Science.gov

Sample records for metal-dielectric-semiconductor germanium nanowires

  1. Electrodeposited germanium nanowires.

    PubMed

    Mahenderkar, Naveen K; Liu, Ying-Chau; Koza, Jakub A; Switzer, Jay A

    2014-09-23

    Germanium (Ge) is a group IV semiconductor with superior electronic properties compared with silicon, such as larger carrier mobilities and smaller effective masses. It is also a candidate anode material for lithium-ion batteries. Here, a simple, one-step method is introduced to electrodeposit dense arrays of Ge nanowires onto indium tin oxide (ITO) substrates from aqueous solution. The electrochemical reduction of ITO produces In nanoparticles that act as a reduction site for aqueous Ge(IV) species, and as a solvent for the crystallization of Ge nanowires. Nanowires deposited at 95 °C have an average diameter of 100 nm, whereas those deposited at room temperature have an average diameter of 35 nm. Both optical absorption and Raman spectroscopy suggest that the electrodeposited Ge is degenerate. The material has an indirect bandgap of 0.90-0.92 eV, compared with a value of 0.67 eV for bulk, intrinsic Ge. The blue shift is attributed to the Moss-Burstein effect, because the material is a p-type degenerate semiconductor. On the basis of the magnitude of the blue shift, the hole concentration is estimated to be 8 × 10(19) cm(-3). This corresponds to an In impurity concentration of about 0.2 atom %. The resistivity of the wires is estimated to be 4 × 10(-5) Ω·cm. The high conductivity of the wires should make them ideal for lithium-ion battery applications. PMID:25157832

  2. Surface Passivation of Germanium Nanowires

    SciTech Connect

    Adhikari, Hemant; Sun, Shiyu; Pianetta, Piero; Chidsey, Chirstopher E.D.; McIntyre, Paul C.; /SLAC, SSRL

    2005-05-13

    The surface of single crystal, cold-wall CVD-grown germanium nanowires was studied by synchrotron radiation photoemission spectroscopy (SR-PES) and also by conventional XPS. The as-grown germanium nanowires seem to be hydrogen terminated. Exposure to laboratory atmosphere leads to germanium oxide growth with oxidation states of Ge{sup 1+}, Ge{sup 2+}, Ge{sup 3+}, while exposure to UV light leads to a predominance of the Ge{sup 4+} oxidation state. Most of the surface oxide could be removed readily by aqueous HF treatment which putatively leaves the nanowire surface hydrogen terminated with limited stability in air. Alternatively, chlorine termination could be achieved by aq. HCl treatment of the native oxide-coated nanowires. Chlorine termination was found to be relatively more stable than the HF-last hydrogen termination.

  3. A review on germanium nanowires.

    PubMed

    Pei, Li Z; Cai, Zheng Y

    2012-01-01

    Ge nanowires exhibit wide application potential in the fields of nanoscale devices due to their excellently optical and electrical properties. This article reviews the recent progress and patents of Ge nanowires. The recent progress and patents for the synthesis of Ge nanowires using chemical vapor deposition, laser ablation, thermal evaporation, template method and supercritical fluid-liquid-solid method are demonstrated. Amorphous germanium oxide layer and defects existing in Ge nanowires result in poor Ohmic contact between Ge nanowires and electrodes. Therefore, Ge nanowires should be passivated in order to deposit connecting electrodes before applied in nanoelectronic devices. The experimental progress and patents on the application of Ge nanowires as field effect transistors, lithium batteries, photoresistors, memory cell and fluid sensors are discussed. Finally, the future development of Ge nanowires for the synthesis and practical application is also discussed.

  4. Synthesis and characterization of germanium nanowires and germanium/silicon radially heterostructured nanowires

    NASA Astrophysics Data System (ADS)

    Goldthorpe, Irene Anne

    Semiconductor nanowires offer new opportunities to study physical phenomena in low-dimensional nanostructures. They also possess technologically useful properties for applications in electronics, optics, sensing, and thermoelectrics. Germanium nanowires are of particular interest, because of germanium's compatibility with standard silicon integrated circuit fabrication processes, its high electronic carrier mobilities, and the low temperature required for germanium nanowire growth. In this work, epitaxially-aligned germanium nanowires are grown on silicon substrates by chemical vapor deposition through the vapor-liquid-solid mechanism. Uniform nanowire diameters between 5 and 50 nm are obtained through the use of monodisperse gold colloids as catalysts. The crystallographic orientation of the nanowires, their strain, and their heteroepitaxial relationship with the substrate are characterized with transmission electron microscopy (TEM) and x-ray diffraction (XRD). A process for removing the gold catalysts from the tips of the germanium nanowires is demonstrated. Silicon shells are then heteroepitaxially deposited around the wires to fabricate radial heterostructures. These shells passivate the germanium nanowire surface, create electronic band offsets to confine holes away the surface where they can scatter or recombine, and induce strain which could allow for the engineering of properties such as band gap and carrier mobilities. However, analogous to planar heteroepitaxy, surface roughening and misfit dislocations can relax this strain. The effects of coaxial dimensions on strain relaxation in these structures are analyzed quantitatively by TEM and synchrotron XRD, and these results are related to continuum elasticity models. Lessons learned generated two successful strategies for synthesizing coherent core-shell nanowires with large misfit strain: chlorine surface passivation and growth of nanowires with low-energy sidewall facets. Both approaches avoid the strain

  5. Synthesis of silicon and germanium nanowires.

    SciTech Connect

    Clement, Teresa J.; Hsu, Julia W. P.

    2007-11-01

    The vapor-liquid-solid growth process for synthesis of group-IV semiconducting nanowires using silane, germane, disilane and digermane precursor gases has been investigated. The nanowire growth process combines in situ gold seed formation by vapor deposition on atomically clean silicon (111) surfaces, in situ growth from the gaseous precursor(s), and real-time monitoring of nanowire growth as a function of temperature and pressure by a novel optical reflectometry technique. A significant dependence on precursor pressure and growth temperature for the synthesis of silicon and germanium nanowires is observed, depending on the stability of the specific precursor used. Also, the presence of a nucleation time for the onset of nanowire growth has been found using our new in situ optical reflectometry technique.

  6. Promoting Cell Proliferation Using Water Dispersible Germanium Nanowires

    PubMed Central

    Bezuidenhout, Michael; Liu, Pai; Singh, Shalini; Kiely, Maeve

    2014-01-01

    Group IV Nanowires have strong potential for several biomedical applications. However, to date their use remains limited because many are synthesised using heavy metal seeds and functionalised using organic ligands to make the materials water dispersible. This can result in unpredicted toxic side effects for mammalian cells cultured on the wires. Here, we describe an approach to make seedless and ligand free Germanium nanowires water dispersible using glutamic acid, a natural occurring amino acid that alleviates the environmental and health hazards associated with traditional functionalisation materials. We analysed the treated material extensively using Transmission electron microscopy (TEM), High resolution-TEM, and scanning electron microscope (SEM). Using a series of state of the art biochemical and morphological assays, together with a series of complimentary and synergistic cellular and molecular approaches, we show that the water dispersible germanium nanowires are non-toxic and are biocompatible. We monitored the behaviour of the cells growing on the treated germanium nanowires using a real time impedance based platform (xCELLigence) which revealed that the treated germanium nanowires promote cell adhesion and cell proliferation which we believe is as a result of the presence of an etched surface giving rise to a collagen like structure and an oxide layer. Furthermore this study is the first to evaluate the associated effect of Germanium nanowires on mammalian cells. Our studies highlight the potential use of water dispersible Germanium Nanowires in biological platforms that encourage anchorage-dependent cell growth. PMID:25237816

  7. Promoting cell proliferation using water dispersible germanium nanowires.

    PubMed

    Bezuidenhout, Michael; Liu, Pai; Singh, Shalini; Kiely, Maeve; Ryan, Kevin M; Kiely, Patrick A

    2014-01-01

    Group IV Nanowires have strong potential for several biomedical applications. However, to date their use remains limited because many are synthesised using heavy metal seeds and functionalised using organic ligands to make the materials water dispersible. This can result in unpredicted toxic side effects for mammalian cells cultured on the wires. Here, we describe an approach to make seedless and ligand free Germanium nanowires water dispersible using glutamic acid, a natural occurring amino acid that alleviates the environmental and health hazards associated with traditional functionalisation materials. We analysed the treated material extensively using Transmission electron microscopy (TEM), High resolution-TEM, and scanning electron microscope (SEM). Using a series of state of the art biochemical and morphological assays, together with a series of complimentary and synergistic cellular and molecular approaches, we show that the water dispersible germanium nanowires are non-toxic and are biocompatible. We monitored the behaviour of the cells growing on the treated germanium nanowires using a real time impedance based platform (xCELLigence) which revealed that the treated germanium nanowires promote cell adhesion and cell proliferation which we believe is as a result of the presence of an etched surface giving rise to a collagen like structure and an oxide layer. Furthermore this study is the first to evaluate the associated effect of Germanium nanowires on mammalian cells. Our studies highlight the potential use of water dispersible Germanium Nanowires in biological platforms that encourage anchorage-dependent cell growth.

  8. Optical waveguide beam splitters based on hybrid metal-dielectric-semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Li, Yunyun; Liang, Junwu; Zhang, Qinglin; Zhou, Zidong; Li, Honglai; Fan, Xiaopeng; Wang, Xiaoxia; Fan, Peng; Yang, Yankun; Guo, Pengfei; Zhuang, Xiujuan; Zhu, Xiaoli; Liao, Lei; Pan, Anlian

    2015-11-01

    Miniature integration is desirable for the future photonics circuit. Low-dimensional semiconductor and metal nanostructures is the potential building blocks in compact photonic circuits for their unique electronic and optical properties. In this work, a hybrid metal-dielectric-semiconductor nanostructure is designed and fabricated to realizing a nano-scale optical waveguide beam splitter, which is constructed with the sandwiched structure of a single CdS nanoribbon/HfO2 thin film/Au nanodisk arrays. Micro-optical investigations reveal that the guided light outputting at the terminal end of the CdS ribbon is well separated into several light spots. Numerical simulations further demonstrate that the beam splitting mechanism is attributed to the strong electromagnetic coupling between the Au nanodisks and light guided in the nanoribbon. The number of the split beams (light spots) at the terminal end of the nanoribbon is mainly determined by the number of the Au nanodisk rows, as well as the distance of the blank region between the nanodisks array and the end of the CdS ribbon, owing to the interference between the split beams. These optical beam splitters may find potential applications in high-density integrated photonic circuits and systems.

  9. Germanium nanowire growth controlled by surface diffusion effects

    SciTech Connect

    Schmidtbauer, Jan; Bansen, Roman; Heimburger, Robert; Teubner, Thomas; Boeck, Torsten; Fornari, Roberto

    2012-07-23

    Germanium nanowires (NWs) were grown onto Ge(111) substrates by the vapor-liquid-solid process using gold droplets. The growth was carried out in a molecular beam epitaxy chamber at substrate temperatures between 370 Degree-Sign C and 510 Degree-Sign C. The resulting nanowire growth rate turns out to be highly dependent on the substrate temperature exhibiting the maximum at T = 430 Degree-Sign C. The temperature dependence of growth rate can be attributed to surface diffusion both along the substrate and nanowire sidewalls. Analyzing the diffusive material transport yields a diffusion length of 126 nm at a substrate temperature of 430 Degree-Sign C.

  10. Synthesis and characterization of silicon and germanium nanowires, silica nanotubes, and germanium telluride/tellurium nanostructures

    NASA Astrophysics Data System (ADS)

    Tuan, Hsing-Yu

    A supercritical fluid-liquid solid (SFLS) nanowire growth process using alkanethiol-coated Au nanoparticles to seed silicon nanowires was developed for synthesizing silicon nanowires in solution. The organic solvent was found to significantly influence the silicon precursor decomposition in solution. 46.8 mg of silicon nanowires with 63% yield of silicon nanowire synthesis were achieved while using benzene as a solvent. The most widely used metal for seeding Si and Ge nanowires is Au. However, Au forms deep trap in both Si and Ge and alternative metal seeds are more desirable for electronic applications. Different metal nanocrystals were studied for Si and Ge nanowire synthesis, including Co, Ni, CuS, Mn, Ir, MnPt 3, Fe2O3, and FePt. All eight metals have eutectic temperatures with Si and Ge that are well above the nanowire growth temperature. Unlike Au nanocrystals, which seed nanowire growth through the formation of a liquid Au:Si (Au:Ge) alloy, these other metals seed nanowires by forming solid silicide alloys, a process we have called "supercritical fluid-solid-solid" (SFSS) growth. Moreover, Co and Ni nanoparticles were found to catalyze the decomposition of various silane reactants that do not work well to make Si nanowires using Au seeds. In addition to seeding solid nanowires, CuS nanoparticles were found to seed silica nanotubes via a SFSS like mechanism. 5% of synthesized silica nanotubes were coiled. Heterostructured nanomaterials are interesting since they merge the properties of the individual materials and can be used in diverse applications. GeTe/Te heterostructures were synthesized by reacting diphenylgermane (DPG) and TOP-Te in the presence of organic surfactants. Aligned Te nanorods were grown on the surface facets of micrometer-size germanium telluride particles.

  11. Direct Bandgap Light Emission from Strained Germanium Nanowires Coupled with High-Q Nanophotonic Cavities.

    PubMed

    Petykiewicz, Jan; Nam, Donguk; Sukhdeo, David S; Gupta, Shashank; Buckley, Sonia; Piggott, Alexander Y; Vučković, Jelena; Saraswat, Krishna C

    2016-04-13

    A silicon-compatible light source is the final missing piece for completing high-speed, low-power on-chip optical interconnects. In this paper, we present a germanium nanowire light emitter that encompasses all the aspects of potential low-threshold lasers: highly strained germanium gain medium, strain-induced pseudoheterostructure, and high-Q nanophotonic cavity. Our nanowire structure presents greatly enhanced photoluminescence into cavity modes with measured quality factors of up to 2000. By varying the dimensions of the germanium nanowire, we tune the emission wavelength over more than 400 nm with a single lithography step. We find reduced optical loss in optical cavities formed with germanium under high (>2.3%) tensile strain. Our compact, high-strain cavities open up new possibilities for low-threshold germanium-based lasers for on-chip optical interconnects.

  12. Young’s modulus of [111] germanium nanowires

    SciTech Connect

    Maksud, M.; Yoo, J.; Harris, C. T.; Palapati, N. K. R.; Subramanian, A.

    2015-11-02

    Our paper reports a diameter-independent Young’s modulus of 91.9 ± 8.2 GPa for [111] Germanium nanowires (Ge NWs). When the surface oxide layer is accounted for using a core-shell NW approximation, the YM of the Ge core approaches a near theoretical value of 147.6 ± 23.4 GPa. The ultimate strength of a NW device was measured at 10.9 GPa, which represents a very high experimental-to-theoretical strength ratio of ~75%. Furthermore, with increasing interest in this material system as a high-capacity lithium-ion battery anode, the presented data provide inputs that are essential in predicting its lithiation-induced stress fields and fracture behavior.

  13. Young’s modulus of [111] germanium nanowires

    SciTech Connect

    Maksud, M.; Palapati, N. K. R.; Subramanian, A.; Yoo, J.; Harris, C. T.

    2015-11-01

    This paper reports a diameter-independent Young’s modulus of 91.9 ± 8.2 GPa for [111] Germanium nanowires (Ge NWs). When the surface oxide layer is accounted for using a core-shell NW approximation, the YM of the Ge core approaches a near theoretical value of 147.6 ± 23.4 GPa. The ultimate strength of a NW device was measured at 10.9 GPa, which represents a very high experimental-to-theoretical strength ratio of ∼75%. With increasing interest in this material system as a high-capacity lithium-ion battery anode, the presented data provide inputs that are essential in predicting its lithiation-induced stress fields and fracture behavior.

  14. Schottky contacts in germanium nanowire network devices synthesized from nickel seeds

    NASA Astrophysics Data System (ADS)

    Gouveia, R. C.; Rodrigues, A. D.; Leite, E. R.; Chiquito, A. J.

    2016-10-01

    This paper presents reliable process to the synthesis of germanium nanowires by the vapor-liquid-solid method using nickel as an alternative catalyst to gold, the most commonly used metal, without toxic gas precursors. The structural study showed single-crystalline germanium nanowires with diamond structure, lengths of tens of microns and diameters smaller than 40 nm. The reduced dimensions of the nanowires led to phonons localization effect, with correlation lengths of the same order of the nanowires diameters. Additionally, the analysis of electronic properties of metal-nanowire-metal devices indicated the presence of Schottky barriers, whose values depend linearly on temperature. This linear dependence was assigned to the tunneling process through an insulator layer (mostly GeOx) at the metal-semiconductor interface. These results point to the existence of another channel for electrons transference from metal to semiconductor being very significant to electronic devices fabrication.

  15. Bending-induced Symmetry Breaking of Lithiation in Germanium Nanowires

    SciTech Connect

    Gu, Meng; Yang, Hui; Perea, Daniel E.; Zhang, Jiguang; Zhang, Sulin; Wang, Chong M.

    2014-08-01

    From signal transduction of living cells to oxidation and corrosion of metals, mechanical stress intimately couples with chemical reactions, regulating these biological and physiochemical processes. The coupled effect is particularly evident in electrochemical lithiation/delithiation cycling of high-capacity electrodes, such as silicon (Si), where on one hand lithiation-generated stress mediates lithiation kinetics, and on the other electrochemical reaction rate regulates stress generation and mechanical failure of the electrodes. Here we report for the first time the evidence on the controlled lithiation in germanium nanowires (GeNWs) through external bending. Contrary to the symmetric core-shell lithiation in free-standing GeNWs, we show bending GeNWs breaks the lithiation symmetry, speeding up lithaition at the tensile side while slowing down at the compressive side of the GeNWs. The bending-induced symmetry breaking of lithiation in GeNWs is further corroborated by chemomechanical modeling. In the light of the coupled effect between lithiation kinetics and mechanical stress in the electrochemical cycling, our findings shed light on strain/stress engineering of durable high-rate electrodes and energy harvesting through mechanical motion.

  16. Germanium-catalyzed growth of single-crystal GaN nanowires

    NASA Astrophysics Data System (ADS)

    Saleem, Umar; Wang, Hong; Peyrot, David; Olivier, Aurélien; Zhang, Jun; Coquet, Philippe; Ng, Serene Lay Geok

    2016-04-01

    We report the use of Germanium (Ge) as catalyst for Gallium Nitride (GaN) nanowires growth. High-yield growth has been achieved with Ge nanoparticles obtained by dewetting a thin layer of Ge on a Si (100) substrate. The nanowires are long and grow straight with very little curvature. The GaN nanowires are single-crystalline and show a Wurtzite structure growing along the [0001] axis. The growth follows a metal-free Vapor-Liquid-Solid (VLS) mechanism, further allowing a CMOS technology compatibility. The synthesis of nanowires has been done using an industrial Low Pressure Chemical Vapor Deposition (LPCVD) system.

  17. Structural and optical properties of axial silicon-germanium nanowire heterojunctions

    SciTech Connect

    Wang, X.; Tsybeskov, L.; Kamins, T. I.; Wu, X.; Lockwood, D. J.

    2015-12-21

    Detailed studies of the structural and optical properties of axial silicon-germanium nanowire heterojunctions show that despite the 4.2% lattice mismatch between Si and Ge they can be grown without a significant density of structural defects. The lattice mismatch induced strain is partially relieved due to spontaneous SiGe intermixing at the heterointerface during growth and lateral expansion of the Ge segment of the nanowire. The mismatch in Ge and Si coefficients of thermal expansion and low thermal conductivity of Si/Ge nanowire heterojunctions are proposed to be responsible for the thermally induced stress detected under intense laser radiation in photoluminescence and Raman scattering measurements.

  18. Operando X-ray scattering and spectroscopic analysis of germanium nanowire anodes in lithium ion batteries.

    PubMed

    Silberstein, Katharine E; Lowe, Michael A; Richards, Benjamin; Gao, Jie; Hanrath, Tobias; Abruña, Héctor D

    2015-02-17

    X-ray diffraction (XRD) and Fourier transform extended X-ray absorption fine structure (EXAFS) analysis of X-ray absorption spectroscopy (XAS) measurements have been employed to determine structural and bonding changes, as a function of the lithium content/state of charge, of germanium nanowires used as the active anode material within lithium ion batteries (LIBs). Our data, collected throughout the course of battery cycling (operando), indicate that lithium incorporation within the nanostructured germanium occurs heterogeneously, preferentially into amorphous regions over crystalline domains. Maintenance of the molecular structural integrity within the germanium nanowire is dependent on the depth of discharge. Discharging to a shallower cutoff voltage preserves partial crystallinity for several cycles.

  19. Germanium

    SciTech Connect

    Major-Sosias, M.A.

    1996-01-01

    Germanium is an important semiconductor material, or metalloid which, by definition, is a material whose electrical properties are halfway between those of metallic conductors and electrical insulators. This paper describes the properties, sources, and market for germanium.

  20. Electric field effect thermoelectric transport in individual silicon and germanium/silicon nanowires

    NASA Astrophysics Data System (ADS)

    Brovman, Yuri M.; Small, Joshua P.; Hu, Yongjie; Fang, Ying; Lieber, Charles M.; Kim, Philip

    2016-06-01

    We have simultaneously measured conductance and thermoelectric power (TEP) of individual silicon and germanium/silicon core/shell nanowires in the field effect transistor device configuration. As the applied gate voltage changes, the TEP shows distinctly different behaviors while the electrical conductance exhibits the turn-off, subthreshold, and saturation regimes, respectively. At room temperature, peak TEP value of ˜300 μ V/K is observed in the subthreshold regime of the Si devices. The temperature dependence of the saturated TEP values is used to estimate the carrier doping of Si nanowires.

  1. In operandi observation of dynamic annealing: A case study of boron in germanium nanowire devices

    SciTech Connect

    Koleśnik-Gray, Maria M.; Krstić, Vojislav; Sorger, Christian; Weber, Heiko B.; Biswas, Subhajit; Holmes, Justin D.

    2015-06-08

    We report on the implantation of boron in individual, electrically contacted germanium nanowires with varying diameter and present a technique that monitors the electrical properties of a single device during implantation of ions. This method gives improved access to study the dynamic annealing ability of the nanowire at room temperature promoted by its quasi-one-dimensional confinement. Based on electrical data, we find that the dopant activation efficiency is nontrivially diameter dependent. As the diameter decreases, a transition from a pronounced dynamic-annealing to a radiation-damage dominated regime is observed.

  2. Solution-grown germanium nanowire anodes for lithium-ion batteries.

    PubMed

    Chockla, Aaron M; Klavetter, Kyle C; Mullins, C Buddie; Korgel, Brian A

    2012-09-26

    Solution-grown germanium (Ge) nanowires were tested as high capacity anodes in lithium ion (Li-ion) batteries. Nanowire films were formulated and cast as slurries with conductive carbon (7:1 Ge:C w/w), PVdF binder and 1.0 M LiPF(6) dissolved in various solvents as electrolyte. The addition of fluorethylene carbonate (FEC) to the electrolyte was critical to achieving stable battery cycling and reversible capacities as high as 1248 mA h g(-1) after 100 cycles, which is close to the theoretical capacity of 1,384 mA h g(-1). Ge nanowire anodes also exhibited high rate capability, with reversible cycling above 600 mA h g(-1) for 1200 cycles at a rate of 1C. The batteries could also be discharged at 10C with a capacity of 900 mA h g(-1) when charged at 1C.

  3. Tailoring thermal conductivity of silicon/germanium nanowires utilizing core-shell architecture

    NASA Astrophysics Data System (ADS)

    Sarikurt, S.; Ozden, A.; Kandemir, A.; Sevik, C.; Kinaci, A.; Haskins, J. B.; Cagin, T.

    2016-04-01

    Low-dimensional nanostructured materials show large variations in their thermal transport properties. In this work, we investigate the influence of the core-shell architecture on nanowire (1D) thermal conductivity and evaluate its validity as a strategy to achieve a better thermoelectric performance. To obtain the thermal conductivity values, equilibrium molecular dynamics simulations are conducted for core-shell nanowires of silicon and germanium. To explore the parameter space, we have calculated thermal conductivity values of the Si-core/Ge-shell and Ge-core/Si-shell nanowires having different cross-sectional sizes and core contents at several temperatures. Our results indicate that (1) increasing the cross-sectional area of pristine Si and pristine Ge nanowires increases the thermal conductivity, (2) increasing the Ge core size in the Ge-core/Si-shell structure results in a decrease in the thermal conductivity at 300 K, (3) the thermal conductivity of the Si-core/Ge-shell nanowires demonstrates a minima at a specific core size, (4) no significant variation in the thermal conductivity is observed in nanowires for temperatures larger than 300 K, and (5) the predicted thermal conductivity within the frame of applied geometrical constraints is found to be around 10 W/(mK) for the Si and Ge core-shell architecture with a smooth interface. The value is still higher than the amorphous limit (1 W/(mK)). This represents a significant reduction in thermal conductivity with respect to their bulk crystalline and pristine nanowire forms. Furthermore, we observed additional suppression of thermal conductivity through the introduction of interface roughness to Si/Ge core-shell nanowires.

  4. Geometrical and band-structure effects on phonon-limited hole mobility in rectangular cross-sectional germanium nanowires

    SciTech Connect

    Tanaka, H. Mori, S.; Morioka, N.; Suda, J.; Kimoto, T.

    2014-12-21

    We calculated the phonon-limited hole mobility in rectangular cross-sectional [001], [110], [111], and [112]-oriented germanium nanowires, and the hole transport characteristics were investigated. A tight-binding approximation was used for holes, and phonons were described by a valence force field model. Then, scattering probability of holes by phonons was calculated taking account of hole-phonon interaction atomistically, and the linearized Boltzmann's transport equation was solved to calculate the hole mobility at low longitudinal field. The dependence of the hole mobility on nanowire geometry was analyzed in terms of the valence band structure of germanium nanowires, and it was found that the dependence was qualitatively reproduced by considering an average effective mass and the density of states of holes. The calculation revealed that [110] germanium nanowires with large height along the [001] direction show high hole mobility. Germanium nanowires with this geometry are also expected to exhibit high electron mobility in our previous work, and thus they are promising for complementary metal-oxide-semiconductor (CMOS) applications.

  5. Electronic states of lithium passivated germanium nanowires: An ab-initio study

    SciTech Connect

    Trejo, A.; Carvajal, E.; Vázquez-Medina, R.; Cruz-Irisson, M.

    2014-05-15

    A study of the electronic and structural properties of germanium nanowires (GeNWs) was performed using the ab-initio Density Functional Theory within the generalized gradient approximation where electron-ion interactions are described by ultrasoft pseudopotentials. To study the effects of the lithium in the surface of the GeNWs we compare the electronic band structures of Hydrogen passivated GeNWs with those of partial and totally Li passivated GeNWs. The nanowires were constructed in the [001], [111] and [110] directions, using the supercell model to create different wire diameters. The results show that in the case of partial Li passivation there are localized orbitals near the valence band maximum, which would create a p-doped-kind of state. The total Li passivation created metallic states for all the wires.

  6. Directed synthesis of germanium oxide nanowires by vapor-liquid-solid oxidation.

    PubMed

    Gunji, M; Thombare, S V; Hu, S; McIntyre, P C

    2012-09-28

    We report on the directed synthesis of germanium oxide (GeO(x)) nanowires (NWs) by locally catalyzed thermal oxidation of aligned arrays of gold catalyst-tipped germanium NWs. During oxygen anneals conducted above the Au-Ge binary eutectic temperature (T > 361 °C), one-dimensional oxidation of as-grown Ge NWs occurs by diffusion of Ge through the Au-Ge catalyst droplet, in the presence of an oxygen containing ambient. Elongated GeO(x) wires grow from the liquid catalyst tip, consuming the adjoining Ge NWs as they grow. The oxide NWs' diameter is dictated by the catalyst diameter and their alignment generally parallels that of the growth direction of the initial Ge NWs. Growth rate comparisons reveal a substantial oxidation rate enhancement in the presence of the Au catalyst. Statistical analysis of GeO(x) nanowire growth by ex situ transmission electron microscopy and scanning electron microscopy suggests a transition from an initial, diameter-dependent kinetic regime, to diameter-independent wire growth. This behavior suggests the existence of an incubation time for GeO(x) NW nucleation at the start of vapor-liquid-solid oxidation.

  7. One or two dimensional electronic states in gold nanowires on germanium?

    NASA Astrophysics Data System (ADS)

    de Jong, Nick; Frantzeskakis, Emmanouil; Heimbuch, René; Varkhalov, Andrei; Zandvliet, Harold; Golden, Mark

    2015-03-01

    Inspired by the formulation of Tomonaga-luttinger liquid (TLL) theory in the 1960's and its prediction of a spectacular breakdown of Fermi liquid theory in 1D, people have been searching for one dimensional electronic systems. With experimental developments like the advent of scanning tunneling microscopy (STM) and the manipulation of matter on the nanometer and sub nanometer scale, this field has become increasingly accessible for the experimentalist. Self-organised metallic chains on semiconductor surfaces are a class of systems which could harbor 1D behavior. In this field, Au nanowires on the Ge(100) surface have been the subject of debate, with reports of 1D bands from both ARPES and STM (1) and 2D bands in the same system displaying no Luttinger like behavior (2). Here we present high resolution ARPES data from both the Au/Ge(100) system and a new nanowire system: Au/Ge(110). By comparing these different systems with each other an with the electronic structure of the bare Ge(110) surface, we try to give a definitive answer on the question of the dimensionality of the electronic structure of Au nanowires on germanium. Support from FOM and the EU is gratefully acknowledged.

  8. Significant thermal conductivity reduction of silicon nanowire forests through discrete surface doping of germanium

    SciTech Connect

    Pan, Ying; Hong, Guo; Raja, Shyamprasad N.; Zimmermann, Severin; Poulikakos, Dimos; Tiwari, Manish K.

    2015-03-02

    Silicon nanowires (SiNWs) are promising materials for the realization of highly-efficient and cost effective thermoelectric devices. Reduction of the thermal conductivity of such materials is a necessary and viable pathway to achieve sufficiently high thermoelectric efficiencies, which are inversely proportional to the thermal conductivity. In this article, vertically aligned forests of SiNW and germanium (Ge)-doped SiNW with diameters around 100 nm have been fabricated, and their thermal conductivity has been measured. The results show that discrete surface doping of Ge on SiNW arrays can lead to 23% reduction in thermal conductivity at room temperature compared to uncoated SiNWs. Such reduction can be further enhanced to 44% following a thermal annealing step. By analyzing the binding energy changes of Ge-3d and Si-2p using X-ray photoelectron spectroscopy, we demonstrate that surface doped Ge interacts strongly with Si, enhancing phonon scattering at the Si-Ge interface as has also been shown in non-equilibrium molecular dynamics studies of single nanowires. Overall, our results suggest a viable pathway to improve the energy conversion efficiency of nanowire-forest thermoelectric nanomaterials.

  9. Screening of the quantum-confined Stark effect in AlN/GaN nanowire superlattices by germanium doping

    SciTech Connect

    Hille, P. Müßener, J.; Becker, P.; Teubert, J.; Schörmann, J.; Eickhoff, M.; Mata, M. de la; Rosemann, N.; Chatterjee, S.; Magén, C.; Arbiol, J.

    2014-03-10

    We report on electrostatic screening of polarization-induced internal electric fields in AlN/GaN nanowire heterostructures with germanium-doped GaN nanodiscs embedded between AlN barriers. The incorporation of germanium at concentrations above 10{sup 20} cm{sup –3} shifts the photoluminescence emission energy of GaN nanodiscs to higher energies accompanied by a decrease of the photoluminescence decay time. At the same time, the thickness-dependent shift in emission energy is significantly reduced. In spite of the high donor concentration, a degradation of the photoluminescence properties is not observed.

  10. Germanium doping of self-assembled GaN nanowires grown by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Schörmann, Jörg; Hille, Pascal; Schäfer, Markus; Müßener, Jan; Becker, Pascal; Klar, Peter J.; Hofmann, Detlev M.; Teubert, Jörg; Eickhoff, Martin; Kleine-Boymann, Matthias; Rohnke, Marcus; Mata, Maria de la; Arbiol, Jordi

    2013-09-14

    Germanium doping of GaN nanowires grown by plasma-assisted molecular beam epitaxy on Si(111) substrates is studied. Time of flight secondary ion mass spectrometry measurements reveal a constant Ge-concentration along the growth axis. A linear relationship between the applied Ge-flux and the resulting ensemble Ge-concentration with a maximum content of 3.3×10{sup 20} cm{sup −3} is extracted from energy dispersive X-ray spectroscopy measurements and confirmed by a systematic increase of the conductivity with Ge-concentration in single nanowire measurements. Photoluminescence analysis of nanowire ensembles and single nanowires reveals an exciton localization energy of 9.5 meV at the neutral Ge-donor. A Ge-related emission band at energies above 3.475 eV is found that is assigned to a Burstein-Moss shift of the excitonic emission.

  11. Inherent control of growth, morphology, and defect formation in germanium nanowires.

    PubMed

    Biswas, Subhajit; Singha, Achintya; Morris, Michael A; Holmes, Justin D

    2012-11-14

    The use of bimetallic alloy seeds for growing one-dimensional nanostructures has recently gained momentum among researchers. The compositional flexibility of alloys provides the opportunity to manipulate the chemical environment, reaction kinetics, and thermodynamic behavior of nanowire growth, in both the eutectic and the subeutectic regimes. This Letter describes for the first time the role of Au(x)Ag(1-x) alloy nanoparticles in defining the growth characteristics and crystal quality of solid-seeded Ge nanowires via a supercritical fluid growth process. The enhanced diffusivity of Ge in the alloy seeds, compared to pure Ag seeds, and slow interparticle diffusion of the alloy nanoparticles allows the realization of high-aspect ratio nanowires with diameters below 10 nm, via a seeded bottom-up approach. Also detailed is the influence the alloyed seeds have on the crystalline features of nanowires synthesized from them, that is, planar defects. The distinctive stacking fault energies, formation enthalpies, and diffusion chemistries of the nanocrystals result in different magnitudes of {111} stacking faults in the seed particles and the subsequent growth of <112>-oriented nanowires with radial twins through a defect transfer mechanism, with the highest number twinned Ge nanowires obtained using Ag(0.75)Au(0.25) growth seeds. Employing alloy nanocrystals for intrinsically dictating the growth behavior and crystallinity of nanowires could open up the possibility of engineering nanowires with tunable structural and physical properties.

  12. Synthesis of silicon-germanium axial nanowire heterostructures in a solvent vapor growth system using indium and tin catalysts.

    PubMed

    Mullane, E; Geaney, H; Ryan, K M

    2015-03-14

    Here we describe a relatively facile synthetic protocol for the formation of Si-Ge and Si-Ge-Si1-xGex axial nanowire heterostructures. The wires are grown directly on substrates with an evaporated catalytic layer placed in the vapour zone of a high boiling point solvent with the silicon and germanium precursors injected as liquids sequentially. We show that these heterostructures can be formed using either indium or tin as the catalyst seeds which form in situ during the thermal anneal. There is a direct correlation between growth time and segment length allowing good control over the wire composition. The formation of axial heterostructures of Si-Ge-Si1-xGex nanowires using a triple injection is further discussed with the alloyed Si1-xGex third component formed due to residual Ge precursor and its greater reactivity in comparison to silicon. It was found that the degree of tapering at each hetero-interface varied with both the catalyst type and composition of the NW. The report shows the versatility of the solvent vapour growth system for the formation of complex Si-Ge NW heterostructures. PMID:25676188

  13. Fabrication and optical properties of (I) Erbium-doped nanowires containing germanium and/or zinc oxide and (II) Porous germanium nanowires

    NASA Astrophysics Data System (ADS)

    Huang, Xuezhen

    Nanomaterials have attracted great attention in the past two decades due to their superior mechanical, thermal, chemical, electrical and optical properties entirely different from bulk materials, which lead to numerous potential applications in nanodevices and nanoelectronics, such as FETs, LEDs, single electron memory devices, spin polarized electronics, quantum computing, sensors, photonic crystals/devices, solar cells etc. Based on the previous work on Er-doped GeNWs, a core-shell nanostructure was built by introducing Zn/ZnO shell onto Er-doped GeNWs. It was found that Zn sources and corresponding surface modification processes (CVD and PVD) have important impact on Er3+ PL and ZnO UV/visible PL due to Zn2GeO4 formation, which were confirmed by HRTEM and XRD measurements. In another work, Ge and Er were used to modify the surface of ZnO tetrapods. Both strong ZnO visible PL and Er3+ PL were observed; considerable enhancement of Er3+ PL was made possible by Ge deposition as a sensitizer layer. The Zn2GeO4 phase observed could either separate from the ZnO phase or mix uniformly with the ZnO phase. As a control system, Er/GeOx/ZnO nanofibers were fabricated by electrospinning of selected sol-gel precursor solutions. These types of nanofibers exhibited strong Er3+ near IR PL at 1.54 mum after annealing to remove the polymer template. XRD spectra indicate that the Er/Ge/Zn mixture likely forms a disordered phase, especially with high Er3+ concentrations, which contributes to the strong Er 3+ PL with the reduction of Er-Er interactions. In another work, the fabrication of F-doped ZnO nanowires was investigated on different substrates with or without carrier gas (Ar). ZnO UV/visible PL spectra indicate that F-doping diminished the intensity of defect light emission at ˜2.4 eV. Furthermore, ZnO/F-doped ZnO core-shell NWs were fabricated either by PVD or CVD processes; the PVD method provides better crystalline shell structures after annealing. The last work describes

  14. Metastable crystalline AuGe catalysts formed during isothermal germanium nanowire growth.

    PubMed

    Gamalski, A D; Tersoff, J; Sharma, R; Ducati, C; Hofmann, S

    2012-06-22

    We observe the formation of metastable AuGe phases without quenching, during strictly isothermal nucleation and growth of Ge nanowires, using video-rate lattice-resolved environmental transmission electron microscopy. We explain the unexpected formation of these phases through a novel pathway involving changes in composition rather than temperature. The metastable catalyst has important implications for nanowire growth, and more broadly, the isothermal process provides both a new approach to growing and studying metastable phases, and a new perspective on their formation.

  15. Analysis of ballistic and quasi-ballistic hole transport properties in germanium nanowires based on an extended "Top of the Barrier" model

    NASA Astrophysics Data System (ADS)

    Tanaka, Hajime; Suda, Jun; Kimoto, Tsunenobu

    2016-09-01

    The ballistic hole transport properties in rectangular cross-sectional germanium nanowire transistors with various geometries were studied based on the "Top of the Barrier" model. Then, by an extension of this model, the quasi-ballistic hole transport was discussed taking into account phonon and surface roughness scattering in the channel and source-to-drain direct tunneling. Among several nanowire geometries targeted in this study, the [1 1 0]-oriented nanowire with large height along [1 1 bar 0] ([1 1 0]/(1 1 bar 0) NW) exhibited the largest ballistic current. This was understood from its large density of states and resulting high hole density. Large density of states, however, enhances backscattering in the channel. An approximation analysis of quasi-ballistic transport suggested that the [1 1 0]/(0 0 1) NW with higher mobility can outperform [1 1 0]/(1 1 bar 0) NW when scattering and tunneling are considered.

  16. Silicon-germanium nanowire tunnel-FETs with homo- and heterostructure tunnel junctions

    NASA Astrophysics Data System (ADS)

    Richter, S.; Blaeser, S.; Knoll, L.; Trellenkamp, S.; Fox, A.; Schäfer, A.; Hartmann, J. M.; Zhao, Q. T.; Mantl, S.

    2014-08-01

    Experimental results on tunneling field-effect transistors (TFETs) based on strained SiGe on SOI nanowire arrays are presented. A heterostructure SiGe/Si TFET with a vertical tunnel junction consisting of an in situ doped SiGe source and a Si channel with a minimum inverse subthreshold slope of 90 mV/dec is demonstrated. An increase in tunneling area results in higher on-current. The in situ doped heterojunction TFET shows great improvement compared to a homojunction SiGe on SOI nanowire design with implanted junctions. Temperature dependent measurements and device simulations are performed in order to analyze the tunnel transport mechanism in the devices.

  17. The impact of erbium incorporation on the structure and photophysics of silicon-germanium nanowires.

    PubMed

    Wu, Ji; Wieligor, Monika; Zerda, T Waldek; Coffer, Jeffery L

    2010-12-01

    In this paper, we report multi-step processes for the fabrication of Er3+-doped SiGe nanowires (NWs) and characterization of their emissive properties. Three different alloyed architectures are obtained by altering the deposition sequences of Si and Er3+ on a Ge core NW, each involving a fixed concentration of these three elements. The deposition of Si onto the Ge NW core, followed by an Er3+-rich layer on the outermost surface, permits facile formation of a SiGe alloy given the lack of an erbium diffusion barrier; yet clustering of the erbium centers on the NW surface produces the weakest emitter. For nanowires prepared by co-depositing Si and Er3+ on top of the Ge core, the presence of impurity Er3+ ions greatly reduces the alloying rate of Si and Ge such that less Si can diffuse into the Ge core. For this structure, the reduction of Er-Er interactions by a polycrystalline Si shell results in the strongest emission at 1540 nm. If an Er3+ layer is inserted between the Ge and Si layers (a sandwich structure), it is found that Er3+ ions diffuse preferentially into the SiGe core instead of the silicon-rich shell, with a correspondingly weaker luminescence intensity. A combination of high resolution transmission electron microscopy, energy dispersive X-ray mapping, micro-Raman spectroscopy, and photoluminescence spectroscopy are employed to derive these conclusions.

  18. Formation of metastable liquid catalyst during subeutectic growth of germanium nanowires.

    PubMed

    Gamalski, A D; Tersoff, J; Sharma, R; Ducati, C; Hofmann, S

    2010-08-11

    Lattice-resolved, video-rate environmental transmission electron microscopy shows the formation of a liquid Au-Ge layer on sub-30-nm Au catalyst crystals and the transition of this two-phase Au-Ge/Au coexistence to a completely liquid Au-Ge droplet during isothermal digermane exposure at temperatures far below the bulk Au-Ge eutectic temperature. Upon Ge crystal nucleation and subsequent Ge nanowire growth, the catalyst either recrystallizes or remains liquid, apparently stabilized by the Ge supersaturation. We argue that there is a large energy barrier to nucleate diamond-cubic Ge, but not to nucleate the Au-Ge liquid. As a result, the system follows the more kinetically accessible path, forming a liquid even at 240 degrees C, although there is no liquid along the most thermodynamically favorable path below 360 degrees C.

  19. On demand shape-selective integration of individual vertical germanium nanowires on a Si(111) substrate via laser-localized heating.

    PubMed

    Ryu, Sang-Gil; Kim, Eunpa; Yoo, Jae-Hyuck; Hwang, David J; Xiang, Bin; Dubon, Oscar D; Minor, Andrew M; Grigoropoulos, Costas P

    2013-03-26

    Semiconductor nanowire (NW) synthesis methods by blanket furnace heating produce structures of uniform size and shape. This study overcomes this constraint by applying laser-localized synthesis on catalytic nanodots defined by electron beam lithography in order to accomplish site- and shape-selective direct integration of vertically oriented germanium nanowires (GeNWs) on a single Si(111) substrate. Since the laser-induced local temperature field drives the growth process, each NW could be synthesized with distinctly different geometric features. The NW shape was dialed on demand, ranging from cylindrical to hexagonal/irregular hexagonal pyramid. Finite difference time domain analysis supported the tunability of the light absorption and scattering spectra via controlling the GeNW shape.

  20. Growth and electrical rectification in axial in-situ doped p-n junction germanium nanowires

    SciTech Connect

    Picraux, Samuel T; Dayeh, Shadi; Zaslavsky, Alexander; Le, Son T

    2009-01-01

    In this work, we demonstrate the vapor-liquid-solid (VLS) growth and electrical properties of axial in-situ doped p-n junction Ge nanowires (NWs). In-situ doping of the NWs was accomplished by introducing dopant gases (diborane and phosphine) together with GeH{sub 4} in the growth process. By changing dopant sources during growth, a p-n junction can be realized along the axis of the NWs. Metal contacts to the wires were defined using e-beam lithography patterning, followed by 100 nm Ni sputter deposition and lift-off. Four-point measurements of the fabricated devices at room temperature and at 77 K clearly show rectification with on/off current ratio up to two orders of magnitude when the bias is applied across the p-n junction. The ideality factor of the junction current points to a significant generation-recombination contribution. The Ohmic characteristics in the p and n regions outside the junction make it possible to estimate the doping levels. We also observed backgate control of the NW junction current.

  1. Effect of gold migration on the morphology of germanium nanowires grown by a two-step growth method with temperature modulation

    NASA Astrophysics Data System (ADS)

    Xu, Zhengyu; Usami, Koichi; Simanullang, Marolop; Noguchi, Tomohiro; Kawano, Yukio; Oda, Shunri

    2016-08-01

    Germanium nanowires (Ge NWs) grown at high temperatures (HTs) are investigated because of the demand for impurity doping. However, gold agglomeration, which occurs at HTs, results in undesired moundlike structures. A two-step growth technique with temperature modulation from low temperatures (LTs) to HTs was adopted to prevent gold agglomeration, thus revealing high-yield HT Ge NWs on top of LT Ge NWs. These Ge NWs can be classified into two groups on the basis of their shape. The timing of gold migration plays a crucial role in determining the shape of these NWs. Fat core-shell-like Ge NWs, where gold migration occurs as temperature increases, are due to the enhanced radial growth at HTs generated from the migrated gold nanoparticles on the NW sidewalls. However, for thin NWs, because Au seeds were stabilized on top of NWs until synthesis ended, the axial growth of Ge NWs continued at HTs.

  2. Effect of gold migration on the morphology of germanium nanowires grown by a two-step growth method with temperature modulation

    NASA Astrophysics Data System (ADS)

    Xu, Zhengyu; Usami, Koichi; Simanullang, Marolop; Noguchi, Tomohiro; Kawano, Yukio; Oda, Shunri

    2016-08-01

    Germanium nanowires (Ge NWs) grown at high temperatures (HTs) are investigated because of the demand for impurity doping. However, gold agglomeration, which occurs at HTs, results in undesired moundlike structures. A two-step growth technique with temperature modulation from low temperatures (LTs) to HTs was adopted to prevent gold agglomeration, thus revealing high-yield HT Ge NWs on top of LT Ge NWs. These Ge NWs can be classified into two groups on the basis of their shape. The timing of gold migration plays a crucial role in determining the shape of these NWs. Fat core–shell-like Ge NWs, where gold migration occurs as temperature increases, are due to the enhanced radial growth at HTs generated from the migrated gold nanoparticles on the NW sidewalls. However, for thin NWs, because Au seeds were stabilized on top of NWs until synthesis ended, the axial growth of Ge NWs continued at HTs.

  3. Germanium-Rich SiGe Nanowires Formed Through Oxidation of Patterned SiGe FINs on Insulator

    NASA Astrophysics Data System (ADS)

    Balakumar, S.; Buddharaju, K. D.; Tan, B.; Rustagi, S. C.; Singh, N.; Kumar, R.; Lo, G. Q.; Tripathy, S.; Kwong, D. L.

    2009-03-01

    In this study, the authors report on the fabrication of Ge-rich SiGe nanowires (SGNWs) by oxidation of SiGe fins on insulator. Nanowires of different shapes and size are obtained by varying the initial fin shape, Ge content, oxidation process temperature, and oxidation time. Transmission electron microscopy observations revealed nanowires with rectangular, square, elliptical, circular, octagonal, and hexagonal cross-sections, with different Ge content. The elliptical, octagonal, and hexagonal facets are unique shapes formed with low-index faces belonging to (110) groups. These possess very high Ge content up to 95%, and were obtained in the samples oxidized from 850°C to 875°C. In␣addition, the in-plane strain in the fabricated SGNWs is evaluated using micro-Raman spectroscopy. The possible mechanism behind the formation and transformation of different nanowire shapes is discussed.

  4. Non-equilibrium induction of tin in germanium: towards direct bandgap Ge1-xSnx nanowires

    NASA Astrophysics Data System (ADS)

    Biswas, Subhajit; Doherty, Jessica; Saladukha, Dzianis; Ramasse, Quentin; Majumdar, Dipanwita; Upmanyu, Moneesh; Singha, Achintya; Ochalski, Tomasz; Morris, Michael A.; Holmes, Justin D.

    2016-04-01

    The development of non-equilibrium group IV nanoscale alloys is critical to achieving new functionalities, such as the formation of a direct bandgap in a conventional indirect bandgap elemental semiconductor. Here, we describe the fabrication of uniform diameter, direct bandgap Ge1-xSnx alloy nanowires, with a Sn incorporation up to 9.2 at.%, far in excess of the equilibrium solubility of Sn in bulk Ge, through a conventional catalytic bottom-up growth paradigm using noble metal and metal alloy catalysts. Metal alloy catalysts permitted a greater inclusion of Sn in Ge nanowires compared with conventional Au catalysts, when used during vapour-liquid-solid growth. The addition of an annealing step close to the Ge-Sn eutectic temperature (230 °C) during cool-down, further facilitated the excessive dissolution of Sn in the nanowires. Sn was distributed throughout the Ge nanowire lattice with no metallic Sn segregation or precipitation at the surface or within the bulk of the nanowires. The non-equilibrium incorporation of Sn into the Ge nanowires can be understood in terms of a kinetic trapping model for impurity incorporation at the triple-phase boundary during growth.

  5. Non-equilibrium induction of tin in germanium: towards direct bandgap Ge1−xSnx nanowires

    PubMed Central

    Biswas, Subhajit; Doherty, Jessica; Saladukha, Dzianis; Ramasse, Quentin; Majumdar, Dipanwita; Upmanyu, Moneesh; Singha, Achintya; Ochalski, Tomasz; Morris, Michael A.; Holmes, Justin D.

    2016-01-01

    The development of non-equilibrium group IV nanoscale alloys is critical to achieving new functionalities, such as the formation of a direct bandgap in a conventional indirect bandgap elemental semiconductor. Here, we describe the fabrication of uniform diameter, direct bandgap Ge1−xSnx alloy nanowires, with a Sn incorporation up to 9.2 at.%, far in excess of the equilibrium solubility of Sn in bulk Ge, through a conventional catalytic bottom-up growth paradigm using noble metal and metal alloy catalysts. Metal alloy catalysts permitted a greater inclusion of Sn in Ge nanowires compared with conventional Au catalysts, when used during vapour–liquid–solid growth. The addition of an annealing step close to the Ge-Sn eutectic temperature (230 °C) during cool-down, further facilitated the excessive dissolution of Sn in the nanowires. Sn was distributed throughout the Ge nanowire lattice with no metallic Sn segregation or precipitation at the surface or within the bulk of the nanowires. The non-equilibrium incorporation of Sn into the Ge nanowires can be understood in terms of a kinetic trapping model for impurity incorporation at the triple-phase boundary during growth. PMID:27095012

  6. Synthesis and Raman scattering studies of novel semiconductor nanostructures: silicon, germanium and gallium arsenide twinning superlattice nanowires

    NASA Astrophysics Data System (ADS)

    Adu, Kofi Wi

    This thesis work focuses on synthesis of novel semiconductor nanostructures: nanowires, quantum dots and twinning superlattices by Pulsed Laser Vaporization (PLV) and Thermal Batch Process (TBP) and the studies of their optical properties. We have developed growth and synthesis routes to produce Ge and Si nanowires of diameters ranging from 3nm to 10nm that exhibit quantum confinement effects. The asymmetric Raman lineshape predicted for scattering from confined optical phonon by Richter, and the Fano interference lineshape in n-type Si and Ge are found to be similar. However, the physics of either phenomenon is distinctively different. We performed a series of Raman scattering experiments on Si and Ge nanowires to determine the true origin of the asymmetry. The experiments were conducted under two conditions: high wire density and low wire density, corresponding to poor thermal anchorage and good thermal anchorage on substrate. We identified three physical phenomena that contribute to the lineshape: Phonon confinement, photo-stimulated and thermally induced Fano scattering. We can distinguish each of these processes based on the diameter of the wire and the laser flux dependence of the scattering and the evolution of the lineshape at low laser power with nanowire diameter. Which effect dominates depends on the contact of the Raman sample to the substrate, the substrate thermal properties, and the diameter of the nanowires. We have proposed a coupled phenomenological model which takes the phonon confinement and Fano processes into account that best describe the observed asymmetry in the phonon lineshapes. We are the first to report true phonon confinement in Si and Ge nanowires that shows the evolution of the lineshape asymmetry with diameter (3 nm to 30 nm) first predicted by Richter. We have also investigated the effect of oxide layer, and strain induced by the oxide layer on the first order Raman scattering from Si nanowires. Our data reveal that: (a) one can

  7. Design and analysis of nanowire p-type MOSFET coaxially having silicon core and germanium peripheral channel

    NASA Astrophysics Data System (ADS)

    Yu, Eunseon; Cho, Seongjae

    2016-11-01

    In this work, a nanowire p-type metal–oxide–semiconductor field-effect transistor (PMOSFET) coaxially having a Si core and a Ge peripheral channel is designed and characterized by device simulations. Owing to the high hole mobility of Ge, the device can be utilized for high-speed CMOS integrated circuits, with the effective confinement of mobile holes in Ge by the large valence band offset between Si and Ge. Source/drain doping concentrations and the ratio between the Si core and Ge channel thicknesses are determined. On the basis of the design results, the channel length is aggressively scaled down by evaluating the primary DC parameters in order to confirm device scalability and low-power applicability in sub-10-nm technology nodes.

