaluated by cross weld tensile test. Full penetrated and continuous welds were obtained by hybrid welding once the laser power reached 2 kW, while they could not be obtained by laser welding alone, even though the laser power reached 5 kW. The ultimate tensile strength (UTS), the yield strength (YS), and the elongation of the best hybrid weld material were up to 227, 201 MPa, and 21.5 pct, respectively. The joint efficiencies in UTS and YS of hybrid weld were up to 84 and 80 pct of the BM, respectively. The fracture location changes from the fusion zone to the heat-affected zone with the increase of laser power. Besides, the mechanisms of process stability and porosity suppression were clarified by laser-arc interaction and pool behavior. The strengthening mechanism was discussed by microstructure characteristics.

  8. Rapid Detection of Transition Metals in Welding Fumes Using Paper-Based Analytical Devices

    PubMed Central

    Volckens, John

    2014-01-01

    Metals in particulate matter (PM) are considered a driving factor for many pathologies. Despite the hazards associated with particulate metals, personal exposures for at-risk workers are rarely assessed due to the cost and effort associated with monitoring. As a result, routine exposure assessments are performed for only a small fraction of the exposed workforce. The objective of this research was to evaluate a relatively new technology, microfluidic paper-based analytical devices (µPADs), for measuring the metals content in welding fumes. Fumes from three common welding techniques (shielded metal arc, metal inert gas, and tungsten inert gas welding) were sampled in two welding shops. Concentrations of acid-extractable Fe, Cu, Ni, and Cr were measured and independently verified using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Results from the µPAD sensors agreed well with ICP-OES analysis; the two methods gave statistically similar results in >80% of the samples analyzed. Analytical costs for the µPAD technique were ~50 times lower than market-rate costs with ICP-OES. Further, the µPAD method was capable of providing same-day results (as opposed several weeks for ICP laboratory analysis). Results of this work suggest that µPAD sensors are a viable, yet inexpensive alternative to traditional analytic methods for transition metals in welding fume PM. These sensors have potential to enable substantially higher levels of hazard surveillance for a given resource cost, especially in resource-limited environments. PMID:24515892

  9. Rapid detection of transition metals in welding fumes using paper-based analytical devices.

    PubMed

    Cate, David M; Nanthasurasak, Pavisara; Riwkulkajorn, Pornpak; L'Orange, Christian; Henry, Charles S; Volckens, John

    2014-05-01

    Metals in particulate matter (PM) are considered a driving factor for many pathologies. Despite the hazards associated with particulate metals, personal exposures for at-risk workers are rarely assessed due to the cost and effort associated with monitoring. As a result, routine exposure assessments are performed for only a small fraction of the exposed workforce. The objective of this research was to evaluate a relatively new technology, microfluidic paper-based analytical devices (µPADs), for measuring the metals content in welding fumes. Fumes from three common welding techniques (shielded metal arc, metal inert gas, and tungsten inert gas welding) were sampled in two welding shops. Concentrations of acid-extractable Fe, Cu, Ni, and Cr were measured and independently verified using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Results from the µPAD sensors agreed well with ICP-OES analysis; the two methods gave statistically similar results in >80% of the samples analyzed. Analytical costs for the µPAD technique were ~50 times lower than market-rate costs with ICP-OES. Further, the µPAD method was capable of providing same-day results (as opposed several weeks for ICP laboratory analysis). Results of this work suggest that µPAD sensors are a viable, yet inexpensive alternative to traditional analytic methods for transition metals in welding fume PM. These sensors have potential to enable substantially higher levels of hazard surveillance for a given resource cost, especially in resource-limited environments.

  10. Study on impact toughness of C-Mn multilayer weld metal at [minus]60 degrees

    SciTech Connect

    Chen, J.H.; Xia, T.D.; Yan, C. )

    1993-01-01

    A comparative study has been carried out on the toughness of specimens of the C-Mn multilayer weld steel and that of the specimens simulated with the various reheating cycles by using the weld thermal-restraint stress and strain cycle simulator. It proved that the region initiating the cleavage crack, i.e., the weakest fractured at [minus]60 C([minus]76 F), is just the region having the lowest toughness among various reheated zones. The toughness of weld metal depends upon the toughness value of this weakest region. Heat input and alloying elements, such as manganese, titanium and boron, affected the toughness of weld metal by changing the toughness of the weakest region in the multilayer weldment.

  11. Direct welding of glass and metal by 1  kHz femtosecond laser pulses.

    PubMed

    Zhang, Guodong; Cheng, Guanghua

    2015-10-20

    In the welding process between similar or dissimilar materials, inserting an intermediate layer and pressure assistance are usually thought to be necessary. In this paper, the direct welding between alumina-silicate glass and metal (aluminum, copper, and steel), under exposure from 1 kHz femtosecond laser pulses without any auxiliary processes, is demonstrated. The micron/nanometer-sized metal particles induced by laser ablation were considered to act as the adhesive in the welding process. The welding parameters were optimized by varying the pulse energy and the translation velocity of the sample. The shear joining strength characterized by a shear force testing equipment was as high as 2.34 MPa. This direct bonding technology has potential for applications in medical devices, sensors, and photovoltaic devices.

  12. Microstructural Evolution of Inconel 625 and Inconel 686CPT Weld Metal for Clad Carbon Steel Linepipe Joints: A Comparator Study

    NASA Astrophysics Data System (ADS)

    Maltin, Charles A.; Galloway, Alexander M.; Mweemba, Martin

    2014-07-01

    Microstructural evolution of Inconel 625 and Inconel 686CPT filler metals, used for the fusion welding of clad carbon steel linepipe, has been investigated and compared. The effects of iron dilution from the linepipe parent material on the elemental segregation potential of the filler metal chemistry have been considered. The results obtained provide significant evidence to support the view that, in Inconel 686CPT weld metal, the segregation of tungsten is a function of the level of iron dilution from the parent material. The data presented indicate that the incoherent phase precipitated in the Inconel 686CPT weld metal has a morphology that is dependent on tungsten enrichment and, therefore, iron dilution. Furthermore, in the same weld metal, a continuous network of finer precipitates was observed. The Charpy impact toughness of each filler metal was evaluated, and the results highlighted the superior impact toughness of the Inconel 625 weld metal over that of Inconel 686CPT.

  13. A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel PART I : Proposal of a heat source model

    NASA Astrophysics Data System (ADS)

    Kim, Jae Woong; Jang, Beom Seon; Kim, Yong Tai; Chun, Kwang San

    2013-09-01

    The use of I-Core sandwich panel has increased in cruise ship deck structure since it can provide similar bending strength with conventional stiffened plate while keeping lighter weight and lower web height. However, due to its thin plate thickness, i.e. about 4~6 mm at most, it is assembled by high power CO2 laser welding to minimize the welding deformation. This research proposes a volumetric heat source model for T-joint of the I-Core sandwich panel and a method to use shell element model for a thermal elasto-plastic analysis to predict welding deformation. This paper, Part I, focuses on the heat source model. A circular cone type heat source model is newly suggested in heat transfer analysis to realize similar melting zone with that observed in experiment. An additional suggestion is made to consider negative defocus, which is commonly applied in T-joint laser welding since it can provide deeper penetration than zero defocus. The proposed heat source is also verified through 3D thermal elasto-plastic analysis to compare welding deformation with experimental results. A parametric study for different welding speeds, defocus values, and welding powers is performed to investigate the effect on the melting zone and welding deformation. In Part II, focuses on the proposed method to employ shell element model to predict welding deformation in thermal elasto-plastic analysis instead of solid element model.

  14. Study of the possibility of using solar radiant energy for welding and brazing metals

    NASA Technical Reports Server (NTRS)

    Dvernyakov, V. S.; Frantsevich, I. N.; Pasichnyy, V. V.; Shiganov, N. A.; Korunov, Y. I.; Kasich-Pilipenko, I. Y.

    1974-01-01

    The solar spectrum at the surface of the earth is analyzed. A facility for creating concentrated solar radiant energy flux is described, and data on its energetic capabilities are presented. The technology of solar welding by the fusion technique and joining by high-temperature brazing is examined. The use of concentrated solar radiant energy for welding and brazing metals and alloys is shown. The results of mechanical tests and microscopic and macroscopic studies are presented.

  15. Computed Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.

    2005-01-01

    In friction stir welding (FSW), a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and is carried with the macro-flow of the weld metal. By using CT images, a 3-dimensional (3D) image of the lead flow pattern can be reconstructed. CT imaging was found to be a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.

  16. Evolution of weld metal microstructure in shielded metal arc welding of X70 HSLA steel with cellulosic electrodes: A case study

    SciTech Connect

    Ghomashchi, Reza Costin, Walter; Kurji, Rahim

    2015-09-15

    The microstructure of weld joint in X70 line pipe steel resulted from shielded metal arc welding with E6010 cellulosic electrodes is characterized using optical and electron microscopy. A range of ferritic morphologies have been identified ranging from polygonal inter- and intra-prior austenite grains allotriomorphic, idiomorphic ferrites to Widmanstätten, acicular and bainitic ferrites. Electron Backscatter Diffraction (EBSD) analysis using Image Quality (IQ) and Inverse Pole Figure (IPF) maps through superimposition of IQ and IPF maps and measurement of percentages of high and low angle grain boundaries was identified to assist in differentiation of acicular ferrite from Widmanstätten and bainitic ferrite morphologies. In addition two types of pearlitic structures were identified. There was no martensite detected in this weld structure. The morphology, size and chemistry of non-metallic inclusions are also discussed briefly. - Highlights: • Application of EBSD reveals orientation relationships in a range of phases for shielded metal arc welding of HSLA steel. • Nucleation sites of various ferrite morphologies identified • Formation of upper and lower bainite and their morphologies.

  17. Welding.

    ERIC Educational Resources Information Center

    Cowan, Earl; And Others

    The curriculum guide for welding instruction contains 16 units presented in six sections. Each unit is divided into the following areas, each of which is color coded: terminal objectives, specific objectives, suggested activities, and instructional materials; information sheet; transparency masters; assignment sheet; test; and test answers. The…

  18. Welding.

    ERIC Educational Resources Information Center

    Baldwin, Harold; Whitney, Gregory

    This curriculum guide is intended to assist vocational instructors in preparing students for entry-level employment as welders and preparing them for advanced training in the workplace. The package contains an overview of new and emerging welding technologies, a competency/skill and task list, an instructor's guide, and an annotated bibliography.…

  19. Method for laser welding ultra-thin metal foils

    DOEpatents

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-26

    A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld. 5 figs.

  20. Method for laser welding ultra-thin metal foils

    DOEpatents

    Pernicka, John C.; Benson, David K.; Tracy, C. Edwin

    1996-01-01

    A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld.

  1. Influencing the arc and the mechanical properties of the weld metal in GMA-welding processes by additive elements on the wire electrode surface

    NASA Astrophysics Data System (ADS)

    Wesling, V.; Schram, A.; Müller, T.; Treutler, K.

    2016-03-01

    Under the premise of an increasing scarcity of raw materials and increasing demands on construction materials, the mechanical properties of steels and its joints are gaining highly important. In particular high- and highest-strength steels are getting in the focus of the research and the manufacturing industry. To the same extent, the requirements for filler metals are increasing as well. At present, these low-alloy materials are protected by a copper coating (<1μm) against corrosion. In addition, the coating realizes a good ohmic contact and good sliding properties between the welding machine and the wire during the welding process. By exchanging the copper with other elements it should be possible to change the mechanical properties of the weld metal and the arc stability during gas metal arc welding processes and keep the basic functions of the coating nearly untouched. On a laboratory scale solid wire electrodes with coatings of various elements and compounds such as titanium oxide were made and processed with a Gas Metal Arc Welding process. During the processing a different process behavior between the wire electrodes, coated and original, could be observed. The influences ranges from greater/shorter arc-length over increasing/decreasing droplets to larger/smaller arc foot point. Furthermore, the weld metal of the coated electrodes has significantly different mechanical and technological characteristics as the weld metal from the copper coated ground wire. The yield strength and tensile strength can be increased by up to 50%. In addition, the chemical composition of the weld metal was influenced by the application of coatings with layer thicknesses to 15 microns in the lower percentage range (up to about 3%). Another effect of the coating is a modified penetration. The normally occurring “argon finger” can be suppressed or enhanced by the choice of the coating. With the help of the presented studies it will be shown that Gas Metal Arc Welding processes

  2. Effects of the laser beam superficial heat treatment on the gas Tungsten arc Ti-6al-4v welded metal microstructure

    NASA Astrophysics Data System (ADS)

    Voiculescu, I.; Dontu, Octavian; Geanta, V.; Ganatsios, S.

    2008-03-01

    The microstructure of the weld and the extent to which it is different from the thermo-mechanically processed base material is strongly influenced by the thermal cycle of welding. The mechanical properties of composite weld structures in titanium alloys depend on structural characteristics of each region (weld, base material and heat affected area), influenced by the specific thermal cycle imposed during welding and the subsequent post-weld heat treatment. In order to improve the as-welded metal toughness and ductility, the welded metal was subjected to various post weld laser heat treatments, above and below beta transus temperature in a shielding atmosphere of pure argon. Standard micro-hardness measurements and tensile strength techniques showed higher mechanical properties of the heat treated samples in different conditions with respect to the base metal. Metallographic investigations attribute this to the formation of α'phases in heat treated material, especially in the weld metal.

  3. Inverse Thermal Analysis of Refractory Metal Laser Welds

    NASA Astrophysics Data System (ADS)

    Lambrakos, S. G.

    2013-09-01

    Case study inverse thermal analyses of Vanadium and Tantalum laser welds are presented. These analyses employ a methodology that is in terms of analytic basis functions for inverse thermal analysis of steady-state energy deposition in plate structures. The results of the case studies presented provide parametric representations of weld temperature histories that can be adopted as input data to various types of computational procedures, such as those for prediction of solid-state phase transformations. In addition, these temperature histories can be used to construct parametric-function representations for inverse thermal analysis of welds corresponding to other process parameters or welding processes process conditions of which fall within similar regimes. This study also discusses specific aspects the inverse-analysis methodology relevant to further development of algorithms for its application in practice.

  4. Toenail metal concentration as a biomarker of occupational welding fume exposure

    PubMed Central

    Grashow, Rachel; Zhang, Jinming; Fang, Shona C.; Weisskopf, Marc G.; Christiani, David C.; Cavallari, Jennifer M.

    2014-01-01

    In populations exposed to heavy metals, there are few biomarkers that capture intermediate exposure windows. We sought to determine the correlation between toenail metal concentrations and prior 12 month work activity in welders with variable, metal-rich, welding fume exposures. Forty-eight participants, recruited through a local union, provided 69 sets of toenail clippings. Union-supplied and worker verified personal work histories were used to quantify hours welded and respirator use. Toenail samples were digested and analyzed for lead (Pb), manganese (Mn), cadmium (Cd), nickel (Ni) and arsenic (As) using ICP-MS. Spearman correlation coefficients were used to examine the correlation between toenail metal concentrations. Using mixed models to account for multiple participation times, we divided hours welded into three-month intervals and examined how weld hours correlated with log-transformed toenail Pb, Mn, Cd, Ni and As concentrations. Highest concentrations were found for Ni, followed by Mn, Pb and As, and Cd. All of the metals were significantly correlated with one another (rho range=0.28–0.51), with the exception of Ni and As (rho=0.20, p=0.17). Using mixed models adjusted for age, respirator use, smoking status and BMI, we found that Mn was associated with weld hours 7–9 months prior to clipping (p = 0.003), Pb was associated with weld hours 10–12 months prior to clipping (p=0.03) and over the entire year (p=0.04). Cd was associated with weld hours 10–12 months prior to clipping (p=0.05), and also with the previous year’s total hours welded (p=0.02). The association between Ni and weld hours 7–9 months prior to clipping approached significance (p=0.06). Toenail metal concentrations were not associated with the long-term exposure metric, years as a welder. Results suggest Mn, Pb, and Cd may have particular windows of relevant exposure that reflect work activity. In a population with variable exposure, toenails may serve as useful biomarkers for

  5. Microstructure evolution of Al/Mg butt joints welded by gas tungsten arc with Zn filler metal

    SciTech Connect

    Liu Fei; Zhang Zhaodong; Liu Liming

    2012-07-15

    Based on the idea of alloying welding seam, Gas tungsten arc welding method with pure Zn filler metal was chosen to join Mg alloy and Al alloy. The microstructures, phases, element distribution and fracture morphology of welding seams were examined. The results indicate that there was a transitional zone in the width of 80-100 {mu}m between the Mg alloy substrate and fusion zone. The fusion zone was mainly composed of MgZn{sub 2}, Zn-based solid solution and Al-based solid solution. The welding seam presented distinct morphology in different location owning to the quite high cooling rate of the molten pool. The addition of Zn metal could prevent the formation of Mg-Al intermetallics and form the alloyed welding seam during welding. Therefore, the tensile strengths of joints have been significantly improved compared with those of gas tungsten arc welded joints without Zn metal added. Highlights: Black-Right-Pointing-Pointer Mg alloy AZ31B and Al alloy 6061 are welded successfully. Black-Right-Pointing-Pointer Zinc wire is employed as a filler metal to form the alloyed welding seam. Black-Right-Pointing-Pointer An alloyed welding seam is benefit for improving of the joint tensile strength.

  6. Optimization and Prediction of Ultimate Tensile Strength in Metal Active Gas Welding

    PubMed Central

    Ampaiboon, Anusit; Lasunon, On-Uma; Bubphachot, Bopit

    2015-01-01

    We investigated the effect of welding parameters on ultimate tensile strength of structural steel, ST37-2, welded by Metal Active Gas welding. A fractional factorial design was used for determining the significance of six parameters: wire feed rate, welding voltage, welding speed, travel angle, tip-to-work distance, and shielded gas flow rate. A regression model to predict ultimate tensile strength was developed. Finally, we verified optimization of the process parameters experimentally. We achieved an optimum tensile strength (558 MPa) and wire feed rate, 19 m/min, had the greatest effect, followed by tip-to-work distance, 7 mm, welding speed, 200 mm/min, welding voltage, 30 V, and travel angle, 60°. Shield gas flow rate, 10 L/min, was slightly better but had little effect in the 10–20 L/min range. Tests showed that our regression model was able to predict the ultimate tensile strength within 4%. PMID:26491719

  7. Explosive Welding of Aluminum, Titanium and Zirconium to Copper Sheet Metal

    NASA Technical Reports Server (NTRS)

    Hegazy, A. A.; Mote, J. D.

    1985-01-01

    The main material properties affecting the explosive weldability of a certain metal combination are the yield strength, the ductility, the density and the sonic velocity of the two metals. Successful welding of the metal combination depends mainly on the correct choice of the explosive welding parameters; i.e., the stand off distance, the weight of the explosive charge relative to the weight of the flyer plate and the detonation velocity of the explosive. Based on the measured and the handbook values of the properties of interest, the explosive welding parameters were calculated and the arrangements for the explosive welding of the Al alloy 6061-T6, titanium and zirconium to OFHC copper were determined. The relatively small sheet metal thickness (1/8") and the fact that the thickness of the explosive layer must exceed a certain minimum value were considered during the determination of the explosive welding conditions. The results of the metallographic investigations and the measurements of the shear strength at the interface demonstrate the usefulness of these calculations to minimize the number of experimental trials.

  8. Computer Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.

    2004-01-01

    In friction stir welding, a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. This solid-state technique has been successfully used in the joining of materials that are difficult to fusion weld such as aluminum alloys. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and thus tracks the aluminum deformation flow paths in a unique 3-dimensional manner. CT scanning is a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.

  9. Weldability characteristics of shielded metal arc welded high strength quenched and tempered plates

    NASA Astrophysics Data System (ADS)

    Datta, R.; Mukerjee, D.; Jha, S.; Narasimhan, K.; Veeraraghavan, R.

    2002-02-01

    High strength, quench and tempered (Q&T) plates having yield strength of a minimum of 670 MPa and conforming to SA 517 Gr. F specification were successfully developed at Rourkela Steel Plant in plates up to 40 mm thickness. The plates are used extensively for the fabrication of impellers, penstocks, excavators, dumpers, and raw material handling devices, where welding is an important processing step. SA 517 Gr. F plates, characterized by a relatively high carbon equivalent (CE: ˜0.6) and alloyed with Ni, Cr, Mo, Cu, and V, are susceptible to a crack-sensitive microstructure and cold cracking during welding. In view of the above, the present study investigated the weldability properties of 20 mm thick plates using the shielded metal arc welding (SMAW) process. Implant and elastic restraint cracking (ERC) tests were carried out to assess the cold cracking resistance of the weld joint under different welding conditions. Preheat of 100 °C, partial or full rebake, and a heat input of 14.9 to 15.4 KJ/cm resulted in static fatigue limit (SFL) values well in excess of the minimum specified yield strength (MSYS) of 670 MPa and a critical restraint intensity (K cr) value of 34,650 MPa, indicating adequate cold cracking resistance. Lamellar tear tests conducted using full thickness plates at heat input levels ranging from 9.7 to 14.4 KJ/cm and weld restraint loads (WRL) of 510 to 685 MPa showed no incidence of lamellar tear upon visual, ultrasonic, and four-section macroexamination. The weld joint, based on optimized welding parameters, exhibited adequate tensile strength (812.4 MPa) and low temperature impact toughness 88.3 and 63.4 J (9.2 and 6.6 kg-m) at -40 °C for weld metal (WM), and heat-affected zone (HAZ) properties, respectively. The crack tip opening displacement (CTOD) values of WM and HAZ (0.40 and 0.36 mm, respectively) were superior to that of the parent metal (0.29 mm), indicating adequate resistance of weld joint to brittle fracture. It was concluded that

  10. Stability evaluation of short-circuiting gas metal arc welding based on ensemble empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Wang, Kehong; Zhou, Zhilan; Zhou, Xiaoxiao; Fang, Jimi

    2017-03-01

    The arc of gas metal arc welding (GMAW) contains abundant information about its stability and droplet transition, which can be effectively characterized by extracting the arc electrical signals. In this study, ensemble empirical mode decomposition (EEMD) was used to evaluate the stability of electrical current signals. The welding electrical signals were first decomposed by EEMD, and then transformed to a Hilbert–Huang spectrum and a marginal spectrum. The marginal spectrum is an approximate distribution of amplitude with frequency of signals, and can be described by a marginal index. Analysis of various welding process parameters showed that the marginal index of current signals increased when the welding process was more stable, and vice versa. Thus EEMD combined with the marginal index can effectively uncover the stability and droplet transition of GMAW.

  11. Metal nanoparticles and IR laser applications in medicine for biotissue ablation and welding

    NASA Astrophysics Data System (ADS)

    Lalayan, A. A.; Israelyan, S. S.

    2016-05-01

    We report the possibility of laser welding and ablation of biotissue by using metal and hybrid metal nanoparticles (NPs) and infrared laser irradiation spectrally located far from plasmon resonances. A nanosecond YAG:Nd laser of wavelength 1064 nm has been used for synthesis of metal NPs. The Ag, Au, Cu, Ti and Ni, as well as Au-Ag and Au-Cu hybrid metal colloidal NPs were formed in a liquid medium. The diagnostic technique of second harmonic generation (SHG) has been applied to determine the biotissue ablation area after IR laser irradiation. The effectiveness of biotissue ablation was 4-5 times larger in the case of a tissue sample colored with metal NPs than for an uncolored sample. IR laser welding has been demonstrated for deep-located biotissue layers colored by metal NPs.

  12. Influence of Solute Content and Solidification Parameters on Grain Refinement of Aluminum Weld Metal

    NASA Astrophysics Data System (ADS)

    Schempp, Philipp; Cross, Carl Edward; Pittner, Andreas; Rethmeier, Michael

    2013-07-01

    Grain refinement provides an important possibility to enhance the mechanical properties ( e.g., strength and ductility) and the weldability (susceptibility to solidification cracking) of aluminum weld metal. In the current study, a filler metal consisting of aluminum base metal and different amounts of commercial grain refiner Al Ti5B1 was produced. The filler metal was then deposited in the base metal and fused in a GTA welding process. Additions of titanium and boron reduced the weld metal mean grain size considerably and resulted in a transition from columnar to equiaxed grain shape ( CET). In commercial pure aluminum (Alloy 1050A), the grain-refining efficiency was higher than that in the Al alloys 6082 and 5083. Different welding and solidification parameters influenced the grain size response only slightly. Furthermore, the observed grain-size reduction was analyzed by means of the undercooling parameter P and the growth restriction parameter Q, which revealed the influence of solute elements and nucleant particles on grain size.

  13. Improved TIG weld joint strength in aluminum alloy 2219-T87 by filler metal substitution

    NASA Technical Reports Server (NTRS)

    Poorman, R. M.; Lovoy, C. V.

    1972-01-01

    The results of an investigation on weld joint characteristics of aluminum alloy 2219-T87 are given. Five different alloys were utilized as filler material. The mechanical properties of the joints were determined at ambient and cryogenic temperatures for weldments in the as-welded condition and also, for weldments after elevated temperature exposures. Other evaluations included hardness surveys, stress corrosion susceptibility, and to a limited extent, the internal metallurgical weld structures. The overall results indicate that M-943 filler weldments are superior in strength to weldments containing either the standard 2319 filler or fillers 2014, 2020, and a dual wire feed consisting of three parts 2319 and one part 5652. In addition, no deficiencies were evident in M-934 filler weldments with regard to ductility, joint strength after elevated temperature exposure, weld hardness, metallographic structures, or stress corrosion susceptibility.

  14. 29 CFR 1915.54 - Welding, cutting and heating of hollow metal containers and structures not covered by § 1915.12.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Welding, cutting and heating of hollow metal containers and... STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.54 Welding, cutting and heating of... which have contained flammable substances shall, before welding, cutting, or heating is undertaken...

  15. 29 CFR 1915.54 - Welding, cutting and heating of hollow metal containers and structures not covered by § 1915.12.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Welding, cutting and heating of hollow metal containers and... STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.54 Welding, cutting and heating of... which have contained flammable substances shall, before welding, cutting, or heating is undertaken...

  16. 29 CFR 1915.54 - Welding, cutting and heating of hollow metal containers and structures not covered by § 1915.12.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Welding, cutting and heating of hollow metal containers and... STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.54 Welding, cutting and heating of... which have contained flammable substances shall, before welding, cutting, or heating is undertaken...

  17. 29 CFR 1915.54 - Welding, cutting and heating of hollow metal containers and structures not covered by § 1915.12.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Welding, cutting and heating of hollow metal containers and... STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.54 Welding, cutting and heating of... which have contained flammable substances shall, before welding, cutting, or heating is undertaken...

  18. 29 CFR 1915.54 - Welding, cutting and heating of hollow metal containers and structures not covered by § 1915.12.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Welding, cutting and heating of hollow metal containers and... STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.54 Welding, cutting and heating of... which have contained flammable substances shall, before welding, cutting, or heating is undertaken...

  19. The Impact of Teaching Oxy-Fuel Welding on Gas Metal Arc Welding Skills

    ERIC Educational Resources Information Center

    Sgro, Sergio D.; Field, Dennis W.; Freeman, Steven A.

    2008-01-01

    Industrial technology programs around the country must be sensitive to the demands of manufacturing and industry as they continue to replace "vocational" curriculum with high-tech alternatives. This article examines whether or not teaching oxyacetylene welding in the industrial technology classroom is required to learn arc welding…

  20. Field Testing Pulsed Power Inverters in Welding Operations to Control Heavy Metal Emissions

    DTIC Science & Technology

    2009-12-01

    material (for steel alloys the flux is limestone i.e., calcium carbonate based) to inhibit oxidation of the parts being bonded. “Stick” welding (i.e...of steel alloys are primarily argon in combination with smaller percentages of carbon dioxide and/or oxygen. Stick welding is reported to produce...OSHA regulation Experience from demonstration Depends on alloy & space − Heat Stress Slight increase Wet Globe Bulb Temperature (WGBT

  1. Precipitation of sigma and chi phases in δ-ferrite of Type 316FR weld metals

    SciTech Connect

    Chun, Eun Joon; Baba, Hayato; Nishimoto, Kazutoshi; Saida, Kazuyoshi

    2013-12-15

    The decomposition behavior and kinetics of δ-ferrite are examined using aging treatments between 873 and 1073 K for Type 316FR stainless steel weld metals with different solidification modes (316FR AF, 316FR FA). The dominant precipitates are sigma, chi, and secondary austenite nucleated at δ-ferrite/austenite interfaces or in the interior of the ferrite grains. These precipitates consume all the ferrite during isothermal aging in both 316FR AF and FA weld metals. Differences in the precipitation behavior (precipitation initiation time and precipitation speed) between weld metals can be explained by i) the degree of Cr and Mo microsegregation within δ-ferrite or austenite near ferrite and ii) the nucleation sites induced due to the solidification mode (AF or FA), such as the ferrite amount. For both weld materials, a Johnson–Mehl-type equation can express the precipitation behavior of the sigma + chi phases and quantitatively predict the behavior at the service-exposure temperatures of a fast breed reactor. - Highlights: • Precipitation of σ and χ phase in Type 316FR welds (two solidification modes) • Different precipitation behaviors: precipitation initiation time and growth speed • Johnson-Mehl–type equation is the most applicable to the precipitation behaviors • Precipitation behaviors are predicted under service conditions of FBRs.

  2. Environmentally-assisted cracking behaviour in the transition region of an Alloy182/SA 508 Cl.2 dissimilar metal weld joint in simulated boiling water reactor normal water chemistry environment

    NASA Astrophysics Data System (ADS)

    Seifert, H. P.; Ritter, S.; Shoji, T.; Peng, Q. J.; Takeda, Y.; Lu, Z. P.

    2008-08-01

    The stress corrosion cracking (SCC) and corrosion fatigue behaviour perpendicular and parallel to the fusion line in the transition region between the Alloy 182 Nickel-base weld metal and the adjacent SA 508 Cl.2 low-alloy reactor pressure vessel (RPV) steel of a simulated dissimilar metal weld joint was investigated under boiling water reactor normal water chemistry conditions. A special emphasis was placed to the question whether a fast growing interdendritic SCC crack in the highly susceptible Alloy 182 weld metal can easily cross the fusion line and significantly propagate into the adjacent low-alloy RPV steel. Cessation of interdendritic SCC crack growth was observed in high-purity or sulphate-containing oxygenated water under constant or periodical partial unloading conditions for those parts of the crack front, which reached the fusion line. In chloride containing water, on the other hand, the interdendritic SCC crack in the Alloy 182 weld metal very easily crossed the fusion line and further propagated with a very high rate as a transgranular crack into the heat-affected zone and base metal of the adjacent low-alloy steel. The observed SCC cracking behaviour at the interface correlates excellently with the field experience of such dissimilar metal weld joints, where SCC cracking was usually confined to the Alloy 182 weld metal.

  3. Effect of alloying on microstructure and precipitate evolution in ferritic weld metal

    NASA Astrophysics Data System (ADS)

    Narayanan, Badri Kannan

    The effect of alloying on the microstructure of ferritic weld metal produced with an self-shielded flux cored arc welding process (FCAW-S) has been studied. The welding electrode has a flux core that is intentionally alloyed with strong deoxidizers and denitriding elements such as aluminum, titanium and zirconium in addition to austenite formers such as manganese and nickel. This results in formation of microstructure consisting of carbide free bainite, retained austenite and twinned martensite. The work focuses on characterization of the microstructures and the precipitates formed during solidification and the allotropic phase transformation of the weld metal. Aluminum, manganese and nickel have significant solubility in iron while aluminum, titanium and zirconium have very strong affinity for nitrogen and oxygen. The effect of these alloying elements on the phase transformation and precipitation of oxides and nitrides have been studied with various characterization techniques. In-situ X-ray synchrotron diffraction has been used to characterize the solidification path and the effect of heating and cooling rates on microstructure evolution. Scanning Transmission Electron Microscopy (STEM) in conjunction with Energy Dispersive Spectroscopy (EDS) and Electron energy loss spectroscopy (EELS) was used to study the effect of micro-alloying additions on inclusion evolution. The formation of core-shell structure of oxide/nitride is identified as being key to improvement in toughness of the weld metal. Electron Back Scattered Diffraction (EBSD) in combination with Orientation Imaging Microscopy (OIM) and Transmission electron microscopy (TEM) has been employed to study the effect of alloying on austenite to ferrite transformation modes. The prevention of twinned martensite has been identified to be key to improving ductility for achieving high strength weld metal.

  4. Method for welding beryllium

    SciTech Connect

    Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

    1995-12-31

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. Beryllium parts made using this method can be used as structural components in aircraft, satellites and space applications.

  5. Metallic parts fabrication using the SIS process

    NASA Astrophysics Data System (ADS)

    Mojdeh, Mehdi

    Since early 1980s, quite a few techniques of Rapid Prototyping (RP), also known as Layered Manufacturing, have been developed. By building three-dimensional parts in a layer-by-layer additive manner, these techniques allow freeform fabrication of parts of complex geometry. Despite recent advances in fabrication of polymer parts, most of the existing rapid prototyping processes are still not capable of fabrication of accurate metallic parts with acceptable mechanical properties. Insufficient dimensional accuracy, limited number of materials, proper mechanical properties, required post machining and lack of repeatability between builds have greatly limited the market penetration of these techniques. This dissertation presents an innovative layered manufacturing technique for fabrication of dense metallic parts called Selective Inhibition Sintering (SIS), developed at the University of Southern California. The SIS-Metal technology adapts RP capabilities and extends them to the field of fabrication of metallic parts for a variety of applications such as tooling and low volume production. Using this process, a metallic part, with varying 3 dimensional geometries, can be automatically constructed from a wide range of materials. SIS-Metal is the only RP process which is suitable for fabrication of dense, complex shaped, accurate objects using a variety of materials. In the SIS-Metal process a metallic part is built layer by layer by deposition for each layer of an inhibitor material which defines the corresponding layer boundary and then filling the voids of the created geometry with metal powder; and compacting the layer formed to reach a high powder density. The resulting green part is then sintered in a furnace to yield the final functional part. In this research different inhibition techniques were explored and a series of single and multi layer parts was fabricated using the most promising inhibition technique, namely, macro-mechanical inhibition. Dimensional

  6. Direct Deposition of Metal (DDM) as a Repair Process for Metallic Military Parts

    DTIC Science & Technology

    2013-01-20

    welded are low carbon steel , nickel, titanium, and copper. Aluminum and cast iron alloys cannot be easily welded but altering the microstructure... Aluminum There are many possibilities for DDM fabrication with aluminum alloys and perhaps aluminum metal matrix composite materials FSW Tool...15 4340 Steel Deposit Mechanical Tests

  7. Ballistic-Failure Mechanisms in Gas Metal Arc Welds of MIL A46100 Armor-Grade Steel: A Computational Investigation

    DTIC Science & Technology

    2014-06-12

    distribution is unlimited. Ballistic-Failure Mechanisms in Gas Metal Arc Welds of Mil A46100 Armor- Grade Steel : A Computational Investigation The views...Welds of Mil A46100 Armor- Grade Steel : A Computational Investigation Report Title In our recent work, a multi-physics computational model for the...utility of the upgraded GMAW process model, it is next applied to the case of butt-welding of a prototypical high-hardness armor- grade martensitic steel

  8. Cardiovascular effects in rats after intratracheal instillation of metal welding particles

    PubMed Central

    Zheng, Wen; Antonini, James M.; Lin, Yen-Chang; Roberts, Jenny R.; Kashon, Michael L.; Castranova, Vincent; Kan, Hong

    2015-01-01

    Studies have indicated that pulmonary exposure to welding fumes can induce a series of adverse effects in the respiratory system, including infection, bronchitis, siderosis and decreased pulmonary function. Recent clinical and epidemiological studies have found that pulmonary exposure to welding fumes is also associated with a higher incidence of cardiovascular events. However, there is insufficient evidence to confirm a direct effect of welding fumes on the cardiovascular system. The present study investigated the effects of pulmonary exposure to welding fumes on the heart and the vascular system in rats. Two chemically distinct welding fumes generated from manual metal arc-hard surfacing (MMA-HS) and gas metal arc-mild steel (GMA-MS) welding were tested. Three groups of rats were instilled intratracheally with MMA-HS (2 mg/rat), GMA-MS (2 mg/rat) or saline as control once a week for seven weeks. On days 1 and 7 after the last treatment, basal cardiovascular function and the cardiovascular response to increasing doses of adrenoreceptor agonists were assessed. MMA-HS treatment reduced the basal levels of left ventricle end-systolic pressure and dP/dtmax at 1 day post-treatment, and decreased dP/dtmin in response to isoproterenol (ISO) at 7 days post-treatment. Unlike MMA-HS, GMA-MS only affected left ventricular end-diastolic pressure in response to ISO at 7 days post-treatment. Treatment with MMA-HS or GMA-MS did not alter heart rate and blood pressure. Our findings suggest that exposure to different welding fumes can induce different adverse effects on the cardiovascular system, and that cardiac contractility may be a sensitive indicator of cardiovascular dysfunction. PMID:25600139

  9. Cardiovascular effects in rats after intratracheal instillation of metal welding particles.

    PubMed

    Zheng, Wen; Antonini, James M; Lin, Yen-Chang; Roberts, Jenny R; Kashon, Michael L; Castranova, Vincent; Kan, Hong

    2015-01-01

    Studies have indicated that pulmonary exposure to welding fumes can induce a series of adverse effects in the respiratory system, including infection, bronchitis, siderosis and decreased pulmonary function. Recent clinical and epidemiological studies have found that pulmonary exposure to welding fumes is also associated with a higher incidence of cardiovascular events. However, there is insufficient evidence to confirm a direct effect of welding fumes on the cardiovascular system. The present study investigated the effects of pulmonary exposure to welding fumes on the heart and the vascular system in rats. Two chemically distinct welding fumes generated from manual metal arc-hard surfacing (MMA-HS) and gas metal arc-mild steel (GMA-MS) welding were tested. Three groups of rats were instilled intratracheally with MMA-HS (2 mg/rat), GMA-MS (2 mg/rat) or saline as control once a week for seven weeks. On days 1 and 7 after the last treatment, basal cardiovascular function and the cardiovascular response to increasing doses of adrenoreceptor agonists were assessed. MMA-HS treatment reduced the basal levels of left ventricle end-systolic pressure and dP/dt(max) at 1 day post-treatment, and decreased dP/dt(min) in response to isoproterenol (ISO) at 7 days post-treatment. Unlike MMA-HS, GMA-MS only affected left ventricular end-diastolic pressure in response to ISO at 7 days post-treatment. Treatment with MMA-HS or GMA-MS did not alter heart rate and blood pressure. Our findings suggest that exposure to different welding fumes can induce different adverse effects on the cardiovascular system, and that cardiac contractility may be a sensitive indicator of cardiovascular dysfunction.