  8. Nanowire Photovoltaic Devices

    NASA Technical Reports Server (NTRS)

    Forbes, David

    2015-01-01

    Firefly Technologies, in collaboration with the Rochester Institute of Technology and the University of Wisconsin-Madison, developed synthesis methods for highly strained nanowires. Two synthesis routes resulted in successful nanowire epitaxy: direct nucleation and growth on the substrate and a novel selective-epitaxy route based on nanolithography using diblock copolymers. The indium-arsenide (InAs) nanowires are implemented in situ within the epitaxy environment-a significant innovation relative to conventional semiconductor nanowire generation using ex situ gold nanoparticles. The introduction of these nanoscale features may enable an intermediate band solar cell while simultaneously increasing the effective absorption volume that can otherwise limit short-circuit current generated by thin quantized layers. The use of nanowires for photovoltaics decouples the absorption process from the current extraction process by virtue of the high aspect ratio. While no functional solar cells resulted from this effort, considerable fundamental understanding of the nanowire epitaxy kinetics and nanopatterning process was developed. This approach could, in principle, be an enabling technology for heterointegration of dissimilar materials. The technology also is applicable to virtual substrates. Incorporating nanowires onto a recrystallized germanium/metal foil substrate would potentially solve the problem of grain boundary shunting of generated carriers by restricting the cross-sectional area of the nanowire (tens of nanometers in diameter) to sizes smaller than the recrystallized grains (0.5 to 1 micron(exp 2).

  9. Solution synthesis of germanium nanocrystals

    DOEpatents

    Gerung, Henry; Boyle, Timothy J.; Bunge, Scott D.

    2009-09-22

    A method for providing a route for the synthesis of a Ge(0) nanometer-sized material from. A Ge(II) precursor is dissolved in a ligand heated to a temperature, generally between approximately 100.degree. C. and 400.degree. C., sufficient to thermally reduce the Ge(II) to Ge(0), where the ligand is a compound that can bond to the surface of the germanium nanomaterials to subsequently prevent agglomeration of the nanomaterials. The ligand encapsulates the surface of the Ge(0) material to prevent agglomeration. The resulting solution is cooled for handling, with the cooling characteristics useful in controlling the size and size distribution of the Ge(0) materials. The characteristics of the Ge(II) precursor determine whether the Ge(0) materials that result will be nanocrystals or nanowires.

  10. Mineral commodity profiles: Germanium

    USGS Publications Warehouse

    Butterman, W.C.; Jorgenson, John D.

    2005-01-01

    Overview -- Germanium is a hard, brittle semimetal that first came into use a half-century ago as a semiconductor material in radar units and as the material from which the first transistor was made. Today it is used principally as a component of the glass in telecommunications fiber optics; as a polymerization catalyst for polyethylene terephthalate (PET), a commercially important plastic; in infrared (IR) night vision devices; and as a semiconductor and substrate in electronics circuitry. Most germanium is recovered as a byproduct of zinc smelting, although it also has been recovered at some copper smelters and from the fly ash of coal-burning industrial powerplants. It is a highly dispersed element, associated primarily with base-metal sulfide ores. In the United States, germanium is recovered from zinc smelter residues and manufacturing scrap and is refined by two companies at four germanium refineries. One of the four refineries is dedicated to processing scrap. In 2000, producers sold zone-refined (high-purity) germanium at about $1,250 per kilogram and electronic-grade germanium dioxide (GeO2) at $800 per kilogram. Domestic refined production was valued at $22 million. Germanium is a critical component in highly technical devices and processes. It is likely to remain in demand in the future at levels at least as high as those of 2000. U.S. resources of germanium are probably adequate to meet domestic needs for several decades.

  11. Germanium detector passivated with hydrogenated amorphous germanium

    DOEpatents

    Hansen, William L.; Haller, Eugene E.

    1986-01-01

    Passivation of predominantly crystalline semiconductor devices (12) is provided for by a surface coating (21) of sputtered hydrogenated amorphous semiconductor material. Passivation of a radiation detector germanium diode, for example, is realized by sputtering a coating (21) of amorphous germanium onto the etched and quenched diode surface (11) in a low pressure atmosphere of hydrogen and argon. Unlike prior germanium diode semiconductor devices (12), which must be maintained in vacuum at cryogenic temperatures to avoid deterioration, a diode processed in the described manner may be stored in air at room temperature or otherwise exposed to a variety of environmental conditions. The coating (21) compensates for pre-existing undesirable surface states as well as protecting the semiconductor device (12) against future impregnation with impurities.

  12. Germanium, carbon-germanium, and silicon-germanium triangulenes.

    PubMed

    Gapurenko, Olga A; Starikov, Andrey G; Minyaev, Ruslan M; Minkin, Vladimir I

    2015-11-01

    A series of germanium-containing triangular molecules have been studied by density functional theory (DFT) calculations. The triangulene topology of the compounds provides for their high-spin ground states and strong sign alternation of spin density and atomic charge distributions. High values of the exchange coupling constants witness ferromagnetic ordering of electronic structures of all studied triangulenes. The compounds bearing more electronegative atoms in a-positions of the triangular networks possess higher aromatic character and stronger ferromagnetic ordering.

  13. Lithium drifted germanium system

    NASA Technical Reports Server (NTRS)

    Fjarlie, E. J.

    1969-01-01

    General characteristics of the lithium-drifted germanium photodiode-Dewar-preamplifier system and particular operating instructions for the device are given. Information is included on solving operational problems.

  14. Generalized Redox-Responsive Assembly of Carbon-Sheathed Metallic and Semiconducting Nanowire Heterostructures.

    PubMed

    Choi, Sinho; Kim, Jieun; Hwang, Dae Yeon; Park, Hyungmin; Ryu, Jaegeon; Kwak, Sang Kyu; Park, Soojin

    2016-02-10

    One-dimensional metallic/semiconducting materials have demonstrated as building blocks for various potential applications. Here, we report on a unique synthesis technique for redox-responsive assembled carbon-sheathed metal/semiconducting nanowire heterostructures that does not require a metal catalyst. In our approach, germanium nanowires are grown by the reduction of germanium oxide particles and subsequent self-catalytic growth during the thermal decomposition of natural gas, and simultaneously, carbon sheath layers are uniformly coated on the nanowire surface. This process is a simple, reproducible, size-controllable, and cost-effective process whereby most metal oxides can be transformed into metallic/semiconducting nanowires. Furthermore, the germanium nanowires exhibit stable chemical/thermal stability and outstanding electrochemical performance including a capacity retention of ∼96% after 1200 cycles at the 0.5-1C rate as lithium-ion battery anode. PMID:26784743

  15. Segmented nanowires displaying locally controllable properties

    SciTech Connect

    Sutter, Eli Anguelova; Sutter, Peter Werner

    2013-03-05

    Vapor-liquid-solid growth of nanowires is tailored to achieve complex one-dimensional material geometries using phase diagrams determined for nanoscale materials. Segmented one-dimensional nanowires having constant composition display locally variable electronic band structures that are determined by the diameter of the nanowires. The unique electrical and optical properties of the segmented nanowires are exploited to form electronic and optoelectronic devices. Using gold-germanium as a model system, in situ transmission electron microscopy establishes, for nanometer-sized Au--Ge alloy drops at the tips of Ge nanowires (NWs), the parts of the phase diagram that determine their temperature-dependent equilibrium composition. The nanoscale phase diagram is then used to determine the exchange of material between the NW and the drop. The phase diagram for the nanoscale drop deviates significantly from that of the bulk alloy.

  16. Bridgman Growth of Germanium

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Volz, M. P.; Cobb, S. D.; Motakef, S.

    1997-01-01

    The high-magnetic-field crystal growth facility at the Marshall Space Flight Center will be briefly described. This facility has been used to grow bulk germanium by the Bridgman technique in magnetic fields up to 5 Tesla. The results of investigations of ampoule material on the interface shape and thermal field applied to the melt on stability against convection will be discussed.

  17. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  18. Nanowires enabling strained photovoltaics

    SciTech Connect

    Greil, J.; Bertagnolli, E.; Lugstein, A.; Birner, S.

    2014-04-21

    Photovoltaic nano-devices have largely been relying on charge separation in conventional p-n junctions. Junction formation via doping, however, imposes major challenges in process control. Here, we report on a concept for photovoltaic energy conversion at the nano scale without the need for intentional doping. Our approach relies on charge carrier separation in inhomogeneously strained germanium nanowires (Ge NWs). This concept utilizes the strain-induced gradient in bandgap along tapered NWs. Experimental data confirms the feasibility of strain-induced charge separation in individual vapor-liquid-solid grown Ge NW devices with an internal quantum efficiency of ∼5%. The charge separation mechanism, though, is not inherently limited to a distinct material. Our work establishes a class of photovoltaic nano-devices with its opto-electronic properties engineered by size, shape, and applied strain.

  19. Germanium: An aqueous processing review

    SciTech Connect

    Lier, R.J.M. van; Dreisinger, D.B.

    1995-08-01

    In industrial aqueous solutions, germanium generally occurs in trace amounts amid high concentrations of other metals, such as zinc, copper and iron. Separation of germanium from these metals as well as its isolation from gallium and indium pose a real challenge to the hydrometallurgist. After a brief discussion of the aqueous chemistry of germanium, this paper reviews the flowsheet of the Apex Mine in Utah. The Apex property was the only mine in the world to be operated primarily for production of gallium and germanium, but apparently closed due to great operating difficulties. Several process variants proposed for the treatment of the Apex ore, including bioleaching methods, are addressed. Following a more general description of the behavior of germanium in hydrometallurgical zinc processing streams, available technology for its recovery from aqueous solutions is summarized. Precipitation, solvent extraction, ion exchange, electrowinning, ion flotation and liquid-membrane separation are all outlined in terms of the aqueous chemistry of germanium. Finally, the production of high purity germanium dioxide and metal is briefly discussed. 61 refs.

  20. Stable and metastable nanowires displaying locally controllable properties

    DOEpatents

    Sutter, Eli Anguelova; Sutter, Peter Werner

    2014-11-18

    Vapor-liquid-solid growth of nanowires is tailored to achieve complex one-dimensional material geometries using phase diagrams determined for nanoscale materials. Segmented one-dimensional nanowires having constant composition display locally variable electronic band structures that are determined by the diameter of the nanowires. The unique electrical and optical properties of the segmented nanowires are exploited to form electronic and optoelectronic devices. Using gold-germanium as a model system, in situ transmission electron microscopy establishes, for nanometer-sized Au--Ge alloy drops at the tips of Ge nanowires (NWs), the parts of the phase diagram that determine their temperature-dependent equilibrium composition. The nanoscale phase diagram is then used to determine the exchange of material between the NW and the drop. The phase diagram for the nanoscale drop deviates significantly from that of the bulk alloy.

  1. Slow Crack Growth of Germanium

    NASA Technical Reports Server (NTRS)

    Salem, Jon

    2016-01-01

    The fracture toughness and slow crack growth parameters of germanium supplied as single crystal beams and coarse grain disks were measured. Although germanium is anisotropic (A=1.7), it is not as anisotropic as SiC, NiAl, or Cu, as evidence by consistent fracture toughness on the 100, 110, and 111 planes. Germanium does not exhibit significant slow crack growth in distilled water. (n=100). Practical values for engineering design are a fracture toughness of 0.7 MPam and a Weibull modulus of m=6+/-2. For well ground and reasonable handled coupons, fracture strength should be greater than 30 MPa.

  2. Germanium geochemistry and mineralogy

    USGS Publications Warehouse

    Bernstein, L.R.

    1985-01-01

    Germanium is enriched in the following geologic environments: 1. (1) iron meteorites and terrestrial iron-nickel; 2. (2) sulfide ore deposits, particularly those hosted by sedimentary rocks; 3. (3) iron oxide deposits; 4. (4) oxidized zones of Ge-bearing sulfide deposits; 5. (5) pegmatites, greisens, and skarns; and 6. (6) coal and lignitized wood. In silicate melts, Ge is highly siderophile in the presence of native iron-nickel; otherwise, it is highly lithophile. Among silicate minerals, Ge is concentrated in those having less polymerized silicate tetrahedra such as olivine and topaz. In deposits formed from hydrothermal solutions, Ge tends to be enriched mostly in either sulfides or in fluorine-bearing phases; it is thus concentrated both in some hydrothermal sulfide deposits and in pegmatites, greisens, and skarns. In sulfide deposits that formed from solutions having low to moderate sulfur activity, Ge is concentrated in sphalerite in amounts up to 3000 ppm. Sulfide deposits that formed from solutions having higher sulfur activity allowed Ge to either form its own sulfides, particularly with Cu, or to substitute for As, Sn, or other metals in sulfosalts. The Ge in hydrothermal fluids probably derives from enrichment during the fractional crystallization of igneous fluids, or is due to the incorporation of Ge from the country rocks, particularly from those containing organic material. Germanium bonds to lignin-derivative organic compounds that are found in peat and lignite, accounting for its common concentration in coals and related organic material. Germanium is precipitated from water together with iron hydroxide, accounting for its concentration in some sedimentary and supergene iron oxide deposits. It also is able to substitute for Fe in magnetite in a variety of geologic environments. In the oxidized zone of Ge-bearing sulfide deposits, Ge is concentrated in oxides, hydroxides, and hydroxy-sulfates, sometimes forming its own minerals. It is particularly

  3. Dermal absorption of inorganic germanium in rats.

    PubMed

    Yokoi, Katsuhiko; Kawaai, Takae; Konomi, Aki; Uchida, Yuka

    2008-11-01

    So-called germanium 'health' products including dietary supplements, cosmetics, accessories, and warm bath service containing germanium compounds and metalloid are popular in Japan. Subchronic and chronic oral exposure of germanium dioxide (GeO(2)), popular chemical form of inorganic germanium causes severe germanium toxicosis including death and kidney dysfunction in humans and experimental animals. Intestinal absorption of neutralized GeO(2) or germanate is almost complete in humans and animals. However, it is not known whether germanium is cutaneously absorbed. We tested dermal absorption of neutralized GeO(2) or germanate using male F344/N rats. Three groups of rats were treated with a 3-h topical application of hydrophilic ointment containing graded level of neutralized GeO(2) (pH 7.4): 0, 0.21 and 0.42 mg GeO(2)/g. Germanium concentration in blood and tissues sampled from rats after topical application of inorganic germanium was measured by inductively coupled plasma-mass spectrometry. Animals topically applied 0.42 mg GeO(2)/g ointment had significantly higher germanium concentrations in plasma, liver, and kidney than those of rats that received no topical germanium. The results indicate that skin is permeable to inorganic germanium ion or germanate and recurrent exposure of germanium compounds may pose a potential health hazard.

  4. The Germanium Dichotomy in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Humayun, M.; Yang, S.; Righter, K.; Zanda, B.; Hewins, R. H.

    2016-01-01

    Germanium is a moderately volatile and siderophile element that follows silicon in its compatibility during partial melting of planetary mantles. Despite its obvious usefulness in planetary geochemistry germanium is not analyzed routinely, with there being only three prior studies reporting germanium abundances in Martian meteorites. The broad range (1-3 ppm) observed in Martian igneous rocks is in stark contrast to the narrow range of germanium observed in terrestrial basalts (1.5 plus or minus 0.1 ppm). The germanium data from these studies indicates that nakhlites contain 2-3 ppm germanium, while shergottites contain approximately 1 ppm germanium, a dichotomy with important implications for core formation models. There have been no reliable germanium abundances on chassignites. The ancient meteoritic breccia, NWA 7533 (and paired meteorites) contains numerous clasts, some pristine and some impact melt rocks, that are being studied individually. Because germanium is depleted in the Martian crust relative to chondritic impactors, it has proven useful as an indicator of meteoritic contamination of impact melt clasts in NWA 7533. The germanium/silicon ratio can be applied to minerals that might not partition nickel and iridium, like feldspars. We report germanium in minerals from the 3 known chassignites, 2 nakhlites and 5 shergottites by LAICP- MS using a method optimized for precise germanium analysis.

  5. Measurement of the quantum conductance of germanium by an electrochemical scanning tunneling microscope break junction based on a jump-to-contact mechanism.

    PubMed

    Xie, Xufen; Yan, Jiawei; Liang, Jinghong; Li, Jijun; Zhang, Meng; Mao, Bingwei

    2013-10-01

    We present quantum conductance measurements of germanium by means of an electrochemical scanning tunneling microscope (STM) break junction based on a jump-to-contact mechanism. Germanium nanowires between a platinum/iridium tip and different substrates were constructed to measure the quantum conductance. By applying appropriate potentials to the substrate and the tip, the process of heterogeneous contact and homogeneous breakage was realized. Typical conductance traces exhibit steps at 0.025 and 0.05 G0. The conductance histogram indicates that the conductance of germanium nanowires is located between 0.02 and 0.15 G0 in the low-conductance region and is free from the influence of substrate materials. However, the distribution of conductance plateaus is too discrete to display distinct peaks in the conductance histogram of the high-conductance region. PMID:23704043

  6. Optical transparency of crystalline germanium

    NASA Astrophysics Data System (ADS)

    Kaplunov, I. A.; Smirnov, Yu. M.; Kolesnikov, A. I.

    2005-02-01

    This paper discusses the optical transparency of single-crystal and polycrystalline germanium. It is shown that the attenuation of IR radiation is affected by the presence of impurities (their form and concentration) and the structure of the material. The temperature dependences of the attenuation factor are obtained.

  7. Thermal conductivity of tubular nanowire composites based on a thermodynamical model

    NASA Astrophysics Data System (ADS)

    Lebon, Georgy; Machrafi, Hatim

    2015-07-01

    A formula for the effective heat conductivity of a nanocomposite with cylindrical nanowire inclusions is derived. Both transversal and longitudinal heating along the wires are investigated. Several effects are examined: the volume fraction and sizes of the nanowires, the type of scattering at the particle-matrix interface and temperature. As illustration, silicon nanowires inclusions in a germanium matrix is considered; the results are shown to be in good agreement with other models and numerical solutions of the Boltzmann transport equation. Our main contribution consists of using extended irreversible thermodynamics to cope with the nano dimensions of the wires.

  8. Epitaxial Deposition Of Germanium Doped With Gallium

    NASA Technical Reports Server (NTRS)

    Huffman, James E.

    1994-01-01

    Epitaxial layers of germanium doped with gallium made by chemical vapor deposition. Method involves combination of techniques and materials used in chemical vapor deposition with GeH4 or GeCl4 as source of germanium and GaCl3 as source of gallium. Resulting epitaxial layers of germanium doped with gallium expected to be highly pure, with high crystalline quality. High-quality material useful in infrared sensors.

  9. Calibration of Germanium Resistance Thermometers

    NASA Technical Reports Server (NTRS)

    Ladner, D.; Urban, E.; Mason, F. C.

    1987-01-01

    Largely completed thermometer-calibration cryostat and probe allows six germanium resistance thermometers to be calibrated at one time at superfluid-helium temperatures. In experiments involving several such thermometers, use of this calibration apparatus results in substantial cost savings. Cryostat maintains temperature less than 2.17 K through controlled evaporation and removal of liquid helium from Dewar. Probe holds thermometers to be calibrated and applies small amount of heat as needed to maintain precise temperature below 2.17 K.

  10. Mineral resource of the month: germanium

    USGS Publications Warehouse

    Guberman, David

    2010-01-01

    The article provides information on germanium, an element with electrical properties between those of a metal and an insulator. Applications of germanium include its use as a component of the glass in fiber-optic cable, in infrared optics devices and as a semiconductor and substrate used in electronic and solar applications. Germanium was first isolated by German chemist Clemens Winkler in 1886 and was named after Winkler's native country. In 2008, the leading sources of primary germanium from coal or zinc include Canada, China and Russia.

  11. Germanium recycling in the United States in 2000

    USGS Publications Warehouse

    Jorgenson, John D.

    2006-01-01

    This report describes the recycling flow of germanium in the United States in 2000, as well as other germanium material flow streams. Germanium was recycled mostly from new scrap that was generated during the manufacture of germanium-containing fiber optic cables and from new and old scrap products of germanium-containing infrared imaging devices. In 2000, about 11.5 metric tons of germanium was recycled, about 40 percent of which was derived from old scrap. The germanium recycling rate was estimated to be 50 percent, and germanium scrap recycling efficiency, 76 percent.

  12. Laser synthesis of germanium tin alloys on virtual germanium

    NASA Astrophysics Data System (ADS)

    Stefanov, S.; Conde, J. C.; Benedetti, A.; Serra, C.; Werner, J.; Oehme, M.; Schulze, J.; Buca, D.; Holländer, B.; Mantl, S.; Chiussi, S.

    2012-03-01

    Synthesis of heteroepitaxial germanium tin (GeSn) alloys using excimer laser processing of a thin 4 nm Sn layer on Ge has been demonstrated and studied. Laser induced rapid heating, subsequent melting, and re-solidification processes at extremely high cooling rates have been experimentally achieved and also simulated numerically to optimize the processing parameters. "In situ" measured sample reflectivity with nanosecond time resolution was used as feedback for the simulations and directly correlated to alloy composition. Detailed characterization of the GeSn alloys after the optimization of the processing conditions indicated substitutional Sn concentration of up to 1% in the Ge matrix.

  13. Mineral resource of the month: germanium

    USGS Publications Warehouse

    Jorgenson, John D.

    2003-01-01

    Germanium is a hard, brittle semimetal that first came into use over a half-century ago as a semiconductor material in radar units and in the first transistor ever made. Most germanium is recovered as a byproduct of zinc smelting, but it has also been recovered at some copper smelters and from the fly ash of coal-burning industrial power plants.

  14. High efficiency germanium-assisted grating coupler.

    PubMed

    Yang, Shuyu; Zhang, Yi; Baehr-Jones, Tom; Hochberg, Michael

    2014-12-15

    We propose a fiber to submicron silicon waveguide vertical coupler utilizing germanium-on-silicon gratings. The germanium is epitaxially grown on silicon in the same step for building photodetectors. Coupling efficiency based on FDTD simulation is 76% at 1.55 µm and the optical 1dB bandwidth is 40 nm.

  15. Black Germanium fabricated by reactive ion etching

    NASA Astrophysics Data System (ADS)

    Steglich, Martin; Käsebier, Thomas; Kley, Ernst-Bernhard; Tünnermann, Andreas

    2016-09-01

    A reactive ion etching technique for the preparation of statistical "Black Germanium" antireflection surfaces, relying on self-organization in a Cl2 etch chemistry, is presented. The morphology of the fabricated Black Germanium surfaces is the result of a random lateral distribution of pyramidal etch pits with heights around (1450 ± 150) nm and sidewall angles between 80° and 85°. The pyramids' base edges are oriented along the <110> crystal directions of Germanium, indicating a crystal anisotropy of the etching process. In the Vis-NIR, the tapered Black Germanium surface structure suppresses interface reflection to <2.5 % for normal incidence and still to <6 % at an angle of incidence of 70°. The presented Black Germanium might find applications as low-cost AR structure in optoelectronics and IR optics.

  16. MAJORANA Collaboration's experience with germanium detectors

    SciTech Connect

    Mertens, S.; Abgrall, N.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y. -D.; Christofferson, C. D.; Cuesta, C.; Detwiler, J. A.; Efremenko, Yu; Ejiri, H.; Elliott, S. R.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; MacMullin, J.; Martin, R. D.; Meijer, S. J.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Shanks, B.; Shirchenko, M.; Snyder, N.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C. -H.; Yumatov, V.

    2015-05-01

    The goal of the Majorana Demonstrator project is to search for 0νββ decay in 76Ge. Of all candidate isotopes for 0νββ, 76Ge has some of the most favorable characteristics. Germanium detectors are a well established technology, and in searches for 0νββ, the high purity germanium crystal acts simultaneously as source and detector. Furthermore, p-type germanium detectors provide excellent energy resolution and a specially designed point contact geometry allows for sensitive pulse shape discrimination. This paper will summarize the experiences the MAJORANA collaboration made with enriched germanium detectors manufactured by ORTEC®®. The process from production, to characterization and integration in MAJORANA mounting structure will be described. A summary of the performance of all enriched germanium detectors will be given.

  17. MAJORANA Collaboration's experience with germanium detectors

    DOE PAGES

    Mertens, S.; Abgrall, N.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; et al

    2015-05-01

    The goal of the Majorana Demonstrator project is to search for 0νββ decay in 76Ge. Of all candidate isotopes for 0νββ, 76Ge has some of the most favorable characteristics. Germanium detectors are a well established technology, and in searches for 0νββ, the high purity germanium crystal acts simultaneously as source and detector. Furthermore, p-type germanium detectors provide excellent energy resolution and a specially designed point contact geometry allows for sensitive pulse shape discrimination. This paper will summarize the experiences the MAJORANA collaboration made with enriched germanium detectors manufactured by ORTEC®®. The process from production, to characterization and integration in MAJORANAmore » mounting structure will be described. A summary of the performance of all enriched germanium detectors will be given.« less

  18. Nanowire Optoelectronics

    NASA Astrophysics Data System (ADS)

    Wang, Zhihuan; Nabet, Bahram

    2015-12-01

    Semiconductor nanowires have been used in a variety of passive and active optoelectronic devices including waveguides, photodetectors, solar cells, light-emitting diodes (LEDs), lasers, sensors, and optical antennas. We review the optical properties of these nanowires in terms of absorption, guiding, and radiation of light, which may be termed light management. Analysis of the interaction of light with long cylindrical/hexagonal structures with subwavelength diameters identifies radial resonant modes, such as Leaky Mode Resonances, or Whispering Gallery modes. The two-dimensional treatment should incorporate axial variations in "volumetric modes,"which have so far been presented in terms of Fabry-Perot (FP), and helical resonance modes. We report on finite-difference timedomain (FDTD) simulations with the aim of identifying the dependence of these modes on geometry (length, width), tapering, shape (cylindrical, hexagonal), core-shell versus core-only, and dielectric cores with semiconductor shells. This demonstrates how nanowires (NWs) form excellent optical cavities without the need for top and bottommirrors. However, optically equivalent structures such as hexagonal and cylindrical wires can have very different optoelectronic properties meaning that light management alone does not sufficiently describe the observed enhancement in upward (absorption) and downward transitions (emission) of light inNWs; rather, the electronic transition rates should be considered. We discuss this "rate management" scheme showing its strong dimensional dependence, making a case for photonic integrated circuits (PICs) that can take advantage of the confluence of the desirable optical and electronic properties of these nanostructures.

  19. Germanium multiphase equation of state

    DOE PAGES

    Crockett, Scott D.; Lorenzi-Venneri, Giulia De; Kress, Joel D.; Rudin, Sven P.

    2014-05-07

    A new SESAME multiphase germanium equation of state (EOS) has been developed using the best available experimental data and density functional theory (DFT) calculations. The equilibrium EOS includes the Ge I (diamond), the Ge II (β-Sn) and the liquid phases. The foundation of the EOS is based on density functional theory calculations which are used to determine the cold curve and the Debye temperature. Results are compared to Hugoniot data through the solid-solid and solid-liquid transitions. We propose some experiments to better understand the dynamics of this element

  20. Chemical Sensing with Nanowires

    NASA Astrophysics Data System (ADS)

    Penner, Reginald M.

    2012-07-01

    Transformational advances in the performance of nanowire-based chemical sensors and biosensors have been achieved over the past two to three years. These advances have arisen from a better understanding of the mechanisms of transduction operating in these devices, innovations in nanowire fabrication, and improved methods for incorporating receptors into or onto nanowires. Nanowire-based biosensors have detected DNA in undiluted physiological saline. For silicon nanowire nucleic acid sensors, higher sensitivities have been obtained by eliminating the passivating oxide layer on the nanowire surface and by substituting uncharged protein nucleic acids for DNA as the capture strands. Biosensors for peptide and protein cancer markers, based on both semiconductor nanowires and nanowires of conductive polymers, have detected these targets at physiologically relevant concentrations in both blood plasma and whole blood. Nanowire chemical sensors have also detected several gases at the parts-per-million level. This review discusses these and other recent advances, concentrating on work published in the past three years.

  1. Electronic considerations for externally segmented germanium detectors

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Landis, D. A.; Goulding, F. S.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Malone, D. F.; Pollard, M. J.

    1991-01-01

    The dominant background source for germanium gamma ray detector spectrometers used for some astrophysics observations is internal beta decay. Externally segmented germanium gamma ray coaxial detectors can identify beta decay by localizing the event. Energetic gamma rays interact in the germanium detector by multiple Compton interactions while beta decay is a local process. In order to recognize the difference between gamma rays and beta decay events, the external electrode (outside of detector) is electrically partitioned. The instrumentation of these external segments and the consequence with respect to the spectrometer energy signal is examined.

  2. Patterning NHS-terminated SAMs on germanium.

    PubMed

    Morris, Carleen J; Shestopalov, Alexander A; Gold, Brian H; Clark, Robert L; Toone, Eric J

    2011-05-17

    Here we report a simple, robust approach to patterning functional SAMs on germanium. The protocol relies on catalytic soft-lithographic pattern transfer from an elastomeric stamp bearing pendant immobilized sulfonic acid moieties to an NHS-functionalized bilayer molecular system comprising a primary ordered alkyl monolayer and a reactive ester secondary overlayer. The catalytic polyurethane-acrylate stamp was used to form micrometer-scale features of chemically distinct SAMs on germanium. The methodology represents the first example of patterned SAMs on germanium, a semiconductor material.

  3. High Efficiency Germanium Immersion Gratings

    SciTech Connect

    Kuzmenko, P J; Davis, P J; Little, S L; Little, L M; Bixler, J V

    2006-05-01

    We have fabricated several germanium immersion gratings by single crystal, single point diamond flycutting on an ultra-precision lathe. Use of a dead sharp tool produces groove corners less than 0.1 micron in radius and consequently high diffraction efficiency. We measured first order efficiencies in immersion of over 80% at 10.6 micron wavelength. Wavefront error was low averaging 0.06 wave rms (at 633 nm) across the full aperture. The grating spectral response was free of ghosts down to our detection limit of 1 part in 10{sup 4}. Scatter should be low based upon the surface roughness. Measurement of the spectral line profile of a CO{sub 2} laser sets an upper bound on total integrated scatter of 0.5%.

  4. Germanium: giving microelectronics an efficiency boost

    USGS Publications Warehouse

    Mercer, Celestine N.

    2015-01-01

    Germanium is an essentially nontoxic element, with the exception of only a few compounds. However, if dissolved concentrations in drinking water are as high as one or more parts per million chronic diseases may occur.

  5. Germanium: giving microelectronics an efficiency boost

    USGS Publications Warehouse

    Mercer, Celestine N.

    2015-07-30

    Germanium is an essentially nontoxic element, with the exception of only a few compounds. However, if dissolved concentrations in drinking water are as high as one or more parts per million chronic diseases may occur.

  6. Tough germanium nanoparticles under electrochemical cycling.

    PubMed

    Liang, Wentao; Yang, Hui; Fan, Feifei; Liu, Yang; Liu, Xiao Hua; Huang, Jian Yu; Zhu, Ting; Zhang, Sulin

    2013-04-23

    Mechanical degradation of the electrode materials during electrochemical cycling remains a serious issue that critically limits the capacity retention and cyclability of rechargeable lithium-ion batteries. Here we report the highly reversible expansion and contraction of germanium nanoparticles under lithiation-delithiation cycling with in situ transmission electron microscopy (TEM). During multiple cycles to the full capacity, the germanium nanoparticles remained robust without any visible cracking despite ∼260% volume changes, in contrast to the size-dependent fracture of silicon nanoparticles upon the first lithiation. The comparative in situ TEM study of fragile silicon nanoparticles suggests that the tough behavior of germanium nanoparticles can be attributed to the weak anisotropy of the lithiation strain at the reaction front. The tough germanium nanoparticles offer substantial potential for the development of durable, high-capacity, and high-rate anodes for advanced lithium-ion batteries.

  7. Germanium Resistance Thermometer For Subkelvin Temperatures

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H.

    1993-01-01

    Improved germanium resistance thermometer measures temperatures as small as 0.01 K accurately. Design provides large area for electrical connections (to reduce electrical gradients and increase sensitivity to changes in temperatures) and large heat sink (to minimize resistance heating). Gold pads on top and bottom of germanium crystal distribute electrical current and flow of heat nearly uniformly across crystal. Less expensive than magnetic thermometers or superconducting quantum interference devices (SQUID's) otherwise used.

  8. Dangling bonds and vacancies in germanium

    NASA Astrophysics Data System (ADS)

    Weber, J. R.; Janotti, A.; Van de Walle, C. G.

    2013-01-01

    The quest for metal-oxide-semiconductor field-effect transistors (MOSFETs) with higher carrier mobility has triggered great interest in germanium-based MOSFETs. Still, the performance of germanium-based devices lags significantly behind that of their silicon counterparts, possibly due to the presence of defects such as dangling bonds (DBs) and vacancies. Using screened hybrid functional calculations we investigate the role of DBs and vacancies in germanium. We find that the DB defect in germanium has no levels in the band gap; it acts as a negatively charged acceptor with the (0/-1) transition level below the valence-band maximum (VBM). This explains the absence of electron-spin-resonance observations of DBs in germanium. The vacancy in germanium has a much lower formation energy than the vacancy in silicon and is stable in a number of charge states, depending on the position of the Fermi level. We find the (0/-1) and (-1/-2) transition levels at 0.16 and 0.38 eV above the VBM; the spacing of these levels is explained based on the strength of intraorbital repulsion. We compare these results with calculations for silicon, as well as with available experimental data.

  9. Electrical breakdown of nanowires.

    PubMed

    Zhao, Jiong; Sun, Hongyu; Dai, Sheng; Wang, Yan; Zhu, Jing

    2011-11-01

    Instantaneous electrical breakdown measurements of GaN and Ag nanowires are performed by an in situ transmission electron microscopy method. Our results directly reveal the mechanism that typical thermally heated semiconductor nanowires break at the midpoint, while metallic nanowires breakdown near the two ends due to the stress induced by electromigration. The different breakdown mechanisms for the nanowires are caused by the different thermal and electrical properties of the materials.

  10. Nanowire-based detector

    DOEpatents

    Berggren, Karl K; Hu, Xiaolong; Masciarelli, Daniele

    2014-06-24

    Systems, articles, and methods are provided related to nanowire-based detectors, which can be used for light detection in, for example, single-photon detectors. In one aspect, a variety of detectors are provided, for example one including an electrically superconductive nanowire or nanowires constructed and arranged to interact with photons to produce a detectable signal. In another aspect, fabrication methods are provided, including techniques to precisely reproduce patterns in subsequently formed layers of material using a relatively small number of fabrication steps. By precisely reproducing patterns in multiple material layers, one can form electrically insulating materials and electrically conductive materials in shapes such that incoming photons are redirected toward a nearby electrically superconductive materials (e.g., electrically superconductive nanowire(s)). For example, one or more resonance structures (e.g., comprising an electrically insulating material), which can trap electromagnetic radiation within its boundaries, can be positioned proximate the nanowire(s). The resonance structure can include, at its boundaries, electrically conductive material positioned proximate the electrically superconductive nanowire such that light that would otherwise be transmitted through the sensor is redirected toward the nanowire(s) and detected. In addition, electrically conductive material can be positioned proximate the electrically superconductive nanowire (e.g. at the aperture of the resonant structure), such that light is directed by scattering from this structure into the nanowire.

  11. Fabrication of multilayer nanowires

    NASA Astrophysics Data System (ADS)

    Kaur, Jasveer; Singh, Avtar; Kumar, Davinder; Thakur, Anup; Kaur, Raminder

    2016-05-01

    Multilayer nanowires were fabricated by potentiostate ectrodeposition template synthesis method into the pores of polycarbonate membrane. In present work layer by layer deposition of two different metals Ni and Cu in polycarbonate membrane having pore size of 600 nm were carried out. It is found that the growth of nanowires is not constant, it varies with deposition time. Scanning electron microscopy (SEM) is used to study the morphology of fabricated multilayer nanowires. An energy dispersive X-ray spectroscopy (EDS) results confirm the composition of multilayer nanowires. The result shows that multilayer nanowires formed is dense.

  12. Germanium anode with excellent lithium storage performance in a germanium/lithium-cobalt oxide lithium-ion battery.

    PubMed

    Li, Xiuwan; Yang, Zhibo; Fu, Yujun; Qiao, Li; Li, Dan; Yue, Hongwei; He, Deyan

    2015-02-24

    Germanium is a highly promising anode material for lithium-ion batteries as a consequence of its large theoretical specific capacity, good electrical conductivity, and fast lithium ion diffusivity. In this work, Co3O4 nanowire array fabricated on nickel foam was designed as a nanostructured current collector for Ge anode. By limiting the voltage cutoff window in an appropriate range, the obtained Ge anode exhibits excellent lithium storage performance in half- and full-cells, which can be mainly attributed to the designed nanostructured current collector with good conductivity, enough buffering space for the volume change, and shortened ionic transport length. More importantly, the assembled Ge/LiCoO2 full-cell shows a high energy density of 475 Wh/kg and a high power density of 6587 W/kg. A high capacity of 1184 mA h g(-1) for Ge anode was maintained at a current density of 5000 mA g(-1) after 150 cycles.

  13. Germanium-silicon solid solutions

    NASA Technical Reports Server (NTRS)

    Zemskov, V. S.; Kubasov, V. N.; Belokurova, I. N.; Titkov, A. N.; Shulpina, I. L.; Safarov, V. I.; Guseva, N. B.

    1977-01-01

    An experiment on melting and directional crystallization of an antimony (Sb) doped germanium silicon (GeSi) solid solution was designed for the Apollo-Soyuz Test Project (ASTP) to study the possibility of using zero-g conditions for obtaining solid-solution monocrystals with uniformly distributed components. Crystallization in the zero-g environment did not occur under ideal stationary growth and segregation conditions. Crystallization under zero-g conditions revealed the heterogeneous nature of Si and Sb distribution in the cross sections of crystals. The presence of the radial thermal gradient in the multipurpose furnace could be one of the reasons for such Si and Sb distribution. The structure of space-grown crystals correlates with the nature of heterogeneities of Si and Sb distribution in crystals. The type of surface morphology and the contour observed in space-grown crystals were never observed in ground-based crystals and indicate the absence of wetting of the graphitized walls of the ampoule by the melt during melting and crystallization.

  14. Effect of cross-sectional geometry on thermal conductivity of Si1-xGex nanowires

    NASA Astrophysics Data System (ADS)

    Qu, Peixin

    2016-06-01

    By incorporating the direction-dependent phonon-boundary scattering from the surface of the nanowires with different cross-sectional shapes into the linearized phonon Boltzmann transport equation, we theoretically investigate the effect of cross-sectional geometry on the thermal conductivity of Si1-xGex nanowires. It is demonstrated that the surface-to-volume ratio (SVR) is a universal gauge for both pure silicon nanowires (SiNWs) and silicon-germanium nanowires (SiGe NWs), and the thermal conductivity of nanowires decreases monotonically with the increase of SVR. We also find that the thermal conductivity of high-frequency phonons in nanowires is more strongly SVR dependent than that of low-frequency phonons, and the thermal conductivity of high-frequency phonons is severely suppressed by alloy scattering, therefore the SVR dependence on thermal conductivity of Si1-xGex NWs decreases with the increase of Ge atom concentration x (x < 0.5). These findings are useful for understanding and tuning the thermal conductivity of nanowires by geometry.

  15. Recovery of germanium-68 from irradiated targets

    DOEpatents

    Phillips, Dennis R.; Jamriska, Sr., David J.; Hamilton, Virginia T.

    1993-01-01

    A process for selective separation of germanium-68 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, adjusting the pH of the second ion-containing solution to within a range of from about 0.7 to about 3.0, adjusting the soluble metal halide concentration in the second ion-containing solution to a level adapted for subsequent separation of germanium, contacting the pH-adjusted, soluble metal halide-containing second ion-containing solution with a dextran-based material whereby germanium ions are separated by the dextran-based material, and recovering the germanium from the dextran-based material, preferably by distillation.

  16. Silicon Nanowire Devices

    NASA Astrophysics Data System (ADS)

    Kamins, Theodore

    2006-03-01

    Metal-catalyzed, self-assembled, one-dimensional semiconductor nanowires are being considered as possible device elements to augment and supplant conventional electronics and to extend the use of CMOS beyond the physical and economic limits of conventional technology. Such nanowires can create nanostructures without the complexity and cost of extremely fine scale lithography. The well-known and controllable properties of silicon make silicon nanowires especially attractive. Easy integration with conventional electronics will aid their acceptance and incorporation. For example, connections can be formed to both ends of a nanowire by growing it laterally from a vertical surface formed by etching the top silicon layer of a silicon-on-insulator structure into isolated electrodes. Field-effect structures are one class of devices that can be readily built in silicon nanowires. Because the ratio of surface to volume in a thin nanowire is high, conduction through the nanowire is very sensitive to surface conditions, making it effective as the channel of a field-effect transistor or as the transducing element of a gas or chemical sensor. As the nanowire diameter decreases, a greater fraction of the mobile charge can be modulated by a given external charge, increasing the sensitivity. Having the gate of a nanowire transistor completely surround the nanowire also enhances the sensitivity. For a field-effect sensor to be effective, the charge must be physically close to the nanowire so that the majority of the compensating charge is induced in the nanowire and so that ions in solution do not screen the charge. Because only induced charge is being sensed, a coating that selectively binds the target species should be added to the nanowire surface to distinguish between different species in the analyte. The nanowire work at Hewlett-Packard Laboratories was supported in part by the Defense Advanced Research Projects Agency.

  17. Front End Spectroscopy ASIC for Germanium Detectors

    NASA Astrophysics Data System (ADS)

    Wulf, Eric

    Large-area, tracking, semiconductor detectors with excellent spatial and spectral resolution enable exciting new access to soft (0.2-5 MeV) gamma-ray astrophysics. The improvements from semiconductor tracking detectors come with the burden of high density of strips and/or pixels that require high-density, low-power, spectroscopy quality readout electronics. CMOS ASIC technologies are a natural fit to this requirement and have led to high-quality readout systems for all current semiconducting tracking detectors except for germanium detectors. The Compton Spectrometer and Imager (COSI), formerly NCT, at University of California Berkeley and the Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) at Goddard Space Flight Center utilize germanium cross-strip detectors and are on the forefront of NASA's Compton telescope research with funded missions of long duration balloon flights. The development of a readout ASIC for germanium detectors would allow COSI to replace their discrete electronics readout and would enable the proposed Gamma-Ray Explorer (GRX) mission utilizing germanium strip-detectors. We propose a 3-year program to develop and test a germanium readout ASIC to TRL 5 and to integrate the ASIC readout onto a COSI detector allowing a TRL 6 demonstration for the following COSI balloon flight. Our group at NRL led a program, sponsored by another government agency, to produce and integrate a cross-strip silicon detector ASIC, designed and fabricated by Dr. De Geronimo at Brookhaven National Laboratory. The ASIC was designed to handle the large (>30 pF) capacitance of three 10 cm^2 detectors daisy-chained together. The front-end preamplifier, selectable inverter, shaping times, and gains make this ASIC compatible with a germanium cross-strip detector as well. We therefore have the opportunity and expertise to leverage the previous investment in the silicon ASIC for a new mission. A germanium strip detector ASIC will also require precise timing of the signals at

  18. Extrinsic germanium Blocked Impurity Bank (BIB) detectors

    NASA Technical Reports Server (NTRS)

    Krabach, Timothy N.; Huffman, James E.; Watson, Dan M.

    1989-01-01

    Ge:Ga blocked-impurity-band (BIB) detectors with long wavelength thresholds greater than 190 microns and peak quantum efficiencies of 4 percent, at an operating temperature of 1.8 K, have been fabricated. These proof of concept devices consist of a high purity germanium blocking layer epitaxially grown on a Ga-doped Ge substrate. This demonstration of BIB behavior in germanium enables the development of far infrared detector arrays similar to the current silicon-based devices. Present efforts are focussed on improving the chemical vapor deposition process used to create the blocking layer and on the lithographic processing required to produce monolithic detector arrays in germanium. Approaches to test the impurity levels in both the blocking and active layers are considered.

  19. Chalcogenide and germanium hybrid optics

    NASA Astrophysics Data System (ADS)

    Cogburn, Gabriel

    2011-11-01

    When choosing a material to design infrared optics, an optical designer has to decide which material properties are most important to what they are trying to achieve. Factors include; cost, optical performance, index of material, sensor format, manufacturability, mechanical mounting and others. This paper will present an optical design that is made for a 640×480, 17μm sensor and is athermalized by using the material properties of chalcogenide glass and Germanium (Ge). The optical design will be a 3-element, f1.0 optic with an EFL of 20mm at 10μm. It consists of two Ge spherical lenses and a middle chalcogenide aspheric element. By using Ge and chalcogenide, this design utilizes the high index of Ge and combines it with the lower dn/dt of chalcogenide glass to provide an athermalized design without the use of additional electro-optical compensation inside the assembly. This study will start from the optical design process and explain the mechanical and optical properties of the design, then show the manufacturing process of molding an aspheric chalcogenide element. After the three elements are manufactured, they will be assembled and tested throughout the temperature range of -40 to 85°C to compare optical performance to design expectations. Ultimately, this paper will show that a high performance, athermalized optical assembly is possible to manufacture at a lower cost with the use of combining different infrared materials that allow for spherical Ge lenses and only one aspherical chalcogenide element which can be produced in higher volumes at lower costs through glass molding technology.

  20. Germanium-Based Nanomaterials for Rechargeable Batteries.

    PubMed

    Wu, Songping; Han, Cuiping; Iocozzia, James; Lu, Mingjia; Ge, Rongyun; Xu, Rui; Lin, Zhiqun

    2016-07-01

    Germanium-based nanomaterials have emerged as important candidates for next-generation energy-storage devices owing to their unique chemical and physical properties. In this Review, we provide a review of the current state-of-the-art in germanium-based materials design, synthesis, processing, and application in battery technology. The most recent advances in the area of Ge-based nanocomposite electrode materials and electrolytes for solid-state batteries are summarized. The limitations of Ge-based materials for energy-storage applications are discussed, and potential research directions are also presented with an emphasis on commercial products and theoretical investigations.

  1. Atomic scale dynamics of ultrasmall germanium clusters

    PubMed Central

    Bals, S.; Van Aert, S.; Romero, C.P.; Lauwaet, K.; Van Bael, M.J.; Schoeters, B.; Partoens, B.; Yücelen, E.; Lievens, P.; Van Tendeloo, G.

    2012-01-01

    Starting from the gas phase, small clusters can be produced and deposited with huge flexibility with regard to composition, materials choice and cluster size. Despite many advances in experimental characterization, a detailed morphology of such clusters is still lacking. Here we present an atomic scale observation as well as the dynamical behaviour of ultrasmall germanium clusters. Using quantitative scanning transmission electron microscopy in combination with ab initio calculations, we are able to characterize the transition between different equilibrium geometries of a germanium cluster consisting of less than 25 atoms. Seven-membered rings, trigonal prisms and some smaller subunits are identified as possible building blocks that stabilize the structure. PMID:22692540

  2. Neutron-transmutation-doped germanium bolometers

    NASA Technical Reports Server (NTRS)

    Palaio, N. P.; Rodder, M.; Haller, E. E.; Kreysa, E.

    1983-01-01

    Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 to the 16th and 1.88 x 10 to the 18th per sq cm. After thermal annealing the resistivity was measured down to low temperatures (less than 4.2 K) and found to follow the relationship rho = rho sub 0 exp(Delta/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2 K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers.

  3. Atomic scale dynamics of ultrasmall germanium clusters.

    PubMed

    Bals, S; Van Aert, S; Romero, C P; Lauwaet, K; Van Bael, M J; Schoeters, B; Partoens, B; Yücelen, E; Lievens, P; Van Tendeloo, G

    2012-06-12

    Starting from the gas phase, small clusters can be produced and deposited with huge flexibility with regard to composition, materials choice and cluster size. Despite many advances in experimental characterization, a detailed morphology of such clusters is still lacking. Here we present an atomic scale observation as well as the dynamical behaviour of ultrasmall germanium clusters. Using quantitative scanning transmission electron microscopy in combination with ab initio calculations, we are able to characterize the transition between different equilibrium geometries of a germanium cluster consisting of less than 25 atoms. Seven-membered rings, trigonal prisms and some smaller subunits are identified as possible building blocks that stabilize the structure.

  4. Silicon and germanium nanocrystals: properties and characterization

    PubMed Central

    Carvalho, Alexandra; Coutinho, José

    2014-01-01

    Summary Group-IV nanocrystals have emerged as a promising group of materials that extends the realm of application of bulk diamond, silicon, germanium and related materials beyond their traditional boundaries. Over the last two decades of research, their potential for application in areas such as optoelectronic applications and memory devices has been progressively unraveled. Nevertheless, new challenges with no parallel in the respective bulk material counterparts have arisen. In this review, we consider what has been achieved and what are the current limitations with regard to growth, characterization and modeling of silicon and germanium nanocrystals and related materials. PMID:25383290

  5. Germanium-overcoated niobium Dayem bridges

    NASA Technical Reports Server (NTRS)

    Holdeman, L. B.; Peters, P. N.

    1976-01-01

    Overcoating constriction microbridges with semiconducting germanium provides additional thermal conductivity at liquid-helium temperatures to reduce the effects of self-heating in these Josephson junctions. Microwave-induced steps were observed in the I-V characteristics of an overcoated Dayem bridge fabricated in a 15-nm-thick niobium film; at least 20 steps could be counted at 4.2 K. No steps were observed in the I-V characteristics of the bridge prior to overcoating. In addition, the germanium overcoat can protect against electrical disturbances at room temperature.

  6. From nanodiamond to nanowires.

    SciTech Connect

    Barnard, A.; Materials Science Division

    2005-01-01

    Recent advances in the fabrication and characterization of semiconductor and metallic nanowires are proving very successful in meeting the high expectations of nanotechnologists. Although the nanoscience surrounding sp{sup 3} bonded carbon nanotubes has continued to flourish over recent years the successful synthesis of the sp{sup 3} analogue, diamond nanowires, has been limited. This prompts questions as to whether diamond nanowires are fundamentally unstable. By applying knowledge obtained from examining the structural transformations in nanodiamond, a framework for analyzing the structure and stability of diamond nanowires may be established. One possible framework will be discussed here, supported by results of ab initio density functional theory calculations used to study the structural relaxation of nanodiamond and diamond nanowires. The results show that the structural stability and electronic properties of diamond nanowires are dependent on the surface morphology, crystallographic direction of the principal axis, and the degree of surface hydrogenation.