  10. Mass Transfer of Nickel-Base Alloy Covered Electrode During Shielded Metal Arc Welding

    NASA Astrophysics Data System (ADS)

    Qin, Renyao; He, Guo

    2013-03-01

    The mass transfer in shielded metal arc welding of a group of nickel-base alloy covered electrodes according to AWS specification A5.11-A5.11M was investigated by directly measuring their deposited metal compositions. The results indicate that the chromium mass-transfer coefficient is in the range of 86 to 94 pct, iron in the range of 82 to 89 pct, manganese in the range of 60 to 73 pct, niobium in the range of 44 to 56 pct, and silicon in the range of 41 to 47 pct. The metal mass-transfer coefficient from the core wire is markedly higher than that from the coating. The basicity of slag, the metal contents in the flux coating, and the welding current together affect the mass transfer. As the basicity of slag increases, the mass-transfer coefficients of Mn, Fe, and Cr slightly increase, but those of Nb and Si decrease significantly. As the niobium and manganese contents increase in the coating, their mass-transfer coefficients also increase. However, iron is different. The content of iron in the coating in the range of 8 to 20 wt pct results in the optimal effective mass transfer. The lower, or higher, iron content leads to lower mass-transfer coefficient. As the welding current increases, the mass-transfer coefficients of niobium and manganese decrease, but chromium and silicon increase. Iron has the lowest mass-transfer coefficient when welded under the operating current of 100 A.

  11. Investigation of Friction Stir Welding and Laser Engineered Net Shaping of Metal Matrix Composite Materials

    NASA Technical Reports Server (NTRS)

    Diwan, Ravinder M.

    2002-01-01

    The improvement in weld quality by the friction stir welding (FSW) process invented by TWI of Cambridge, England, patented in 1991, has prompted investigation of this process for advanced structural materials including Al metal matrix composite (Al-MMC) materials. Such materials can have high specific stiffness and other potential beneficial properties for the extreme environments in space. Developments of discontinuous reinforced Al-MMCs have found potential space applications and the future for such applications is quite promising. The space industry has recognized advantages of the FSW process over conventional welding processes such as the absence of a melt zone, reduced distortion, elimination of the need for shielding gases, and ease of automation. The process has been well proven for aluminum alloys, and work is being carried out for ferrous materials, magnesium alloys and copper alloys. Development work in the FSW welding process for joining of Al-MMCs is relatively recent and some of this and related work can be found in referenced research publications. NASA engineers have undertaken to spear head this research development work for FSW process investigation of Al-MMCs. Some of the reported related work has pointed out the difficulty in fusion welding of particulate reinforced MMCs where liquid Al will react with SiC to precipitate aluminum carbide (Al4C3). Advantages of no such reaction and no need for joint preparation for the FSW process is anticipated in the welding of Al-MMCs. The FSW process has been best described as a combination of extrusion and forging of metals. This is carried out as the pin tool rotates and is slowly plunged into the bond line of the joint as the pin tool's shoulder is in intimate contact with the work piece. The material is friction-stirred into a quality weld. Al-MMCs, 4 in. x 12 in. plates of 0.25 in. (6.35mm) thickness, procured from MMCC, Inc. were butt welded using FSW process at Marshall Space Flight Center (MSFC) using

  12. Solar cell welded interconnection development program. [parallel gap and ultrasonic metal-metal bonding

    NASA Technical Reports Server (NTRS)

    Katzeff, J. S.

    1974-01-01

    Parallel gap welding and ultrasonic bonding techniques were developed for joining selected interconnect materials (silver, aluminum, copper, silver plated molybdenum and Kovar) to silver-titanium and aluminum contact cells. All process variables have been evaluated leading to establishment of optimum solar cell, interconnect, electrodes and equipment criteria for obtainment of consistent high quality welds. Applicability of nondestructive testing of solar cell welds has been studied. A pre-weld monitoring system is being built and will be utilized in the numerically controlled parallel gap weld station.

  13. Stress Corrosion Cracking and Non-Destructive Examination of Dissimilar Metal Welds and Alloy 600

    SciTech Connect

    Jackson, Deborah A.

    2002-07-01

    The United States Nuclear Regulatory Commission (USNRC) has conducted research since 1977 in the areas of environmentally assisted cracking and assessment and reliability of non-destructive examination (NDE). Recent occurrences of cracking in Alloy 82/182 welds and Alloy 600 base metal at several domestic and overseas plants have raised several issues relating to both of these areas of NRC research. The occurrences of cracking were identified by the discovery of boric acid deposits resulting from through-wall cracking in the primary system pressure boundary. Analyses indicate that the cracking has occurred due to primary water stress corrosion cracking (PWSCC) in Alloy 82/182 welds. This cracking has occurred in two different locations: in hot leg nozzle-to-safe end welds and in control rod drive mechanism (CRDM) nozzle welds. The cracking associated with safe-end welds is important due to the potential for a large loss of reactor coolant inventory, and the cracking of CRDM nozzle base metal and welds, particularly circumferential cracking of CRDM nozzle base metal, is important due to the potential for a control rod to eject resulting in a loss of coolant accident. The industry response in the U.S. to this cracking is being coordinated through the Electric Power Research Institute's Materials Reliability Project (EPRI-MRP) in a comprehensive, multifaceted effort. Although the industry program is addressing many of the issues raised by these cracking occurrences, confirmatory research is necessary for the staff to evaluate the work conducted by industry groups. Several issues requiring additional consideration regarding the generic implications of these isolated events have been identified. This paper will discuss the recent events of significant cracking in domestic and foreign plants, discuss the limitations of NDE in detecting SCC, identify deficiencies in information available in this area, discuss the USNRC approach to address these issues, and discuss the

  14. An Assessment of Molten Metal Detachment Hazards for Electron Beam Welding in the Space Environment: Analysis and Test Results

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Russell, C.; Bhat, B.; Fragomeni, J. M.

    1998-01-01

    Conditions under which molten metal detachments might occur in a space welding environment are analyzed. A weld pool detachment parameter specifying conditions for pool detachment by impact is derived and corroborated by experimental evidence. Impact detachment for the pool is unlikely. Impact detachment for a drop of metal on the end of the weld wire may be possible under extreme conditions. Other potential causes of molten metal detachment considered, vaporization pressure forces and wire flickout from the pool, did not appear to present significant detachment threats.

  15. Friction-Stir Welding - Heavy Inclusions in Bi-metallic welds of Al 2219/2195

    NASA Technical Reports Server (NTRS)

    Rietz, Ward W., Jr.

    2008-01-01

    Heavy Inclusions (HI) were detected for the first time by radiographic examination in aluminum alloy 2219forging/2195plate (advancing/retreating side) Friction Sir Welds (FSW) for the Space Shuttle External Tank (ET) Program. Radiographic HI indications appear as either small (approx.0.005"-0.025") individual particles or clusters of small particles. Initial work was performed to verify that the HI was not foreign material or caused by FSW pin tool debris. That and subsequent elemental analysis determined that the HI were large agglomerations of Al2Cu (theta phase), which is the strengthening precipitate in Al2219. A literature search on that subject determined that the agglomeration of phase has also been found in Al2219 bead on plate FSW [Ref. 1]. Since this was detected in ET space flight hardware, an investigative study of the effect of agglomerated theta phase particles in FSW Al2219f/2195p was performed. Numerous panels of various lengths were welded per ET weld procedures and radiographically inspected to determine if any HI was detected. Areas that had HI were sampled for room temperature and cyclic cryogenic (-423F) tensile testing and determined no significant adverse affect on mechanical properties when compared to test specimens without HI and historical data. Fracture surface examination using the Scanning Electron Microscope (SEM) revealed smaller phase agglomerations undetectable by radiographic inspection dispersed throughout the Al2219f/2195p FSW. This indicates that phase agglomeration is inherent to the Al2219f/2195p FSW process and only rarely creates agglomerations large enough to be detected by radiography. HI has not been observed in FSW of plate to plate material for either Al2219 or AL2195.

  16. Al-Si-Mn Alloy Coating on Aluminum Substrate Using Cold Metal Transfer (CMT) Welding Technique

    NASA Astrophysics Data System (ADS)

    Rajeev, G. P.; Kamaraj, M.; Bakshi, S. R.

    2014-06-01

    The cold metal transfer (CMT) process was explored as a weld overlay technique for synthesizing Al-Si-Mn alloy coating on a commercially pure Al plate. The effect of welding speed on the bead geometry, deposition rate, and the dilution were studied and the best parameter was used to synthesize the coatings. The CMT process can be used to produce thick coatings (>2.5 mm) without porosity and with low dilution levels. The Vickers hardness number of the Al substrate increased from 28 in the bulk to 57 in the coating. It is suggested that the CMT process can be an effective and energy-efficient technique for depositing thick coatings and is useful in weld repair of aluminum alloy components.

  17. Study on fundamental processes of laser welded metals observed with intense x-ray beams

    NASA Astrophysics Data System (ADS)

    Muramatsu, T.; Daido, H.; Shobu, T.; Takase, K.; Tsukimori, K.; Kureta, M.; Segawa, M.; Nishimura, A.; Suzuki, Y.; Kawachi, T.

    With use of photon techniques including visible light, soft and hard x-rays, precise fundamental laser welding processes in the repair and maintenance of nuclear plant engineering were reviewed mechanistically. We make discussions centered on the usefulness of an intense soft x-ray beams for evaluations of spatial residual strain distribution and welded metal convection behavior including the surface morphology. Numerical results obtained with a general purpose three-dimensional code SPLICE for the simulation of the welding and solidifying phenomena. Then it is concluded that the x-ray beam would be useful as one of the powerful tools for understanding the mechanisms of various complex phenomena with higher accuracy and higher resolution.

  18. Total Fume and Metal Concentrations during Welding in Selected Factories in Jeddah, Saudi Arabia

    PubMed Central

    Balkhyour, Mansour Ahmed; Goknil, Mohammad Khalid

    2010-01-01

    Welding is a major industrial process used for joining metals. Occupational exposure to welding fumes is a serious occupational health problem all over the world. The degree of risk to welder’s health from fumes depends on composition, concentration, and the length of exposure. The aim of this study was to investigate workers’ welding fume exposure levels in some industries in Jeddah, Saudi Arabia. In each factory, the air in the breathing zone within 0.5 m from welders was sampled during 8-hour shifts. Total particulates, manganese, copper, and molybdenum concentrations of welding fumes were determined. Mean values of eight-hour average particulate concentrations measured during welding at the welders breathing zone were 6.3 mg/m3 (Factory 1), 5.3 mg/m3 (Factory 2), 11.3 mg/m3 (Factory 3), 6.8 mg/m3 (Factory 4), 4.7 mg/m3 (Factory 5), and 3.0 mg/m3 (Factory 6). Mean values of airborne manganese, copper, and molybdenum levels measured during welding were in the range of 0.010 mg/m3–0.477 mg/m3, 0.001 mg/m3–0.080 mg/m3 and 0.001 mg/m3–0.058 mg/m3 respectively. Mean values of calculated equivalent exposure values were: 1.50 (Factory 1), 1.56 (Factory 2), 5.14 (Factory 3), 2.21 (Factory 4), 2.89 (Factory 5), and 1.20 (Factory 6). The welders in factories 1, 2, 3, and 4 were exposed to welding fume concentration above the SASO limit value, which may increase the risk of respiratory health problems. PMID:20717553

  19. Total fume and metal concentrations during welding in selected factories in Jeddah, Saudi Arabia.

    PubMed

    Balkhyour, Mansour Ahmed; Goknil, Mohammad Khalid

    2010-07-01

    Welding is a major industrial process used for joining metals. Occupational exposure to welding fumes is a serious occupational health problem all over the world. The degree of risk to welder's health from fumes depends on composition, concentration, and the length of exposure. The aim of this study was to investigate workers' welding fume exposure levels in some industries in Jeddah, Saudi Arabia. In each factory, the air in the breathing zone within 0.5 m from welders was sampled during 8-hour shifts. Total particulates, manganese, copper, and molybdenum concentrations of welding fumes were determined. Mean values of eight-hour average particulate concentrations measured during welding at the welders breathing zone were 6.3 mg/m(3) (Factory 1), 5.3 mg/m(3) (Factory 2), 11.3 mg/m(3) (Factory 3), 6.8 mg/m(3) (Factory 4), 4.7 mg/m(3) (Factory 5), and 3.0 mg/m(3) (Factory 6). Mean values of airborne manganese, copper, and molybdenum levels measured during welding were in the range of 0.010 mg/m(3)-0.477 mg/m(3), 0.001 mg/m(3)-0.080 mg/m(3) and 0.001 mg/m(3)-0.058 mg/m(3) respectively. Mean values of calculated equivalent exposure values were: 1.50 (Factory 1), 1.56 (Factory 2), 5.14 (Factory 3), 2.21 (Factory 4), 2.89 (Factory 5), and 1.20 (Factory 6). The welders in factories 1, 2, 3, and 4 were exposed to welding fume concentration above the SASO limit value, which may increase the risk of respiratory health problems.

  20. An Investigation of Mechanical Properties of Shielded Metal Arc Welding and Friction Stir Welding in 7020-T6 A1 Alloy

    NASA Astrophysics Data System (ADS)

    Jalal, Shawnim R.; Saeed, Mohammedtahir M.; Khider, Gawhar I.

    2014-06-01

    Two different types of welds, shielded metal arc (SMA) welding and friction stir welding (FSW) have been used to weld Aluminum alloy 7020-T6.Investigation has been carried out on mechanical properties such as (yield and tensile strength, impact, harnesses, ductility ,and microstructure) . The result shows that both method could be used to weld such alloy although FSW weld show higher mechanical properties comparison to SMA with joint efficiency equal to 97% compared to 58% in SMA .The extension of the heat affected zone is higher in SMA method in comparison to the FSW and localized grain size for FSW in the stirred zone was 15-18 micron and it was 37- 39 micron for SMA, while it was 32-35 micron for the base metal.In general decay of mechanical properties of SMA joints, was due to high temperature experienced by the material, but in FSW joint lower temperature are involved in the process due to sever plastic deformation induced by the tool motion.

  1. Urinary neutrophil gelatinase-associated lipocalin is associated with heavy metal exposure in welding workers

    NASA Astrophysics Data System (ADS)

    Chuang, Kai-Jen; Pan, Chih-Hong; Su, Chien-Ling; Lai, Ching-Huang; Lin, Wen-Yi; Ma, Chih-Ming; Ho, Shu-Chuan; Bien, Mauo-Ying; Chen, Cheng-Hsien; Chuang, Hsiao-Chi

    2015-12-01

    Metals cause nephrotoxicity with acute and/or chronic exposure; however, few epidemiological studies have examined impacts of exposure to metal fumes on renal injury in welding workers. In total, 66 welding workers and 12 office workers were recruited from a shipyard located in southern Taiwan. Urine samples from each subject were collected at the beginning (baseline) and end of the work week (1-week exposure). Personal exposure to PM2.5 was measured. The 8-h mean PM2.5 was 50.3 μg/m3 for welding workers and 27.4 μg/m3 for office workers. iTRAQs coupled with LC-MS/MS were used to discover the pathways in response to welding PM2.5 in the urine, suggesting that extracellular matrix (ECM)-receptor interactions are a critical mechanism. ECM-receptor interaction-related biomarkers for renal injury, kidney injury molecule (KIM)-1 and neutrophil gelatinase-associated lipocalin (NGAL), were significantly elevated in welding workers post-exposure, as well as were urinary Al, Cr, Mn, Fe, Co, and Ni levels. NGAL was more significantly associated with Al (r = 0.737, p < 0.001), Cr (r = 0.705, p < 0.001), Fe (r = 0.709, p < 0.001), and Ni (r = 0.657, p < 0.001) than was KIM-1, suggesting that NGAL may be a urinary biomarker for welding PM2.5 exposure. Nephrotoxicity (e.g., renal tubular injury) may be an emerging concern in occupational health.

  2. Urinary neutrophil gelatinase-associated lipocalin is associated with heavy metal exposure in welding workers.

    PubMed

    Chuang, Kai-Jen; Pan, Chih-Hong; Su, Chien-Ling; Lai, Ching-Huang; Lin, Wen-Yi; Ma, Chih-Ming; Ho, Shu-Chuan; Bien, Mauo-Ying; Chen, Cheng-Hsien; Chuang, Hsiao-Chi

    2015-12-17

    Metals cause nephrotoxicity with acute and/or chronic exposure; however, few epidemiological studies have examined impacts of exposure to metal fumes on renal injury in welding workers. In total, 66 welding workers and 12 office workers were recruited from a shipyard located in southern Taiwan. Urine samples from each subject were collected at the beginning (baseline) and end of the work week (1-week exposure). Personal exposure to PM2.5 was measured. The 8-h mean PM2.5 was 50.3 μg/m(3) for welding workers and 27.4 μg/m(3) for office workers. iTRAQs coupled with LC-MS/MS were used to discover the pathways in response to welding PM2.5 in the urine, suggesting that extracellular matrix (ECM)-receptor interactions are a critical mechanism. ECM-receptor interaction-related biomarkers for renal injury, kidney injury molecule (KIM)-1 and neutrophil gelatinase-associated lipocalin (NGAL), were significantly elevated in welding workers post-exposure, as well as were urinary Al, Cr, Mn, Fe, Co, and Ni levels. NGAL was more significantly associated with Al (r = 0.737, p < 0.001), Cr (r = 0.705, p < 0.001), Fe (r = 0.709, p < 0.001), and Ni (r = 0.657, p < 0.001) than was KIM-1, suggesting that NGAL may be a urinary biomarker for welding PM2.5 exposure. Nephrotoxicity (e.g., renal tubular injury) may be an emerging concern in occupational health.

  3. Urinary neutrophil gelatinase-associated lipocalin is associated with heavy metal exposure in welding workers

    PubMed Central

    Chuang, Kai-Jen; Pan, Chih-Hong; Su, Chien-Ling; Lai, Ching-Huang; Lin, Wen-Yi; Ma, Chih-Ming; Ho, Shu-Chuan; Bien, Mauo-Ying; Chen, Cheng-Hsien; Chuang, Hsiao-Chi

    2015-01-01

    Metals cause nephrotoxicity with acute and/or chronic exposure; however, few epidemiological studies have examined impacts of exposure to metal fumes on renal injury in welding workers. In total, 66 welding workers and 12 office workers were recruited from a shipyard located in southern Taiwan. Urine samples from each subject were collected at the beginning (baseline) and end of the work week (1-week exposure). Personal exposure to PM2.5 was measured. The 8-h mean PM2.5 was 50.3 μg/m3 for welding workers and 27.4 μg/m3 for office workers. iTRAQs coupled with LC-MS/MS were used to discover the pathways in response to welding PM2.5 in the urine, suggesting that extracellular matrix (ECM)-receptor interactions are a critical mechanism. ECM-receptor interaction-related biomarkers for renal injury, kidney injury molecule (KIM)-1 and neutrophil gelatinase-associated lipocalin (NGAL), were significantly elevated in welding workers post-exposure, as well as were urinary Al, Cr, Mn, Fe, Co, and Ni levels. NGAL was more significantly associated with Al (r = 0.737, p < 0.001), Cr (r = 0.705, p < 0.001), Fe (r = 0.709, p < 0.001), and Ni (r = 0.657, p < 0.001) than was KIM-1, suggesting that NGAL may be a urinary biomarker for welding PM2.5 exposure. Nephrotoxicity (e.g., renal tubular injury) may be an emerging concern in occupational health. PMID:26673824

  4. Friction Stir Welding of SiC/Aluminum Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    1999-01-01

    Friction Stir Welding (FSW) is a new solid state process for joining metals by plasticizing and consolidating materials around the bond line using thermal energy producing from frictional forces. A feasibility study for FSW of Metal Matrix Composites (MMC) was investigated using aluminum 6092 alloy reinforced with 17% SiC particulates. FSW process consists of a special rotating pin tool that is positioned to plunge into the MMC surface at the bond line. As the tool rotates and move forward along the bond line, the material at the bond line is heated up and forced to flow around the rotating tip to consolidate on the tip's backside to form a solid state joint. FSW has the potential for producing sound welds with MMC because the processing temperature occurs well below the melting point of the metal matrix; thereby eliminating the reinforcement-to-matrix solidification defects, reducing the undesirable chemical reactions and porosity problems.

  5. Study on ductility dip cracking susceptibility in Filler Metal 82 during welding

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Qing; Lu, Hao; Cui, Wei

    2011-06-01

    In this paper, Ductility Dip Cracking (DDC) susceptibility in Inconel600 companion Filler Metal 82 (FM82) under different stress states is investigated. Inconel600 is a Ni-Cr-Fe alloy with excellent resistance to general corrosion, localized corrosion, and stress corrosion, which has been widely used in nuclear power plants. However, the companion FM82 has been shown to be susceptible to DDC in welding process. To resolve the problem, this work is mainly focused on evaluating DDC susceptibility in FM82 in welding process. First of all, Strain to Fracture (STF) test is used to achieve the DDC criterion under simple stress state, and the formation mechanism of DDC was explained. Real welding is a process with complex stress state. Later, to get the DDC susceptibility under complex stress state, models about multi-pass welding were built up by means of finite element method. According to numerical simulation results, relationship of deformation and temperature history is achieved. Moreover, susceptible locations and moments could be determined associated with STF results. The simulation results fairly agree with welding experiment from another research.

  6. Resistance Spot Welding of AA5052 Sheet Metal of Dissimilar Thickness

    NASA Astrophysics Data System (ADS)

    Mat Din, N. A.; Zuhailawati, H.; Anasyida, A. S.

    2016-02-01

    Resistance spot welding of dissimilar thickness of AA5052 aluminum alloy was performed in order to investigate the effect of metal thickness on the weldment strength. Resistance spot welding was done using a spot welder machine available in Coraza Systems Sdn Bhd using a hemispherical of chromium copper electrode tip with radius of 6.00 mm under 14 kA of current and 0.02 bar of pressure for all thickness combinations. Lap joint configuration was produced between 2.0 mm thick sheet and 1.2 - 3.2 mm thick sheet, respectively. Microstructure of joint showed asymmetrical nugget shape that was larger on the thicker side indicating larger molten metal volume. Joint 2.0 mm x 3.2 mm sheets has the lowest hardness in both transverse direction and through thickness direction because less heat left in the weld nugget. The microstructure shows that this joint has coarse grains of HAZ. As thickness of sheet metal increased, the failure load of the joints increased. However, there was no linear correlation established between joint strength and metal thickness due to different shape of fusion zone in dissimilar thickness sheet metal.

  7. Arc spot welding technique for underwater use

    SciTech Connect

    Koga, H.; Ide, Y.; Ogawa, Y.

    1995-12-31

    An arc spot welding equipment with special local cavity shroud was developed for underwater salvaging activity. Arc spot welding for lapped plates is an effective method to recover defects. This method in surface is so simple to use widely in the field of railways and chemical plants manufacturing. But there is some problems on the reliability of joint strength and bead shapes. A special arc spot nozzle to improve welding quality was developed. A small outlet of air jet at the bottom of the nozzle was created to maintain the swirl flow of shielding gas and certain rejection of excessive molten metal. This nozzle covers the welding part completely, then it also works as a local cavity shroud under water. This paper describes the design and function of the nozzle for CO{sub 2} arc spot welding system. A programmable controller manages the welding sequence of shielding gas flow, air jet flow, and arcing time. This welding gun is operated manually, but the operation is only to press the gun on the weld point. After that welding will proceed automatically, and arcing time is about three seconds. Whole time for welding which includes pre and post gas flow time is less than ten seconds for surface use, it is required some more additional pre drying process of welding point for underwater use to guarantee the high quality welding results. Fundamental analysis of welding conditions and the effects of air jet were considered.

  8. An investigation of the weld region on the SAE 1020 joined with metal active gas and determination of the mismatch factor

    SciTech Connect

    Meric, C.; Tokdemir, M.

    1999-10-01

    In this study, the joining process of SAE 1020 low carbon steel, generally used in the industry, has been completed using the metal active gas (MAG) weld method. The goal of this study was to examine the mismatch between base and weld metal. After the joining process, mechanical properties of the samples of the base metal (BM), the heat affected zone (HAZ), and the weld metal (WM) were investigated, and the crack tip opening displacement (CTOD) test was performed.

  9. Electrically driven rapidly vaporizing foils, wires and strips used for collision welding and sheet metal forming

    DOEpatents

    Vivek, Anupam; Daehn, Glenn S; Taber, Geoffrey A; Johnson, Jason R

    2015-05-05

    A method for forming a piece of a sheet metal is performed by positioning a consumable body, made of metal, proximate to the piece of the sheet metal. The consumable body is rapidly vaporized, and the gas pressure generated thereby is directed into the piece of the sheet metal. This results in acceleration of the piece of sheet metal, and it is collided into a stationary body at a velocity, generally in excess of 200 m/s. Depending upon the type of stationary body, the piece of sheet metal is deformed into a predetermined shape or is welded onto the stationary body. The vaporization is accomplished by passing a high current of electricity into the consumable body. The effect of the vaporized metal may be augmented by additional components in the consumable body.

  10. Determination of the Effect of Current and Travel Speed of Gas Metal-Arc Welding on the Mechanical Properties of A36, A516, and A514 Steels

    DTIC Science & Technology

    1980-05-01

    Identify by block number) steel welded joints gas metal-arc welding 70. AWTRr A ass is ,eYe slob If neoemy Md identify by block numfber) This study was...impact properties of butt joint welds produced by fully automatic gas metal-arc weld - ing (GMAW) in carbon steel (A36), pressure-vessel steel (A5 16), and...with American Society for CURRENT AND TRAVEL SPEED OF GAS Testing and Materials [ASTM] A201 mild steel up to METAL-ARC WELDING ON THE MECHAN- 2 in. (51

  11. Correlation of Flux Composition and Inclusion Characteristics With Submerged Arc Weld Metal Properties in HY-100 Steel

    DTIC Science & Technology

    1993-09-01

    WITH SUBMERGED ARC WELD METAL PROPERTIES IN HY- 100 STEEL by Kent William Kettell September 1993 Thesis Advisor: Alan G. Fox Approved for public... STEEL 12. PERSONAL AUTHOR(S) Kettell, Kent William ,3a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year.Month.Day) 15. PAGE COUNT Master’s...necessary and identify by block number) FIELD GROUP SUB-GROUP HY- 100 steel , submerged arc welding, SAW, fluxes, basicity index, non-metallic inclusions

  12. Microstructural Features Controlling Ductile-to-Brittle Transition Behavior in High-Strength, Martensitic Steel Weld Metals

    DTIC Science & Technology

    1990-10-01

    Development Report Microstructural Features Controlling Ductile-to- Brittle Transition Behavior in High-Strength, Martensitic Steel Weld Metals C 0by...Martensitic Steel Weld Metals PERSONAL AUTHOR(S) .J. DeLoach, Jr. .TYPE OF REPORT 13b TIME COVERED 114 DATE OF REPORT (Year, Month, Day) 1S PAGE COUNT I...if necessary and identify by block number) FIELD GROUP SUB-GROUP High strength steel , Ductile-brittle transition Martensitic Mechanical proper ties

  13. Weld pool phenomena

    SciTech Connect

    David, S.A.; Vitek, J.M.; Zacharia, T.; DebRoy, T.

    1994-09-01

    During welding, the composition, structure and properties of the welded structure are affected by the interaction of the heat source with the metal. The interaction affects the fluid flow, heat transfer and mass transfer in the weld pool, and the solidification behavior of the weld metal. In recent years, there has been a growing recognition of the importance of the weld pool transport processes and the solid state transformation reactions in determining the composition, structure and properties of the welded structure. The relation between the weld pool transport processes and the composition and structure is reviewed. Recent applications of various solidification theories to welding are examined to understand the special problems of weld metal solidification. The discussion is focussed on the important problems and issues related to weld pool transport phenomena and solidification. Resolution of these problems would be an important step towards a science based control of composition, structure and properties of the weld metal.

  14. Weld-Bead Shaver

    NASA Technical Reports Server (NTRS)

    Guirguis, Kamal; Price, Daniel S.

    1990-01-01

    Hand-held power tool shaves excess metal from inside circumference of welded duct. Removes excess metal deposited by penetration of tungsten/inert-gas weld or by spatter from electron-beam weld. Produces smooth transition across joint. Easier to use and not prone to overshaving. Also cuts faster, removing 35 in. (89 cm) of weld bead per hour.

  15. Effect of the Metal Transport on the Mechanical Properties of Al-2Si Alloys Processed through Friction Stir Welding Processes

    NASA Astrophysics Data System (ADS)

    Shailesh Rao, A.; Naik, Yuvaraja

    2017-03-01

    In this study, Al-2Si alloys were joined using friction stir welding with various process parameters. The process parameters considered here were rotational speeds from 600 to 1200 rpm, feed rate from 50 to 150 mm/min with three equal increments. In this study, the mushy state metal movements during the processes are discussed. The experimental observation and results indicate that the flaw formations, surface roughness of the weld, and hardness value depend on the metal movement and are explained in this study. The microstructure of the weld zone was studied finally.

  16. METAL FUSION AND FABRICATION WELDING. AGRICULTURAL MACHINERY--SERVICE OCCUPATIONS, MODULE, NUMBER 6.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    ONE IN A SERIES DESIGNED TO HELP TEACHERS PREPARE POSTSECONDARY STUDENTS FOR THE AGRICULTURAL MACHINERY SERVICE OCCUPATIONS AS PARTS MEN, MECHANICS, MECHANIC'S HELPERS, OR SERVICE SUPERVISORS, THIS GUIDE AIMS TO DEVELOP STUDENT UNDERSTANDING OF WELDING EQUIPMENT AND SUPPLIES, AND ABILITY TO PERFORM SKILLS REQUIRED OF AGRICULTURAL MECHANICS. IT WAS…

  17. Embedding Optical Fibers In Cast Metal Parts

    NASA Technical Reports Server (NTRS)

    Gibler, William N.; Atkins, Robert A.; Lee, Chung E.; Taylor, Henry F.

    1995-01-01

    Use of metal strain reliefs eliminates breakage of fibers during casting process. Technique for embedding fused silica optical fibers in cast metal parts devised. Optical fiber embedded in flange, fitting, or wall of vacuum or pressure chamber, to provide hermetically sealed feedthrough for optical transmission of measurement or control signals. Another example, optical-fiber temperature sensor embedded in metal structural component to measure strain or temperature inside component.

  18. 30 CFR 56.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., cutting, or working with molten metal. 56.15007 Section 56.15007 Mineral Resources MINE SAFETY AND HEALTH..., cutting, or working with molten metal. Protective clothing or equipment and face shields, or goggles shall be worn when welding, cutting, or working with molten metal....

  19. Ultrasonic Phased Array Technique for Accurate Flaw Sizing in Dissimilar Metal Welds

    SciTech Connect

    Jonathan D Buttram

    2005-03-11

    Described is a manual,portable non-destructive technique to determine the through wall height of cracks present in dissimilar metal welds used in the primary coolling systems of pressure water and boiler light water reactors. Current manual methods found in industry have proven not to exhibit the sizing accuracy required by ASME inspection requirement. The technique described demonstrated an accuracy approximately three times that required to ASME Section XI, Appendix 8 qualification.

  20. Effect of pressure and shielding gas on the microstructure of hyperbaric metal cored GMAW welds down to 111 bar

    SciTech Connect

    Jorge, J.C.F.; Santos, V.R. dos

    1995-12-31

    The microstructural evolution of hyperbaric C-Mn weld metals was studied by means of bead-on-plate welds deposit with GMAW process using a commercial metal cored wire. The welding was carried out in the flat position in the range of 51 bar to 111 bar with He+ CO{sub 2} as shielding gas, which CO{sub 2} content varied from 0.1% to 0.8 %. The microstructures were quantitatively analyzed by optical microscopy to evaluate the amount of constituents according to the IIW/IIS terminology. The results showed that all weld metals presented great amounts of acicular ferrite and a stronger influence of pressure on microstructure compared to the influence of the shielding gas.

  1. All-weld-metal design for AWS E10018M, E11018M and E12018M type electrodes

    SciTech Connect

    Surian, E.S.; Vedia, L.A. de

    1999-06-01

    This paper presents the results of a research program conducted to design the all-weld metal deposited with AWS A5.5-81 E10018M, E11018M and E12018M SMAW-type electrodes. The role that different alloying elements such as manganese, carbon and chromium play on the tensile properties, hardness and toughness as well as on the microstructure was studied. Criteria for selecting the weld metal composition leading to optimum combination of tensile strength and toughness are suggested. The effect of the variation of heat input, within the requirements of the AWS standard, on the mentioned properties was also analyzed. It was found that the E11018M and E12018M all-weld-metal tensile properties are very sensitive to variations in heat input. For certain values of chemical composition, welding parameter ranges suitable to guarantee the fulfillment of AWS requirements were determined.

  2. Thermal aging behavior of ERNiCr-3 alloy (weld and base metal)

    SciTech Connect

    Klueh, R.L.; King, J.F.

    1981-08-01

    The nickel-base filler metal alloy ERNiCr-3, containing nominally 67% Ni, 20% Cr, 3% Fe, 3% Mn, and 2.5% Nb, is used widely to make welds for elevated-temperature service. To determine the effect of elevated temperature on tensile and creep-rupture properties of ERNiCr-3, weld metal specimens were thermally aged to 10,000 h at 510/sup 0/C, to 15,000 h at 566/sup 0/C, and to 1000 h at 677/sup 0/C. Wrought ERNiCr-3 was also aged at 566 and 677/sup 0/C. The 0.2% yield strength of the ERNiCr-3 weld metal increased with thermal aging time at 510 and 566/sup 0/C. The ultimate tensile strength also increased continuously with aging time at 566/sup 0/C, whereas at 510/sup 0/C, it went through a maximum (the strength of the material aged 10,000 h was less than was that aged 5000 h).

  3. Experimental comparison of the MIG, friction stir welding, cold metal transfer and hybrid laser-MIG processes for AA 6005-T6 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Caruso, Serafino; Sgambitterra, Emanuele; Rinaldi, Sergio; Gallone, Antonello; Viscido, Lucio; Filice, Luigino; Umbrello, Domenico

    2016-10-01

    In this study, the mechanical properties of welded joints of AA 6005-T6 aluminum alloy obtained with hybrid laser-MIG and cold metal transfer (CMT) welding were analyzed. The performance of hybrid laser-MIG and CMT welded joints were identified using tensile, bending, shear and fatigue life tests. Taking into account the process conditions and requirements, hybrid laser-MIG and CMT welding processes were compared with friction stir welding (FSW) and conventional metal inert gas (MIG) welding processes, shown in a previous work, to understand the advantages and disadvantages of the processes for welding applications of studied Al alloy. Better tensile, bending and shear strength and fatigue life behavior were obtained with hybrid laser-MIG and FSW welded joints compared with conventional MIG processes.

  4. Evaluation of joint interface of friction stir welding between dissimilar metals using HTS-SQUID gradiometer

    NASA Astrophysics Data System (ADS)

    Mashiko, Y.; Hatsukade, Y.; Yasui, T.; Takenaka, H.; Todaka, Y.; Fukumoto, M.; Tanaka, S.

    2010-11-01

    In this study, we investigated conductive properties of joint interfaces of friction stir welding (FSW) between dissimilar metals, stainless steel SUS304 and aluminum A6063, using a SQUID nondestructive evaluation (NDE) system. With current injection method, the current maps above the FSW specimens jointed under various conditions were measured by a HTS-SQUID gradiometer. The conductivities of the joint interfaces, which were estimated from the current maps, differed between the joint conditions. By destructive tests using optical microscope, large voids were observed on the joint interfaces with low welding speed that generated excess heating. In case of one specimen, which was welded with welding speed of 500 and 200 mm/min, the conductivity of the former was higher than that of the latter, although the inside voids in the respective regions were not much different. From these results, it is suggested that the current maps were influenced not only by the conductivity of the joint interface but also by inside voids. By hardness test on the SUS boards near the interfaces, only the SUS jointed with 200 mm/min was about half softer than its matrix.

  5. Evaluation and monitoring of UVR in Shield Metal ARC Welding processing.

    PubMed

    Peng, Chiung-yu; Liu, Hung-hsin; Chang, Cheng-ping; Shieh, Jeng-yueh; Lan, Cheng-hang

    2007-08-01

    This study established a comprehensive approach to monitoring UVR magnitude from Shield Metal Arc Welding (SMAW) processing and quantified the effective exposure based on measured data. The irradiances from welding UVR were calculated with biological effective parameter (Slambda) for human exposure assessment. The spectral weighting function for UVR measurement and evaluation followed the American Conference of Governmental Industrial Hygienists (ACGIH) guidelines. Arc welding processing scatters bright light with UVR emission over the full UV spectrum (UVA, UVB, and UVC). The worst case of effective irradiance from a 50 cm distance arc spot with a 200 A electric current and an electrode E6011 (4 mm) is 311.0 microW cm(-2) and has the maximum allowance time (Tmax) of 9.6 s. Distance is an important factor affecting the irradiance intensity. The worst case of the effective irradiance values from arc welding at 100, 200, and 300 cm distances are 76.2, 16.6, and 12.1 microW cm(-2) with Tmax of 39.4, 180.7, and 247.9 s, respectively. Protective materials (glove and mask) were demonstrated to protect workers from hazardous UVR exposure. From this study, the methodology of UVR monitoring in SMAW processing was developed and established. It is recommended that welders should be fitted with appropriate protective materials for protection from UVR emission hazards.

  6. Characterization of airborne particles generated from metal active gas welding process.

    PubMed

    Guerreiro, C; Gomes, J F; Carvalho, P; Santos, T J G; Miranda, R M; Albuquerque, P

    2014-05-01

    This study is focused on the characterization of particles emitted in the metal active gas welding of carbon steel using mixture of Ar + CO2, and intends to analyze which are the main process parameters that influence the emission itself. It was found that the amount of emitted particles (measured by particle number and alveolar deposited surface area) are clearly dependent on the distance to the welding front and also on the main welding parameters, namely the current intensity and heat input in the welding process. The emission of airborne fine particles seems to increase with the current intensity as fume-formation rate does. When comparing the tested gas mixtures, higher emissions are observed for more oxidant mixtures, that is, mixtures with higher CO2 content, which result in higher arc stability. These mixtures originate higher concentrations of fine particles (as measured by number of particles by cm(3) of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more severe worker's exposure.

  7. Factors Affecting the Capture Efficiency of a Fume Extraction Torch for Gas Metal Arc Welding

    PubMed Central

    Bonthoux, Francis

    2016-01-01

    Welding fumes are classified as Group 2B ‘possibly carcinogenic’ and this prompts to the implementation of local exhaust ventilation (LEV). The fume extraction torch with LEV integrated into the tool is the most attractive solution but its capture efficiency is often disappointing in practice. This study assesses the main parameters affecting fume capture efficiency namely the extraction flow rate, the positioning of the suction openings on the torch, the angle of inclination of the torch to the workpiece during welding, the metal transfer modes, and the welding deposition rate. The theoretical velocity induced by suction, estimated from the extraction flow rate and the position of the suction openings, is the main parameter affecting effectiveness of the device. This is the design parameter and its value should never be <0.25 m s−1. The angle of the torch relative to the workpiece also has a great deal of influence. To improve efficiency, work station layouts need to favour positions where the torch is held with angles closer to perpendicular (<15°). Welding with high deposition rates (>1.1g s−1) and spray transfer leads to low capture efficiency if induced velocities are <0.5 m s−1. The results of the study can be used in the design of integrated on-torch extraction systems and provide information for fixing system objectives. PMID:27074798

  8. Electroslag and electrogas welding

    NASA Technical Reports Server (NTRS)

    Campbell, H. C.