  7. Multicolored Vertical Silicon Nanowires

    SciTech Connect

    Seo, Kwanyong; Wober, Munib; Steinvurzel, P.; Schonbrun, E.; Dan, Yaping; Ellenbogen, T.; Crozier, K. B.

    2011-04-13

    We demonstrate that vertical silicon nanowires take on a surprising variety of colors covering the entire visible spectrum, in marked contrast to the gray color of bulk silicon. This effect is readily observable by bright-field microscopy, or even to the naked eye. The reflection spectra of the nanowires each show a dip whose position depends on the nanowire radii. We compare the experimental data to the results of finite difference time domain simulations to elucidate the physical mechanisms behind the phenomena we observe. The nanowires are fabricated as arrays, but the vivid colors arise not from scattering or diffractive effects of the array, but from the guided mode properties of the individual nanowires. Each nanowire can thus define its own color, allowing for complex spatial patterning. We anticipate that the color filter effect we demonstrate could be employed in nanoscale image sensor devices.

  8. Elastic properties of nanowires

    NASA Astrophysics Data System (ADS)

    da Fonseca, Alexandre F.; Malta, C. P.; Galva~O, Douglas S.

    2006-05-01

    We present a model to study Young's modulus and Poisson's ratio of the composite material of amorphous nanowires. It is an extension of the model derived by two of us [da Fonseca and Galva~o, Phys. Rev. Lett. 92, 175502 (2004)] to study the elastic properties of amorphous nanosprings. The model is based on twisting and tensioning a straight nanowire and we propose an experimental setup to obtain the elastic parameters of the nanowire. We used the Kirchhoff rod model to obtain the expressions for the elastic constants of the nanowire.

  9. Novel metastable metallic and semiconducting germaniums

    PubMed Central

    Selli, Daniele; Baburin, Igor A.; Martoňák, Roman; Leoni, Stefano

    2013-01-01

    Group-IVa elements silicon and germanium are known for their semiconducting properties at room temperature, which are technologically critical. Metallicity and superconductivity are found at higher pressures only, Ge β-tin (tI4) being the first high-pressure metallic phase in the phase diagram. However, recent experiments suggest that metallicity in germanium is compatible with room conditions, calling for a rethinking of our understanding of its phase diagram. Missing structures can efficiently be identified based on structure prediction methods. By means of ab initio metadynamics runs we explored the lower-pressure region of the phase diagram of germanium. A monoclinic germanium phase (mC16) with four-membered rings, less dense than diamond and compressible into β-tin phase (tI4) was found. Tetragonal bct-5 appeared between diamond and tI4. mC16 is a narrow-gap semiconductor, while bct-5 is metallic and potentially still superconducting in the very low pressure range. This finding may help resolving outstanding experimental issues. PMID:23492980

  10. Improving CMOS-compatible Germanium photodetectors.

    PubMed

    Li, Guoliang; Luo, Ying; Zheng, Xuezhe; Masini, Gianlorenzo; Mekis, Attila; Sahni, Subal; Thacker, Hiren; Yao, Jin; Shubin, Ivan; Raj, Kannan; Cunningham, John E; Krishnamoorthy, Ashok V

    2012-11-19

    We report design improvements for evanescently coupled Germanium photodetectors grown at low temperature. The resulting photodetectors with 10 μm Ge length manufactured in a commercial CMOS process achieve >0.8 A/W responsivity over the entire C-band, with a device capacitance of <7 fF based on measured data.

  11. Germanium JFET for Cryogenic Readout Electronics

    NASA Technical Reports Server (NTRS)

    Das, N. C.; Monroy, C.; Jhabvala, M.; Shu, P.

    1999-01-01

    The n-channel Germanium junction field effect transistor (Ge-JFET) was designed and fabricated for cryogenic applications. The Ge-JFET exhibits superior noise performance at liquid nitrogen temperature (77 K). From the device current voltage characteristics of n-channel JFETs, it is seen that transconductance increases monotonically with the lowering of temperature to 4.2 K (liquid helium temperature).

  12. Electron tunnelling into amorphous germanium and silicon.

    NASA Technical Reports Server (NTRS)

    Smith, C. W.; Clark, A. H.

    1972-01-01

    Measurements of tunnel conductance versus bias, capacitance versus bias, and internal photoemission were made in the systems aluminum-oxide-amorphous germanium and aluminium-oxide-amorphous silicon. A function was extracted which expresses the deviation of these systems from the aluminium-oxide-aluminium system.

  13. Temperature dependent electrical transport in single Ge nanowires near insulator-metal transition

    NASA Astrophysics Data System (ADS)

    Raychaudhuri, Arup Kumar; Seth, Shaili; Das, Kaustuv

    We report low temperature (4K <= T <= 300K) electrical transport in single strands of Germanium Nanowires of radius well below 50 nm. The nanowires, grown from vapour phase with Au catalyst have carrier concentrations ranging from intrinsic to near the insulator-metal transition boundary. The nanowires were characterized extensively by High Resolution Transmission Electron Microscope and established their crystalline quality. A single nanowire dispersed on a Si/SiO2 substrate was connected by Cr/Au contacts made by electron beam lithography in 2-probe / 4-probe configurations. The undoped nanowires have a room temperature resistivity (ρ) of 2 ohm.cm or more (estimated carrier concentration ~1015/cm3) and below the 25K (where it shows carrier freeze out) the ρ rises to high value of 35 ohm.cm. For nanowires with ρ <= .01 ohm.cm at 300K , low temperature ρ becomes finite, signaling transition to a metallic state with negative temperature co-efficient of ρ. The critical composition for the insulator-metal transition is more than an order higher than that observed in the bulk. At low T (<25K) resistivity data in this regime can be fitted to weak-localization form ρ =ρ0 - aTp/2 with ρ0 the NW's ~ 0.5-3.5 mohm.cm, with the exponent p ~ 3-4 as expected from theoretical predictions. Acknowldge Financial Support from Department od Science and Technology, Government of India for Sponsored Project.

  14. Development of palladium nanowires

    NASA Astrophysics Data System (ADS)

    Cheng, Chuanding

    Inherent limitations of traditional lithography have prompted the search for means of achieving self-assembly of nano-scale structures and networks for the next generation of electronic and photonic devices. The nanowire, the basic building block of a nanocircuit, has recently become the focus of intense research. Reports on nanowire synthesis and assembly have appeared in the scientific literature, which include Vapor-Liquid-Solid mechanism, template-based electrochemical fabrication, solvothermal or wet chemistry, and assembly by fluid alignment or microchannel networks. An ideal approach for practical application of nanowires would circumvent technical and economic constraints of templating. Here we report on the self-assembly of highly-ordered metallic nanowires directly from a palladium acetate solution under an applied alternating current (AC) electric field of relatively high intensity and frequency. DNA-templated nanowires are first presented here. DNA molecules were stretched and positioned by electric field, followed by metallization by palladium acetate solution. Palladium nanowire arrays have been found to grow directly between microelectrodes without any template, under an alternating electric field of relatively high intensity and frequency. The wires grew spontaneously along the direction of the electric field and have high uniformity and conductivity. Single 75 nm-diameter palladium nanowires have also been self-assembled from aqueous solution at predefined locations between 15 mum-gap electrodes built on a SiO2 substrate. Nanowire assembly was initiated by application an electric field, and it occurred only along the direction of field lines where the field is strongest. Related metals did not support single nanowire assembly under comparable conditions. Current-limiting circuits for controlled nanowire synthesis, electric field simulation, and growth mechanism were studied. The simple and straightforward approach to nanowire assembly outlined here

  15. Structural characterization of nanowires and nanowire arrays

    NASA Astrophysics Data System (ADS)

    Becker, Catherine Rose

    Nanowires, which have diameter less than a few hundred nanometers and high aspect ratios, may have the same properties as their corresponding bulk materials, or may exhibit unique properties due to their confined dimensions and increased surface to volume ratios. They are a popular field of technological investigation in applications that depend on the transport of charge carriers, because of expectations that microcircuit miniaturization will lead to the next boom in the electronics industry. In this work, the high spatial resolution afforded by transmission electron microscopy (TEM) is used to study nanowires formed by electrochemical deposition into porous alumina templates. The goal is to determine the effect of the synthesis and subsequent processing on the microstructure and crystallinity of the wires. A thorough understanding of the microstructural features of a material is vital for optimizing its performance in a desired application. Two material systems were studied in this work. The first is bismuth telluride (Bi 2Te3), which is used in thermoelectric applications. The second is metallic copper, the electrochemical deposition of which is of interest for interconnects in semiconductor devices. The first part of this work utilized TEM to obtain a thorough characterization of the microstructural features of individual Bi2Te3 nanowires following release from the templates. As deposited, the nanowires are fine grained and exhibit significant lattice strain. Annealing increases the grain size and dislocations are created to accommodate the lattice strain. The degree of these microstructural changes depends on the thermal treatment. However, no differences were seen in the nanowire microstructure as a function of the synthetic parameters. The second part of this work utilized a modified dark field TEM technique in order to obtain a spatially resolved, semi-quantitative understanding of the evolution of preferred orientation as a function of the electrochemical

  16. Nanocrystalline nanowires: I. Structure.

    PubMed

    Allen, Philip B

    2007-01-01

    Geometric constructions of possible atomic arrangements are suggested for inorganic nanowires. These are fragments of bulk crystals, and can be called "nanocrystalline" nanowires (NCNW). To minimize surface polarity, nearly one-dimensional formula units, oriented along the growth axis, generate NCNWs by translation and rotation.

  17. Metallic nanowire networks

    DOEpatents

    Song, Yujiang; Shelnutt, John A.

    2012-11-06

    A metallic nanowire network synthesized using chemical reduction of a metal ion source by a reducing agent in the presence of a soft template comprising a tubular inverse micellar network. The network of interconnected polycrystalline nanowires has a very high surface-area/volume ratio, which makes it highly suitable for use in catalytic applications.

  18. Nanowire Solar Cells

    NASA Astrophysics Data System (ADS)

    Garnett, Erik C.; Brongersma, Mark L.; Cui, Yi; McGehee, Michael D.

    2011-08-01

    The nanowire geometry provides potential advantages over planar wafer-based or thin-film solar cells in every step of the photoconversion process. These advantages include reduced reflection, extreme light trapping, improved band gap tuning, facile strain relaxation, and increased defect tolerance. These benefits are not expected to increase the maximum efficiency above standard limits; instead, they reduce the quantity and quality of material necessary to approach those limits, allowing for substantial cost reductions. Additionally, nanowires provide opportunities to fabricate complex single-crystalline semiconductor devices directly on low-cost substrates and electrodes such as aluminum foil, stainless steel, and conductive glass, addressing another major cost in current photovoltaic technology. This review describes nanowire solar cell synthesis and fabrication, important characterization techniques unique to nanowire systems, and advantages of the nanowire geometry.

  19. Semiconductor nanowire lasers

    NASA Astrophysics Data System (ADS)

    Eaton, Samuel W.; Fu, Anthony; Wong, Andrew B.; Ning, Cun-Zheng; Yang, Peidong

    2016-06-01

    The discovery and continued development of the laser has revolutionized both science and industry. The advent of miniaturized, semiconductor lasers has made this technology an integral part of everyday life. Exciting research continues with a new focus on nanowire lasers because of their great potential in the field of optoelectronics. In this Review, we explore the latest advancements in the development of nanowire lasers and offer our perspective on future improvements and trends. We discuss fundamental material considerations and the latest, most effective materials for nanowire lasers. A discussion of novel cavity designs and amplification methods is followed by some of the latest work on surface plasmon polariton nanowire lasers. Finally, exciting new reports of electrically pumped nanowire lasers with the potential for integrated optoelectronic applications are described.

  20. Spin transport in p-type germanium.

    PubMed

    Rortais, F; Oyarzún, S; Bottegoni, F; Rojas-Sánchez, J-C; Laczkowski, P; Ferrari, A; Vergnaud, C; Ducruet, C; Beigné, C; Reyren, N; Marty, A; Attané, J-P; Vila, L; Gambarelli, S; Widiez, J; Ciccacci, F; Jaffrès, H; George, J-M; Jamet, M

    2016-04-27

    We report on the spin transport properties in p-doped germanium (Ge-p) using low temperature magnetoresistance measurements, electrical spin injection from a ferromagnetic metal and the spin pumping-inverse spin Hall effect method. Electrical spin injection is carried out using three-terminal measurements and the Hanle effect. In the 2-20 K temperature range, weak antilocalization and the Hanle effect provide the same spin lifetime in the germanium valence band (≈1 ps) in agreement with predicted values and previous optical measurements. These results, combined with dynamical spin injection by spin pumping and the inverse spin Hall effect, demonstrate successful spin accumulation in Ge. We also estimate the spin Hall angle θ(SHE) in Ge-p (6-7 x 10(-4) at room temperature, pointing out the essential role of ionized impurities in spin dependent scattering.

  1. Spin transport in p-type germanium

    NASA Astrophysics Data System (ADS)

    Rortais, F.; Oyarzún, S.; Bottegoni, F.; Rojas-Sánchez, J.-C.; Laczkowski, P.; Ferrari, A.; Vergnaud, C.; Ducruet, C.; Beigné, C.; Reyren, N.; Marty, A.; Attané, J.-P.; Vila, L.; Gambarelli, S.; Widiez, J.; Ciccacci, F.; Jaffrès, H.; George, J.-M.; Jamet, M.

    2016-04-01

    We report on the spin transport properties in p-doped germanium (Ge-p) using low temperature magnetoresistance measurements, electrical spin injection from a ferromagnetic metal and the spin pumping-inverse spin Hall effect method. Electrical spin injection is carried out using three-terminal measurements and the Hanle effect. In the 2-20 K temperature range, weak antilocalization and the Hanle effect provide the same spin lifetime in the germanium valence band (≈1 ps) in agreement with predicted values and previous optical measurements. These results, combined with dynamical spin injection by spin pumping and the inverse spin Hall effect, demonstrate successful spin accumulation in Ge. We also estimate the spin Hall angle {θ\\text{SHE}} in Ge-p (6-7× {{10}-4} ) at room temperature, pointing out the essential role of ionized impurities in spin dependent scattering.

  2. High-fidelity chemical patterning on oxide-free germanium.

    PubMed

    Hohman, J Nathan; Kim, Moonhee; Lawrence, Jeffrey A; McClanahan, Patrick D; Weiss, Paul S

    2012-04-25

    Oxide-free germanium can be chemically patterned directly with self-assembled monolayers of n-alkanethiols via submerged microcontact printing. Native germanium dioxide is water soluble; immersion activates the germanium surface for self-assembly by stripping the oxide. Water additionally provides an effective diffusion barrier that prevents undesired ink transport. Patterns are stable with respect to molecular exchange by carboxyl-functionalized thiols.

  3. Germanium films by polymer-assisted deposition

    DOEpatents

    Jia, Quanxi; Burrell, Anthony K.; Bauer, Eve; Ronning, Filip; McCleskey, Thomas Mark; Zou, Guifu

    2013-01-15

    Highly ordered Ge films are prepared directly on single crystal Si substrates by applying an aqueous coating solution having Ge-bound polymer onto the substrate and then heating in a hydrogen-containing atmosphere. A coating solution was prepared by mixing water, a germanium compound, ethylenediaminetetraacetic acid, and polyethyleneimine to form a first aqueous solution and then subjecting the first aqueous solution to ultrafiltration.

  4. Xenon Filled Silicon Germanium Thermoelectric Generators

    NASA Technical Reports Server (NTRS)

    Dewinter, F.

    1972-01-01

    An analysis is presented that shows the desirability and feasibility of using a xenon fill in the initial stages of operation of a silicon-germanium radioisotope thermoelectric generator to be used in outer-planetary exploration. The xenon cover gas offers protection against oxidation and against material sublimation, and allows the generator to deliver required power throughout the prelaunch and launch phases. The protective mechanisms afforded by the xenon cover gas and the mechanization of a xenon supply system are also discussed.

  5. Large Cryogenic Germanium Detector. Final Report

    SciTech Connect

    Mandic, Vuk

    2013-02-13

    The goal of this project was to investigate possible ways of increasing the size of cryogenic Ge detectors. This project identified two possible approaches to increasing the individual cryogenic Ge detector size. The first approach relies on using the existing technology for growing detector-grade (high-purity) germanium crystals of dislocation density 100-7000 cm{sup -2}. The second approach is to consider dislocation-free Ge crystals.

  6. Bottom-up assembly of metallic germanium

    PubMed Central

    Scappucci, Giordano; Klesse, Wolfgang M.; Yeoh, LaReine A.; Carter, Damien J.; Warschkow, Oliver; Marks, Nigel A.; Jaeger, David L.; Capellini, Giovanni; Simmons, Michelle Y.; Hamilton, Alexander R.

    2015-01-01

    Extending chip performance beyond current limits of miniaturisation requires new materials and functionalities that integrate well with the silicon platform. Germanium fits these requirements and has been proposed as a high-mobility channel material, a light emitting medium in silicon-integrated lasers, and a plasmonic conductor for bio-sensing. Common to these diverse applications is the need for homogeneous, high electron densities in three-dimensions (3D). Here we use a bottom-up approach to demonstrate the 3D assembly of atomically sharp doping profiles in germanium by a repeated stacking of two-dimensional (2D) high-density phosphorus layers. This produces high-density (1019 to 1020 cm−3) low-resistivity (10−4Ω · cm) metallic germanium of precisely defined thickness, beyond the capabilities of diffusion-based doping technologies. We demonstrate that free electrons from distinct 2D dopant layers coalesce into a homogeneous 3D conductor using anisotropic quantum interference measurements, atom probe tomography, and density functional theory. PMID:26256239

  7. Germanium-76 Sample Analysis: Revision 3

    SciTech Connect

    Kouzes, Richard T.; Zhu, Zihua; Engelhard, Mark H.

    2011-09-19

    The MAJORANA DEMONSTRATOR is a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0{nu}{beta}{beta}). The DEMONSTRATOR will utilize 76Ge from Russia. The first one-gram sample was received from the supplier for analysis on April 24, 2011. The second one-gram sample was received from the supplier for analysis on July 12, 2011. The third sample, which came from the first large shipment of germanium from the vendor, was received from Oak Ridge National Laboratory (ORNL) on September 13, 2011. The Environmental Molecular Sciences facility, a DOE user facility at PNNL, was used to make the required isotopic and chemical purity measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR. The results of these analyses are reported here. The isotopic composition of a sample of natural germanium was also measured twice. Differences in the result between these two measurements led to a re-measurement of the second 76Ge sample.

  8. Template-free preparation of crystalline Ge nanowire film electrodes via an electrochemical liquid-liquid-solid process in water at ambient pressure and temperature for energy storage.

    PubMed

    Gu, Junsi; Collins, Sean M; Carim, Azhar I; Hao, Xiaoguang; Bartlett, Bart M; Maldonado, Stephen

    2012-09-12

    The direct electrodeposition of crystalline germanium (Ge) nanowire film electrodes from an aqueous solution of dissolved GeO(2) using discrete 'flux' nanoparticles capable of dissolving Ge(s) has been demonstrated. Electrodeposition of Ge at inert electrode substrates decorated with small (<100 nm), discrete indium (In) nanoparticles resulted in crystalline Ge nanowire films with definable nanowire diameters and densities without the need for a physical or chemical template. The Ge nanowires exhibited strong polycrystalline character as-deposited, with approximate crystallite dimensions of 20 nm and a mixed orientation of the crystallites along the length of the nanowire. Energy dispersive spectroscopic elemental mapping of individual Ge nanowires showed that the In nanoparticles remained at the base of each nanowire, indicating good electrical communication between the Ge nanowire and the underlying conductive support. As-deposited Ge nanowire films prepared on Cu supports were used without further processing as Li(+) battery anodes. Cycling studies performed at 1 C (1624 mA g(-1)) indicated the native Ge nanowire films supported stable discharge capacities at the level of 973 mA h g(-1), higher than analogous Ge nanowire film electrodes prepared through an energy-intensive vapor-liquid-solid nanowire growth process. The cumulative data show that ec-LLS is a viable method for directly preparing a functional, high-activity nanomaterials-based device component. The work presented here is a step toward the realization of simple processes that make fully functional energy conversion/storage technologies based on crystalline inorganic semiconductors entirely through benchtop, aqueous chemistry and electrochemistry without time- or energy-intensive process steps.

  9. Microbial nanowires for bioenergy applications.

    PubMed

    Malvankar, Nikhil S; Lovley, Derek R

    2014-06-01

    Microbial nanowires are electrically conductive filaments that facilitate long-range extracellular electron transfer. The model for electron transport along Shewanella oneidensis nanowires is electron hopping/tunneling between cytochromes adorning the filaments. Geobacter sulfurreducens nanowires are comprised of pili that have metal-like conductivity attributed to overlapping pi-pi orbitals of aromatic amino acids. The nanowires of Geobacter species have been implicated in direct interspecies electron transfer (DIET), which may be an important mode of syntrophy in the conversion of organic wastes to methane. Nanowire networks confer conductivity to Geobacter biofilms converting organic compounds to electricity in microbial fuel cells (MFCs) and increasing nanowire production is the only genetic manipulation shown to yield strains with improved current-producing capabilities. Introducing nanowires, or nanowire mimetics, might improve other bioenergy strategies that rely on extracellular electron exchange, such as microbial electrosynthesis. Similarities between microbial nanowires and synthetic conducting polymers suggest additional energy-related applications.

  10. Semiconductor Nanowires: What's Next?

    SciTech Connect

    Yang, Peidong; Yan, Ruoxue; Fardy, Melissa

    2010-04-28

    In this perspective, we take a critical look at the research progress within the nanowire community for the past decade. We discuss issues on the discovery of fundamentally new phenomena versus performance benchmarking for many of the nanowire applications. We also notice that both the bottom-up and top-down approaches have played important roles in advancing our fundamental understanding of this new class of nanostructures. Finally we attempt to look into the future and offer our personal opinions on what the future trends will be in nanowire research.

  11. Porous silicon nanowires.

    PubMed

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-10-01

    In this mini-review, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures-single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion batteries, gas sensors and drug delivery.

  12. Nanowire Electron Scattering Spectroscopy

    NASA Technical Reports Server (NTRS)

    Hunt, Brian; Bronikowsky, Michael; Wong, Eric; VonAllmen, Paul; Oyafuso, Fablano

    2009-01-01

    Nanowire electron scattering spectroscopy (NESS) has been proposed as the basis of a class of ultra-small, ultralow-power sensors that could be used to detect and identify chemical compounds present in extremely small quantities. State-of-the-art nanowire chemical sensors have already been demonstrated to be capable of detecting a variety of compounds in femtomolar quantities. However, to date, chemically specific sensing of molecules using these sensors has required the use of chemically functionalized nanowires with receptors tailored to individual molecules of interest. While potentially effective, this functionalization requires labor-intensive treatment of many nanowires to sense a broad spectrum of molecules. In contrast, NESS would eliminate the need for chemical functionalization of nanowires and would enable the use of the same sensor to detect and identify multiple compounds. NESS is analogous to Raman spectroscopy, the main difference being that in NESS, one would utilize inelastic scattering of electrons instead of photons to determine molecular vibrational energy levels. More specifically, in NESS, one would exploit inelastic scattering of electrons by low-lying vibrational quantum states of molecules attached to a nanowire or nanotube.

  13. Germanium: From Its Discovery to SiGe Devices

    SciTech Connect

    Haller, E.E.

    2006-06-14

    Germanium, element No.32, was discovered in 1886 by Clemens Winkler. Its first broad application was in the form of point contact Schottky diodes for radar reception during WWII. The addition of a closely spaced second contact led to the first all-solid-state electronic amplifier device, the transistor. The relatively low bandgap, the lack of a stable oxide and large surface state densities relegated germanium to the number 2 position behind silicon. The discovery of the lithium drift process, which made possible the formation of p-i-n diodes with fully depletable i-regions several centimeters thick, led germanium to new prominence as the premier gamma-ray detector. The development of ultra-pure germanium yielded highly stable detectors which have remained unsurpassed in their performance. New acceptors and donors were discovered and the electrically active role of hydrogen was clearly established several years before similar findings in silicon. Lightly doped germanium has found applications as far infrared detectors and heavily Neutron Transmutation Doped (NTD) germanium is used in thermistor devices operating at a few milliKelvin. Recently germanium has been rediscovered by the silicon device community because of its superior electron and hole mobility and its ability to induce strains when alloyed with silicon. Germanium is again a mainstream electronic material.

  14. Long-term behavior of silicon germanium thermoelectric generators

    SciTech Connect

    Shields, V.

    1981-01-01

    Problems regarding the use of silicon germanium technology for Multi-Hundred Watt (MHW) Radioisotope Thermoelectric Generators (RTG) have been investigated at JPL. The practicability of storage and the subsequent handling of silicon germanium thermoelectric materials for future use has been addressed. 4 refs.

  15. Nanowire structures and electrical devices

    DOEpatents

    Bezryadin, Alexey; Remeika, Mikas

    2010-07-06

    The present invention provides structures and devices comprising conductive segments and conductance constricting segments of a nanowire, such as metallic, superconducting or semiconducting nanowire. The present invention provides structures and devices comprising conductive nanowire segments and conductance constricting nanowire segments having accurately selected phases including crystalline and amorphous states, compositions, morphologies and physical dimensions, including selected cross sectional dimensions, shapes and lengths along the length of a nanowire. Further, the present invention provides methods of processing nanowires capable of patterning a nanowire to form a plurality of conductance constricting segments having selected positions along the length of a nanowire, including conductance constricting segments having reduced cross sectional dimensions and conductance constricting segments comprising one or more insulating materials such as metal oxides.

  16. All-Inorganic Germanium Nanocrystal Films by Cationic Ligand Exchange.

    PubMed

    Wheeler, Lance M; Nichols, Asa W; Chernomordik, Boris D; Anderson, Nicholas C; Beard, Matthew C; Neale, Nathan R

    2016-03-01

    We introduce a new paradigm for group IV nanocrystal surface chemistry based on room temperature surface activation that enables ionic ligand exchange. Germanium nanocrystals synthesized in a gas-phase plasma reactor are functionalized with labile, cationic alkylammonium ligands rather than with traditional covalently bound groups. We employ Fourier transform infrared and (1)H nuclear magnetic resonance spectroscopies to demonstrate the alkylammonium ligands are freely exchanged on the germanium nanocrystal surface with a variety of cationic ligands, including short inorganic ligands such as ammonium and alkali metal cations. This ionic ligand exchange chemistry is used to demonstrate enhanced transport in germanium nanocrystal films following ligand exchange as well as the first photovoltaic device based on an all-inorganic germanium nanocrystal absorber layer cast from solution. This new ligand chemistry should accelerate progress in utilizing germanium and other group IV nanocrystals for optoelectronic applications.

  17. Germanium resistance thermometer calibration at superfluid helium temperatures

    NASA Technical Reports Server (NTRS)

    Mason, F. C.

    1985-01-01

    The rapid increase in resistance of high purity semi-conducting germanium with decreasing temperature in the superfluid helium range of temperatures makes this material highly adaptable as a very sensitive thermometer. Also, a germanium thermometer exhibits a highly reproducible resistance versus temperature characteristic curve upon cycling between liquid helium temperatures and room temperature. These two factors combine to make germanium thermometers ideally suited for measuring temperatures in many cryogenic studies at superfluid helium temperatures. One disadvantage, however, is the relatively high cost of calibrated germanium thermometers. In space helium cryogenic systems, many such thermometers are often required, leading to a high cost for calibrated thermometers. The construction of a thermometer calibration cryostat and probe which will allow for calibrating six germanium thermometers at one time, thus effecting substantial savings in the purchase of thermometers is considered.

  18. All-inorganic Germanium nanocrystal films by cationic ligand exchange

    DOE PAGES

    Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.; Anderson, Nicholas C.; Beard, Matthew C.; Neale, Nathan R.

    2016-01-21

    In this study, we introduce a new paradigm for group IV nanocrystal surface chemistry based on room temperature surface activation that enables ionic ligand exchange. Germanium nanocrystals synthesized in a gas-phase plasma reactor are functionalized with labile, cationic alkylammonium ligands rather than with traditional covalently bound groups. We employ Fourier transform infrared and 1H nuclear magnetic resonance spectroscopies to demonstrate the alkylammonium ligands are freely exchanged on the germanium nanocrystal surface with a variety of cationic ligands, including short inorganic ligands such as ammonium and alkali metal cations. This ionic ligand exchange chemistry is used to demonstrate enhanced transport inmore » germanium nanocrystal films following ligand exchange as well as the first photovoltaic device based on an all-inorganic germanium nanocrystal absorber layer cast from solution. This new ligand chemistry should accelerate progress in utilizing germanium and other group IV nanocrystals for optoelectronic applications.« less

  19. Germanium implanted with high dose oxygen and its optical properties

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Chu; Kelly, J. C.; Kenny, M. J.

    1990-05-01

    Single crystal n-type Ge samples are implanted with 1 × 10 17 to 1.5 × 10 18 cm -2 oxygen ions at 45 keV. Infrared and Rutherford backscattering measurements indicate that germanium dioxide is formed. The atomic ratio of oxygen to germanium is near the GeO 2 stoichiometric value of 2.0 from the surface down to a depth of 550 Å for germanium samples implanted to 1.5 × 10 18 cm -2. The excess oxygen is redistributed during the implantation. The results of optical reflectivity measurements indicate that the reflectivity of germanium in the 0.2-1.4 μm wavelength region is greatly reduced after high dose oxygen ion implantation. The reflectivity value at about 0.7 μm is near zero for germanium implanted to a dose of 1.5 × 10 18 cm -2.

  20. Catalyst patterning for nanowire devices

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Cassell, Alan M. (Inventor); Han, Jie (Inventor)

    2004-01-01

    Nanowire devices may be provided that are based on carbon nanotubes or single-crystal semiconductor nanowires. The nanowire devices may be formed on a substrate. Catalyst sites may be formed on the substrate. The catalyst sites may be formed using lithography, thin metal layers that form individual catalyst sites when heated, collapsible porous catalyst-filled microscopic spheres, microscopic spheres that serve as masks for catalyst deposition, electrochemical deposition techniques, and catalyst inks. Nanowires may be grown from the catalyst sites.

  1. Lipid nanotube or nanowire sensor

    DOEpatents

    Noy, Aleksandr; Bakajin, Olgica; Letant, Sonia; Stadermann, Michael; Artyukhin, Alexander B.

    2009-06-09

    A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.

  2. Lipid nanotube or nanowire sensor

    DOEpatents

    Noy, Aleksandr; Bakajin, Olgica; Letant, Sonia; Stadermann, Michael; Artyukhin, Alexander B.

    2010-06-29

    A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.

  3. Tensile strain mapping in flat germanium membranes

    SciTech Connect

    Rhead, S. D. Halpin, J. E.; Myronov, M.; Patchett, D. H.; Allred, P. S.; Wilson, N. R.; Leadley, D. R.; Shah, V. A.; Kachkanov, V.; Dolbnya, I. P.; Reparaz, J. S.; Sotomayor Torres, C. M.

    2014-04-28

    Scanning X-ray micro-diffraction has been used as a non-destructive probe of the local crystalline quality of a thin suspended germanium (Ge) membrane. A series of reciprocal space maps were obtained with ∼4 μm spatial resolution, from which detailed information on the strain distribution, thickness, and crystalline tilt of the membrane was obtained. We are able to detect a systematic strain variation across the membranes, but show that this is negligible in the context of using the membranes as platforms for further growth. In addition, we show evidence that the interface and surface quality is improved by suspending the Ge.

  4. Analog/Digital System for Germanium Thermometer

    NASA Technical Reports Server (NTRS)

    Woodhouse, Christopher

    1988-01-01

    Electronic system containing analog and digital circuits makes high-precision, four-wire measurements of resistance of each germanium resistance thermometer (GRT) in array of devices, using alternating current (ac) of 1 micro-A. At end measurement interval, contents of negative register subtracted from positive one, resulting in very-narrow-band synchronous demodulation of carrier wave and suppression of out-of-band noise. Microprocessor free to perform other duties after measurement complete. Useful in noisy terrestrial environments encountered in factories.

  5. Nanowire Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Borshchevsky, Alexander; Fleurial, Jean-Pierre; Herman, Jennifer; Ryan, Margaret

    2005-01-01

    Nanowire thermoelectric devices, now under development, are intended to take miniaturization a step beyond the prior state of the art to exploit the potential advantages afforded by shrinking some device features to approximately molecular dimensions (of the order of 10 nm). The development of nanowire-based thermoelectric devices could lead to novel power-generating, cooling, and sensing devices that operate at relatively low currents and high voltages. Recent work on the theory of thermoelectric devices has led to the expectation that the performance of such a device could be enhanced if the diameter of the wires could be reduced to a point where quantum confinement effects increase charge-carrier mobility (thereby increasing the Seebeck coefficient) and reduce thermal conductivity. In addition, even in the absence of these effects, the large aspect ratios (length of the order of tens of microns diameter of the order of tens of nanometers) of nanowires would be conducive to the maintenance of large temperature differences at small heat fluxes. The predicted net effect of reducing diameters to the order of tens of nanometers would be to increase its efficiency by a factor of .3. Nanowires made of thermoelectric materials and devices that comprise arrays of such nanowires can be fabricated by electrochemical growth of the thermoelectric materials in templates that contain suitably dimensioned pores (10 to 100 nm in diameter and 1 to 100 microns long). The nanowires can then be contacted in bundles to form devices that look similar to conventional thermoelectric devices, except that a production version may contain nearly a billion elements (wires) per square centimeter, instead of fewer than a hundred as in a conventional bulk thermoelectric device or fewer than 100,000 as in a microdevice. It is not yet possible to form contacts with individual nanowires. Therefore, in fabricating a nanowire thermoelectric device, one forms contacts on nanowires in bundles of the

  6. Nanowire mesh solar fuels generator

    DOEpatents

    Yang, Peidong; Chan, Candace; Sun, Jianwei; Liu, Bin

    2016-05-24

    This disclosure provides systems, methods, and apparatus related to a nanowire mesh solar fuels generator. In one aspect, a nanowire mesh solar fuels generator includes (1) a photoanode configured to perform water oxidation and (2) a photocathode configured to perform water reduction. The photocathode is in electrical contact with the photoanode. The photoanode may include a high surface area network of photoanode nanowires. The photocathode may include a high surface area network of photocathode nanowires. In some embodiments, the nanowire mesh solar fuels generator may include an ion conductive polymer infiltrating the photoanode and the photocathode in the region where the photocathode is in electrical contact with the photoanode.

  7. Mechanical Properties of Silicon Nanowires.

    PubMed

    Sohn, Young-Soo; Park, Jinsung; Yoon, Gwonchan; Song, Jiseok; Jee, Sang-Won; Lee, Jung-Ho; Na, Sungsoo; Kwon, Taeyun; Eom, Kilho

    2009-10-27

    Nanowires have been taken much attention as a nanoscale building block, which can perform the excellent mechanical function as an electromechanical device. Here, we have performed atomic force microscope (AFM)-based nanoindentation experiments of silicon nanowires in order to investigate the mechanical properties of silicon nanowires. It is shown that stiffness of nanowires is well described by Hertz theory and that elastic modulus of silicon nanowires with various diameters from ~100 to ~600 nm is close to that of bulk silicon. This implies that the elastic modulus of silicon nanowires is independent of their diameters if the diameter is larger than 100 nm. This supports that finite size effect (due to surface effect) does not play a role on elastic behavior of silicon nanowires with diameter of >100 nm.

  8. Mechanical Properties of Silicon Nanowires

    PubMed Central

    2010-01-01

    Nanowires have been taken much attention as a nanoscale building block, which can perform the excellent mechanical function as an electromechanical device. Here, we have performed atomic force microscope (AFM)-based nanoindentation experiments of silicon nanowires in order to investigate the mechanical properties of silicon nanowires. It is shown that stiffness of nanowires is well described by Hertz theory and that elastic modulus of silicon nanowires with various diameters from ~100 to ~600 nm is close to that of bulk silicon. This implies that the elastic modulus of silicon nanowires is independent of their diameters if the diameter is larger than 100 nm. This supports that finite size effect (due to surface effect) does not play a role on elastic behavior of silicon nanowires with diameter of >100 nm. PMID:20652130

  9. Piezoresistive boron doped diamond nanowire

    DOEpatents

    Sumant, Anirudha V.; Wang, Xinpeng

    2016-09-13

    A UNCD nanowire comprises a first end electrically coupled to a first contact pad which is disposed on a substrate. A second end is electrically coupled to a second contact pad also disposed on the substrate. The UNCD nanowire is doped with a dopant and disposed over the substrate. The UNCD nanowire is movable between a first configuration in which no force is exerted on the UNCD nanowire and a second configuration in which the UNCD nanowire bends about the first end and the second end in response to a force. The UNCD nanowire has a first resistance in the first configuration and a second resistance in the second configuration which is different from the first resistance. The UNCD nanowire is structured to have a gauge factor of at least about 70, for example, in the range of about 70 to about 1,800.

  10. Lateral overgrowth of germanium for monolithic integration of germanium-on-insulator on silicon

    NASA Astrophysics Data System (ADS)

    Nam, Ju Hyung; Alkis, Sabri; Nam, Donguk; Afshinmanesh, Farzaneh; Shim, Jaewoo; Park, Jin-Hong; Brongersma, Mark; Okyay, Ali Kemal; Kamins, Theodore I.; Saraswat, Krishna

    2015-04-01

    A technique to locally grow germanium-on-insulator (GOI) structure on silicon (Si) platform is studied. On (001) Si wafer, silicon dioxide (SiO2) is thermally grown and patterned to define growth window for germanium (Ge). Crystalline Ge is grown via selective hetero-epitaxy, using SiO2 as growth mask. Lateral overgrowth of Ge crystal covers SiO2 surface and neighboring Ge crystals coalesce with each other. Therefore, single crystalline Ge sitting on insulator for GOI applications is achieved. Chemical mechanical polishing (CMP) is performed to planarize the GOI surface. Transmission electron microscopy (TEM) analysis, Raman spectroscopy, and time-resolved photoluminescence (TRPL) show high quality crystalline Ge sitting on SiO2. Optical response from metal-semiconductor-metal (MSM) photodetector shows good optical absorption at 850 nm and 1550 nm wavelength.

  11. Disorder induced interface states and their influence on the Al/Ge nanowires Schottky devices

    SciTech Connect

    Simon, R. A.; Kamimura, H.; Chiquito, A. J.; Berengue, O. M.; Leite, E. R.

    2013-12-28

    It has been demonstrated that the presence of oxide monolayers in semiconductor surfaces alters the electronic potential at surfaces and, consequently, can drastically affect the electronic transport features of a practical device such as a field effect transistor. In this work experimental and theoretical approaches to characterize Al/germanium nanowire Schottky devices by using samples covered with a thin oxide layer (2 nm width) were explored. It was also demonstrated that the oxide layer on Ge causes a weak dependence of the metal work function on Schottky barrier heights indicating the presence of Fermi level pinning. From theoretical calculations the pinning factor S was estimated to range between 0.52 and 0.89, indicating a weak Fermi level pinning which is induced by the presence of charge localization at all nanowires' surface coming from interface states.

  12. Disorder induced interface states and their influence on the Al/Ge nanowires Schottky devices

    NASA Astrophysics Data System (ADS)

    Simon, R. A.; Kamimura, H.; Berengue, O. M.; Leite, E. R.; Chiquito, A. J.

    2013-12-01

    It has been demonstrated that the presence of oxide monolayers in semiconductor surfaces alters the electronic potential at surfaces and, consequently, can drastically affect the electronic transport features of a practical device such as a field effect transistor. In this work experimental and theoretical approaches to characterize Al/germanium nanowire Schottky devices by using samples covered with a thin oxide layer (2 nm width) were explored. It was also demonstrated that the oxide layer on Ge causes a weak dependence of the metal work function on Schottky barrier heights indicating the presence of Fermi level pinning. From theoretical calculations the pinning factor S was estimated to range between 0.52 and 0.89, indicating a weak Fermi level pinning which is induced by the presence of charge localization at all nanowires' surface coming from interface states.

  13. Temperature-dependant study of phosphorus ion implantation in germanium

    NASA Astrophysics Data System (ADS)

    Razali, M. A.; Smith, A. J.; Jeynes, C.; Gwilliam, R. M.

    2012-11-01

    We present experimental results on shallow junction formation in germanium by phosphorus ion implantation and standard rapid thermal processing. An attempt is made to improve phosphorus activation by implanting phosphorus at high and low temperature. The focus is on studying the germanium damage and phosphorus activation as a function of implant temperature. Rutherford backscattering spectrometry with channelling and Hall Effect measurements are employed for characterisation of germanium damage and phosphorus activation, respectively. High and low temperature implants were found to be better compared to room temperature implant.

  14. Oxygen defect processes in silicon and silicon germanium

    NASA Astrophysics Data System (ADS)

    Chroneos, A.; Sgourou, E. N.; Londos, C. A.; Schwingenschlögl, U.

    2015-06-01

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  15. Oxygen defect processes in silicon and silicon germanium

    SciTech Connect

    Chroneos, A.; Sgourou, E. N.; Londos, C. A.; Schwingenschlögl, U.

    2015-06-15

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  16. Ultra High-Rate Germanium (UHRGe) Modeling Status Report

    SciTech Connect

    Warren, Glen A.; Rodriguez, Douglas C.

    2012-06-07

    The Ultra-High Rate Germanium (UHRGe) project at Pacific Northwest National Laboratory (PNNL) is conducting research to develop a high-purity germanium (HPGe) detector that can provide both the high resolution typical of germanium and high signal throughput. Such detectors may be beneficial for a variety of potential applications ranging from safeguards measurements of used fuel to material detection and verification using active interrogation techniques. This report describes some of the initial radiation transport modeling efforts that have been conducted to help guide the design of the detector as well as a description of the process used to generate the source spectrum for the used fuel application evaluation.

  17. Single-nanowire photoelectrochemistry

    NASA Astrophysics Data System (ADS)

    Su, Yude; Liu, Chong; Brittman, Sarah; Tang, Jinyao; Fu, Anthony; Kornienko, Nikolay; Kong, Qiao; Yang, Peidong

    2016-07-01

    Photoelectrochemistry is one of several promising approaches for the realization of efficient solar-to-fuel conversion. Recent work has shown that photoelectrodes made of semiconductor nano-/microwire arrays can have better photoelectrochemical performance than their planar counterparts because of their unique properties, such as high surface area. Although considerable research effort has focused on studying wire arrays, the inhomogeneity in the geometry, doping, defects and catalyst loading present in such arrays can obscure the link between these properties and the photoelectrochemical performance of the wires, and correlating performance with the specific properties of individual wires is difficult because of ensemble averaging. Here, we show that a single-nanowire-based photoelectrode platform can be used to reliably probe the current–voltage (I–V) characteristics of individual nanowires. We find that the photovoltage output of ensemble array samples can be limited by poorly performing individual wires, which highlights the importance of improving nanowire homogeneity within an array. Furthermore, the platform allows the flux of photogenerated electrons to be quantified as a function of the lengths and diameters of individual nanowires, and we find that the flux over the entire nanowire surface (7–30 electrons nm–2 s–1) is significantly reduced as compared with that of a planar analogue (∼1,200 electrons nm–2 s–1). Such characterization of the photogenerated carrier flux at the semiconductor/electrolyte interface is essential for designing nanowire photoelectrodes that match the activity of their loaded electrocatalysts.

  18. Single-nanowire photoelectrochemistry

    NASA Astrophysics Data System (ADS)

    Su, Yude; Liu, Chong; Brittman, Sarah; Tang, Jinyao; Fu, Anthony; Kornienko, Nikolay; Kong, Qiao; Yang, Peidong

    2016-07-01

    Photoelectrochemistry is one of several promising approaches for the realization of efficient solar-to-fuel conversion. Recent work has shown that photoelectrodes made of semiconductor nano-/microwire arrays can have better photoelectrochemical performance than their planar counterparts because of their unique properties, such as high surface area. Although considerable research effort has focused on studying wire arrays, the inhomogeneity in the geometry, doping, defects and catalyst loading present in such arrays can obscure the link between these properties and the photoelectrochemical performance of the wires, and correlating performance with the specific properties of individual wires is difficult because of ensemble averaging. Here, we show that a single-nanowire-based photoelectrode platform can be used to reliably probe the current-voltage (I-V) characteristics of individual nanowires. We find that the photovoltage output of ensemble array samples can be limited by poorly performing individual wires, which highlights the importance of improving nanowire homogeneity within an array. Furthermore, the platform allows the flux of photogenerated electrons to be quantified as a function of the lengths and diameters of individual nanowires, and we find that the flux over the entire nanowire surface (7-30 electrons nm-2 s-1) is significantly reduced as compared with that of a planar analogue (˜1,200 electrons nm-2 s-1). Such characterization of the photogenerated carrier flux at the semiconductor/electrolyte interface is essential for designing nanowire photoelectrodes that match the activity of their loaded electrocatalysts.

  19. Single-nanowire photoelectrochemistry.

    PubMed

    Su, Yude; Liu, Chong; Brittman, Sarah; Tang, Jinyao; Fu, Anthony; Kornienko, Nikolay; Kong, Qiao; Yang, Peidong

    2016-07-01

    Photoelectrochemistry is one of several promising approaches for the realization of efficient solar-to-fuel conversion. Recent work has shown that photoelectrodes made of semiconductor nano-/microwire arrays can have better photoelectrochemical performance than their planar counterparts because of their unique properties, such as high surface area. Although considerable research effort has focused on studying wire arrays, the inhomogeneity in the geometry, doping, defects and catalyst loading present in such arrays can obscure the link between these properties and the photoelectrochemical performance of the wires, and correlating performance with the specific properties of individual wires is difficult because of ensemble averaging. Here, we show that a single-nanowire-based photoelectrode platform can be used to reliably probe the current-voltage (I-V) characteristics of individual nanowires. We find that the photovoltage output of ensemble array samples can be limited by poorly performing individual wires, which highlights the importance of improving nanowire homogeneity within an array. Furthermore, the platform allows the flux of photogenerated electrons to be quantified as a function of the lengths and diameters of individual nanowires, and we find that the flux over the entire nanowire surface (7-30 electrons nm(-2) s(-1)) is significantly reduced as compared with that of a planar analogue (∼1,200 electrons nm(-2) s(-1)). Such characterization of the photogenerated carrier flux at the semiconductor/electrolyte interface is essential for designing nanowire photoelectrodes that match the activity of their loaded electrocatalysts. PMID:27018660

  20. EDITORIAL: Nanowires for energy Nanowires for energy

    NASA Astrophysics Data System (ADS)

    LaPierre, Ray; Sunkara, Mahendra

    2012-05-01

    This special issue of Nanotechnology focuses on studies illustrating the application of nanowires for energy including solar cells, efficient lighting and water splitting. Over the next three decades, nanotechnology will make significant contributions towards meeting the increased energy needs of the planet, now known as the TeraWatt challenge. Nanowires in particular are poised to contribute significantly in this development as presented in the review by Hiralal et al [1]. Nanowires exhibit light trapping properties that can act as a broadband anti-reflection coating to enhance the efficiency of solar cells. In this issue, Li et al [2] and Wang et al [3] present the optical properties of silicon nanowire and nanocone arrays. In addition to enhanced optical properties, core-shell nanowires also have the potential for efficient charge carrier collection across the nanowire diameter as presented in the contribution by Yu et al [4] for radial junction a-Si solar cells. Hybrid approaches that combine organic and inorganic materials also have potential for high efficiency photovoltaics. A Si-based hybrid solar cell is presented by Zhang et al [5] with a photoconversion efficiency of over 7%. The quintessential example of hybrid solar cells is the dye-sensitized solar cell (DSSC) where an organic absorber (dye) coats an inorganic material (typically a ZnO nanostructure). Herman et al [6] present a method of enhancing the efficiency of a DSSC by increasing the hetero-interfacial area with a unique hierarchical weeping willow ZnO structure. The increased surface area allows for higher dye loading, light harvesting, and reduced charge recombination through direct conduction along the ZnO branches. Another unique ZnO growth method is presented by Calestani et al [7] using a solution-free and catalyst-free approach by pulsed electron deposition (PED). Nanowires can also make more efficient use of electrical power. Light emitting diodes, for example, will eventually become the

  1. Germanium Detectors in Homeland Security at PNNL

    SciTech Connect

    Stave, Sean C.

    2015-05-01

    Neutron and gamma-ray detection is used for non-proliferation and national security applications. While lower energy resolution detectors such as NaI(Tl) have their place, high purity germanium (HPGe) also has a role to play. A detection with HPGe is often a characterization due to the very high energy resolution. However, HPGe crystals remain small and expensive leaving arrays of smaller crystals as an excellent solution. PNNL has developed two similar HPGe arrays for two very different applications. One array, the Multisensor Aerial Radiation Survey (MARS) detector is a fieldable array that has been tested on trucks, boats, and helicopters. The CASCADES HPGe array is an array designed to assay samples in a low background environment. The history of HPGe arrays at PNNL and the development of MARS and CASCADES will be detailed in this paper along with some of the other applications of HPGe at PNNL.

  2. Germanium detectors in homeland security at PNNL

    DOE PAGES

    Stave, S.

    2015-05-01

    Neutron and gamma-ray detection is used for non-proliferation and national security applications. While lower energy resolution detectors such as NaI(Tl) have their place, high purity germanium (HPGe) also has a role to play. A detection with HPGe is often a characterization due to the very high energy resolution. However, HPGe crystals remain small and expensive leaving arrays of smaller crystals as an excellent solution. PNNL has developed two similar HPGe arrays for two very different applications. One array, the Multisensor Aerial Radiation Survey (MARS) detector is a fieldable array that has been tested on trucks, boats, and helicopters. The CASCADESmore » HPGe array is an array designed to assay samples in a low background environment. The history of HPGe arrays at PNNL and the development of MARS and CASCADES will be detailed in this paper along with some of the other applications of HPGe at PNNL.« less

  3. Germanium detectors in homeland security at PNNL

    SciTech Connect

    Stave, S.

    2015-05-01

    Neutron and gamma-ray detection is used for non-proliferation and national security applications. While lower energy resolution detectors such as NaI(Tl) have their place, high purity germanium (HPGe) also has a role to play. A detection with HPGe is often a characterization due to the very high energy resolution. However, HPGe crystals remain small and expensive leaving arrays of smaller crystals as an excellent solution. PNNL has developed two similar HPGe arrays for two very different applications. One array, the Multisensor Aerial Radiation Survey (MARS) detector is a fieldable array that has been tested on trucks, boats, and helicopters. The CASCADES HPGe array is an array designed to assay samples in a low background environment. The history of HPGe arrays at PNNL and the development of MARS and CASCADES will be detailed in this paper along with some of the other applications of HPGe at PNNL.

  4. Electron paramagnetic resonance at dislocations in germanium

    SciTech Connect

    Pakulis, E.J.

    1982-06-01

    The first observation of the paramagnetic resonance of electrons at dislocations in germanium single crystals is reported. Under subband gap optical excitation, two sets of lines are detected: four lines about the <111> axes with g/sub perpendicular to/ = 0.34 and g/sub parallel/ = 1.94, and 24 lines with g/sub perpendicular to/ = 0.73 and g/sub parallel/ = 1.89 about <111> axes with the six-fold 1.2/sup 0/ distortion. This represents the first measurement of the disortion angle of a dislocation dangling bond. The possibility that the distortion results from a Peierls transition along the dislocation line is discussed.

  5. Lithographically patterned nanowire electrodeposition

    NASA Astrophysics Data System (ADS)

    Xiang, Chengxiang

    Lithographically patterned nanowire electrodeposition (LPNE) is a new method for fabricating polycrystalline metal nanowires using electrodeposition. In LPNE, a sacrificial metal (M1 = silver or nickel) layer, 5 - 100 nm in thickness, is first vapor deposited onto a glass, oxidized silicon, or Kapton polymer film. A photoresist (PR) layer is then deposited, photopatterned, and the exposed Ag or Ni is removed by wet etching. The etching duration is adjusted to produce an undercut ≈300 nm in width at the edges of the exposed PR. This undercut produces a horizontal trench with a precisely defined height equal to the thickness of theM1 layer. Within this trench, a nanowire of metal M2 is electrodeposited (M2 = gold, platinum, palladium, or bismuth). Finally the PR layer and M1 layer are removed. The nanowire height and width can be independently controlled down to minimum dimensions of 5 nm (h) and 11 nm (w), for example, in the case of platinum. These nanowires can be 1 cm in total length. We measure the temperature-dependent resistance of 100 um sections of Au and Pd wires in order to estimate an electrical grain size for comparison with measurements by X-ray diffraction and transmission electron microscopy. Nanowire arrays can be postpatterned to produce two-dimensional arrays of nanorods. Nanowire patterns can also be overlaid one on top of another by repeating the LPNE process twice in succession to produce, for example, arrays of low-impedance, nanowirenanowire junctions. The resistance, R, of single gold nanowires was measured in situ during electrooxidation in aqueous 0.10 M sulfuric acid. Electrooxidation caused the formation of a gold oxide that is approximately 0.8 monolayers (ML) in thickness at +1.1 V vs saturated mercurous sulfate reference electrode (MSE) based upon coulometry and ex situ X-ray photoelectron spectroscopic analysis. As the gold nanowires were electrooxidized, R increased by an amount that depended on the wire thickness, ranging from

  6. Reduction of Defects in Germanium-Silicon

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Crystals grown without contact with a container have far superior quality to otherwise similar crystals grown in direct contact with a container. In addition to float-zone processing, detached- Bridgman growth is a promising tool to improve crystal quality, without the limitations of float zoning or the defects introduced by normal Bridgman growth. Goals of this project include the development of the detached Bridgman process to be reproducible and well understood and to quantitatively compare the defect and impurity levels in crystals grown by these three methods. Germanium (Ge) and germanium-silicon (Ge-Si) alloys are being used. At MSFC, we are responsible for the detached Bridgman experiments intended to differentiate among proposed mechanisms of detachment, and to confirm or refine our understanding of detachment. Because the contact angle is critical to determining the conditions for detachment, the sessile drop method was used to measure the contact angles as a function of temperature and composition for a large number of substrates made of potential ampoule materials. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. Etch pit density (EPD) measurements of normal and detached Bridgman-grown Ge samples show a two order of magnitude improvement in the detached-grown samples. The nature and extent of detachment is determined by using profilometry in conjunction with optical and electron microscopy. The stability of detachment has been analyzed, and an empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed. We have investigated the effects on detachment of ampoule material, pressure difference above and below the melt, and Si concentration; samples that are nearly completely detached can be grown repeatedly in pBN. Current work is concentrated on developing a

  7. Na-doped optical Germanium bulk crystals

    NASA Astrophysics Data System (ADS)

    Pekar, G. S.; Singaevsky, A. F.

    2012-09-01

    In an effort to develop a material for infrared (IR) optics with improved parameters, bulk crystals of optical germanium doped with Na have been first grown and studied. Single-crystalline and coarse-crystalline Ge:Na boules of different shapes and dimensions, up to 10 kg by weight, have been grown. Sodium was incorporated into the Ge crystal during the crystal growing from the melt. Despite the fact that Na contamination in the source material was not strictly controlled, the density of Na in the grown crystals determined by the neutron activation analysis as well as by the glow discharge mass spectrometry did not exceed 1015 cm-3. Just this value may be supposed to be close to the solubility limit of Na incorporated in Ge in the course of bulk crystal growth. A first demonstration of donor behavior of Na in bulk Ge crystals is made by means of a thermoelectric type of testing. An interstitial location of Na impurity has been verified by experiments on donor drift in the dc electric field. The crystals are grown with free electron density in the range from 5ṡ1013 to 4ṡ1014 cm-3 which is optimal for using Ge crystals as an optical material for fabricating passive elements of the IR technique. A comparison between the properties of Ge:Na crystals and Ge crystals doped with Sb, a conventional impurity in optical germanium, grown under the same technological conditions and from the same intrinsic Ge as a source material, revealed a number of advantages of Ge:Na crystals; among them, the higher transparency in the IR region, smaller radiation scattering and higher regular optical transmission, lower dislocation density, more uniform distribution of electrical and optical characteristics over the crystal volume, the identity of optical parameters in the single-crystalline, and coarse-crystalline boules. No degradation of optical elements fabricated from Ge:Na crystals was detected in the course of their commercial application, starting from 1998.

  8. Ultraprecision Machining Characteristics of Poly-Crystalline Germanium

    NASA Astrophysics Data System (ADS)

    Yan, Jiwang; Takahashi, Yasunori; Tamaki, Jun'Ichi; Kubo, Akihiko; Kuriyagawa, Tsunemoto; Sato, Yutaka

    Germanium is an excellent infrared optical material. On most occasions, single-crystalline germanium is used as optical lens substrate because its homogeneous structure is beneficial for fabricating uniform optical surfaces. In this work, we attempt to use poly crystals as lens substrates instead of single crystals, which may lead to a significant reduction in production cost. We conducted ultraprecision cutting experiments on poly-crystalline germanium to examine the microscopic machinability. The crystal orientations of specific crystal grains were characterized, and the machining characteristics of these crystal grains including surface textures, cutting forces, and grain boundary steps were investigated under various machining conditions. It was possible to produce uniformly ductile-cut surfaces cross all crystal grains by using an extremely small undeformed chip thickness (˜ 80nm) under negative tool rake angles (˜ -45°). This work indicates the possibility of fabricating high-quality infrared optical components from poly-crystalline germanium.

  9. Near-infrared emission from mesoporous crystalline germanium

    NASA Astrophysics Data System (ADS)

    Boucherif, Abderraouf; Korinek, Andreas; Aimez, Vincent; Arès, Richard

    2014-10-01

    Mesoporous crystalline germanium was fabricated by bipolar electrochemical etching of Ge wafer in HF-based electrolyte. It yields uniform mesoporous germanium layers composed of high density of crystallites with an average size 5-7 nm. Subsequent extended chemical etching allows tuning of crystallites size while preserving the same chemical composition. This highly controllable nanostructure exhibits photoluminescence emission above the bulk Ge bandgap, in the near-infrared range (1095-1360nm) with strong evidence of quantum confinement within the crystallites.

  10. Near-infrared emission from mesoporous crystalline germanium

    SciTech Connect

    Boucherif, Abderraouf; Aimez, Vincent; Arès, Richard; Korinek, Andreas

    2014-10-15

    Mesoporous crystalline germanium was fabricated by bipolar electrochemical etching of Ge wafer in HF-based electrolyte. It yields uniform mesoporous germanium layers composed of high density of crystallites with an average size 5-7 nm. Subsequent extended chemical etching allows tuning of crystallites size while preserving the same chemical composition. This highly controllable nanostructure exhibits photoluminescence emission above the bulk Ge bandgap, in the near-infrared range (1095-1360nm) with strong evidence of quantum confinement within the crystallites.

  11. Modified silicon-germanium alloys with improved performance. [thermoelectric material

    NASA Technical Reports Server (NTRS)

    Pisharody, R. K.; Garvey, L. P.

    1978-01-01

    This paper discusses the results of a program on the modification of silicon-germanium alloys by means of small extraneous material additions in order to improve their figures-of-merit. A review of the properties that constitute the figure-of-merit indicates that it is the relatively high thermal conductivity of silicon-germanium alloys that is responsible for their low values of figure-of-merit. The intent of the effort discussed in this paper is therefore the reduction of the thermal conductivity of silicon-germanium alloys by minor alloy additions and/or changes in the basic structure of the material. Because Group III and V elements are compatible with silicon and germanium, the present effort in modifying silicon-germanium alloys has concentrated on additions of gallium phosphide. A significant reduction in thermal conductivity, approximately 40 to 50 percent, has been demonstrated while the electrical properties are only slightly affected as a result. The figure-of-merit of the resultant material is enhanced over that of silicon-germanium alloys and when fully optimized is potentially better than that of any other presently available thermoelectric material.

  12. Protective infrared antireflection coating based on sputtered germanium carbide

    NASA Astrophysics Data System (ADS)

    Gibson, Des; Waddell, Ewan; Placido, Frank

    2011-09-01

    This paper describes optical, durablility and environmental performance of a germanium carbide based durable antireflection coating. The coating has been demonstrated on germanium and zinc selenide infra-red material however is applicable to other materials such as zinc sulphide. The material is deposited using a novel reactive closed field magnetron sputtering technique, offering significant advantages over conventional evaporation processes for germanium carbide such as plasma enhanced chemical vapour deposition. The sputtering process is "cold", making it suitable for use on a wide range of substrates. Moreover, the drum format provide more efficient loading for high throughput production. The use of the closed field and unbalanced magnetrons creates a magnetic confinement that extends the electron mean free path leading to high ion current densities. The combination of high current densities with ion energies in the range ~30eV creates optimum thin film growth conditions. As a result the films are dense, spectrally stable, supersmooth and low stress. Films incorporate low hydrogen content resulting in minimal C-H absorption bands within critical infra-red passbands such as 3 to 5um and 8 to 12um. Tuning of germanium carbide (Ge(1-x)Cx) film refractive index from pure germanium (refractive index 4) to pure germanium carbide (refractive index 1.8) will be demonstrated. Use of film grading to achieve single and dual band anti-reflection performance will be shown. Environmental and durability levels are shown to be suitable for use in harsh external environments.

  13. Method of fabricating germanium and gallium arsenide devices

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzban (Inventor)

    1990-01-01

    A method of semiconductor diode fabrication is disclosed which relies on the epitaxial growth of a precisely doped thickness layer of gallium arsenide or germanium on a semi-insulating or intrinsic substrate, respectively, of gallium arsenide or germanium by either molecular beam epitaxy (MBE) or by metal-organic chemical vapor deposition (MOCVD). The method involves: depositing a layer of doped or undoped silicon dioxide on a germanium or gallium arsenide wafer or substrate, selectively removing the silicon dioxide layer to define one or more surface regions for a device to be fabricated thereon, growing a matched epitaxial layer of doped germanium or gallium arsenide of an appropriate thickness using MBE or MOCVD techniques on both the silicon dioxide layer and the defined one or more regions; and etching the silicon dioxide and the epitaxial material on top of the silicon dioxide to leave a matched epitaxial layer of germanium or gallium arsenide on the germanium or gallium arsenide substrate, respectively, and upon which a field effect device can thereafter be formed.

  14. Reduced Joule heating in nanowires

    NASA Astrophysics Data System (ADS)

    Léonard, François

    2011-03-01

    The temperature distribution in nanowires due to Joule heating is studied analytically using a continuum model and a Green's function approach. We show that the temperatures reached in nanowires can be much lower than that predicted by bulk models of Joule heating, due to heat loss at the nanowire surface that is important at nanoscopic dimensions, even when the thermal conductivity of the environment is relatively low. In addition, we find that the maximum temperature in the nanowire scales weakly with length, in contrast to the bulk system. A simple criterion is presented to assess the importance of these effects. The results have implications for the experimental measurements of nanowire thermal properties, for thermoelectric applications, and for controlling thermal effects in nanowire electronic devices.

  15. Electrochemically Grown Single Nanowire Sensors

    NASA Technical Reports Server (NTRS)

    Yun, Minhee; Lee, Choonsup; Vasquez, Richard P.; Penner, Reginald; Bangar, Mangesh; Mulchandani, Ashok; Myung, Nosang V.

    2004-01-01

    We report a fabrication technique that is potentially capable of producing arrays of individually addressable nanowire sensors with controlled dimensions, positions, alignments, and chemical compositions. The concept has been demonstrated with electrodeposition of palladium wires with 75 nm to 350 nm widths. We have also fabricated single and double conducting polymer nanowires (polyaniline and polypyrrole) with 100nm and 200nm widths using electrochemical direct growth. Using single Pd nanowires, we have also demonstrated hydrogen sensing. It is envisioned that these are the first steps towards nanowire sensor arrays capable of simultaneously detecting multiple chemical species.

  16. From Nanoislands to Nanowires: Growtth of Germanium on Gallium-Terminated Silicon Surfaces

    SciTech Connect

    Schmidt, T.; Flege, J; Speckmann, M; Clausen, T; Gangopadhyay, S; Locatelli, A; Mentes, T; Heum, S; Guo, F; et. al.

    2009-01-01

    The influence of Ga pre-adsorption on Si(111), Si(113) and Si(112) surfaces on Ge growth has been investigated by low-energy electron diffraction and microscopy as well as X-ray photoemission spectroscopy. On Si(111), step edges and substrate domain boundaries are decorated with Ga at high deposition temperatures, enabling selective growth and alignment of three-dimensional Ge islands on a chemically modulated surface. On Si(113), a morphological modulation is achieved by Ga saturation, as the Si substrate decomposes into an ordered array of (112) and (115) facets. This results in the growth of Ge islands aligned at the facets. These islands exhibit an anisotropy, as they are elongated along [1{bar 1}0]. Ga pre-adsorption on Si(112) smoothens the initially faceted bare surface, and subsequent Ge growth leads to the formation of nanoscale Ge wires. The results are discussed in terms of surface chemistry, as well as diffusion and strain relaxation anisotropy.

  17. Alkanethiol-passivated ge nanowires as high-performance anode materials for lithium-ion batteries: the role of chemical surface functionalization.

    PubMed

    Yuan, Fang-Wei; Yang, Hong-Jie; Tuan, Hsing-Yu

    2012-11-27

    We demonstrate that dodecanethiol monolayer passivation can significantly enhance the anode performance of germanium (Ge) nanowires in lithium-ion batteries. The dodecanethiol-passivated Ge nanowires exhibit an excellent electrochemical performance with a reversible specific capacity of 1130 mAh/g at 0.1 C rate after 100 cycles. The functionalized Ge nanowires show high-rate capability having charge and discharge capacities of ∼555 mAh/g at high rates of 11 C. The functionalized Ge nanowires also performed well at 55 °C, showing their thermal stability at high working temperatures. Moreover, full cells using a LiFePO(4) cathode were assembled and the electrodes still have stable capacity retention. An aluminum pouch type lithium cell was also assembled to provide larger current (∼30 mA) for uses on light-emitting-diodes (LEDs) and audio devices. Investigation of the role of organic monolayer coating showed that the wires formed a robust nanowire/PVDF network through strong C-F bonding so as to maintain structure integrity during the lithiation/delithiation process. Organic monolayer-coated Ge nanowires represent promising Ge-C anodes with controllable low carbon content (ca. 2-3 wt %) for high capacity, high-rate lithium-ion batteries and are readily compatible with the commercial slurry-coating process for cell fabrication.

  18. Nanowire liquid pumps

    NASA Astrophysics Data System (ADS)

    Huang, Jian Yu; Lo, Yu-Chieh; Niu, Jun Jie; Kushima, Akihiro; Qian, Xiaofeng; Zhong, Li; Mao, Scott X.; Li, Ju

    2013-04-01

    The ability to form tiny droplets of liquids and control their movements is important in printing or patterning, chemical reactions and biological assays. So far, such nanofluidic capabilities have principally used components such as channels, nozzles or tubes, where a solid encloses the transported liquid. Here, we show that liquids can flow along the outer surface of solid nanowires at a scale of attolitres per second and the process can be directly imaged with in situ transmission electron microscopy. Microscopy videos show that an ionic liquid can be pumped along tin dioxide, silicon or zinc oxide nanowires as a thin precursor film or as beads riding on the precursor film. Theoretical analysis suggests there is a critical film thickness of ~10 nm below which the liquid flows as a flat film and above which it flows as discrete beads. This critical thickness is the result of intermolecular forces between solid and liquid, which compete with liquid surface energy and Rayleigh-Plateau instability.

  19. Strained-germanium nanostructures for infrared photonics.

    PubMed

    Boztug, Cicek; Sánchez-Pérez, José R; Cavallo, Francesca; Lagally, Max G; Paiella, Roberto

    2014-04-22

    The controlled application of strain in crystalline semiconductors can be used to modify their basic physical properties to enhance performance in electronic and photonic device applications. In germanium, tensile strain can even be used to change the nature of the fundamental energy band gap from indirect to direct, thereby dramatically increasing the interband radiative efficiency and allowing population inversion and optical gain. For biaxial tension, the required strain levels (around 2%) are physically accessible but necessitate the use of very thin crystals. A particularly promising materials platform in this respect is provided by Ge nanomembranes, that is, single-crystal sheets with nanoscale thicknesses that are either completely released from or partially suspended over their native substrates. Using this approach, Ge tensilely strained beyond the expected threshold for direct-band gap behavior has recently been demonstrated, together with strong strain-enhanced photoluminescence and evidence of population inversion. We review the basic properties, state of the art, and prospects of tensilely strained Ge for infrared photonic applications.

  20. High Performance AR Coatings For Germanium

    NASA Astrophysics Data System (ADS)

    Willey, Ronald R.

    1989-02-01

    The theoretical design of a high efficiency antireflection coating on germanium for the 8 to 11.5 micrometer band is a relatively simple matter, but the reduction to practice of a high durability version of such a coating is not as easy. The first requirement is to reduce the reflection losses due to the very high index of refraction without adding significant absorptance or scattering. The second is to provide resistance to the environmental conditions which might be encountered by the product. The practical problems of stress and adhesion, hardness and abrasion resistance, and salt fog and humidity resistance pose some major challenges to the transformation from a design to a successful coating process. We describe some of our experiences with the evolution of the process from theory to practice, some of the problems encountered, and what we believe we have learned. Due to the extensive number of variables and the constraint on time and resources, the development could not be totally rigorous or exhaustive. The judgement and experience of the development staff was exercised to focus the resources on areas which were perceived to offer the best possibility of a solution to the requirements. The net result of the work described here was a process with considerably improved properties over the starting point of the development.

  1. Growth and properties of nanocrystalline germanium films

    SciTech Connect

    Niu Xuejun; Dalal, Vikram L.

    2005-11-01

    We report on the growth characteristics and structure of nanocrystalline germanium films using low-pressure plasma-assisted chemical vapor deposition process in a remote electron-cyclotron-resonance reactor. The films were grown from mixtures of germane and hydrogen at deposition temperatures varying between 130 deg. C and 310 deg. C. The films were measured for structure using Raman and x-ray spectroscopy. It is shown that the orientation of the film depends strongly upon the deposition conditions. Low-temperature growth leads to both <111> and <220> orientations, whereas at higher temperatures, the <220> grain strongly dominates. The Raman spectrum reveals a sharp crystalline peak at 300 cm{sup -1} and a high ratio between crystalline and amorphous peak that is at 285 cm{sup -1}. The grain size in the films is a strong function of hydrogen dilution, with higher dilutions leading to smaller grain sizes. Growth temperature also has a strong influence on grain size, with higher temperatures yielding larger grain sizes. From these results, which are seen to be compatible with the growth of nanocrystalline Si films, it is seen that the natural growth direction for the film is <220>, and that bonded hydrogen interferes with the growth of <220> grains. High hydrogen dilutions lead to more random nucleation.

  2. Optical properties of colloidal germanium nanocrystals

    SciTech Connect

    WILCOXON,JESS P.; PROVENCIO,PAULA P.; SAMARA,GEORGE A.

    2000-05-01

    Highly crystalline germanium (Ge) nanocrystals in the size range 2--10 nm were grown in inverse micelles and purified and size-separated by high pressure liquid chromatography with on-line optical and electrical diagnostics. The nanocrystals retain the diamond structure of bulk Ge down to at least 2.0 nm (containing about 150 Ge atoms). The background- and impurity-free extinction and photoluminescence (PL) spectra of these nanocrystals revealed rich structure which was interpreted in terms of the bandstructure of Ge shifted to higher energies by quantum confinement. The shifts ranged from {minus}0.1 eV to over 1 eV for the various transitions. PL in the range 350--700 nm was observed from nanocrystals 2--5 nm in size. The 2.0 nm nanocrystals yielded the most intense PL (at 420 nm) which is believed to be intrinsic and attributed to direct recombination at {Gamma}. Excitation at high energy (250 nm) populates most of the conduction bands resulting in competing recombination channels and the observed broad PL spectra.

  3. Detached Growth of Germanium and Germaniumsilicon

    NASA Technical Reports Server (NTRS)

    Dold, P.; Schweizer, M.; Szofran, F.; Benz, K. W.

    1999-01-01

    Up to now, detached growth was observed mainly under microgravity, i.e. under the absence of hydrostatic pressure that hinders the formation of a free melt meniscus. the detached growth of germanium doped with gallium was obtained under 1 g conditions, the growth was performed in quartz-glass ampoule. Part of the crystal grew without wall contact, the detached growth was observed in-situ with a CCD-camera as well as after the growth process in form of growth lines and the formation of <111> facets on the crystal surface. GeSi crystal (oriientation: <111>, maximum silicon content: 4 at%, seed material: Ge) was grown in a pBN crucible (excluding the possibility of in-situ monitoring of the growth process). The grown crystal exhibits three growth facets, indicating also wall free growth. Surface analysis of the crystals (NDIC, SEM) and characterization of crystal segregation (EDAX, resistivity measurement) and defect structure (EPD, x-ray diffraction measurements) will be presented.

  4. Tunnel current across linear homocatenated germanium chains

    SciTech Connect

    Matsuura, Yukihito

    2014-01-28

    The electronic transport properties of germanium oligomers catenating into linear chains (linear Ge chains) have been theoretically studied using first principle methods. The conduction mechanism of a Ge chain sandwiched between gold electrodes was analyzed based on the density of states and the eigenstates of the molecule in a two-probe environment. Like that of silicon chains (Si chains), the highest occupied molecular orbital of Ge chains contains the extended σ-conjugation of Ge 4p orbitals at energy levels close to the Fermi level; this is in contrast to the electronic properties of linear carbon chains. Furthermore, the conductance of a Ge chain is expected to decrease exponentially with molecular length L. The decay constant β, which is defined as e{sup −βL}, of a Ge chain is similar to that of a Si chain, whereas the conductance of the Ge chains is higher than that of Si chains even though the Ge–Ge bond length is longer than the Si–Si bond length.

  5. Determination of the Wetting Angle of Germanium and Germanium-Silicon Melts on Different Substrate Materials

    NASA Technical Reports Server (NTRS)

    Kaiser, Natalie; Croell, Arne; Szofran, F. R.; Cobb. S. D.; Dold, P.; Benz, K. W.

    1999-01-01

    During Bridgman growth of semiconductors detachment of the crystal and the melt meniscus has occasionally been observed, mainly under microgravity (microg) conditions. An important factor for detached growth is the wetting angle of the melt with the crucible material. High contact angles are more likely to result in detachment of the growing crystal from the ampoule wall. In order to achieve detached growth of germanium (Ge) and germanium-silicon (GeSi) crystals under 1g and microg conditions, sessile drop measurements were performed to determine the most suitable ampoule material as well as temperature dependence of the surface tension for GeSi. Sapphire, fused quartz, glassy carbon, graphite, SiC, pyrolytic Boron Nitride (pBN), AIN, and diamond were used as substrates. Furthermore, different cleaning procedures and surface treatments (etching, sandblasting, etc.) of the same substrate material and their effect on the wetting behavior were studied during these experiments. pBN and AIN substrates exhibited the highest contact angles with values around 170 deg.

  6. The role of oxidized germanium in the growth of germanium nanoparticles on hafnia

    NASA Astrophysics Data System (ADS)

    Winkenwerder, Wyatt A.; Ekerdt, John G.

    2008-08-01

    The role oxidized germanium (GeO x) plays in germanium (Ge) nanoparticle growth on hafnia is reported. Oxide islands, in the form of hafnium germinate, form on hafnia during the initial stages of growth. The Ge adatoms are oxidized by background oxidants, such as water, only when they are in contact with the hafnia surface. Once a sufficient amount of hafnium germinate has formed, Ge nanoparticles nucleate such that nanoparticle growth proceeds by Ge growth on GeO x. Nanoparticles are not deposited on the hafnia but only on the interfacial oxide islands formed early in the growth process. Annealing hafnia in a silane ambient after Ge nanoparticle growth reduces the amount of GeO x and appears to transform it into a hafnium silicate. Furthermore, the electronic and/or chemical interaction between the Ge nanoparticles and the hafnia substrate is changed by the silane annealing step as reflected in the binding energy shift in the Ge 2p signal and the increased retention time of metal-oxide-semiconductor capacitors made from Ge nanoparticles and hafnia. Pretreating hafnia in silane leads to hafnium silicate islands and subsequent Ge nanoparticle growth proceeds on the silicate islands.

  7. Investigation of germanium Raman lasers for the mid-infrared.

    PubMed

    De Leonardis, Francesco; Troia, Benedetto; Soref, Richard A; Passaro, Vittorio M N

    2015-06-29

    In this paper we present a detailed theoretical investigation of integrated racetrack Raman lasers based on the germanium material system operating in the mid-infrared beyond the germanium two-photon absorption cut-off wavelength of 3.17 μm. The effective Raman gain has been estimated in waveguides based on germanium-on-silicon, germanium-on-SOI and germanium-on-Si3N4 technology platforms as a function of their crystallographic orientations. Furthermore, general design guidelines have been determined by means of a comparative analysis of Raman laser performance, i.e. the threshold power, polarization and directionality of the excited Stokes signals as a function of racetrack cavity length and directional-coupler dimensions. Finally, the emitted Raman laser power has been evaluated as a function of overall propagation losses and operative wavelengths up to 3.8 μm, while the time dynamics of Raman lasers has been simulated assuming continuous and pulse waves as input pump signals.

  8. Single-molecule conductance in atomically precise germanium wires.

    PubMed

    Su, Timothy A; Li, Haixing; Zhang, Vivian; Neupane, Madhav; Batra, Arunabh; Klausen, Rebekka S; Kumar, Bharat; Steigerwald, Michael L; Venkataraman, Latha; Nuckolls, Colin

    2015-09-30

    While the electrical conductivity of bulk-scale group 14 materials such as diamond carbon, silicon, and germanium is well understood, there is a gap in knowledge regarding the conductivity of these materials at the nano and molecular scales. Filling this gap is important because integrated circuits have shrunk so far that their active regions, which rely so heavily on silicon and germanium, begin to resemble ornate molecules rather than extended solids. Here we unveil a new approach for synthesizing atomically discrete wires of germanium and present the first conductance measurements of molecular germanium using a scanning tunneling microscope-based break-junction (STM-BJ) technique. Our findings show that germanium and silicon wires are nearly identical in conductivity at the molecular scale, and that both are much more conductive than aliphatic carbon. We demonstrate that the strong donor ability of C-Ge σ-bonds can be used to raise the energy of the anchor lone pair and increase conductance. Furthermore, the oligogermane wires behave as conductance switches that function through stereoelectronic logic. These devices can be trained to operate with a higher switching factor by repeatedly compressing and elongating the molecular junction.

  9. Resolving the germanium atomic weight disparity using multicollector ICPMS.

    PubMed

    Yang, Lu; Meija, Juris

    2010-05-15

    Two most recent mass spectrometric measurements of natural isotopic composition germanium gave discordant Ge atomic weight values of 72.6276(64)(k=2) and 72.6390(69)(k=2), respectively, a decade ago. Each measurement was performed with a different mass spectrometry platform, gas source isotope ratio mass spectrometry and thermal ionization mass spectrometry, respectively. Herein we report results obtained by multicollector inductively coupled plasma mass spectrometry yielding an atomic weight of germanium 72.6296(19)(k=2) which is in support of the upcoming 2009 Standard Atomic Weight adjustment by IUPAC. Germanium isotope ratios were calibrated using a regression mass bias correction model and NIST SRM 994 gallium isotopic reference material. In this model, no assumptions are made regarding the mass bias differences between gallium and germanium or between the isotopes of germanium. Isotope ratios of 0.5620(21), 0.7515(16), 0.2125(7), and 0.2121(12) were obtained for n((70)Ge)/n((74)Ge), n((72)Ge)/n((74)Ge), n((73)Ge)/n((74)Ge), and n((76)Ge)/n((74)Ge), respectively, with expanded uncertainties (k = 2) estimated in accordance with the ISO/BIPM Guide to the Expression of Uncertainty in Measurements.

  10. Single-molecule conductance in atomically precise germanium wires.

    PubMed

    Su, Timothy A; Li, Haixing; Zhang, Vivian; Neupane, Madhav; Batra, Arunabh; Klausen, Rebekka S; Kumar, Bharat; Steigerwald, Michael L; Venkataraman, Latha; Nuckolls, Colin

    2015-09-30

    While the electrical conductivity of bulk-scale group 14 materials such as diamond carbon, silicon, and germanium is well understood, there is a gap in knowledge regarding the conductivity of these materials at the nano and molecular scales. Filling this gap is important because integrated circuits have shrunk so far that their active regions, which rely so heavily on silicon and germanium, begin to resemble ornate molecules rather than extended solids. Here we unveil a new approach for synthesizing atomically discrete wires of germanium and present the first conductance measurements of molecular germanium using a scanning tunneling microscope-based break-junction (STM-BJ) technique. Our findings show that germanium and silicon wires are nearly identical in conductivity at the molecular scale, and that both are much more conductive than aliphatic carbon. We demonstrate that the strong donor ability of C-Ge σ-bonds can be used to raise the energy of the anchor lone pair and increase conductance. Furthermore, the oligogermane wires behave as conductance switches that function through stereoelectronic logic. These devices can be trained to operate with a higher switching factor by repeatedly compressing and elongating the molecular junction. PMID:26373928

  11. Electrospinning of superconducting YBCO nanowires

    NASA Astrophysics Data System (ADS)

    Duarte, Edgar A.; Rudawski, Nicholas G.; Quintero, Pedro A.; Meisel, Mark W.; Nino, Juan C.

    2015-01-01

    YBa2Cu3O7-δ (YBCO) nanowires with critical transition temperature Tc = 91.7 K were synthesized by an electrospinning process with the use of sol-gel precursors. A homogeneous polymeric solution containing Y, Ba, and Cu acetates was electrospun, resulting in collections of randomly oriented nanowires as well as bundles of aligned nanowires. Fully crystallized YBCO nanowires were obtained after calcination at temperatures as low as 820 °C. The morphology, microstructure, and crystal structure were investigated, and the diameters of the polycrystalline nanowires varied between 120 and 550 nm depending on the viscosity of the precursors. Thinner individual wires, with diameters in the 50-80 nm range, were synthesized with a single grain structure across the entire wire cross-section.

  12. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart...

  13. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart...

  14. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart...

  15. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart...

  16. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart...

  17. Silicon-germanium technology program of the Jet Propulsion Laboratory.

    NASA Technical Reports Server (NTRS)

    De Winter, F.; Stapfer, G.

    1972-01-01

    The outer planetary exploration missions studied by the Jet Propulsion Laboratory require silicon-germanium radioisotope thermoelectric generators (RTGs) in which the factors of safety are as low as is compatible with the reliable satisfaction of the power needs. Work on silicon germanium sublimation performed at the Jet Propulsion Laboratory is presented. Analytical modeling work on the solid-diffusion process involved in the steady-state (free) sublimation of silicon germanium is described. Analytical predictions are made of the sublimation suppression which can be achieved by using a cover gas. A series of accelerated (high-temperature) tests which were performed on simulated hardware (using four SiGe couples) to study long-term sublimation and reaction mechanisms are also discussed.

  18. Germanium FCC structure from a colloidal crystal template

    SciTech Connect

    Miguez, H.; Meseguer, F.; Lopez, C.; Holgado, M.; Andreasen, G.; Mifsud, A.; Fornes, V.

    2000-05-16

    Here, the authors show a method to fabricate a macroporous structure in which the pores, essentially identical, arrange regularly in a face-centered cubic (FCC) lattice. The result is a network of air spheres in a germanium medium. This structure presents the highest dielectric contrast ({epsilon}{sub Ge}/{epsilon}{sub air} = 16) ever achieved in the optical regime in such periodic structures, which could result in important applications in photonics. The authors employ solid silica colloidal crystals (opals) as templates within which a cyclic germanium growth process is carried out. Thus, the three-dimensional periodicity of the host is inherited by the guest. Afterward, the silica is removed and a germanium opal replica is obtained.

  19. Moth's eye anti-reflection gratings on germanium freeform surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Meng; Shultz, Jason A.; Owen, Joseph D.; Davies, Matthew A.; Suleski, Thomas J.

    2014-09-01

    Germanium is commonly used for optical components in the infrared, but the high refractive index of germanium causes significant losses due to Fresnel reflections. Anti-reflection (AR) surfaces based on subwavelength "moth's eye" gratings provide one means to significantly increase optical transmission. As found in nature, these gratings are conformal to the curved surfaces of lenslets in the eye of the moth. Engineered optical systems inspired by biological examples offer possibilities for increased performance and system miniaturization, but also introduce significant challenges to both design and fabrication. In this paper, we consider the design and fabrication of conformal moth's eye AR structures on germanium freeform optical surfaces, including lens arrays and Alvarez lenses. Fabrication approaches and limitations based on both lithography and multi-axis diamond machining are considered. Rigorous simulations of grating performance and approaches for simulation of conformal, multi-scale optical systems are discussed.

  20. Study on nanometric cutting of germanium by molecular dynamics simulation

    PubMed Central

    2013-01-01

    Three-dimensional molecular dynamics simulations are conducted to study the nanometric cutting of germanium. The phenomena of extrusion, ploughing, and stagnation region are observed from the material flow. The uncut thickness which is defined as the depth from bottom of the tool to the stagnation region is in proportion to the undeformed chip thickness on the scale of our simulation and is almost independent of the machined crystal plane. The cutting resistance on (111) face is greater than that on (010) face due to anisotropy of germanium. During nanometric cutting, both phase transformation from diamond cubic structure to β-Sn phase and direct amorphization of germanium occur. The machined surface presents amorphous structure. PMID:23289482

  1. Germanium based electrostatic quantum dots: design and characterization.

    NASA Astrophysics Data System (ADS)

    Mazzeo, Giovanni; Yablonovitch, Eli; Jiang, Hong-Wen

    2010-03-01

    While the less mature Germanium technology requires an extra effort for the realization of single electron quantum dots, unique properties of Germanium rich heterostructures together with spin coherence times comparable to Silicon, can justify the development of such new technology. We report our progresses on the formation of electrostatic quantum dots in Germanium. We employ an MOS-like structure with no modulation doping already successfully proven in Silicon devices. A two level gate stack is used: the top gate is positively biased to attract electrons while the lowers gates are negatively biased to form the quantum dot and attract holes in a transistor channel, used to detect the electrons in the adjacent quantum dot. Finite Element Method simulations are used to prove the concept of this hybrid holes-transistor/electron-QD device and estimate the sensitivity of the charge detection. Preliminary characterizations of quantum dot devices built with this structure are reported.

  2. Characterisation of a Broad Energy Germanium (BEGe) detector

    NASA Astrophysics Data System (ADS)

    Barrientos, D.; Boston, A. J.; Boston, H. C.; Quintana, B.; Sagrado, I. C.; Unsworth, C.; Moon, S.; Cresswell, J. R.

    2011-08-01

    Characterisation of Germanium detectors used for gamma-ray tracking or medical imaging is one of the current goals in the Nuclear physics community. Good knowledge of detector response to different gamma radiations is needed for this purpose. In order to develop this task, Pulse Shape Analysis (PSA) techniques have been developed for different detector geometries or setups. In this work, we present the results of the application of PSA for a Canberra Broad Energy Germanium (BEGe) detector. This detector was scanned across its front and bottom face using a fully digital data acquisition system; allowing to record detector charge pulse shapes from well defined positions with collimated sources of 241Am, 22Na and 137Cs. With the study of the data acquired, characteristics of the inner detector geometry like crystal limits or positions of contact and isolate can be found, as well as the direction of the axes for the Germanium crystal.

  3. Simulations for Tracking Cosmogenic Activation in Germanium and Copper

    SciTech Connect

    Aguayo, Estanislao; Kouzes, Richard T.; Orrell, John L.

    2011-11-01

    High-purity germanium (HPGe) detectors housed in copper cryostats and shielding materials are used in measurements of the extraordinarily rare nuclear decay process, neutrinoless double-beta decay (0νββ), and for dark matter searches. Cosmogenic production of 68Ge and 60Co in the germanium and copper represent an irreducible background to these experiments as the subsequent decays of these isotopes can mimic the signals of interest. These radioactive isotopes can be removed by chemical and/or isotopic separation, but begin to grow-in to the material after separation until the material is moved deep underground. This work is motivated by the need to have a reliable, experimentally benchmarked simulation tool for evaluating shielding materials used during transportation and near-surface manufacturing of experiment components. The resulting simulations tool has been used to enhance the effectiveness of an existing transport shield used to ship enriched germanium from the separations facility to the detector manufacturing facility.

  4. Next Generation Device Grade Silicon-Germanium on Insulator

    PubMed Central

    Littlejohns, Callum G.; Nedeljkovic, Milos; Mallinson, Christopher F.; Watts, John F.; Mashanovich, Goran Z.; Reed, Graham T.; Gardes, Frederic Y.

    2015-01-01

    High quality single crystal silicon-germanium-on-insulator has the potential to facilitate the next generation of photonic and electronic devices. Using a rapid melt growth technique we engineer tailored single crystal silicon-germanium-on-insulator structures with near constant composition over large areas. The proposed structures avoid the problem of laterally graded SiGe compositions, caused by preferential Si rich solid formation, encountered in straight SiGe wires by providing radiating elements distributed along the structures. This method enables the fabrication of multiple single crystal silicon-germanium-on-insulator layers of different compositions, on the same Si wafer, using only a single deposition process and a single anneal process, simply by modifying the structural design and/or the anneal temperature. This facilitates a host of device designs, within a relatively simple growth environment, as compared to the complexities of other methods, and also offers flexibility in device designs within that growth environment. PMID:25656076

  5. Stability of Detached Grown Germanium Single Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Vujisic, L.; Szofran, F. R.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years, especially under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 micrometers, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5 mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 micrometers. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be

  6. Stability of Detached Grown Germanium Single Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Motakef, S.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years especially, under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 microns, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 microns. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be

  7. III-Nitride Nanowire Lasers

    SciTech Connect

    Wright, Jeremy Benjamin

    2014-07-01

    In recent years there has been a tremendous interest in nanoscale optoelectronic devices. Among these devices are semiconductor nanowires whose diameters range from 10-100 nm. To date, nanowires have been grown using many semiconducting material systems and have been utilized as light emitting diodes, photodetectors, and solar cells. Nanowires possess a relatively large index contrast relative to their dielectric environment and can be used as lasers. A key gure of merit that allows for nanowire lasing is the relatively high optical con nement factor. In this work, I discuss the optical characterization of 3 types of III-nitride nanowire laser devices. Two devices were designed to reduce the number of lasing modes to achieve singlemode operation. The third device implements low-group velocity mode lasing with a photonic crystal constructed of an array of nanowires. Single-mode operation is necessary in any application where high beam quality and single frequency operation is required. III-Nitride nanowire lasers typically operate in a combined multi-longitudinal and multi-transverse mode state. Two schemes are introduced here for controlling the optical modes and achieving single-mode op eration. The rst method involves reducing the diameter of individual nanowires to the cut-o condition, where only one optical mode propagates in the wire. The second method employs distributed feedback (DFB) to achieve single-mode lasing by placing individual GaN nanowires onto substrates with etched gratings. The nanowire-grating substrate acted as a distributed feedback mirror producing single mode operation at 370 nm with a mode suppression ratio (MSR) of 17 dB. The usage of lasers for solid state lighting has the potential to further reduce U.S. lighting energy usage through an increase in emitter e ciency. Advances in nanowire fabrication, speci cally a two-step top-down approach, have allowed for the demonstration of a multi-color array of lasers on a single chip that emit

  8. III-nitride nanowire lasers

    NASA Astrophysics Data System (ADS)

    Wright, Jeremy Benjamin

    In recent years there has been a tremendous interest in nanoscale optoelectronic devices. Among these devices are semiconductor nanowires whose diameters range from 10-100 nm. To date, nanowires have been grown using many semiconducting material systems and have been utilized as light emitting diodes, photodetectors, and solar cells. Nanowires possess a relatively large index contrast relative to their dielectric environment and can be used as lasers. A key figure of merit that allows for nanowire lasing is the relatively high optical confinement factor. In this work, I discuss the optical characterization of 3 types of III-nitride nanowire laser devices. Two devices were designed to reduce the number of lasing modes to achieve single-mode operation. The third device implements low-group velocity mode lasing with a photonic crystal constructed of an array of nanowires. Single-mode operation is necessary in any application where high beam quality and single frequency operation is required. III-Nitride nanowire lasers typically operate in a combined multi-longitudinal and multi-transverse mode state. Two schemes are introduced here for controlling the optical modes and achieving single-mode operation. The first method involves reducing the diameter of individual nanowires to the cut-off condition, where only one optical mode propagates in the wire. The second method employs distributed feedback (DFB) to achieve single-mode lasing by placing individual GaN nanowires onto substrates with etched gratings. The nanowire-grating substrate acted as a distributed feedback mirror producing single mode operation at 370 nm with a mode suppression ratio (MSR) of 17 dB. The usage of lasers for solid state lighting has the potential to further reduce U.S. lighting energy usage through an increase in emitter efficiency. Advances in nanowire fabrication, specifically a two-step top-down approach, have allowed for the demonstration of a multi-color array of lasers on a single chip

  9. Imaging germanium telescope array for gamma-rays (IGETAGRAY)

    SciTech Connect

    Hailey, C.J.; Ziock, K.P. ); Harrison, F.A. Space Sciences Laboratory, University of California, Berkeley, CA ); Fleischmann, J. )

    1990-08-10

    The Germanium Drift Chamber (GDC) is a gamma-ray detector with excellent energy and one-dimensional spatial resolution. Due to recent developments in coded aperture optics, it is feasible to couple one-dimensional coded apertures and GDCs in a special array geometry producing a telescope with true two-dimensional imaging. This Imaging Germanium Telescope Array for Gamma-rays (IGETAGRAY) has made a comparable field of view and sensitivity to true two-dimensional systems, but simplified engineering requirements. IGETAGRAY will make possible high sensitivity spectroscopy of the gamma-ray sky.

  10. Imaging Germanium Telescope Array for Gamma-Rays (IGETAGRAY)

    SciTech Connect

    Hailey, C.J.; Ziock, K.P. ); Harrison, F.A. . Dept. of Physics California Univ., Berkeley, CA . Space Sciences Lab.); Fleischmann, J. )

    1990-01-01

    The Germanium Drift Chamber (GDC) is a gamma-ray detector with excellent energy and one-dimensional spatial resolution. Due to recent developments in coded aperture optics, it is feasible to couple one-dimensional coded apertures and GDCs in a special array geometry producing a telescope with true two-dimensional imaging. This Imaging Germanium Telescope Array for Gamma-Rays (IGETAGRAY) has made a comparable field of view and sensitivity to true two-dimensional systems, but simplified engineering requirements. IGETAGRAY will make possible high sensitivity spectroscopy of the gamma-ray sky. 5 refs., 1 fig.

  11. Silicon germanium semiconductive alloy and method of fabricating same

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor)

    2008-01-01

    A silicon germanium (SiGe) semiconductive alloy is grown on a substrate of single crystalline Al.sub.2O.sub.3. A {111} crystal plane of a cubic diamond structure SiGe is grown on the substrate's {0001} C-plane such that a <110> orientation of the cubic diamond structure SiGe is aligned with a <1,0,-1,0> orientation of the {0001} C-plane. A lattice match between the substrate and the SiGe is achieved by using a SiGe composition that is 0.7223 atomic percent silicon and 0.2777 atomic percent germanium.

  12. The Novel Synthesis of Silicon and Germanium Nanocrystallites

    SciTech Connect

    Kauzlarich, S M; Liu, Q; Yin, S C; Lee, W H; Taylor, B

    2001-04-03

    Interest in the synthesis of semiconductor nanoparticles has been generated by their unusual optical and electronic properties arising from quantum confinement effects. We have synthesized silicon and germanium nanoclusters by reacting Zintl phase precursors with either silicon or germanium tetrachloride in various solvents. Strategies have been investigated to stabilize the surface, including reactions with RLi and MgBrR (R = alkyl). This synthetic method produces group IV nanocrystals with passivated surfaces. These nanoparticle emit over a very large range in the visible region. These particles have been characterized using HRTEM, FTIR, UV-Vis, solid state NMR, and fluorescence. The synthesis and characterization of these nanoclusters will be presented.

  13. Characterisation of two AGATA asymmetric high purity germanium capsules

    NASA Astrophysics Data System (ADS)

    Colosimo, S. J.; Moon, S.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Harkness-Brennan, L.; Judson, D. S.; Lazarus, I. H.; Nolan, P. J.; Simpson, J.; Unsworth, C.

    2015-02-01

    The AGATA spectrometer is an array of highly segmented high purity germanium detectors. The spectrometer uses pulse shape analysis in order to track Compton scattered γ-rays to increase the efficiency of nuclear spectroscopy studies. The characterisation of two high purity germanium detector capsules for AGATA of the same A-type has been performed at the University of Liverpool. This work will examine the uniformity of performance of the two capsules, including a comparison of the resolution and efficiency as well as a study of charge collection. The performance of the capsules shows good agreement, which is essential for the efficient operation of the γ-ray tracking array.

  14. Near-infrared photoluminescence in germanium oxide enclosed germanium nano- and micro-crystals.

    PubMed

    Wang, Wenzhong; Wang, Keda; Han, Daxing; Poudel, Bed; Wang, Xiaowei; Wang, D Z; Zeng, Baoqing; Ren, Z F

    2007-02-21

    We have studied the near-infrared photoluminescence properties of free-standing germanium nano-crystals (20 nm on average) and micro-crystals (60 µm on average) at 80-300 K. Two peaks were observed at ∼1.0 and ∼1.4 eV from both the nano- and micro-crystals. The integrated PL (I(PL)) intensity of the nano-crystals is about an order of magnitude stronger than that of the micro-crystals and the I(PL) is also enhanced by ageing in air for both crystals. The ∼1.0 eV peak position does not change with either the crystal size or temperature. We suggest that the deep traps located at the interfacial region between the surface GeO(2) layer and the bulk crystal Ge is responsible for the near-infrared PL.

  15. Nonequilibrium microstructures for Ag-Ni nanowires.

    PubMed

    Rai, Rajesh K; Srivastava, Chandan

    2015-04-01

    This work illustrates that a variety of nanowire microstructures can be obtained either by controlling the nanowire formation kinetics or by suitable thermal processing of as-deposited nanowires with nonequilibrium metastable microstructure. In the present work, 200-nm diameter Ag-Ni nanowires with similar compositions, but with significantly different microstructures, were electrodeposited. A 15 mA deposition current produced nanowires in which Ag-rich crystalline nanoparticles were embedded in a Ni-rich amorphous matrix. A 3 mA deposition current produced nanowires in which an Ag-rich crystalline phase formed a backbone-like configuration in the axial region of the nanowire, whereas the peripheral region contained Ni-rich nanocrystalline and amorphous phases. Isothermal annealing of the nanowires illustrated a phase evolution pathway that was extremely sensitive to the initial nanowire microstructure.

  16. Detached Bridgman Growth of Germanium and Germanium-Silicon Alloy Crystals

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Volz, M. P.; Schweizer, M.; Cobb, S. D.; Motakef, S.; Croell, A.; Dold, P.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Earth based experiments on the science of detached crystal growth are being conducted on germanium and germanium-silicon alloys (2 at% Si average composition) in preparation for a series of experiments aboard the International Space Station (ISS). The purpose of the microgravity experiments includes differentiating among proposed mechanisms contributing to detachment, and confirming or refining our understanding of the detachment mechanism. Because large contact angle are critical to detachment, sessile drop measurements were used to determine the contact angles as a function of temperature and composition for a large number of substrates made of potential ampoule materials. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. The contact angles were 173 deg (Ge) and 165 deg (GeSi) for pBN. For fused silica, the contact angle decreases from 150 deg to an equilibrium value of 117 deg (Ge) or from 129 deg to an equilibrium value of 100 deg (GeSi) over the duration of the experiment. The nature and extent of detachment is determined by using profilometry in conjunction with optical and electron microscopy. The stability of detachment has been analyzed, and an empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed. Results in this presentation will show that we have established the effects on detachment of ampoule material, pressure difference above and below the melt, and silicon concentration; samples that are nearly completely detached can be grown repeatedly in pBN.

  17. Catalyzed oxidation for nanowire growth

    NASA Astrophysics Data System (ADS)

    Tai, Kaiping; Sun, Ke; Huang, Bo; Dillon, Shen J.

    2014-04-01

    A simple, low-cost and scalable route to substrate-supported nanowire growth is reported based on catalyzed oxidation. The process shares common features with popular catalyzed nanowire growth techniques such as vapor-liquid-solid (VLS), vapor-solid-solid (VSS), or vapor-quasi-solid (VQS) that use catalyst nanoparticles to direct the deposition of reactants from the vapor phase. Catalyzed oxidation for nanowire growth (CONG) utilizes catalyzed anion (e.g. O2) reduction from the vapor phase and metal (e.g. Fe) oxidation from the substrate to produce oxide nanowires (e.g. Fe3O4). The approach represents a new class of nanowire growth methodology that may be applied to a broad range of systems. CONG does not require expensive chemical vapor deposition or physical vapor deposition equipment and can be implemented at intermediate temperatures (400-600 °C) in a standard laboratory furnace. This work also demonstrates a passive approach to catalyst deposition that allows the process to be implemented simply with no lithography or physical vapor deposition steps. This effort validates the general approach by synthesizing MnO, Fe3O4, WO3, MgO, TiO2, ZnO, ReO3, and NiO nanowires via CONG. The process produces single crystalline nanowires that can be grown to high aspect ratio and as high-density nanowire forests. Applications of the as-grown Fe3O4 and ReO3 nanowires for lithium ion battery systems are demonstrated to display high areal energy density and power.

  18. Catalyzed oxidation for nanowire growth.

    PubMed

    Tai, Kaiping; Sun, Ke; Huang, Bo; Dillon, Shen J

    2014-04-11

    A simple, low-cost and scalable route to substrate-supported nanowire growth is reported based on catalyzed oxidation. The process shares common features with popular catalyzed nanowire growth techniques such as vapor-liquid-solid (VLS), vapor-solid-solid (VSS), or vapor-quasi-solid (VQS) that use catalyst nanoparticles to direct the deposition of reactants from the vapor phase. Catalyzed oxidation for nanowire growth (CONG) utilizes catalyzed anion (e.g. O2) reduction from the vapor phase and metal (e.g. Fe) oxidation from the substrate to produce oxide nanowires (e.g. Fe3O4). The approach represents a new class of nanowire growth methodology that may be applied to a broad range of systems. CONG does not require expensive chemical vapor deposition or physical vapor deposition equipment and can be implemented at intermediate temperatures (400-600 °C) in a standard laboratory furnace. This work also demonstrates a passive approach to catalyst deposition that allows the process to be implemented simply with no lithography or physical vapor deposition steps. This effort validates the general approach by synthesizing MnO, Fe3O4, WO3, MgO, TiO2, ZnO, ReO3, and NiO nanowires via CONG. The process produces single crystalline nanowires that can be grown to high aspect ratio and as high-density nanowire forests. Applications of the as-grown Fe3O4 and ReO3 nanowires for lithium ion battery systems are demonstrated to display high areal energy density and power.

  19. Nanocrystalline nanowires: III. Electrons.

    PubMed

    Allen, Philip B

    2007-05-01

    Nanocrystalline nanowires (NCNW) are fragments of bulk crystals that are infinite in only one direction and typically have some rotational symmetry around this direction. Electron eigenstates belonging to the symmetry labels (k,m) (wavevector and rotational quantum number) are discussed. The rotational quantum number simplifies discussion of optical properties. For m not equal 0, the +/-m degeneracy allows orbital magnetism. The simplest sensible model which is more complex than a one-dimensional chain is solved. Methods are suggested for incorporating rotational symmetry into preexisting codes with three-dimensional translations.