    1972-01-01

    These two new joining methods perform welding in the vertical position, and therein lies the secret of their impressive advantages in material handling, in weld preparation, in welding speed, in freedom from distortion, and in weld soundness. Once the work has been set in the proper vertical position for welding, no further plate handling is required. The molten filler metal is held in place by copper shoes or dams, and the weld is completed in one pass.

  9. Characterization of Stainless Steel and Refractory Metal Welds Made using a Diode-Pumped, Continuous Wave Nd: Yag Laser

    SciTech Connect

    Palmer, T A; Wood, B; Elmer, J W; Westrich, C; Milewski, J O; Piltch, M; Barbe, M; Carpenter, R

    2001-10-19

    A series of laser welds have been made on several materials using a Rofin-Sinar DY-033, 3.3 kW, Diode-Pumped Continuous Wave (CW) Nd:YAG laser system, located at Los Alamos National Laboratory. Materials welded in these experiments include 21-6-9 stainless steel, 304L stainless steel, vanadium, and tantalum. The effects of changes in the power input at a constant travel speed on the depth, width, aspect ratio, and total melted area of the welds have been analyzed. Increases in the measured weld pool dimensions as a function of power input are compared for each of the base metals investigated. These results provide a basis for further examining the characteristics of diode pumped CW Nd:YAG laser systems in welding applications.

  10. Summary of Dissimilar Metal Joining Trials Conducted by Edison Welding Institute

    SciTech Connect

    MJ Lambert

    2005-11-18

    Under the direction of the NASA-Glenn Research Center, the Edison Welding Institute (EWI) in Columbus, OH performed a series of non-fusion joining experiments to determine the feasibility of joining refractory metals or refractory metal alloys to Ni-based superalloys. Results, as reported by EWI, can be found in the project report for EWI Project 48819GTH (Attachment A, at the end of this document), dated October 10, 2005. The three joining methods used in this investigation were inertia welding, magnetic pulse welding, and electro-spark deposition joining. Five materials were used in these experiments: Mo-47Re, T-111, Hastelloy X, Mar M-247 (coarse-grained, 0.5 mm to several millimeter average grain size), and Mar M-247 (fine-grained, approximately 50 {micro}m average grain size). Several iterative trials of each material combination with each joining method were performed to determine the best practice joining method. Mo-47Re was found to be joined easily to Hastelloy X via inertia welding, but inertia welding of the Mo-alloy to both Mar M-247 alloys resulted in inconsistent joint strength and large reaction layers between the two metals. T-111 was found to join well to Hastelloy X and coarse-grained Mar M-247 via inertia welding, but joining to fine-grained Mar M-247 resulted in low joint strength. Magnetic pulse welding (MPW) was only successful in joining T-111 tubing to Hastelloy X bar stock. The joint integrity and reaction layer between the metals were found to be acceptable. This single joining trial, however, caused damage to the electromagnetic concentrators used in this process. Subsequent design efforts to eliminate the problem resulted in a loss of power imparted to the accelerating work piece, and results could not be reproduced. Welding trials of Mar M-247 to T-111 resulted in catastrophic failure of the bar stock, even at lower power. Electro-spark deposition joining of Mo-47Re, in which the deposited material was Hastelloy X, did not have a

  11. Ballistic-Failure Mechanisms in Gas Metal Arc Welds of Mil A46100 Armor-Grade Steel: A Computational Investigation

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Snipes, J. S.; Galgalikar, R.; Ramaswami, S.; Yavari, R.; Yen, C.-F.; Cheeseman, B. A.

    2014-09-01

    In our recent work, a multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process was introduced. The model is of a modular type and comprises five modules, each designed to handle a specific aspect of the GMAW process, i.e.: (i) electro-dynamics of the welding-gun; (ii) radiation-/convection-controlled heat transfer from the electric-arc to the workpiece and mass transfer from the filler-metal consumable electrode to the weld; (iii) prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; (iv) the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; and (v) spatial distribution of the as-welded material mechanical properties. In the present work, the GMAW process model has been upgraded with respect to its predictive capabilities regarding the spatial distribution of the mechanical properties controlling the ballistic-limit (i.e., penetration-resistance) of the weld. The model is upgraded through the introduction of the sixth module in the present work in recognition of the fact that in thick steel GMAW weldments, the overall ballistic performance of the armor may become controlled by the (often inferior) ballistic limits of its weld (fusion and heat-affected) zones. To demonstrate the utility of the upgraded GMAW process model, it is next applied to the case of butt-welding of a prototypical high-hardness armor-grade martensitic steel, MIL A46100. The model predictions concerning the spatial distribution of the material microstructure and ballistic-limit-controlling mechanical properties within the MIL A46100 butt-weld are found to be consistent with prior observations and general expectations.

  12. Parametric studies on tensile strength in joining AA6061- T6 and AA7075-T6 by gas metal arc welding process

    NASA Astrophysics Data System (ADS)

    Ishak, M.; Noordin, N. F. M.; Shah, L. H.

    2015-12-01

    Proper selection of the welding parameters can result in better joining. In this study, the effects of various welding parameters on tensile strength in joining dissimilar aluminum alloys AA6061-T6 and AA7075-T6 were investigated. 2 mm thick samples of both base metals were welded by semi-automatic gas metal arc welding (GMAW) using filler wire ER5356. The welding current, arc voltage and welding speed were chosen as variables parameters. The strength of each specimen after the welding operations were tested and the effects of these parameters on tensile strength were identified by using Taguchi method. The range of parameter for welding current were chosen from 100 to 115 A, arc voltage from 17 to 20 V and welding speed from 2 to 5 mm/s. L16 orthogonal array was used to obtained 16 runs of experiments. It was found that the highest tensile strength (194.34 MPa) was obtained with the combination of a welding current of 115 A, welding voltage of 18 V and welding speed of 4 mm/s. Through analysis of variance (ANOVA), the welding voltage was the most effected parameter on tensile strength with percentage of contribution at 41.30%.

  13. Assessment of the biological effects of welding fumes emitted from metal inert gas welding processes of aluminium and zinc-plated materials in humans.

    PubMed

    Hartmann, L; Bauer, M; Bertram, J; Gube, M; Lenz, K; Reisgen, U; Schettgen, T; Kraus, T; Brand, P

    2014-03-01

    The aim of this study was to investigate biological effects and potential health risks due to two different metal-inert-gas (MIG) welding fumes (MIG welding of aluminium and MIG soldering of zinc coated steel) in healthy humans. In a threefold cross-over design study 12 male subjects were exposed to three different exposure scenarios. Exposures were performed under controlled conditions in the Aachener Workplace Simulation Laboratory (AWSL). On three different days the subjects were either exposed to filtered ambient air, to welding fumes from MIG welding of aluminium, or to fumes from MIG soldering of zinc coated materials. Exposure was performed for 6 h and the average fume concentration was 2.5 mg m(-3). Before, directly after, 1 day after, and 7 days after exposure spirometric and impulse oscillometric measurements were performed, exhaled breath condensate (EBC) was collected and blood samples were taken and analyzed for inflammatory markers. During MIG welding of aluminium high ozone concentrations (up to 250 μg m(-3)) were observed, whereas ozone was negligible for MIG soldering. For MIG soldering, concentrations of high-sensitivity CRP (hsCRP) and factor VIII were significantly increased but remained mostly within the normal range. The concentration of neutrophils increased in tendency. For MIG welding of aluminium, the lung function showed significant decreases in Peak Expiratory Flow (PEF) and Mean Expiratory Flow at 75% vital capacity (MEF 75) 7 days after exposure. The concentration of ristocetin cofactor was increased. The observed increase of hsCRP during MIG-soldering can be understood as an indicator for asymptomatic systemic inflammation probably due to zinc (zinc concentration 1.5 mg m(-3)). The change in lung function observed after MIG welding of aluminium may be attributed to ozone inhalation, although the late response (7 days after exposure) is surprising.

  14. The dynamics of droplet formation and detachment in gas metal arc welding

    SciTech Connect

    Johnson, J.A.; Smartt, H.B.; Clark, D.E.; Carlson, N.M.; Watkins, A.D.; Lethcoe, B.J.

    1990-01-01

    Experimental measurements of gas metal arc welding are required for the development and confirmation of models of the process. This paper reports on two experiments that provide information for models of the arc physics and of the weld pool dynamics. The heat transfer efficiency of the spray transfer mode in gas metal arc welding was measured using a calorimetry technique. The efficiency varied from 75 to 85%. A special fixture was used to measure the droplet contribution, which is determined to be between 35 and 45% of the total input energy. A series of experiments was performed at a variety of conditions ranging from globular to spray to streaming transfer. The transfer was observed by taking high-speed movies at 500 to 5000 frames per second of the backlighted droplets. An automatic image analysis system was used to obtain information about the droplets including time between detachments, droplet size, and droplet acceleration. At the boundary between the globular and spray modes, the droplet size varies between small droplets that melt off faster than average, resulting in a smaller electrode extension, and large droplets that melt off slower than average, resulting in an increase in the electrode extension. 5 refs., 4 figs., 2 tabs.

  15. Effect of Post-Weld Heat Treatment on Mechanical and Electrochemical Properties of Gas Metal Arc-Welded 316L (X2CrNiMo 17-13-2) Stainless Steel

    NASA Astrophysics Data System (ADS)

    Muhammad, F.; Ahmad, A.; Farooq, A.; Haider, W.

    2016-10-01

    In the present research work, corrosion behavior of post-weld heat-treated (PWHT) AISI 316L (X2CrNiMo 17-13-2) specimens joined by gas metal arc welding is compared with as-welded samples by using potentiodynamic polarization technique. Welded samples were PWHT at 1323 K for 480 s and quenched. Mechanical properties, corrosion behavior and microstructures of as-welded and PWHT specimens were investigated. Microstructural studies have shown grain size refinement after PWHT. Ultimate tensile strength and yield strength were found maximum for PWHT samples. Bend test have shown that PWHT imparted ductility in welded sample. Fractographic analysis has evidenced ductile behavior for samples. Potentiodynamic polarization test was carried out in a solution composed of 1 M H2SO4 and 1 N NaCl. Corrosion rate of weld region was 127.6 mpy, but after PWHT, it was decreased to 13.12 mpy.

  16. Phased array ultrasonic testing of dissimilar metal welds using geometric based referencing delay law technique

    NASA Astrophysics Data System (ADS)

    Han, Taeyoung; Schubert, Frank; Hillmann, Susanne; Meyendorf, Norbert

    2015-03-01

    Phased array ultrasonic testing (PAUT) techniques are widely used for the non-destructive testing (NDT) of austenitic welds to find defects like cracks. However, the propagation of ultrasound waves through the austenitic material is intricate due to its inhomogeneous and anisotropic nature. Such a characteristic leads beam path distorted which causes the signal to be misinterpreted. By employing a reference block which is cutout from the mockup of which the structure is a dissimilar metal weld (DMW), a new method of PAUT named as Referencing Delay Law Technique (RDLT) is introduced. With the RDLT, full matrix capture (FMC) was used for data acquisition. To reconstruct the images, total focusing method (TFM) was used. After the focal laws were calculated, PAUT was then performed. As a result, the flaws are more precisely positioned with significantly increased signal-to-noise ratio (SNR).

  17. A Phenomenological Model for Tool Wear in Friction Stir Welding of Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Prater, Tracie J.; Strauss, Alvin M.; Cook, George E.; Gibson, Brian T.; Cox, Chase D.

    2013-08-01

    Friction stir welding (FSW) of metal matrix composites (MMCs) is advantageous because the solid-state nature of the process precludes formation of deleterious intermetallic phases which accompany melting. FSW of MMCs is complicated by rapid and severe wear of the welding tool, a consequence of contact between the tool and the much harder abrasive reinforcement which gives the workpiece material its enhanced strength. The current article demonstrates that Nunes's rotating plug model of material flow in FSW, which has been successfully applied in many other contexts, can also help us understand wear in FSW of MMCs. An equation for predicting the amount of wear in this application is developed and compared with experimental data. This phenomenological model explains the relationship between wear and FSW process parameters documented in previous studies.

  18. Friction Stir Welding of Metal Matrix Composites for use in aerospace structures

    NASA Astrophysics Data System (ADS)

    Prater, Tracie

    2014-01-01

    Friction Stir Welding (FSW) is a relatively nascent solid state joining technique developed at The Welding Institute (TWI) in 1991. The process was first used at NASA to weld the super lightweight external tank for the Space Shuttle. Today FSW is used to join structural components of the Delta IV, Atlas V, and Falcon IX rockets as well as the Orion Crew Exploration Vehicle. A current focus of FSW research is to extend the process to new materials which are difficult to weld using conventional fusion techniques. Metal Matrix Composites (MMCs) consist of a metal alloy reinforced with ceramics and have a very high strength to weight ratio, a property which makes them attractive for use in aerospace and defense applications. MMCs have found use in the space shuttle orbiter's structural tubing, the Hubble Space Telescope's antenna mast, control surfaces and propulsion systems for aircraft, and tank armors. The size of MMC components is severely limited by difficulties encountered in joining these materials using fusion welding. Melting of the material results in formation of an undesirable phase (formed when molten Aluminum reacts with the reinforcement) which leaves a strength depleted region along the joint line. Since FSW occurs below the melting point of the workpiece material, this deleterious phase is absent in FSW-ed MMC joints. FSW of MMCs is, however, plagued by rapid wear of the welding tool, a consequence of the large discrepancy in hardness between the steel tool and the reinforcement material. This work characterizes the effect of process parameters (spindle speed, traverse rate, and length of joint) on the wear process. Based on the results of these experiments, a phenomenological model of the wear process was constructed based on the rotating plug model for FSW. The effectiveness of harder tool materials (such as Tungsten Carbide, high speed steel, and tools with diamond coatings) to combat abrasive wear is explored. In-process force, torque, and

  19. Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  20. Gas Metal Arc Welding and Flux-Cored Arc Welding. Third Edition. Teacher Edition [and] Student Edition [and] Student Workbook.

    ERIC Educational Resources Information Center

    Knapp, John; Harper, Eddie

    This packet, containing a teacher's edition, a student edition, and a student workbook, introduces students to high deposition welding and processes for "shielding" a weld. In addition to general information, the teacher edition consists of introductory pages and teacher pages, as well as unit information that corresponds to the…

  1. A self-organizing fuzzy control approach to arc sensor for weld joint tracking in gas metal arc welding of butt joints

    SciTech Connect

    Na, S.J. ); Kim, J.W.

    1993-02-01

    For the artificial intelligence (AI) approach to automatic control, the fuzzy rule-based control schemes have been successfully applied to the control of complex processes. The arc welding process is one of the processes due to the fact that it possesses complex and nonlinear characteristics such as a moving distributed heat source, a current path and metal transfer. One possible solution to the design of an effective controller suitable for such a process is to use the fuzzy control scheme. The fuzzy rule-based control can easily realize the heuristic rules obtained from human experiences that cannot be expressed in mathematical form. In this study, an arc sensor, which utilizes the electrical signal obtained from the welding arc itself, was developed for CO[sub 2] gas metal arc welding of butt joints using the fuzzy set theory. A simple fuzzy controller without any adaptation was implemented for the weld joint tracking. A set of fixed rules, which was designed based upon the experiments, and a self-organizing fuzzy controller, which could improve the control rules automatically, were examined. Through a series of experiments, the performance and learning action of the proposed self-organizing fuzzy controller were assessed.

  2. Laser-Hybrid welding, an innovative technology to join automotive body parts

    NASA Astrophysics Data System (ADS)

    Sieben, Manuel; Brunnecker, Frank

    The design of Tail lamps has been changed dramatically since cars built. At modern lamps, the lenses are absolutely transparent and allow a direct view onto the weld seam. Conventional welding technologies, such as vibration and hot plate welding cannot compete with this demand. Focused on this targeted application, LPKF Laser & Electronics AG has developed in cooperation with the Bavarian Laser Centre a unique Laser welding technology called hybrid welding.

  3. Introduction to Welding.

    ERIC Educational Resources Information Center

    Fortney, Clarence; Gregory, Mike

    This curriculum guide provides six units of instruction on basic welding. Addressed in the individual units of instruction are the following topics: employment opportunities for welders, welding safety and first aid, welding tools and equipment, basic metals and metallurgy, basic math and measuring, and procedures for applying for a welding job.…

  4. Evaluation of Molybdenum as a Surrogate for Iridium in the GPHS Weld Development

    SciTech Connect

    Stine, Andrew Martin; Pierce, Stanley W.; Moniz, Paul F.

    2015-10-17

    The welding equipment used for welding iridium containers (clads) at Los Alamos National Laboratory is twenty five years old and is undergoing an upgrade. With the upgrade, there is a requirement for requalification of the welding process, and the opportunity for process improvement. Testing of the new system and requalification will require several welds on iridium test parts and clads, and any efforts to improve the process will add to the need for iridium parts. The extreme high cost of iridium imposes a severe limitation on the extent of test welding that can be done. The 2 inch diameter, 0.027 inch thick, iridium blank disc that the clad cup is formed from, is useful for initial weld trials, but it costs $5000. The development clad sets needed for final tests and requalification cost $15,000 per set. A solution to iridium cost issue would be to do the majority of the weld development on a less expensive surrogate metal with similar weld characteristics. One such metal is molybdenum. Since its melting index (melting temperature x thermal conductivity) is closest to iridium, welds on molybdenum should be similar in size for a given weld power level. Molybdenum is inexpensive; a single 2 inch molybdenum disc costs only $9. In order to evaluate molybdenum as a surrogate for iridium, GTA welds were first developed to provide full penetration on 0.030 inch thick molybdenum discs at speeds of 20, 25, and 30 inches per minute (ipm). These weld parameters were then repeated on the standard 0.027 inch thick iridium blanks. The top surface and bottom surface (root) width and grain structure of the molybdenum and iridium welds were compared, and similarities were evident between the two metals. Due to material and thickness differences, the iridium welds were approximately 35% wider than the molybdenum welds. A reduction in iridium weld current of 35% produce welds slightly smaller than the molybdenum welds yet showed that current could be scaled according to molybdenum

  5. Persistence of deposited metals in the lungs after stainless steel and mild steel welding fume inhalation in rats.

    PubMed

    Antonini, James M; Roberts, Jenny R; Stone, Samuel; Chen, Bean T; Schwegler-Berry, Diane; Chapman, Rebecca; Zeidler-Erdely, Patti C; Andrews, Ronnee N; Frazer, David G

    2011-05-01

    Welding generates complex metal fumes that vary in composition. The objectives of this study were to compare the persistence of deposited metals and the inflammatory potential of stainless and mild steel welding fumes, the two most common fumes used in US industry. Sprague-Dawley rats were exposed to 40 mg/m(3) of stainless or mild steel welding fumes for 3 h/day for 3 days. Controls were exposed to filtered air. Generated fume was collected, and particle size and elemental composition were determined. Bronchoalveolar lavage was done on days 0, 8, 21, and 42 after the last exposure to assess lung injury/inflammation and to recover lung phagocytes. Non-lavaged lung samples were analyzed for total and specific metal content as a measure of metal persistence. Both welding fumes were similar in particle morphology and size. Following was the chemical composition of the fumes-stainless steel: 57% Fe, 20% Cr, 14% Mn, and 9% Ni; mild steel: 83% Fe and 15% Mn. There was no effect of the mild steel fume on lung injury/inflammation at any time point compared to air control. Lung injury and inflammation were significantly elevated at 8 and 21 days after exposure to the stainless steel fume compared to control. Stainless steel fume exposure was associated with greater recovery of welding fume-laden macrophages from the lungs at all time points compared with the mild steel fume. A higher concentration of total metal was observed in the lungs of the stainless steel welding fume at all time points compared with the mild steel fume. The specific metals present in the two fumes were cleared from the lungs at different rates. The potentially more toxic metals (e.g., Mn, Cr) present in the stainless steel fume were cleared from the lungs more quickly than Fe, likely increasing their translocation from the respiratory system to other organs.

  6. Toenail as Non-invasive Biomarker in Metal Toxicity Measurement of Welding Fumes Exposure - A Review

    NASA Astrophysics Data System (ADS)

    Bakri, S. F. Z.; Hariri, A.; Ma'arop, N. F.; Hussin, N. S. A. W.

    2017-01-01

    Workers are exposed to a variety of heavy metal pollutants that are released into the environment as a consequence of workplace activities. This chemical pollutants are incorporated into the human by varies of routes entry and can then be stored and distributed in different tissues, consequently have a potential to lead an adverse health effects and/or diseases. As to minimize the impact, a control measures should be taken to avoid these effects and human biological marker is a very effective tool in the assessment of occupational exposure and potential related risk as the results is normally accurate and reproducible. Toenail is the ideal matrix for most common heavy metals due to its reliability and practicality compared to other biological samples as well as it is a non-invasive and this appears as a huge advantage of toenail as a biomarker. This paper reviews studies that measure the heavy metals concentration in toenail as non-invasive matrix which later may adapt in the investigation of metal fume emitted from welding process. The development of new methodology and modern analytical techniques has allowed the use of toenail as non-invasive approach. The presence of a heavy metal in this matrix reflects an exposure but the correlations between heavy metal levels in the toenail must be established to ensure that these levels are related to the total body burden. These findings suggest that further studies on interactions of these heavy metals in metal fumes utilizing toenail biomarker endpoints are highly warranted especially among welders.

  7. Potential for EMU Fabric Damage by Electron Beam and Molten Metal During Space Welding for the International Space Welding Experiment

    NASA Technical Reports Server (NTRS)

    Fragomeni, James M.

    1998-01-01

    As a consequence of preparations concerning the International Space Welding Experiment (ISWE), studies were performed to better understand the effect of molten metal contact and electron beam impingement with various fabrics for space suit applications. The question arose as to what would occur if the electron beam from the Ukrainian Universal Hand Tool (UHT) designed for welding in space were to impinge upon a piece of Nextel AF-62 ceramic cloth designed to withstand temperatures up to 1427 C. The expectation was that the electron beam would lay down a static charge pattern with no damage to the ceramic fabric. The electron beam is capable of spraying the fabric with enough negative charge to repel further electrons from the fabric before significant heating occurs. The static charge pattern would deflect any further charge accumulation except for a small initial amount of leakage to the grounded surface of the welder. However, when studies were made of the effect of the electron beam on the insulating ceramic fabric it was surprisingly found that the electron beam did indeed burn through the ceramic fabric. It was also found that the shorter electron beam standoff distances had longer burnthrough times than did some greater electron beam standoff distances. A possible explanation for the longer burnthrough times for the small electron beam standoff distance would be outgassing of the fabric which caused the electron beam hand-tool to cycle on and off to provide some protection for the cathodes. The electron beam hand tool was observed to cycle off at the short standoff distance of two inches likely due to vapors being outgassed. During the electron beam welding process there is an electron leakage, or current leakage, flow from the fabric. A static charge pattern is initially laid down by the electron beam current flow. The static charge makes up the current leakage flow which initially slightly heats up the fabric. The initially laid down surface charge leaks a

  8. Welding for testability: An approach aimed at improving the ultrasonic testing of thick-walled austenitic and dissimilar metal welds

    SciTech Connect

    Wagner, Sabine; Dugan, Sandra; Barth, Martin; Schubert, Frank; Köhler, Bernd

    2014-02-18

    Austenitic and dissimilar welds in thick walled components show a coarse grained, dendritic microstructure. Therefore, ultrasonic testing has to deal with beam refraction, scattering and mode conversion effects. As a result, the testing techniques typically applied for isotropic materials yield dissatisfying results. Most approaches for improvement of ultrasonic testing have been based on modeling and improved knowledge of the complex wave propagation phenomena. In this paper, we discuss an alternative approach: is it possible to use a modified welding technology which eliminates the cause of the UT complications, i.e. the large-grained structure of the weld seams? Various modification parameters were tested, including: TIG current pulsing, additional DC and AC magnetic fields, and also additional external vibrations during welding. For all welds produced under different conditions, the grain structure of the weld seam was characterized by optical and GIUM microstructure visualizations on cross sections, wave field propagation measurements, and ultrasonic tests of correct detectability of flaws. The mechanical properties of the welds were also tested.

  9. Liquid Metal Embrittlement in Resistance Spot Welding and Hot Tensile Tests of Surface-refined TWIP Steels

    NASA Astrophysics Data System (ADS)

    Barthelmie, J.; Schram, A.; Wesling, V.

    2016-03-01

    Automotive industry strives to reduce vehicle weight and therefore fuel consumption and carbon dioxide emissions. Especially in the auto body, material light weight construction is practiced, but the occupant safety must be ensured. These requirements demand high-strength steels with good forming and crash characteristics. Such an approach is the use of high- manganese-content TWIP steels, which achieve strengths of around 1,000 MPa and fracture strains of more than 60%. Welding surface-refined TWIP steels reduces their elongation at break and produces cracks due to the contact with liquid metal and the subsequent liquid metal embrittlement (LME). The results of resistance spot welds of mixed joints of high-manganese- content steel in combination with micro-alloyed ferritic steel and hot tensile tests are presented. The influence of different welding parameters on the sensitivity to liquid metal embrittlement is investigated by means of spot welding. In a high temperature tensile testing machine, the influence of different parameters is determined regardless of the welding process. Defined strains just below or above the yield point, and at 25% of elongation at break, show the correlation between the applied strain and liquid metal crack initiation. Due to the possibility to carry out tensile tests on a wide range of temperatures, dependencies of different temperatures of the zinc coating to the steel can be identified. Furthermore, the attack time of the zinc on the base material is investigated by defined heating periods.

  10. Study of metal transfer in CO2 laser+GMAW-P hybrid welding using argon-helium mixtures

    NASA Astrophysics Data System (ADS)

    Zhang, Wang; Hua, Xueming; Liao, Wei; Li, Fang; Wang, Min

    2014-03-01

    The metal transfer in CO2 Laser+GMAW-P hybrid welding by using argon-helium mixtures was investigated and the effect of the laser on the mental transfer is discussed. A 650 nm laser, in conjunction with the shadow graph technique, is used to observe the metal transfer process. In order to analyze the heat input to the droplet and the droplet internal current line distribution. An optical emission spectroscopy system was employed to estimate default parameter and optimized plasma temperature, electron number densities distribution. The results indicate that the CO2 plasma plume have a significant impact to the electrode melting, droplet formation, detachment, impingement onto the workpiece and weld morphology. Since the current distribution direction flow changes to the keyhole, to obtain a metal transfer mode of one droplet per pulse, the welding parameters should be adjusted to a higher pulse time (TP) and a lower voltage.

  11. Method for Assessing Grain Boundary Density in High-Strength, High-Toughness Ferritic Weld Metal

    NASA Astrophysics Data System (ADS)

    Lei, Xuanwei; Huang, Jihua; Chen, Shuhai; Zhao, Xingke

    2017-01-01

    A method for measuring peak values on the maxlength-area fraction curve and the perimeter-area fraction curve with morphological photos using Image Pro Plus 6.0 Soft for assessing grain boundary density in high-strength, high-toughness ferritic weld metals is developed. Results show the sizes of the peak values have a tough relationship with grain boundary densities in that a larger peak value stands for a larger grain boundary density. As ferrite transforms into a certain orientation relationship, this semi-empirical method provides handy references for judging the sizes of effective grain boundary densities.

  12. Localized Corrosion Currents from Graphite/Aluminum and Welded SiC/Al Metal Matrix Composites.

    DTIC Science & Technology

    1985-02-28

    the corrosion rate in the absence of flaws might be improved by additions of poisions to the fiber to retard the oxygen reduction reaction on graphite...weidment 8 Al4C3 + 12H 20 + 4Al(OH) 3 + 3CH 4 This reaction, along with other metallurgical variations caused by the heat of welding, leads to...efficient cathodic sites along anodic corrosion paths and can lead to exfoliation in 6061 Al when the inter- metallics are present in an appropriate

  13. Influence of chromium on the mechanical properties and microstructure of weld metal from a high-strength SMA electrode

    SciTech Connect

    Surian, E.; Trotti, J. ); Cassanelli, A. ); Vedia, L.A. De )

    1994-03-01

    In the present work, the influence of Cr on mechanical properties and microstructure of weld metal from a high-strength SMA electrode is analyzed by considering 12 experimental low-alloy low-hydrogen iron powder AWS E10018, E11018, E12018-M type covered electrodes. These electrodes were manufactured to obtain in the weld deposits Cr contents ranging from 0 to 1.8%, with two different Mn levels for each Cr content, maintaining the amount of other elements at a fixed value. All-weld-metal specimens and production type single V-groove welds were mechanically tested in the as-welded and stress-relieved conditions, and a metallographic study was conducted. Chromium was found to be deleterious to toughness with only a minor influence due to Mn variations. A postweld heat treatment led in all cases to a reduction of toughness. Increasing Cr content in the welds produced a higher proportion of acicular ferrite and a general refinement of the microstructure.

  14. Effects of Different Filler Metals on the Mechanical Behaviors of GTA Welded AA7A52(T6)

    NASA Astrophysics Data System (ADS)

    Shu, Fengyuan; Lv, Yaohui; Liu, Yuxin; Lin, Jianjun; Sun, Zhe; Xu, Binshi; He, Peng

    2014-06-01

    ER4043, ER5356, and AA7A52 on behalf of the Al-Si, Al-Mg, and Al-Zn-Mg-based welding material, respectively, were chosen as the filler metal to weld AA7A52(T6) plates by GTAW. The variance in mechanical performances of the joints caused by the various filler materials was investigated with reference to the SEM and EDS test results for the weld seam and the fracture surface. Failure was found in the seam for all the welded joints. With regard to the joint obtained with ER4043 welding wire, the total elongation was limited by the brittle intergranular compound Mg2Si of which Mg was introduced by convection mass transfer. As for the other two welds, the content ratio of Zn and Mg was found to play the dominant role in deciding the mechanical properties of the intergranular Mg-Zn compounds which were responsible for the tensile behavior of the joints. The content ratio (wt.%) of beyond 2:1 gave birth to the strengthening phase MgZn2 leading to a ductile fracture. Cr in the seam obtained with AA7A52 filler metal was found to enhance the strength of the joint through isolated particles.

  15. Influence of tool speeds on dissimilar friction stir spot welding characteristics of bulk metallic glass/Mg alloy

    NASA Astrophysics Data System (ADS)

    Shin, Hyung-Seop; Jung, Yoon-Chul; Lee, Jin-Kyu

    2012-08-01

    A small-scale joining technique of dissimilar friction stir spot welding (FSSW) between bulk metallic glass and Mg alloy sheet has been tried using an apparatus which was devised with a CNC milling machine to give a precise control of tool speeds. The influence of tool speeds on the joining characteristics during FSSW was investigated. As a result, it was found that the rotation speed and plunge speed of a tool during FSSW significantly influenced the welding performance of dissimilar FSSW between bulk metallic glasses and Mg alloy.

  16. Evolution of weld metals nanostructure and properties under irradiation and recovery annealing of VVER-type reactors

    NASA Astrophysics Data System (ADS)

    Gurovich, B.; Kuleshova, E.; Shtrombakh, Ya.; Fedotova, S.; Zabusov, O.; Prikhodko, K.; Zhurko, D.

    2013-03-01

    The results of VVER-440 steel Sv-10KhMFT and VVER-1000 steel SV-10KhGNMAA investigations by transmission electron microscopy, scanning electron microscopy, Auger-electron spectroscopy and mechanical tests are presented in this paper. The both types of weld metals with different content of impurities and alloying elements were studied after irradiations to fast neutron (E > 0.5 MeV) fluences in the wide range below and beyond the design values, after recovery annealing procedures and after re-irradiation following the annealing. The distinctive features of embrittlement kinetics of VVER-440 and VVER-1000 RPV weld metals conditioned by their chemical composition differences were investigated. It is shown that the main contribution into radiation strengthening within the design fluence can be attributed to radiation-induced precipitates, on reaching the design or beyond design values of fast neutron fluencies the main contribution into VVER-440 welds strengthening is made by radiation-induced dislocation loops, and in case of VVER-1000 welds - radiation-induced precipitates and grain-boundary phosphorous segregations. Recovery annealing of VVER-440 welds at 475 °C during 100 h causes irradiation-induced defects disappearance, transformation of copper enriched precipitates into bigger copper-rich precipitates with lower number density and leads to almost full recovery of mechanical properties followed by comparatively slow re-embrittlement rate. The recovery annealing temperature of VVER-1000 welds was higher - 565 °C during 100 h - to avoid temper brittleness. The annealing of VVER-1000 welds leads to almost full recovery of mechanical properties due to irradiation-induced defects disappearance and decrease in precipitates number density and grain-boundary segregation of phosphorus. The re-embrittlement rate of VVER-1000 weld during subsequent re-irradiation is at least not higher than the initial rate.

  17. Relation between biomarkers in exhaled breath condensate and internal exposure to metals from gas metal arc welding.

    PubMed

    Hoffmeyer, Frank; Raulf-Heimsoth, Monika; Weiss, Tobias; Lehnert, Martin; Gawrych, Katarzyna; Kendzia, Benjamin; Harth, Volker; Henry, Jana; Pesch, Beate; Brüning, Thomas

    2012-06-01

    Concerning possible harmful components of welding fumes, besides gases and quantitative aspects of the respirable welding fumes, particle-inherent metal toxicity has to be considered.The objective of this study was to investigate the effect markers leukotriene B4 (LTB4),prostaglandin E2 (PGE2) and 8-isoprostane (8-Iso PGF2α) as well as the acid–base balance(pH) in exhaled breath condensate (EBC) of 43 full-time gas metal arc welders (20 smokers) in relation to welding fume exposure. We observed different patterns of iron, chromium and nickel in respirable welding fumes and EBC. Welders with undetectable chromium in EBC(group A, n = 24) presented high iron and nickel concentrations. In this group, higher 8-isoPGF2α and LTB4 concentrations could be revealed compared to welders with detectable chromium and low levels of both iron and nickel in EBC (group B): 8-iso PGF2α443.3 pg mL−1 versus 247.2 pg mL−1; p = 0.001 and LTB4 30.5 pg mL−1 versus 17.3 pgmL−1; p = 0.016. EBC-pH was more acid in samples of group B (6.52 versus 6.82; p = 0.011).Overall, effect markers in welders were associated with iron concentrations in EBC according to smoking habits--non-smokers/smokers: LTB4 (rs = 0.48; p = 0.02/rs = 0.21; p = 0.37),PGE2 (rs = 0.15; p = 0.59/rs = 0.47; p = 0.07), 8-iso PGF2α (rs = 0.18; p = 0.54/rs = 0.59;p = 0.06). Sampling of EBC in occupational research provides a matrix for the simultaneous monitoring of metal exposure and effects on target level. Our results suggest irritative effects in the airways of healthy welders. Further studies are necessary to assess whether these individual results might be used to identify welders at elevated risk for developing a respiratory disease.

  18. Sensitization behaviour of modified 316N and 316L stainless steel weld metals after complex annealing and stress relieving cycles

    NASA Astrophysics Data System (ADS)

    Parvathavarthini, N.; Dayal, R. K.; Khatak, H. S.; Shankar, V.; Shanmugam, V.

    2006-09-01

    Sensitization behaviour of austenitic stainless steel weld metals prepared using indigenously developed modified 316N (C = 0.05%; N = 0.12%) and 316L (C = 0.02%; N = 0.07%) electrodes was studied. Detailed optical and scanning electron microscopic examination was carried out to understand the microstructural changes occurring in the weld metal during isothermal exposure at various temperatures ranging from 500 °C to 850 °C (773-1123 K). Based on these studies the mechanism of sensitization in the austenite-ferrite weld metal has been explained. Time-temperature-sensitization (TTS) diagrams were established using ASTM A262 Practice E test. From the TTS diagrams, critical cooling rate (CCR) above which there is no risk of sensitization was calculated for both materials. The heating/cooling rates to be followed for avoiding sensitization during heat treatment cycles consisting of solution-annealing and stress-relieving in fabrication of welded components of AISI 316LN stainless steel (SS) were estimated taking into account the soaking time and the number of times the component undergoes thermal excursions in the sensitization regime. The results were validated by performing controlled heating and cooling heat treatment trials on welded specimens.

  19. Advantages of fibre lasers in 3D metal cutting and welding applications supported by a 'beam in motion (BIM)' beam delivery system

    NASA Astrophysics Data System (ADS)

    Scheller, Torsten; Bastick, André; Griebel, Martin

    2012-03-01

    Modern laser technology is continuously opening up new fields of applications. Driven by the development of increasingly efficient laser sources, the new technology is successfully entering classical applications such as 3D cutting and welding of metals. Especially in light weight applications in the automotive industry laser manufacturing is key. Only by this technology the reduction of welding widths could be realised as well as the efficient machining of aluminium and the abrasion free machining of hardened steel. The paper compares the operation of different laser types in metal machining regarding wavelength, laser power, laser brilliance, process speed and welding depth to give an estimation for best use of single mode or multi mode lasers in this field of application. The experimental results will be presented by samples of applied parts. In addition a correlation between the process and the achieved mechanical properties will be made. For this application JENOPTIK Automatisierungstechnik GmbH is using the BIM beam control system in its machines, which is the first one to realize a fully integrated combination of beam control and robot. The wide performance and wavelength range of the laser radiation which can be transmitted opens up diverse possibilities of application and makes BIM a universal tool.

  20. Review of Dissimilar Metal Welding for the NGNP Helical-Coil Steam Generator

    SciTech Connect

    John N. DuPont

    2010-03-01

    The U.S. Department of Energy (DOE) is currently funding research and development of a new high temperature gas cooled reactor (HTGR) that is capable of providing high temperature process heat for industry. The steam generator of the HTGR will consist of an evaporator economizer section in the lower portion and a finishing superheater section in the upper portion. Alloy 800H is expected to be used for the superheater section, and 2.25Cr 1Mo steel is expected to be used for the evaporator economizer section. Dissimilar metal welds (DMW) will be needed to join these two materials. It is well known that failure of DMWs can occur well below the expected creep life of either base metal and well below the design life of the plant. The failure time depends on a wide range of factors related to service conditions, welding parameters, and alloys involved in the DMW. The overall objective of this report is to review factors associated with premature failure of DMWs operating at elevated temperatures and identify methods for extending the life of the 2.25Cr 1Mo steel to alloy 800H welds required in the new HTGR. Information is provided on a variety of topics pertinent to DMW failures, including microstructural evolution, failure mechanisms, creep rupture properties, aging behavior, remaining life estimation techniques, effect of environment on creep rupture properties, best practices, and research in progress to improve DMW performance. The microstructure of DMWs in the as welded condition consists of a sharp chemical concentration gradient across the fusion line that separates the ferritic and austenitic alloys. Upon cooling from the weld thermal cycle, a band of martensite forms within this concentration gradient due to high hardenability and the relatively rapid cooling rates associated with welding. Upon aging, during post weld heat treatment (PWHT), and/or during high temperature service, C diffuses down the chemical potential gradient from the ferritic 2.25Cr 1Mo steel

  1. Effect of Pin Tool Shape on Metal Flow During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    McClure, J. C.; Coronado, E.; Aloor, S.; Nowak, B.; Murr, L. M.; Nunes, Arthur C., Jr.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    It has been shown that metal moves behind the rotating Friction Stir Pin Tool in two separate currents or streams. One current, mostly on the advancing side, enters a zone of material that rotates with the pin tool for one or more revolutions and eventually is abandoned behind the pin tool in crescent-shaped pieces. The other current, largely on the retreating side of the pin tool is moved by a wiping process to the back of the pin tool and fills in between the pieces of the rotational zone that have been shed by the rotational zone. This process was studied by using a faying surface copper trace to clarify the metal flow. Welds were made with pin tools having various thread pitches. Decreasing the thread pitch causes the large scale top-to-bottorn flow to break up into multiple vortices along the pin and an unthreaded pin tool provides insufficient vertical motion for there to be a stable rotational zone and flow of material via the rotational zone is not possible leading to porosity on the advancing side of the weld.