  20. Nanocrystalline nanowires: 2. Phonons.

    PubMed

    Allen, Philip B

    2007-01-01

    Nanocrystalline nanowires (NCNW) are fragments of bulk crystals that are infinite in only one direction. A construction is given for calculating eigenstates belonging to the symmetry labels (k,m) (wavevector and rotational quantum number). Vibrational harmonic eigenstates are worked out explicitly for a simple model, illustrating the general results: the LA mode has m=0, while with sufficient rotational symmetry, the TA branch is doubly degenerate, has m=+/-1, and has quadratic dispersion with k for k less than the reciprocal diameter of the NCNW. The twiston branch (a fourth Goldstone boson) is an acoustic m=0 branch, additional to the LA and two TA branches.

  1. Nanoantennas for nanowire photovoltaics

    SciTech Connect

    Alisafaee, Hossein; Fiddy, Michael A.

    2014-09-15

    We consider the use of plasmonic nanoantenna elements, hemispherical and cylindrical, for application in semiconductor nanowire (NW) vertical arrays. Using Mie theory and a finite element method, scattering and absorption efficiencies are obtained for the desired enhancement of interaction with light in the NWs. We find an optimal mixture of nanoantennae for efficient scattering of solar spectrum in the NW array. Spectral radiation patterns of scattered light are computed, and, for representing the total response of the nanoantenna-equipped NWs to the solar AM1.5G spectrum, the weighted average of scattering patterns for unpolarized normal incidence is obtained showing an advantageous overall directivity toward the NWs.

  2. Terahertz sensing using ferroelectric nanowires.

    PubMed

    Herchig, R; Schultz, Kimberly; McCash, Kevin; Ponomareva, I

    2013-02-01

    Molecular dynamics simulations are used to study the interaction of ferroelectric nanowires with terahertz (THz) Gaussian-shaped pulses of electric field. The computational data indicate the existence of two interaction scenarios that are associated with 'lossless' and dissipative, or 'lossy', interaction mechanisms. A thermodynamical approach is used to analyze the computational data for a wide range of THz pulses. The analysis establishes the foundation for understanding the nanowires' response to the THz pulses and reveals the potential of ferroelectric nanowires to function as nanoscale sensors of THz radiation. Various aspects of this THz nanosensing are analyzed and discussed.

  3. Fivefold twinned boron carbide nanowires.

    PubMed

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-01

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties.

  4. Conducting polyaniline nanowire electrode junction

    NASA Astrophysics Data System (ADS)

    Gaikwad, Sumedh; Bodkhe, Gajanan; Deshmukh, Megha; Patil, Harshada; Rushi, Arti; Shirsat, Mahendra D.; Koinkar, Pankaj; Kim, Yun-Hae; Mulchandani, Ashok

    2015-03-01

    In this paper, a synthesis of conducting polyaniline nanowires electrode junction (CPNEJ) has been reported. Conducting polyaniline nanowires electrode junction on Si/SiO2 substrate (having 3 μm gap between two gold microelectrodes) is prepared. Polyaniline nanowires with diameter (ca. 140 nm to 160 nm) were synthesized by one step electrochemical polymerization using galvanostatic (constant current) technique to bridge this gap. The surface morphology of CPNEJ was studied by scanning electron microscope (SEM). The synthesized CPNEJ is an excellent platform for biosensor applications.

  5. Nanowire terahertz quantum cascade lasers

    SciTech Connect

    Grange, Thomas

    2014-10-06

    Quantum cascade lasers made of nanowire axial heterostructures are proposed. The dissipative quantum dynamics of their carriers is theoretically investigated using non-equilibrium Green functions. Their transport and gain properties are calculated for varying nanowire thickness, from the classical-wire regime to the quantum-wire regime. Our calculation shows that the lateral quantum confinement provided by the nanowires allows an increase of the maximum operation temperature and a strong reduction of the current density threshold compared to conventional terahertz quantum cascade lasers.

  6. Single crystalline mesoporous silicon nanowires

    SciTech Connect

    Hochbaum, A.I.; Gargas, Daniel; Jeong Hwang, Yun; Yang, Peidong

    2009-08-04

    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. These porous nanowires also retain the crystallographic orientation of the wafer from which they are etched. Electron microscopy and diffraction confirm their single-crystallinity and reveal the silicon surrounding the pores is as thin as several nanometers. Confocal fluorescence microscopy showed that the photoluminescence (PL) of these arrays emanate from the nanowires themselves, and their PL spectrum suggests that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices.

  7. Ultra-low Thermal Conductivity in Si/Ge Hierarchical Superlattice Nanowire.

    PubMed

    Mu, Xin; Wang, Lili; Yang, Xueming; Zhang, Pu; To, Albert C; Luo, Tengfei

    2015-11-16

    Due to interfacial phonon scattering and nanoscale size effect, silicon/germanium (Si/Ge) superlattice nanowire (SNW) can have very low thermal conductivity, which is very attractive for thermoelectrics. In this paper, we demonstrate using molecular dynamics simulations that the already low thermal conductivity of Si/Ge SNW can be further reduced by introducing hierarchical structure to form Si/Ge hierarchical superlattice nanowire (H-SNW). The structural hierarchy introduces defects to disrupt the periodicity of regular SNW and scatters coherent phonons, which are the key contributors to thermal transport in regular SNW. Our simulation results show that periodically arranged defects in Si/Ge H-SNW lead to a ~38% reduction of the already low thermal conductivity of regular Si/Ge SNW. By randomizing the arrangement of defects and imposing additional surface complexities to enhance phonon scattering, further reduction in thermal conductivity can be achieved. Compared to pure Si nanowire, the thermal conductivity reduction of Si/Ge H-SNW can be as large as ~95%. It is concluded that the hierarchical structuring is an effective way of reducing thermal conductivity significantly in SNW, which can be a promising path for improving the efficiency of Si/Ge-based SNW thermoelectrics.

  8. Ultra-low Thermal Conductivity in Si/Ge Hierarchical Superlattice Nanowire

    PubMed Central

    Mu, Xin; Wang, Lili; Yang, Xueming; Zhang, Pu; To, Albert C.; Luo, Tengfei

    2015-01-01

    Due to interfacial phonon scattering and nanoscale size effect, silicon/germanium (Si/Ge) superlattice nanowire (SNW) can have very low thermal conductivity, which is very attractive for thermoelectrics. In this paper, we demonstrate using molecular dynamics simulations that the already low thermal conductivity of Si/Ge SNW can be further reduced by introducing hierarchical structure to form Si/Ge hierarchical superlattice nanowire (H-SNW). The structural hierarchy introduces defects to disrupt the periodicity of regular SNW and scatters coherent phonons, which are the key contributors to thermal transport in regular SNW. Our simulation results show that periodically arranged defects in Si/Ge H-SNW lead to a ~38% reduction of the already low thermal conductivity of regular Si/Ge SNW. By randomizing the arrangement of defects and imposing additional surface complexities to enhance phonon scattering, further reduction in thermal conductivity can be achieved. Compared to pure Si nanowire, the thermal conductivity reduction of Si/Ge H-SNW can be as large as ~95%. It is concluded that the hierarchical structuring is an effective way of reducing thermal conductivity significantly in SNW, which can be a promising path for improving the efficiency of Si/Ge-based SNW thermoelectrics. PMID:26568511

  9. Novel approach for n-type doping of HVPE gallium nitride with germanium

    NASA Astrophysics Data System (ADS)

    Hofmann, Patrick; Krupinski, Martin; Habel, Frank; Leibiger, Gunnar; Weinert, Berndt; Eichler, Stefan; Mikolajick, Thomas

    2016-09-01

    We present a novel method for germanium doping of gallium nitride by in-situ chlorination of solid germanium during the hydride vapour phase epitaxy (HVPE) process. Solid germanium pieces were placed in the doping line with a hydrogen chloride flow directed over them. We deduce a chlorination reaction taking place at 800 ° C , which leads to germanium chloroform (GeHCl3) or germanium tetrachloride (GeCl4). The reactor shows a germanium rich residue after in-situ chlorination experiments, which can be removed by hydrogen chloride etching. All gallium nitride crystals exhibit n-type conductivity, which shows the validity of the in-situ chlorination of germanium for doping. A complex doping profile is found for each crystal, which was assigned to a combination of localised supply of the dopant and sample rotation during growth and switch-off effects of the HVPE reactor.

  10. Interactions between semiconductor nanowires and living cells.

    PubMed

    Prinz, Christelle N

    2015-06-17

    Semiconductor nanowires are increasingly used for biological applications and their small dimensions make them a promising tool for sensing and manipulating cells with minimal perturbation. In order to interface cells with nanowires in a controlled fashion, it is essential to understand the interactions between nanowires and living cells. The present paper reviews current progress in the understanding of these interactions, with knowledge gathered from studies where living cells were interfaced with vertical nanowire arrays. The effect of nanowires on cells is reported in terms of viability, cell-nanowire interface morphology, cell behavior, changes in gene expression as well as cellular stress markers. Unexplored issues and unanswered questions are discussed.

  11. Modified matrix volatilization setup for characterization of high purity germanium.

    PubMed

    Meruva, Adisesha Reddy; Raparthi, Shekhar; Kumar, Sunil Jai

    2016-01-01

    Modified matrix volatilization (MV) method has been described to characterize high purity germanium material of 7 N (99.99999%) purity. Transport of both, the chlorine gas generated in-situ in this method and the argon gas (carrier) is fine controlled by means of a mass flow controller. This enabled both uniform reaction of chlorine gas with the germanium matrix and smooth removal of germanium matrix as its chloride. This resulted in improvement in the reproducibility of the analytical results. The use of quartz reaction vessel has lead to the reduction in the process blank levels. The combined effect of these modifications in the MV setup has resulted in very consistent and low process blanks and hence improved detection limits of this method. Applicability of the method has been expanded to rare earth elements and other elements after examining their recoveries. The quantification is done by using inductively coupled plasma quadrupole mass spectrometer (ICP-QMS) and continuum source graphite furnace atomic absorption spectrometry (CS-GFAAS). In the absence of certified reference materials for high pure germanium, the accuracy of the method is established by spike recovery tests. The precision of the method has been found to vary from 1 to 30% for concentrations between 1 and 30 ng g(-1). The limits of detection (LOD) for the target analytes are found to be between 18 and 0.033 ng g(-1). PMID:26695261

  12. Discovery of gallium, germanium, lutetium, and hafnium isotopes

    SciTech Connect

    Gross, J.L.; Thoennessen, M.

    2012-09-15

    Currently, twenty-eight gallium, thirty-one germanium, thirty-five lutetium, and thirty-six hafnium isotopes have been observed and the discovery of these isotopes is described here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  13. Active noise canceling system for mechanically cooled germanium radiation detectors

    DOEpatents

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  14. Modified matrix volatilization setup for characterization of high purity germanium.

    PubMed

    Meruva, Adisesha Reddy; Raparthi, Shekhar; Kumar, Sunil Jai

    2016-01-01

    Modified matrix volatilization (MV) method has been described to characterize high purity germanium material of 7 N (99.99999%) purity. Transport of both, the chlorine gas generated in-situ in this method and the argon gas (carrier) is fine controlled by means of a mass flow controller. This enabled both uniform reaction of chlorine gas with the germanium matrix and smooth removal of germanium matrix as its chloride. This resulted in improvement in the reproducibility of the analytical results. The use of quartz reaction vessel has lead to the reduction in the process blank levels. The combined effect of these modifications in the MV setup has resulted in very consistent and low process blanks and hence improved detection limits of this method. Applicability of the method has been expanded to rare earth elements and other elements after examining their recoveries. The quantification is done by using inductively coupled plasma quadrupole mass spectrometer (ICP-QMS) and continuum source graphite furnace atomic absorption spectrometry (CS-GFAAS). In the absence of certified reference materials for high pure germanium, the accuracy of the method is established by spike recovery tests. The precision of the method has been found to vary from 1 to 30% for concentrations between 1 and 30 ng g(-1). The limits of detection (LOD) for the target analytes are found to be between 18 and 0.033 ng g(-1).

  15. Solution-processable white-light-emitting germanium nanocrystals

    SciTech Connect

    Shirahata, Naoto

    2014-06-01

    This paper describes an efficient chemical route for the synthesis of visible light emitting nanocrystals of germanium (ncGe). The synthesis started by heating Ge(II) iodide at 300 °C in argon atmosphere. Spectroscopic characterizations confirmed the formation of diamond cubic lattice structures of ncGe. By grafting hydrophobic chains on the ncGe surface, the dispersions in nonpolar solvents of the ncGe became very stable. The as-synthesized ncGe showed the bluish white photoluminescence (PL) feature, but it was found that the PL spectrum is composed of many different emission spectra. Therefore, the color-tuning of white light emission is demonstrated through the witting removal of extra ncGe with unfavorable emission feature by making full use of column chromatographic techniques. - Highlights: • Visible light emitting nanocrystals of germanium was synthesized by chemical reduction of germanium iodide. • White light emission was achieved by control over size distribution of germanium nanocrystals. • Tuning the color of white light was achieved by separation of nanocrystals by emission.

  16. Enhanced life ion source for germanium and carbon ion implantation

    SciTech Connect

    Hsieh, Tseh-Jen; Colvin, Neil; Kondratenko, Serguei

    2012-11-06

    Germanium and carbon ions represent a significant portion of total ion implantation steps in the process flow. Very often ion source materials that used to produce ions are chemically aggressive, especially at higher temperatures, and result in fast ion source performance degradation and a very limited lifetime [B.S. Freer, et. al., 2002 14th Intl. Conf. on Ion Implantation Technology Proc, IEEE Conf. Proc., p. 420 (2003)]. GeF{sub 4} and CO{sub 2} are commonly used to generate germanium and carbon beams. In the case of GeF{sub 4} controlling the tungsten deposition due to the de-composition of WF{sub 6} (halogen cycle) is critical to ion source life. With CO{sub 2}, the materials oxidation and carbon deposition must be controlled as both will affect cathode thermionic emission and anti-cathode (repeller) efficiencies due to the formation of volatile metal oxides. The improved ion source design Extended Life Source 3 (Eterna ELS3) together with its proprietary co-gas material implementation has demonstrated >300 hours of stable continuous operation when using carbon and germanium ion beams. Optimizing cogas chemistries retard the cathode erosion rate for germanium and carbon minimizes the adverse effects of oxygen when reducing gas is introduced for carbon. The proprietary combination of hardware and co-gas has improved source stability and the results of the hardware and co-gas development are discussed.

  17. Substitution of Germanium for Boron in Plant Growth 1

    PubMed Central

    McIlrath, Wayne J.; Skok, John

    1966-01-01

    The observation was confirmed that the addition of germanium dioxide (soluble form) to the nutrient solution can delay for a short time the appearance of boron deficiency symptoms on the shoots of sunflower plants (Helianthus annuus L.). This appeared to be true, however, only under growing conditions in which the plants had a low boron requirement. The delay in the appearance of boron deficiency symptoms by administering germanium was demonstrated in sunflower plants ranging in age from 7 to 20 days. This effect was noted whether the germanium was administered prior to or at the time the plants were transferred to minus-boron nutrient solution. It is proposed that germanium does not truly substitute for boron in metabolic processes of the plant but rather functions through increasing the mobility of soluble boron within the plant and in binding nonmetabolic polyhydroxyl sites thus serving in a sparing role for the limited quantity of soluble boron in the growth centers. Images Fig. 1 PMID:16656385

  18. The 100 micron detector development program. [gallium doped germanium photoconductors

    NASA Technical Reports Server (NTRS)

    Moore, W. J.

    1976-01-01

    An effort to optimize gallium-doped germanium photoconductors (Ge:Ga) for use in space for sensitive detection of far infrared radiation in the 100 micron region is described as well as the development of cryogenic apparatus capable of calibrating detectors under low background conditions.

  19. Large diameter germanium single crystals for infrared optics.

    NASA Astrophysics Data System (ADS)

    Gafni, G.; Azoulay, M.; Shiloh, C.; Noter, Y.; Saya, A.; Galron, H.; Roth, M.

    1989-09-01

    Large single crystals, up to 200 mm in diameter, of high optical quality germanium have been grown by the Czochralski technique. Postgrowth thermal treatment improves the optical homogeneity and reduces optical losses, as shown by measurements of refractive index gradients and modulation transfer function (MTF). A new approach for the piecewise combination of interferograms, as well as a polychromatic treatment of MTF, is presented.

  20. Actuation of polypyrrole nanowires

    NASA Astrophysics Data System (ADS)

    Lee, Alexander S.; Peteu, Serban F.; Ly, James V.; Requicha, Aristides A. G.; Thompson, Mark E.; Zhou, Chongwu

    2008-04-01

    Nanoscale actuators are essential components of the NEMS (nanoelectromechanical systems) and nanorobots of the future, and are expected to become a major area of development within nanotechnology. This paper demonstrates for the first time that individual polypyrrole (PPy) nanowires with diameters under 100 nm exhibit actuation behavior, and therefore can potentially be used for constructing nanoscale actuators. PPy is an electroactive polymer which can change volume on the basis of its oxidation state. PPy-based macroscale and microscale actuators have been demonstrated, but their nanoscale counterparts have not been realized until now. The research reported here answers positively the fundamental question of whether PPy wires still exhibit useful volume changes at the nanoscale. Nanowires with a 50 nm diameter and a length of approximately 6 µm, are fabricated by chemical polymerization using track-etched polycarbonate membranes as templates. Their actuation response as a function of oxidation state is investigated by electrochemical AFM (atomic force microscopy). An estimate of the minimum actuation force is made, based on the displacement of the AFM cantilever.

  1. Actuation of polypyrrole nanowires.

    PubMed

    Lee, Alexander S; Peteu, Serban F; Ly, James V; Requicha, Aristides A G; Thompson, Mark E; Zhou, Chongwu

    2008-04-23

    Nanoscale actuators are essential components of the NEMS (nanoelectromechanical systems) and nanorobots of the future, and are expected to become a major area of development within nanotechnology. This paper demonstrates for the first time that individual polypyrrole (PPy) nanowires with diameters under 100 nm exhibit actuation behavior, and therefore can potentially be used for constructing nanoscale actuators. PPy is an electroactive polymer which can change volume on the basis of its oxidation state. PPy-based macroscale and microscale actuators have been demonstrated, but their nanoscale counterparts have not been realized until now. The research reported here answers positively the fundamental question of whether PPy wires still exhibit useful volume changes at the nanoscale. Nanowires with a 50 nm diameter and a length of approximately 6 µm, are fabricated by chemical polymerization using track-etched polycarbonate membranes as templates. Their actuation response as a function of oxidation state is investigated by electrochemical AFM (atomic force microscopy). An estimate of the minimum actuation force is made, based on the displacement of the AFM cantilever.

  2. Silicon nanowire Esaki diodes.

    PubMed

    Schmid, Heinz; Bessire, Cedric; Björk, Mikael T; Schenk, Andreas; Riel, Heike

    2012-02-01

    We report on the fabrication and characterization of silicon nanowire tunnel diodes. The silicon nanowires were grown on p-type Si substrates using Au-catalyzed vapor-liquid-solid growth and in situ n-type doping. Electrical measurements reveal Esaki diode characteristics with peak current densities of 3.6 kA/cm(2), peak-to-valley current ratios of up to 4.3, and reverse current densities of up to 300 kA/cm(2) at 0.5 V reverse bias. Strain-dependent current-voltage (I-V) measurements exhibit a decrease of the peak tunnel current with uniaxial tensile stress and an increase of 48% for 1.3 GPa compressive stress along the <111> growth direction, revealing the strain dependence of the Si band structure and thus the tunnel barrier. The contributions of phonons to the indirect tunneling process were probed by conductance measurements at 4.2 K. These measurements show phonon peaks at energies corresponding to the transverse acoustical and transverse optical phonons. In addition, the low-temperature conductance measurements were extended to higher biases to identify potential impurity states in the band gap. The results demonstrate that the most likely impurity, namely, Au from the catalyst particle, is not detectable, a finding that is also supported by the excellent device properties of the Esaki diodes reported here.

  3. Dangling-bond defects and hydrogen passivation in germanium

    NASA Astrophysics Data System (ADS)

    Weber, Justin R.

    2008-03-01

    The application of germanium in complementary metal-oxide semiconductor (CMOS) technology is hampered by high interface-state densities, the microscopic origin of which has remained elusive. Using first-principles calculations, we have investigated the atomic and electronic structure of prototype germanium dangling-bond defects [1]. The computational approach is based on density functional theory, and in order to overcome band-gap problems we have also performed quasiparticle calculations based on the GW approach. Surprisingly, the germanium dangling bonds give rise to electronic levels below the valence-band maximum. They therefore occur exclusively in the negative charge state, explaining why they have eluded observation with electron spin resonance. The associated fixed charge is likely responsible for threshold-voltage shifts and poor performance of n-channel transistors. At silicon/silicon dioxide interfaces, hydrogen is successfully used to passivate dangling-bond defects. We have therefore also investigated the interaction of hydrogen with germanium. In contrast to silicon and other semiconductors in which hydrogen behaves as an amphoteric impurity, interstitial hydrogen in germanium is stable only in the negative charge state, i.e., it behaves exclusively as an acceptor. Passivation of dangling bonds by hydrogen will therefore be ineffective, again explaining experimental observations. Other cases where unusual interfacial defects and problems with hydrogen passivation may occur will be discussed. Work performed in collaboration with A. Janotti, P. Rinke, and C. G. Van de Walle, and supported by the Semiconductor Research Corporation. 1. J. R. Weber, A. Janotti, P. Rinke, and C. G. Van de Walle, Appl. Phys. Lett. 91, 142101 (2007).

  4. ZnO nanowire lasers.

    PubMed

    Vanmaekelbergh, Daniël; van Vugt, Lambert K

    2011-07-01

    The pathway towards the realization of optical solid-state lasers was gradual and slow. After Einstein's paper on absorption and stimulated emission of light in 1917 it took until 1960 for the first solid state laser device to see the light. Not much later, the first semiconductor laser was demonstrated and lasing in the near UV spectral range from ZnO was reported as early as 1966. The research on the optical properties of ZnO showed a remarkable revival since 1995 with the demonstration of room temperature lasing, which was further enhanced by the first report of lasing by a single nanowire in 2001. Since then, the research focussed increasingly on one-dimensional nanowires of ZnO. We start this review with a brief description of the opto-electronic properties of ZnO that are related to the wurtzite crystal structure. How these properties are modified by the nanowire geometry is discussed in the subsequent sections, in which we present the confined photon and/or polariton modes and how these can be investigated experimentally. Next, we review experimental studies of laser emission from single ZnO nanowires under different experimental conditions. We emphasize the special features resulting from the sub-wavelength dimensions by presenting our results on single ZnO nanowires lying on a substrate. At present, the mechanism of lasing in ZnO (nanowires) is the subject of a strong debate that is considered at the end of this review. PMID:21552596

  5. Magnetic properties of electrodeposited nanowires

    NASA Astrophysics Data System (ADS)

    Heydon, G. P.; Hoon, S. R.; Farley, A. N.; Tomlinson, S. L.; Valera, M. S.; Attenborough, K.; Schwarzacher, W.

    1997-04-01

    Electrodeposited multilayered nanowires grown within a polycarbonate membrane constitute a new medium in which giant magnetoresistance (GMR) perpendicular to the plane of the multilayers can be measured. These structures can exhibit a perpendicular GMR of at least 22% at ambient temperature. We performed detailed studies both of reversible magnetization and of irreversible remanent magnetization curves for CoNiCu/Cu/CoNiCu multilayered and CoNiCu pulse-deposited nanowire systems with Co:Ni ratios of 6:4 and 7:3 respectively in the range 10 - 290 K, allowing the magnetic phases of these structures to be identified. Shape anisotropy in the pulse-deposited nanowire and inter-layer coupling in the multilayered nanowire are shown to make important contributions to the magnetic properties. Dipolar-like interactions are found to predominate in both nanowire systems. Magnetic force microscope (MFM) images of individual multilayered nanowires exhibit a contrast consistent with there being a soft magnetization parallel to the layers. Switching of the magnetic layers in the multilayered structure into the direction of the MFM tip's stray field is observed.

  6. Detached Bridgman Growth of Germanium and Germanium-Silicon Alloy Crystals

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Volz, M. P.; Schweizer, M.; Kaiser, N.; Cobb, S. D.; Motakef, S.; Vujisic, L. J.; Croell, A.; Dold, P.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Earth based experiments on the science of detached crystal growth are being conducted on germanium and germanium-silicon alloys (2at% Si average composition) in preparation for a series of experiments aboard the International Space Station (ISS) to differentiate among proposed mechanisms contributing to detachment. Sessile drop measurements were first carried out for a large number of substrates made of potential ampoule materials to determine the contact angles and the surface tension as a function of temperature and composition. The process atmosphere and duration of the experiment (for some cases) were also found to have significant influence on the wetting angle. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. The contact angles were 173 deg (Ge) and 165 deg (GeSi) for pBN. For fused silica, the contact angle decreases to an equilibrium value with duration of measurement ranging from 150 to 117 deg (Ge), 129 to 100 deg (GeSi). Forming gas (Ar + 2% H2) and vacuum have been used in the growth ampoules. With gas in the ampoule, a variation of the temperature profile during growth has been used to control the pressure difference between the top of the melt and the volume below the melt caused by detachment of the growing crystal. The stability of detachment has been modeled and substantial insight has been gained into the reasons that detachment has most often been observed in reduced gravity but nonetheless has occurred randomly even there. An empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed and will be presented. Methods for determining the nature and extent of detachment include profilometry and optical and electron microscopy. This surface study is the subject of another presentation at this Congress. Results in this presentation will show that we have

  7. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films

    NASA Astrophysics Data System (ADS)

    Bergin, Stephen M.; Chen, Yu-Hui; Rathmell, Aaron R.; Charbonneau, Patrick; Li, Zhi-Yuan; Wiley, Benjamin J.

    2012-03-01

    This article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with independently controlled lengths and diameters were synthesized with a gram-scale polyol synthesis by controlling the reaction temperature and time. Characterization of films composed of nanowires of different lengths but the same diameter enabled the quantification of the effect of length on the conductance and transmittance of silver nanowire films. Finite-difference time-domain calculations were used to determine the effect of nanowire diameter, overlap, and hole size on the transmittance of a nanowire network. For individual nanowires with diameters greater than 50 nm, increasing diameter increases the electrical conductance to optical extinction ratio, but the opposite is true for nanowires with diameters less than this size. Calculations and experimental data show that for a random network of nanowires, decreasing nanowire diameter increases the number density of nanowires at a given transmittance, leading to improved connectivity and conductivity at high transmittance (>90%). This information will facilitate the design of transparent, conducting nanowire films for flexible displays, organic light emitting diodes and thin-film solar cells.This article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with independently controlled lengths and diameters were synthesized with a gram-scale polyol synthesis by controlling the reaction temperature and time. Characterization of films composed of nanowires of different lengths but the same diameter enabled the quantification of the effect of length on the conductance and transmittance of silver nanowire films. Finite-difference time-domain calculations were used to determine the effect of nanowire diameter, overlap, and hole size on the transmittance of a nanowire network. For

  8. Germanium nanocrystals: Synthesis, characterization, and applications

    NASA Astrophysics Data System (ADS)

    Gerung, Henry

    The aim of this work was to demonstrate a simple synthesis route of Ge nanostructures (nanoparticles and nanowires), to characterize the physical and optical properties of Ge nanocrystal, and to demonstrate their biological and optoelectronics applications. The appropriate organometallic Ge 2+ precursors for the synthesis of Ge nanocrystals were identified. These precursors were used to develop a simple route that produced high quality Ge nanocrystals in high yield under mild conditions without using potentially contaminating catalysts and forming byproducts. The particle size was varied from 1 to 10 nm, depending on the reaction parameters. The relatively low-temperature, low-pressure nanocrystal synthesis condition allowed the use of organic solvents and surfactants. We also demonstrated morphological control over Ge nanocrystals via Ge2+ precursor reactivity modification. During synthesis, the surfactants passivate the nanocrystal surface and minimize surface oxidation. This synthesis method allowed optical characterization of Ge nanocrystals decoupled from contamination and oxidation. When excited with photons, Ge nanoparticles exhibit quantum confinement effect in both infrared and ultraviolet regions, as well as optical nonlinearity by the presence of two-photon absorption. These free-standing Ge nanocrystals could be further become integral elements in various optoelectronic devices. Herein, the production of water-soluble Ge nanoparticles was demonstrated as a proof of the effectiveness of our synthesis method. Addition of secondary layer surfactants such as cationic cetyltrimethylammonium bromide (CTAB) or functionalized polyethylene glycol (PEG), transforms the Ge nanoparticles to become water-soluble. The biocompatible, functionalized, water-soluble Ge nanoparticles were bound to extracellular receptors and also incorporated into the cells as a proof-of-concept demonstration for potential biomarker applications. In expectation of forming a 3-D

  9. An environmentally-friendly vacuum reduction metallurgical process to recover germanium from coal fly ash.

    PubMed

    Zhang, Lingen; Xu, Zhenming

    2016-07-15

    The demand for germanium in the field of semiconductor, electronics, and optical devices is growing rapidly; however, the resources of germanium are scarce worldwide. As a secondary material, coal fly ash could be further recycled to retrieve germanium. Up to now, the conventional processes to recover germanium have two problems as follows: on the one hand, it is difficult to be satisfactory for its economic and environmental effect; on the other hand, the recovery ratio of germanium is not all that could be desired. In this paper, an environmentally-friendly vacuum reduction metallurgical process (VRMP) was proposed to recover germanium from coal fly ash. The results of the laboratory scale experiments indicated that the appropriate parameters were 1173K and 10Pa with 10wt% coke addition for 40min, and recovery ratio germanium was 93.96%. On the basis of above condition, the pilot scale experiments were utilized to assess the actual effect of VRMP for recovery of germanium with parameter of 1473K, 1-10Pa and heating time 40min, the recovery ratio of germanium reached 94.64%. This process considerably enhances germanium recovery, meanwhile, eliminates much of the water usage and residue secondary pollution compared with other conventional processes.

  10. An environmentally-friendly vacuum reduction metallurgical process to recover germanium from coal fly ash.

    PubMed

    Zhang, Lingen; Xu, Zhenming

    2016-07-15

    The demand for germanium in the field of semiconductor, electronics, and optical devices is growing rapidly; however, the resources of germanium are scarce worldwide. As a secondary material, coal fly ash could be further recycled to retrieve germanium. Up to now, the conventional processes to recover germanium have two problems as follows: on the one hand, it is difficult to be satisfactory for its economic and environmental effect; on the other hand, the recovery ratio of germanium is not all that could be desired. In this paper, an environmentally-friendly vacuum reduction metallurgical process (VRMP) was proposed to recover germanium from coal fly ash. The results of the laboratory scale experiments indicated that the appropriate parameters were 1173K and 10Pa with 10wt% coke addition for 40min, and recovery ratio germanium was 93.96%. On the basis of above condition, the pilot scale experiments were utilized to assess the actual effect of VRMP for recovery of germanium with parameter of 1473K, 1-10Pa and heating time 40min, the recovery ratio of germanium reached 94.64%. This process considerably enhances germanium recovery, meanwhile, eliminates much of the water usage and residue secondary pollution compared with other conventional processes. PMID:27015376

  11. Electrochemical synthesis of highly crystalline copper nanowires

    SciTech Connect

    Kaur, Amandeep; Gupta, Tanish; Kumar, Akshay; Kumar, Sanjeev; Singh, Karamjeet; Thakur, Anup

    2015-05-15

    Copper nanowires were fabricated within the pores of anodic alumina template (AAT) by template synthesis method at pH = 2.9. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to investigate the structure, morphology and composition of fabricated nanowires. These characterizations revealed that the deposited copper nanowires were highly crystalline in nature, dense and uniform. The crystalline copper nanowires are promising in application of future nanoelectronic devices and circuits.

  12. Improving Memory Characteristics of Hydrogenated Nanocrystalline Silicon Germanium Nonvolatile Memory Devices by Controlling Germanium Contents.

    PubMed

    Kim, Jiwoong; Jang, Kyungsoo; Phu, Nguyen Thi Cam; Trinh, Thanh Thuy; Raja, Jayapal; Kim, Taeyong; Cho, Jaehyun; Kim, Sangho; Park, Jinjoo; Jung, Junhee; Lee, Youn-Jung; Yi, Junsin

    2016-05-01

    Nonvolatile memory (NVM) with silicon dioxide/silicon nitride/silicon oxynitride (ONO(n)) charge trap structure is a promising flash memory technology duo that will fulfill process compatibility for system-on-panel displays, down-scaling cell size and low operation voltage. In this research, charge trap flash devices were fabricated with ONO(n) stack gate insulators and an active layer using hydrogenated nanocrystalline silicon germanium (nc-SiGe:H) films at a low temperature. In this study, the effect of the interface trap density on the performance of devices, including memory window and retention, was investigated. The electrical characteristics of NVM devices were studied controlling Ge content from 0% to 28% in the nc-SiGe:H channel layer. The optimal Ge content in the channel layer was found to be around 16%. For nc-SiGe:H NVM with 16% Ge content, the memory window was 3.13 V and the retention data exceeded 77% after 10 years under the programming condition of 15 V for 1 msec. This showed that the memory window increased by 42% and the retention increased by 12% compared to the nc-Si:H NVM that does not contain Ge. However, when the Ge content was more than 16%, the memory window and retention property decreased. Finally, this research showed that the Ge content has an effect on the interface trap density and this enabled us to determine the optimal Ge content. PMID:27483856

  13. Ionization efficiency study for low energy nuclear recoils in germanium

    NASA Astrophysics Data System (ADS)

    Barker, D.; Wei, W.-Z.; Mei, D.-M.; Zhang, C.

    2013-08-01

    We used the internal conversion (E0 transition) of germanium-72 to indirectly measure the low energy nuclear recoils of germanium. Together with a reliable Monte Carlo package, in which we implement the internal conversion process, the data was compared to the Lindhard (k = 0.159) and Barker-Mei models. A shape analysis indicates that both models agree well with data in the region of interest within 4%. The most probable value (MPV) of the nuclear recoils obtained from the shape analysis is 17.5 ± 0.12 (sys) ±0.035 (stat) keV with an average path-length of 0.014 μm.

  14. High temperature material interactions of thermoelectric systems using silicon germanium.

    NASA Technical Reports Server (NTRS)

    Stapfer, G.; Truscello, V. C.

    1973-01-01

    The efficient use of silicon germanium thermoelectric material for radioisotope thermoelectric generators (RTG) is achieved by operation at relatively high temperatures. The insulation technique which is most appropriate for this application uses multiple layers of molybdenum foil and astroquartz. Even so, the long term operation of these materials at elevated temperatures can cause material interaction to occur within the system. To investigate these material interactions, the Jet Propulsion Laboratory is currently testing a number of thermoelectric modules which use four silicon germanium thermoelectric couples in conjunction with the multifoil thermal insulation. The paper discusses the results of the ongoing four-couple module test program and correlates test results with those of a basic material test program.

  15. Synthesis and Gas Phase Thermochemistry of Germanium-Containing Compounds

    SciTech Connect

    Nathan Robert Classen

    2002-12-31

    The driving force behind much of the work in this dissertation was to gain further understanding of the unique olefin to carbene isomerization observed in the thermolysis of 1,1-dimethyl-2-methylenesilacyclobutane by finding new examples of it in other silicon and germanium compounds. This lead to the examination of a novel phenylmethylenesilacyclobut-2-ene, which did not undergo olefin to carbene rearrangement. A synthetic route to methylenegermacyclobutanes was developed, but the methylenegermacyclobutane system exhibited kinetic instability, making the study of the system difficult. In any case the germanium system decomposed through a complex mechanism which may not include olefin to carbene isomerization. However, this work lead to the study of the gas phase thermochemistry of a series of dialkylgermylene precursors in order to better understand the mechanism of the thermal decomposition of dialkylgermylenes. The resulting dialkylgermylenes were found to undergo a reversible intramolecular {beta} C-H insertion mechanism.

  16. Germanium as negative electrode material for sodium-ion batteries

    SciTech Connect

    Baggetto, Loic; Keum, Jong Kahk; Browning, Jim; Veith, Gabriel M

    2013-01-01

    Germanium electrodes show a reversible Na-ion reaction at potentials of 0.15 and 0.6 V during discharge and charge, respectively. The reaction is accompanied with a reversible capacity close to 350 mAh g-1, which matches the value expected for the formation of NaGe. The electrode capacity retention is stable over 15 cycles but declines somewhat rapidly afterwards. This decline is typical for alloying systems undergoing large volume expansion, and calls for engineering solutions to confine the mechanical stress and control the electrolyte decomposition reactions that are likely to be the main sources of degradations. The rate performance results highlight the huge potential of nanosized germanium as a potential Na-ion anode. The reaction kinetics is found to be very good with about 220 mAh g-1 delivered at 170 C. Finally, the preliminary XRD results do not reveal the formation of crystalline phases at full (dis)charge.

  17. Photon Identification with Segmented Germanium Detectors in Low Radiation Environments

    SciTech Connect

    Abt, I.; Caldwell, A.; Kroeninger, K.; Liu, J.; Liu, X.; Majorovits, B.; Stelzer, F.

    2007-03-28

    Effective identification of photon-induced events is essential for a new generation of double beta-decay experiments. One such experiment is the GERmanium Detector Array, GERDA, located at the INFN Gran Sasso National Laboratory (LNGS) in Italy. It uses germanium, enriched in 76Ge, as source and detector, and aims at a background level of less than 10-3 counts/(kg {center_dot} keV {center_dot} y) in the region of the Q{beta}{beta}-value. Highly segmented detectors are being developed for this experiment. A detailed GEANT4 Monte Carlo study about the possibilities to identify photon--induced background was published previously. An 18-fold segmented prototype detector was tested and its performance compared with Monte Carlo predictions. The detector performed well and the agreement with the Monte Carlo is excellent.

  18. Characterization of the impurities in tungsten/silicon-germanium contacts

    SciTech Connect

    Gregg, H.A. Sr.

    1986-03-26

    Secondary ion mass spectrometry and Auger electron spectrometry depth profiling were used to determine impurity distributions in sputter deposited tungsten films over N-type and P-type 80/20 silicon-germanium elements of thermoelectric devices. These analyses showed that silicon, oxygen, sodium, boron, and phosphorous were present as impurities in the tungsten film. All these impurities except oxygen and sodium came from the substrate. Oxygen was gettered by the tungsten films, while sodium was possibly the result of sample handling. Further, the results from this study indicate that an oxide build-up, primarily at the tungsten/silicon-germanium interface of the N-type materials, is the major contributor to contact resistance in thermoelectric devices.

  19. Synthesis and photoluminescence of ultra-pure germanium nanoparticles

    NASA Astrophysics Data System (ADS)

    Chivas, R.; Yerci, S.; Li, R.; Dal Negro, L.; Morse, T. F.

    2011-09-01

    We have used aerosol deposition to synthesize defect and micro-strain free, ultra-pure germanium nanoparticles. Transmission electron microscopy images show a core-shell configuration with highly crystalline core material. Powder X-ray diffraction measurements verify the presence of highly pure, nano-scale germanium with average crystallite size of 30 nm and micro-strain of 0.058%. X-ray photoelectron spectroscopy demonstrates that GeO x ( x ⩽ 2) shells cover the surfaces of the nanoparticles. Under optical excitation, these nanoparticles exhibit two separate emission bands at room temperature: a visible emission at 500 nm with 0.5-1 ns decay times and an intense near-infrared emission at 1575 nm with up to ˜20 μs lifetime.

  20. Diffusion of n-type dopants in germanium

    SciTech Connect

    Chroneos, A.; Bracht, H.

    2014-03-15

    Germanium is being actively considered by the semiconductor community as a mainstream material for nanoelectronic applications. Germanium has advantageous materials properties; however, its dopant-defect interactions are less understood as compared to the mainstream material, silicon. The understanding of self- and dopant diffusion is essential to form well defined doped regions. Although p-type dopants such as boron exhibit limited diffusion, n-type dopants such as phosphorous, arsenic, and antimony diffuse quickly via vacancy-mediated diffusion mechanisms. In the present review, we mainly focus on the impact of intrinsic defects on the diffusion mechanisms of donor atoms and point defect engineering strategies to restrain donor atom diffusion and to enhance their electrical activation.

  1. Beta-nitro derivatives of germanium(IV) corrolates.

    PubMed

    Mastroianni, Marco; Zhu, Weihua; Stefanelli, Manuela; Nardis, Sara; Fronczek, Frank R; Smith, Kevin M; Ou, Zhongping; Kadish, Karl M; Paolesse, Roberto

    2008-12-15

    The reaction between germanium(IV) meso-triphenylcorrolates and nitrate salts affords the corresponding beta-nitro substituted corroles in good yield. Chromatographic separation of the crude reaction mixtures enables isolation of a mu-oxo dimer along with the corresponding monomers bearing a hydroxy or methoxy group at an axial position of the germanium central metal ion. Depending on the reaction conditions, mono- or dinitro substituted complexes can be obtained. The substitution is highly regioselective in each case, giving only the 3-nitro or 3,17-dinitro derivative among the different possible isomers. Five of the synthesized complexes were examined by cyclic voltammetry and UV-visible spectroelectrochemistry in dichloromethane, and the dinitro mu-oxo dimer is structurally characterized.

  2. Star-shaped cyclic-twinning nanowires

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Cao, Minghe; Sun, Yuekui; Wu, Peiwen; Yuan, Jun

    2006-04-01

    We report the discovery of a new class of nanowires with a star-shaped cross section. Unlike most nanowires, it shows a prominent regular reentrant surface profile. The electron diffraction and electron energy loss spectroscopy analyses indicate that the nanowire is composed of superhard boron suboxide (B6O). The fivefold symmetry of the star-shaped nanowire could be understood as a cyclic twinning structure. The crystallographic analysis further suggested that it could be a common occurrence in boron-rich compounds. Star-shaped nanowires with regular reentrant surfaces are attractive for applications in nanotechnology.

  3. Photoelectrochemistry of Semiconductor Nanowire Arrays

    SciTech Connect

    Mallouk, Thomas E; Redwing, Joan M

    2009-11-10

    This project supported research on the growth and photoelectrochemical characterization of semiconductor nanowire arrays, and on the development of catalytic materials for visible light water splitting to produce hydrogen and oxygen. Silicon nanowires were grown in the pores of anodic aluminum oxide films by the vapor-liquid-solid technique and were characterized electrochemically. Because adventitious doping from the membrane led to high dark currents, silicon nanowire arrays were then grown on silicon substrates. The dependence of the dark current and photovoltage on preparation techniques, wire diameter, and defect density was studied for both p-silicon and p-indium phosphide nanowire arrays. The open circuit photovoltage of liquid junction cells increased with increasing wire diameter, reaching 350 mV for micron-diameter silicon wires. Liquid junction and radial p-n junction solar cells were fabricated from silicon nano- and microwire arrays and tested. Iridium oxide cluster catalysts stabilized by bidentate malonate and succinate ligands were also made and studied for the water oxidation reaction. Highlights of this project included the first papers on silicon and indium phosphide nanowire solar cells, and a new procedure for making ligand-stabilized water oxidation catalysts that can be covalently linked to molecular photosensitizers or electrode surfaces.

  4. Electrodeposited, Transverse Nanowire Electroluminescent Junctions.

    PubMed

    Qiao, Shaopeng; Xu, Qiang; Dutta, Rajen K; Le Thai, Mya; Li, Xiaowei; Penner, Reginald M

    2016-09-27

    The preparation by electrodeposition of transverse nanowire electroluminescent junctions (tn-ELJs) is described, and the electroluminescence (EL) properties of these devices are characterized. The lithographically patterned nanowire electrodeposition process is first used to prepare long (millimeters), linear, nanocrystalline CdSe nanowires on glass. The thickness of these nanowires along the emission axis is 60 nm, and the width, wCdSe, along the electrical axis is adjustable from 100 to 450 nm. Ten pairs of nickel-gold electrical contacts are then positioned along the axis of this nanowire using lithographically directed electrodeposition. The resulting linear array of nickel-CdSe-gold junctions produces EL with an external quantum efficiency, EQE, and threshold voltage, Vth, that depend sensitively on wCdSe. EQE increases with increasing electric field and also with increasing wCdSe, and Vth also increases with wCdSe and, therefore, the electrical resistance of the tn-ELJs. Vth down to 1.8(±0.2) V (for wCdSe ≈ 100 nm) and EQE of 5.5(±0.5) × 10(-5) (for wCdSe ≈ 450 nm) are obtained. tn-ELJs produce a broad EL emission envelope, spanning the wavelength range from 600 to 960 nm.

  5. Surface events identification in the EDELWEISS germanium bolometers

    SciTech Connect

    Navick, X.-F.

    2007-03-28

    In the first phase of the EDELWEISS-II Dark Matter search, 23 germanium detectors with NTD thermal sensors and 7 detectors with NbSi thin films are going to be used at 20mK for the direct detection of WIMPs. In this paper, we are describing the different techniques of identification of surface events that might improve strongly the physics results of this experiment.

  6. Electronic Structure of Germanium Nanocrystal Films Probed with Synchrotron Radiation

    SciTech Connect

    Bostedt, C

    2002-05-01

    The fundamental structure--property relationship of semiconductor quantum dots has been investigated. For deposited germanium nanocrystals strong quantum confinement effects have been determined with synchrotron radiation based x-ray absorption and photoemission techniques. The nanocrystals are condensed out of the gas phase with a narrow size distribution and subsequently deposited in situ onto various substrates. The particles are crystalline in the cubic phase with a structurally disordered surface shell and the resulting film morphology depends strongly on the substrate material and condition. The disordered surface region has an impact on the overall electronic structure of the particles. In a size-dependent study, the conduction and valence band edge of germanium nanocrystals have been measured for the first time and compared to the bulk crystal. The band edges move to higher energies as the particle size is decreased, consistent with quantum confinement theory. To obtain a more accurate analysis of confinement effects in the empty states, a novel analysis method utilizing an effective particle size for the x-ray absorption experiment, which allows a deconvolution of absorption edge broadening effects, has been introduced. Comparison of the present study to earlier studies on silicon reveals that germanium exhibits stronger quantum confinement effects than silicon. Below a critical particle size of 2.3 {+-} 0.7 nm, the band gap of germanium becomes larger than that of silicon--even if it is the opposite for bulk materials. This result agrees phenomenologically with effective mass and tight binding theories but contradicts the findings of recent pseudopotential calculations. The discrepancy between theory and experiments is attributed to the differences in the theoretical models and experimental systems. The experimentally observed structural disorder of the particle surface has to be included in the theoretical models.

  7. Optical properties of silicon germanium waveguides at telecommunication wavelengths.

    PubMed

    Hammani, Kamal; Ettabib, Mohamed A; Bogris, Adonis; Kapsalis, Alexandros; Syvridis, Dimitris; Brun, Mickael; Labeye, Pierre; Nicoletti, Sergio; Richardson, David J; Petropoulos, Periklis

    2013-07-15

    We present a systematic experimental study of the linear and nonlinear optical properties of silicon-germanium (SiGe) waveguides, conducted on samples of varying cross-sectional dimensions and Ge concentrations. The evolution of the various optical properties for waveguide widths in the range 0.3 to 2 µm and Ge concentrations varying between 10 and 30% is considered. Finally, we comment on the comparative performance of the waveguides, when they are considered for nonlinear applications at telecommunications wavelengths.

  8. Bandwidth improvement for germanium photodetector using wire bonding technology.

    PubMed

    Chen, Guanyu; Yu, Yu; Deng, Shupeng; Liu, Lei; Zhang, Xinliang

    2015-10-01

    We demonstrate an ultrahigh speed germanium photodetector by introducing gold wires into the discrete ground electrodes with standard wire bonding technology. To engineer the parasitic parameter, the physical dimension of the gold wire used for wire bonding is specially designed with an inductance of about 450 pH. Simulation and experimental results show that the bandwidth of the photodetector can be effectively extended from less than 30 GHz to over 60 GHz.

  9. Long-Term Stability of Germanium Resistance Thermometers

    NASA Astrophysics Data System (ADS)

    Courts, S. Scott; Yeager, C. Joseph

    2003-09-01

    Doped germanium resistance thermometers (GRTs) have been used as cryogenic thermometers for forty years. GRTs exhibit a negative temperature coefficient of resistance and possess a high sensitivity that allows for sub-millikelvin control at lower temperatures. These devices also exhibit excellent short- and long-term stability and were used to maintain national temperature scales below 30 K until the advent of the rhodium-iron thermometer. Lake Shore Cryotronics uses GRTs, model GR-200A-1000, as the transfer thermometer for temperature calibration below 30 K. A typical GRT working standard is thermally cycled from 1.4 K to 330 K once a week on average. Every six months, to ensure stability and traceability, these working standard GRTs are compared against a set of standards-grade germanium, platinum, and rhodium-iron resistance thermometers calibrated by the National Institute of Standards and Technology in the US and/or the National Physical Laboratory in the UK. These comparisons yield a measure of the long-term stability of these GRTs over a period of years. This paper reports the long-term stability from 1.4 K to 30 K of eleven germanium resistance thermometers as a function of time and thermal cycling during their use as working standard thermometers.

  10. Electrically Injected UV-Visible Nanowire Lasers

    SciTech Connect

    Wang, George T.; Li, Changyi; Li, Qiming; Liu, Sheng; Wright, Jeremy Benjamin; Brener, Igal; Luk, Ting -Shan; Chow, Weng W.; Leung, Benjamin; Figiel, Jeffrey J.; Koleske, Daniel D.; Lu, Tzu-Ming

    2015-09-01

    There is strong interest in minimizing the volume of lasers to enable ultracompact, low-power, coherent light sources. Nanowires represent an ideal candidate for such nanolasers as stand-alone optical cavities and gain media, and optically pumped nanowire lasing has been demonstrated in several semiconductor systems. Electrically injected nanowire lasers are needed to realize actual working devices but have been elusive due to limitations of current methods to address the requirement for nanowire device heterostructures with high material quality, controlled doping and geometry, low optical loss, and efficient carrier injection. In this project we proposed to demonstrate electrically injected single nanowire lasers emitting in the important UV to visible wavelengths. Our approach to simultaneously address these challenges is based on high quality III-nitride nanowire device heterostructures with precisely controlled geometries and strong gain and mode confinement to minimize lasing thresholds, enabled by a unique top-down nanowire fabrication technique.

  11. Methods for synthesizing metal oxide nanowires

    DOEpatents

    Sunkara, Mahendra Kumar; Kumar, Vivekanand; Kim, Jeong H.; Clark, Ezra Lee

    2016-08-09

    A method of synthesizing a metal oxide nanowire includes the steps of: combining an amount of a transition metal or a transition metal oxide with an amount of an alkali metal compound to produce a mixture; activating a plasma discharge reactor to create a plasma discharge; exposing the mixture to the plasma discharge for a first predetermined time period such that transition metal oxide nanowires are formed; contacting the transition metal oxide nanowires with an acid solution such that an alkali metal ion is exchanged for a hydrogen ion on each of the transition metal oxide nanowires; and exposing the transition metal oxide nanowires to the plasma discharge for a second predetermined time period to thermally anneal the transition metal oxide nanowires. Transition metal oxide nanowires produced using the synthesis methods described herein are also provided.

  12. Fabrication and characterization of porous silicon nanowires

    NASA Astrophysics Data System (ADS)

    Jung, Daeyoon; Cho, Soo Gyeong; Moon, Taeho; Sohn, Honglae

    2016-01-01

    We report the synthesis of porous silicon nanowires through the metalassisted chemical etching of porous silicon in a solution of hydrofluoric acid and hydrogen peroxide. The morphology of porous silicon nanowires was characterized by scanning electron microscopy and transmission electron microscopy. The etch rate of the porous silicon nanowires was faster than that of silicon nanowires, but slower than that of porous silicon. The porous silicon nanowires distributed uniformly on the entire porous silicon layer and the tips of the porous silicon nanowires congregated together. The single crystalline and sponge-like porous structure with the pore diameters of less than 5 nm was confirmed for the porous silicon nanowires. [Figure not available: see fulltext.

  13. Tin-germanium alloys as anode materials for sodium-ion batteries.

    PubMed

    Abel, Paul R; Fields, Meredith G; Heller, Adam; Mullins, C Buddie

    2014-09-24

    The sodium electrochemistry of evaporatively deposited tin, germanium, and alloys of the two elements is reported. Limiting the sodium stripping voltage window to 0.75 V versus Na/Na+ improves the stability of the tin and tin-rich compositions on repeated sodiation/desodiation cycles, whereas the germanium and germanium-rich alloys were stable up to 1.5 V. The stability of the electrodes could be correlated to the surface mobility of the alloy species during deposition suggesting that tin must be effectively immobilized in order to be successfully utilized as a stable electrode. While the stability of the alloys is greatly increased by the presence of germanium, the specific Coulombic capacity of the alloy decreases with increasing germanium content due to the lower Coulombic capacity of germanium. Additionally, the presence of germanium in the alloy suppresses the formation of intermediate phases present in the electrochemical sodiation of tin. Four-point probe resistivity measurements of the different compositions show that electrical resistivity increases with germanium content. Pure germanium is the most resistive yet exhibited the best electrochemical performance at high current densities which indicates that electrical resistivity is not rate limiting for any of the tested compositions.

  14. Electrochemical synthesis of multisegmented nanowires

    SciTech Connect

    Kok, Kuan-Ying; Ng, Inn-Khuan; Saidin, Nur Ubaidah

    2012-11-27

    Electrochemical deposition has emerged as a promising route for nanostructure fabrication in recent years due to the many inherent advantages it possesses. This study focuses on the synthesis of high-aspect-ratio multisegmented Au/Ni nanowires using template-directed sequential electrochemical deposition techniques. By selectively removing the Ni segments in the nanowires, high-yield of pure gold nanorods of predetermined lengths was obtained. Alternatively, the sacrificial Ni segments in the nanowires can be galvanically displaced with Bi and Te to form barbells structures with Bi{sub x}Te{sub y} nanotubes attached to neighbouring gold segments. Detailed studies on the nanostructures obtained were carried out using various microscopy, diffraction and probebased techniques for structural, morphological and chemical characterizations.

  15. Controlled fabrication of nanowire sensors.

    SciTech Connect

    Leonard, Francois

    2007-10-01

    We present a simple top down approach based on nanoimprint lithography to create dense arrays of silicon nanowires over large areas. Metallic contacts to the nanowires and a bottom gate allow the operation of the array as a field-effect transistor with very large on/off ratios. When exposed to ammonia gas or cyclohexane solutions containing nitrobenzene or phenol, the threshold voltage of the field-effect transistor is shifted, a signature of charge transfer between the analytes and the nanowires. The threshold voltage shift is proportional to the Hammett parameter and the concentration of the nitrobenzene and phenol analytes. For the liquid analytes considered, we find binding energies of 400 meV, indicating strong physisorption. Such values of the binding energies are ideal for stable and reusable sensors.

  16. Optical absorption of silicon nanowires

    SciTech Connect

    Xu, T.; Lambert, Y.; Krzeminski, C.; Grandidier, B.; Stievenard, D.; Leveque, G.; Akjouj, A.; Pennec, Y.; Djafari-Rouhani, B.

    2012-08-01

    We report on simulations and measurements of the optical absorption of silicon nanowires (NWs) versus their diameter. We first address the simulation of the optical absorption based on two different theoretical methods: the first one, based on the Green function formalism, is useful to calculate the scattering and absorption properties of a single or a finite set of NWs. The second one, based on the finite difference time domain (FDTD) method, is well-adapted to deal with a periodic set of NWs. In both cases, an increase of the onset energy for the absorption is found with increasing diameter. Such effect is experimentally illustrated, when photoconductivity measurements are performed on single tapered Si nanowires connected between a set of several electrodes. An increase of the nanowire diameter reveals a spectral shift of the photocurrent intensity peak towards lower photon energies that allow to tune the absorption onset from the ultraviolet radiations to the visible light spectrum.

  17. III-Nitride nanowire optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhao, Songrui; Nguyen, Hieu P. T.; Kibria, Md. G.; Mi, Zetian

    2015-11-01

    Group-III nitride nanowire structures, including GaN, InN, AlN and their alloys, have been intensively studied in the past decade. Unique to this material system is that its energy bandgap can be tuned from the deep ultraviolet (~6.2 eV for AlN) to the near infrared (~0.65 eV for InN). In this article, we provide an overview on the recent progress made in III-nitride nanowire optoelectronic devices, including light emitting diodes, lasers, photodetectors, single photon sources, intraband devices, solar cells, and artificial photosynthesis. The present challenges and future prospects of III-nitride nanowire optoelectronic devices are also discussed.

  18. Synthesis and characterization of cadmium telluride nanowire

    NASA Astrophysics Data System (ADS)

    Kum, Maxwell C.; Yoo, Bong Young; Rheem, Young Woo; Bozhilov, Krassimir N.; Chen, Wilfred; Mulchandani, Ashok; Myung, Nosang V.

    2008-08-01

    CdTe nanowires with controlled composition were cathodically electrodeposited using track-etched polycarbonate membrane as scaffolds and their material and electrical properties were systematically investigated. As-deposited CdTe nanowires show nanocrystalline cubic phase structures with grain sizes of up to 60 nm. The dark-field images of nanowires reveal that the crystallinity of nanowires was greatly improved from nanocrystalline to a few single crystals within nanowires upon annealing at 200 °C for 6 h in a reducing environment (5% H2+95% N2). For electrical characterization, a single CdTe nanowire was assembled across microfabricated gold electrodes using the drop-casting method. In addition to an increase in grain size, the electrical resistivity of an annealed single nanowire (a few 105 Ω cm) was one order of magnitude greater than in an as-deposited nanowire, indicating that crystallinity of nanowires improved and defects within nanowires were reduced during annealing. By controlling the dopants levels (e.g. Te content of nanowires), the resistivity of nanowires was varied from 104 to 100 Ω cm. Current-voltage (I-V) characteristics of nanowires indicated the presence of Schottky barriers at both ends of the Au/CdTe interface. Temperature-dependent I-V measurements show that the electron transport mode was determined by a thermally activated component at T>-50 °C and a temperature-independent component below -50 °C. Under optical illumination, the single CdTe nanowire exhibited enhanced conductance.

  19. Functionalization of Mechanochemically Passivated Germanium Nanoparticles via "Click" Chemistry

    NASA Astrophysics Data System (ADS)

    Purkait, Tapas Kumar

    Germanium nanoparticles (Ge NPs) may be fascinating for their electronic and optoelectronic properties, as the band gap of Ge NPs can be tuned from the infrared into the visible range of solar spectru. Further functionalization of those nanoparticles may potentially lead to numerous applications ranging from surface attachment, bioimaging, drug delivery and nanoparticles based devices. Blue luminescent germanium nanoparticles were synthesized from a novel top-down mechanochemical process using high energy ball milling (HEBM) of bulk germanium. Various reactive organic molecules (such as, alkynes, nitriles, azides) were used in this process to react with fresh surface and passivate the surface through Ge-C or Ge-N bond. Various purification process, such as gel permeation chromatography (GPC), Soxhlet dailysis etc. were introduced to purify nanoparticles from molecular impurities. A size separation technique was developed using GPC. The size separated Ge NPs were characterize by TEM, small angle X-ray scattering (SAXS), UV-vis absorption and photoluminescence (PL) emission spectroscopy to investigate their size selective properties. Germanium nanoparticles with alkyne termini group were prepared by HEBM of germanium with a mixture of n-alkynes and alpha, o-diynes. Additional functionalization of those nanoparticles was achieved by copper(I) catalyzed azide-alkyne "click" reaction. A variety of organic and organometallic azides including biologically important glucals have been reacted in this manner resulting in nanopartilces adorned with ferrocenyl, trimethylsilyl, and glucal groups. Additional functionalization of those nanoparticles was achieved by reactions with various azides via a Cu(I) catalyzed azide-alkyne "click" reaction. Various azides, including PEG derivatives and cylcodextrin moiety, were grafted to the initially formed surface. Globular nanoparticle arrays were formed through interparticle linking via "click" chemistry or "host-guest" chemistry

  20. Single crystalline mesoporous silicon nanowires

    SciTech Connect

    Hochbaum, Allon; Dargas, Daniel; Hwang, Yun Jeong; Yang, Peidong

    2009-08-18

    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. The photoluminescence of these nanowires suggest they are composed of crystalline silicon with small enough dimensions such that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices. A better understanding of this electroless route to mesoporous silicon could lead to facile and general syntheses of different narrow bandgap semiconductor nanostructures for various applications.

  1. Multimode Silicon Nanowire Transistors

    PubMed Central

    2014-01-01

    The combined capabilities of both a nonplanar design and nonconventional carrier injection mechanisms are subject to recent scientific investigations to overcome the limitations of silicon metal oxide semiconductor field effect transistors. In this Letter, we present a multimode field effect transistors device using silicon nanowires that feature an axial n-type/intrinsic doping junction. A heterostructural device design is achieved by employing a self-aligned nickel-silicide source contact. The polymorph operation of the dual-gate device enabling the configuration of one p- and two n-type transistor modes is demonstrated. Not only the type but also the carrier injection mode can be altered by appropriate biasing of the two gate terminals or by inverting the drain bias. With a combined band-to-band and Schottky tunneling mechanism, in p-type mode a subthreshold swing as low as 143 mV/dec and an ON/OFF ratio of up to 104 is found. As the device operates in forward bias, a nonconventional tunneling transistor is realized, enabling an effective suppression of ambipolarity. Depending on the drain bias, two different n-type modes are distinguishable. The carrier injection is dominated by thermionic emission in forward bias with a maximum ON/OFF ratio of up to 107 whereas in reverse bias a Schottky tunneling mechanism dominates the carrier transport. PMID:25303290

  2. Multimode silicon nanowire transistors.

    PubMed

    Glassner, Sebastian; Zeiner, Clemens; Periwal, Priyanka; Baron, Thierry; Bertagnolli, Emmerich; Lugstein, Alois

    2014-11-12

    The combined capabilities of both a nonplanar design and nonconventional carrier injection mechanisms are subject to recent scientific investigations to overcome the limitations of silicon metal oxide semiconductor field effect transistors. In this Letter, we present a multimode field effect transistors device using silicon nanowires that feature an axial n-type/intrinsic doping junction. A heterostructural device design is achieved by employing a self-aligned nickel-silicide source contact. The polymorph operation of the dual-gate device enabling the configuration of one p- and two n-type transistor modes is demonstrated. Not only the type but also the carrier injection mode can be altered by appropriate biasing of the two gate terminals or by inverting the drain bias. With a combined band-to-band and Schottky tunneling mechanism, in p-type mode a subthreshold swing as low as 143 mV/dec and an ON/OFF ratio of up to 10(4) is found. As the device operates in forward bias, a nonconventional tunneling transistor is realized, enabling an effective suppression of ambipolarity. Depending on the drain bias, two different n-type modes are distinguishable. The carrier injection is dominated by thermionic emission in forward bias with a maximum ON/OFF ratio of up to 10(7) whereas in reverse bias a Schottky tunneling mechanism dominates the carrier transport. PMID:25303290

  3. High frequency III–V nanowire MOSFETs

    NASA Astrophysics Data System (ADS)

    Lind, Erik

    2016-09-01

    III–V nanowire transistors are promising candidates for very high frequency electronics applications. The improved electrostatics originating from the gate-all-around geometry allow for more aggressive scaling as compared with planar field-effect transistors, and this can lead to device operation at very high frequencies. The very high mobility possible with In-rich devices can allow very high device performance at low operating voltages. GaN nanowires can take advantage of the large band gap for high voltage operation. In this paper, we review the basic physics and device performance of nanowire field- effect transistors relevant for high frequency performance. First, the geometry of lateral and vertical nanowire field-effect transistors is introduced, with special emphasis on the parasitic capacitances important for nanowire geometries. The basic important high frequency transistor metrics are introduced. Secondly, the scaling properties of gate-all-around nanowire transistors are introduced, based on geometric length scales, demonstrating the scaling possibilities of nanowire transistors. Thirdly, to model nanowire transistor performance, a two-band non-parabolic ballistic transistor model is used to efficiently calculate the current and transconductance as a function of band gap and nanowire size. The intrinsic RF metrics are also estimated. Finally, experimental state-of-the-art nanowire field-effect transistors are reviewed and benchmarked, lateral and vertical transistor geometries are explored, and different fabrication routes are highlighted. Lateral devices have demonstrated operation up to 350 GHz, and vertical devices up to 155 GHz.

  4. II-VI nanowire radial heterostructures

    NASA Astrophysics Data System (ADS)

    Kahen, K. B.; Goldthorpe, Irene A.; Holland, M.

    2013-11-01

    There are many reports of ZnSe nanowire synthesis, but photoluminescence measurements on these nanowires indicate weak band-edge and high sub-bandgap defect emission. The two main contributors to the non-optimal photoluminescence are nanowire growth at high temperatures and unpassivated surface states. In this paper, the synthesis of II-VI core-shell nanowires by metal organic vapor phase epitaxy is reported. We demonstrate that larger bandgap shells that passivate the nanowire surface states can be deposited around the nanowires by increasing the partial pressures of the shell reactants without a large increase in growth temperature, allowing high quality material to be obtained. The deposition of nearly lattice-matched ZnMgSSe shells on the ZnSe nanowires increases the band-edge luminescent intensity of the ZnSe nanowires by more than four orders of magnitude and improves the band-edge to defect photoluminescence intensity ratio to 12 000:1. The corresponding full widths at half maximum of the band-edge exciton peaks of the core-shell nanowires can be as narrow as 2.8 nm. It is also shown that magnesium and chlorine can be incorporated into the ZnSe nanowire cores, which shortens the emission wavelength and is known to act as an n-type dopant, respectively.

  5. High frequency III-V nanowire MOSFETs

    NASA Astrophysics Data System (ADS)

    Lind, Erik

    2016-09-01

    III-V nanowire transistors are promising candidates for very high frequency electronics applications. The improved electrostatics originating from the gate-all-around geometry allow for more aggressive scaling as compared with planar field-effect transistors, and this can lead to device operation at very high frequencies. The very high mobility possible with In-rich devices can allow very high device performance at low operating voltages. GaN nanowires can take advantage of the large band gap for high voltage operation. In this paper, we review the basic physics and device performance of nanowire field- effect transistors relevant for high frequency performance. First, the geometry of lateral and vertical nanowire field-effect transistors is introduced, with special emphasis on the parasitic capacitances important for nanowire geometries. The basic important high frequency transistor metrics are introduced. Secondly, the scaling properties of gate-all-around nanowire transistors are introduced, based on geometric length scales, demonstrating the scaling possibilities of nanowire transistors. Thirdly, to model nanowire transistor performance, a two-band non-parabolic ballistic transistor model is used to efficiently calculate the current and transconductance as a function of band gap and nanowire size. The intrinsic RF metrics are also estimated. Finally, experimental state-of-the-art nanowire field-effect transistors are reviewed and benchmarked, lateral and vertical transistor geometries are explored, and different fabrication routes are highlighted. Lateral devices have demonstrated operation up to 350 GHz, and vertical devices up to 155 GHz.

  6. Surface physics of semiconducting nanowires

    NASA Astrophysics Data System (ADS)

    Amato, Michele; Rurali, Riccardo

    2016-02-01

    Semiconducting nanowires (NWs) are firm candidates for novel nanoelectronic devices and a fruitful playground for fundamental physics. Ultra-thin nanowires, with diameters below 10 nm, present exotic quantum effects due to the confinement of the wave functions, e.g. widening of the electronic band-gap, deepening of the dopant states. However, although several reports of sub-10 nm wires exist to date, the most common NWs have diameters that range from 20 to 200 nm, where these quantum effects are absent or play a very minor role. Yet, the research activity on this field is very intense and these materials still promise to provide an important paradigm shift for the design of emerging electronic devices and different kinds of applications. A legitimate question is then: what makes a nanowire different from bulk systems? The answer is certainly the large surface-to-volume ratio. In this article we discuss the most salient features of surface physics and chemistry in group-IV semiconducting nanowires, focusing mostly on Si NWs. First we review the state-of-the-art of NW growth to achieve a smooth and controlled surface morphology. Next we discuss the importance of a proper surface passivation and its role on the NW electronic properties. Finally, stressing the importance of a large surface-to-volume ratio and emphasizing the fact that in a NW the surface is where most of the action takes place, we discuss molecular sensing and molecular doping.

  7. Coupled Array of Superconducting Nanowires

    NASA Astrophysics Data System (ADS)

    Ursache, Andrei

    2005-03-01

    We present experiments that investigate the collective behavior of arrays of superconducting lead nanowires with diameters smaller than the coherence length. The ultrathin (˜15nm) nanowires are grown by pulse electrodeposition into porous self-assembled P(S-b-MMA) diblock copolymer templates. The closely packed (˜24 nm spacing) 1-D superconducting nanowires stand vertically upon a thin normal (Au or Pt) film in a brush-like geometry. Thereby, they are coupled to each other by Andreev reflection at the S-N (Pb-Au) point contact interfaces. Magnetization measurements reveal that the ZFC/FC magnetic response of the coupled array system can be irreversible or reversible, depending on the orientation, perpendicular or parallel, of the applied magnetic field with respect to the coupling plane. As found by electric transport measurements, the coupled array system undergoes an in plane superconducting resistive transition at a temperature smaller than the Tc of an individual nanowire. Current-voltage characteristics throughout the transition region are also discussed. This work was supported by NSF grant DMI-0103024 and DMR-0213695.

  8. Oriented bottom-up growth of armchair graphene nanoribbons on germanium

    DOEpatents

    Arnold, Michael Scott; Jacobberger, Robert Michael

    2016-03-15

    Graphene nanoribbon arrays, methods of growing graphene nanoribbon arrays and electronic and photonic devices incorporating the graphene nanoribbon arrays are provided. The graphene nanoribbons in the arrays are formed using a scalable, bottom-up, chemical vapor deposition (CVD) technique in which the (001) facet of the germanium is used to orient the graphene nanoribbon crystals along the [110] directions of the germanium.

  9. Naturally occurring vapor-liquid-solid (VLS) Whisker growth of germanium sulfide

    USGS Publications Warehouse

    Finkelman, R.B.; Larson, R.R.; Dwornik, E.J.

    1974-01-01

    The first naturally occurring terrestrial example of vapor-liquid-solid (VLS) growth has been observed in condensates from gases released by burning coal in culm banks. Scanning electron microscopy, X-ray diffraction, and energy dispersive analysis indicate that the crystals consist of elongated rods (??? 100 ??m) of germanium sulfide capped by bulbs depleted in germanium. ?? 1974.

  10. Oligogermanes as molecular precursors for germanium(0) nanoparticles: Size control and size-dependent fluorescence

    SciTech Connect

    Schrick, Aaron C.; Weinert, Charles S.

    2013-10-15

    Graphical abstract: Catenated germanium compounds are employed as molecular precursors for germanium(0) nanoparticles. The size of the nanoparticles, and their fluorescence spectra, depend on the number of catenated germanium atoms present in the precursor. - Highlights: • We have used oligogermanes for the size-specific synthesis of germanium(0) nanoparticles. • The size of the nanomaterials obtained depends directly on the degree of catenation present in the oligogermane precursor. • The nanoparticles are shown to exhibit size-dependent fluorescence. • Oligogermanes will function as useful precursors for the synthesis of a variety of nanomaterials. - Abstract: Germanium nanoparticles were synthesized in solution from novel oligogermane molecular precursors. The size of the nanoparticles obtained is directly related to the number of catenated germanium atoms present in the oligogermane precursor and the nanoparticles exhibit size-dependent fluorescence. The germanium nanoparticles were also characterized by TEM, powder XRD, FTIR, EDS and XPS methods. This method appears to be a promising new route for the synthesis of germanium nanoparticles since the size of the materials obtained can be controlled by the choice of the oligogermane used as the precursor.

  11. Internal stresses and dislocation structure of large single crystals of germanium for IR optics

    NASA Astrophysics Data System (ADS)

    Kaplunov, I. A.

    2006-02-01

    The thermoelastic stresses that appear during crystallization have been theoretically estimated for single crystals of germanium grown in the shape of a disk. It is shown that there is a correlation between the stress distribution and the dislocation structure of large single crystals of germanium obtained by the Stepanov method and by directed crystallization.

  12. TOPICAL REVIEW: DNA nanowire fabrication

    NASA Astrophysics Data System (ADS)

    Gu, Qun; Cheng, Chuanding; Gonela, Ravikanth; Suryanarayanan, Shivashankar; Anabathula, Sathish; Dai, Kun; Haynie, Donald T.

    2006-01-01

    Deoxyribonucleic acid (DNA) has been a key building block in nanotechnology since the earliest work on what is now called DNA-templated self-assembly (Alivisatos et al 1996 Nature 382 609; Mirkin et al 1996 Nature 382 607; Braun et al 1998 Nature 391 775). A range of different nanoparticles and nanoclusters have been assembled on single DNA molecules for a variety of purposes (Braun et al 1998 Nature 391 775; Richter et al 2001 Appl. Phys. Lett. 78 536; Park et al 2002 Science 295 1503; Mirkin 2000 Inorg. Chem. 39 2258; Keren et al 2003 Science 302 1380). Electrically conductive silver (Braun et al 1998 Nature 391 775) and palladium (Richter et al 2001 Appl. Phys. Lett. 78 536) nanowires, for example, have been fabricated by DNA templating for the development of interconnection of nanoelectric elements, and field effect transistors have been built by assembly of a single carbon nanotube and DNA-templated nanowires (Keren et al 2003 Science 302 1380). DNA is well suited for nanowire assembly because of its size, well organized structure, and exquisite molecular-recognition-ability-specific base pairing. This property has been used to detect nucleic acids (Park et al 2002 Science 295 1503) and anthrax (Mirkin 2000 Inorg. Chem. 39 2258) with high sensitivity and specificity. Molecular recognition can also be used to localize nanowires in electronics. Various methods, for example molecular combing, electrophoretic stretching, and hydrodynamic stretching, have been developed to orient DNA molecules on a solid support. This review focuses on methods used to manipulate and metallize DNA in nanowire fabrication. A novel approach based on a single-stranded DNA template and molecular recognition is also discussed.

  13. Synthesis and Characterization of Nanowires

    SciTech Connect

    Musket, R.G.; Felter, T.; Quong, A.

    2000-03-01

    With the dimensions of components in microelectronic circuits shrinking, the phenomena associated with electronic conduction through wires and with device operation can be expected to change. For example, as the length of electrical conductors is reduced, ballistic transport will become the main mode of conduction. Sufficient reduction in the cross sectional area of conductors can lead to quantum confinement effects. Prior knowledge of the phenomena associated with decreasing size should help guide the designers of future, smaller devices in terms of geometry and materials. However, prior knowledge requires the availability of sufficiently small nanowires for experiments. To date, the smallest nanowires that have been fabricated and investigated had diameters of 8 nm. We propose to extend the investigation of these size-related phenomena by synthesizing, using a novel version of nuclear, or ion, track lithography and characterizing, physically and electrically, nanowires with diameters D of 1 to 5 nm and lengths L of 2 to 250 nm. Thus, by varying the dimensions of the nanowires, we will be able to determine experimentally when the ideas of macroscopic conductance break down and the conductance becomes dominated by quantum and ballistic effects. In our approach the nature of the small-diameter nanostructure formed can be controlled: Nanowires are formed when L/D is large, and quantum dots are formed when both L and D are small. Theoretical calculations will be performed to both guide and understand the experimental studies. We have examined several aspects of this challenging problem and generated some promising results, but the project was not extended for the second year as planned. Thus, we did not have sufficient resources to complete the proof of concept.

  14. Bacterial Nanowires Facilitate Extracellular Electron Transfer

    NASA Astrophysics Data System (ADS)

    Gorby, Y.

    2005-12-01

    Dissimilatory metal reducing bacteria, including Shewanella oneidensis and Geobacter sulfurreducens, produce electrically conductive nanowires that facilitate electron transfer to solid phase iron oxides. Nanowires produced by S. oneidensis strain MR-1 are functionalized by decaheme cytochromes MtrC and OmcA that are distributed along the length of the nanowires, as confirmed by immunolocalization experiments using peptide specific antibodies. Mutants lacking MtrC and OmcA produce nanowires that were poorly conductive, are unable to reduce solid phase iron oxides, and do not produce electric current in microbial fuel cells. Although less completely characterized, nanowires are also produced by organisms throughout a broad metabolic spectrum, from sulfate reducing bacteria to oxygenic, phototrophic cyanobacteria. Our research suggests that electrically conductive nanowires may be common throughout the microbial world and may serve as structures for efficient electron transfer and energy dissemination in complex communities such as microbial mats and biofilms.

  15. Thermoporometry characterization of silica microparticles and nanowires.

    PubMed

    Wu, Jiaxin; Zheng, Han; Cheng, He; Zhou, L; Leong, K C; Rajagopalan, R; Too, H P; Choi, W K

    2014-03-01

    We present the results of a systematic study on the porosity of silica microparticles and nanowires prepared by glancing angle deposition-metal-assisted chemical etching (GLAD-MACE) and interference lithography-metal-assisted chemical etching (IL-MACE) techniques using the thermoporometry (TPM) method. Good agreement was obtained between our TPM results and published data provided by the suppliers of silica microparticles. TPM characterization of the GLAD-MACE and IL-MACE nanowires was carried out on the basis of parameters obtained from TPM experiments on microparticles. Our nanowires showed a similar trend but lower values of the pore volume and surface area than nanowires prepared by MACE with AgNO3 solution. We attribute the enhanced bioanalysis performance of the GLAD-MACE nanowires based devices to the increased pore volume and total surface area of the nanowires.

  16. Photocatalytic Properties of Porous Silicon Nanowires.

    PubMed

    Qu, Yongquan; Zhong, Xing; Li, Yujing; Liao, Lei; Huang, Yu; Duan, Xiangfeng

    2010-01-01

    Porous silicon nanowires are synthesized through metal assisted wet-chemical etch of highly-doped silicon wafer. The resulted porous silicon nanowires exhibit a large surface area of 337 m(2)·g(-1) and a wide spectrum absorption across the entire ultraviolet, visible and near infrared regime. We further demonstrate that platinum nanoparticles can be loaded onto the surface of the porous silicon nanowires with controlled density. These combined advancements make the porous silicon nanowires an interesting material for photocatalytic applications. We show that the porous silicon nanowires and platinum nanoparticle loaded porous silicon nanowires can be used as effective photocatalysts for photocatalytic degradation of organic dyes and toxic pollutants under visible irradiation, and thus are of significant interest for organic waste treatment and environmental remediation.

  17. Chalcogenide nanowires by evaporation-condensation

    SciTech Connect

    Johnson, Bradley R.; Schweiger, Michael J.; Sundaram, S. K.

    2005-02-02

    Chalcogenide (arsenic sulfide) nanowires have been successfully synthesized from As2S3 under near-equilibrium conditions via evaporation-condensation process in evacuated glass ampoules. The as-synthesized nanowires were pure, nearly stoichiometric, and amorphous. The nanowires had diameters ranging from 40 to 140 nm and lengths up to a few millimeters. Distinct joints of the crisscrossing nanowires indicate potential for forming structural networks. They have been characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), Raman spectroscopy, and X-ray diffraction (XRD) to determine their structure, composition, and morphology. Selected area diffraction (SAD) in the TEM and XRD confirmed their amorphous nature. The As-S nanowires could make an ideal system for understanding the carrier transport and photonic properties in nanoscale for this family of materials (IV-V compounds). Chalcogenide nanowires show promise for integrated nanoelectronics and biophotonics.

  18. Bandgap-customizable germanium using lithographically determined biaxial tensile strain for silicon-compatible optoelectronics.

    PubMed

    Sukhdeo, David S; Nam, Donguk; Kang, Ju-Hyung; Brongersma, Mark L; Saraswat, Krishna C

    2015-06-29

    Strain engineering has proven to be vital for germanium-based photonics, in particular light emission. However, applying a large permanent biaxial tensile strain to germanium has been a challenge. We present a simple, CMOS-compatible technique to conveniently induce a large, spatially homogenous strain in circular structures patterned within germanium nanomembranes. Our technique works by concentrating and amplifying a pre-existing small strain into a circular region. Biaxial tensile strains as large as 1.11% are observed by Raman spectroscopy and are further confirmed by photoluminescence measurements, which show enhanced and redshifted light emission from the strained germanium. Our technique allows the amount of biaxial strain to be customized lithographically, allowing the bandgaps of different germanium structures to be independently customized in a single mask process.

  19. Adhesion and friction behavior of group 4 elements germanium, silicon, tin, and lead

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1975-01-01

    Adhesion and friction studies were conducted with thin films of the group IV elements silicon, germanium, tin, and lead ion plated on the nickel (011) substrate. The mating surface was gold (111). Contacts were made for the elements in the clean state and with oxygen present. Adhesion and friction experiments were conducted at very light loads of 1 to 10 g. Sliding was at a speed of 0.7 mm/min. Friction results indicate that the more covalently bonded elements silicon and germanium exhibit lower adhesion and friction than the more metallic bonded tin and lead. The adhesion of gold to germanium was observed, and recrystallization of the transferred gold occurred. Plastic flow of germanium was seen with sliding. Oxygen reduced, but did not eliminate, the adhesion observed with germanium and silicon.

  20. Nanoindentation-induced phase transformation and structural deformation of monocrystalline germanium: a molecular dynamics simulation investigation

    PubMed Central

    2013-01-01

    Molecular dynamics simulations were conducted to study the nanoindentation of monocrystalline germanium. The path of phase transformation and distribution of transformed region on different crystallographic orientations were investigated. The results indicate the anisotropic behavior of monocrystalline germanium. The nanoindentation-induced phase transformation from diamond cubic structure to β-tin-Ge was found in the subsurface region beneath the tool when indented on the (010) plane, while direct amorphization was observed in the region right under the indenter when the germanium was loaded along the [101] and [111] directions. The transformed phases extend along the < 110 > slip direction of germanium. The depth and shape of the deformed layers after unloading are quite different according to the crystal orientation of the indentation plane. The study results suggest that phase transformation is the dominant mechanism of deformation of monocrystalline germanium film in nanoindentation. PMID:23947487

  1. Suspended germanium cross-shaped microstructures for enhancing biaxial tensile strain

    NASA Astrophysics Data System (ADS)

    Ishida, Satomi; Kako, Satoshi; Oda, Katsuya; Ido, Tatemi; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2016-04-01

    We fabricate a suspended germanium cross-shaped microstructure to biaxially enhance residual tensile strain using a germanium epilayer directly grown on a silicon-on-insulator substrate. Such a suspended germanium system with enhanced biaxial tensile strain will be a promising platform for incorporating optical cavities toward the realization of germanium lasers. We demonstrate systematic control over biaxial tensile strain and photoluminescence peaks by changing structural geometry. The photoluminescence peaks corresponding to the direct recombination between the conduction Γ valley and two strain-induced separated valence bands have been clearly assigned. A maximum biaxial strain of 0.8% has been achieved, which is almost half of that required to transform germanium into a direct band-gap semiconductor.

  2. Germanium Lift-Off Masks for Thin Metal Film Patterning

    NASA Technical Reports Server (NTRS)

    Brown, Ari

    2012-01-01

    A technique has been developed for patterning thin metallic films that are, in turn, used to fabricate microelectronics circuitry and thin-film sensors. The technique uses germanium thin films as lift-off masks. This requires development of a technique to strip or undercut the germanium chemically without affecting the deposited metal. Unlike in the case of conventional polymeric lift-off masks, the substrate can be exposed to very high temperatures during processing (sputter deposition). The reason why polymeric liftoff masks cannot be exposed to very high temperatures (greater than 100 C) is because (a) they can become cross linked, making lift-off very difficult if not impossible, and (b) they can outgas nitrogen and oxygen, which then can react with the metal being deposited. Consequently, this innovation is expected to find use in the fabrication of transition edge sensors and microwave kinetic inductance detectors, which use thin superconducting films deposited at high temperature as their sensing elements. Transition edge sensors, microwave kinetic inductance detectors, and their circuitry are comprised of superconducting thin films, for example Nb and TiN. Reactive ion etching can be used to pattern these films; however, reactive ion etching also damages the underlying substrate, which is unwanted in many instances. Polymeric lift-off techniques permit thin-film patterning without any substrate damage, but they are difficult to remove and the polymer can outgas during thin-film deposition. The outgassed material can then react with the film with the consequence of altered and non-reproducible materials properties, which, in turn, is deleterious for sensors and their circuitry. The purpose of this innovation was to fabricate a germanium lift-off mask to be used for patterning thin metal films.

  3. Temperature-dependent Refractive Index of Silicon and Germanium

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.; Madison, Timothy J.

    2006-01-01

    Silicon and germanium are perhaps the two most well-understood semiconductor materials in the context of solid state device technologies and more recently micromachining and nanotechnology. Meanwhile, these two materials are also important in the field of infrared lens design. Optical instruments designed for the wavelength range where these two materials are transmissive achieve best performance when cooled to cryogenic temperatures to enhance signal from the scene over instrument background radiation. In order to enable high quality lens designs using silicon and germanium at cryogenic temperatures, we have measured the absolute refractive index of multiple prisms of these two materials using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, as a function of both wavelength and temperature. For silicon, we report absolute refractive index and thermo-optic coefficient (dn/dT) at temperatures ranging from 20 to 300 K at wavelengths from 1.1 to 5.6 pin, while for germanium, we cover temperatures ranging from 20 to 300 K and wavelengths from 1.9 to 5.5 microns. We compare our measurements with others in the literature and provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures. Citing the wide variety of values for the refractive indices of these two materials found in the literature, we reiterate the importance of measuring the refractive index of a sample from the same batch of raw material from which final optical components are cut when absolute accuracy greater than k5 x 10" is desired.

  4. Organophosphorous modifications of multifunctional magnetic nanowires.

    PubMed

    Kalska-Szostko, B; Orzechowska, E; Wykowska, U

    2013-11-01

    In the presented study, efforts have been undertaken to obtain the magnetic nanowires of multisegmental internal structure by AC and DC electrodeposition methods. The core-shell nanowires were obtained by wetting chemical deposition followed by thermal crystallization and electrodeposition. Such nanowires were tested to obtain functionalization by organophosphorous compounds and finally immobilize enzymes like trypsin. All obtained nanostructures were tested by X-ray diffraction, infrared spectroscopy and transmission electron microscopy.

  5. Gallium-doped germanium, evaluation of photoconductors, part 1

    NASA Technical Reports Server (NTRS)

    Moore, W. J.

    1979-01-01

    Gallium-doped germanium far infrared detectors were evaluated at low temperatures and low background simulating the space environment. Signal and noise characteristics were determined for detector temperatures in the 2K to 4K range. Optimum performance occurs at about 2.5K for all devices tested. The minimum average NEP in the 40-130 micron region was found to be approximately 4 x 10 to the minus 17th power watt Hz(-1/2) at a frequency of 1 Hz.

  6. Effect on magnetic properties of germanium encapsulated C60 fullerene

    NASA Astrophysics Data System (ADS)

    Umran, Nibras Mossa; Kumar, Ranjan

    2013-02-01

    Structural and electronic properties of Gen(n = 1-4) doped C60 fullerene are investigated with ab initio density functional theory calculations by using an efficient computer code, known as SIESTA. The pseudopotentials are constructed using a Trouiller-Martins scheme, to describe the interaction of valence electrons with the atomic cores. In endohedral doped embedding of more germanium atoms complexes we have seen that complexes are stable and thereafter cage break down. We have also investigated that binding energy, electronic affinity increases and magnetic moment oscillating behavior as the number of semiconductor atoms in C60 fullerene goes on increasing.

  7. Interstitial-Mediated Diffusion in Germanium under Proton Irradiation

    NASA Astrophysics Data System (ADS)

    Bracht, H.; Schneider, S.; Klug, J. N.; Liao, C. Y.; Hansen, J. Lundsgaard; Haller, E. E.; Larsen, A. Nylandsted; Bougeard, D.; Posselt, M.; Wündisch, C.

    2009-12-01

    We report experiments on the impact of 2.5 MeV proton irradiation on self-diffusion and dopant diffusion in germanium (Ge). Self-diffusion under irradiation reveals an unusual depth independent broadening of the Ge isotope multilayer structure. This behavior and the observed enhanced diffusion of B and retarded diffusion of P demonstrates that an interstitial-mediated diffusion process dominates in Ge under irradiation. This fundamental finding opens up unique ways to suppress vacancy-mediated diffusion in Ge and to solve the donor deactivation problem that hinders the fabrication of Ge-based nanoelectronic devices.

  8. A miniature temperature high germanium doped PCF interferometer sensor.

    PubMed

    Favero, F C; Spittel, R; Just, F; Kobelke, J; Rothhardt, M; Bartelt, H

    2013-12-16

    We report in this paper a high thermal sensitivity (78 pm/°C) modal interferometer using a very short Photonic Crystal Fiber stub with a shaped Germanium doped core. The Photonic Crystal Fiber is spliced between two standard fibers. The splice regions allow the excitation of the core and cladding modes in the PCF and perform an interferometric interaction of such modes. The device is proposed for sensitive temperature measurements in transmission, as well as in reflection operation mode with the same high temperature sensitivity.

  9. Ultra-low noise mechanically cooled germanium detector

    NASA Astrophysics Data System (ADS)

    Barton, P.; Amman, M.; Martin, R.; Vetter, K.

    2016-03-01

    Low capacitance, large volume, high purity germanium (HPGe) radiation detectors have been successfully employed in low-background physics experiments. However, some physical processes may not be detectable with existing detectors whose energy thresholds are limited by electronic noise. In this paper, methods are presented which can lower the electronic noise of these detectors. Through ultra-low vibration mechanical cooling and wire bonding of a CMOS charge sensitive preamplifier to a sub-pF p-type point contact HPGe detector, we demonstrate electronic noise levels below 40 eV-FWHM.

  10. Resonance-enhanced waveguide-coupled silicon-germanium detector

    NASA Astrophysics Data System (ADS)

    Alloatti, L.; Ram, R. J.

    2016-02-01

    A photodiode with 0.55 ± 0.1 A/W responsivity at a wavelength of 1176.9 nm has been fabricated in a 45 nm microelectronics silicon-on-insulator foundry process. The resonant waveguide photodetector exploits carrier generation in silicon-germanium within a microring which is compatible with high-performance electronics. A 3 dB bandwidth of 5 GHz at -4 V bias is obtained with a dark current of less than 20 pA.

  11. Three holes bound to a double acceptor - Be(+) in germanium

    NASA Technical Reports Server (NTRS)

    Haller, E. E.; Mcmurray, R. E., Jr.; Falicov, L. M.; Haegel, N. M.; Hansen, W. L.

    1983-01-01

    A double acceptor binding three holes has been observed for the first time with photoconductive far-infrared spectroscopy in beryllium-doped germanium single crystals. This new center, Be(+), has a hole binding energy of about 5 meV and is only present when free holes are generated by ionization of either neutral shallow acceptors or neutral Be double acceptors. The Be(+) center thermally ionizes above 4 K. It disappears at a uniaxial stress higher than about a billion dyn/sq cm parallel to (111) as a result of the lifting of the valence-band degeneracy.

  12. Preparation of freestanding germanium nanocrystals by ultrasonic aerosol pyrolysis

    NASA Astrophysics Data System (ADS)

    Stoldt, Conrad R.; Haag, Michael A.; Larsen, Brian A.

    2008-07-01

    This letter reports a synthetic route adaptable for the continuous, large-scale production of germanium (Ge) nanocrystals for emerging electronic and optoelectronic applications. Using an ultrasonic aerosol pyrolysis approach, diamond cubic Ge nanocrystals with dense, spherical morphologies and sizes ranging from 3to14nm are synthesized at 700°C from an ultrasonically generated aerosol of tetrapropylgermane (TPG) precursor and toluene solvent. The ultimate crystal size demonstrates a near linear relationship within the range of TPG concentrations investigated, while the shape of the measured size distributions predicts multiple particle formation mechanisms during aerosol decomposition and condensation.

  13. Infrared absorption study of neutron-transmutation-doped germanium

    NASA Technical Reports Server (NTRS)

    Park, I. S.; Haller, E. E.

    1988-01-01

    Using high-resolution far-infrared Fourier transform absorption spectroscopy and Hall effect measurements, the evolution of the shallow acceptor and donor impurity levels in germanium during and after the neutron transmutation doping process was studied. The results show unambiguously that the gallium acceptor level concentration equals the concentration of transmutated Ge-70 atoms during the whole process indicating that neither recoil during transmutation nor gallium-defect complex formation play significant roles. The arsenic donor levels appear at full concentration only after annealing for 1 h at 450 C. It is shown that this is due to donor-radiation-defect complex formation. Again, recoil does not play a significant role.

  14. Germanium wrap-around photodetectors on Silicon photonics.

    PubMed

    Going, Ryan; Seok, Tae Joon; Loo, Jodi; Hsu, Kyle; Wu, Ming C

    2015-05-01

    We present a novel waveguide coupling scheme where a germanium diode grown via rapid melt growth is wrapped around a silicon waveguide. A 4 fF PIN photodiode is demonstrated with 0.95 A/W responsivity at 1550 nm, 6 nA dark current, and nearly 9 GHz bandwidth. Devices with shorter intrinsic region exhibit higher bandwidth (30 GHz) and slightly lower responsivity (0.7 A/W). An NPN phototransistor is also demonstrated using the same design with 14 GHz f(T). PMID:25969287

  15. Surfactant-Templated Mesoporous Metal Oxide Nanowires

    DOE PAGES

    Luo, Hongmei; Lin, Qianglu; Baber, Stacy; Naalla, Mahesh

    2010-01-01

    We demore » monstrate two approaches to prepare mesoporous metal oxide nanowires by surfactant assembly and nanoconfinement via sol-gel or electrochemical deposition. For example, mesoporous Ta 2 O 5 and zeolite nanowires are prepared by block copolymer Pluronic 123-templated sol-gel method, and mesoporous ZnO nanowires are prepared by electrodeposition in presence of anionic surfactant sodium dodecyl sulfate (SDS) surfactant, in porous membranes. The morphologies of porous nanowires are studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses.« less

  16. Electrochemically grown single-nanowire sensors

    NASA Astrophysics Data System (ADS)

    Yun, Minhee; Lee, Choonsup; Vasquez, Richard P.; Penner, Reginald M.; Bangar, Mangesh; Mulchandani, Ashok; Myung, Nosang V.

    2004-12-01

    We report a fabrication technique that is potentially capable of producing arrays of individually addressable nanowire sensors with controlled dimensions, positions, alignments, and chemical compositions. The concept has been demonstrated with electrodeposition of palladium wires with 75 nm to 350 nm widths. We have also fabricated single and double conducting polymer nanowires (polyaniline and polypyrrole) with 100nm and 200nm widths using electrochemical direct growth. Using single Pd nanowires, we have also demonstrated hydrogen sensing. It is envisioned that these are the first steps towards nanowire sensor arrays capable of simultaneously detecting multiple chemical species.

  17. Maskless electrodeposited contact for conducting polymer nanowires

    NASA Astrophysics Data System (ADS)

    Hangarter, Carlos M.; Bangar, Mangesh; Hernandez, Sandra C.; Chen, Wilfred; Deshusses, Marc A.; Mulchandani, Ashok; Myung, Nosang V.

    2008-02-01

    This letter reports a simple and scalable method to create mechanical joints and electrical contacts of conducting polymer nanowires to electrodes by selective maskless metal electrodeposition on electrodes. This is an attractive route for contacting nanowires as it bypasses harsh processing conditions of conventional methods. The electrodeposition conditions and initial resistance of the nanowires were found to have a significant impact on the selective maskless deposition. Different dopants were also investigated to understand the polymer reduction during cathodic deposition of metal. A single dodecyl sulfate doped polypyrrole nanowire with maskless electrodeposited nickel contacts was shown to have improved sensitivity toward ammonia gas.

  18. Constricted nanowire with stabilized magnetic domain wall

    NASA Astrophysics Data System (ADS)

    Sbiaa, R.; Al Bahri, M.

    2016-08-01

    Domain wall (DW)-based magnetic memory offers the possibility for increasing the storage capacity. However, stability of DW remains the major drawback of this scheme. In this letter, we propose a stepped nanowire for pinning DW in a desirable position. From micromagnetic simulation, the proposed design applied to in-plane magnetic anisotropy materials shows that by adjusting the nanowire step size and its width it is possible to stabilize DW for a desirable current density range. In contrast, only a movement of DW could be seen for conventional nanowire. An extension to a multi-stepped nanowire could be used for multi-bit per cell magnetic memory.

  19. Enhanced ionized impurity scattering in nanowires

    NASA Astrophysics Data System (ADS)

    Oh, Jung Hyun; Lee, Seok-Hee; Shin, Mincheol

    2013-06-01

    The electronic resistivity in silicon nanowires is investigated by taking into account scattering as well as the donor deactivation from the dielectric mismatch. The effects of poorly screened dopant atoms from the dielectric mismatch and variable carrier density in nanowires are found to play a crucial role in determining the nanowire resistivity. Using Green's function method within the self-consistent Born approximation, it is shown that donor deactivation and ionized impurity scattering combined with the charged interface traps successfully to explain the increase in the resistivity of Si nanowires while reducing the radius, measured by Björk et al. [Nature Nanotech. 4, 103 (2009)].

  20. Diluted magnetic semiconductor nanowires exhibiting magnetoresistance

    DOEpatents

    Yang, Peidong; Choi, Heonjin; Lee, Sangkwon; He, Rongrui; Zhang, Yanfeng; Kuykendal, Tevye; Pauzauskie, Peter

    2011-08-23

    A method for is disclosed for fabricating diluted magnetic semiconductor (DMS) nanowires by providing a catalyst-coated substrate and subjecting at least a portion of the substrate to a semiconductor, and dopant via chloride-based vapor transport to synthesize the nanowires. Using this novel chloride-based chemical vapor transport process, single crystalline diluted magnetic semiconductor nanowires Ga.sub.1-xMn.sub.xN (x=0.07) were synthesized. The nanowires, which have diameters of .about.10 nm to 100 nm and lengths of up to tens of micrometers, show ferromagnetism with Curie temperature above room temperature, and magnetoresistance up to 250 Kelvin.

  1. Intrinsic germanium detector used in borehole sonde for uranium exploration

    USGS Publications Warehouse

    Senftle, F.E.; Moxham, R.M.; Tanner, A.B.; Boynton, G.R.; Philbin, P.W.; Baicker, J.A.

    1976-01-01

    A borehole sonde (~1.7 m long; 7.3 cm diameter) using a 200 mm2 planar intrinsic germanium detector, mounted in a cryostat cooled by removable canisters of frozen propane, has been constructed and tested. The sonde is especially useful in measuring X- and low-energy gamma-ray spectra (40–400 keV). Laboratory tests in an artificial borehole facility indicate its potential for in-situ uranium analyses in boreholes irrespective of the state of equilibrium in the uranium series. Both natural gamma-ray and neutron-activation gamma-ray spectra have been measured with the sonde. Although the neutron-activation technique yields greater sensitivity, improvements being made in the resolution and efficiency of intrinsic germanium detectors suggest that it will soon be possible to use a similar sonde in the passive mode for measurement of uranium in a borehole down to about 0.1% with acceptable accuracy. Using a similar detector and neutron activation, the sonde can be used to measure uranium down to 0.01%.

  2. Reduction of phosphorus diffusion in germanium by fluorine implantation

    NASA Astrophysics Data System (ADS)

    El Mubarek, H. A. W.

    2013-12-01

    The control of phosphorus (P) diffusion in germanium (Ge) is essential for the realisation of ultrashallow n-type junctions in Ge. This work reports a detailed study of the effect of fluorine (F) co-implantation on P diffusion in Ge. P and F profiles were characterized by secondary ion mass spectroscopy. The ion implantation damage was investigated using cross sectional transmission electron microscopy. It is shown that F co-implantation reduces the implanted P profile width and reduces both intrinsic and extrinsic P diffusion in Ge. A defect mediated mechanism for the strong influence of F co-implantation on P diffusion in Ge is proposed and invokes the formation of FnVm clusters in the F-amorphized Ge layer. A fraction of these FnVm clusters decorate the interstitial type end-of-range defects in the re-grown Ge layer and the rest react during re-growth with interstitial germanium atoms diffusing back from the amorphous crystalline interface. The Ge vacancies are then annihilated and mobile interstitial F is released and out diffuses from the surface. This results in a re-grown Ge layer which has a low vacancy concentration and in which the P diffusion rate is reduced. These results open the way to the realization of enhanced Ge n-type devices.

  3. Materials and Fabrication Issues for Large Machined Germanium Immersion Gratings

    SciTech Connect

    Kuzmenko, P J; Davis, P J; Little, S L; Hale, L C

    2006-05-22

    LLNL has successfully fabricated small (1.5 cm{sup 2} area) germanium immersion gratings. We studied the feasibility of producing a large germanium immersion grating by means of single point diamond flycutting. Our baseline design is a 63.4o blaze echelle with a 6 cm beam diameter. Birefringence and refractive index inhomogeneity due to stresses produced by the crystal growth process are of concern. Careful selection of the grating blank and possibly additional annealing to relieve stress will be required. The Large Optics Diamond Turning Machine (LODTM) at LLNL is a good choice for the fabrication. It can handle parts up to 1.5 meter in diameter and 0.5 meter in length and is capable of a surface figure accuracy of better than 28 nm rms. We will describe the machine modifications and the machining process for a large grating. A next generation machine, the Precision Optical Grinder and Lathe (POGAL), currently under development has tighter specifications and could produce large gratings with higher precision.

  4. Initial Component Testing for a Germanium Array Cryostat

    SciTech Connect

    Keillor, Martin E.; Aalseth, Craig E.; Day, Anthony R.; Fast, James E.; Hoppe, Eric W.; Hyronimus, Brian J.; Hossbach, Todd W.; Seifert, Allen

    2009-06-01

    This report describes progress on the construction of two ultra-low-background cryostats that are part of the NA-22 funded “Radionuclide Laboratories” (RN Labs) project. Each cryostat will house seven high-purity germanium crystals (HPGe). These cryostats are being built from a limited set of materials that are known to have very low levels of radioactive impurities. The RN Labs instrument is designed to take advantage of low background performance, high detection efficiency, and γ-γ coincidence signatures to provide unprecedented gamma spectroscopy sensitivity. The project is focused on improving gamma analysis capabilities for nuclear detonation detection (NDD) applications. The instrument also has the potential for basic nuclear physics research. Section 1 provides the background for the project. Section 2 discusses germanium crystal acceptance testing. Design problems were found after the first delivery of new detectors from the vendor, Canberra Semiconductors. The first four crystals were returned for repair, resulting in a delay in crystal procurement. Section 3 provides an update on copper electroforming. In general, electroforming parts for RN Labs has proceeded smoothly, but there have been recent problems in electroforming three large copper parts necessary for the project. Section 4 describes the first round of testing for the instrument: anti-cosmic scintillator testing, electronics testing, and initial vacuum testing. Section 5 concludes with an overall description of the state of the project and challenges that remain.

  5. Background Reduction For Germanium Double Beta Decay Experiments

    SciTech Connect

    Gomez, H.; Cebrian, S.; Morales, J.; Villar, J. A.

    2007-03-28

    The new generation experiments to search for the neutrinoless double beta decay of 76Ge (Q{beta}{beta}=2039keV) using enriched germanium detectors, need to reach a background level of {approx}10-3 c keV-1 kg-1 y-1 in the Region of Interest (RoI: 2-2.1 MeV) that would have, for 70 kg of germanium enriched to 86% in 76Ge, 3 keV of FWHM and 5 years of measuring time, a sensitivity on the effective neutrino mass of {<=} 40 meV. To reduce the background level close to the value needed, we have to combine several techniques. Three of the most important points to study are: segmentation and granularity of the crystal and spatial resolution of the detector directly correlated with an offline Pulse Shape Analysis (PSA). Preliminary studies about these strategies for background reduction were developed during last months, obtaining some promising results.

  6. Evaluating a new segmented germanium detector contact technology

    NASA Astrophysics Data System (ADS)

    Jackson, E. G.; Lister, C. J.; Chowdhury, P.; Hull, E.; Pehl, R.