  2. Effect of Hyperbaric Chamber Gas on Transformation Texture of the API-X70 Pipeline Weld Metal

    NASA Astrophysics Data System (ADS)

    Azar, Amin S.; Østby, Erling; Akselsen, Odd M.

    2012-09-01

    The development of the texture components in the X70 weld metal under several shielding environments was investigated using the electron-backscattered diffraction (EBSD) and orientation imaging microscopy (OIM) techniques. A new method for assigning the reference direction (RD), transverse direction (TD), and normal direction (ND) was introduced based on the morphological orientation of the grains. The analyses showed that different shielding gases affect the weld metal texture and microstructure. The shielding environment with pure argon shows the highest orientational pole density values and dominant acicular ferrite microstructure. It was observed that the distribution of misorientation angle and special coincidence site lattice (CSL) grain boundaries play significant roles in determining the tensile characteristics of the weld samples. Moreover, the bainite lattice orientation was found dependent on the directional heat flow unlike the other detected constituents.

  3. Effect of soft root weld layer on fracture toughness of under-matched weld joints on Q+T steel

    SciTech Connect

    Rak, I.; Gliha, V.; Praunseis, Z.; Kocak, M.

    1996-12-01

    Welding of quenched and tempered (Q+T) high strength low alloyed steels can cause weld strength undermatching to satisfy the toughness requirements for the weld deposit. Cost of pre-heating of these steels can be saved if one can prove that use of soft electrodes for root passes do not endanger the overall quality of the joint. By welding of 40 mm thick Q+T structural steel (grade HT 80), over-matched condition had appeared in the root area of the X-groove weld despite of welding consumable which would give entire weld under-matched properties. This is the effect of weld metal alloying by elements from base material. So, the weld joint is not protected against cold cracking especially in the root region, therefore, a high preheating should be used to reduce the possibility of this phenomenon. In this work soft (lower strength) filler metal was used for first two and four root passes of X-joint. In this case root area was also alloyed by elements from base material and obtained mis-matching factor M was higher than it was expected. So, one homogeneous and two non homogeneous weld joints (with two and four soft passes) were considered. Mechanical properties of weld joints were measured by round tensile bars taken from different parts of the weld. The under-matching factor of weld joint with two and four soft root passes was around 0.80--0.90 in the soft root layer. It was expected that uneven strength distribution along the fatigue crack tip line would affect fracture initiation behavior of all three different weld joints. The metallographical post-test sectioning has revealed the initiation points mainly at the lowest weld metal strength.

  4. Welding fumes from stainless steel gas metal arc processes contain multiple manganese chemical species.

    PubMed

    Keane, Michael; Stone, Samuel; Chen, Bean

    2010-05-01

    Fumes from a group of gas metal arc welding (GMAW) processes used on stainless steel were generated using three different metal transfer modes and four different shield gases. The objective was to identify and measure manganese (Mn) species in the fumes, and identify processes that are minimal generators of Mn species. The robotic welding system was operated in short-circuit (SC) mode (Ar/CO2 and He/Ar), axial spray (AXS) mode (Ar/O2 and Ar/CO2), and pulsed axial-spray (PAXS) mode (Ar/O2). The fumes were analyzed for Mn by a sequential extraction process followed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis, and by X-ray diffraction (XRD). Total elemental Mn, iron (Fe), chromium (Cr) and nickel (Ni) were separately measured after aqua regia digestion and ICP-AES analysis. Soluble Mn2+, Fe2+, Fe3+, and Ni2+ in a simple biological buffer (phosphate-buffered saline) were determined at pH 7.2 and 5.0 after 2 h incubation at 37 C by ion chromatography. Results indicate that Mn was present in soluble form, acid-soluble form, and acid-soluble form after reduction by hydroxylamine, which represents soluble Mn0 and Mn2+ compounds, other Mn2+ compounds, and (Mn3+ and Mn4+) compounds, respectively. The dominant fraction was the acid-soluble Mn2+ fraction, but results varied with the process and shield gas. Soluble Mn mass percent in the fume ranged from 0.2 to 0.9%, acid-soluble Mn2+ compounds ranged from 2.6 to 9.3%, and acid plus reducing agent-soluble (Mn3+ and Mn4+) compounds ranged from 0.6 to 5.1%. Total Mn composition ranged from 7 to 15%. XRD results showed fumes had a crystalline content of 90-99% Fe3O4, and showed evidence of multiple Mn oxides, but overlaps and weak signals limited identification. Small amounts of the Mn2+ in the fume (<0.01 to ≈ 1% or <0.1 to ≈ 10 microg ml(-1)) and Ni2+ (<0.01 to ≈ 0.2% or <0.1 to ≈ 2 mg ml(-1)) ions were found in biological buffer media, but amounts were highly dependent on pH and the

  5. 19 CFR 19.22 - Withdrawal of metal refined in part from imported crude metal and in part from crude metal...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Withdrawal of metal refined in part from imported crude metal and in part from crude metal produced from imported materials. 19.22 Section 19.22 Customs... § 19.22 Withdrawal of metal refined in part from imported crude metal and in part from crude...

  6. 19 CFR 19.22 - Withdrawal of metal refined in part from imported crude metal and in part from crude metal...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Withdrawal of metal refined in part from imported crude metal and in part from crude metal produced from imported materials. 19.22 Section 19.22 Customs... § 19.22 Withdrawal of metal refined in part from imported crude metal and in part from crude...

  7. 19 CFR 19.22 - Withdrawal of metal refined in part from imported crude metal and in part from crude metal...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Withdrawal of metal refined in part from imported crude metal and in part from crude metal produced from imported materials. 19.22 Section 19.22 Customs... § 19.22 Withdrawal of metal refined in part from imported crude metal and in part from crude...

  8. 19 CFR 19.22 - Withdrawal of metal refined in part from imported crude metal and in part from crude metal...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Withdrawal of metal refined in part from imported crude metal and in part from crude metal produced from imported materials. 19.22 Section 19.22 Customs... § 19.22 Withdrawal of metal refined in part from imported crude metal and in part from crude...

  9. Advanced Welding Torch

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In order to more easily join the huge sections of the Space Shuttle external tank, Marshall Space Flight Center initiated development of the existing concept of Variable Polarity Plasma Arc (VPPA) welding. VPPA welding employs a variable current waveform that allows the system to operate for preset time increments in either of two polarity modes for effective joining of light alloys. Marshall awarded the torch contract to B & B Precision Machine, which produced a torch for the Shuttle, then automated the system, and eventually delivered a small torch used by companies such as Whirlpool for sheet metal welding of appliance parts and other applications. The dependability of the torch offers cost and time advantages.

  10. Transverse-Weld Tensile Properties of a New Al-4Cu-2Si Alloy as Filler Metal

    NASA Astrophysics Data System (ADS)

    Sampath, K.

    2009-12-01

    AA2195, an Al-Cu-Li alloy in the T8P4 age-hardened condition, is a candidate aluminum armor for future combat vehicles, as this material offers higher static strength and ballistic protection than current aluminum armor alloys. However, certification of AA2195 alloy for armor applications requires initial qualification based on the ballistic performance of welded panels in the as-welded condition. Currently, combat vehicle manufacturers primarily use gas metal arc welding (GMAW) process to meet their fabrication needs. Unfortunately, a matching GMAW consumable electrode is currently not commercially available to allow effective joining of AA2195 alloy. This initial effort focused on an innovative, low-cost, low-risk approach to identify an alloy composition suitable for effective joining of AA2195 alloy, and evaluated transverse-weld tensile properties of groove butt joints produced using the identified alloy. Selected commercial off-the-shelf (COTS) aluminum alloy filler wires were twisted to form candidate twisted filler rods. Representative test weldments were produced using AA2195 alloy, candidate twisted filler rods and gas tungsten arc welding (GTAW) process. Selected GTA weldments produced using Al-4wt.%Cu-2wt.%Si alloy as filler metal consistently provided transverse-weld tensile properties in excess of 275 MPa (40 ksi) UTS and 8% El (over 25 mm gage length), thereby showing potential for acceptable ballistic performance of as-welded panels. Further developmental work is required to evaluate in detail GMAW consumable wire electrodes based on the Al-Cu-Si system containing 4.2-5.0 wt.% Cu and 1.6-2.0 wt.% Si.

  11. Shielded Metal Arc Welding and Carbon Arc Cutting--Air. Teacher Edition [and] Student Edition [and] Student Workbook. Third Edition.

    ERIC Educational Resources Information Center

    Harper, Eddie; Knapp, John

    This document contains the teacher and student texts and student workbook for a secondary-level course in shielded metal arc welding (SMAW) and carbon arc cutting that consists of units on the following topics: SMAW safety; SMAW equipment, applications, and techniques; hardfacing; and carbon arc cutting--air. The teacher edition includes the…

  12. Effect of Ti-containing inclusions on the nucleation of acicular ferrite and mechanical properties of multipass weld metals.

    PubMed

    Fattahi, M; Nabhani, N; Hosseini, M; Arabian, N; Rahimi, E

    2013-02-01

    In the present study, the influence of Ti-containing inclusions on the development of acicular ferrite microstructure and mechanical properties in the multipass weld metals has been studied. Shielded metal arc weld deposits were prepared by varying titanium content in the range of 0.003-0.021%. The variation in the titanium content was obtained by the addition of different amounts of titanium oxide nanoparticles to the electrode coating. The dispersion of titanium oxide nanoparticles, composition of inclusions, microstructural analysis, tensile properties and Charpy impact toughness were evaluated. As the amount of Ti-containing inclusions in the weld metal was increased, the microstructure of the weld metal was changed from the grain boundary allotriomorphic ferrite structure to acicular ferrite with the intragranular nucleation of ferrite on the Ti-containing inclusions, and the mechanical properties were improved. This improvement is attributable to the increased percentage of acicular ferrite due to the uniform dispersion of Ti-containing inclusions and the pinning force of oxide nanoparticles against the growth of allotriomorphic ferrite and Widmanstätten ferrite from the austenite grain boundaries.

  13. Structural Analysis of Welded Connections Using Creo Simulate (trademark)

    DTIC Science & Technology

    2014-04-07

    structures presents specific difficulties not encountered when simulating solid parts (billet, castings, and forgings ) or bolted assemblies. This report will...preferred welding process is manual GTAW with a filler metal that produces 70 ksi ultimate strength weld metal . Fillers of this classification... metal can’t exceed 40% of the material’s yield strength (16.8 ksi). Several stress measurements can be taken over the geometry of interest using the

  14. Automatic welding comes of age. [Offshore

    SciTech Connect

    Turner, D.L. Jr.

    1981-07-01

    Automatic pipe welding systems today fall into three main categories: gas metal arc welding, gas-tungsten arc welding, and flash-butt welding. The first automatic welding devices used offshore were the CRC and H.C. Price systems. Both use gas metal arc welding with a consumable steel filler wire. The recently developed McDermott flash-butt welding system is described. (DLC)

  15. Welding skate with computerized controls

    NASA Technical Reports Server (NTRS)

    Wall, W. A., Jr.

    1968-01-01

    New welding skate concept for automatic TIG welding of contoured or double-contoured parts combines lightweight welding apparatus with electrical circuitry which computes the desired torch angle and positions a torch and cold-wire guide angle manipulator.

  16. Towards the problem of forming full strength welded joints on aluminum alloy sheets. Part I: AA2024

    NASA Astrophysics Data System (ADS)

    Fortuna, Sergey; Eliseev, Alexander; Kalashnikova, Tatiana; Kolubaev, Evgeny

    2016-11-01

    This work shows the microstructural evolution of solid solution grains and secondary phase precipitates in the stirring zones of ultrasonic-assisted friction stir welding (UAFSW) and standard friction stir welding (FSW). As shown, fine spherical AlMgCu precipitates dominate in FSW stirring zone whereas nanosized Al2MgCu (S-phase) platelets ones are the main finding in UAFSW sample. The mechanical strength of AA2024 is provided by precipitation of coherent intermetallic S-phase particles. The dominating amount of S-phase precipitates in UAFSW sample provided the ultimate stress level close to that of the base metal, i.e. 402 MPa as compared to 302 MPa of FSW sample. These values constituted 93 and 85%, respectively, of the base metal strength.

  17. The electron beam welding of dissimilar materials - case study

    NASA Astrophysics Data System (ADS)

    Munteanu, A.

    2016-11-01

    The modalities to realize the welding workpieces are multiple. The electron beam welding is one of them. One can weld two different types of materials that give the possibility to reduce the cost of workpiece, if the active part is realised of rich materials welded on components with inferior phisico-mecanical characteristics. The procedure provides great flexibility to the product designs through efficient use of each type of material. So this aspects lead to the necessity to join dissimilar metals. Different tables are given in the specific literature regarding the possible combination. Conflicts may arise by the compromises required for to the optimum heat control of the two dissimilar materials used. But nowadays, more and more frequently are meet the welding of dissimilar metals, thus, the objective of this article is to provide information regarding the particular case of welding between stainless steel and copper without the filler material use.

  18. Inert-gas welding and brazing enclosure fabricated from sheet plastic

    NASA Technical Reports Server (NTRS)

    Wisner, J. P.

    1965-01-01

    Custom-fabricated plastic bag maintains an inert-gas atmosphere for welding and brazing certain metals. The bag fits over part of the workpieces and the welding and brazing tools. It is also used for metal brazing and fusion plating which require an inert-gas atmosphere.

  19. Behavior of Ti-5Al-2.5Sn ELI titanium alloy sheet parent and weld metal in the presence of cracks at 20 K

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.

    1971-01-01

    Through- and surface-cracked specimens of two thicknesses were tested in uniaxial tension. Surface-cracked specimens were generally found to be stronger than through-cracked specimens with the same crack length. Apparent surface-crack fracture toughness calculated using the Anderson modified Irwin equation remained relatively constant for cracks as deep as 90 percent of the sheet thickness. Subcritical growth of surface cracks was investigated. Comparison of chamber and open air welds showed chamber welds to be slightly tougher. Both methods produced welds with toughness that compared favorably with that of the parent metal. Weld efficiencies were above 94 percent.

  20. Metallic layered composite materials produced by explosion welding: Structure, properties, and structure of the transition zone

    NASA Astrophysics Data System (ADS)

    Mal'tseva, L. A.; Tyushlyaeva, D. S.; Mal'tseva, T. V.; Pastukhov, M. V.; Lozhkin, N. N.; Inyakin, D. V.; Marshuk, L. A.

    2014-10-01

    The structure, morphology, and microhardness of the transition zone in multilayer metallic composite joints are studied, and the cohesion strength of the plates to be joined, the mechanical properties of the formed composite materials, and fracture surfaces are analyzed. The materials to be joined are plates (0.1-1 mm thick) made of D16 aluminum alloy, high-strength maraging ZI90-VI (03Kh12N9K4M2YuT) steel, BrB2 beryllium bronze, and OT4-1 titanium alloy. Composite materials made of different materials are shown to be produced by explosion welding. The dependence of the interface shape (smooth or wavelike) on the physicomechanical properties of the materials to be joined is found. The formation of a wavelike interface is shown to result in the formation of intense-mixing regions in transition zones. Possible mechanisms of layer adhesion are discussed.

  1. Novel concepts in weld metal science: Role of gradients and composite structure. Annual technical progress report, January 1, 1991--December 31, 1991

    SciTech Connect

    Matlock, D.K.; Olson, D.L.

    1991-12-01

    The effects of compositional and microstructural gradients on weld metal properties are being investigated. Crack propagation is solidified alloy structures is being characterized as to solidification orientation and the profile of the compositional variations. The effects of compositional gradients, are considered based on a thermodynamic analysis, referred to as the Cahn-Hillard analysis, which describes the degree to which a local surface energy is modified by the presence of a compositional gradient. The analysis predicts that both ductile and brittle fracture mechanisms are enhanced by the presence of a composition gradient. Special techniques to produce laboratory samples with microstructures which simulate the composition and microstructure gradients in solidified weld metal are used, along with appropriate mathematical models, to evaluate the properties of the composite weld metals. The composite modeling techniques are being applied to describe the effects of compositional and microstructural gradients on weld metal properties in Ni-Cu alloys. The development of metal matrix composition weld deposits on austenitic stainless steels has been studied. The particulate metal matrix composites were produced with ceramic or refractory metal powder filled cored wire, which was gas tungsten arc and gas metal arc welded.

  2. Evaluation of Manual Ultrasonic Examinations Applied to Detect Flaws in Primary System Dissimilar Metal Welds at North Anna Power Station

    SciTech Connect

    Anderson, Michael T.; Diaz, Aaron A.; Doctor, Steven R.

    2012-06-01

    During a recent inservice inspection (ISI) of a dissimilar metal weld (DMW) in an inlet (hot leg) steam generator nozzle at North Anna Power Station Unit 1, several axially oriented flaws went undetected by the licensee's manual ultrasonic testing (UT) technique. The flaws were subsequently detected as a result of outside diameter (OD) surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the DMW. Further ultrasonic tests were then performed, and a total of five axially oriented flaws, classified as primary water stress corrosion cracking (PWSCC), were detected in varied locations around the weld circumference.

  3. Forming Limits of Weld Metal in Aluminum Alloys and Advanced High-Strength Steels

    SciTech Connect

    Stephens, Elizabeth V.; Smith, Mark T.; Grant, Glenn J.; Davies, Richard W.

    2010-10-25

    This work characterizes the mechanical properties of DP600 laser welded TWBs (1 mm-1.5 mm) near and in the weld, as well as their limits of formability. The approach uses simple uniaxial experiments to measure the variability in the forming limits of the weld region, and uses a theoretical forming limit diagram calculation to establish a probabilistic distribution of weld region imperfection using an M-K method approach

  4. Control of Cr6+ emissions from gas metal arc welding using a silica precursor as a shielding gas additive.

    PubMed

    Topham, Nathan; Wang, Jun; Kalivoda, Mark; Huang, Joyce; Yu, Kuei-Min; Hsu, Yu-Mei; Wu, Chang-Yu; Oh, Sewon; Cho, Kuk; Paulson, Kathleen

    2012-03-01

    Hexavalent chromium (Cr(6+)) emitted from welding poses serious health risks to workers exposed to welding fumes. In this study, tetramethylsilane (TMS) was added to shielding gas to control hazardous air pollutants produced during stainless steel welding. The silica precursor acted as an oxidation inhibitor when it decomposed in the high-temperature welding arc, limiting Cr(6+) formation. Additionally, a film of amorphous SiO(2) was deposited on fume particles to insulate them from oxidation. Experiments were conducted following the American Welding Society (AWS) method for fume generation and sampling in an AWS fume hood. The results showed that total shielding gas flow rate impacted the effectiveness of the TMS process. Increasing shielding gas flow rate led to increased reductions in Cr(6+) concentration when TMS was used. When 4.2% of a 30-lpm shielding gas flow was used as TMS carrier gas, Cr(6+) concentration in gas metal arc welding (GMAW) fumes was reduced to below the 2006 Occupational Safety and Health Administration standard (5 μg m(-3)) and the efficiency was >90%. The process also increased fume particle size from a mode size of 20 nm under baseline conditions to 180-300 nm when TMS was added in all shielding gas flow rates tested. SiO(2) particles formed in the process scavenged nanosized fume particles through intercoagulation. Transmission electron microscopy imagery provided visual evidence of an amorphous film of SiO(2) on some fume particles along with the presence of amorphous SiO(2) agglomerates. These results demonstrate the ability of vapor phase silica precursors to increase welding fume particle size and minimize chromium oxidation, thereby preventing the formation of hexavalent chromium.

  5. Study of austenitic stainless steel welded with low alloy steel filler metal. [tensile and impact strength tests

    NASA Technical Reports Server (NTRS)

    Burns, F. A.; Dyke, R. A., Jr.

    1979-01-01

    The tensile and impact strength properties of 316L stainless steel plate welded with low alloy steel filler metal were determined. Tests were conducted at room temperature and -100 F on standard test specimens machined from as-welded panels of various chemical compositions. No significant differences were found as the result of variations in percentage chemical composition on the impact and tensile test results. The weldments containing lower chromium and nickel as the result of dilution of parent metal from the use of the low alloy steel filler metal corroded more severely in a marine environment. The use of a protective finish, i.e., a nitrile-based paint containing aluminum powder, prevented the corrosive attack.

  6. Infrared measurement of base metal temperature in gas tungsten arc welding

    SciTech Connect

    Farson, D.; Richardson, R.; Li, X.

    1998-09-01

    Quantification of infrared (IR) radiation is a convenient, non-contact method for making the base metal temperature measurements needed for on-line feedback controls. However, the problem of interference from the arc is a complicating factor in applying IR temperature sensing to welding. The objective of this research is to implement and test a top-face, non-contact temperature measurement system based on optical pyrometry. Investigations relating to the development of an infrared temperature measurement system are described. An apparatus consisting of a fiberoptic cable, a silicon photodiode/power meter and a computer data acquisition system were configured and used for the tests. Results of the experiments showed that radiation from both the arc and the hot tungsten electrode were important sources of interference in the IR emissions from the base metal. Attenuation of the interfering radiation using a band-pass optical filter and a specially-designed gas cup was investigated. Finally, the sensing system was calibrated using thermocouple measurements of actual base metal temperature.

  7. Occupational exposure to dioxins by thermal oxygen cutting, welding, and soldering of metals.

    PubMed

    Menzel, H M; Bolm-Audorff, U; Turcer, E; Bienfait, H G; Albracht, G; Walter, D; Emmel, C; Knecht, U; Päpke, O

    1998-04-01

    This paper focuses on one aspect of occupational dioxin exposure that is novel and unexpected. Exposures in excess of the German threshold limit value of 50 pg international toxicity equivalent (I-TEQ)/m3 are very frequent, unpredictable, and sometimes very high--up to 6612 pg I-TEQ/m3--during thermal oxygen cutting at scrap metal and demolition sites. The same procedure involving virgin steel in steel trade and mass production of steel objects gave no such evidence, even though no final conclusions can be drawn because of the low number of samples analyzed. Low dioxin exposures during inert gas electric arc welding confirm previous literature findings, whereas soldering and thermal oxygen cutting in the presence of polyvinyl chloride give rise to concern. The consequences of occupational dioxin exposure were studied by analysis of the dioxin-blood concentration, the body burden, of men performing thermal oxygen cutting at scrap metal reclamation and demolition sites, in steel trade and producing plants as well as for industrial welders and white-collar workers. The results concerning body burdens are in excellent agreement with the dioxin exposure as characterized by dioxin air concentration in the workplace. The significant positive correlation between duration and frequency of performing thermal oxygen cutting at metal reclamation and demolition sites expressed in job-years and dioxin body burden speaks for the occupational origin of the observed overload after long times. The results reported here lead to consequences for occupational health, which are discussed and require immediate attention.

  8. Study of weld offset in longitudinally welded SSME HPFTP inlet

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Spanyer, K. S.; Brunair, R. M.

    1992-01-01

    Welded joints are an essential part of rocket engine structures such as the Space Shuttle Main Engine (SSME) turbopumps. Defects produced in the welding process can be detrimental to weld performance. Recently, review of the SSME high pressure fuel turbopump (HPFTP) titanium inlet X-rays revealed several weld discrepancies such as penetrameter density issues, film processing discrepancies, weld width discrepancies, porosity, lack of fusion, and weld offsets. Currently, the sensitivity of welded structures to defects is of concern. From a fatigue standpoint, weld offset may have a serious effect since local yielding, in general, aggravates cyclic stress effects. Therefore, the weld offset issue is considered in this report. Using the FEM and beamlike plate approximations, parametric studies were conducted to determine the influence of weld offsets and a variation of weld widths in longitudinally welded cylindrical structures with equal wall thicknesses on both sides of the joint. Following the study, some conclusions are derived for the weld offsets.

  9. CO2 laser beam welding of 6061-T6 aluminum alloy thin plate

    NASA Astrophysics Data System (ADS)

    Hirose, Akio; Kobayashi, Kojiro F.; Todaka, Hirotaka

    1997-12-01

    Laser beam welding is an attractive welding process for age-hardened aluminum alloys, because its low heat input minimizes the width of weld fusion and heat-affected zones (HAZs). In the present work, 1-mm-thick age-hardened Al-Mg-Si alloy, 6061-T6, plates were welded with full penetration using a 2.5-kW CO2 laser. Fractions of porosity in the fusion zones were less than 0.05 pct in bead-on-plate welding and less than 0.2 pct in butt welding with polishing the groove surface before welding. The width of a softened region in the-laser beam welds was less than 1/4 times that of a tungsten inert gas (TIG) weld. The softened region is caused by reversion of strengthening β″ (Mg2Si) precipitates due to weld heat input. The hardness values of the softened region in the laser beam welds were almost fully recovered to that of the base metal after an artificial aging treatment at 448 K for 28.8 ks without solution annealing, whereas those in the TIG weld were not recovered in a partly reverted region. Both the bead-on-plate weld and the butt weld after the postweld artificial aging treatment had almost equivalent tensile strengths to that of the base plate.

  10. Advanced fusion welding processes, solid state joining and a successful marriage. [production of aerospace structures

    NASA Technical Reports Server (NTRS)

    Miller, F. R.

    1972-01-01

    Joining processes for aerospace systems combine fusion welding and solid state joining during production of metal structures. Detailed characteristics of electron beam welding, plasma arc welding, diffusion welding, inertia welding and weldbond processes are discussed.

  11. Laser weld jig

    DOEpatents

    Van Blarigan, Peter; Haupt, David L.

    1982-01-01

    A system is provided for welding a workpiece (10, FIG. 1) along a predetermined weld line (12) that may be of irregular shape, which includes the step of forming a lip (32) on the workpiece to extend parallel to the weld line, and moving the workpiece by engaging the lip between a pair of rotatable members (34, 36). Rotation of one of the members at a constant speed, causes the workpiece to move so that all points on the weld line sequentially pass a fixed point in space (17) at a constant speed, so that a laser welding beam can be directed at that fixed point to form a weld along the weld line. The workpiece can include a reuseable jig (24) forming the lip, and with the jig constructed to detachably hold parts (22, 20) to be welded at a position wherein the weld line of the parts extends parallel to the lip on the jig.

  12. Welding in airplane construction

    NASA Technical Reports Server (NTRS)

    Rechtlich, A; Schrenk, M

    1928-01-01

    The present article attempts to explain the principles for the production of a perfect weld and to throw light on the unexplained problems. Moreover, it is intended to elucidate the possibilities of testing the strength and reliability of welded parts.

  13. Effects of aging temperature on microstructural evolution at dissimilar metal weld interfaces

    NASA Astrophysics Data System (ADS)

    Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Taeho; Bahn, Chi Bum; Kim, Ji Hyun

    2015-07-01

    From the earlier study which characterized the region of a fusion boundary between a low-alloy steel (LAS) and a Ni-based weld metal of as-welded and aged samples at 450 °C for a 30-y-equivalent time, it was observed in the microstructure that the aging treatment induced the formation and growth of Cr precipitates in the fusion boundary region because of the thermodynamic driving force. Now, this research extends the text matrix and continues the previous study by compiling all the test data, with an additional aging heat treatment conducted at 400 °C for 15- and 30-y-equivalent times (6450 and 12,911 h, respectively). The results for the extended test matrix primarily represent the common features of and disparities in the effects of thermal aging on the aged samples at two different heat-treatment temperatures (400 and 450 °C). Although no difference was expected between the samples, because the heat treatment conditions simulate thermal aging effects during the same service time of 30 y, the sample aged at 450 °C exhibited slightly more severe effects of thermal aging than the sample aged at 400 °C. Nevertheless, the trends for these effects are similar and the simulation of thermal aging effects for a light-water reactor appears to be reliable. However, according to a simulation of the same degree of thermal aging effects, it appears that the activation energy for Cr diffusion should be larger than the numerical value used in this study.

  14. Lightweight, High-Current Welding Gun

    NASA Technical Reports Server (NTRS)

    Starck, Thomas F.; Brennan, Andrew D.

    1989-01-01

    Lighweight resistance-welding, hand-held gun supplies alternating or direct current over range of 600 to 4,000 A and applies forces from 40 to 60 lb during welding. Used to weld metal sheets in multilayered stacks.

  15. Multiphysics Modeling and Simulations of Mil A46100 Armor-Grade Martensitic Steel Gas Metal Arc Welding Process

    DTIC Science & Technology

    2013-05-23

    Multiphysics Modeling and Simulations of Mil A46100 Armor-Grade Martensitic Steel Gas Metal Arc Welding Process M. Grujicic, S. Ramaswami, J.S...hardness armor martensitic steel . The model consists of five distinct modules, each covering a specific aspect of the GMAW process, i.e., (a) dynamics...FZ, and the adjacent heat-affected zone, HAZ) of a prototypical high-hardness armor-grade martensitic steel MIL A46100 (Ref 1). It is hoped that the

  16. Effects on the efficiency of activated carbon on exposure to welding fumes

    SciTech Connect

    Ghosh, D.

    1995-02-01

    It is the intention of this paper to document that certain types of welding fumes have little or no effect on the effectiveness of the carbon filter air filtration efficiency when directly exposed to a controlled amount of welding fumes for a short-term period. The welding processes studied were restricted to shielded metal arc welding (SMAW), flux cored arc welding (FCAW), gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) processes. Contrary to the SMAW and FCAW processes, the GTAW (or TIG) and the GMAW (or MIG) welding processes do not require the use of flux as part of the overall process. Credit was taken for these processes occurring in inert gas environments and producing minimal amount of smoke. It was concluded that a study involving the SMAW process would also envelop the effects of the TIG and MIG welding processes. The quantity of welding fumes generated during the arc welding process is a function of the particular process, the size and type of electrode, welding machine amperage, and operator proficiency. For this study, the amount of welding for specific testing was equated to the amount of welding normally conducted during plant unit outages. Different welding electrodes were also evaluated, and the subsequent testing was limited to an E7018 electrode which was judged to be representative of all carbon and stainless steel electrodes commonly used at the site. The effect of welding fumes on activated charcoal was tested using a filtration unit complete with prefilters, upstream and downstream high efficiency particulate air (HEPA) filters, and a carbon adsorber section. The complete system was field tested in accordance with ANSI N510 standards prior to exposing the filters and the adsorber bed to welding fumes. The carbon samples were tested at an established laboratory using ASTM D3803-1989 standards.

  17. On-line quality monitoring in short-circuit gas metal arc welding

    SciTech Connect

    Adolfsson, S. |; Bolmsjoe, G.; Claesson, I.

    1999-02-01

    This paper addresses the problems involved in the automatic monitoring of the weld quality produced by robotized short-arc welding. A simple statistical change detection algorithm for the weld quality, the repeated Sequential Probability Ratio Test (SPRT), was used. The algorithm may similarly be viewed as a cumulative sum (CUSUM) type test, and is well-suited to detecting sudden minor changes in the monitored test statistic. The test statistic is based on the variance of the weld voltage, wherein it will be shown that the variance decreases when the welding process is not operating under optimal conditions. The performance of the algorithm is assessed through the use of experimental data. The results obtained from the algorithm show that it is possible to detect changes in weld quality automatically and on-line.

  18. Mechanical behavior study of laser welded joints for DP steel

    NASA Astrophysics Data System (ADS)

    Yan, Qi

    2008-03-01

    Advanced High Strength Steels (AHSS) are gaining considerable market shares in the automotive industry. The development and application of Dual Phase (DP) steel is just a consistent step towards high-strength steel grades with improved mechanical behavior. Tailor welded blanks with DP steel are promoted in the application of Body-In-White (BIW) structure by the automotive industry. A tailor welded blank consists of several flat sheets that are laser welded together before stamping. Applied cases of tailor welded blanks of high strength steels on the automotive structural parts are investigated in this paper. The mechanical behavior of laser welded joints for DP steel is studied. Microstructure of laser welded joints for DP steel was observed by SEM. Martensite in the weld seam explains the higher strength of welded joints than the base metal. Results show that the strain safety tolerance of laser welded seam for high strength steel can meet the requirement of automobile parts for stamping if the location of laser welded seam is designed reasonably.

  19. Cold pressure welding by incremental rolling: Deformation zone analysis

    NASA Astrophysics Data System (ADS)

    Schmidt, Hans Christian; Homberg, Werner; Hoppe, Christian; Grundmeier, Guido; Hordych, Illia; Maier, Hans Jürgen

    2016-10-01

    In this paper we analyse the deformation zone that forms during cold welding of metal pairs by incremental rolling. The tool geometry has great influence on the forming behaviour and the overall shape of the metal part. In order to improve the process, an increase in surface exposure is aspired since it should lead to an increased weld strength. Six tool geometries were tested by means of FEA and analysed based on the surface exposure created between the surfaces in contact.

  20. Microstructural analysis of a single pass 2.25% Cr-1.0% Mo steel weld metal with different manganese contents

    SciTech Connect

    Guimares de Souza, Luis Felipe; Souza Bott, Ivani de; Ferreira Jorge, Jorge Carlos; Sauer Guimaraes, Ari; Pinheiro Rocha Paranhos, Ronaldo . E-mail: paranhos@uenf.br

    2005-07-15

    Weld metals of the 2.25% Cr-1.0% Mo type with 0.84%, 1.21% and 2.3% Mn produced by submerged-arc welding were analyzed in the as-welded (AW), post weld heat treatment (PWHT) and PWHT followed by step-cooling (SC) heat treatment conditions. Fracture surface analysis revealed an evolution in the mode of fracture due to Mn content variations and heat treatment conditions, the occurrence of intergranular fracture being observed in welds with 2.30% Mn that were step-cooled. Transmission electron microscopy revealed that the microstructure was predominantly composed of bainite, although martensite was also observed for high Mn contents. A marked carbide precipitation was observed, preferentially at grain boundaries. This could be attributed to the SC heat treatment and associated with the embrittlement. However, the application of a de-embrittlement heat treatment to this step cooled weld metal has proved efficient, because the impact energy levels after this heat treatment surpassed those obtained in the stress relieved condition. This indicates that segregation of impurities to grain boundaries was responsible for the low impact energy levels observed after SC of weld metal containing > 0.84% Mn.

  1. The structure and properties of filler metal-free laser beam welded joints in steel S700MC subjected to TMCP

    NASA Astrophysics Data System (ADS)

    Górka, Jacek; Stano, Sebastian

    2016-12-01

    The research-related tests aimed to determine the effect of filer-metal free laser beam welding on the structure and properties of 10 mm thick steel S700MC subjected to the Thermo-Mechanical Control Process (TMCP). The nondestructive tests revealed that the welded joints represented quality level B according to the requirements of standard 13919-1. The destructive tests revealed that the joints were characterised by tensile strength being by approximately 5% lower than that of the base material. The tests of thin foils performed using a high-resolution scanning transmission electron microscope revealed that filler metal-free welding led to the increased amount of alloying microagents (Ti and Nb) in the weld (particularly near fusion line) in comparison with welding performed using a filler metal. The significant content of hardening phases in the welds during cooling resulted in considerable precipitation hardening through finedispersive (Ti,Nb)(C,N) type precipitates (several nm in size) leading to the deterioration of plastic properties. The destructive tests revealed that the joints were characterised by tensile strength being by approximately 5% lower than that of the base material. The increase in the concentration of microagents responsible for steel hardening (Ti and Nb) also contributed to the decrease in weld toughness being below the allowed value of 25 J/cm2.

  2. A Microsample Tensile Test Application: Local Strength of Impact Welds Between Sheet Metals

    NASA Astrophysics Data System (ADS)

    Benzing, J. T.; He, M.; Vivek, A.; Taber, G. A.; Mills, M. J.; Daehn, G. S.

    2017-01-01

    Microsample tensile testing was conducted to evaluate the quality of impact welds created by vaporizing foil actuator welding. Tensile test samples with a gauge length of 0.6 mm were electro-discharge machined out of welds created between 1-mm-thick aluminum alloy type 6061 (AA6061) sheets and 6-mm-thick copper (Cu110) plates. Aluminum sheets were used as flyers, while copper plates acted as targets. Flyer sheets in T6 as well as T4 temper conditions were utilized to create welds. Some of the welds made with T4 temper flyers were heat treated to a T6 temper. It was found that the welds made with T4 temper flyers were slightly stronger (max. of 270 MPa) than those produced with T6 temper flyers. Generally, failure propagated in a brittle manner across the weld interface; however, elemental mapping reveals material transfer on either member of the welded system. This work proves the feasibility to apply microsample tensile testing to assess impact welding, even when conducted with flyer sheets of 1 mm or less, and provides insight that is complementary to other test methods.

  3. Effects of weld metal strength and defects on the ductility of HSLA-100 plates

    SciTech Connect

    Dexter, R.J.; Ferrell, M.

    1995-12-31

    Wide-plate tension tests were performed on high-strength low-alloy steel, minimum yield strength of 690 MPa, with various controlled intentional defects in both undermatched and overmatched welds. Lack-of-fusion areas on the sidewall comprising about 10 percent of the cross-section resulted in full net-section strength. Weld undercut to a depth of 12 percent of the thickness resulted in gross-section yielding and good elongation. Misalignment (offset) of 3 mm slightly reduced the elongation relative to plates within tolerances. There was no consistent difference between the results of the undermatched welds and the overmatched welds.

  4. Assessment of weld quality of aerospace grade metals by using ultrasonic matrix phased array technology

    NASA Astrophysics Data System (ADS)

    Na, Jeong K.; Gleeson, Sean T.

    2014-03-01

    Advantages of two dimensional electronic ultrasonic beam focusing, steering and scanning with the matrix phased array (MPA) technology has been used to visualize the conditions of resistance spot welds in auto vehicle grade advanced high strength steel carbon steels nondestructively. Two of the commonly used joining techniques, resistance spot welding and resistance seam welding, for thin aerospace grade plates made of aluminum, titanium, and stainless steels have also been inspected with the same MPA NDE system. In this study, a detailed discussions of the current MPA based ultrasonic real time imaging methodology has been made followed by some of the NDT results obtained with various welded test coupons.

  5. A Microsample Tensile Test Application: Local Strength of Impact Welds Between Sheet Metals

    NASA Astrophysics Data System (ADS)

    Benzing, J. T.; He, M.; Vivek, A.; Taber, G. A.; Mills, M. J.; Daehn, G. S.

    2017-03-01

    Microsample tensile testing was conducted to evaluate the quality of impact welds created by vaporizing foil actuator welding. Tensile test samples with a gauge length of 0.6 mm were electro-discharge machined out of welds created between 1-mm-thick aluminum alloy type 6061 (AA6061) sheets and 6-mm-thick copper (Cu110) plates. Aluminum sheets were used as flyers, while copper plates acted as targets. Flyer sheets in T6 as well as T4 temper conditions were utilized to create welds. Some of the welds made with T4 temper flyers were heat treated to a T6 temper. It was found that the welds made with T4 temper flyers were slightly stronger (max. of 270 MPa) than those produced with T6 temper flyers. Generally, failure propagated in a brittle manner across the weld interface; however, elemental mapping reveals material transfer on either member of the welded system. This work proves the feasibility to apply microsample tensile testing to assess impact welding, even when conducted with flyer sheets of 1 mm or less, and provides insight that is complementary to other test methods.