    2012-10-01

    New technologies for making gamma ray detectors position sensitive have many applications in space science, medical imaging, homeland security, and in nuclear structure research. One promising approach uses high-purity germanium wafers with the planar surfaces segmented into orthogonal strip patterns forming a Double-Sided Strip Detector (DSSD). The combination of data from adjoining strips, or pixels, is physics-rich for Compton image formation and polarization studies. However, sensitivity to charge loss and various kinds of cross-talk [1] have limited the usefulness of first generation devices. We are investigating new contact technologies, developed by PhDs Co [2], based on amorphous-germanium and yttrium contacts RF sputter deposited to a thickness of ˜ 1000 å. New techniques allow both physical and photolithographic segmentation of the contacts with inter-strip gap widths of 0.25 mm. These modifications should improve all aspects of charge collection. The new detector technology employs the same material and fabrication technique for both the n- and p- contacts, thus removing artificial asymmetry in the data. Results from tests of cross-talk, charge collection, and scattering asymmetry will be presented and compared with older technologies. This mechanically cooled counter, NP-7, seems to represent a breakthrough.[4pt] [1] S. Gros et al., Nucl. Inst. Meth. A 602, 467 (2009).[0pt] [2] E. Hull et al Nucl Inst Meth A 626, 39 (2011)

  7. Reduction of phosphorus diffusion in germanium by fluorine implantation

    SciTech Connect

    El Mubarek, H. A. W.

    2013-12-14

    The control of phosphorus (P) diffusion in germanium (Ge) is essential for the realisation of ultrashallow n-type junctions in Ge. This work reports a detailed study of the effect of fluorine (F) co-implantation on P diffusion in Ge. P and F profiles were characterized by secondary ion mass spectroscopy. The ion implantation damage was investigated using cross sectional transmission electron microscopy. It is shown that F co-implantation reduces the implanted P profile width and reduces both intrinsic and extrinsic P diffusion in Ge. A defect mediated mechanism for the strong influence of F co-implantation on P diffusion in Ge is proposed and invokes the formation of F{sub n}V{sub m} clusters in the F-amorphized Ge layer. A fraction of these F{sub n}V{sub m} clusters decorate the interstitial type end-of-range defects in the re-grown Ge layer and the rest react during re-growth with interstitial germanium atoms diffusing back from the amorphous crystalline interface. The Ge vacancies are then annihilated and mobile interstitial F is released and out diffuses from the surface. This results in a re-grown Ge layer which has a low vacancy concentration and in which the P diffusion rate is reduced. These results open the way to the realization of enhanced Ge n-type devices.

  8. Crystal Growth of Germanium-Silicon Alloys on the ISS

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.; Croell, A.

    2015-01-01

    A series of Ge(1-x)Si(x) crystal growth experiments are planned to be conducted in the Low Gradient Furnace (LGF) onboard the International Space Station. The experiments are part of the investigation "Influence of Containment on the Growth of Silicon-Germanium" (ICESAGE). The primary objective of the research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon alloy crystals. A comparison will be made between crystals grown by the normal and "detached" Bridgman methods and the ground-based float zone technique. Crystals grown without being in contact with a container have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in crystals. "Detached" or "dewetted" Bridgman growth is similar to regular Bridgman growth in that most of the melt is in contact with the crucible wall, but the crystal is separated from the wall by a small gap, typically of the order of 10-100 microns. Long duration reduced gravity is essential to test the proposed theory of detached growth. Detached growth requires the establishment of a meniscus between the crystal and the ampoule wall. This meniscus can exist over a much larger range of processing parameters in microgravity and the meniscus is more stable under microgravity conditions. The plans for the flight experiments will be described.

  9. Germanium as an integrated resistor material in RF MEMS switches

    NASA Astrophysics Data System (ADS)

    Grenier, K.; Bordas, C.; Pinaud, S.; Salvagnac, L.; Dubuc, D.

    2007-05-01

    This paper introduces the use of germanium as resistive material in RF MicroElectroMechanical (MEMS) devices. Integrated resistors are indeed highly required into RF MEMS switches, in order to prevent any RF signal leakage in the bias lines and also to be compatible with ICs. Germanium material presents strong advantages compared to others. It is widely used in microtechnologies, notably as an important semi-conductor in SiGe transistors as well as sacrificial or structural layers and also mask layer in various processes (Si micromachining especially). But it also presents a great electrical characteristic with a very high resistivity value. This property is particularly interesting for the elaboration of integrated resistors for RF components as it assures miniaturised resistors in total agreement with electromagnetic requirements. Its compatibility as resistive material in MEMS has been carried out. Its integration in the entire MEMS process has been fruitfully achieved and led to the successful demonstration and validation of integrated Ge resistors into serial RF MEMS variable capacitors, without any RF perturbations.

  10. Characterisation of the SmartPET planar Germanium detectors

    NASA Astrophysics Data System (ADS)

    Boston, H. C.; Boston, A. J.; Cooper, R. J.; Cresswell, J.; Grint, A. N.; Mather, A. R.; Nolan, P. J.; Scraggs, D. P.; Turk, G.; Hall, C. J.; Lazarus, I.; Berry, A.; Beveridge, T.; Gillam, J.; Lewis, R.

    2007-08-01

    Small Animal Reconstruction PET (SmartPET) is a project funded by the UK medical research council (MRC) to demonstrate proof of principle that Germanium can be utilised in Positron Emission Tomography (PET). The SmartPET demonstrator consists of two orthogonal strip High Purity Germanium (HPGe) planar detectors manufactured by ORTEC. The aim of the project is to produce images of an internal source with sub mm 3 spatial resolution. Before this image can be achieved the detectors have to be fully characterised to understand the response at any given location to a γ-ray interaction. This has been achieved by probing the two detectors at a number of specified points with collimated sources of various energies and strengths. A 1 mm diameter collimated beam of photons was raster scanned in 1 mm steps across the detector. Digital pulse shape data were recorded from all the detector channels and the performance of the detector for energy and position determination has been assessed. Data will be presented for the first SmartPET detector.

  11. Nanowire NMOS Logic Inverter Characterization.

    PubMed

    Hashim, Yasir

    2016-06-01

    This study is the first to demonstrate characteristics optimization of nanowire N-Channel Metal Oxide Semiconductor (NW-MOS) logic inverter. Noise margins and inflection voltage of transfer characteristics are used as limiting factors in this optimization. A computer-based model used to produce static characteristics of NW-NMOS logic inverter. In this research two circuit configuration of NW-NMOS inverter was studied, in first NW-NMOS circuit, the noise margin for (low input-high output) condition was very low. For second NMOS circuit gives excellent noise margins, and results indicate that optimization depends on applied voltage to the inverter. Increasing gate to source voltage with (2/1) nanowires ratio results better noise margins. Increasing of applied DC load transistor voltage tends to increasing in decreasing noise margins; decreasing this voltage will improve noise margins significantly. PMID:27427653

  12. Germanium ion implantation to Improve Crystallinity during Solid Phase Epitaxy and the effect of AMU Contamination

    NASA Astrophysics Data System (ADS)

    Lee, K. S.; Yoo, D. H.; Son, G. H.; Lee, C. H.; Noh, J. H.; Han, J. J.; Yu, Y. S.; Hyung, Y. W.; Yang, J. K.; Song, D. G.; Lim, T. J.; Kim, Y. K.; Lee, S. C.; Lee, H. D.; Moon, J. T.

    2006-11-01

    Germanium ion implantation was investigated for crystallinity enhancement during solid phase epitaxial regrowth (SPE) using high current implantation equipment. Electron back-scatter diffraction(EBSD) measurement showed numerical increase of 19 percent of <100> signal, which might be due to pre-amorphization effect on silicon layer deposited by LPCVD process with germanium ion implantation. On the other hand, electrical property such as off-leakage current of NMOS transistor degraded in specific regions of wafers, which implied non-uniform distribution of donor-type impurities into channel area. It was confirmed that arsenic atoms were incorporated into silicon layer during germanium ion implantation. Since the equipment for germanium pre-amorphization implantation(PAI) was using several source gases such as BF3 and AsH3, atomic mass unit(AMU) contamination during PAI of germanium with AMU 74 caused the incorporation of arsenic with AMU 75 which resided in arc-chamber and other parts of the equipment. It was effective to use germanium isotope of AMU 72 to suppress AMU contamination, however it led serious reduction of productivity because of decrease in beam current by 30 percent as known to be difference in isotope abundance. It was effective to use enriched germanium source gas with AMU 72 in order to improve productivity. Spatial distribution of arsenic impurities in wafers was closely related to hardware configuration of ion implantation equipment.

  13. Advances in fractal germanium micro/nanoclusters induced by gold: microstructures and properties.

    PubMed

    Chen, Zhiwen; Shek, Chan-Hung; Wu, C M Lawrence; Lai, Joseph K L

    2014-02-01

    Germanium materials are a class of unique semiconductor materials with widespread technological applications because of their valuable semiconducting, electrical, optical, and thermoelectric power properties in the fields of macro/mesoscopic materials and micro/nanodevices. In this review, we describe the efforts toward understanding the microstructures and various properties of the fractal germanium micro/nanoclusters induced by gold prepared by high vacuum thermal evaporation techniques, highlighting contributions from our laboratory. First, we present the integer and non-integer dimensional germanium micro/nanoclusters such as nanoparticles, nanorings, and nanofractals induced by gold and annealing. In particular, the nonlinear electrical behavior of a gold/germanium bilayer film with the interesting nanofractal is discussed in detail. In addition, the third-order optical nonlinearities of the fractal germanium nanocrystals embedded in gold matrix will be summarized by using the sensitive and reliable Z-scan techniques aimed to determine the nonlinear absorption coefficient and nonlinear refractive index. Finally, we emphasize the thermoelectric power properties of the gold/germanium bilayer films. The thermoelectric power measurement is considered to be a more effective method than the conductivity for investigating superlocalization in a percolating system. This research may provide a novel insight to modulate their competent performance and promote rational design of micro/nanodevices. Once mastered, germanium thin films with a variety of fascinating micro/nanoclusters will offer vast and unforeseen opportunities in the semiconductor industry as well as in other fields of science and technology.

  14. Inelasticity and precipitation of germanium from a solid solution in Al-Ge binary alloys

    NASA Astrophysics Data System (ADS)

    Kardashev, B. K.; Korchunov, B. N.; Nikanorov, S. P.; Osipov, V. N.

    2015-08-01

    The influence of precipitation of germanium atoms in a solid solution on the dependence of the inelasticity characteristics on the germanium content in aluminum-germanium alloys prepared by directional crystallization has been studied. It has been shown that the Young's modulus defect, the amplitude-dependent decrement, and the microplastic flow stress at a specified cyclic strain amplitude have extreme values at the eutectic germanium content in the alloy. The eutectic composition of the alloy undergoes a ductilebrittle transition. It has been found that there is a correlation between the dependences of the Young's modulus defect, amplitude-dependent decrement, microplastic flow stress, and specific entropy of the exothermal process of germanium precipitation on the germanium content in the hypoeutectic alloy. The concentration dependences of the inelasticity characteristics and their changes after annealing have been explained by the change in the resistance to the motion of intragrain dislocations due to different structures of the Guinier-Preston zones formed during the precipitation of germanium atoms.

  15. Nanowire sensors and arrays for chemical/biomolecule detection

    NASA Technical Reports Server (NTRS)

    Yun, Minhee; Lee, Choonsup; Vasquez, Richard P.; Ramanathan, K.; Bangar, M. A.; Chen, W.; Mulchandan, A.; Myung, N. V.

    2005-01-01

    We report electrochemical growth of single nanowire based sensors using e-beam patterned electrolyte channels, potentially enabling the controlled fabrication of individually addressable high density arrays. The electrodeposition technique results in nanowires with controlled dimensions, positions, alignments, and chemical compositions. Using this technique, we have fabricated single palladium nanowires with diameters ranging between 75 nm and 300 nm and conducting polymer nanowires (polypyrrole and polyaniline) with diameters between 100 nm and 200 nm. Using these single nanowires, we have successfully demonstrated gas sensing with Pd nanowires and pH sensing with polypirrole nanowires.

  16. Compact Nanowire Sensors Probe Microdroplets.

    PubMed

    Schütt, Julian; Ibarlucea, Bergoi; Illing, Rico; Zörgiebel, Felix; Pregl, Sebastian; Nozaki, Daijiro; Weber, Walter M; Mikolajick, Thomas; Baraban, Larysa; Cuniberti, Gianaurelio

    2016-08-10

    The conjunction of miniature nanosensors and droplet-based microfluidic systems conceptually opens a new route toward sensitive, optics-less analysis of biochemical processes with high throughput, where a single device can be employed for probing of thousands of independent reactors. Here we combine droplet microfluidics with the compact silicon nanowire based field effect transistor (SiNW FET) for in-flow electrical detection of aqueous droplets one by one. We chemically probe the content of numerous (∼10(4)) droplets as independent events and resolve the pH values and ionic strengths of the encapsulated solution, resulting in a change of the source-drain current ISD through the nanowires. Further, we discuss the specificities of emulsion sensing using ion sensitive FETs and study the effect of droplet sizes with respect to the sensor area, as well as its role on the ability to sense the interior of the aqueous reservoir. Finally, we demonstrate the capability of the novel droplets based nanowire platform for bioassay applications and carry out a glucose oxidase (GOx) enzymatic test for glucose detection, providing also the reference readout with an integrated parallel optical detector.

  17. Tunable nanowire nonlinear optical probe

    SciTech Connect

    Nakayama, Yuri; Pauzauskie, Peter J.; Radenovic, Aleksandra; Onorato, Robert M.; Saykally, Richard J.; Liphardt, Jan; Yang, Peidong

    2008-02-18

    One crucial challenge for subwavelength optics has been thedevelopment of a tunable source of coherent laser radiation for use inthe physical, information, and biological sciences that is stable at roomtemperature and physiological conditions. Current advanced near-fieldimaging techniques using fiber-optic scattering probes1,2 have alreadyachieved spatial resolution down to the 20-nm range. Recently reportedfar-field approaches for optical microscopy, including stimulatedemission depletion (STED)3, structured illumination4, and photoactivatedlocalization microscopy (PALM)5, have also enabled impressive,theoretically-unlimited spatial resolution of fluorescent biomolecularcomplexes. Previous work with laser tweezers6-8 has suggested the promiseof using optical traps to create novel spatial probes and sensors.Inorganic nanowires have diameters substantially below the wavelength ofvisible light and have unique electronic and optical properties9,10 thatmake them prime candidates for subwavelength laser and imagingtechnology. Here we report the development of an electrode-free,continuously-tunable coherent visible light source compatible withphysiological environments, from individual potassium niobate (KNbO3)nanowires. These wires exhibit efficient second harmonic generation(SHG), and act as frequency converters, allowing the local synthesis of awide range of colors via sum and difference frequency generation (SFG,DFG). We use this tunable nanometric light source to implement a novelform of subwavelength microscopy, in which an infrared (IR) laser is usedto optically trap and scan a nanowire over a sample, suggesting a widerange of potential applications in physics, chemistry, materials science,and biology.

  18. Compact Nanowire Sensors Probe Microdroplets.

    PubMed

    Schütt, Julian; Ibarlucea, Bergoi; Illing, Rico; Zörgiebel, Felix; Pregl, Sebastian; Nozaki, Daijiro; Weber, Walter M; Mikolajick, Thomas; Baraban, Larysa; Cuniberti, Gianaurelio

    2016-08-10

    The conjunction of miniature nanosensors and droplet-based microfluidic systems conceptually opens a new route toward sensitive, optics-less analysis of biochemical processes with high throughput, where a single device can be employed for probing of thousands of independent reactors. Here we combine droplet microfluidics with the compact silicon nanowire based field effect transistor (SiNW FET) for in-flow electrical detection of aqueous droplets one by one. We chemically probe the content of numerous (∼10(4)) droplets as independent events and resolve the pH values and ionic strengths of the encapsulated solution, resulting in a change of the source-drain current ISD through the nanowires. Further, we discuss the specificities of emulsion sensing using ion sensitive FETs and study the effect of droplet sizes with respect to the sensor area, as well as its role on the ability to sense the interior of the aqueous reservoir. Finally, we demonstrate the capability of the novel droplets based nanowire platform for bioassay applications and carry out a glucose oxidase (GOx) enzymatic test for glucose detection, providing also the reference readout with an integrated parallel optical detector. PMID:27417510

  19. Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring

    SciTech Connect

    Hull, Ethan L.; Pehl, Richard H.; Lathrop, James R.; Martin, Gregory N.; Mashburn, R. B.; Miley, Harry S.; Aalseth, Craig E.; Hossbach, Todd W.; Bowyer, Ted W.

    2006-09-21

    Compact maintenance free mechanical cooling systems are being developed to operate large volume (~570 cm3, ~3 kg, 140% or larger) germanium detectors for field applications. We are using a new generation of Stirling-cycle mechanical coolers for operating the very largest volume germanium detectors with absolutely no maintenance or liquid nitrogen requirements. The user will be able to leave these systems unplugged on the shelf until needed. The flip of a switch will bring a system to life in ~1 hour for measurements. The maintenance-free operating lifetime of these detector systems will exceed five years. These features are necessary for remote long-duration liquid-nitrogen free deployment of large-volume germanium gamma-ray detector systems for Nuclear Explosion Monitoring (NEM). The Radionuclide Aerosol Sampler/Analyzer (RASA) will greatly benefit from the availability of such detectors by eliminating the need for liquid nitrogen at RASA sites while still allowing the very largest available germanium detectors to be utilized. These mechanically cooled germanium detector systems being developed here will provide the largest, most sensitive detectors possible for use with the RASA. To provide such systems, the appropriate technical fundamentals are being researched. Mechanical cooling of germanium detectors has historically been a difficult endeavor. The success or failure of mechanically cooled germanium detectors stems from three main technical issues: temperature, vacuum, and vibration. These factors affect one another. There is a particularly crucial relationship between vacuum and temperature. These factors will be experimentally studied both separately and together to insure a solid understanding of the physical limitations each factor places on a practical mechanically cooled germanium detector system for field use. Using this knowledge, a series of mechanically cooled germanium detector prototype systems are being designed and fabricated. Our collaborators

  20. Nanowire sensor, sensor array, and method for making the same

    NASA Technical Reports Server (NTRS)

    Yun, Minhee (Inventor); Myung, Nosang (Inventor); Vasquez, Richard (Inventor); Homer, Margie (Inventor); Ryan, Margaret (Inventor); Yen, Shiao-Pin (Inventor); Fleurial, Jean-Pierre (Inventor); Bugga, Ratnakumar (Inventor); Choi, Daniel (Inventor); Goddard, William (Inventor)

    2012-01-01

    The present invention relates to a nanowire sensor and method for forming the same. More specifically, the nanowire sensor comprises at least one nanowire formed on a substrate, with a sensor receptor disposed on a surface of the nanowire, thereby forming a receptor-coated nanowire. The nanowire sensor can be arranged as a sensor sub-unit comprising a plurality of homogeneously receptor-coated nanowires. A plurality of sensor subunits can be formed to collectively comprise a nanowire sensor array. Each sensor subunit in the nanowire sensor array can be formed to sense a different stimulus, allowing a user to sense a plurality of stimuli. Additionally, each sensor subunit can be formed to sense the same stimuli through different aspects of the stimulus. The sensor array is fabricated through a variety of techniques, such as by creating nanopores on a substrate and electrodepositing nanowires within the nanopores.

  1. Facile synthesis of vanadium oxide nanowires

    NASA Astrophysics Data System (ADS)

    Kysar, Jesse; Sekhar, Praveen Kumar

    2016-10-01

    A simple growth process is reported for the synthesis of vanadium (II) oxide nanowires with an average width of 65 nm and up to 5 μm in length for growth at 1000 °C for 3 h. The vanadium (II) oxide nanowires were grown on a gold-coated silicon substrate at ambient pressure using a single heat zone furnace with Ar as the carrier gas. Gold was utilized as a catalyst for the growth of the nanowires. The growth temperature and heating time were varied to observe the nanowire morphology. An increase in nanowire width was observed with an increase in the heating temperature. A ninefold increase in the number density of the nanowires was observed when the heating time was changed from 30 min to 3 h. This is the first time a simple growth process for producing VO nanowires at ambient pressure has been demonstrated. Such a scheme enables wider use of VO nanowires in critical applications such as energy storage, gas sensors, and optical devices.

  2. Synthesis and characterization of germanium nanoparticles for flexible thin-film photovoltaics

    NASA Astrophysics Data System (ADS)

    Chiu, Hsiang Wei (Ivy)

    Photovoltaic cells based on low-cost polycrystalline and nanocrystalline materials are of great interest for both scientific and industrial purposes because of their intriguing properties found in semiconductor nanoparticles as well as the need to make high-energy conversion photovoltaics. The main theme of this dissertation is the synthesis of such nanoparticles of elemental germanium. Butyl-capped crystalline germanium nanoparticles were synthesized at room temperature in dimethoxymethane via the reduction of germanium tetrachloride with sodium naphthalide and the subsequent reaction with n-butyl Grignard. The nanoparticles were isolated in hexane and characterized by transmission electron microscopy, selected area electron diffraction, energy-dispersive X-ray spectroscopy, elemental analysis, X-ray powder diffraction, ultraviolet-visible spectroscopy, and photoluminescence spectroscopy. When heated under vacuum between 300--550°C, the as prepared nanoparticles become amorphous and grow in size. At 561°C, a phase change is observed which is associated with the change from the amorphous to crystalline. Numerous exothermic peaks were found in between 900--950°C under thermogravimetric analysis. Detailed studies of this reduction synthesis have been performed to optimize the synthetic route. The germanium nanoparticle nucleation is influenced by variations of reductant, concentration, temperature, and synthesis. Results indicate that the reduction route of germanium nanoparticles follows similar kinetics at room temperature, as does the related II-VI nanoparticle synthetic route. The reduction route was also found to produce a polymeric side product that can be removed at 300°C under vacuum. Under an in-situ heating experiment, this germanium containing polymer acts as a germanium source for the formation of small germanium nanoparticles at temperatures above 300°C. At temperatures above 400°C the polymer further acts to build germanium films. The metathesis

  3. Influence of Containment on the Growth of Silicon-Germanium: A Materials Science Flight Project

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.; Croell, A.

    2012-01-01

    This investigation involves the comparison of results achieved from three types of crystal growth of germanium and germanium-silicon alloys: (1) Float zone growth (2) Bridgman growth (3) Detached Bridgman growth crystal The fundamental goal of the proposed research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon (GeSi) crystals (silicon concentration in the solid up to 5 at%) for three different growth configurations in order to quantitatively assess the improvements of crystal quality possible by detached growth.

  4. Influence of germanium on the formation of thermal donors in silicon

    SciTech Connect

    Dashevskii, M.Ya.; Dokuchaeva, A.A.; Anisimov K.I.

    1987-03-01

    In silicon samples doped with germanium to a concentration 5 x 10/sup 19/-10/sup 20/ cm/sup -3/ after heat treatment at 450/sup 0/C the breakdown of the thermal donors and restoration of the electrical resistivity to a value close to the resistivity of the unannealed samples, proceed faster, than in samples not doped with germanium. It is indirectly confirmed by the assumption that the oxygen solubility in germanium-doped silicon samples is higher at 450/sup 0/C than in the undoped samples.

  5. Novel nanowire heterostructures for nanoelectronic applications

    NASA Astrophysics Data System (ADS)

    Yan, Hao

    Semiconductor nanowires are promising candidates for future nanoelectronic devices. Integration of functional materials into nanowires in the form of nanowire heterostructures can give them unique properties and novel device applications. This thesis deals with the synthesis, characterization and electronic application of core/shell nanowire heterostructures. First, a novel approach to the core/shell heterostructure, namely the atomic layer deposition (ALD) is introduced to deposit high-dielectric-constant (high-k) oxide, perovskite oxide and metal. The excellent conformality of ALD allows these materials to form uniform shells on semiconductor nanowire cores. The electrical and magnetic properties of Si/ZrO2/Ni core/shell/shell nanowires are further investigated, which shows metallic conductivity and axial alignment in a magnetic field. Next, we study the performance of semiconductor/high-k-oxide core/shell nanowires as nanowire field effect transistors (NW-FETs). The fabrication strategies are first evaluated. Then high-performance NW-FET devices with large ON/OFF ratio, sharp switching and low leakage current are demonstrated. These devices show significant gate enhancement compared to the back-gated devices and are promising to outperform state-of-the-art planar MOSFETs fabricated with top-down methods. Subsequently, a charge-trapping nanowire (CTNW) with semiconductor/multidielectric core/shell heterostructure is demonstrated. Charge-trapping in the nanowire heterostructure gives it memory function with large ON/OFF ratio and reliable switching. Charge-trapping also defines the gate response of the CTNW-FET, making it a programmable logic unit. Furthermore, the application of the CTNW heterostructure in neuromorphic circuit is investigated. CTNWs are then built into crossbar array architecture to carry out complex functions. Programming different active node patterns into the array allows it to carry out different logic operations such as XOR, adder

  6. One-dimensional metallic surface states of Pt-induced atomic nanowires on Ge(0 0 1)

    NASA Astrophysics Data System (ADS)

    Yaji, Koichiro; Kim, Sunghun; Mochizuki, Izumi; Takeichi, Yasuo; Ohtsubo, Yoshiyuki; Le Fèvre, Patrick; Bertran, François; Taleb-Ibrahimi, Amina; Shin, Shik; Komori, Fumio

    2016-07-01

    Surface states of platinum-induced atomic nanowires on a germanium (0 0 1) surface, which shows a structural phase transition at 80 K, were studied by angle-resolved photoelectron spectroscopy (ARPES). We observed four one-dimensional metallic surface states, among which, two bands were reported in our previous study (Yaji et al 2013 Phys. Rev. B 87 241413). One of the newly-found two bands is a quasi-one-dimensional state and is split into two due to the Rashba effect. Photoelectron intensity from one of the spin-polarized branches is reduced at a boundary of the surface Brillouin zone below the phase transition temperature. The reduction of the photoelectron intensity in the low temperature phase is interpreted as the interference of photoelectrons, not as the Peierls instability. We also discuss the low energy properties of the metallic surface states and their spin splitting using high-resolution ARPES with a vacuum ultraviolet laser.

  7. Superconductive silicon nanowires using gallium beam lithography.

    SciTech Connect

    Henry, Michael David; Jarecki, Robert Leo,

    2014-01-01

    This work was an early career LDRD investigating the idea of using a focused ion beam (FIB) to implant Ga into silicon to create embedded nanowires and/or fully suspended nanowires. The embedded Ga nanowires demonstrated electrical resistivity of 5 m-cm, conductivity down to 4 K, and acts as an Ohmic silicon contact. The suspended nanowires achieved dimensions down to 20 nm x 30 nm x 10 m with large sensitivity to pressure. These structures then performed well as Pirani gauges. Sputtered niobium was also developed in this research for use as a superconductive coating on the nanowire. Oxidation characteristics of Nb were detailed and a technique to place the Nb under tensile stress resulted in the Nb resisting bulk atmospheric oxidation for up to years.

  8. Conductive Nanowires Templated by Molecular Brushes.

    PubMed

    Raguzin, Ivan; Stamm, Manfred; Ionov, Leonid

    2015-10-21

    In this paper, we report the fabrication of conductive nanowires using polymer bottle brushes as templates. In our approach, we synthesized poly(2-dimethylamino)ethyl methacrylate methyl iodide quaternary salt brushes by two-step atom transfer radical polymerization, loaded them with palladium salt, and reduced them in order to form metallic nanowires with average lengths and widths of 300 and 20 nm, respectively. The obtained nanowires were deposited between conductive gold pads and were connected to them by sputtering of additional pads to form an electric circuit. We connected the nanowires in an electric circuit and demonstrated that the conductivity of these nanowires is around 100 S·m(-1). PMID:26418290

  9. Nanowires for thermal energy conversion and management

    NASA Astrophysics Data System (ADS)

    Chen, Renkun

    This dissertation presents the application of nanowires in two aspects of thermal energy conversion and management: (i) silicon (Si) nanowires as efficient and scalable thermoelectric materials due to the reduced thermal conductivity (k), and (ii) Si and copper (Cu) nanowire arrays for enhanced phase change heat transfer including boiling and evaporation and their applications in thermal management of microelectronics. In the first half of the thesis (chapter 2 and 3), we describe thermal and thermoelectric measurements of individual Si nanowires for studying phonon transport properties and their potential application in thermoelectrics. A theoretical model based on coherent phonon scattering was developed to explain the experiemental data, which suggests that phonon-boundary scattering is highly frequency dependent. For low frequency (long wavelength) phonons, the transport is nearly ballistic, whereas high frequency or short wavelength phonons scatter diffusively at nanowire boundary. The competition between the two phonon transmission regimes results in the unusual linear behavior of the thermal conductance of thin VLS Si nanowires at low temperature. Next, the thermal conductivity of EE Si nanowires, which have much rougher surface compared to VLS nanowires, was measured and found to be five-eight times lower than that of VLS counterparts with similar diameters. The substantial reduction in k is presumably due to the higher surface roughness, since both types of nanowires have single crystalline cores. In particular, for ˜ 50 nm EE Si nanowires etched from 0.1 O-cm B-doped p-Si <111> (˜2 x 1017 cm-3 dopant concentration), the k is around 1.6 Wm-1K-1 and the kL is ˜1.2 Wm-1 K-1 at room temperature, approaching that of amorphous Si. The single nanowire measurements show the great promise of using Si nanowire arrays as high-performance, scalable thermoelectric materials. As the second focus of the thesis (chapter 4 and 5), nanowire arrays were used for enhanced

  10. Nanowires, nanostructures and devices fabricated therefrom

    DOEpatents

    Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong

    2005-04-19

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  11. Nanowire-based All Oxide Solar Cells

    SciTech Connect

    Yang*, Benjamin D. Yuhas and Peidong; Yang, Peidong

    2008-12-07

    We present an all-oxide solar cell fabricated from vertically oriented zinc oxide nanowires and cuprous oxide nanoparticles. Our solar cell consists of vertically oriented n-type zinc oxide nanowires, surrounded by a film constructed from p-type cuprous oxide nanoparticles. Our solution-based synthesis of inexpensive and environmentally benign oxide materials in a solar cell would allow for the facile production of large-scale photovoltaic devices. We found that the solar cell performance is enhanced with the addition of an intermediate oxide insulating layer between the nanowires and the nanoparticles. This observation of the important dependence of the shunt resistance on the photovoltaic performance is widely applicable to any nanowire solar cell constructed with the nanowire array in direct contact with one electrode.

  12. Superlattice nanowire pattern transfer (SNAP).

    PubMed

    Heath, James R

    2008-12-01

    During the past 15 years or so, nanowires (NWs) have emerged as a new and distinct class of materials. Their novel structural and physical properties separate them from wires that can be prepared using the standard methods for manufacturing electronics. NW-based applications that range from traditional electronic devices (logic and memory) to novel biomolecular and chemical sensors, thermoelectric materials, and optoelectronic devices, all have appeared during the past few years. From a fundamental perspective, NWs provide a route toward the investigation of new physics in confined dimensions. Perhaps the most familiar fabrication method is the vapor-liquid-solid (VLS) growth technique, which produces semiconductor nanowires as bulk materials. However, other fabrication methods exist and have their own advantages. In this Account, I review a particular class of NWs produced by an alternative method called superlattice nanowire pattern transfer (SNAP). The SNAP method is distinct from other nanowire preparation methods in several ways. It can produce large NW arrays from virtually any thin-film material, including metals, insulators, and semiconductors. The dimensions of the NWs can be controlled with near-atomic precision, and NW widths and spacings can be as small as a few nanometers. In addition, SNAP is almost fully compatible with more traditional methods for manufacturing electronics. The motivation behind the development of SNAP was to have a general nanofabrication method for preparing electronics-grade circuitry, but one that would operate at macromolecular dimensions and with access to a broad materials set. Thus, electronics applications, including novel demultiplexing architectures; large-scale, ultrahigh-density memory circuits; and complementary symmetry nanowire logic circuits, have served as drivers for developing various aspects of the SNAP method. Some of that work is reviewed here. As the SNAP method has evolved into a robust nanofabrication

  13. Superlattice nanowire pattern transfer (SNAP).

    PubMed

    Heath, James R

    2008-12-01

    During the past 15 years or so, nanowires (NWs) have emerged as a new and distinct class of materials. Their novel structural and physical properties separate them from wires that can be prepared using the standard methods for manufacturing electronics. NW-based applications that range from traditional electronic devices (logic and memory) to novel biomolecular and chemical sensors, thermoelectric materials, and optoelectronic devices, all have appeared during the past few years. From a fundamental perspective, NWs provide a route toward the investigation of new physics in confined dimensions. Perhaps the most familiar fabrication method is the vapor-liquid-solid (VLS) growth technique, which produces semiconductor nanowires as bulk materials. However, other fabrication methods exist and have their own advantages. In this Account, I review a particular class of NWs produced by an alternative method called superlattice nanowire pattern transfer (SNAP). The SNAP method is distinct from other nanowire preparation methods in several ways. It can produce large NW arrays from virtually any thin-film material, including metals, insulators, and semiconductors. The dimensions of the NWs can be controlled with near-atomic precision, and NW widths and spacings can be as small as a few nanometers. In addition, SNAP is almost fully compatible with more traditional methods for manufacturing electronics. The motivation behind the development of SNAP was to have a general nanofabrication method for preparing electronics-grade circuitry, but one that would operate at macromolecular dimensions and with access to a broad materials set. Thus, electronics applications, including novel demultiplexing architectures; large-scale, ultrahigh-density memory circuits; and complementary symmetry nanowire logic circuits, have served as drivers for developing various aspects of the SNAP method. Some of that work is reviewed here. As the SNAP method has evolved into a robust nanofabrication

  14. Thermal and Thermoelectric Transport in Highly Resistive Single Sb2Se3 Nanowires and Nanowire Bundles

    NASA Astrophysics Data System (ADS)

    Ko, Ting-Yu; Shellaiah, Muthaiah; Sun, Kien Wen

    2016-10-01

    In this study, we measured the thermal conductivity and Seebeck coefficient of single Sb2Se3 nanowires and nanowire bundles with a high resistivity (σ ~ 4.37 × 10‑4 S/m). Microdevices consisting of two adjacent suspended silicon nitride membranes were fabricated to measure the thermal transport properties of the nanowires in vacuum. Single Sb2Se3 nanowires with different diameters and nanowire bundles were carefully placed on the device to bridge the two membranes. The relationship of temperature difference on each heating/sensing suspension membranes with joule heating was accurately determined. A single Sb2Se3 nanowire with a diameter of ~ 680 nm was found to have a thermal conductivity (kNW) of 0.037 ± 0.002 W/m·K. The thermal conductivity of the nanowires is more than an order of magnitude lower than that of bulk materials (k ~ 0.36–1.9 W/m·K) and highly conductive (σ ~ 3 × 104 S/m) Sb2Se3 single nanowires (k ~ 1 W/m·K). The measured Seebeck coefficient with a positive value of ~ 661 μV/K is comparable to that of highly conductive Sb2Se3 single nanowires (~ 750 μV/K). The thermal transport between wires with different diameters and nanowire bundles was compared and discussed.

  15. Thermal and Thermoelectric Transport in Highly Resistive Single Sb2Se3 Nanowires and Nanowire Bundles

    PubMed Central

    Ko, Ting-Yu; Shellaiah, Muthaiah; Sun, Kien Wen

    2016-01-01

    In this study, we measured the thermal conductivity and Seebeck coefficient of single Sb2Se3 nanowires and nanowire bundles with a high resistivity (σ ~ 4.37 × 10−4 S/m). Microdevices consisting of two adjacent suspended silicon nitride membranes were fabricated to measure the thermal transport properties of the nanowires in vacuum. Single Sb2Se3 nanowires with different diameters and nanowire bundles were carefully placed on the device to bridge the two membranes. The relationship of temperature difference on each heating/sensing suspension membranes with joule heating was accurately determined. A single Sb2Se3 nanowire with a diameter of ~ 680 nm was found to have a thermal conductivity (kNW) of 0.037 ± 0.002 W/m·K. The thermal conductivity of the nanowires is more than an order of magnitude lower than that of bulk materials (k ~ 0.36–1.9 W/m·K) and highly conductive (σ ~ 3 × 104 S/m) Sb2Se3 single nanowires (k ~ 1 W/m·K). The measured Seebeck coefficient with a positive value of ~ 661 μV/K is comparable to that of highly conductive Sb2Se3 single nanowires (~ 750 μV/K). The thermal transport between wires with different diameters and nanowire bundles was compared and discussed. PMID:27713527

  16. Phonon Engineering in Isotopically Disordered Silicon Nanowires.

    PubMed

    Mukherjee, S; Givan, U; Senz, S; Bergeron, A; Francoeur, S; de la Mata, M; Arbiol, J; Sekiguchi, T; Itoh, K M; Isheim, D; Seidman, D N; Moutanabbir, O

    2015-06-10

    The introduction of stable isotopes in the fabrication of semiconductor nanowires provides an additional degree of freedom to manipulate their basic properties, design an entirely new class of devices, and highlight subtle but important nanoscale and quantum phenomena. With this perspective, we report on phonon engineering in metal-catalyzed silicon nanowires with tailor-made isotopic compositions grown using isotopically enriched silane precursors (28)SiH4, (29)SiH4, and (30)SiH4 with purity better than 99.9%. More specifically, isotopically mixed nanowires (28)Si(x)(30)Si(1-x) with a composition close to the highest mass disorder (x ∼ 0.5) were investigated. The effect of mass disorder on the phonon behavior was elucidated and compared to that in isotopically pure (29)Si nanowires having a similar reduced mass. We found that the disorder-induced enhancement in phonon scattering in isotopically mixed nanowires is unexpectedly much more significant than in bulk crystals of close isotopic compositions. This effect is explained by a nonuniform distribution of (28)Si and (30)Si isotopes in the grown isotopically mixed nanowires with local compositions ranging from x = ∼0.25 to 0.70. Moreover, we also observed that upon heating, phonons in (28)Si(x)(30)Si(1-x) nanowires behave remarkably differently from those in (29)Si nanowires suggesting a reduced thermal conductivity induced by mass disorder. Using Raman nanothermometry, we found that the thermal conductivity of isotopically mixed (28)Si(x)(30)Si(1-x) nanowires is ∼30% lower than that of isotopically pure (29)Si nanowires in agreement with theoretical predictions.

  17. Shape-Controlled Deterministic Assembly of Nanowires.

    PubMed

    Zhao, Yunlong; Yao, Jun; Xu, Lin; Mankin, Max N; Zhu, Yinbo; Wu, Hengan; Mai, Liqiang; Zhang, Qingjie; Lieber, Charles M

    2016-04-13

    Large-scale, deterministic assembly of nanowires and nanotubes with rationally controlled geometries could expand the potential applications of one-dimensional nanomaterials in bottom-up integrated nanodevice arrays and circuits. Control of the positions of straight nanowires and nanotubes has been achieved using several assembly methods, although simultaneous control of position and geometry has not been realized. Here, we demonstrate a new concept combining simultaneous assembly and guided shaping to achieve large-scale, high-precision shape controlled deterministic assembly of nanowires. We lithographically pattern U-shaped trenches and then shear transfer nanowires to the patterned substrate wafers, where the trenches serve to define the positions and shapes of transferred nanowires. Studies using semicircular trenches defined by electron-beam lithography yielded U-shaped nanowires with radii of curvature defined by inner surface of the trenches. Wafer-scale deterministic assembly produced U-shaped nanowires for >430,000 sites with a yield of ∼90%. In addition, mechanistic studies and simulations demonstrate that shaping results in primarily elastic deformation of the nanowires and show clearly the diameter-dependent limits achievable for accessible forces. Last, this approach was used to assemble U-shaped three-dimensional nanowire field-effect transistor bioprobe arrays containing 200 individually addressable nanodevices. By combining the strengths of wafer-scale top-down fabrication with diverse and tunable properties of one-dimensional building blocks in novel structural configurations, shape-controlled deterministic nanowire assembly is expected to enable new applications in many areas including nanobioelectronics and nanophotonics. PMID:26999059

  18. Macroscopic nanowire networks from hierarchically assembled mesostructures

    NASA Astrophysics Data System (ADS)

    Wang, Donghai

    Nanoscale building blocks, such as nanocrystals and one-dimensional (1D) nanostructures, have attracted tremendous attention due to their peculiar and fascinating properties. It is necessary to assemble the low dimensional nanoscale building blocks into macroscopic nanostructured architectures for potential applications in energy storage, separation, catalysis, computation, sensing, etc. This dissertation demonstrates synthesis, characterization and applications of macroscopic hierarchical metal or semiconductor (e.g., Pt, CdSe) nanowire networks. These nanowire networks were synthesized by electrodeposition within the pores of highly-ordered mesoporous silica template followed by removal of the silica template, resulting in robust nanowire networks with replicated mesopore structure. The nanowire diameter (3-10 nm) and network mesostructures (e.g. 2D, 3D and superstructures) are controlled by the pore size and the mesostructure of the silica template. As-synthesized metal nanowires self support to form networks with high electrochemical active surface area, which are further applied in enzymatic glucose sensing. Semiconductor CdSe nanowire networks show tunable optical properties dependent on nanowire diameter and have been demonstrated as a good electron acceptor in CdSe nanowire network/polymer photovoltaic devices. The dissertation also describes self-assembly behavior of composite mesostructures under physical confined environment. Novel mesostructures and mesostructured nanowire superstructures have been achieved by the confined assembly and the replication procedure mentioned above. Our approach provides an easy and efficient way to synthesize macroscopic hierarchical nanowire networks with well-controlled diameter and mesoscale arrangement, which will be of great interest for sensor, photovoltaic, and other applications.

  19. Buried Porous Silicon-Germanium Layers in Monocrystalline Silicon Lattices

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W. (Inventor); George, Thomas (Inventor); Jones, Eric W. (Inventor)

    1998-01-01

    Monocrystalline semiconductor lattices with a buried porous semiconductor layer having different chemical composition is discussed and monocrystalline semiconductor superlattices with a buried porous semiconductor layers having different chemical composition than that of its monocrystalline semiconductor superlattice are discussed. Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si-Ge layers followed by patterning into mesa structures. The mesa structures are strain etched resulting in porosification of the Si-Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si-Ge layers produced in a similar manner emitted visible light at room temperature.

  20. Electron temperature and density measurements of laser induced germanium plasma

    NASA Astrophysics Data System (ADS)

    Shakeel, Hira; Arshad, Saboohi; Haq, S. U.; Nadeem, Ali

    2016-05-01

    The germanium plasma produced by the fundamental harmonics (1064 nm) of Nd:YAG laser in single and double pulse configurations have been studied spectroscopically. The plasma is characterized by measuring the electron temperature using the Boltzmann plot method for neutral and ionized species and electron number density as a function of laser irradiance, ambient pressure, and distance from the target surface. It is observed that the plasma parameters have an increasing trend with laser irradiance (9-33 GW/cm2) and with ambient pressure (8-250 mbar). However, a decreasing trend is observed along the plume length up to 4.5 mm. The electron temperature and electron number density are also determined using a double pulse configuration, and their behavior at fixed energy ratio and different interpulse delays is discussed.

  1. Phosphorus diffusion in germanium following implantation and excimer laser annealing

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Li, Cheng; Huang, Shihao; Lu, Weifang; Yan, Guangming; Zhang, Maotian; Wu, Huanda; Lin, Guangyang; Wei, Jiangbin; Huang, Wei; Lai, Hongkai; Chen, Songyan

    2014-05-01

    We focus our study on phosphorus diffusion in ion-implanted germanium after excimer laser annealing (ELA). An analytical model of laser annealing process is developed to predict the temperature profile and the melted depth in Ge. Based on the heat calculation of ELA, a phosphorus diffusion model has been proposed to predict the dopant profiles in Ge after ELA and fit SIMS profiles perfectly. A comparison between the current-voltage characteristics of Ge n+/p junctions formed by ELA at 250 mJ/cm2 and rapid thermal annealing at 650 °C for 15 s has been made, suggesting that ELA is promising for high performance Ge n+/p junctions.

  2. Reliability assessment of germanium gate stacks with promising initial characteristics

    NASA Astrophysics Data System (ADS)

    Lu, Cimang; Lee, Choong Hyun; Nishimura, Tomonori; Nagashio, Kosuke; Toriumi, Akira

    2015-02-01

    This work reports on the reliability assessment of germanium (Ge) gate stacks with promising initial electrical properties, with focus on trap generation under a constant electric stress field (Estress). Initial Ge gate stack properties do not necessarily mean highly robust reliability when it is considered that traps are newly generated under high Estress. A small amount of yttrium- or scandium oxide-doped GeO2 (Y-GeO2 or Sc-GeO2, respectively) significantly reduces trap generation in Ge gate stacks without deterioration of the interface. This is explained by the increase in the average coordination number (Nav) of the modified GeO2 network that results from the doping.

  3. A pseudo-single-crystalline germanium film for flexible electronics

    SciTech Connect

    Higashi, H.; Yamada, S.; Kanashima, T.; Hamaya, K.; Kasahara, K.; Park, J.-H.; Miyao, M.; Kudo, K.; Okamoto, H.; Moto, K.; Tsunoda, I.

    2015-01-26

    We demonstrate large-area (∼600 μm), (111)-oriented, and high-crystallinity, i.e., pseudo-single-crystalline, germanium (Ge) films at 275 °C, where the temperature is lower than the softening temperature of a flexible substrate. A modulated gold-induced layer exchange crystallization method with an atomic-layer deposited Al{sub 2}O{sub 3} barrier and amorphous-Ge/Au multilayers is established. From the Raman measurements, we can judge that the crystallinity of the obtained Ge films is higher than those grown by aluminum-induced-crystallization methods. Even on a flexible substrate, the pseudo-single-crystalline Ge films for the circuit with thin-film transistor arrays can be achieved, leading to high-performance flexible electronics based on an inorganic-semiconductor channel.

  4. Anomalous compression behavior of germanium during phase transformation

    SciTech Connect

    Yan, Xiaozhi; Tan, Dayong; Ren, Xiangting; Yang, Wenge E-mail: duanweihe@scu.edu.cn; He, Duanwei E-mail: duanweihe@scu.edu.cn; Mao, Ho-Kwang

    2015-04-27

    In this article, we present the abnormal compression and plastic behavior of germanium during the pressure-induced cubic diamond to β-tin structure transition. Between 8.6 GPa and 13.8 GPa, in which pressure range both phases are co-existing, first softening and followed by hardening for both phases were observed via synchrotron x-ray diffraction and Raman spectroscopy. These unusual behaviors can be interpreted as the volume misfit between different phases. Following Eshelby, the strain energy density reaches the maximum in the middle of the transition zone, where the switch happens from softening to hardening. Insight into these mechanical properties during phase transformation is relevant for the understanding of plasticity and compressibility of crystal materials when different phases coexist during a phase transition.

  5. Noise performance of high-efficiency germanium quantum dot photodetectors

    NASA Astrophysics Data System (ADS)

    Siontas, Stylianos; Liu, Pei; Zaslavsky, Alexander; Pacifici, Domenico

    2016-08-01

    We report on the noise analysis of high performance germanium quantum dot (Ge QD) photodetectors with responsivity up to ˜2 A/W and internal quantum efficiency up to ˜400%, over the 400-1100 nm wavelength range and at a reverse bias of -10 V. Photolithography was performed to define variable active-area devices that show suppressed dark current, leading to a higher signal-to-noise ratio, up to 105, and specific detectivity D * ≃ 6 × 10 12 cm Hz 1 / 2 W-1. These figures of merit suggest Ge QDs as a promising alternative material for high-performance photodetectors working in the visible to near-infrared spectral range.

  6. Giant pop-ins and amorphization in germanium during indentation

    NASA Astrophysics Data System (ADS)

    Oliver, David J.; Bradby, Jodie E.; Williams, Jim S.; Swain, Michael V.; Munroe, Paul

    2007-02-01

    Sudden excursions of unusually large magnitude (>1 μm), "giant pop-ins," have been observed in the force-displacement curve for high load indentation of crystalline germanium (Ge). A range of techniques including Raman microspectroscopy, focused ion-beam cross sectioning, and transmission electron microscopy, are applied to study this phenomenon. Amorphous material is observed in residual indents following the giant pop-in. The giant pop-in is shown to be a material removal event, triggered by the development of shallow lateral cracks adjacent to the indent. Enhanced depth recovery, or "elbowing," observed in the force-displacement curve following the giant pop-in is explained in terms of a compliant response of plates of material around the indent detached by lateral cracking. The possible causes of amorphization are discussed, and the implications in light of earlier indentation studies of Ge are considered.

  7. FTIR and DFT studies of Novel Germanium-Carbon Clusters

    NASA Astrophysics Data System (ADS)

    Robbins, D. L.; Rittby, C. M. L.; Graham, W. R. M.

    2001-10-01

    The vibrational fundamentals and structures of germanium-carbon clusters formed by laser ablation and trapped in solid Ar are currently under investigation. The determination of the ground state geometries and vibrational fundamentals are facilitated by the comparison of frequencies and ^13C isotopic shifts measured by Fourier transform infrared spectroscopy with the predictions of density functional theory. The identification of the ν3 mode of linear GeC_3Ge (observed at 1920.7 cm-1 ) has been made.(D.L.Robbins, C.M.L. Rittby, and W.R.M. Graham J. Chem. Phys. 114, 3570 (2001).) The results of further calculations and assignments on larger species such as GeC4 and GeC9 will be reported.

  8. Germanium-Vacancy Single Color Centers in Diamond.

    PubMed

    Iwasaki, Takayuki; Ishibashi, Fumitaka; Miyamoto, Yoshiyuki; Doi, Yuki; Kobayashi, Satoshi; Miyazaki, Takehide; Tahara, Kosuke; Jahnke, Kay D; Rogers, Lachlan J; Naydenov, Boris; Jelezko, Fedor; Yamasaki, Satoshi; Nagamachi, Shinji; Inubushi, Toshiro; Mizuochi, Norikazu; Hatano, Mutsuko

    2015-01-01

    Atomic-sized fluorescent defects in diamond are widely recognized as a promising solid state platform for quantum cryptography and quantum information processing. For these applications, single photon sources with a high intensity and reproducible fabrication methods are required. In this study, we report a novel color center in diamond, composed of a germanium (Ge) and a vacancy (V) and named the GeV center, which has a sharp and strong photoluminescence band with a zero-phonon line at 602 nm at room temperature. We demonstrate this new color center works as a single photon source. Both ion implantation and chemical vapor deposition techniques enabled fabrication of GeV centers in diamond. A first-principles calculation revealed the atomic crystal structure and energy levels of the GeV center. PMID:26250337

  9. Proton irradiation of germanium isotope multilayer structures at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Schneider, S.; Bracht, H.; Petersen, M. C.; Hansen, J. Lundsgaard; Larsen, A. Nylandsted

    2008-02-01

    Irradiation of germanium (Ge) isotope heterostructures with 2.5 MeV protons have been performed at 550 °C. The applied proton flux was varied between 1.0 and 1.5 μA leading to various rates of Frenkel pair production. After irradiation, concentration profiles of the Ge isotopes were recorded by means of secondary ion mass spectrometry (SIMS). An inhomogeneous broadening of the isotope structure was observed. In addition to the effect of irradiation enhanced self-diffusion, an influence of the formation of microscopic defects on the detected broadening was ascertained. Atomic force and scanning electron microscopy show that the microscopic defects are most probably resulting from an aggregation of vacancies formed during irradiation. Numerical analysis of Ge profiles not disturbed by microdefect formation indicates a significant contribution of self-interstitials to self-diffusion under irradiation.

  10. Hydrogen concentration and distribution in high-purity germanium crystals

    SciTech Connect

    Hansen, W.L.; Haller, E.E.; Luke, P.N.