  6. Welding Development: Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ding, Jeff

    2007-01-01

    This paper presents the basic understanding of the friction stir welding process. It covers process description, pin tool operation and materials, metal flow theory, mechanical properties, and materials welded using the process. It also discusses the thermal stir welding process and the differences between thermal stir and friction stir welding. MSFC weld tools used for development are also presented.

  7. Occupational exposure to dioxins by thermal oxygen cutting, welding, and soldering of metals.

    PubMed Central

    Menzel, H M; Bolm-Audorff, U; Turcer, E; Bienfait, H G; Albracht, G; Walter, D; Emmel, C; Knecht, U; Päpke, O

    1998-01-01

    This paper focuses on one aspect of occupational dioxin exposure that is novel and unexpected. Exposures in excess of the German threshold limit value of 50 pg international toxicity equivalent (I-TEQ)/m3 are very frequent, unpredictable, and sometimes very high--up to 6612 pg I-TEQ/m3--during thermal oxygen cutting at scrap metal and demolition sites. The same procedure involving virgin steel in steel trade and mass production of steel objects gave no such evidence, even though no final conclusions can be drawn because of the low number of samples analyzed. Low dioxin exposures during inert gas electric arc welding confirm previous literature findings, whereas soldering and thermal oxygen cutting in the presence of polyvinyl chloride give rise to concern. The consequences of occupational dioxin exposure were studied by analysis of the dioxin-blood concentration, the body burden, of men performing thermal oxygen cutting at scrap metal reclamation and demolition sites, in steel trade and producing plants as well as for industrial welders and white-collar workers. The results concerning body burdens are in excellent agreement with the dioxin exposure as characterized by dioxin air concentration in the workplace. The significant positive correlation between duration and frequency of performing thermal oxygen cutting at metal reclamation and demolition sites expressed in job-years and dioxin body burden speaks for the occupational origin of the observed overload after long times. The results reported here lead to consequences for occupational health, which are discussed and require immediate attention. Images Figure 1 PMID:9599722

  8. Development of Weld Inspection of the Ares I Crew Launch Vehicle Upper Stage

    NASA Technical Reports Server (NTRS)

    Russell, Sam; Ezell, David

    2010-01-01

    NASA is designing a new crewed launch vehicle called Ares I to replace the Space Shuttle after its scheduled retirement in 2010. This new launch vehicle will build on the Shuttle technology in many ways including using a first stage based upon the Space Shuttle Solid Rocket Booster, advanced aluminum alloys for the second stage tanks, and friction stir welding to assemble the second stage. Friction stir welding uses a spinning pin that is inserted in the joint between two panels that are to be welded. The pin mechanically mixes the metal together below the melting temperature to form the weld. Friction stir welding allows high strength joints in metals that would otherwise lose much of their strength as they are melted during the fusion welding process. One significant change from the Space Shuttle that impacts NDE is the implementation of self-reacting friction stir welding for non-linear welds on the primary metallic structure. The self-reacting technique differs from the conventional technique because the load of the pin tool pressing down on the metal being joined is reacted by a nut on the end of the tool rather than an anvil behind the part. No spacecraft has ever flown with a self-reacting friction stir weld, so this is a major advancement in the manufacturing process, bringing with it a whole new set of challenges for NDE to overcome. The metal microstructure and possible defects are different from other weld processes. Friction plug welds will be used to close out the hole remaining in the radial welds when friction stir welded. This plug welding also has unique challenges in inspection. The current state of development of these inspections will be presented, along with other information pertinent to NDE of the Ares I.

  9. Ultrasonic spot welding of dissimilar materials: characterization of welded joints and parametric optimization

    NASA Astrophysics Data System (ADS)

    Satpathy, M. P.; Sahoo, S. K.

    2016-02-01

    Material joining is one of the key manufacturing processes used to assemble metallic and non-metallic parts for several applications. But the industries are facing many difficulties in joining of thin sheets of dissimilar metals by the conventional welding process because of their differences in chemical composition, physical and mechanical properties. Thus, ultrasonic welding is a solid state joining process used for joining of small elements in microelectronics industries. In this process, acoustic horn and booster are the important assets. The accuracy and strength of the welding depend mainly on their geometry. This proposed work deals with the design and modelling of an acoustic stepped sonotrode with booster using finite element analysis (FEA). From this analysis, the actual length of the horn is obtained by gradually decreasing its theoretical length. The quality of the weld is reckoned by its weld strength and the combinations of different process parameters. These are examined using the principal components coupled with grey relational analysis approach which is showing good agreement between the predicted values with experimental results. Fractographic examination of weld zone and hardness are also used to explore the weld quality.

  10. Developing a dissimilar metal foil-to-substrate resistance welding process.

    SciTech Connect

    Knorovsky, Gerald Albert

    2010-10-01

    Materials changes occurring upon redesign caused redevelopment of the multiple spot resistance weld procedure employed to join a 23 micrometer thick foil of 15-7PH to a thick substrate and (at a separate location) a second, smaller thermal mass substrate. Both substrates were 304L. To avoid foil wrinkling, minimal heat input was used. The foil/thick substrate weld was solid-state, though the foil/small substrate weld was not. Metallographic evidence indicated occasional separation of the solid-state weld, hence a fusion weld was desired at both locations. In the redesign, a Co-Cr-Fe-Ni alloy was substituted for the foil, and a Ni-Cr-Mo alloy was evaluated for the small substrate. Both materials are substantially more resistive than their predecessors. This study reports development of weld schedules to accommodate the changes, yet achieve the fusion weld goal. Thermal analysis was employed to understand the effects caused by the various weld schedule parameters, and guide their optimization.

  11. Irradiation-induced structural changes in surveillance material of VVER 440-type weld metal

    NASA Astrophysics Data System (ADS)

    Grosse, M.; Denner, V.; Böhmert, J.; Mathon, M.-H.

    2000-01-01

    The irradiation-induced microstructural changes in surveillance materials of the VVER 440-type weld metal Sv-10KhMFT were investigated by small angle neutron scattering (SANS) and anomalous small angle X-ray scattering (SAXS). Due to the high fluence, a strong effect was found in the SANS experiment. No significant effect of the irradiation is detected by SAXS. The reason for this discrepancy is the different scattering contrast of irradiation-induced defects for neutrons and X-rays. An analysis of the SAXS shows that the scattering intensity is mainly caused by vanadium-containing (VC) precipitates and grain boundaries. Both types of scattering defects are hardly changed by irradiation. Neutron irradiation rather produces additional scattering defects of a few nanometers in size. Assuming these defects are clusters containing copper and other foreign atoms with a composition according to results of atom probe field ion microscopy (APFIM) investigations, both the high SANS and the low SAXS effect can be explained.

  12. Investigation of microstructure within metal welds by energy resolved neutron imaging

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Kockelmann, W.; Paradowska, A. M.; Zhang, Shu-Yan; Korsunsky, A. M.; Shinohara, T.; Feller, W. B.; Lehmann, E. H.

    2016-09-01

    The recent development of bright pulsed neutron sources and high resolution neutron counting detectors enables simultaneous acquisition of a neutron transmission spectrum for each pixel of the image. These spectra can be used to reconstruct microstructure parameters within welds, such as strain, texture and phase composition through Bragg edge analysis, and in some cases elemental composition through resonance absorption analysis. In this paper we demonstrate the potential of energy-resolved neutron imaging to study the microstructures of two steel welds, where the spatial distribution of residual strain within the welds, as well as some information on the texture, are obtained with sub-mm spatial resolution. A friction stir weld of two steel plates and a conventional weld of two steel pipes were studied at pulsed neutron facilities, where a Δλ/λ resolution as low as 0.2% can be attained over a wide range of neutron wavelengths ranging from 0.5 Å to 8 Å.

  13. Fabrication and characterization of metal-packaged fiber Bragg grating sensor by one-step ultrasonic welding

    NASA Astrophysics Data System (ADS)

    Zhang, Yumin; Zhu, Lianqing; Luo, Fei; Dong, Mingli; Ding, Xiangdong; He, Wei

    2016-06-01

    A metallic packaging technique of fiber Bragg grating (FBG) sensors is developed for measurement of strain and temperature, and it can be simply achieved via one-step ultrasonic welding. The average strain transfer rate of the metal-packaged sensor is theoretically evaluated by a proposed model aiming at surface-bonded metallic packaging FBG. According to analytical results, the metallic packaging shows higher average strain transfer rate compared with traditional adhesive packaging under the same packaging conditions. Strain tests are performed on an elaborate uniform strength beam for both tensile and compressive strains; strain sensitivities of approximately 1.16 and 1.30 pm/μɛ are obtained for the tensile and compressive situations, respectively. Temperature rising and cooling tests are also executed from 50°C to 200°C, and the sensitivity of temperature is 36.59 pm/°C. All the measurements of strain and temperature exhibit good linearity and stability. These results demonstrate that the metal-packaged sensors can be successfully fabricated by one-step welding technique and provide great promise for long-term and high-precision structural health monitoring.

  14. Portable Weld Tester.

    ERIC Educational Resources Information Center

    Eckert, Douglas

    This training manual, which was developed for employees of an automotive plant, is designed to teach trainees to operate a portable weld tester (Miyachi MM-315). In chapter 1, the weld tester's components are illustrated and described, and the procedure for charging its batteries is explained. Chapter 2 illustrates the weld tester's parts,…

  15. Joining of parts via magnetic heating of metal aluminum powders

    SciTech Connect

    Baker, Ian

    2013-05-21

    A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

  16. Improved Gas Metal Arc Welding Multi-Physics Process Model and Its Application to MIL A46100 Armor-Grade Steel Butt-welds

    DTIC Science & Technology

    2014-01-01

    within the weld. Design/methodology/approach The improved GMAW process model is next applied to the case of butt-welding of MIL A46100 (a...improved GMAW process model pertaining to the spatial distribution of the material microstructure and properties within the MIL A46100 butt-weld are

  17. Method for welding beryllium

    DOEpatents

    Dixon, Raymond D.; Smith, Frank M.; O'Leary, Richard F.

    1997-01-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon.

  18. Study for corrosion characteristics of ferritic stainless steel weld metal with respect to added contents of Ti and Nb

    NASA Astrophysics Data System (ADS)

    Kim, JongMin; Lee, HaeWoo

    2014-03-01

    This paper identified the effects of Ti and Nb on pitting and intergranular corrosion resistance in a ferritic stainless steel weld metal of the automobile exhaust system. We fabricated 4 flux cored wires designed with 0-0.2 wt% Ti and 0-1.0 wt% Nb and performed Flux Cored Arc Welding. Through the potentiodynamic polarization test in 0.5M NaCl, we evaluated pitting resistance. And in order to evaluate the intergranular corrosion resistance, we observed microstructure after we performed DL-EPR test in 0.5M H2SO4+0.01M KSCN. As a result of the test, the specimen added with 0.2%Ti+1.0%Nb showed the highest pitting resistance. From observing the degree of sensitization and microstructure, the intergranular corrosion resistance was higher as the contents of Ti and Nb increased. And through EBSD we observed Cr carbide which affects the corrosion resistance.

  19. Ultrasonic Welding of Hybrid Joints

    NASA Astrophysics Data System (ADS)

    Wagner, Guntram; Balle, Frank; Eifler, Dietmar

    2012-03-01

    A central research field of the Institute of Materials Science and Engineering at the University of Kaiserslautern (WKK), Germany, is the realization of innovative hybrid joints by ultrasonic metal welding. This article gives an overview of suitable ultrasonic welding systems as well as of essential machine and material parameters, which influence the quality of the welds. Besides the ultrasonic welding of dissimilar metals such as Al to Cu or Al to steels, the welds between newly developed materials like aluminum foam sandwiches or flat flexible cables also can be realized. Moreover, the joining of glass and ceramic to sheet metals is a point of interest at the WKK. By using the ultrasonic metal welding process, it is possible to realize metal/glass welds with tensile shear strengths of 50 MPa. For metal/ceramic joints, the shear strengths values up to 150 MPa were measured. Finally, selected results about the occurring bonding mechanisms will be discussed.

  20. Argon Welding Inside A Workpiece

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E.

    1988-01-01

    Canopies convert large hollow workpiece into inert-gas welding chamber. Large manifold serves welding chamber for attachment of liner parts in argon atmosphere. Every crevice, opening and passageway provided with argon-rich environment. Weld defects and oxidation dramatically reduced; also welding time reduced.

  1. Effects of Thermal Aging on Material Properties, Stress Corrosion Cracking, and Fracture Toughness of AISI 316L Weld Metal

    NASA Astrophysics Data System (ADS)

    Lucas, Timothy; Forsström, Antti; Saukkonen, Tapio; Ballinger, Ronald; Hänninen, Hannu

    2016-08-01

    Thermal aging and consequent embrittlement of materials are ongoing issues in cast stainless steels, as well as duplex, and high-Cr ferritic stainless steels. Spinodal decomposition is largely responsible for the well-known "748 K (475 °C) embrittlement" that results in drastic reductions in ductility and toughness in these materials. This process is also operative in welds of either cast or wrought stainless steels where δ-ferrite is present. While the embrittlement can occur after several hundred hours of aging at 748 K (475 °C), the process is also operative at lower temperatures, at the 561 K (288 °C) operating temperature of a boiling water reactor (BWR), for example, where ductility reductions have been observed after several tens of thousands of hours of exposure. An experimental program was carried out in order to understand how spinodal decomposition may affect changes in material properties in Type 316L BWR piping weld metals. The study included material characterization, nanoindentation hardness, double-loop electrochemical potentiokinetic reactivation (DL-EPR), Charpy-V, tensile, SCC crack growth, and in situ fracture toughness testing as a function of δ-ferrite content, aging time, and temperature. SCC crack growth rates of Type 316L stainless steel weld metal under simulated BWR conditions showed an approximate 2 times increase in crack growth rate over that of the unaged as-welded material. In situ fracture toughness measurements indicate that environmental exposure can result in a reduction of toughness by up to 40 pct over the corresponding at-temperature air-tested values. Material characterization results suggest that spinodal decomposition is responsible for the degradation of material properties measured in air, and that degradation of the in situ properties may be a result of hydrogen absorbed during exposure to the high-temperature water environment.

  2. The Effect of Heat Input and Composition on Weld Metal Microstructures in Thin Section HY-130 GMAW(Gas Metal Are Welding) Weldments

    DTIC Science & Technology

    1988-12-01

    carbon segregation [Ref. 2]. 2. Tempered and Autotempered Martensite Martensite is not an equilibrium microstructure so it can be t,,mpered by...due to either carbon segregation or precipitation of carbides on a scale too fine to observe with standard TEM techniques. 12 C. EFFECT OF HEAT INPUT...with no carbides in the martensite. They also observed the presence of twinned martensite in bainite within HY-130 weld zones due to carbon segregation [Ref

  3. Superplastic Forming of Aluminum Multisheet Structures Fabricated Using Friction Stir Welding and Refill Friction Stir Spot Welding

    SciTech Connect

    Grant, Glenn J.; Herling, Darrell R.; Arbegast, William J.; Allen, Casey D.; Degen, Cassandra M.

    2006-12-20

    Superplastically-formed structural panels are growing in their applications in aerospace, aircraft, automotive, and other industries. Generally, monolithic sheets are employed, limiting the size and complexity of the final part. However, more complex and larger final geometries are possible if individual sheet materials can be joined together through an appropriate joining technology, then SPF formed to final shape. The primary challenge in this type of SPF fabrication has been making a joint between the sheets that will survive the SPF forming event and display the correct amount of elongation in the joint relative to the base materials being formed. Friction Stir Welding is an ideal joining technology for SPF applications because the forming response of the weld metal at SPF conditions is adjustable by selecting different weld process parameters during initial joining. This allows the SPF deformation in the weld metal to be “tuned” to the deformation of the parent sheet to prevent early failure from occurring in either the weld metal or the parent sheet due to mismatched SPF flow stresses. Industrial application of the concept of matching flow stresses is currently being pursued on a program at the Pacific Northwest National Laboratory on room temperature formed friction stir welded tailor welded blanks for heavy truck applications. Flow stress matching and process parameter “tuning” is also important in the fabrication of SPF multisheet structural panels. These panels are fabricated by joining three sheets together with alternating welds top and bottom, so that each weld penetrates only two of the three sheets. This sheet pack is then sealed with a weld seam around the outside and hot gas is introduced between the sheets through a welded tube. Under SPF conditions the sheet pack inflates to produce an internally supported structure. In this paper we presents results on an investigation into using FSW and Refill Friction Stir Spot Welding to fabricated

  4. Production Laser Welding Of Gears

    NASA Astrophysics Data System (ADS)

    Guastaferri, David

    1986-11-01

    With the greater acceptance of laser technology as a viable alternative to traditional metals joining methods, the need has arisen to integrate lasers into efficient high production systems. This paper will describe one such system which is dedicated to the automated processing and laser welding of automotive transmission gear components. The system features two (2) 6 KW CO2 lasers, automated part manipulation, vapor degreasers, air cylinder press stations, fully enclosed weld stations incorporating bottom delivery methods, and programmable computer control which allows complete monitoring throughout the entire production cycle. It is the intent of this paper to describe all segments of the system in detail as to design, manufacture, and integration. Concerning this specific application, an overview from initial inquiry through final installation of the manufactured system will be presented and will focus on the laser welding process and parameter development as it relates to the total systems concept and production goals.

  5. Towards the problem of forming full strength welded joints on aluminum alloy sheets. Part II: AA7475

    NASA Astrophysics Data System (ADS)

    Kalashnikova, Tatiana; Tarasov, Sergey; Eliseev, Alexander; Fortuna, Anastasiya

    2016-11-01

    The microstructural evolution in welded joint zones obtained both by friction stir welding and ultrasonic- assisted friction stir welding on dispersion hardened 7475 aluminum alloy has been examined together with the analysis of mechanical strength and microhardness. It was established that ultrasonic-assisted friction stir provided leveled microhardness profiles across the weld zones as well as higher joint strength as compared to those of standard friction stir welding.

  6. Finite element based simulation on friction stud welding of metal matrix composites to steel

    NASA Astrophysics Data System (ADS)

    Hynes, N. Rajesh Jesudoss; Tharmaraj, R.; Velu, P. Shenbaga; Kumar, R.

    2016-05-01

    Friction welding is a solid state joining technique used for joining similar and dissimilar materials with high integrity. This new technique is being successfully applied to the aerospace, automobile, and ship building industries, and is attracting more and more research interest. The quality of Friction Stud Welded joints depends on the frictional heat generated at the interface. Hence, thermal analysis on friction stud welding of stainless steel (AISI 304) and aluminium silicon carbide (AlSiC) combination is carried out in the present work. In this study, numerical simulation is carried out using ANSYS software and the temperature profiles are predicted at various increments of time. The developed numerical model is found to be adequate to predict temperature distribution of friction stud weld aluminium silicon carbide/stainless steel joints.

  7. Simultaneous laser cutting and welding of metal foil to edge of a plate

    DOEpatents

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-19

    A method is described for welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads. 7 figs.

  8. Simultaneous laser cutting and welding of metal foil to edge of a plate

    DOEpatents

    Pernicka, John C.; Benson, David K.; Tracy, C. Edwin

    1996-01-01

    A method of welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads.

  9. Microwave Induced Welding of Carbon Nanotube-Thermoplastic Interfaces for Enhanced Mechanical Strength of 3D Printed Parts

    NASA Astrophysics Data System (ADS)

    Sweeney, Charles; Lackey, Blake; Saed, Mohammad; Green, Micah

    Three-dimensional (3D) printed parts produced by fused-filament fabrication of a thermoplastic polymer have become increasingly popular at both the commercial and consumer level. The mechanical integrity of these rapid-prototyped parts however, is severely limited by the interfillament bond strength between adjacent extruded layers. In this report we propose for the first time a method for welding thermoplastic interfaces of 3D printed parts using the extreme heating response of carbon nanotubes (CNTs) to microwave energy. To achieve this, we developed a coaxial printer filament with a pure polylactide (PLA) core and a CNT composite sheath. This produces parts with a thin electrically percolating network of CNTs at the interfaces between adjacent extruded layers. These interfaces are then welded together upon microwave irradiation at 2.45GHz. Our patent-pending method has been shown to increase the tensile toughness by 1000% and tensile strength by 35%. We investigated the dielectric properties of the PLA/CNT composites at microwave frequencies and performed in-situ microwave thermometry using a forward-looking infrared (FLIR) camera to characterize the heating response of the PLA/CNT composites upon microwave irradiation.

  10. Effective Use of Weld Metal Yield Strength for HY-Steels

    DTIC Science & Technology

    1983-01-01

    and Hasubuchi 1959; Hall et al. 1967). Residual stresses also play important roles in stress corrosion cracking and-hydrogen-induced delayed cracking ... stress corrosion cracking . Weldments with inferior strength have been acceptable only in a few limited cases--repair melds in HY-S0 (made with covered...residual weld stresses could reduce the tendency for hydrogen-induced cracking . Welding processes with very low hydrogen potential are available

  11. Method of forming and assembly of metal and ceramic parts

    DOEpatents

    Ripley, Edward B

    2014-04-22

    A method of forming and assembling at least two parts together that may be metal, ceramic, or a combination of metal and ceramic parts. Such parts may have different CTE. Individual parts that are formed and sintered from particles leave a network of interconnecting porosity in each sintered part. The separate parts are assembled together and then a fill material is infiltrated into the assembled parts using a method such as capillary action, gravity, and/or pressure. The assembly is then cured to yield a bonded and fully or near-fully dense part that has the desired physical and mechanical properties for the part's intended purpose. Structural strength may be added to the parts by the inclusion of fibrous materials.

  12. Technical note: Preliminary results on underwater laser beam welding of steels

    SciTech Connect

    Shannon, G.J.; Watson, J.; Deans, W.F. . Dept. of Engineering); Nuttall, R. )

    1994-07-01

    An investigation is underway at The University of Aberdeen using a high-power carbon dioxide laser for direct underwater butt joint welding of steels to assess the quality of welds compared to in-air laser welds. This preliminary work forms part of a general study of the application of laser beam welding and cutting within the offshore oil and gas industry. To this end, the feasibility of laser beam welding in both direct wet conditions and in dry hyperbaric conditions is being explored. Considerable advantages may lie in the remote direct wet repair of pipelines and structural members in terms of convenience, low cost and freedom from diver intervention. The laser beam welding mechanism, being fundamentally different from arc welding processes, may be able to overcome the normal problems of weld embrittlement and porosity when wet welding is attempted. In the current work, the primary concern is with the butt joint welding of steel plate without a filler metal. This technical note provides a comparison of underwater and in-air weld characteristics for fully penetrating butt joint welds, and provides an insight into the propagation characteristics of a high-power beam in water. The effect of increasing water depth is also investigated.

  13. 19 CFR 19.22 - Withdrawal of metal refined in part from imported crude metal and in part from crude metal...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... CUSTOMS WAREHOUSES, CONTAINER STATIONS AND CONTROL OF MERCHANDISE THEREIN Smelting and Refining Warehouses... in refining, or smelting and refining, part of which metal was obtained from imported crude metal and part from crude metal produced by smelting imported materials, the warehouse account shall be...

  14. Solidification of underwater wet welds

    SciTech Connect

    Pope, A.M.; Medeiros, R.C. de; Liu, S.

    1995-12-31

    It is well known that the shape of a weld pool can influence the microstructure and segregation pattern of the final solidified weld metal. Mechanical properties and susceptibility to defects are consequently affected by the solidification mode of the weld. In this work the solidification behavior of weld beads deposited in air and underwater wet welding using rutile electrodes were compared. The welds were deposited by gravity feed, on low carbon, manganese steel plates using similar welding conditions. Macroscopic observation of the weld craters showed that welds deposited in air presented an elliptical weld pool. The underwater wet welds, on the other hand, solidified with a tear drop shape. Although the welds differed in shape, their lengths were approximately the same. Microscopic examinations carried out on transverse, normal and longitudinal sections revealed a coarser columnar grain structure in the underwater welds. These results suggest that the tear-drop shaped pool induced solidification in a preferred orientation with segregation more likely in welds deposited under wet conditions. This change in weld pool geometry can be explained by the surface heat loss conditions that occur in a wet weld: slower when covered by the steam bubble and faster in the region in contact with water behind the pool.

  15. Characterization of Mg/Al butt joints welded by gas tungsten arc filling with Zn–29.5Al–0.5Ti filler metal

    SciTech Connect

    Liu, Fei; Wang, Hongyang; Liu, Liming

    2014-04-01

    The multivariate alloying design of a welding joint is used in the Mg to Al welding process. A Zn–29.5Al–0.5Ti alloy is added as filler metal in gas tungsten arc welding of Mg and Al alloy joint based on the analysis of Al and Mg alloy characteristics. The tensile strength, microstructure, and phase constitution of the weld seam are analyzed. The formation of brittle and hard Mg–Al intermetallic compounds is avoided because of the effects of Zn, Al, and Ti. The average tensile strength of the joint is 148 MPa. Al{sub 3}Ti is first precipitated and functions as the nucleus of heterogeneous nucleation during solidification. Moreover, the precipitated Al–MgZn{sub 2} hypoeutectic phase exhibited a feather-like structure, which enhances the property of the Mg–Al dissimilar joint. - Highlights: • Mg alloy AZ31B and Al alloy 6061 are butt welded by fusion welding. • The effect of Ti in filler metal is investigated. • The formation of Mg–Al intermetallic compounds is avoided.

  16. Digital Radiography Qualification of Tube Welding

    NASA Technical Reports Server (NTRS)

    Carl, Chad

    2012-01-01

    The Orion Project will be directing Lockheed Martin to perform orbital arc welding on commodities metallic tubing as part of the Multi Purpose Crew Vehicle assembly and integration process in the Operations and Checkout High bay at Kennedy Space Center. The current method of nondestructive evaluation is utilizing traditional film based x-rays. Due to the high number of welds that are necessary to join the commodities tubing (approx 470), a more efficient and expeditious method of nondestructive evaluation is desired. Digital radiography will be qualified as part of a broader NNWG project scope.

  17. Corrosion behaviour of welds and Ta in liquid lead

    NASA Astrophysics Data System (ADS)

    Heinzel, A.; Müller, G.; Weisenburger, A.

    2016-02-01

    Four specimens, P91 welded by friction stir welding with and without post heat treatment, P91 electromagnetic pulse welded (EMP) and 14Cr ODS (explosive welding) were exposed at 550 °C for up to 2131 h to Pb containing 10-6 wt% oxygen. After the exposure none of the samples showed dissolution attack, all were protected by an oxide layer at the surface. Nearly no effect on the oxidation due to welding was found in both friction stir welded specimens. Severe deformation and partial melting during explosive welding result in a slower oxide layer growth within the welding zone. The EMP sample was tested as delivered without post-heat treatment. No Pb penetrated into the tiny gap between the welded parts. After the test, the gap is filled up with oxides. Additionally, Ta, discussed as a pump impeller material, was exposed to Pb and PbBi at different temperatures (400-900 °C) and oxygen concentrations in liquid metal (saturated, 10-6 wt%, 10-8 wt% and reduced (<<10-8 wt%). Only the Ta specimens exposed to Pb with highly reduced oxygen content showed nearly no attack. All the others exhibited oxide scale formation that becomes severe above 400 °C test temperature.

  18. Development of Fiber Laser Weld Parameters for Stainless Steel and Refractory Metals

    SciTech Connect

    Elmer, J; Pong, R

    2009-05-19

    Laser welds were made in 21-6-9 stainless steel, vanadium and tantalum using LLNL's new 6kW fiber laser to target 1 mm penetration depths. The materials were machined into flat coupon samples with standard step-joint geometries, and were welded in a continuous wave mode. The laser was characterized using the Primes laser beam diagnostic system so that the beams can be reproduced in the future. The optical configuration consisted of a 200 {micro}m fiber, 200 mm collimator and 250 mm focusing lens, which delivered electron-beam level power densities in the 5 to 20 kW/mm2 range. The three different materials required different power densities to produce the desired penetration, and this report summarizes the results of this screening study that was directed at developing a first approximation to the proper welding parameters for future work. The results show that 1 mm penetrations can be achieved using a 400W beam for 21-6-9 stainless steel, a 600W beam for vanadium, and a 1,100W beam for tantalum using sharp focus and a travel speed of 40 inch/min. Future welds should incorporate a trailing gas shield to prevent discoloration of the surface and to prevent oxygen and nitrogen pickup in the welds.

  19. Laser welding process in PP moulding parts: Evaluation of seam performance

    NASA Astrophysics Data System (ADS)

    Oliveira, N.; Pontes, A. J.

    2015-12-01

    The Polypropylene is one of the most versatile polymer materials used in the industry. Due to this versatility, it is possible to use it in different products. This material can also be mixed with several additives namely glass fiber, carbon nanotubes, etc. This compatibility with different additives allows also obtaining products with characteristics that goes from an impact absorber to an electricity conductor. When is necessary to join components in PP they could be welded through hot plate, ultrasonic weld and also by laser. This study had the objective of study the influence of several variables, capable of influence the final quality of the seam. In this case were studied variables of the injection molding process as mold temperature and cooling time. Was also studied laser welding variables and different materials. The results showed that the variables that have the most influence were mould temperature, laser velocity and laser diameter. The seams were analyzed using Optical Microscopy technique. The seams showed perfect contact between the materials analyzed, despite the high standard variation presented in the mechanical testes.

  20. Evaluation of crack arrest fracture toughness of parent plate, weld metal and heat affected zone of BIS 812 EMA ship plate steel

    NASA Astrophysics Data System (ADS)

    Burch, I. A.

    1993-10-01

    The steel chosen for the pressure hull of the Collins class submarine has undergone evaluation to compare the crack arrest fracture toughness, K(Ia), of the parent plate with that of weld metal and heat affected zone. The tests were conducted over a range of subzero temperatures on specimens slightly outside the ASTM standard test method specimen configuration. Shallow face grooved specimens were used to vary the propagating crack velocity from that of non face grooved specimens and determine if K(Ia), is sensitive to changes in crack velocity. The weld metal, heat affected zone (HAZ), and parent plate were assessed to determine if the welding process had a deleterious effect on the crack arrest properties of this particular steel. Tests on each of these regions revealed that, for the combination of parent plate, welding procedure and consumables, no adverse effect on crack arrest properties was encountered. Crack arrest fracture toughness of the weld metal and HAZ was superior to that of the parent plate at comparable temperatures.

  1. Capabilities of infrared weld monitor

    SciTech Connect

    Sanders, P.G.; Keske, J.S.; Leong, K.H.; Kornecki, G.

    1997-11-01

    A non-obtrusive pre-aligned, solid-state device has been developed to monitor the primary infrared emissions during laser welding. The weld monitor output is a 100-1000 mV signal that depends on the beam power and weld characteristics. The DC level of this signal is related to weld penetration, while AC portions of the output can be correlated with surface irregularities and part misalignment or contamination. Changes in DC behavior are also noted for both full and deep penetration welds. Full penetration welds are signified by an abrupt reduction in the weld monitor output. Bead on plate welds were made on steel, aluminum, and magnesium with both a CW CO{sub 2} laser and a pulsed Nd:YAG laser to explore the relationships between the weld characteristics and the weld monitor output.

  2. Nanorobotic spot welding: controlled metal deposition with attogram precision from copper-filled carbon nanotubes.

    PubMed

    Dong, Lixin; Tao, Xinyong; Zhang, Li; Zhang, Xiaobin; Nelson, Bradley J

    2007-01-01

    With the continuing development of bottom-up nanotechnology fabrication processes, spot welding can play a role similar to its macro counterpart for the interconnection of nano building blocks for the assembly of nanoelectronics and nanoelectromechanical systems (NEMS). Spot welding using single-crystalline copper-filled carbon nanotubes (CNTs) is investigated experimentally using nanorobotic manipulation inside a transmission electron microscope (TEM). Controlled melting and flowing of copper inside nanotube shells are realized by applying bias voltages between 1.5 and 2.5 V. The average mass flow rate of the copper was found to be 120 ag/s according to TEM video imaging (measured visually at approximately 11.6 nm/s through the CNT). Successful soldering of a copper-filled CNT onto another CNT shows promise for nano spot welding and thermal dip-pen lithography.

  3. Weld-bonded titanium structures

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Creedon, J. F. (Inventor)

    1976-01-01

    Structurally stronger titanium articles are produced by a weld-bonding technique comprising fastening at least two plates of titanium together using spotwelding and curing an adhesive interspersed between the spot-weld nuggets. This weld-bonding may be employed to form lap joints or to stiffen titanium metal plates.

  4. Dissimilar Al/steel friction stir welding lap joints for automotive applications

    NASA Astrophysics Data System (ADS)

    Campanella, D.; Spena, P. Russo; Buffa, G.; Fratini, L.

    2016-10-01

    A widespread usage of aluminum alloys for the fabrication of car-body parts is conditional on the employment of appropriate welding methods, especially if dissimilar welding must be performed with automotive steel grades. Dissimilar welding of aluminum alloys and steel grades poses some issues concerning the formation of brittle intermetallic compounds, difference in physical and chemical properties of the parent metals, and poor wetting behavior of aluminum. Friction stir welding is considered to be a reasonable solution to obtain sound aluminum/steel joints. A study on the join quality of dissimilar lap joints of steel and aluminum alloy sheets after friction stir welding is proposed here. A low carbon steel is joined with AA6016 aluminum alloy to study preliminarily the feasibility to assembly car-body parts. The joints, welded with tool rotation and feed rate varying in a wide range, have been studied from a visual examination and microstructural point of view. Optical microscopy has been used to characterize the microstructure of the examined sheets in as-received and welded conditions. Micro-hardness measurements have been carried out to quantitatively analyze the local hardness of the welded joints. Set welding process parameters are identified to assemble without the presence of macroscopic defects the examined steel and aluminum welded parts.

  5. Fast, Nonspattering Inert-Gas Welding

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.

    1991-01-01

    Proposed welding technique combines best features of metal (other than tungsten)/inert-gas welding, plasma arc welding, and tungsten/inert-gas welding. Advantages include: wire fed to weld joint preheated, therefore fed at high speed without spattering; high-frequency energy does not have to be supplied to workpiece to initiate welding; size of arc gap not critical, power-supply control circuit adjusts voltage across gap to compensate for changes; only low gas-flow rate needed; welding electrode replaced easily as prefabricated assembly; external wire-feeding manipulator not needed; and welding process relatively forgiving of operator error.

  6. Underwater wet welding of steel

    SciTech Connect

    Ibarra, S.; Liu, S.; Olson, D.L.

    1995-05-01

    Underwater wet welding is conducted directly in water with the shielded metal arc (SMA) and flux cored arc (FCA) welding processes. Underwater wet welding has been demonstrated as an acceptable repair technique down to 100 meters (325 ft.) in depth, but wet welds have been attempted on carbon steel structures down to 200 meters (650 ft.). The primary purpose of this interpretive report is to document and evaluate current understanding of metallurgical behavior of underwater wet welds so that new welding consumables can be designed and new welding practices can be developed for fabrication and repair of high strength steel structures at greater depths. First the pyrometallurgical and physical metallurgy behaviors of underwater weldments are discussed. Second, modifications of the welding consumables and processes are suggested to enhance the ability to apply wet welding techniques.

  7. Waste minimization assessment for a manufacturer of iron castings and fabricated sheet metal parts

    SciTech Connect

    Fleischman, M.; Harris, J.J.; Handmaker, A.; Looby, G.P.

    1995-08-01

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at selected universities and procedures were adapted from the EPA Waste Minimization Opportunity Assessment Manual. That document has been superseded by the Facility Pollution Prevention Guide. The WMAC team at the University of Louisville performed an assessment at a plant that manufactures iron castings and fabricated sheet metal parts. Foundry operations include mixing and mold formation, core making, metal pouring, shakeout, finishing, and painting. Cutting, shaping, and welding are the principal metal fabrication operations. The team`s report, detailing findings and recommendations indicated that paint-related wastes are generated in large quantities, and that significant waste reduction and cost savings could be realized by installing a dry powder coating system or by replacing conventional air spray paint guns with high-volume low-pressure spray guns. This research brief was developed by the principal investigators and EPA`s National Risk Management Research Laboratory, Cincinnati, OH, to announce key findings of an ongoing research project that is fully documented in a separate report of the same title available from University City Science Center.

  8. Method of forming and assembly of metal parts and ceramic parts

    DOEpatents

    Ripley, Edward B [Knoxville, TN

    2011-11-22

    A method of forming and assembling at least two parts together that may be metal, ceramic, or a combination of metal and ceramic parts. Such parts may have different CTE. Individual parts that are formed and sintered from particles leave a network of interconnecting porosity in each sintered part. The separate parts are assembled together and then a fill material is infiltrated into the assembled parts using a method such as capillary action, gravity, and/or pressure. The assembly is then cured to yield a bonded and fully or near-fully dense part that has the desired physical and mechanical properties for the part's intended purpose. Structural strength may be added to the parts by the inclusion of fibrous materials.

  9. Simulation of Metal Flow During Friction Stir Welding Based on the Model of Interactive Force Between Tool and Material

    NASA Astrophysics Data System (ADS)

    Chen, G. Q.; Shi, Q. Y.; Fujiya, Y.; Horie, T.

    2014-04-01

    In this research, the three-dimensional flow of metal in friction stir welding (FSW) has been simulated based on computational fluid dynamics. Conservation equations of mass, momentum, and energy were solved in three dimensions. The interactive force was imposed as boundary conditions on the tool/material boundary in the model. The strain rate- and temperature-dependent non-Newtonian viscosity was adopted for the calculation of metal flow. The distribution of temperature, velocity, and strain rate were simulated based on the above models. The simulated temperature distribution agreed well with the experimental results. The simulation results showed that the velocity on the pin was much higher than that on the shoulder. From the comparison between the simulation results and the experiments results, contours line, corresponding to strain rate = 4 s-1, reflected reasonably well the shape of stir zone, especially at the ground portion.

  10. Use Of Lasers In Seam Welding Of Engine Parts For Cars

    NASA Astrophysics Data System (ADS)

    Luttke, A.

    1986-11-01

    The decision in favour of active research into laser technology was taken in our company in 1978. In the following years we started with the setting-up of a laser laboratory charged with the task of performing basic manufacturing technology experiments in order to examine the ap-plications of laser technology for cutting, welding, hardening, remelting and secondary alloys. The first laboratory-laser - a 2,5 kW fast axial flow CO2 laser - is connected with a CNC-controlled workpiece manipulation unit, which is designed in such a way that workpieces from the smallest component of a car gearbox up to crankcases for commercial vehicles can be manipulated at speeds considered theoretically feasible for laser machining. The use of the laser beam for cutting, hardening and welding tasks has been under investigation in our company, in this laboratory for some 6 years. Laser cutting is now no longer a question of development, but is instead standard practice and is already used in various sec-tions of our production division for pilot-series manufacturing and for small batches. Laser hardening has, in our opinion, great possibilities for tasks which, for distortion and accessibility reasons, cannot be satisfactorily performed using present-day processes, for instance induction hardening. However, a great deal of development work is still necessary before economically reasonable and quality-assured production installation can be undertaken. Laser-welding is now used in series-production in our company for two engine components. More details are given below.

  11. Workmanship standards for fusion welding

    NASA Technical Reports Server (NTRS)

    Phillips, M. D.

    1967-01-01

    Workmanship standards manual defines practices, that adhere to rigid codes and specifications, for fusion welding of component piping, assemblies, and systems. With written and pictorial presentations, it is part of the operating procedure for fusion welding.

  12. Physics of Fusion Welding

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    1986-01-01

    Applicabilities and limitations of three techniques analyzed. NASA technical memorandum discusses physics of electron-beam, gas/ tungsten-arc, and laser-beam welding. From comparison of capabilities and limitations of each technique with regard to various welding conditions and materials, possible to develop criteria for selecting best welding technique in specific application. All three techniques classified as fusion welding; small volume of workpiece melted by intense heat source. Heat source moved along seam, leaving in wake solid metal that joins seam edges together.

  13. Investigation of Friction Stir Welding of Al Metal Matrix Composite Materials

    NASA Technical Reports Server (NTRS)

    Diwan, Ravinder M.

    2003-01-01

    The innovative process of Friction Stir Welding (FSW) has generated tremendous interest since its inception about a decade or so ago since the first patent in 1991 by TWI of Cambridge, England. This interest has been seen in many recent international conferences and publications on the subject and relevant published literature. Still the process needs both intensive basic study of deformation mechanisms during this FSW process and analysis and feasibility study to evaluate production methods that will yield high quality strong welds from the stirring action of the appropriate pin tool into the weld plate materials. Development of production processes is a complex task that involves effects of material thickness, materials weldability, pin tool design, pin height, and pin shoulder diameter and related control conditions. The frictional heating with rotational speeds of the pin tool as it plunges into the material and the ensuing plastic flow arising during the traverse of the welding faying surfaces provide the known special advantages of the FSW process in the area of this new advanced joining technology.

  14. Deconvoluting the Friction Stir Weld Process for Optimizing Welds

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Nunes, Arthur C.

    2008-01-01

    In the friction stir welding process, the rotating surfaces of the pin and shoulder contact the weld metal and force a rotational flow within the weld metal. Heat, generated by the metal deformation as well as frictional slippage with the contact surface, softens the metal and makes it easier to deform. As in any thermo-mechanical processing of metal, the flow conditions are critical to the quality of the weld. For example, extrusion of metal from under the shoulder of an excessively hot weld may relax local pressure and result in wormhole defects. The trace of the weld joint in the wake of the weld may vary geometrically depending upon the flow streamlines around the tool with some geometry more vulnerable to loss of strength from joint contamination than others. The material flow path around the tool cannot be seen in real time during the weld. By using analytical "tools" based upon the principles of mathematics and physics, a weld model can be created to compute features that can be observed. By comparing the computed observations with actual data, the weld model can be validated or adjusted to get better agreement. Inputs to the model to predict weld structures and properties include: hot working properties ofthe metal, pin tool geometry, travel rate, rotation and plunge force. Since metals record their prior hot working history, the hot working conditions imparted during FSW can be quantified by interpreting the final microstructure. Variations in texture and grain size result from variations in the strain accommodated at a given strain rate and temperature. Microstructural data from a variety of FSWs has been correlated with prior marker studies to contribute to our understanding of the FSW process. Once this stage is reached, the weld modeling process can save significant development costs by reducing costly trial-and-error approaches to obtaining quality welds.

  15. Analysis of a Defected Dissimilar Metal Weld in a PWR Power Plant

    SciTech Connect

    Efsing, P.; Lagerstrom, J.

    2002-07-01

    During the refueling outage 2000, inspections of the RC-loops of one of the Ringhals PWR-units, Ringhals 4, indicated surface breaking defects in the axial direction of the piping in a dissimilar weld between the Low alloy steel nozzle and the stainless safe end in the hot leg. In addition some indications were found that there were embedded defects in the weld material. These defects were judged as being insignificant to the structural integrity. The welds were inspected in 1993 with the result that no significant indications were found. The weld it self is a double U weld, where the thickness of the material is ideally 79,5 mm. Its is constructed by Inconel 182 weld material. At the nozzle a buttering was applied, also by Inconel 182. The In-service inspection, ISI, of the object indicated four axial defects, 9-16 mm deep. During fabrication, the areas where the defects are found were repaired at least three times, onto a maximum depth of 32 mm. To evaluate the defects, 6 boat samples from the four axial defects were cut from the perimeter and shipped to the hot-cell laboratory for further examination. This examination revealed that the two deep defects had been under sized by the ISI outside the requirement set by the inspection tolerances, while the two shallow defects were over sized, but within the tolerances of the detection system. When studying the safety case it became evident that there were several missing elements in the way this problems is handled with respect to the Swedish safety evaluation code. Among these the most notable at the beginning was the absence of reliable fracture mechanical data such as crack growth laws and fracture toughness at elevated temperature. Both these questions were handled by the project. The fracture mechanical evaluation has focused on a fit for service principal. Thus defects both in the unaffected zones and the disturbed zones, boat sample cutouts, of the weld have been analyzed. With reference to the Swedish safety

  16. Friction Stir Welding of Al Alloy 2219-T8: Part I-Evolution of Precipitates and Formation of Abnormal Al2Cu Agglomerates

    NASA Astrophysics Data System (ADS)

    Kang, Ju; Feng, Zhi-Cao; Frankel, G. S.; Huang, I. Wen; Wang, Guo-Qing; Wu, Ai-Ping

    2016-09-01

    Friction stir welding was performed on AA2219-T8 plates with 6.31 wt pct Cu. The thermal cycles were measured in different regions of the joint during welding. Differential scanning calorimetry and transmission electron microscopy were utilized to analyze the evolution of precipitates in the joint. The relationships between welding peak temperature, precipitate evolution, and microhardness distribution are discussed. The temperature in the heat-affected zone (HAZ) ranged from 453 K to 653 K (180 °C to 380 °C). The θ″ and some θ' phases redissolved into the HAZ matrix, while the rest of the θ' phases coarsened. In the thermomechanically affected zone (TMAZ), the temperature range was from 653 K to 673 K (380 °C to 400 °C), causing both θ″ phase and θ' phase to redissolve. In the weld nugget zone (WNZ), all the θ″, θ', and some of the θ phase (Al2Cu) redissolved. Abnormal θ particles were observed in the WNZ, including agglomerated θ with sizes around 100 to 1000 µm and a ring-shaped distribution of normal size θ particles. The formation of abnormal θ particles resulted from metal plastic flow during welding and the high content of Cu in AA2219. No abnormal θ particles were observed in joints of another AA2219 plate, which had a lower Cu content of 5.83 wt pct.

  17. Adaptive weld control for high-integrity welding applications

    NASA Astrophysics Data System (ADS)

    Powell, Bradley W.

    Adaptive, closed-loop weld control is necessary to maintain high-integrity, zero-defect welds. Conventional weld control techniques using weld parameter feedback control loops are sufficient to maintain set points, but fall short when confronted with unexpected variations in part/tooling temperature and mechanical structure, weldment material, arc skew angle, or calibration in weld parameter feedback measurement. Modern technology allows closed-loop control utilizing input from real-time weld monitoring sensors and inspection devices. Weld puddle parameters, bead profile parameters, and weld seam position are fed back into the weld control loop which adapts for the weld condition variations and drives them back to a desired state, thereby preventing weld defects or perturbations. Parameters such as arc position relative to the weld seam, puddle symmetry, arc length, weld width, and bead shape can be extracted from sensor imagery and used in closed-loop active weld control. All weld bead and puddle measurements are available for real-time display and statistical process control analysis, after which the data is archived to permanent storage or later retrieval and analysis.

  18. Welding blades to rotors

    NASA Technical Reports Server (NTRS)

    Hoklo, K. H.; Moore, T. J. (Inventor)

    1973-01-01

    A process is described to form T-joints between dissimilar thickness parts by magnetic force upset welding. This type of resistance welding is used to join compressor and turbine parts which thereby reduces the weight and cost of jet engines.

  19. Weld modeling and control using artificial neural networks

    SciTech Connect

    Cook, G.E.; Barnett, R.J.; Andersen, K.; Strauss, A.M.

    1995-11-01

    The arc welding processes play an important role in modern manufacturing. Despite the widespread use of arc welding for joining metals, controlling most welding processes still requires considerable skills and experience on behalf of the human welder. Total automation of welding has not yet been achieved, largely because the physics which determine the success of any welding task, are not yet fully understood and quantified. Artificial neural networks were evaluated for monitoring and control of the variable polarity plasma arc welding process. Three areas of welding application were investigated: weld process modeling, weld process control, and weld bead profile analysis for quality control.

  20. Wire-Guide Manipulator For Automated Welding

    NASA Technical Reports Server (NTRS)

    Morris, Tim; White, Kevin; Gordon, Steve; Emerich, Dave; Richardson, Dave; Faulkner, Mike; Stafford, Dave; Mccutcheon, Kim; Neal, Ken; Milly, Pete

    1994-01-01

    Compact motor drive positions guide for welding filler wire. Drive part of automated wire feeder in partly or fully automated welding system. Drive unit contains three parallel subunits. Rotations of lead screws in three subunits coordinated to obtain desired motions in three degrees of freedom. Suitable for both variable-polarity plasma arc welding and gas/tungsten arc welding.

  1. Ultrasonic Stir Welding

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  2. VPPA weld model evaluation

    NASA Technical Reports Server (NTRS)

    Mccutcheon, Kimble D.; Gordon, Stephen S.; Thompson, Paul A.

    1992-01-01

    NASA uses the Variable Polarity Plasma Arc Welding (VPPAW) process extensively for fabrication of Space Shuttle External Tanks. This welding process has been in use at NASA since the late 1970's but the physics of the process have never been satisfactorily modeled and understood. In an attempt to advance the level of understanding of VPPAW, Dr. Arthur C. Nunes, Jr., (NASA) has developed a mathematical model of the process. The work described in this report evaluated and used two versions (level-0 and level-1) of Dr. Nunes' model, and a model derived by the University of Alabama at Huntsville (UAH) from Dr. Nunes' level-1 model. Two series of VPPAW experiments were done, using over 400 different combinations of welding parameters. Observations were made of VPPAW process behavior as a function of specific welding parameter changes. Data from these weld experiments was used to evaluate and suggest improvements to Dr. Nunes' model. Experimental data and correlations with the model were used to develop a multi-variable control algorithm for use with a future VPPAW controller. This algorithm is designed to control weld widths (both on the crown and root of the weld) based upon the weld parameters, base metal properties, and real-time observation of the crown width. The algorithm exhibited accuracy comparable to that of the weld width measurements for both aluminum and mild steel welds.

  3. Welding arc plasma physics

    NASA Technical Reports Server (NTRS)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  4. Study on the special vision sensor for detecting position error in robot precise TIG welding of some key part of rocket engine

    NASA Astrophysics Data System (ADS)

    Zhang, Wenzeng; Chen, Nian; Wang, Bin; Cao, Yipeng

    2005-01-01

    Rocket engine is a hard-core part of aerospace transportation and thrusting system, whose research and development is very important in national defense, aviation and aerospace. A novel vision sensor is developed, which can be used for error detecting in arc length control and seam tracking in precise pulse TIG welding of the extending part of the rocket engine jet tube. The vision sensor has many advantages, such as imaging with high quality, compactness and multiple functions. The optics design, mechanism design and circuit design of the vision sensor have been described in detail. Utilizing the mirror imaging of Tungsten electrode in the weld pool, a novel method is proposed to detect the arc length and seam tracking error of Tungsten electrode to the center line of joint seam from a single weld image. A calculating model of the method is proposed according to the relation of the Tungsten electrode, weld pool, the mirror of Tungsten electrode in weld pool and joint seam. The new methodologies are given to detect the arc length and seam tracking error. Through analyzing the results of the experiments, a system error modifying method based on a linear function is developed to improve the detecting precise of arc length and seam tracking error. Experimental results show that the final precision of the system reaches 0.1 mm in detecting the arc length and the seam tracking error of Tungsten electrode to the center line of joint seam.

  5. The integrity of welded interfaces in ultra high molecular weight polyethylene: Part 1-Model.

    PubMed

    Buckley, C Paul; Wu, Junjie; Haughie, David W

    2006-06-01

    The difficulty of eradicating memory of powder-particle interfaces in UHMWPE for bearing surfaces for hip and knee replacements is well-known, and 'fusion defects' have been implicated frequently in joint failures. During processing the polymer is formed into solid directly from the reactor powder, under pressure and at temperatures above the melting point, and two types of inter-particle defect occur: Type 1 (consolidation-deficient) and Type 2 (diffusion-deficient). To gain quantitative information on the extent of the problem, the formation of macroscopic butt welds in this material was studied, by (1) modelling the process and (2) measuring experimentally the resultant evolution of interface toughness. This paper reports on the model. A quantitative measure of interface structural integrity is defined, and related to the "maximum reptated molecular weight" introduced previously. The model assumes an idealised surface topography. It is used to calculate the evolution of interface integrity during welding, for given values of temperature, pressure, and parameters describing the surfaces, and a given molar mass distribution. Only four material properties are needed for the calculation; all of them available for polyethylene. The model shows that, for UHMWPE typically employed in knee transplants, the rate of eradication of Type 1 defects is highly sensitive to surface topography, process temperature and pressure. Also, even if Type 1 defects are prevented, Type 2 defects heal extremely slowly. They must be an intrinsic feature of UHMWPE for all reasonable forming conditions, and products and forming processes should be designed accordingly.

  6. Assessment of Occupational Exposure to Manganese and Other Metals in Welding Fumes by Portable X-ray Fluorescence Spectrometer

    PubMed Central

    Laohaudomchok, Wisanti; Cavallari, Jennifer M.; Fang, Shona C.; Lin, Xihong; Herrick, Robert F.; Christiani, David C.; Weisskopf, Marc G.

    2011-01-01

    Elemental analysis of welding fume samples can be done using several laboratory-based techniques. However, portable measurement techniques could offer several advantages. In this study, we sought to determine whether the portable X-ray fluorescence spectrometer (XRF) is suitable for analysis of five metals (manganese, iron, zinc, copper, and chromium) on 37-mm polytetrafluoroethylene filters. Using this filter fitted on a cyclone in line with a personal pump, gravimetric samples were collected from a group of boilermakers exposed to welding fumes. We assessed the assumption of uniform deposition of these metals on the filters, and the relationships between measurement results of each metal obtained from traditional laboratory-based XRF and the portable XRF. For all five metals of interest, repeated measurements with the portable XRF at the same filter area showed good consistency (reliability ratios are equal or close to 1.0 for almost all metals). The portable XRF readings taken from three different areas of each filter were not significantly different (p-values = 0.77 to 0.98). This suggested that the metal rich PM2.5 deposits uniformly on the samples collected using this gravimetric method. For comparison of the two XRFs, the results from the portable XRF were well correlated and highly predictive of those from the laboratory XRF. The Spearman correlation coefficients were from 0.325 for chromium, to 0.995 for manganese and 0.998 for iron. The mean differences as a percent of the mean laboratory XRF readings were also small (<5%) for manganese, iron, and copper. The differences were greater for zinc and chromium, which were present at very low amounts in our samples and below the limits of detection of the portable XRF for many of the samples. These five metals were moderately to strongly correlated with the total fine particle fraction on filters (Spearman ρ = 0.41 for zinc to 0.97 for iron). Such strong correlations and comparable results suggested that the

  7. Physicochemistry and cardiovascular toxicity of metal fume PM2.5: a study of human coronary artery endothelial cells and welding workers

    NASA Astrophysics Data System (ADS)

    Lai, Chane-Yu; Lai, Ching-Huang; Chuang, Hsiao-Chi; Pan, Chih-Hong; Yen, Cheng-Chieh; Lin, Wen-Yi; Chen, Jen-Kun; Lin, Lian-Yu; Chuang, Kai-Jen

    2016-09-01

    Occupational exposure to welding fumes causes a higher incidence of cardiovascular disease; however, the association remains unclear. To clarify the possible association, exposure assessment of metal fumes with an aerodynamic diameter of <2.5 μm (PM2.5) in welding and office areas was characterized in a shipyard in Taiwan. Cardiovascular toxicity caused by PM2.5 was determined in workers (in both the welding and office areas). Significant amounts of bimodal metal fume particles with count median diameters (CMDs) of 14.1~15.1 and 126.3~135.8 nm were produced in the shipyard. Metal fume PM2.5 resulted in decreased cell viability and increased levels of 8-hydroxy-2’-deoxyguanosine (8-OHdG), interleukin (IL)-6, and nitric oxide (NO) in human coronary artery epithelial cells (HCAECs). We recruited 118 welding workers and 45 office workers for a personal PM2.5 exposure assessment and determination of urinary levels of 8-OHdG, 8-iso-prostaglandin F2α (8-iso-PGF2α), and various metals. We observed that a 10-μg/m3 increase in the mean PM2.5 concentration was associated with a 2.15% increase in 8-OHdG and an 8.43% increase in 8-iso-PGF2α in welding workers. Both 8-OHdG and 8-iso-PGF2α were associated with Fe and Zn in the urine. In conclusion, metal fume PM2.5 could increase the risk of cardiovascular toxicity after inhalation.

  8. Physicochemistry and cardiovascular toxicity of metal fume PM2.5: a study of human coronary artery endothelial cells and welding workers

    PubMed Central

    Lai, Chane-Yu; Lai, Ching-Huang; Chuang, Hsiao-Chi; Pan, Chih-Hong; Yen, Cheng-Chieh; Lin, Wen-Yi; Chen, Jen-Kun; Lin, Lian-Yu; Chuang, Kai-Jen

    2016-01-01

    Occupational exposure to welding fumes causes a higher incidence of cardiovascular disease; however, the association remains unclear. To clarify the possible association, exposure assessment of metal fumes with an aerodynamic diameter of <2.5 μm (PM2.5) in welding and office areas was characterized in a shipyard in Taiwan. Cardiovascular toxicity caused by PM2.5 was determined in workers (in both the welding and office areas). Significant amounts of bimodal metal fume particles with count median diameters (CMDs) of 14.1~15.1 and 126.3~135.8 nm were produced in the shipyard. Metal fume PM2.5 resulted in decreased cell viability and increased levels of 8-hydroxy-2’-deoxyguanosine (8-OHdG), interleukin (IL)-6, and nitric oxide (NO) in human coronary artery epithelial cells (HCAECs). We recruited 118 welding workers and 45 office workers for a personal PM2.5 exposure assessment and determination of urinary levels of 8-OHdG, 8-iso-prostaglandin F2α (8-iso-PGF2α), and various metals. We observed that a 10-μg/m3 increase in the mean PM2.5 concentration was associated with a 2.15% increase in 8-OHdG and an 8.43% increase in 8-iso-PGF2α in welding workers. Both 8-OHdG and 8-iso-PGF2α were associated with Fe and Zn in the urine. In conclusion, metal fume PM2.5 could increase the risk of cardiovascular toxicity after inhalation. PMID:27641436

  9. Friction Stir Welding for Aluminum Metal Matrix Composites (MMC's) (Center Director's Discretionary Fund, Project No. 98-09)

    NASA Technical Reports Server (NTRS)

    Lee, J. A.; Carter, R. W.; Ding, J.

    1999-01-01

    This technical memorandum describes an investigation of using friction stir welding (FSW) process for joining a variety of aluminum metal matrix composites (MMC's) reinforced with discontinuous silicon-carbide (SiC) particulate and functional gradient materials. Preliminary results show that FSW is feasible to weld aluminum MMC to MMC or to aluminum-lithium 2195 if the SiC reinforcement is <25 percent by volume fraction. However, a softening in the heat-affected zone was observed and is known to be one of the major limiting factors for joint strength. The pin tool's material is made from a low-cost steel tool H-13 material, and the pin tool's wear was excessive such that the pin tool length has to be manually adjusted for every 5 ft of weldment. Initially, boron-carbide coating was developed for pin tools, but it did not show a significant improvement in wear resistance. Basically, FSW is applicable mainly for butt joining of flat plates. Therefore, FSW of cylindrical articles such as a flange to a duct with practical diameters ranging from 2-5 in. must be fully demonstrated and compared with other proven MMC joining techniques for cylindrical articles.

  10. The Application of Stress-Relaxation Test to Life Assessment of T911/T22 Weld Metal

    NASA Astrophysics Data System (ADS)

    Cao, Tieshan; Zhao, Jie; Cheng, Congqian; Li, Huifang

    2016-03-01

    A dissimilar weld metal was obtained through submerged arc welding of a T911 steel to a T22 steel, and its creep property was explored by stress-relaxation test assisted by some conventional creep tests. The creep rate information of the stress-relaxation test was compared to the minimum and the average creep rates of the conventional creep test. Log-log graph showed that the creep rate of the stress-relaxation test was in a linear relationship with the minimum creep rate of the conventional creep test. Thus, the creep rate of stress-relaxation test could be used in the Monkman-Grant relation to calculate the rupture life. The creep rate of the stress-relaxation test was similar to the average creep rate, and thereby the rupture life could be evaluated by a method of "time to rupture strain." The results also showed that rupture life which was assessed by the Monkman-Grant relation was more accurate than that obtained through the method of "time to rupture strain."

  11. General Mechanical Repair. Welding. Volume 2. Teacher's Guide.

    ERIC Educational Resources Information Center

    East Texas State Univ., Commerce. Occupational Curriculum Lab.

    Five units on welding are presented in this teacher's guide. The units are the following: introduction to oxyacetylene welding, oxyacetylene welding positions and applications, use of the cutting torch, introduction to shielded metal arc welding, and welding joints and positions. Each instructional unit generally contains eight components:…

  12. Flow Patterns During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Guerra, M.; Schmidt, C.; McClure, J. C.; Murr, L. E.; Nunes, A. C.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Friction Stir Welding is a relatively new technique for welding that uses a cylindrical pin or nib inserted along the weld seam. The nib (usually threaded) and the shoulder in which it is mounted are rapidly rotated and advanced along the seam. Extreme deformation takes place leaving a fine equiaxed structure in the weld region., The flow of metal during Friction Stir Welding is investigated using a faying surface tracer and a nib frozen in place during welding. It is shown that material is transported by two processes. The first is a wiping of material from the advancing front side of the nib onto a zone of material that rotates and advances with the nib. The material undergoes a helical motion within the rotational zone that both rotates and advances and descends in the wash of the threads on the nib and rises on the outer part of the rotational zone. After one or more rotations, this material is sloughed off in its wake of the nib, primarily on the advancing side. The second process is an entrainment of material from the front retreating side of the nib that fills in between the sloughed off pieces from the advancing side.

  13. Friction-Stir Welding of Aluminum For the Space Program

    NASA Technical Reports Server (NTRS)

    Jones, Clyde S.; Smelser, Jerry W. (Technical Monitor)

    2002-01-01

    The Marshall Space Flight Center is developing and characterizing the friction stir welding process for the Space Shuttle and other space programs. This revolutionary process, invented and patented by The Weld Institute in England, offers tremendous advantages for joining aluminum for high performance applications. It is particularly suited for advanced aluminum-lithium alloys, such as 2195, the primary structural alloy used in the External Tank. The friction stir welding process joins metals with minimal heat input, resulting in high-strength joints with high ductility. It is a simple process to demonstrate using a common milling machine for sample parts, but relatively expensive to implement on large-scale hardware, due to the high cost of tooling needed to handle the high forging pressures characteristic of the process. Recent developments at the Marshall Space Flight Center have demonstrated friction stir welding on linear joints up to 5 meters (15 ft.), with material thickness ranging between 2.5 mm and 16.5 mm (0.100" to 0.650"). High efficiency weld joints have been produced in aluminum from the 2000, 5000, and 6000 series alloy systems. A "retractable pin tool" system was patented by MSFC that allows use of friction stir welding for joints with changing material thickness, and with less rigid tooling than previously considered. This presentation will describe the details of alloys welded to-date and technical advances under development at MSFC. These developments could have substantial benefit to industrial applications for welding aluminum.

  14. The Formability of Friction Stir Welds in Automotive Stamping Environments

    SciTech Connect

    Grant, Glenn J.; Davies, Richard W.; Stephens, Elizabeth V.; Wazny, Scott; Kaunitz, Leon; Waldron, Douglas J.

    2006-02-01

    Automobile body and truck cab structures are composed primarily of stampings formed from monolithic and constant gage blanks. Cost and weight penalties can arise when strength or other requirements in one small area of the part leads to the use of a material or gage that is overmatched to the needs of the rest of the stamping. Tailor Welded Blanks (TWBs) are hybrid sheet products composed of either different materials or different thickness sheets that are joined together, then subjected to a stamping operation to create a formed assembly. The strategy is employed generally to save weight and material costs in the formed assembly by placing higher strength or thicker sections only where needed. The forming or stamping process requires the joint to be severely deformed along with the parent sheets. Aluminum TWBs for automotive applications are particularly problematic because of the low formability of aluminum weld metal. Friction Stir Welding (FSW) is a process recently applied to Aluminum TWBs that has the potential to produce a higher quality weld. The current study presents data on the mechanical properties, formability, and FSW weld process parameter development for friction stir welded aluminum, Tailor Welded Blanks. Friction stir welded TWBs can be shown to have higher formability, higher ductility, and lower defect content than many competing joining processes, and they can be fabricated at speeds appropriate for automotive manufacturing.

  15. Lung tumor production and tissue metal distribution after exposure to manual metal ARC-stainless steel welding fume in A/J and C57BL/6J mice.

    PubMed

    Zeidler-Erdely, Patti C; Battelli, Lori A; Salmen-Muniz, Rebecca; Li, Zheng; Erdely, Aaron; Kashon, Michael L; Simeonova, Petia P; Antonini, James M

    2011-01-01

    Stainless steel welding produces fumes that contain carcinogenic metals. Therefore, welders may be at risk for the development of lung cancer, but animal data are inadequate in this regard. Our main objective was to examine lung tumor production and histopathological alterations in lung-tumor-susceptible (A/J) and -resistant C57BL/6J (B6) mice exposed to manual metal arc-stainless steel (MMA-SS) welding fume. Male mice were exposed to vehicle or MMA-SS welding fume (20 mg/kg) by pharyngeal aspiration once per month for 4 mo. At 78 wk postexposure, gross tumor counts and histopathological changes were assessed and metal analysis was done on extrapulmonary tissue (aorta, heart, kidney, and liver). At 78 wk postexposure, gross lung tumor multiplicity and incidence were unremarkable in mice exposed to MMA-SS welding fume. Histopathology revealed that only the exposed A/J mice contained minimal amounts of MMA-SS welding fume in the lung and statistically increased lymphoid infiltrates and alveolar macrophages. A significant increase in tumor multiplicity in the A/J strain was observed at 78 wk. Metal analysis of extrapulmonary tissue showed that only the MMA-SS-exposed A/J mice had elevated levels of Cr, Cu, Mn, and Zn in kidney and Cr in liver. In conclusion, this study further supports that MMA-SS welding fume does not produce a significant tumorigenic response in an animal model, but may induce a chronic lung immune response. In addition, long-term extrapulmonary tissue alterations in metals in the susceptible A/J mouse suggest that the adverse effects of this fume might be cumulative.

  16. Phased Array Ultrasonic Examination of Reactor Coolant System (Carbon Steel-to-CASS) Dissimilar Metal Weld Mockup Specimen

    SciTech Connect

    Crawford, S. L.; Cinson, A. D.; Diaz, A. A.; Anderson, M. T.

    2015-11-23

    In the summer of 2009, Pacific Northwest National Laboratory (PNNL) staff traveled to the Electric Power Research Institute (EPRI) NDE Center in Charlotte, North Carolina, to conduct phased-array ultrasonic testing on a large bore, reactor coolant pump nozzle-to-safe-end mockup. This mockup was fabricated by FlawTech, Inc. and the configuration originated from the Port St. Lucie nuclear power plant. These plants are Combustion Engineering-designed reactors. This mockup consists of a carbon steel elbow with stainless steel cladding joined to a cast austenitic stainless steel (CASS) safe-end with a dissimilar metal weld and is owned by Florida Power & Light. The objective of this study, and the data acquisition exercise held at the EPRI NDE Center, were focused on evaluating the capabilities of advanced, low-frequency phased-array ultrasonic testing (PA-UT) examination techniques for detection and characterization of implanted circumferential flaws and machined reflectors in a thick-section CASS dissimilar metal weld component. This work was limited to PA-UT assessments using 500 kHz and 800 kHz probes on circumferential flaws only, and evaluated detection and characterization of these flaws and machined reflectors from the CASS safe-end side only. All data were obtained using spatially encoded, manual scanning techniques. The effects of such factors as line-scan versus raster-scan examination approaches were evaluated, and PA-UT detection and characterization performance as a function of inspection frequency/wavelength, were also assessed. A comparative assessment of the data is provided, using length-sizing root-mean-square-error and position/localization results (flaw start/stop information) as the key criteria for flaw characterization performance. In addition, flaw signal-to-noise ratio was identified as the key criterion for detection performance.

  17. Welding Using Chilled-Inert-Gas Purging

    NASA Technical Reports Server (NTRS)

    Mcgee, William F.; Rybicki, Daniel J.

    1995-01-01

    Report describes study of fusion welding using chilled inert gas. Marked improvement shown in welding of aluminum using chilled helium gas. Chilling inert gas produces two additional benefits: 1) creation of ultradense inert atmosphere around welds; 2) chilled gas cools metal more quickly down to temperature at which metals not reactive.

  18. Surface Integrity of Hard Metal Parts Machined by WEDM

    NASA Astrophysics Data System (ADS)

    Plaza, S.; Izquierdo, B.; Sanchez, J. A.; Ortega, N.; Ramos, J. M.

    2009-11-01

    Hard metal is characterised by having a extremely high hardness and high wear resistance, and those characteristics make difficult conventional machining. Electrical Discharge Machining (EDM) has become an attractive and feasible method for the manufacturing of precision hard metal tooling, and it is now an alternative to classical diamond grinding. This is due to the thermal nature of material removal mechanism in EDM, which is therefore independent on part hardness. This work pays attention to the analysis of surface integrity in wire EDM'ed hard metal parts. Damages on the machined surfaces have been characterised for different cutting regimes. Special attention has been paid to the heat affected zone, since it is in this zone where cracking mostly occurs. The study includes the analysis of the chemical composition of the affected layers. Additionally, the influence of successive trim cuts on surface roughness is addressed.

  19. Friction stir welding and processing of oxide dispersion strengthened (ODS) alloys

    SciTech Connect

    Ren, Weiju

    2014-11-11

    A method of welding including forming a filler material of a first oxide dispersoid metal, the first oxide dispersoid material having first strengthening particles that compensate for decreases in weld strength of friction stir welded oxide dispersoid metals; positioning the filler material between a first metal structure and a second metal structure each being comprised of at least a second oxide dispersoid metal; and friction welding the filler material, the first metal structure and the second metal structure to provide a weld.

  20. Electric arc welding gun

    DOEpatents

    Luttrell, Edward; Turner, Paul W.

    1978-01-01

    This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.

  1. FLUXES FOR MECHANIZED ELECTRIC WELDING,

    DTIC Science & Technology

    WELDING FLUXES, WELDING ), (* WELDING , WELDING FLUXES), ARC WELDING , WELDS, STABILITY, POROSITY, WELDING RODS, STEEL, CERAMIC MATERIALS, FLUXES(FUSION), TITANIUM ALLOYS, ALUMINUM ALLOYS, COPPER ALLOYS, ELECTRODEPOSITION

  2. Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.

  3. Gas Shielding Technology for Welding and Brazing

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur J.; Gradl, Paul R.

    2012-01-01

    Welding is a common method that allows two metallic materials to be joined together with high structural integrity. When joints need to be leak-tight, light-weight, or free of contaminant-trapping seams or surface asperities, welding tends to be specified. There are many welding techniques, each with its own advantages and disadvantages. Some of these techniques include Forge Welding, Gas Tungsten Arc Welding, Friction Stir Welding, and Laser Beam Welding to name a few. Whichever technique is used, the objective is a structural joint that meets the requirements of a particular component or assembly. A key practice in producing quality welds is the use of shielding gas. This article discusses various weld techniques, quality of the welds, and importance of shielding gas in each of those techniques. Metallic bonds, or joints, are produced when metals are put into intimate contact. In the solid-state "blacksmith welding" process, now called Forge Welding (FOW), the site to be joined is pounded into intimate contact. The surfaces to be joined usually need to be heated to make it easier to deform the metal. The surfaces are sprinkled with a flux to melt surface oxides and given a concave shape so that surface contamination can be squeezed out of the joint as the surfaces are pounded together; otherwise the surface contamination would be trapped in the joint and would weaken the weld. In solid-state welding processes surface oxides or other contamination are typically squeezed out of the joint in "flash."

  4. The Origin of Acicular Ferrite in Gas Metal Arc and Submerged ARC Welds

    DTIC Science & Technology

    1994-03-01

    Ti/Al ........ .. 120 Figure 4.4 SAW % Acicular Ferrite vs Inclusion VF . . 121 Figure 4.5 Micrograph of TiN Inclusion in HY-80 Steel 122 Figure 4.6...Figure 4.19 SAW Strength vs %CG/%XF/CFE ... ........ .. 136 Figure 4.20 SAW DBTT vs CG/AF/Weld Mn ... ......... .. 137 viii LIST OF TABLES TABLE 2.1...COMPOSITION OF HIGH STRENGTH STEELS . . .. 48 TABLE 2.2 MECH. PROP. LIMITS OF HIGH STRENGTH STEELS 49 TABLE 2.3 HY-100 SAW ELECTRODE CHEMISTRY ...... 49

  5. Gas Metal Arc Weld (GMAW) Qualification of 7020-T651 Aluminum

    DTIC Science & Technology

    2015-11-01

    beam, and push-pull wire feed........................................................9 Fig. 6 Drawing of v-groove joint and end tabs used for ballistic...procedure 806-1, 5087 wire , GMAW-P, page 3 ........................52 vii Fig. C-1 Drawing of the 25.04-mm-thick qualification panels (QPs...plate made with the condition of 5556A wire , GMAW-P mode, and 25.04-mm plate thickness. Fig. 4 Drawing and tension specimens for welds of 39.94-mm

  6. High-Powered, Ultrasonically Assisted Thermal Stir Welding

    NASA Technical Reports Server (NTRS)

    Ding, Robert

    2013-01-01

    This method is a solid-state weld process capable of joining metallic alloys without melting. The weld workpieces to be joined by thermal stir welding (TSW) are drawn, by heavy forces, between containment plates past the TSW stir tool that then causes joining of the weld workpiece. TSW is similar to friction stir welding (FSW) in that material is heated into a plastic state (not melted) and stirred using a stir rod. The FSW pin tool is an integrated geometrical structure consisting of a large-diameter shoulder, and a smaller-diameter stir pin protruding from the shoulder. When the pin is plunged into a weld workpiece, the shoulder spins on the surface of the weld workpiece, thus inducing frictional heat into the part. The pin stirs the fraying surfaces of the weld joint, thus joining the weld workpiece into one structure. The shoulder and stir pin of the FSW pin tool must rotate together at a desired rotational speed. The induced frictional energy control and stir pin control of the pin tool cannot be de-coupled. The two work as one integrated unit. TSW, on the other hand, de-couples the heating and stirring of FSW, and allows for independent control of each process element. A uniquely designed induction coil heats the weld workpiece to a desired temperature, and once heated, the part moves into a stir rod whose RPM is also independently controlled. As the weld workpiece moves into the stir rod, the piece is positioned, or sandwiched, between upper and lower containment plates. The plate squeezes together, thus compressing the upper and lower surfaces of the weld workpiece. This compressive force, also called consolidation force, consolidates the plastic material within the weld nugget material as it is being stirred by the stir rod. The stir rod is positioned through the center of the top containment plate and protrudes midway through the opposite lower containment plate where it is mechanically captured. The upper and lower containment plates are separated by a

  7. INERT GAS SHIELD FOR WELDING

    DOEpatents

    Jones, S.O.; Daly, F.V.

    1958-10-14

    S>An inert gas shield is presented for arc-welding materials such as zirconium that tend to oxidize rapidly in air. The device comprises a rectangular metal box into which the welding electrode is introduced through a rubber diaphragm to provide flexibility. The front of the box is provided with a wlndow having a small hole through which flller metal is introduced. The box is supplied with an inert gas to exclude the atmosphere, and with cooling water to promote the solidification of the weld while in tbe inert atmosphere. A separate water-cooled copper backing bar is provided underneath the joint to be welded to contain the melt-through at the root of the joint, shielding the root of the joint with its own supply of inert gas and cooling the deposited weld metal. This device facilitates the welding of large workpieces of zirconium frequently encountered in reactor construction.

  8. Combining Welding Expert Systems With Welding Databases to Improve Shipbuilding Production (The National Shipbuilding Research Program)

    DTIC Science & Technology

    1989-09-01

    boards ever developed. BACKGROUND The joining of metals into fabricated com- ponents and structures is a difficult task. The most common method of...joining metals is weld- ing, but the welding process is complex and requires several important steps to be performed in a carefully integrated manner...including filler metal and protective flux orinert gas, are chosen. Then the welding procedure is specified, including preheating schedules; welding

  9. Study of inertia welding: the sensitivity of weld configuration and strength to variations in welding parameters

    SciTech Connect

    Mote, M.W.

    1981-12-01

    An experiment is described which is designed to demonstrate the forgiveness of inertia welding, that is, the relative insensitivity of weld strength to variations in energy (rotational speed of parts) and axial force. Although easily observed variations in the welding parameters produced easily observed changes in weldment configuration and changes in dimension (upset), only extremes in parameters produced changes in weld strength. Consequently, process monitoring and product inspection would be sufficient for quality assurance in a production environment.

  10. Welding filler metal and procedure development for EPRI`s NOREM hardfacing alloy

    SciTech Connect

    Phillips, M.K.; Findlan, S.J.

    1995-12-31

    Iron-based wear-resistant alloys, designated NOREM, have been developed by the Electric Power Research Institute (EPRI) to address radiation exposure concerns to maintenance personnel in nuclear power plants. The often used cobalt-base alloys have been shown to be a major contributor to radiation field buildup as a result of cobalt wear particles passing through the reactor vessel and becoming ted, These ted particles are then transported throughout the primary nuclear system. This paper summarizes the results of the EPRI sponsored project which focused on the development of consumables and welding parameters for in-situ application. The development of hardfacing rod and wire product forms which yield multi-layer, crack-free deposits on both carbon and stainless steel substrates without the need for preheat, presented some unique challenges. This paper discusses the effect of various alloying and impurity elements on weldability. Results of galling wear, corrosion resistance, mechanical testing, as compared with the more traditional materials, will also be reported. Finally, material specifications and welding parameters will be provided, along with an overview of current nuclear utility applications.

  11. Method for welding beryllium

    DOEpatents

    Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

    1997-04-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. 9 figs.

  12. Materials participation in welded joints manufacturing

    NASA Astrophysics Data System (ADS)

    Ghenghea, L. D.

    2016-08-01

    Management of materials dilution to form a joint with higher features asked by complex metallic structures is a problem that took attention and efforts of welding processes researchers and this communication will give a little contribution presenting some scientific and experimental results of dilution processes studied by Welding Research Group from Iasi, Romania, TCM Department. Liquid state welding processes have a strong dependence related to dilution of base and filler materials, the most important are for automatic joining using welding. The paper presents a review of some scientific works already published and their contributions, results of dilution coefficient evaluation using weighing, graphics and software applied for shielded metal arc welding process. Paper results could be used for welders’ qualification, welding procedure specification and other welding processes researchers’ activities. The results of Welding Research Group from Iasi, Romania, TCM Department, show dilution coefficient values between 20-30 % of base material and 70-80 % of filler material for studied welding process.

  13. Parametric study in weld mismatch of longitudinally welded SSME HPFTP inlet

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Spanyer, K. L.; Brunair, R. M.

    1991-01-01

    Welded joints are an essential part of pressure vessels such as the Space Shuttle Main Engine (SSME) Turbopumps. Defects produced in the welding process can be detrimental to weld performance. Recently, review of the SSME high pressure fuel turbopump (HPFTP) titanium inlet x rays revealed several weld discrepancies such as penetrameter density issues, film processing discrepancies, weld width discrepancies, porosity, lack of fusion, and weld offsets. Currently, the sensitivity of welded structures to defects is of concern. From a fatigue standpoint, weld offset may have a serious effect since local yielding, in general, aggravates cyclic stress effects. Therefore, the weld offset issue is considered. Using the finite element method and mathematical formulations, parametric studies were conducted to determine the influence of weld offsets and a variation of weld widths in longitudinally welded cylindrical structures with equal wall thickness on both sides of the joint. From the study, the finite element results and theoretical solutions are presented.

  14. Galvanic corrosion of beryllium welds

    SciTech Connect

    Hill, M.A.; Butt, D.P.; Lillard, R.S.

    1997-12-01

    Beryllium is difficult to weld because it is highly susceptible to cracking. The most commonly used filler metal in beryllium welds is Al-12 wt.% Si. Beryllium has been successfully welded using Al-Si filler metal with more than 30 wt.% Al. This filler creates an aluminum-rich fusion zone with a low melting point that tends to backfill cracks. Drawbacks to adding a filler metal include a reduction in service temperature, a lowering of the tensile strength of the weld, and the possibility for galvanic corrosion to occur at the weld. To evaluate the degree of interaction between Be and Al-Si in an actual weld, sections from a mock beryllium weldment were exposed to 0.1 M Cl{sup {minus}} solution. Results indicate that the galvanic couple between Be and the Al-Si weld material results in the cathodic protection of the weld and of the anodic dissolution of the bulk Be material. While the cathodic protection of Al is generally inefficient, the high anodic dissolution rate of the bulk Be during pitting corrosion combined with the insulating properties of the Be oxide afford some protection of the Al-Si weld material. Although dissolution of the Be precipitate in the weld material does occur, no corrosion of the Al-Si matrix was observed.

  15. A Field Study on the Respiratory Deposition of the Nano-Sized Fraction of Mild and Stainless Steel Welding Fume Metals

    PubMed Central

    Cena, L. G.; Chisholm, W. P.; Keane, M. J.; Chen, B. T.

    2016-01-01

    A field study was conducted to estimate the amount of Cr, Mn, and Ni deposited in the respiratory system of 44 welders in two facilities. Each worker wore a nanoparticle respiratory deposition (NRD) sampler during gas metal arc welding (GMAW) of mild and stainless steel and flux-cored arc welding (FCAW) of mild steel. Several welders also wore side-by-side NRD samplers and closed-face filter cassettes for total particulate samples. The NRD sampler estimates the aerosol's nano-fraction deposited in the respiratory system. Mn concentrations for both welding processes ranged 2.8–199 μg/m3; Ni concentrations ranged 10–51 μg/m3; and Cr concentrations ranged 40–105 μg/m3. Cr(VI) concentrations ranged between 0.5–1.3 μg/m3. For the FCAW process the largest concentrations were reported for welders working in pairs. As a consequence this often resulted in workers being exposed to their own welding fumes and to those generated from the welding partner. Overall no correlation was found between air velocity and exposure (R2 = 0.002). The estimated percentage of the nano-fraction of Mn deposited in a mild-steel-welder's respiratory system ranged between 10 and 56%. For stainless steel welding, the NRD samplers collected 59% of the total Mn, 90% of the total Cr, and 64% of the total Ni. These results indicate that most of the Cr and more than half of the Ni and Mn in the fumes were in the fraction smaller than 300 nm. PMID:25985454

  16. A Field Study on the Respiratory Deposition of the Nano-Sized Fraction of Mild and Stainless Steel Welding Fume Metals.

    PubMed

    Cena, L G; Chisholm, W P; Keane, M J; Chen, B T

    2015-01-01

    A field study was conducted to estimate the amount of Cr, Mn, and Ni deposited in the respiratory system of 44 welders in two facilities. Each worker wore a nanoparticle respiratory deposition (NRD) sampler during gas metal arc welding (GMAW) of mild and stainless steel and flux-cored arc welding (FCAW) of mild steel. Several welders also wore side-by-side NRD samplers and closed-face filter cassettes for total particulate samples. The NRD sampler estimates the aerosol's nano-fraction deposited in the respiratory system. Mn concentrations for both welding processes ranged 2.8-199 μg/m3; Ni concentrations ranged 10-51 μg/m3; and Cr concentrations ranged 40-105 μg/m3. Cr(VI) concentrations ranged between 0.5-1.3 μg/m3. For the FCAW process the largest concentrations were reported for welders working in pairs. As a consequence this often resulted in workers being exposed to their own welding fumes and to those generated from the welding partner. Overall no correlation was found between air velocity and exposure (R2 = 0.002). The estimated percentage of the nano-fraction of Mn deposited in a mild-steel-welder's respiratory system ranged between 10 and 56%. For stainless steel welding, the NRD samplers collected 59% of the total Mn, 90% of the total Cr, and 64% of the total Ni. These results indicate that most of the Cr and more than half of the Ni and Mn in the fumes were in the fraction smaller than 300 nm.

  17. Micro-Replication: Precision Metal parts from Electronformed Master Molds

    SciTech Connect

    James J. Kelly

    2002-01-01

    The possibility of using through-mask electrodeposition to fill features with active sidewalls was investigated. Both metal (Ni) and conductive substrates were employed; the demolding of electroformed Ni metal parts from metal substrates was difficult despite the use of various lubricants. Because of damage to the electrodeposited parts during the demolding process, conductive plastic substrates appear more feasible than metal substrates. Direct current was capable of filling features with low aspect ratios ({approx}2) with only minor voiding. For higher aspect ratio features ({approx}7), pulsed deposition and direct current with the leveling agent coumarin appeared to be more effective than pulsed reverse deposition. Since the characteristic diffusion time constant varies with the square of the feature depth, chloride ions are necessary to prevent passivation during the long pulse off-times required for uniform feature filling through a thick mask. It is shown that although thick masks require long pulse off-times, the recommended deposition rate for uniform filling (available in the literature) should not depend on the mask thickness (although the total deposition time will).

  18. [Change in the composition and structure of the metal in the zone of the welded seam of dental drill blanks].

    PubMed

    Altareva, G I; Bazhukhin, V I; Gerasev, G P; Matukhnov, V M; Shmyreva, T P

    1982-01-01

    Composition and structure of metals in the meld zone connecting a dental burr handpiece made of hard alloy BK-6 with a shank made of steel 20X13 are examined by the X-ary microanalyzer MS-46 and the X-ray diffractometer "dPOH-2". Representative interdiffusion processes of alloy components into steel and, converserly, iron from steel into hard alloy are found. After melding, the transition layer has been shown to represent the cobalt-iron solid solution with variable concentration of the components through the layer, tungsten carbid particles being uniformly spread all over the metallic matrix. The phasic composition change is analysed in the course of material welding. The enrichment of stell melt with carbon of tungsten carbid results in the formation of gamma-Fe phase in the meld zone. The failure of burr blanks is noted to occur at the interface of the second (10-20 micrometer) and the first (130-140 micrometer) zones. The increase in the concentration of both iron and iron-containing phases--alpha-Fe, gamma-Fe, Fe3W3C--at the surface of steel fracture is responsible for the failures.

  19. Infrared thermography for monitoring heat generation in a linear friction welding process of Ti6Al4V alloy

    NASA Astrophysics Data System (ADS)

    Maio, L.; Liberini, M.; Campanella, D.; Astarita, A.; Esposito, S.; Boccardi, S.; Meola, C.

    2017-03-01

    The increasing use of titanium alloys in a wider range of applications requires the development of new techniques and processes capable to decrease production costs and manufacturing times. In this regard welding and other joining techniques play an important role. Today, solid state friction joining processes, such as friction stir welding, friction spot welding, inertia friction welding, continuous-drive friction welding and linear friction welding (LFW), represent promising methods for part manufacturing. They allow for joining at temperature essentially below the melting point of the base materials being joined, without the addition of filler metal. However, the knowledge of temperature is essential to understand and model the phenomena involved in metal welding. A global measured value represents only a clue of the heat generation during the process; while, a deep understanding of welding thermal aspects requires temperature field measurement. This paper is focused on the use of infrared thermography applied to the linear friction welding process of Ti6Al4V alloy. The attention is concentrated on thermal field that develops on the outer wall of the two parts to be joined (i.e. heat generated in the friction zone), and on the maximum temperature that characterizes the process before and after the flash formation.

  20. The influence of Sc addition on the welding microstructure of Zr-based bulk metallic glass: The stability of the amorphous phase

    NASA Astrophysics Data System (ADS)

    Wang, Shing Hoa; Kuo, Pei Hung; Tsang, Hsiao Tsung; Jeng, Rong Ruey; Lin, Yu Lon

    2007-10-01

    Pulsed direct current autogeneous tungsten inert gas arc welding was conducted on rods of bulk metallic glasses (BMGs) Zr55Cu30Ni5Al10 and (Zr55Cu30Ni5Al10)99.98Sc0.02 under two different cooling conditions. The crystalline precipitates in the fusion zone of BMG Zr55Cu30Ni5Al10 were confirmed by microfocused x-ray diffraction pattern analysis as Zr2Ni and Zr2(Cu,Al) intermetallic compounds. In contrast, BMG with Sc addition (Zr55Cu30Ni5Al10)99.98Sc0.02 shows an excellent stable glass forming ability. The fusion zone of BMG (Zr55Cu30Ni5Al10)99.98Sc0.02 remains in the same amorphous state as that of the amorphous base metal when the weld is cooled with accelerated cooling.

  1. Assessing the Impact of Sequencing Practicums for Welding in Agricultural Mechanics

    ERIC Educational Resources Information Center

    Rose, Malcolm; Pate, Michael L.; Lawver, Rebecca G.; Warnick, Brian K.; Dai, Xin

    2015-01-01

    This study examined the impact of sequencing practicums for welding on students' ability to perform a 1F (flat position-fillet lap joint) weld on low-carbon steel. Participants were randomly assigned a specific practice sequence of welding for using gas metal arc welding (GMAW) and shielded metal arc welding (SMAW). A total of 71 participants…

  2. A Brief Introduction to the Theory of Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and is already an important welding process for the aerospace industry, where welds of optimal quality are demanded. The structure of welds determines weld properties. The structure of friction stir welds is determined by the flow field in the weld metal in the vicinity of the weld tool. A simple kinematic model of the FSW flow field developed at Marshall Space Flight Center, which enables the basic features of FSW microstructure to be understood and related to weld process parameters and tool design, is explained.

  3. Study on nondestructive inspection using HTS-SQUID for friction stir welding between dissimilar metals

    NASA Astrophysics Data System (ADS)

    Hatsukade, Y.; Takahashi, T.; Yasui, T.; Tsubaki, M.; Fukumono, M.; Tanaka, S.

    2007-10-01

    We have developed an SQUID-NDI technique for evaluation of friction stir welding (FSW) between aluminum alloy A6063 and stainless steel SUS304 from the electric conductivities in board specimens bonded by FSW. A SQUID-NDI system employing an HTS-SQUID gradiometer was constructed to measure current distribution in the FSW specimens by applying voltage to the specimen. By measuring field gradients dBz/dy and dBz/dx above the FSW specimens made with various FSW conditions and then converting them to current vector Jx and Jy, conductivities of FSW areas were estimated. Due to the difference in the FSW conditions, the conductivity distributions varied dramatically. From these results, it was suggested that the conductivities in FSW areas should be varied due to the temperature heated by the friction between the milling tool and the materials.

  4. Automated process control for capacitor-discharge welding

    SciTech Connect

    Wilson, Rick D.; Paul, Brian K.

    1998-01-01

    Capacitor discharge welding (CDW) is an autogenous, rapid solidification, joining process ideal for joining small parts of similar or dissimilar metals. Potential applications include welding of electrical contacts, cutting tool inserts, and automotive valves. Because of high cooling rates in excess of one million °C/s, the production rate for CDW process is very high. However potential industrial users have been hesitant to use CDW due largely to the unavailability of automated process control. The objective of this research was to develop models for an on-line quality control feedback system for CDW. The system described monitors current and voltage curves produced during the welding cycle. These curves have been found to be good indicators of certain types of welding defects. A closed-loop automation architecture for future work will also be discussed.

  5. Internal Filler-Wire Feed For Arc Welding

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E.; Dyer, Gerald E.

    1990-01-01

    Tungsten electrode for gas/tungsten arc welding contains lengthwise channel for feeding filler wire to weld joint. Channel makes it unnecessary to feed wire through guides outside electrode, conserving valuable space near weld and protects wire from deformation by contact with other parts in vicinity of weld. Helpful in robotic or automatic welding.

  6. Evaluation of Crack Arrest Fracture Toughness of Parent Plate, Weld Metal and Heat Affected Zone of BIS 812 EMA Ship Plate Steel

    DTIC Science & Technology

    1993-10-01

    34- EVALUATION OF CRACK ARREST FRACTURE TOUGHNESS OF PARENT PLATE, WELD METAL 0 AND HEAT AFFECTED ZONE OF BIS 812 EMA SHIP PLATE STEEL IA BURCH MRL-TR...had a deleterious effect on the crack arrest properties of this particular steel . Tests on each of these regions revealed that, far the combination of...fracture toughness assessment is not a requirement for qualification for this steel , crack arrest fracture toughness, Kj, can be used to • 0 characterise the

  7. A comparison of LBW and GTAW processes in miniature closure welds

    SciTech Connect

    Knorovsky, G.A.; Fuerschbach, P.W.; Gianoulakis, S.E.; Burchett, S.N.

    1995-07-01

    When small electronic components with glass-to-metal seals are closure welded, residual stresses developed in the glass are of concern. If these stresses exceed allowable tensile levels` the resulting weld-induced seal failure may cause the entire component to be scrapped or reworked at substantial cost. Conventional wisdom says the best welding process for these applications is that which provides the least heat input, and that Laser Beam Welding (LBW) provides less heat input than Gas Tungsten Arc Welding. (GTAW); however, other concerns such as weld fit-up, part variability, and material weldability can modify the final choice of a welding process. In this paper we compare the characteristic levels of heat input and the residual stresses generated in the glass seals for the two processes (as calculated by 3D Finite Element Analysis) as a function of heat input and travel speed, and contrast some of the other manufacturing decisions that must be made to choose a production process. The geometry chosen is a standing edge corner weld in a cylindrical container about 20 mm diameter by 35 mm tall. Four metal pins are glassed into the part lid. The stresses calculated to result from continuous wave C0{sub 2} LBW are compared with those that result from GTAW. The total energy required by the laser weld is significantly less than for the equivalent size GTA weld. The energy input required for a given size weld is inversely proportional to the travel speed, but approaches a saturation level as the travel speed increases. LBW travel speeds ranging from 10 mm/sec to 50 mm/sec were examined.

  8. Weld Wire Investigation Summary

    SciTech Connect

    Cunningham, M.A.

    1999-03-22

    After GTA welding reservoir A production/process prove-in assemblies, X-ray examination detected a lack of sidewall fusion. After examining several possible causes, it was determined that the weld wire filler metal was responsible, particularly the wire cleaning process. The final conclusion was that the filler wire must be abrasively cleaned in a particular manner to perform as required. The abrasive process was incorporated into the wire material specification, ensuring consistency for all reservoir GTA welding at AlliedSignal Federal Manufacturing and Technologies (FM and T).

  9. The Formability of Friction Stir Welds in Automotive Stamping Environments

    SciTech Connect

    Grant, Glenn J.; Davies, Richard W.; Stephens, Elizabeth V.; wazny, scott; Kaunitz, Leon; Waldron, D.

    2005-04-01

    Automobile body and truck cab structures are composed primarily of stampings formed from monolithic and constant gage blanks. Cost and weight penalties can arrise when strength or other requirements in one small area of the part leads to the use of a material or gage that is overmatched to the needs of the rest of the stamping. Tailor Welded Blanks (TWBs) are hybrid sheet products composed of either different materials or different thickness sheets that are joined together, then subjected to a stamping operation to create a formed assembly. The strategy is employed generally to save weight and material costs in the formed assembly by placing higher strength or thicker sections only where needed. The forming or stamping process requires the joint to be severely deformed along with the parent sheets. Aluminum TWBs for automotive applications are particularly problematic because of the low formability of aluminum weld metal. Friction Stir Welding (FSW) is a process recently applied to Aluminum TWBs that has the potential to produce a higher quality weld. The current study presents data on the mechanical properties, formability, and FSW weld process parameter development for friction stir woined, aluminum, Tailor Welded Blanks. Friction stir welded TWBs can be shown to have higher formability, higher ductility, and lower defect content than many competing joining processes, and they can be fabricated at speeds appropriate for automotive manufacturing.

  10. Cleaning Process Development for Metallic Additively Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark

    2014-01-01

    Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.

  11. Welding Curriculum.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of welding trade programs. Based on a survey of Alaskan welding employers, it includes all competencies a student should acquire in such a welding program. The handbook stresses the importance of understanding the principles associated with the various elements of welding.…

  12. Welding IV.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding IV, a competency-based course in advanced arc welding offered at the Community College of Allegheny County to provide students with proficiency in: (1) single vee groove welding using code specifications established by the American Welding Society…

  13. Robotic gas metal arc welding of small diameter saddle type joints using multi-stripe structured light

    NASA Astrophysics Data System (ADS)

    Bonser, Gary R.; Parker, Graham A.

    1999-11-01

    Single-stripe structured light sensors are widely used in conjunction with arc welding robots for seam-tracking purposes. The interaction of the projected light with the weld joint and component surfaces produces characteristic line shapes with feature points that can be recognized at high speed by an underlying vision system. Unfortunately they are suitable only for the major classes of weld joint typically encountered within industry--long, straight, or gently curving fillet or butt joints. We present a multistripe structured light sensor that detects and measures the position of the saddle type weld joint formed by two small (< 50-mm)-diameter intersecting tubes. The underlying image processing algorithms detect the weld feature points from each stripe along with four calibration points to generate the entire weld path in the robot workcell base coordinate system before welding commences. The system is validated within an existing welding application; detecting 93% of the weld feature points within +/- 0.4 mm when used on 30-mm-diam tubes.

  14. Friction Stir Weld Tools

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor); Payton, Lewis N. (Inventor)

    2007-01-01

    A friction stir weld tool sleeve is supported by an underlying support pin. The pin material is preferably selected for toughness and fracture characteristics. The pin sleeve preferably has a geometry which employs the use of an interrupted thread, a plurality of flutes and/or eccentric path to provide greater flow through. Paddles have been found to assist in imparting friction and directing plastic metal during the welding process.

  15. Friction stir weld tools

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor); Payton, Lewis N. (Inventor)

    2007-01-01

    A friction stir weld tool sleeve is supported by an underlying support pin. The pin material is preferably selected for toughness and fracture characteristics. The pin sleeve preferably has a geometry which employs the use of an interrupted thread, a plurality of flutes and/or eccentric path to provide greater flow through. Paddles have been found to assist in imparting friction and directing plastic metal during the welding process.

  16. A path to in-space welding and to other in-space metal processing technologies using Space Shuttle small payloads

    NASA Technical Reports Server (NTRS)

    Tamir, David

    1992-01-01

    As we venture into space, it becomes necessary to assemble, expand, and repair space-based structures for our housing, research, and manufacturing. The zero gravity-vacuum of space challenges us to employ construction options which are commonplace on Earth. Rockwell International (RI) has begun to undertake the challenge of space-based construction via numerous options, of which one is welding. As of today, RI divisions have developed appropriate resources and technologies to bring space-based welding within our grasp. Further work, specifically in the area of developing space experiments to test RI technology, is required. RI Space Welding Project's achievements to date, from research and development (R&E) efforts in the areas of microgravity, vacuum, intra- / extra- vehicular activity and spinoff technologies, are reviewed. Special emphasis is given to results for G-169's (Get Away Special) microgravity flights aboard a NASA KC-135. Based on these achievements, a path to actual development of a space welding system is proposed with options to explore spinoff in-space metal processing technologies. This path is constructed by following a series of milestone experiments, of which several are to utilize NASA's Shuttle Small Payload Programs. Conceptual designs of the proposed shuttle payload experiments are discussed with application of lessons learned from G-169's design, development, integration, testing, safety approval process, and KC-135 flights.

  17. Pulsed Long Arc Welding

    NASA Astrophysics Data System (ADS)

    Krampit, N. Yu

    2016-04-01

    The paper presents a method and an appliance for pulsed arc welding. The method supports dosage of energy required for melting each bead of electrode metal starting from the detachment of a bead. The appliance including a sensor to register bead detachment shows this moment due to the voltage burst in the arc space. Transferred beads of electrode metal are of similar size because of the dosage of energy used for melting each bead, as the consequence, the process is more stable and starting conditions to transfer electrode metal are similar, as the result, a produced weld is improved.

  18. Laser welding and post weld treatment of modified 9Cr-1MoVNb steel.

    SciTech Connect

    Xu, Z.

    2012-04-03

    Laser welding and post weld laser treatment of modified 9Cr-1MoVNb steels (Grade P91) were performed in this preliminary study to investigate the feasibility of using laser welding process as a potential alternative to arc welding methods for solving the Type IV cracking problem in P91 steel welds. The mechanical and metallurgical testing of the pulsed Nd:YAG laser-welded samples shows the following conclusions: (1) both bead-on-plate and circumferential butt welds made by a pulsed Nd:YAG laser show good welds that are free of microcracks and porosity. The narrow heat affected zone has a homogeneous grain structure without conventional soft hardness zone where the Type IV cracking occurs in conventional arc welds. (2) The laser weld tests also show that the same laser welder has the potential to be used as a multi-function tool for weld surface remelting, glazing or post weld tempering to reduce the weld surface defects and to increase the cracking resistance and toughness of the welds. (3) The Vicker hardness of laser welds in the weld and heat affected zone was 420-500 HV with peak hardness in the HAZ compared to 240 HV of base metal. Post weld laser treatment was able to slightly reduce the peak hardness and smooth the hardness profile, but failed to bring the hardness down to below 300 HV due to insufficient time at temperature and too fast cooling rate after the time. Though optimal hardness of weld made by laser is to be determined for best weld strength, methods to achieve the post weld laser treatment temperature, time at the temperature and slow cooling rate need to be developed. (4) Mechanical testing of the laser weld and post weld laser treated samples need to be performed to evaluate the effects of laser post treatments such as surface remelting, glazing, re-hardening, or tempering on the strength of the welds.

  19. An engineering model to simulate the thermal response of electronic devices during pulsed Nd:YAG laser welding

    SciTech Connect

    Gianoulakis, S.E.; Voth, T.E.; Fuerschbach, P.W.; Prinzbach, J.H.

    1996-12-31

    A model is developed to predict the thermal response of real electronic devices during pulsed Nd:YAG laser welding. Modeling laser-part interaction requires incorporation of weld pool hydrodynamics, and laser-metal vapor and laser-surface interactions. Although important information can be obtained from these models, they are not appropriate for use in design of actual components due to computational limitations. In lieu of solving for these detailed physics, a simple model is constructed. In this model, laser-part interactions are accounted for through an empirically determined energy transfer efficiency which is developed through the use of modeling and experiments. This engineering model is appropriate since part thermal response near the weld pool and weld pool shape is not of interest here. Reasonable agreement between predictions and experimental measurements for welding of real components are indicated.

  20. Fatigue Crack Growth Rate Test Results for Al-Li 2195 Parent Metal, Variable Polarity Plasma Arc Welds and Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Hafley, Robert A.; Wagner, John A.; Domack, Marcia S.

    2000-01-01

    The fatigue crack growth rate of aluminum-lithium (Al-Li) alloy 2195 plate and weldments was determined at 200-F, ambient temperature and -320-F. The effects of stress ratio (R), welding process, orientation and thickness were studied. Results are compared with plate data from the Space Shuttle Super Lightweight Tank (SLWT) allowables program. Data from the current series of tests, both plate and weldment, falls within the range of data generated during the SLWT allowables program.

  1. Pollution prevention assessment for a metal parts coater

    SciTech Connect

    Edwards, H.W.; Kostrzewa, M.F.; Spika, T.; Looby, G.P.

    1995-09-01

    The US Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. In an effort to assist these manufacturers Waste Minimization Assessment Centers (WMACs) were established at selected universities and procedures were adapted from the EPA Waste Minimization Opportunity Assessment Manual. The WMAC team at Colorado State University performed an assessment at a plant that applies corrosion resistant coatings to metal parts. Aluminum parts received from customers may be anodized or may receive a chromate conversion coating. Brass, copper, steel, and aluminum parts from customers are nickel plated--either by electrolytic or electroless plating. The assessment team`s report, detailing findings and recommendations, indicated that large quantities of wastewater and metal sludge are generated by the plant and that significant cost savings could be achieved through replacement of Freon used for degreasing. This Research Brief was developed by the principal investigators and EPA`s National Risk Management Research Laboratory, Cincinnati, OH, to announce key findings of an ongoing research project that is fully documented in a separate report of the same title available from University City Science Center.

  2. Spectral diagnostics of a vapor-plasma plume produced during welding with a high-power ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Uspenskiy, S. A.; Shcheglov, P. Yu.; Petrovskiy, V. N.; Gumenyuk, A. V.; Rethmeier, M.

    2013-07-01

    We have conducted spectroscopic studies of the welding plasma formed in the process of welding with an ytterbium fiber laser delivering output power of up to 20 kW. The influence of shielding gases (Ar, He) on different parts of the welding plume is investigated. The absorption coefficient of the laser radiation by the welding-plume plasma is estimated. Scattering of 532-nm probe radiation from particles of the condensed metal vapor within the caustic of a high-power fiber laser beam is measured. Based on the obtained results, conclusions are made on the influence of the plasma formation and metal vapor condensation on the radiation of the high-power fiber laser and the stability of the welding process.

  3. Dynamic Strength Evaluations for Self-Piercing Rivets and Resistance Spot Welds Joining Similar and Dissimilar Metals

    SciTech Connect

    Sun, Xin; Khaleel, Mohammad A.

    2007-10-01

    This paper summarizes the dynamic joint strength evaluation procedures and the measured dynamic strength data for thirteen joint populations of self-piercing rivets (SPR) and resistance spot welds (RSW) joining similar and dissimilar metals. A state-of-the-art review of the current practice for conducting dynamic tensile/compressive strength tests in different strain rate regimes is first presented, and the generic issues associated with dynamic strength test are addressed. Then, the joint strength testing procedures and fixture designs used in the current study are described, and the typical load versus displacement curves under different loading configurations are presented. Uniqueness of the current data compared with data in the open literature is discussed. The experimental results for all the joint populations indicate that joint strength increases with increasing loading rate. However, the strength increase from 4.47m/s (10mph) to 8.94m/s (20mph) is not as significant as the strength increase from static to 4.47m/s. It is also found that with increasing loading velocity, displacement to failure decreases for all the joint samples. Therefore, “brittleness” of the joint sample increases with impact velocity. Detailed static and dynamic strength data and the associated energy absorption levels for all the samples in the thirteen joint populations are also included.

  4. A newly developed snow vehicle (SM100S) for Antarctica. Part 3: Low temperature toughness of the welded joints of the structural steel

    NASA Astrophysics Data System (ADS)

    Sakui, Shin; Nakajima, Masashi

    1992-11-01

    For the purpose of developing a new snow vehicle (common use at temperature about -50 C) for the deep ice coring project at Dome Fuji, East Antarctica, the low temperature toughness of the welded joints of structural steel was investigated. It is empirically well known that in case of vehicles employed in a cold air temperature of about -50 C, the low temperature brittle fracture of the structural members does not take place, if one uses semi-killed or killed steel, for which 50 percent FATT's (fracture appearance transition temperature) of the Charpy impact test is about -50 C and Charpy impact values at -50 C are 20 to 29 J/sq cm. In the present report, the Charpy impact test has been performed for both single pass SMAW (shield metal arc welding) and CO2 arc welded joints of JIS (Japan Industrial Standards) steels of SS400, SL2N255, STPL380, and STPL450. The test results show that the JIS steels of SL2N255 and STPL450 can be used for the new vehicle, considering their toughness.

  5. Weld seam tracking and lap weld penetration monitoring using the optical spectrum of the weld plume

    SciTech Connect

    Mueller, R.E.; Hopkins, J.A.; Semak, V.V.; McCay, M.H.

    1996-12-31

    Joining of dissimilar materials is a long standing problem in manufacturing, with many tricks and special techniques developed to successfully join specific pairs of materials. Often, these special techniques impose stringent requirements on the process such as precise control of process parameters to achieve the desired joint characteristics. Laser welding is one of the techniques which has had some success in welding dissimilar metal alloys, and appears to be a viable process for these materials. Minimal heat input limits differential thermal expansion, and the small weld pool allows precise control of alloy mixing in the fusion zone. Obtaining optimal weld performance requires accurate monitoring and control of absorbed laser power and weld focus position. In order to monitor the laser welding process, the authors have used a small computer controlled optical spectrometer to observe the emission from the weld plume. Absorbed laser power can be related to the temperature of the weld pool surface and the plume above the weld. Focus position relative to the joint can easily be seen by the proportion of elements from each material existing in the plume. This monitor has been used to observe and optimize the performance of butt and lap welds between dissimilar alloys, where each alloy contains at least one element not found in the other alloy. Results will be presented for a copper-steel butt joint and a lap weld between stainless and low alloy steels.

  6. Ultrasonic Additive Manufacturing: Weld Optimization for Aluminum 6061, Development of Scarf Joints for Aluminum Sheet Metal, and Joining of High Strength Metals

    NASA Astrophysics Data System (ADS)

    Wolcott, Paul J.

    Ultrasonic additive manufacturing (UAM) is a low temperature, solid-state manufacturing process that enables the creation of layered, solid metal structures with designed anisotropies and embedded materials. As a low temperature process, UAM enables the creation of active composites containing smart materials, components with embedded sensors, thermal management devices, and many others. The focus of this work is on the improvement and characterization of UAM aluminum structures, advancing the capabilities of ultrasonic joining into sheet geometries, and examination of dissimilar material joints using the technology. Optimized process parameters for Al 6061 were identified via a design of experiments study indicating a weld amplitude of 32.8 synum and a weld speed of 200 in/min as optimal. Weld force and temperature were not significant within the levels studied. A methodology of creating large scale builds is proposed, including a prescribed random stacking sequence and overlap of 0.0035 in. (0.0889 mm) for foils to minimize voids and maximize mechanical strength. Utilization of heat treatments is shown to significantly increase mechanical properties of UAM builds, within 90% of bulk material. The applied loads during the UAM process were investigated to determine the stress fields and plastic deformation induced during the process. Modeling of the contact mechanics via Hertzian contact equations shows that significant stress is applied via sonotrode contact in the process. Contact modeling using finite element analysis (FEA), including plasticity, indicates that 5000 N normal loads result in plastic deformation in bulk aluminum foil, while at 3000 N no plastic deformation occurs. FEA studies on the applied loads during the process, specifically a 3000 N normal force and 2000 N shear force, show that high stresses and plastic deformation occur at the edges of a welded foil, and base of the UAM build. Microstructural investigations of heat treated foils confirms

  7. Use of nickel to improve the mechanical properties of high oxygen underwater wet welds

    SciTech Connect

    Pope, A.M.; Teixeira, J.C.G.; Santos, V.R. dos; Paes, M.T.P.; Liu, S.

    1995-12-31

    The use of oxidizing electrodes for wet welding of offshore structural steels, in spite of their low susceptibility to hydrogen HAZ cracking, is limited, in part by the poor mechanical properties of their weld deposits. Low levels of carbon, manganese and other deoxidizers, together with high oxygen contents seems to be one of the reasons for this low performance. This work investigated the influence of nickel additions on the tensile strength and impact resistance of wet welds deposited at 1.1 m of water depth. It was found that maximum values of toughness and tensile strength occur for nickel contents between 2 and 3 weight percent. Nickel additions also had a strong effect in reducing the grain size of equiaxed ferrite in the reheated region of underwater wet welds thereby improving their mechanical properties. The deterioration of mechanical properties for nickel contents higher than 3 weight percent was attributed to weld metal solidification cracking.

  8. Part height control of laser metal additive manufacturing process

    NASA Astrophysics Data System (ADS)

    Pan, Yu-Herng

    Laser Metal Deposition (LMD) has been used to not only make but also repair damaged parts in a layer-by-layer fashion. Parts made in this manner may produce less waste than those made through conventional machining processes. However, a common issue of LMD involves controlling the deposition's layer thickness. Accuracy is important, and as it increases, both the time required to produce the part and the material wasted during the material removal process (e.g., milling, lathe) decrease. The deposition rate is affected by multiple parameters, such as the powder feed rate, laser input power, axis feed rate, material type, and part design, the values of each of which may change during the LMD process. Using a mathematical model to build a generic equation that predicts the deposition's layer thickness is difficult due to these complex parameters. In this thesis, we propose a simple method that utilizes a single device. This device uses a pyrometer to monitor the current build height, thereby allowing the layer thickness to be controlled during the LMD process. This method also helps the LMD system to build parts even with complex parameters and to increase material efficiency.

  9. Welding apparatus and methods for using ultrasonic sensing

    DOEpatents

    McJunkin, Timothy R.; Johnson, John A.; Larsen, Eric D.; Smartt, Herschel B.

    2006-08-22

    A welding apparatus using ultrasonic sensing is described and which includes a movable welder having a selectively adjustable welding head for forming a partially completed weld in a weld seam defined between adjoining metal substrates; an ultrasonic assembly borne by the moveable welder and which is operable to generate an ultrasonic signal which is directed toward the partially completed weld, and is further reflected from same; and a controller electrically coupled with the ultrasonic assembly and controllably coupled with the welding head, and wherein the controller receives information regarding the ultrasonic signal and in response to the information optimally positions the welding head relative to the weld seam.

  10. Transient Model for Keyhole During Laser Welding

    SciTech Connect

    Bragg, W.D.; Damkroger, B.; Kempka, S.; Semak, V.V.

    1999-03-05

    A novel approach to simulating the dominant dynamic processes present during concentrated energy beam welding of metals is presented. A model for transient behavior of the front keyhole wall is developed. It is assumed that keyhole propagation is dominated by evaporation recoil-driven melt expulsion from the beam interaction zone. Results from the model show keyhole instabilities consistent with experimental observations of metal welding, metal cutting and ice welding.

  11. Sparks begin to fly in nonconventional friction welding and surfacing

    SciTech Connect

    Irving, B.

    1993-05-01

    A technology with enormous potential for welding and surfacing is the linear or consumable-rod friction welding process. The jet engine manufacturers are interested in the process both for welding and surfacing of alloys and materials that would be difficult to handle by any other means. In most present engines, slots are provided in the disks in order to accept the turbine blades. So, when a blade becomes worn or damaged, it is removed and a replacement blade is inserted in its place. In the new BLISK or bladed disk design of engines, the blades will be integral parts of the engine. Linear friction welding could play a major role in the manufacture and repair of engines of BLISK design. The new design is expected to improve engine performance significantly. According to TWI, potential applications for linear friction welding include gears, turbine wheels, chain links, electrical bus bar components, such plastic automotive parts as bumpers, boot lids and floor pans, bimetallic chisel blades, and multiple joints in metals or plastics. This paper discusses some of the research done by various companies into the newer variations of friction welding.

  12. Advanced Welding Concepts

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  13. Process Windows for Sheet Metal Parts based on Metamodels

    NASA Astrophysics Data System (ADS)

    Harsch, D.; Heingärtner, J.; Hortig, D.; Hora, P.

    2016-08-01

    Achieving robust production of deep drawn sheet metal parts is challenging. The fluctuations of process and material properties often lead to robustness problems. Numerical simulations are used to validate the feasibility and to detect critical regions of a part. To enhance the consistency with the real process conditions, the measured material data and the force distribution are taken into account. The simulation metamodel contains the virtual knowledge of a particular forming process, which is determined based on a series of finite element simulations with variable input parameters. Based on the metamodels, process windows can be evaluated for different parameter configurations. This helps improving the operating point search, to adjust process settings if the process becomes unstable and to visualize the influence of arbitrary parameters on the process window.

  14. 3D construction and repair from welding and material science perspectives

    NASA Astrophysics Data System (ADS)

    Marya, Surendar; Hascoet, Jean-Yves

    2016-10-01

    Additive manufacturing, based on layer-by-layer deposition of a feedstock material from a 3D data, can be mechanistically associated to welding. With feedstock fusion based processes, both additive manufacturing and welding implement similar heat sources, feedstock materials and translation mechanisms. From material science perspectives, additive manufacturing can take clue from lessons learned by millennium old welding technology to rapidly advance in its quest to generate fit for service metallic parts. This paper illustrates material science highlights extracted from the fabrication of a 316 L air vent and the functional repair of a Monel K500 (UNS N0500) with Inconel 625.

  15. FSW of Tapered Thickness Welds using an Adjustable Pin Tool

    NASA Technical Reports Server (NTRS)

    Adams, Glynn; Venable, Richard; Lawless, Kirby; Smelser, Jerry (Technical Monitor)

    2002-01-01

    This viewgraph presentation describes the advantages of tapered thickness welds in FSW (friction stir welding), the structure of FSW welds, the adjustable pin tool used in FSW. Other topics described include compliance and temperature measurement in a FSW system, loads and torque upon the pin tool and its ability to penetrate different metals, and the results and metallurgy of FSW welds.

  16. Aviation Maintenance Technology. Airframe. A204. Aircraft Welding. Instructor Material.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This teacher's guide is designed to aid teachers in leading students through a module on aircraft welding on airframes. The module contains four units that cover the following topics: (1) gas welding and cutting; (2) brazing and soldering; (3) shielded metal arc welding; and (4) gas tungsten arc welding. Each unit follows a standardized format…

  17. Final Assessment of Manual Ultrasonic Examinations Applied to Detect Flaws in Primary System Dissimilar Metal Welds at North Anna Power Station

    SciTech Connect

    Anderson, Michael T.; Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Prowant, Matthew S.; Doctor, Steven R.

    2014-03-24

    PNNL conducted a technical assessment of the NDE issues and protocols that led to missed detections of several axially oriented flaws in a steam generator primary inlet dissimilar metal weld at North Anna Power Station, Unit 1 (NAPS-1). This particular component design exhibits a significant outside-diameter (OD) taper that is not included as a blind performance demonstration mock-up within the industry’s Performance Demonstration Initiative, administered by EPRI. For this reason, the licensee engaged EPRI to assist in the development of a technical justification to support the basis for a site-specific qualification. The service-induced flaws at NAPS-1 were eventually detected as a result of OD surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the dissimilar metal weld. A total of five axially oriented flaws were detected in varied locations around the weld circumference. The field volumetric examination that was conducted at NAPS-1 was a non-encoded, real-time manual ultrasonic examination. PNNL conducted both an initial assessment, and subsequently, a more rigorous technical evaluation (reported here), which has identified an array of NDE issues that may have led to the subject missed detections. These evaluations were performed through technical reviews and discussions with NRC staff, EPRI NDE Center personnel, industry and ISI vendor personnel, and ultrasonic transducer manufacturers, and laboratory tests, to better understand the underlying issues at North Anna.

  18. Laser-based welding of 17-4 PH martensitic stainless steel in a tubular butt joint configuration with a built-in backing bar

    NASA Astrophysics Data System (ADS)

    Ma, Junjie; Atabaki, Mehdi Mazar; Liu, Wei; Pillai, Raju; Kumar, Biju; Vasudevan, Unnikrishnan; Kovacevic, Radovan

    2016-08-01

    Laser-based welding of thick 17-4 precipitation hardening (PH) martensitic stainless steel (SS) plates in a tubular butt joint configuration with a built-in backing bar is very challenging because the porosity and cracks are easily generated in the welds. The backing bar blocked the keyhole opening at the bottom surface through which the entrapped gas could escape, and the keyhole was unstable and collapsed overtime in a deep partially penetrated welding conditions resulting in the formation of pores easily. Moreover, the fast cooling rate prompted the ferrite transform to austenite which induced cracking. Two-pass welding procedure was developed to join 17-4 PH martensitic SS. The laser welding assisted by a filler wire, as the first pass, was used to weld the groove shoulder. The added filler wire could absorb a part of the laser beam energy; resulting in the decreased weld depth-to-width ratio and relieved intensive restraint at the weld root. A hybrid laser-arc welding or a gas metal arc welding (GMAW) was used to fill the groove as the second pass. Nitrogen was introduced to stabilize the keyhole and mitigate the porosity. Preheating was used to decrease the cooling rate and mitigate the cracking during laser-based welding of 17-4 PH martensitic SS plates.

  19. Production Laser Welding Of Gears

    NASA Astrophysics Data System (ADS)

    Guastaferri, David

    1986-08-01

    With the greater acceptance of laser technology as a viable alternative to traditional metals joining methods, the need has arisen to integrate lasers into efficient high production systems. This paper will describe one such system which is dedicated to the automated processing and laser welding of automotive transmission gear components. The system features two (2) 6 KW CO2 lasers, robotic part manipulation, vapor degreasers, air cylinder press stations, fully enclosed weld stations incorporating bottom delivery methods, and programmable computer control which allows complete monitoring throughout the entire production cycle. It is the intent of this paper to describe all segments of the system in detail as to design, manufacture, and integration. Concerning this specific application, an overview from initial inquiry through final installation of the manufactured system will be presented and will focus on the laser welding process and parameter development as it relates to the total systems concept and production goals. The paper concludes with a summary of system field performance to date.

  20. Parametric Optimization Of Gas Metal Arc Welding Process By Using Grey Based Taguchi Method On Aisi 409 Ferritic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ghosh, Nabendu; Kumar, Pradip; Nandi, Goutam

    2016-10-01

    Welding input process parameters play a very significant role in determining the quality of the welded joint. Only by properly controlling every element of the process can product quality be controlled. For better quality of MIG welding of Ferritic stainless steel AISI 409, precise control of process parameters, parametric optimization of the process parameters, prediction and control of the desired responses (quality indices) etc., continued and elaborate experiments, analysis and modeling are needed. A data of knowledge - base may thus be generated which may be utilized by the practicing engineers and technicians to produce good quality weld more precisely, reliably and predictively. In the present work, X-ray radiographic test has been conducted in order to detect surface and sub-surface defects of weld specimens made of Ferritic stainless steel. The quality of the weld has been evaluated in terms of yield strength, ultimate tensile strength and percentage of elongation of the welded specimens. The observed data have been interpreted, discussed and analyzed by considering ultimate tensile strength ,yield strength and percentage elongation combined with use of Grey-Taguchi methodology.

  1. Weld failure detection

    DOEpatents

    Pennell, William E.; Sutton, Jr., Harry G.

    1981-01-01

    Method and apparatus for detecting failure in a welded connection, particrly applicable to not readily accessible welds such as those joining components within the reactor vessel of a nuclear reactor system. A preselected tag gas is sealed within a chamber which extends through selected portions of the base metal and weld deposit. In the event of a failure, such as development of a crack extending from the chamber to an outer surface, the tag gas is released. The environment about the welded area is directed to an analyzer which, in the event of presence of the tag gas, evidences the failure. A trigger gas can be included with the tag gas to actuate the analyzer.

  2. Characteristics of Extra Narrow Gap Weld of HSLA Steel Welded by Single-Seam per Layer Pulse Current GMA Weld Deposition

    NASA Astrophysics Data System (ADS)

    Agrawal, B. P.; Ghosh, P. K.

    2017-02-01

    Butt weld joints are produced using pulse current gas metal arc welding process by employing the technique of centrally laid multi-pass single-seam per layer weld deposition in extra narrow groove of thick HSLA steel plates. The weld joints are prepared by using different combination of pulse parameters. The selection of parameter of pulse current gas metal arc welding is done considering a summarized influence of simultaneously interacting pulse parameters defined by a dimensionless hypothetical factor ϕ. The effect of diverse pulse parameters on the characteristics of weld has been studied. Weld joint is also prepared by using commonly used multi-pass multi-seam per layer weld deposition in conventional groove. The extra narrow gap weld joints have been found much superior to the weld joint prepared by multi-pass multi-seam per layer deposition in conventional groove with respect to its metallurgical characteristics and mechanical properties.

  3. Characteristics of Extra Narrow Gap Weld of HSLA Steel Welded by Single-Seam per Layer Pulse Current GMA Weld Deposition

    NASA Astrophysics Data System (ADS)

    Agrawal, B. P.; Ghosh, P. K.

    2017-03-01

    Butt weld joints are produced using pulse current gas metal arc welding process by employing the technique of centrally laid multi-pass single-seam per layer weld deposition in extra narrow groove of thick HSLA steel plates. The weld joints are prepared by using different combination of pulse parameters. The selection of parameter of pulse current gas metal arc welding is done considering a summarized influence of simultaneously interacting pulse parameters defined by a dimensionless hypothetical factor ϕ. The effect of diverse pulse parameters on the characteristics of weld has been studied. Weld joint is also prepared by using commonly used multi-pass multi-seam per layer weld deposition in conventional groove. The extra narrow gap weld joints have been found much superior to the weld joint prepared by multi-pass multi-seam per layer deposition in conventional groove with respect to its metallurgical characteristics and mechanical properties.

  4. Liquid and Solid Metal Embrittlement.

    DTIC Science & Technology

    1981-09-05

    structural parts, as in cadmium on steel or titanium alloys. d) welding , brazing, or soldering operations, as in steels where copper contamination (from...aluminum), by preferential chemical reactions (e.g. lithium on iron containing carbon or carbides), and by corrosion , perhaps aided by cavitation, in... welding electrodes) may occur, or solder contacting stressed iron-base alloys. e) various industrial situations where molten metals are han- dled or where

  5. Making Superconducting Welds between Superconducting Wires

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I.; Eom, Byeong Ho

    2008-01-01

    A technique for making superconducting joints between wires made of dissimilar superconducting metals has been devised. The technique is especially suitable for fabrication of superconducting circuits needed to support persistent electric currents in electromagnets in diverse cryogenic applications. Examples of such electromagnets include those in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) systems and in superconducting quantum interference devices (SQUIDs). Sometimes, it is desirable to fabricate different parts of a persistent-current-supporting superconducting loop from different metals. For example, a sensory coil in a SQUID might be made of Pb, a Pb/Sn alloy, or a Cu wire plated with Pb/Sn, while the connections to the sensory coil might be made via Nb or Nb/Ti wires. Conventional wire-bonding techniques, including resistance spot welding and pressed contact, are not workable because of large differences between the hardnesses and melting temperatures of the different metals. The present technique is not subject to this limitation. The present technique involves the use (1) of a cheap, miniature, easy-to-operate, capacitor-discharging welding apparatus that has an Nb or Nb/Ti tip and operates with a continuous local flow of gaseous helium and (2) preparation of a joint in a special spark-discharge welding geometry. In a typical application, a piece of Nb foil about 25 m thick is rolled to form a tube, into which is inserted a wire that one seeks to weld to the tube (see figure). The tube can be slightly crimped for mechanical stability. Then a spark weld is made by use of the aforementioned apparatus with energy and time settings chosen to melt a small section of the niobium foil. The energy setting corresponds to the setting of a voltage to which the capacitor is charged. In an experiment, the technique was used to weld an Nb foil to a copper wire coated with a Pb/Sn soft solder, which is superconducting. The joint was evaluated as

  6. Welding of gamma titanium aluminide alloys

    NASA Technical Reports Server (NTRS)

    Smashey, Russell W. (Inventor); Kelly, Thomas J. (Inventor); Snyder, John H. (Inventor); Sheranko, Ronald L. (Inventor)

    1998-01-01

    An article made of a gamma titanium aluminide alloy is welded, as for example in the weld repair of surface cracks, by removing foreign matter from the area to be welded, first stress relieving the article, cooling the entire article to a welding temperature of from about 1000.degree. F. to about 1400.degree. F., welding a preselected region in an inert atmosphere at the welding temperature, and second stress relieving the article. Welding is preferably accomplished by striking an arc in the preselected region so as to locally melt the alloy in the preselected region, providing a filler metal having the same composition as the gamma titanium aluminide alloy of the article, and feeding the filler metal into the arc so that the filler metal is melted and fused with the article to form a weldment upon solidification.

  7. Urethane/Silicone Adhesives for Bonding Flexing Metal Parts

    NASA Technical Reports Server (NTRS)

    Edwards, Paul D.

    2004-01-01

    Adhesives that are blends of commercially available urethane and silicone adhesives have been found to be useful for bonding metal parts that flex somewhat during use. These urethane/silicone adhesives are formulated for the specific metal parts to be bonded. The bonds formed by these adhesives have peel and shear strengths greater than those of bonds formed by double-sided tapes and by other adhesives, including epoxies and neat silicones. In addition, unlike the bonds formed by epoxies, the bonds formed by these adhesives retain flexibility. In the initial application for which the urethane/silicone adhesives were devised, there was a need to bond spring rings, which provide longitudinal rigidity for inflatable satellite booms, with the blades that provide the booms axial strength. The problem was to make the bonds withstand the stresses, associated with differences in curvature between the bonded parts, that arose when the booms were deflated and the springs were compressed. In experiments using single adhesives (that is, not the urethane/ silicone blends), the bonds were broken and, in each experiment, it was found that the adhesive bonded well with either the ring or with the blade, but not both. After numerous experiments, the adhesive that bonded best with the rings and the adhesive that bonded best with the blades were identified. These adhesives were then blended and, as expected, the blend bonded well with both the rings and the blades. The two adhesives are Kalex (or equivalent) high-shear-strength urethane and Dow Corning 732 (or equivalent) silicone. The nominal mixture ratio is 5 volume parts of the urethane per 1 volume part of the silicone. Increasing the proportion of silicone makes the bond weaker but more flexible, and decreasing the proportion of silicone makes the bond stronger but more brittle. The urethane/silicone blend must be prepared and used quickly because of the limited working time of the urethane: The precursor of the urethane

  8. Seam tracking performance of a Coaxial Weld Vision System and pulsed welding

    NASA Technical Reports Server (NTRS)

    Gangl, K. J.; Weeks, J. L.; Todd, D.

    1986-01-01

    This report describes a continuation of a series of tests on the Coaxial Weld Vision System at MSFC. The ability of the system to compensate for transients associated with pulsed current welding is analyzed. Using the standard image processing approach for root pass seam tracking, the system is also tested for the ability to track the toe of a previous weld bead, for tracking multiple pass weld joints. This Coaxial Weld Vision System was developed by the Ohio State University (OSU) Center for Welding Research and is a part of the Space Shuttle Main Engine Robotic Welding Development System at MSFC.

  9. Welding, Bonding and Fastening, 1984

    NASA Technical Reports Server (NTRS)

    Buckley, J. D. (Editor); Stein, B. A. (Editor)

    1985-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Soceity, and Society of Manufacturing Engineers conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  10. Numerical analysis of fume formation mechanism in arc welding

    NASA Astrophysics Data System (ADS)

    Tashiro, Shinichi; Zeniya, Tasuku; Yamamoto, Kentaro; Tanaka, Manabu; Nakata, Kazuhiro; Murphy, Anthony B.; Yamamoto, Eri; Yamazaki, Kei; Suzuki, Keiichi

    2010-11-01

    In order to clarify the fume formation mechanism in arc welding, a quantitative investigation based on the knowledge of interaction among the electrode, arc and weld pool is indispensable. A fume formation model consisting of a heterogeneous condensation model, a homogeneous nucleation model and a coagulation model has been developed and coupled with the GTA or GMA welding model. A series of processes from evaporation of metal vapour to fume formation from the metal vapour was totally investigated by employing this simulation model. The aim of this paper is to visualize the fume formation process and clarify the fume formation mechanism theoretically through a numerical analysis. Furthermore, the reliability of the simulation model was also evaluated through a comparison of the simulation result with the experimental result. As a result, it was found that the size of the secondary particles consisting of small particles with a size of several tens of nanometres reached 300 nm at maximum and the secondary particle was in a U-shaped chain form in helium GTA welding. Furthermore, it was also clarified that most part of the fume was produced in the downstream region of the arc originating from the metal vapour evaporated mainly from the droplet in argon GMA welding. The fume was constituted by particles with a size of several tens of nanometres and had similar characteristics to that of GTA welding. On the other hand, if the metal transfer becomes unstable and the metal vapour near the droplet diffuses directly towards the surroundings of the arc not getting into the plasma flow, the size of the particles reaches several hundred nanometres.

  11. [New welding processes and health effects of welding].

    PubMed

    La Vecchia, G Marina; Maestrelli, Piero

    2011-01-01

    This paper describes some of the recent developments in the control technology to enhance capability of Pulse Gas Metal Arc Welding. Friction Stir Welding (FSW) processing has been also considered. FSW is a new solid-state joining technique. Heat generated by friction at the rotating tool softens the material being welded. FSW can be considered a green and energy-efficient technique without deleterious fumes, gas, radiation, and noise. Application of new welding processes is limited and studies on health effects in exposed workers are lacking. Acute and chronic health effects of conventional welding have been described. Metal fume fever and cross-shift decline of lung function are the main acute respiratory effects. Skin and eyes may be affected by heat, electricity and UV radiations. Chronic effects on respiratory system include chronic bronchitis, a benign pneumoconiosis (siderosis), asthma, and a possible increase in the incidence of lung cancer. Pulmonary infections are increased in terms of severity, duration, and frequency among welders.

  12. Part 1. Synthesis and Characterization of Barium Metal Oxides

    NASA Astrophysics Data System (ADS)

    Sutto, Thomas Edward

    Part 1. Solid solutions of rm BaBi _{(1-x)}Tl_{x}O_ {3-delta} and rm Ba _4(Bi,Pb,Tl)_4O_{12-delta } were prepared. For rm BaBi _{(1-x)}Tl_{x}O_ {3-delta}, samples were annealed in O_2, air and Ar. For all samples with x <= 0.4, an increase in the semiconducting band gap was accompanied by a decrease in the room temperature diamagnetism regardless of annealing condition. Also, a change in the unit cell symmetry from monoclinic to orthorhombic was observed for all samples with x <= 0.4. However, for rm BaBi_{0.5}Tl_{0.5 }O_{3-delta}, the resistivity, susceptibility and structural data were dependent upon the annealing conditions. Results are interpreted in terms of possible ordering of the oxygen vacancies, or ordering of the metal atoms. rm Ba_4(Bi,Pb,Tl) _4O_{12-delta} was studied via four doping schemes: rm Ba_4Bi(Pb,Tl) _3O_{(12-delta)}, Ba _4(Bi,Pb)_3TlO_{(12-delta) }, Ba_4(Bi,Tl)_2Pb_2O_ {(12-delta)}, and rm Ba_4Bi_{x}Pb_{(4-2x) }Tl_{x}O_{(12-delta) }. rm Ba_4BiPb_2TlO _{11.09} was found to be a new superconductor. For all samples, the orthorhombic symmetry of the parent compound decreased to tetragonal symmetry as the system moved away from the ideal composition and T_{rm c} vanished. Samples were analyzed by magnetic susceptibility and a non-classical, inverse relationship between T_{rm c} and the Pauli paramagnetism was observed. Ellipsometric measurements were performed on solid solutions of Ba(Bi,Pb)O _3, and rm Ba_4BiPb _2TlO_{11.09} to study possible similarities between changes at the Fermi level in these superconductors. Part 2. Through the use of sonication, novel intercalates of graphite, metal dichalcogenides (MY _2: M = Ti, Ta: Y = S, Se: NbY_2 : Y = Se, Te), and metal halides (CuCl_2 : Mbr_2: M = Ni, Cu, Cd; CdI_2) were prepared. Large aromatic hydrocarbons {pentacene (PEN), tetracene (TET), 9,10-dibromoanthracene, 9,10-dichloroanthracene and anthracene (ANT)} were, for the first time, intercalated into graphite, and PEN, TET, ANT were

  13. Welding Technician

    ERIC Educational Resources Information Center

    Smith, Ken

    2009-01-01

    About 95% of all manufactured goods in this country are welded or joined in some way. These welded products range in nature from bicycle handlebars and skyscrapers to bridges and race cars. The author discusses what students need to know about careers for welding technicians--wages, responsibilities, skills needed, career advancement…

  14. Acoustic emisson and ultrasonic wave characteristics in TIG-welded 316 stainless steel

    NASA Astrophysics Data System (ADS)

    Lee, Jin Kyung; Lee, Joon Hyun; Lee, Sang Pill; Son, In Su; Bae, Dong Su

    2014-05-01

    A TIG welded 316 stainless steel materials will have a large impact on the design and the maintenance of invessel components including pipes used in a nuclear power plant, and it is important to clear the dynamic behavior in the weld part of stainless steel. Therefore, nondestructive techniques of acoustic emission (AE) and ultrasonic wave were applied to investigate the damage behavior of welded stainless steel. The velocity and attenuation ratio of the ultrasonic wave at each zone were measured, and a 10 MHz sensor was used. We investigated the relationship between dynamic behavior and AE parameters analysis and derived the optimum parameters to evaluate the damage degree of the specimen. By measuring the velocity and the attenuation of an ultrasonic wave propagating each zone of the welded stainless steel, the relation of the ultrasonic wave and metal structure at the base metal, heat affected zone (HAZ) metal and weld metal is also discussed. The generating tendency of cumulated counts is similar to that of the load curve. The attenuation ratios from the ultrasonic test results were 0.2 dB/mm at the base zone, and 0.52 dB/mm and 0.61 dB/mm at the HAZ zone and weld zone, respectively.

  15. Comparison of microstructure and mechanical properties of ultra-narrow gap laser and gas-metal-arc welded S960 high strength steel

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Li, Lin; Dong, Shiyun; Crowther, Dave; Thompson, Alan

    2017-04-01

    The microstructural characteristics and mechanical properties, including micro-hardness, tensile properties, three-point bending properties and Charpy impact toughness at different test temperatures of 8 mm thick S960 high strength steel plates were investigated following their joining by multi-pass ultra-narrow gap laser welding (NGLW) and gas metal arc welding (GMAW) techniques. It was found that the microstructure in the fusion zone (FZ) for the ultra-NGLW joint was predominantly martensite mixed with some tempered martensite, while the FZ for the GMAW joint was mainly consisted of ferrite with some martensite. The strength of the ultra-NGLW specimens was comparable to that of the base material (BM), with all welded specimens failed in the BM in the tensile tests. The tensile strength of the GMAW specimens was reduced approximately by 100 MPa when compared with the base material by a broad and soft heat affected zone (HAZ) with failure located in the soft HAZ. Both the ultra-NGLW and GMAW specimens performed well in three-point bending tests. The GMAW joints exhibited better impact toughness than the ultra-NGLW joints.

  16. Effect of the surface preparation techniques on the EBSD analysis of a friction stir welded AA1100-B{sub 4}C metal matrix composite

    SciTech Connect

    Guo, J.; Amira, S.; Gougeon, P.; Chen, X.-G.

    2011-09-15

    Aluminum based metal matrix composites (MMCs) have been used in various automobile, aerospace and military industries. Yet characterization of the microstructure in these materials remains a challenge. In the present work, the grain structure in the matrix of B{sub 4}C particulate reinforced MMCs and their friction stir welds is characterized by using optical metallography and the electron backscatter diffraction (EBSD) technique. Optical metallography can partially reveal the grain structure in the matrix of AA1100-16 vol.% B{sub 4}C composite. The EBSD technique has been successfully applied to characterize the grain structure in the AA1100-16 vol.% B{sub 4}C friction stir welds, which provides a powerful tool to follow the microstructural evolution of MMC materials during friction stir welding (FSW). Both mechanical polishing and ion beam polishing are used for the EBSD sample preparation. The effect of the sample preparation on the EBSD data acquisition quality is studied. Some typical examples, such as the identification of grains and subgrains, grain size distribution, deformation fields and the texture components are given. - Highlights: {yields} EBSD has been used to characterize the grain structure of Al-B{sub 4}C MMCs. {yields} Mechanical and ion beam polishing are compared for EBSD sample preparation of MMCs. {yields} EBSD shows great advantages over optical microscopy for microtexture analysis of MMCs.

  17. Microstructure characteristics of laser MIG hybrid welded mild steel

    NASA Astrophysics Data System (ADS)

    Gao, Ming; Zeng, Xiaoyan; Yan, Jun; Hu, Qianwu

    2008-07-01

    To deepen the understanding of laser-arc hybrid welding, the weld shape and microstructure characteristics of laser-metal inert gas hybrid welded mild steel were analyzed. The results showed typical hybrid weld could be classified as two parts: the wide upper zone and the narrow nether zone, which were defined as arc zone and laser zone, respectively. In the hybrid weld, the microstructure, alloy element distribution and microhardness all have evident difference between laser zone and arc zone. The microstructure of arc zone consists of coarse columnar dendrite and fine acicular dendrite between the columnar dendrites, but that of laser zone is composed of fine equiaxed dendrite in weld center and columnar dendrite around the equiaxed dendrite. Compared to arc zone, laser zone has finer grain size, higher microhardness, smaller alloy element content in the fusion zone and narrower heat affected zone. The discussions demonstrated that the observed difference was caused by the difference of temperature gradient, crystallizing and the effects of arc pressure on the molten pool between laser zone and arc zone.

  18. Development of the weld-braze joining process

    NASA Technical Reports Server (NTRS)

    Bales, T. T.; Royster, D. M.; Arnold, W. E., Jr.

    1973-01-01

    A joining process, designated weld-brazing, was developed which combines resistance spot welding and brazing. Resistance spot welding is used to position and aline the parts, as well as to establish a suitable faying-surface gap for brazing. Fabrication is then completed at elevated temperature by capillary flow of the braze alloy into the joint. The process was used successfully to fabricate Ti-6Al-4V alloy joints by using 3003 aluminum braze alloy and should be applicable to other metal-braze systems. Test results obtained on single-overlap and hat-stiffened panel specimens show that weld-brazed joints were superior in tensile shear, stress rupture, fatigue, and buckling compared with joints fabricated by conventional means. Another attractive feature of the process is that the brazed joint is hermetically sealed by the braze material, which may eliminate many of the sealing problems encountered with riveted or spot welded structures. The relative ease of fabrication associated with the weld-brazing process may make it cost effective over conventional joining techniques.

  19. Welding polarity effects on weld spatters and bead geometry of hyperbaric dry GMAW

    NASA Astrophysics Data System (ADS)

    Xue, Long; Wu, Jinming; Huang, Junfen; Huang, Jiqiang; Zou, Yong; Liu, Jian

    2016-03-01

    Welding polarity has influence on welding stability to some extent, but the specific relationship between welding polarity and weld quality has not been found, especially under the hyperbaric environment. Based on a hyperbaric dry welding experiment system, gas metal arc welding(GMAW) experiments with direct current electrode positive(DCEP) and direct current electrode negative(DCEN) operations are carried out under the ambient pressures of 0.1 MPa, 0.4 MPa, 0.7 MPa and 1.0 MPa to find the influence rule of different welding polarities on welding spatters and weld bead geometry. The effects of welding polarities on the weld bead geometry such as the reinforcement, the weld width and the penetration are discussed. The experimental results show that the welding spatters gradually grow in quantity and size for GMAW with DCEP, while GMAW with DCEN can produce fewer spatters comparatively with the increase of the ambient pressure. Compared with DCEP, the welding current and arc voltage waveforms for DCEN is more stable and the distribution of welding current probability density for DCEN is more concentrated under the hyperbaric environment. When the ambient pressure is increased from 0.1 MPa to 1.0 MPa, the effects of welding polarities on the reinforcement, the weld width and the penetration are as follows: an increase of 0.8 mm for the weld reinforcement is produced by GMAW with DCEN and 1.3 mm by GMAW with DCEP, a decrease of 7.2 mm for the weld width is produced by DCEN and 6.1 mm by DCEP; and an increase of 3.9 mm for the penetration is produced by DCEN and 1.9 mm by DCEP. The proposed research indicates that the desirable stability in the welding procedure can be achieved by GMAW with DCEN operation under the hyperbaric environment.

  20. Computerized radiographic weld penetration control with feedback on weld pool depression

    SciTech Connect

    Guu, A.C.; Rokhlin, S.I. )

    1989-10-01

    Welding pool depression depends on plasma pressure and heat input to the pool and therefore is related to weld penetration. On the basis of information on pool depression received from radiographic images in real time during welding, the possibility of using automated weld penetration control to maintain the required weld penetration has been studied. The experimental system developed includes an arc welding unit, a welding manipulator, a real-time x-ray system, an image processing unit, and a system controller. By analyzing the radiographic information together with metallographs of the appropriate weld cross section, the depth of the liquid metal in the pool has been determined at different levels of current and weld penetration.

  1. Patterns of residual stresses due to welding

    NASA Technical Reports Server (NTRS)

    Botros, B. M.

    1983-01-01

    Residual stresses caused by welding result from the nonuniform rate of cooling and the restrained thermal contraction or non-uniform plastic deformation. From the zone of extremely high temperature at the weld, heat flows into both the adjoining cool body and the surrounding atmosphere. The weld metal solidifies under very rapid cooling. The plasticity of the hot metal allows adjustment initially, but as the structure cools the rigidity of the surrounding cold metal inhibits further contraction. The zone is compressed and the weld is put under tensile stresses of high magnitude. The danger of cracking in these structural elements is great. Change in specific volume is caused by the change in temperature.

  2. 49 CFR 229.83 - Insulation or grounding of metal parts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Insulation or grounding of metal parts. 229.83 Section 229.83 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... System § 229.83 Insulation or grounding of metal parts. All unguarded noncurrent-carrying metal...

  3. 49 CFR 229.83 - Insulation or grounding of metal parts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Insulation or grounding of metal parts. 229.83 Section 229.83 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... System § 229.83 Insulation or grounding of metal parts. All unguarded noncurrent-carrying metal...

  4. 49 CFR 229.83 - Insulation or grounding of metal parts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Insulation or grounding of metal parts. 229.83 Section 229.83 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... System § 229.83 Insulation or grounding of metal parts. All unguarded noncurrent-carrying metal...

  5. 49 CFR 229.83 - Insulation or grounding of metal parts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Insulation or grounding of metal parts. 229.83 Section 229.83 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... System § 229.83 Insulation or grounding of metal parts. All unguarded noncurrent-carrying metal...

  6. 49 CFR 229.83 - Insulation or grounding of metal parts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Insulation or grounding of metal parts. 229.83 Section 229.83 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... System § 229.83 Insulation or grounding of metal parts. All unguarded noncurrent-carrying metal...

  7. Deformation During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    White, Henry J.

    2002-01-01

    Friction Stir Welding (FSW) is a solid state welding process that exhibits characteristics similar to traditional metal cutting processes. The plastic deformation that occurs during friction stir welding is due to the superposition of three flow fields: a primary rotation of a radially symmetric solid plug of metal surrounding the pin tool, a secondary uniform translation, and a tertiary ring vortex flow (smoke rings) surrounding the tool. If the metal sticks to the tool, the plug surface extends down into the metal from the outer edge of the tool shoulder, decreases in diameter like a funnel, and closes up beneath the pin. Since its invention, ten years have gone by and still very little is known about the physics of the friction stir welding process. In this experiment, an H13 steel weld tool (shoulder diameter, 0.797 in; pin diameter, 0.312 in; and pin length, 0.2506 in) was used to weld three 0.255 in thick plates. The deformation behavior during friction stir welding was investigated by metallographically preparing a plan view sections of the weldment and taking Vickers hardness test in the key-hole region.

  8. Optically controlled interparticle distance tuning and welding of single gold nanoparticle pairs by photochemical metal deposition.

    PubMed

    Härtling, T; Alaverdyan, Y; Hille, A; Wenzel, M T; Käll, M; Eng, L M

    2008-08-04

    We report on the in-situ controlled tuning of the particle gap in single pairs of gold nanodisks by photochemical metal deposition. The optically induced growth of nanodisk dimers fabricated by electron beam lithography leads to a decrease of the interparticle gap width down to 0 nm. Due to the increasing particle size and stronger plasmonic coupling, a smooth redshift of the localized surface plasmon (LSP) resonances is observed in such particle pairs during the growth process. The interparticle gap width, and hence the LSP resonance, can be tuned to any desired spectral position. The experimental results we obtain with this nanoscale fabrication technique are well described by the so-called plasmon ruler equation. Consequently, both the changes in particle diameter as well as in gap width can be characterized in-situ via far-field read-out of the optical properties of the dimers.

  9. Interstitial embrittlement in vanadium laser welds

    SciTech Connect

    Strum, M.J.; Wagner, L.M.

    1992-02-24

    Efficiencies of interstitial absorption during pulsed ND:YAG laser welding of vanadium were compared for nitrogen, oxygen, hydrogen, and water vapor. Influence of interstitial levels on the embrittlement of vanadium laser welds was also measured. For 1000 ppM contaminant levels in the weld atmosphere, weld hydrogen content increased 9 ppM, nitrogen content increased 190 ppM, and oxygen content increased from 500 ppM relative to baseplate levels. Welds in ultrahigh-purity argon atmospheres contained 3 ppM hydrogen, 40 ppM nitrogen, and 250 ppM oxygen. Longitudinal all-weld tensile specimens and notched-plate specimens were used to measure weld metal tensile properties at {minus}55C. All of the laser weld notch-strength ratios exceeded unity and weld metal tensile strengths all exceeded the baseplate values. For 1000 ppM atmosphere contaminant levels, the only significant decrease in ductility, as measured by reduction-in-area at fracture was for the weld atmosphere containing oxygen. Weld atmospheres containing 1% nitrogen also reduced the weld ductility, and resulted in the onset of cleavage fracture.

  10. Interstitial embrittlement in vanadium laser welds

    SciTech Connect

    Strum, M.J.; Wagner, L.M.

    1992-02-24

    Efficiencies of interstitial absorption during pulsed ND:YAG laser welding of vanadium were compared for nitrogen, oxygen, hydrogen, and water vapor. Influence of interstitial levels on the embrittlement of vanadium laser welds was also measured. For 1000 ppM contaminant levels in the weld atmosphere, weld hydrogen content increased 9 ppM, nitrogen content increased 190 ppM, and oxygen content increased from 500 ppM relative to baseplate levels. Welds in ultrahigh-purity argon atmospheres contained 3 ppM hydrogen, 40 ppM nitrogen, and 250 ppM oxygen. Longitudinal all-weld tensile specimens and notched-plate specimens were used to measure weld metal tensile properties at [minus]55C. All of the laser weld notch-strength ratios exceeded unity and weld metal tensile strengths all exceeded the baseplate values. For 1000 ppM atmosphere contaminant levels, the only significant decrease in ductility, as measured by reduction-in-area at fracture was for the weld atmosphere containing oxygen. Weld atmospheres containing 1% nitrogen also reduced the weld ductility, and resulted in the onset of cleavage fracture.

  11. Recommended Aluminum Pipe Welding Procedures for Corps of Engineers Construction.

    DTIC Science & Technology

    1984-09-01

    tungsten -arc welding process) (4) Use of the extended land joint configuration; O-s (5) Use of current limits set by the Aluminum Association and ALCOA. ~0...Design Used for the 1-In. Schedule 10 Pipe 9 3 Typical Metal Weld Made Using Gas Tungsten -Arc Welding 11 4 Typical Small-Diameter Pipe Tensile Test...aluminum pipe commonly Approach used in military applications (Table 1). The gas Available literature on aluminum welding was tungsten -arc welding

  12. Microstructural Evolution in Friction Stir Welding of Ti-5111

    DTIC Science & Technology

    2010-08-01

    industry for aluminum alloys. FSW of steels is under continued development. 1.1.3.1 Friction Stir Welding of Metals Since the development of...or friction welding [Titanium handbook]. A potential welding technique for titanium that has shown promise for joining aluminum and steel is...combatants, this research examines an alternative joining technology, friction stir welding ( FSW ). Friction stir welding uses a non-consumable tool to

  13. Hybrid laser-arc welding of galvanized high-strength steels in a gap-free lap-joint configuration

    NASA Astrophysics Data System (ADS)

    Yang, Shanglu

    In order to meet the industry demands for increased fuel efficiency and enhanced mechanical and structural performance of vehicles as well as provided excellent corrosion resistance, more and more galvanized advanced high-strength steels (AHSS) have been used to fabricate automobile parts such as panels, bumpers, and front rails. The automotive industry has shown tremendous interest in using laser welding to join galvanized dual phase steels because of lower heat input and higher welding speed. However, the laser welding process tends to become dramatically unstable in the presence of highly pressurized zinc vapor because of the low boiling point of zinc, around 906°C, compared to higher melting point of steel, over 1500°C. A large number of spatters are produced by expelling the liquid metal from the molten pool by the pressurized zinc vapor. Different weld defects such as blowholes and porosities appear in the welds. So far, limited information has been reported on welding of galvanized high strength dual-phase steels in a gap-free lap joint configuration. There is no open literature on the successful attainment of defect-free welds from the laser or hybrid welding of galvanized high-strength steels. To address the significant industry demand, in this study, different welding techniques and monitoring methods are used to study the features of the welding process of galvanized DP steels in a gap-free lap joint configuration. The current research covers: (i) a feasibility study on the welding of galvanized DP 980 steels in a lap joint configuration using gas tungsten arc welding (GTAW), laser welding, hybrid laser/arc welding with the common molten pool, laser welding with the assistance of GTAW preheating source and hybrid laser-variable polarity gas tungsten arc welding (Laser-VPGTAW) techniques (Chapter 2-4); (ii) a welding process monitoring of the welding techniques including the use of machine vision and acoustic emission technique (Chapter 5); (iii

  14. The Effect of Friction on Penetration in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Rapp, Steve

    2002-01-01

    "Friction stir butt welding," as it was originally termed by Wayne Thomas and Christopher Dawes, in the early 1990s, but now commonly called "friction stir welding," has made great progress as a new welding technique. Marshall Space Flight Center has been investigating the use of FSW for assembly of the Shuttle's external fuel tank since the late 1990s and hopes to have the process in use by the summer of 2002. In FSW, a cylindrical pin tool of hardened steel, is rotated and plunged into the abutting edges of the parts to be joined. The tool is plunged into the weldment to within about .050 in of the bottom to assure full penetration. As the tool moves along the joint, the tool shoulder helps produce frictional heating, causing the material to plasticize. The metal of the two abutting plates flows from the front of the tool to the back where it cools and coalesces to form a weld in the solid phase. One quarter inch thick plates of aluminum alloy 2219 were used in this study. Two samples, each consisting of two 4 in x 12 in plates, were friction stir welded. The anvil for one sample was coated with molybdenum sulfide, while for the other sample a sheet of roughened stainless steel was placed between the anvil and the sample. The retractable pin tool was used so that the depth of the pin tool penetration could be varied. As welding proceeded, the length of the pin tool was gradually increased from the starting point. The purpose of this investigation is to find out at what point, in the down ramp, penetration occurs. Differences in root structure of the friction stir weld due to differences in anvil friction will be observed. These observations will be analyzed using friction stir weld theory.

  15. Investigation of plasma arc welding as a method for the additive manufacturing of titanium-(6)aluminum-(4)vanadium alloy components

    NASA Astrophysics Data System (ADS)

    Stavinoha, Joe N.

    The process of producing near net-shape components by material deposition is known as additive manufacturing. All additive manufacturing processes are based on the addition of material with the main driving forces being cost reduction and flexibility in both manufacturing and product design. With wire metal deposition, metal is deposited as beads side-by-side and layer-by-layer in a desired pattern to build a complete component or add features on a part. There are minimal waste products, low consumables, and an efficient use of energy and feedstock associated with additive manufacturing processes. Titanium and titanium alloys are useful engineering materials that possess an extraordinary combination of properties. Some of the properties that make titanium advantageous for structural applications are its high strength-to-weight ratio, low density, low coefficient of thermal expansion, and good corrosion resistance. The most commonly used titanium alloy, Ti-6Al-4V, is typically used in aerospace applications, pressure vessels, aircraft gas turbine disks, cases and compressor blades, and surgical implants. Because of the high material prices associated with titanium alloys, the production of near net-shape components by additive manufacturing is an attractive option for the manufacturing of Ti-6Al-4V alloy components. In this thesis, the manufacturing of cylindrical Ti-6Al-4V alloy specimens by wire metal deposition utilizing the plasma arc welding process was demonstrated. Plasma arc welding is a cost effective additive manufacturing technique when compared to other current additive manufacturing methods such as laser beam welding and electron beam welding. Plasma arc welding is considered a high-energy-density welding processes which is desirable for the successful welding of titanium. Metal deposition was performed using a constant current plasma arc welding power supply, flow-purged welding chamber, argon shielding and orifice gas, ERTi-5 filler metal, and Ti-6Al

  16. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet part 57 of this chapter. (b) Longitudinal butt...

  17. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet part 57 of this chapter. (b) Longitudinal butt...

  18. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet Part 57 of this chapter. (b) Longitudinal butt...

  19. 46 CFR 154.660 - Pipe welding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Pipe welding. 154.660 Section 154.660 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... § 154.660 Pipe welding. (a) Pipe welding must meet part 57 of this chapter. (b) Longitudinal butt...

  20. Orbital Welding Head Held By Robot

    NASA Technical Reports Server (NTRS)

    Gangl, Kenneth J.; Graham, Benny F.; Nesmith, Malcolm F.; Mcferrin, David C.

    1992-01-01

    Orbital welding head positioned by robot controls motion and voltage of arc-welding torch mounted in head. New head encircles part at torch end, and held and manipulated by robot arm at opposite end. Entire welding operation automated. Useful for operations in hazardous environments.