    1981-10-01

    High-purity germanium crystals used for making nuclear radiation detectors are usually grown in a hydrogen ambient from a melt contained in a high-purity silica crucible. The benefits and problems encountered in using a hydrogen ambient are reviewed. A hydrogen concentration of about 2 x 10/sup 15/cm/sup -3/ has been determined by growing crystals in hydrogen spiked with tritium and counting the tritium ..beta..-decays in detectors made from these crystals. Annealing studies show that the hydrogen is strongly bound, either to defects or as H/sub 2/ with a dissociation energy > 3 eV. This is lowered to 1.8 eV when copper is present. Etching defects in dislocation-free crystals grown in hydrogen have been found by etch stripping to have a density of about 1 x 10/sup 7/ cm/sup -3/ and are estimated to contain 10/sup 8/ H atoms each.

  11. Tunable split-ring resonators using germanium telluride

    NASA Astrophysics Data System (ADS)

    Kodama, C. H.; Coutu, R. A.

    2016-06-01

    We demonstrate terahertz (THz) split-ring resonator (SRR) designs with incorporated germanium telluride (GeTe) thin films. GeTe is a chalcogenide that undergoes a nonvolatile phase change from the amorphous to crystalline state at approximately 200 °C, depending on the film thickness and stoichiometry. The phase change also causes a drop in the material's resistivity by six orders of magnitude. In this study, two GeTe-incorporated SRR designs were investigated. The first was an SRR made entirely out of GeTe and the second was a gold SRR structure with a GeTe film incorporated into the gap region of the split ring. These devices were characterized using THz time-domain spectroscopy and were heated in-situ to determine the change in the design operation with varying temperatures.

  12. Method of manufacturing a niobium-aluminum-germanium superconductive material

    DOEpatents

    Wang, John L.; Pickus, Milton R.; Douglas, Kent E.

    1980-01-01

    A method for manufacturing flexible Nb.sub.3 (Al,Ge) multifilamentary superconductive material in which a sintered porous niobium compact is infiltrated with an aluminum-germanium alloy and thereafter deformed and heat treated in a series of steps at different successively higher temperatures preferably below 1000.degree. C. to produce filaments composed of Nb.sub.3 (Al,G3) within the compact. By avoiding temperatures in excess of 1000.degree. C. during the heat treatment, cladding material such as copper can be applied to facilitate a deformation step preceding the heat treatment and can remain in place through the heat treatment to also serve as a temperature stabilizer for supeconductive material produced. Further, these lower heat treatment temperatures favor formation of filaments with reduced grain size and, hence with more grain boundaries which in turn increase the current-carrying capacity of the superconductive material.

  13. Hafnium Germanate from a Hydrous Hafnium Germanium Oxide Gel.

    PubMed

    Lambert, P. M.

    1998-03-23

    The gel chemistry of germanium is explored through the formation and composition of a hydrous metal oxide precursor gel used in the preparation of the HfGeO(4) and HfGeO(4):Ti X-ray phosphors. The enhanced solubility of hexagonal GeO(2) in dilute ammoniacal solutions is exploited to give a convenient and high-yield precipitation. The precursor gel is shown by FT-IR to be a diphasic mixture of hydrous hafnia and an ammonium germanate gel. Thermal treatment drives the crystallization of a hafnium-rich, simple tetragonal Hf(1)(-)(x)()Ge(x)()O(2) structure at 893 degrees C, that upon further heating to 1200 degrees C yields scheelite HfGeO(4).

  14. Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Szofran, F. R.; Cobb, S. D.; Schweizer, M.; Walker, J. S.

    2005-01-01

    A series of (100)-oriented gallium-doped germanium crystals has been grown by the vertical Bridgman method and under the influence of a rotating magnetic field (RMF). Time-dependent flow instabilities occur when the critical magnetic Taylor number (Tm(sup c)) is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. Tm(sup c) decreases as the aspect ratio of the melt increases, and approaches the theoretical limit expected for an infinite cylinder. Intentional interface demarcations are introduced by pulsing the RMF on and off The RMF has a marked affect on the interface shape, changing it from concave to nearly flat as the RMF strength is increased.

  15. Comparison of Germanium Telluride (GeTe) Crystals

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Comparison of Germanium Telluride (GeTe) Crystals grown on Earth (left) and in space (right) during the Skylab SL-3 mission. These crystals were grown using a vapor transport crystal growth method in the Multipurpose Electric Furnace System (MEFS). Crystals grown on earth are needles and platelettes with distorted surfaces and hollow growth habits. The length of the ground-based needle is approximately 2 mm and the average lenth of the platelets is 1 mm. The dull appearance of the Skylab crystals resulted from condensation of the transport agent during the long cooling period dictated by the Skylab furnace. In a dedicated process, this would be prevented by removing the ampoule from the furnace and quenching the vapor source.

  16. Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Walker, J. S.; Schweizer, M.; Cobb, S. D.; Szofran, F. R.

    2004-01-01

    A series of (100)-oriented gallium-doped germanium crystals have been grown by the Bridgman method and under the influence of a rotating magnetic field (RMF). Time-dependent flow instabilities occur when the critical magnetic Taylor number (Tm(sup c) is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. The experimental data indicate that Tm(sup c) increases as the aspect ratio of the melt decreases. Modeling calculations predicting Tm(sup c) as a function of aspect ratio are in reasonable agreement with the experimental data. The RMF has a marked affect on the interface shape, changing it from concave to nearly flat as the RMF strength is increased. Also, by pulsing the RMF on and off, it is shown that intentional interface demarcations can be introduced.

  17. Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Schweizer, M.; Cobb, S. D.; Walker, J. S.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A series of (100)-oriented gallium-doped germanium crystals have been grown by the Bridgman method and under the influence of a rotating magnetic field (RMF). The RMF has a marked affect on the interface shape, changing it from concave to nearly flat. The onset of time-dependent flow instabilities occurs when the critical magnetic Taylor number is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. The critical magnetic Taylor number is a sensitive function of the aspect ratio and, as the crystal grows under a constant applied magnetic field, the induced striations change from nonperiodic to periodic, undergo a period-doubling transition, and then cease to exist. Also, by pulsing the RMF on and off, it is shown that intentional interface demarcations can be introduced.

  18. Characteristics of GRIFFIN high-purity germanium clover detectors

    NASA Astrophysics Data System (ADS)

    Rizwan, U.; Garnsworthy, A. B.; Andreoiu, C.; Ball, G. C.; Chester, A.; Domingo, T.; Dunlop, R.; Hackman, G.; Rand, E. T.; Smith, J. K.; Starosta, K.; Svensson, C. E.; Voss, P.; Williams, J.

    2016-06-01

    The Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei, GRIFFIN, is a new experimental facility for radioactive decay studies at the TRIUMF-ISAC laboratory. The performance of the 16 high-purity germanium (HPGe) clover detectors that will make up the GRIFFIN spectrometer is reported. The energy resolution, efficiency, timing resolution, crosstalk and preamplifier properties of each crystal were measured using a combination of analog and digital data acquisition techniques. The absolute efficiency and add-back factors are determined for the energy range of 80-3450 keV. The detectors show excellent performance with an average over all 64 crystals of a FWHM energy resolution of 1.89(6) keV and relative efficiency with respect to a 3 in . × 3 in . NaI detector of 41(1)% at 1.3 MeV.

  19. An experimental characterisation of a Broad Energy Germanium detector

    NASA Astrophysics Data System (ADS)

    Harkness-Brennan, L. J.; Judson, D. S.; Boston, A. J.; Boston, H. C.; Colosimo, S. J.; Cresswell, J. R.; Nolan, P. J.; Adekola, A. S.; Colaresi, J.; Cocks, J. F. C.; Mueller, W. F.

    2014-10-01

    The spectroscopic and charge collection performance of a BE2825 Broad Energy Germanium (BEGe) detector has been experimentally investigated. The efficiency and energy resolution of the detector have been measured as a function of energy and the noise contributions to the preamplifier signal have been determined. Collimated gamma-ray sources mounted on an automated 3-axis scanning table have been used to study the variation in preamplifier signal shape with gamma-ray interaction position in the detector, so that the position-dependent charge collection process could be characterised. A suite of experimental measurements have also been undertaken to investigate the performance of the detector as a function of bias voltage and we report on anomalous behaviour observed when the detector was operating close to the depletion voltage.

  20. Towards monolithic integration of germanium light sources on silicon chips

    NASA Astrophysics Data System (ADS)

    Saito, Shinichi; Zaher Al-Attili, Abdelrahman; Oda, Katsuya; Ishikawa, Yasuhiko

    2016-04-01

    Germanium (Ge) is a group-IV indirect band gap semiconductor, and therefore bulk Ge cannot emit light efficiently. However, the direct band gap energy is close to the indirect one, and significant engineering efforts are being made to convert Ge into an efficient gain material monolithically integrated on a Si chip. In this article, we will review the engineering challenges of developing Ge light sources fabricated using nano-fabrication technologies compatible with complementary metal-oxide-semiconductor processes. In particular, we review recent progress in applying high-tensile strain to Ge to reduce the direct band gap. Another important technique is doping Ge with donor impurities to fill the indirect band gap valleys in the conduction band. Realization of carrier confinement structures and suitable optical cavities will be discussed. Finally, we will discuss possible applications of Ge light sources in potential photonics-electronics convergent systems.

  1. Band Anticrossing in Dilute Germanium Carbides Using Hybrid Density Functionals

    NASA Astrophysics Data System (ADS)

    Stephenson, Chad A.; O'brien, William A.; Qi, Meng; Penninger, Michael; Schneider, William F.; Wistey, Mark A.

    2016-04-01

    Dilute germanium carbides (Ge1- x C x ) offer a direct bandgap for compact silicon photonics, but widely varying properties have been reported. This work reports improved band structure calculations for Ge1- x C x using ab initio simulations that employ the HSE06 exchange-correlation density functional. Contrary to Vegard's law, the conduction band minimum at Γ is consistently found to decrease with increasing C content, while L and X valleys change much more slowly. The calculated Ge bandgap is within 11% of experimental values. A decrease in energy at the Γ conduction band valley of (170 meV ± 50)/%C is predicted, leading to a direct bandgap for x > 0.008. These results indicate a promising material for Group IV lasers.

  2. Development of silicon-germanium visible-near infrared arrays

    NASA Astrophysics Data System (ADS)

    Zeller, John W.; Rouse, Caitlin; Efstathiadis, Harry; Haldar, Pradeep; Lewis, Jay S.; Dhar, Nibir K.; Wijewarnasuriya, Priyalal; Puri, Yash R.; Sood, Ashok K.

    2016-05-01

    Photodetectors based on germanium which do not require cooling and can provide good near-infrared (NIR) detection performance offer a low-cost alternative to conventional infrared sensors based on material systems such as InGaAs, InSb, and HgCdTe. As a result of the significant difference in thermal expansion coefficients between germanium and silicon, tensile strain incorporated into Ge epitaxial layers deposited on Si utilizing specialized growth processes can extend the operational range of detection to 1600 nm and longer wavelengths. We have fabricated Ge based PIN photodetectors on 300 mm diameter Si wafers to take advantage of high throughput, large-area complementary metal-oxide semiconductor (CMOS) technology. This device fabrication process involves low temperature epitaxial deposition of Ge to form a thin p+ (boron) Ge seed/buffer layer, and subsequent higher temperature deposition of a thicker Ge intrinsic layer. This is followed by selective ion implantation of phosphorus of various concentrations to form n+ Ge regions, deposition of a passivating oxide cap, and then top copper contacts to complete the PIN detector devices. Various techniques including transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) have been employed to characterize the material and structural properties of the epitaxially grown layers and fabricated detector devices, and these results are presented. The I-V response of the photodetector devices with and without illumination was also measured, for which the Ge based photodetectors consistently exhibited low dark currents of around ~1 nA at -1 V bias.

  3. An aeronomical application of a germanium near infrared (NIR) detector

    SciTech Connect

    Noto, J.; Kerr, R.B.; Rudy, R.J.; Williams, R.; Hecht, J.H.

    1994-12-31

    A collaboration between Boston University and the Aerospace corporation has resulted in a germanium based detector used in conjunction with an infrared optimized Fabry-Perot spectrometer. Gold plated mirrors were installed and the appropriate transmissive optics are used in the Fabry-Perot to optimize the NIR transmission. The detector is a germanium PIN diode coated with a layer of silicon-nitride. Current produced by the detector is measured by using a Capacitive Trans-Impedance Amplifier (CITA). An A/D converter samples the amplified capacitor voltage and outputs a 12 bit word that is then passed on to the controlling computer system. The detector, amplifier, and associated electronics are mounted inside a standard IR dewar and operated at 77 K. The authors have operated this detector and spectrometer system at Millstone Hill for about 6 months. Acceptable noise characteristics, a NEP of 10{sup {minus}17} watts, and a QE of 90% at 1.2 {micro}m, have been achieved with an amplifier gain of 200. The system is currently configured for observations of thermospheric helium, and has made the first measurement of the He 10,830 {angstrom} nightglow emission isolated from OH contamination. In an effort to both increase the sensitivity of the Fabry-Perot in the visible and to adapt it for planetary astronomy the authors have entered into a collaboration with CIDTEC. A Charge Injection Detector or CID has some unique capabilities that distinguish it from a CCD and the authors are evaluating it as a detector for the Hadinger fringe pattern produced by a Fabry-Perot. The CID allows non-destructive readout and random access of individual pixels with in the entire frame, this allows for both ``electronic masking`` of bright objects and allows each fringe to be observed without having to readout a large number of dark pixels.

  4. Epidemiological survey of workers exposed to inorganic germanium compounds

    PubMed Central

    Swennen, B; Mallants, A; Roels, H; Buchet, J; Bernard, A; Lauwerys, R; Lison, D

    2000-01-01

    OBJECTIVES—To assess occupational exposure to inorganic germanium (Ge) in workers from a producing plant, and to assess the health of these workers, with a special focus on respiratory, kidney, and liver functions.
METHODS—Cross sectional study of 75 workers exposed to Ge and 79 matched referents. Exposure was characterised by measuring air and urine concentrations of the element during a typical working week, and health was assessed by a questionnaire, clinical examination, lung function testing, chest radiography, and clinical chemistry in serum and urine, including high and low molecular weight urinary proteins.
RESULTS—Airborne concentrations of Ge (inhalable fraction) ranged from 0.03 to 300 µg/m, which was reflected by increased urinary excretion of Ge (0.12-200 µg/g creatinine, after the shift at the end of the working week). Lung, liver, and haematological variables were not significantly different between referents and workers exposed to Ge. A slightly higher urinary concentration of high molecular weight proteins (albumin and transferrin) was found in workers exposed to Ge, possibly reflecting subclinical glomerular changes. No relation was found between the intensity or duration of exposure and the urinary concentration of albumin. No difference between referents and workers exposed to Ge was found for other renal variables.
CONCLUSIONS—Measurement of urinary Ge can detect occupational exposure to inorganic Ge and its compounds. It is prudent to recommend the monitoring of renal variables in workers exposed to Ge.


Keywords: inorganic germanium; occupational exposure; biological monitoring PMID:10810110

  5. Research progress of Si-based germanium materials and devices

    NASA Astrophysics Data System (ADS)

    Buwen, Cheng; Cheng, Li; Zhi, Liu; Chunlai, Xue

    2016-08-01

    Si-based germanium is considered to be a promising platform for the integration of electronic and photonic devices due to its high carrier mobility, good optical properties, and compatibility with Si CMOS technology. However, some great challenges have to be confronted, such as: (1) the nature of indirect band gap of Ge; (2) the epitaxy of dislocation-free Ge layers on Si substrate; and (3) the immature technology for Ge devices. The aim of this paper is to give a review of the recent progress made in the field of epitaxy and optical properties of Ge heterostructures on Si substrate, as well as some key technologies on Ge devices. High crystal quality Ge epilayers, as well as Ge/SiGe multiple quantum wells with high Ge content, were successfully grown on Si substrate with a low-temperature Ge buffer layer. A local Ge condensation technique was proposed to prepare germanium-on-insulator (GOI) materials with high tensile strain for enhanced Ge direct band photoluminescence. The advances in formation of Ge n+p shallow junctions and the modulation of Schottky barrier height of metal/Ge contacts were a significant progress in Ge technology. Finally, the progress of Si-based Ge light emitters, photodetectors, and MOSFETs was briefly introduced. These results show that Si-based Ge heterostructure materials are promising for use in the next-generation of integrated circuits and optoelectronic circuits. Project supported in part by the National Natural Science Foundation (Nos. 61036003, 61435013) and the Major State Basic Research Development Program of China (No. 2013CB632103).

  6. Ge-rich silicon germanium as a new platform for optical interconnects on silicon

    NASA Astrophysics Data System (ADS)

    Vakarin, Vladyslav; Chaisakul, Papichaya; Frigerio, Jacopo; Ballabio, Andrea; Le Roux, Xavier; Coudevylle, Jean Rene; Vivien, Laurent; Isella, Giovanni; Marris-Morini, Delphine

    2016-05-01

    We propose germanium-rich silicon-germanium (SiGe) as a new platform for optical interconnects. The platform viability is experimentally and theoretically investigated through the realization of main building blocks of passive circuitry. Germanium-rich Si1-xGex guiding layer on a graded SiGe layer is used to experimentally show 12μm radius bends by light confinement tuning at a wavelength of 1550nm. As a next step, Mach Zehnder interferometer with 10 dB extinction ratio is demonstrated. High Ge content of the proposed platform allows the coupling with Ge-based active devices, relying on a high quality epitaxial growth. Hence, the integration on Silicon of high speed and low power consumption Ge-rich active components is possible, despite the high lattice mismatch between silicon and germanium.

  7. Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring DOENA27323-1

    SciTech Connect

    Hull, E.L.

    2006-07-28

    Compact maintenance free mechanical cooling systems are being developed to operate large volume germanium detectors for field applications. To accomplish this we are utilizing a newly available generation of Stirling-cycle mechanical coolers to operate the very largest volume germanium detectors with no maintenance. The user will be able to leave these systems unplugged on the shelf until needed. The flip of a switch will bring a system to life in ~ 1 hour for measurements. The maintenance-free operating lifetime of these detector systems will exceed 5 years. These features are necessary for remote long-duration liquid-nitrogen free deployment of large-volume germanium gamma-ray detector systems for Nuclear Explosion Monitoring. The Radionuclide Aerosol Sampler/Analyzer (RASA) will greatly benefit from the availability of such detectors by eliminating the need for liquid nitrogen at RASA sites while still allowing the very largest available germanium detectors to be reliably utilized.

  8. Mechanically Cooled Large-Volume Germanium Detector Systems for Neclear Explosion Monitoring DOENA27323-2

    SciTech Connect

    Hull, E.L.

    2006-10-30

    Compact maintenance free mechanical cooling systems are being developed to operate large volume high-resolution gamma-ray detectors for field applications. To accomplish this we are utilizing a newly available generation of Stirling-cycle mechanical coolers to operate the very largest volume germanium detectors with no maintenance. The user will be able to leave these systems unplugged on the shelf until needed. The maintenance-free operating lifetime of these detector systems will exceed 5 years. Three important factors affect the operation of mechanically cooled germanium detectors: temperature, vacuum, and vibration. These factors will be studied in the laboratory at the most fundamental levels to insure a solid understanding of the physical limitations each factor places on a practical mechanically cooled germanium detector system. Using this knowledge, mechanically cooled germanium detector prototype systems will be designed and fabricated.

  9. Self-assembled asymmetric membrane containing micron-size germanium for high capacity lithium ion batteries

    DOE PAGES

    Byrd, Ian; Chen, Hao; Webber, Theron; Li, Jianlin; Wu, Ji

    2015-10-23

    We report the formation of novel asymmetric membrane electrode containing micron-size (~5 μm) germanium powders through a self-assembly phase inversion method for high capacity lithium ion battery anode. 850 mA h g-1 capacity (70%) can be retained at a current density of 600 mA g-1 after 100 cycles with excellent rate performance. Such a high retention rate has rarely been seen for pristine micron-size germanium anodes. Moreover, scanning electron microscope studies reveal that germanium powders are uniformly embedded in a networking porous structure consisting of both nanopores and macropores. It is believed that such a unique porous structure can efficientlymore » accommodate the ~260% volume change during germanium alloying and de-alloying process, resulting in an enhanced cycling performance. Finally, these porous membrane electrodes can be manufactured in large scale using a roll-to-roll processing method.« less

  10. Self-assembled asymmetric membrane containing micron-size germanium for high capacity lithium ion batteries

    SciTech Connect

    Byrd, Ian; Chen, Hao; Webber, Theron; Li, Jianlin; Wu, Ji

    2015-10-23

    We report the formation of novel asymmetric membrane electrode containing micron-size (~5 μm) germanium powders through a self-assembly phase inversion method for high capacity lithium ion battery anode. 850 mA h g-1 capacity (70%) can be retained at a current density of 600 mA g-1 after 100 cycles with excellent rate performance. Such a high retention rate has rarely been seen for pristine micron-size germanium anodes. Moreover, scanning electron microscope studies reveal that germanium powders are uniformly embedded in a networking porous structure consisting of both nanopores and macropores. It is believed that such a unique porous structure can efficiently accommodate the ~260% volume change during germanium alloying and de-alloying process, resulting in an enhanced cycling performance. Finally, these porous membrane electrodes can be manufactured in large scale using a roll-to-roll processing method.

  11. Induced Radioactivity Measured in a Germanium Detector After a Long Duration Balloon Flight

    NASA Technical Reports Server (NTRS)

    Starr, R.; Evans, L. G.; Floyed, S. R.; Drake, D. M.; Feldman, W. C.; Squyres, S. W.; Rester, A. C.

    1997-01-01

    A 13-day long duration balloon flight carrying a germanium detector was flown from Williams Field, Antartica in December 1992. After recovery of the payload the activity induced in the detector was measured.

  12. Replacing tin in lactide polymerization: design of highly active germanium-based catalysts.

    PubMed

    Guo, Jia; Haquette, Pierre; Martin, Juliette; Salim, Karine; Thomas, Christophe M

    2013-12-16

    Most germane: Hexacoordinate germanium(IV) species exhibit unprecedented activities, yet controlled behavior, as initiators for the ring-opening polymerization of rac-lactide to form polylactide polymers.

  13. Electronic and magnetic properties of Fe and Mn doped two dimensional hexagonal germanium sheets

    SciTech Connect

    Soni, Himadri R. Jha, Prafulla K.

    2014-04-24

    Using first principles density functional theory calculations, the present paper reports systematic total energy calculations of the electronic properties such as density of states and magnetic moment of pristine and iron and manganese doped two dimensional hexagonal germanium sheets.

  14. SIMS Characterization of Amorphous Silicon Germanium Alloys Grown by Hot-Wire Deposition

    SciTech Connect

    Reedy, R. C.; Mason, A. R.; Nelson, B. P.; Xu, Y.

    1998-10-16

    In this paper, we present methods for the quantitative secondary ion mass spectrometry (SIMS) characterization of amorphous SiGe:H alloy materials. A set of samples was grown with germanium content ranging from 5% to 77% and was subsequently analyzed by electron probe X-ray microanalysis (EPMA) and nuclear reaction analysis (NRA). Calibration of the SIMS quantification was performed with respect to EPMA data for germanium and NRA data for hydrogen.

  15. HEROICA: A fast screening facility for the characterization of germanium detectors

    NASA Astrophysics Data System (ADS)

    Andreotti, Erica; Gerda Collaboration

    2013-08-01

    In the course of 2012, a facility for the fast screening of germanium detectors called HEROICA (Hades Experimental Research Of Intrinsic Crystal Appliances) has been installed at the HADES underground laboratory in the premises of the Belgian Nuclear Research Centre SCK•CEN, in Mol (Belgium). The facility allows performing a complete characterization of the critical germanium detectors' operational parameters with a rate of about two detectors per week.

  16. HEROICA: A fast screening facility for the characterization of germanium detectors

    SciTech Connect

    Andreotti, Erica; Collaboration: GERDA Collaboration

    2013-08-08

    In the course of 2012, a facility for the fast screening of germanium detectors called HEROICA (Hades Experimental Research Of Intrinsic Crystal Appliances) has been installed at the HADES underground laboratory in the premises of the Belgian Nuclear Research Centre SCK•CEN, in Mol (Belgium). The facility allows performing a complete characterization of the critical germanium detectors' operational parameters with a rate of about two detectors per week.

  17. Functionalization of magnetic nanowires by charged biopolymers.

    PubMed

    Magnin, D; Callegari, V; Mátéfi-Tempfli, S; Mátéfi-Tempfli, M; Glinel, K; Jonas, A M; Demoustier-Champagne, S

    2008-09-01

    We report on a facile method for the preparation of biocompatible and bioactive magnetic nanowires. The method consists of the direct deposition of polysaccharides by layer-by-layer (LbL) assembly onto a brush of metallic nanowires obtained by electrodeposition of the metal within the nanopores of an alumina template supported on a silicon wafer. Carboxymethylpullulan (CMP) and chitosan (CHI) multilayers were grown on brushes of Ni nanowires; subsequent grafting of an enzyme was performed by conjugating free amine side groups of chitosan with carboxylic groups of the enzyme. The nanowires are finally released by a gentle ultrasonic treatment. Transmission electron microscopy, electron energy-dispersive loss spectroscopy, and x-ray photoelectron spectroscopy indicate the formation of an homogeneous coating onto the nickel nanowires when one, two, or three CMP/CHI bilayers are deposited. This easy and efficient route to the biochemical functionalization of magnetic nanowires could find widespread use for the preparation of a broad range of nanowires with tailored surface properties. PMID:18715031

  18. Photoluminescence of etched SiC nanowires

    NASA Astrophysics Data System (ADS)

    Stewart, Polite D., Jr.; Rich, Ryan; Zerda, T. W.

    2010-10-01

    SiC nanowires were produced from carbon nanotubes and nanosize silicon powder in a tube furnace at temperatures between 1100^oC and 1350^oC. SiC nanowires had average diameter of 30 nm and very narrow size distribution. The compound possesses a high melting point, high thermal conductivity, and excellent wear resistance. The surface of the SiC nanowires after formation is covered by an amorphous layer. The composition of that layer is not fully understood, but it is believed that in addition to amorphous SiC it contains various carbon and silicon compounds, and SiO2. The objective of the research was to modify the surface structure of these SiC nanowires. Modification of the surface was done using the wet etching method. The etched nanowires were then analyzed using Fourier Transform Infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and photoluminescence (PL). FTIR and TEM analysis provided valid proof that the SiC nanowires were successfully etched. Also, the PL results showed that the SiC nanowire core did possess a fluorescent signal.

  19. Bacterial Nanowires: Is the Subsurface Hardwired?

    NASA Astrophysics Data System (ADS)

    Gorby, Y. A.; Davis, C. A.; Atekwana, E.

    2006-05-01

    Bacteria, ranging from oxygenic photosynthetic cyanobacteria to heterotrophic sulfate reducing bacteria, produce electrically-conductive appendages referred to as bacterial nanowires. Dissimilatory metal reducing bacteria, including Shewanella oneidensis and Geobacter sulfurreducens, produce electrically conductive nanowires in direct response to electron acceptor limitation and facilitate electron transfer to solid phase iron oxides. Nanowires produced by S. oneidensis strain MR-1, which served as our primary model organism, are functionalized by decaheme cytochromes MtrC and OmcA that are distributed along the length of the nanowires. Mutants deficient in MtrC and OmcA produce nanowires that were poorly conductive. These mutants also differ from wild type cells in their ability to reduce solid phase iron oxides, to produce electrical current in a mediator less microbial fuel cell, and to form complex biofilms at air liquid interfaces. Recent results obtained using direct cell counts and low frequency electrical measurements demonstrate that microbial growth correlated with real and imaginary electrical conductivity response in uncoated silica sand columns. Direct observation of packing material with environmental scanning electron microscopy (ESEM) revealed a fine network of extracellular structures that were morphologically similar to nanowires observed in metal reducing bacteria. No such structures were observed in control columns. We hypothesize that microbial nanowires may in part be responsible for the electrical response observed in the biostimulated columns.

  20. Direct band gap electroluminescence from bulk germanium at room temperature using an asymmetric fin type metal/germanium/metal structure

    SciTech Connect

    Wang, Dong Maekura, Takayuki; Kamezawa, Sho; Yamamoto, Keisuke; Nakashima, Hiroshi

    2015-02-16

    We demonstrated direct band gap (DBG) electroluminescence (EL) at room temperature from n-type bulk germanium (Ge) using a fin type asymmetric lateral metal/Ge/metal structure with TiN/Ge and HfGe/Ge contacts, which was fabricated using a low temperature (<400 °C) process. Small electron and hole barrier heights were obtained for TiN/Ge and HfGe/Ge contacts, respectively. DBG EL spectrum peaked at 1.55 μm was clearly observed even at a small current density of 2.2 μA/μm. Superlinear increase in EL intensity was also observed with increasing current density, due to superlinear increase in population of elections in direct conduction band. The efficiency of hole injection was also clarified.

  1. Review on photonic properties of nanowires for photovoltaics.

    PubMed

    Mokkapati, S; Jagadish, C

    2016-07-25

    III-V semiconductor nanowires behave as optical antennae because of their shape anisotropy and high refractive index. The antennae like behavior modifies the absorption and emission properties of nanowires compared to planar materials. Nanowires absorb light more efficiently compared to an equivalent volume planar material, leading to higher short circuit current densities. The modified emission from the nanowires has the potential to increase the open circuit voltage from nanowire solar cells compared to planar solar cells. In order to achieve high efficiency nanowire solar cells it is essential to control the surface state density and doping in nanowires. We review the physics of nanowire solar cells and progress made in addressing the surface recombination and doping of nanowires, with emphasis on GaAs and InP materials.

  2. Review on photonic properties of nanowires for photovoltaics.

    PubMed

    Mokkapati, S; Jagadish, C

    2016-07-25

    III-V semiconductor nanowires behave as optical antennae because of their shape anisotropy and high refractive index. The antennae like behavior modifies the absorption and emission properties of nanowires compared to planar materials. Nanowires absorb light more efficiently compared to an equivalent volume planar material, leading to higher short circuit current densities. The modified emission from the nanowires has the potential to increase the open circuit voltage from nanowire solar cells compared to planar solar cells. In order to achieve high efficiency nanowire solar cells it is essential to control the surface state density and doping in nanowires. We review the physics of nanowire solar cells and progress made in addressing the surface recombination and doping of nanowires, with emphasis on GaAs and InP materials. PMID:27464182

  3. The Primary and Secondary Production of Germanium: A Life-Cycle Assessment of Different Process Alternatives

    NASA Astrophysics Data System (ADS)

    Robertz, Benedicte; Verhelle, Jensen; Schurmans, Maarten

    2015-02-01

    Germanium is a semiconducting metalloid element used in optical fibers, catalysis, infrared optics, solar cells, and light-emitting diodes. The need for Ge in these markets is considered to increase by a steady ~1% on a yearly basis. Its economic importance, coupled with the identified supply risks, has led to the classification of germanium as a critical raw material within Europe. Since the early 1950s, Umicore Electro-Optic Materials has supplied germanium-based materials solutions to its markets around the world. Umicore extracts germanium from a wide range of refining and recycling feeds. The main objectives of this study were to quantify the potential environmental impacts of the production of germanium from production scraps from the photovoltaic industry and to compare them with the potential impacts of the primary production of germanium from coal. The data related to the secondary production are Umicore-specific data. Environmental impact scores have been calculated for the impact categories recommended by the International reference life cycle data system. The comparison of the primary and secondary production highlights the benefit linked to the recycling of metals.

  4. Epitaxial growth of nanostructured gold films on germanium via galvanic displacement.

    PubMed

    Sayed, Sayed Y; Buriak, Jillian M

    2010-12-01

    This work focuses on the synthesis and characterization of gold films grown via galvanic displacement on Ge(111) substrates. The synthetic approach uses galvanic displacement, a type of electroless deposition that takes place in an efficient manner under aqueous, room temperature conditions. Investigations involving X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques were performed to study the crystallinity and orientation of the resulting gold-on-germanium films. A profound effect of HF(aq) concentration was noted, and although the SEM images did not show significant differences in the resulting gold films, a host of X-ray diffraction studies demonstrated that higher concentrations of HF(aq) led to epitaxial gold-on-germanium, whereas in the absence of HF(aq), lower degrees of order (fiber texture) resulted. Cross-sectional nanobeam diffraction analyses of the Au-Ge interface confirmed the epitaxial nature of the gold-on-germanium film. This epitaxial behavior can be attributed to the simultaneous etching of the germanium oxides, formed during the galvanic displacement process, in the presence of HF. High-resolution TEM analyses showed the coincident site lattice (CSL) interface of gold-on-germanium, which results in a small 3.8% lattice mismatch due to the coincidence of four gold lattices with three of germanium.

  5. Reynolds number manipulation of mean nanowire lengths and nanowire suspension quantification

    NASA Astrophysics Data System (ADS)

    Beaux, Miles F.; Hass, Jamie; Bridges, Nathan; Kwon, Nam Hoon; McIlroy, David N.

    2011-07-01

    A process has been developed for post fabrication manipulation of silica nanowire lengths with reproducible mean length target ability by manual grinding in liquid media. The process is based on the relationship between nanowire Reynolds number and the laminar or turbulent motion of nanowires in a media. Mean lengths of nanowires prepared by this process are predicted to be inversely proportional to the density over viscosity of the media used. Experimental results giving the mean length measurements are in very good agreement with the predicted dependence on medium density and viscosity.

  6. Synthesis of Oxidation-Resistant Cupronickel Nanowires for Transparent Conducting Nanowire Networks

    SciTech Connect

    Rathmall, Aaron; Nguyen, Minh; Wiley, Benjamin J

    2012-01-01

    Nanowires of copper can be coated from liquids to create flexible, transparent conducting films that can potentially replace the dominant transparent conductor, indium tin oxide, in displays, solar cells, organic light-emitting diodes, and electrochromic windows. One issue with these nanowire films is that copper is prone to oxidation. It was hypothesized that the resistance to oxidation could be improved by coating copper nanowires with nickel. This work demonstrates a method for synthesizing copper nanowires with nickel shells as well as the properties of cupronickel nanowires in transparent conducting films. Time- and temperature-dependent sheet resistance measurements indicate that the sheet resistance of copper and silver nanowire films will double after 3 and 36 months at room temperature, respectively. In contrast, the sheet resistance of cupronickel nanowires containing 20 mol % nickel will double in about 400 years. Coating copper nanowires to a ratio of 2:1 Cu:Ni gave them a neutral gray color, making them more suitable for use in displays and electrochromic windows. These properties, and the fact that copper and nickel are 1000 times more abundant than indium or silver, make cupronickel nanowires a promising alternative for the sustainable, efficient production of transparent conductors.

  7. Lithographically patterned nanowire electrodeposition: a method for patterning electrically continuous metal nanowires on dielectrics.

    PubMed

    Xiang, Chenxiang; Kung, Sheng-Chin; Taggart, David K; Yang, Fan; Thompson, Michael A; Güell, Aleix G; Yang, Yongan; Penner, Reginald M

    2008-09-23

    Lithographically patterned nanowire electrodeposition (LPNE) is a new method for fabricating polycrystalline metal nanowires using electrodeposition. In LPNE, a sacrificial metal (M(1)=silver or nickel) layer, 5-100 nm in thickness, is first vapor deposited onto a glass, oxidized silicon, or Kapton polymer film. A (+) photoresist (PR) layer is then deposited, photopatterned, and the exposed Ag or Ni is removed by wet etching. The etching duration is adjusted to produce an undercut approximately 300 nm in width at the edges of the exposed PR. This undercut produces a horizontal trench with a precisely defined height equal to the thickness of the M(1) layer. Within this trench, a nanowire of metal M(2) is electrodeposited (M(2)=gold, platinum, palladium, or bismuth). Finally the PR layer and M(1) layer are removed. The nanowire height and width can be independently controlled down to minimum dimensions of 5 nm (h) and 11 nm (w), for example, in the case of platinum. These nanowires can be 1 cm in total length. We measure the temperature-dependent resistance of 100 microm sections of Au and Pd wires in order to estimate an electrical grain size for comparison with measurements by X-ray diffraction and transmission electron microscopy. Nanowire arrays can be postpatterned to produce two-dimensional arrays of nanorods. Nanowire patterns can also be overlaid one on top of another by repeating the LPNE process twice in succession to produce, for example, arrays of low-impedance, nanowire-nanowire junctions. PMID:19206435

  8. Lithographically patterned nanowire electrodeposition: a method for patterning electrically continuous metal nanowires on dielectrics.

    PubMed

    Xiang, Chenxiang; Kung, Sheng-Chin; Taggart, David K; Yang, Fan; Thompson, Michael A; Güell, Aleix G; Yang, Yongan; Penner, Reginald M

    2008-09-23

    Lithographically patterned nanowire electrodeposition (LPNE) is a new method for fabricating polycrystalline metal nanowires using electrodeposition. In LPNE, a sacrificial metal (M(1)=silver or nickel) layer, 5-100 nm in thickness, is first vapor deposited onto a glass, oxidized silicon, or Kapton polymer film. A (+) photoresist (PR) layer is then deposited, photopatterned, and the exposed Ag or Ni is removed by wet etching. The etching duration is adjusted to produce an undercut approximately 300 nm in width at the edges of the exposed PR. This undercut produces a horizontal trench with a precisely defined height equal to the thickness of the M(1) layer. Within this trench, a nanowire of metal M(2) is electrodeposited (M(2)=gold, platinum, palladium, or bismuth). Finally the PR layer and M(1) layer are removed. The nanowire height and width can be independently controlled down to minimum dimensions of 5 nm (h) and 11 nm (w), for example, in the case of platinum. These nanowires can be 1 cm in total length. We measure the temperature-dependent resistance of 100 microm sections of Au and Pd wires in order to estimate an electrical grain size for comparison with measurements by X-ray diffraction and transmission electron microscopy. Nanowire arrays can be postpatterned to produce two-dimensional arrays of nanorods. Nanowire patterns can also be overlaid one on top of another by repeating the LPNE process twice in succession to produce, for example, arrays of low-impedance, nanowire-nanowire junctions.

  9. Design considerations for semiconductor nanowire-plasmonic nanoparticle coupled systems for high quantum efficiency nanowires.

    PubMed

    Mokkapati, Sudha; Saxena, Dhruv; Tan, Hark Hoe; Jagadish, Chennupati

    2013-12-01

    The optimal geometries for reducing the radiative recombination lifetime and thus enhancing the quantum efficiency of III-V semiconductor nanowires by coupling them to plasmonic nanoparticles are established. The quantum efficiency enhancement factor due to coupling to plasmonic nanoparticles reduces as the initial quality of the nanowire increases. Significant quantum efficiency enhancement is observed for semiconductors only within about 15 nm from the nanoparticle. It is also identified that the modes responsible for resonant enhancement in the quantum efficiency of an emitter in the nanowire are geometric resonances of surface plasmon polariton modes supported at the nanowire/nanoparticle interface.

  10. Comparison of nanowire pellicles for plasma membrane enrichment: coating nanowires on cell.

    PubMed

    Kim, Sung-Kyoung; Rose, Rebecca; Choksawangkarn, Waeowalee; Graham, Lauren; Hu, Junkai; Fenselau, Catherine; Lee, Sang Bok

    2013-12-01

    A study is reported on the effect of nanowire density on the ease of pellicle formation and the enrichment of plasma membrane proteins for analysis by mass spectrometry. An optimized synthesis is reported for iron silicate nanowires with a narrow size range of 900 ±400 nm in length and 200 nm diameter. The nanowires were coated with Al2O3 and used to form pellicles around suspended multiple myeloma cells, which acted as a model for cells recovered from tissue samples. Lighter alumina-coated silica nanowires were also synthesized (Kim et al. 2013), which allowed a comparison of the construction of the two pellicles and of the effect of nanowire density on plasma membrane enrichment. Evidence is offered that the dense nanowire pellicle does not crush or distort these mammalian cells. Finally, the pellicles were incorporated into a mass-spectrometry-based proteomic workflow to analyze transmembrane proteins in the plasma membrane. In contrast to a prior comparison of the effect of density with nanoparticles pellicles (Choksawangkarn et al. 2013), nanowire density was not found to significantly affect the enrichment of the plasma membrane. However, nanowires with a favorable aspect for pellicle formation are more easily and reliably produced with iron silicate than with silica. Additionally, the method for pellicle formation was optimized through the use of iron silicate nanowires (ISNW), which is crucial to the improvement of PM protein enrichment and analysis.

  11. Preparation of Metal Nanowire Decorated Carbon Allotropes

    NASA Technical Reports Server (NTRS)

    Southward, Robin E. (Inventor); Delozier, Donavon Mark (Inventor); Watson, Kent A. (Inventor); Smith, Joseph G. (Inventor); Ghose, Sayata (Inventor); Connell, John W. (Inventor)

    2014-01-01

    In the method of embodiments of the invention, the metal seeded carbon allotropes are reacted in solution forming zero valent metallic nanowires at the seeded sites. A polymeric passivating reagent, which selects for anisotropic growth is also used in the reaction to facilitate nanowire formation. The resulting structure resembles a porcupine, where carbon allotropes have metallic wires of nanometer dimensions that emanate from the seed sites on the carbon allotrope. These sites are populated by nanowires having approximately the same diameter as the starting nanoparticle diameter.

  12. Preparation of Metal Nanowire Decorated Carbon Allotropes

    NASA Technical Reports Server (NTRS)

    Southward, Robin E. (Inventor); Delozier, Donavon Mark (Inventor); Watson, Kent A. (Inventor); Smith, Jr., Joseph G. (Inventor); Ghose, Sayata (Inventor); Connell, John W. (Inventor)

    2016-01-01

    In the method of embodiments of the invention, the metal seeded carbon allotropes are reacted in solution forming zero valent metallic nanowires at the seeded sites. A polymeric passivating reagent, which selects for anisotropic growth is also used in the reaction to facilitate nanowire formation. The resulting structure resembles a porcupine, where carbon allotropes have metallic wires of nanometer dimensions that emanate from the seed sites on the carbon allotrope. These sites are populated by nanowires having approximately the same diameter as the starting nanoparticle diameter.

  13. Shape memory and pseudoelasticity in metal nanowires.

    PubMed

    Park, Harold S; Gall, Ken; Zimmerman, Jonathan A

    2005-12-16

    Structural reorientations in metallic fcc nanowires are controlled by a combination of size, thermal energy, and the type of defects formed during inelastic deformation. By utilizing atomistic simulations, we show that certain fcc nanowires can exhibit both shape memory and pseudoelastic behavior. We also show that the formation of defect-free twins, a process related to the material stacking fault energy, nanometer size scale, and surface stresses is the mechanism that controls the ability of fcc nanowires of different materials to show a reversible transition between two crystal orientations during loading and thus shape memory and pseudoelasticity. PMID:16384469

  14. Controlling plasmonic wave packets in silver nanowires.

    SciTech Connect

    Cao, L.; Nome, R.; Montgomery, J. M.; Gray, S. K.; Scherer, N. F.

    2010-09-01

    Three-dimensional finite-difference time-domain simulations were performed to explore the excitation of surface plasmon resonances in long silver (Ag) nanowires. In particular, we show that it is possible to generate plasmonic wave packets that can propagate along the nanowire by exciting superpositions of surface plasmon resonances. By using an appropriately chirped pulse, it is possible to transiently achieve localization of the excitation at the distal end of the nanowire. Such designed coherent superpositions will allow realizing spatiotemporal control of plasmonic excitations for enhancing nonlinear responses in plasmonic 'circuits'.

  15. Encoding Active Device Elements at Nanowire Tips.

    PubMed

    No, You-Shin; Gao, Ruixuan; Mankin, Max N; Day, Robert W; Park, Hong-Gyu; Lieber, Charles M

    2016-07-13

    Semiconductor nanowires and other one-dimensional materials are attractive for highly sensitive and spatially confined electrical and optical signal detection in biological and physical systems, although it has been difficult to localize active electronic or optoelectronic device function at one end of such one-dimensional structures. Here we report a new nanowire structure in which the material and dopant are modulated specifically at only one end of nanowires to encode an active two-terminal device element. We present a general bottom-up synthetic scheme for these tip-modulated nanowires and illustrate this with the synthesis of nanoscale p-n junctions. Electron microscopy imaging verifies the designed p-Si nanowire core with SiO2 insulating inner shell and n-Si outer shell with clean p-Si/n-Si tip junction. Electrical transport measurements with independent contacts to the p-Si core and n-Si shell exhibited a current rectification behavior through the tip and no detectable current through the SiO2 shell. Electrical measurements also exhibited an n-type response in conductance versus water-gate voltage with pulsed gate experiments yielding a temporal resolution of at least 0.1 ms and ∼90% device sensitivity localized to within 0.5 μm from the nanowire p-n tip. In addition, photocurrent experiments showed an open-circuit voltage of 0.75 V at illumination power of ∼28.1 μW, exhibited linear dependence of photocurrent with respect to incident illumination power with an estimated responsivity up to ∼0.22 A/W, and revealed localized photocurrent generation at the nanowire tip. The tip-modulated concept was further extended to a top-down/bottom-up hybrid approach that enabled large-scale production of vertical tip-modulated nanowires with a final synthetic yield of >75% with >4300 nanowires. Vertical tip-modulated nanowires were fabricated into >50 individually addressable nanowire device arrays showing diode-like current-voltage characteristics. These tip

  16. Transparent nanowire network electrode for textured semiconductors.

    PubMed

    Gao, Jinwei; Pei, Ke; Sun, Tianyi; Wang, Yaohui; Zhang, Linghai; Peng, Weijin; Lin, Qinggeng; Giersig, Michael; Kempa, Krzysztof; Ren, Zhifeng; Wang, Yang

    2013-03-11

    This work presents an inexpensive and easily manufacturable, highly conductive and transparent nanowire network electrode for textured semiconductors. It is based on lines of silver nanoparticles transformed into a nanowire network by microwave or furnace sintering. The nanonetwork electrode on crystalline silicon is demonstrated experimentally, with the nanoparticles self-assembling in the valleys between the pyramids of the textured surface. Optical experiments show that this conductive nanowire network electrode can be essentially 'invisible' when covered with the conventional anti-reflection coating (ARC), and thus could be employed in photovoltaic applications.

  17. Fabrication and properties of silicon carbide nanowires

    NASA Astrophysics Data System (ADS)

    Shim, Hyun Woo

    2008-12-01

    Silicon carbide (SiC), with excellent electrical, thermal, and mechanical properties, is a promising material candidate for future devices such as high-temperature electronics and super-strong lightweight structures. Combined with superior intrinsic properties, the nanomaterials of SiC show further advantages thanks to nanoscale effects. This thesis reports the growth mechanism, the self-integration, and the friction of SiC nanowires. The study involves nanowires fabrication using thermal evaporation, structure characterization using electron microscopy, friction measurement, and theoretical modeling. The study on nanowire growth mechanism requires understanding of the surfaces and interfaces of nanowire crystal. The catalyzed growth of SiC nanowires involves interfaces between source vapor, catalytic liquid, and nanowire solid. Our experimental observation includes the periodical twinning in a faceted SiC nanowire and three stage structure transitions during the growth. The proposed theoretical model shows that such phenomenon is the result of surface energy minimization process during the catalytic growth. Surface interactions also exist between nanowires, leading to their self-integration. Our parametric growth study reveals novel self-integration of SiC-SiO 2 core-shell nanowires as a result of SiO2 joining. Attraction between nanowires through van der Waals force and enhanced SiO2 diffusion at high temperature transform individual nanowires to the integrated nanojunctions, nanocables, and finally nanowebs. We also show that such joining process becomes effective either during growth or by annealing. The solid friction is a result of the interaction between two solid surfaces, and it depends on the adhesion and the deformation of two contacting solids among other factors. Having strong adhesion as shown from gecko foot-hairs, nanostructured materials should also have strong friction; this study is the first to investigate friction of nanostructures under

  18. Semiconductor Nanowires for Photoelectrochemical Water Splitting

    NASA Astrophysics Data System (ADS)

    Hwang, Yun Jeong

    Photolysis of water with semiconductor materials has been investigated intensely as a clean and renewable energy resource by storing solar energy in chemical bonds such as hydrogen. One-dimensional (1D) nanostructures such as nanowires can provide several advantages for photoelectrochemical (PEC) water splitting due to their high surface areas and excellent charge transport and collection efficiency. This dissertation discusses various nanowire photoelectrodes for single or dual semiconductor systems, and their linked PEC cells for self-driven water splitting. After an introduction of solar water splitting in the first chapter, the second chapter demonstrates water oxidative activities of hydrothermally grown TiO2 nanowire arrays depending on their length and surface properties. The photocurrents with TiO2 nanowire arrays approach saturation due to their poor charge collection efficiency with longer nanowires despite increased photon absorption efficiency. Epitaxial grains of rutile atomic layer deposition (ALD) shell on TiO2 nanowire increase the photocurrent density by 1.5 times due to improved charge collection efficiency especially in the short wavelength region. Chapter three compares the photocurrent density of the planar Si and Si nanowire arrays coated by anatase ALD TiO 2 thin film as a model system of a dual bandgap system. The electroless etched Si nanowire coated by ALD TiO2 (Si EENW/TiO2) shows 2.5 times higher photocurrent density due to lower reflectance and higher surface area. Also, this chapter illustrates that n-Si/n-TiO2 heterojunction is a promising structure for the photoanode application of a dual semiconductor system, since it can enhance the photocurrent density compared to p-Si/n-TiO 2 junction with the assistance of bend banding at the interface. Chapter four demonstrates the charge separation and transport of photogenerated electrons and holes within a single asymmetric Si/TiO2 nanowire. Kelvin probe force microscopy measurements show

  19. Synthesis of Group IV Nanowires on Graphene: The Case of Ge Nanocrawlers.

    PubMed

    Mataev, Elnatan; Rastogi, Sahil Kumar; Madhusudan, Atul; Bone, Jennifer; Lamprinakos, Nicholas; Picard, Yoosuf; Cohen-Karni, Tzahi

    2016-08-10

    In recent years, there has been a growing interest in using graphene as a synthesis platform for polymers, zero-dimensional (0D) materials, one-dimensional materials (1D), and two-dimensional (2D) materials. Here, we report the investigation of the growth of germanium nanowires (GeNWs) and germanium nanocrawlers (GeNCs) on single-layer graphene surfaces. GeNWs and GeNCs are synthesized on graphene films by gold nanoparticles catalyzed vapor-liquid-solid growth mechanism. The addition of hydrogen chloride gas (HCl) at the nucleation step increased the propensity toward GeNCs growth on the surface. As the time lag before HCl introduction during the nucleation step increased, a significant change in the number of out-of-plane GeNWs versus in-plane GeNCs was observed. The nucleation temperature and time played a key role in the formation of GeNCs as well. The fraction of GeNCs (χNCs) decreased from 0.95 ± 0.01 to 0.66 ± 0.07 when the temperature was kept at 305 °C for 15 s versus maintained at 305 °C throughout the process, respectively. GeNCs exhibit ⟨112⟩ as the preferred growth direction whereas GeNWs exhibit both ⟨112⟩ and ⟨111⟩ as the preferred growth directions. Finally, our growth model suggests a possible mechanism for the preference of an in-plane GeNC growth on graphene versus GeNW on SiO2. These findings open up unique opportunities for fundamental studies of crystal growth on graphene, as well as enable exploration of new electronic interfaces between group IV materials and graphene, potentially toward designing new geometries for hybrid materials sensors. PMID:27400248

  20. Twinning effect on photoluminescence spectra of ZnSe nanowires

    SciTech Connect

    Xu, Jing; Wang, Chunrui Wu, Binhe; Xu, Xiaofeng; Chen, Xiaoshuang; Oh, Hongseok; Baek, Hyeonjun; Yi, Gyu-Chul

    2014-11-07

    Bandgap engineering in a single material along the axial length of nanowires may be realized by arranging periodic twinning, whose twin plane is vertical to the axial length of nanowires. In this paper, we report the effect of twin on photoluminescence of ZnSe nanowires, which refers to the bandgap of it. The exciton-related emission peaks of transverse twinning ZnSe nanowires manifest a 10-meV-blue-shift in comparison with those of longitudinal twinning ZnSe nanowires. The blue-shift is attributed to quantum confinement effect, which is influenced severely by the proportion of wurtzite ZnSe layers in ZnSe nanowires.

  1. Direct laser fabrication of nanowires on semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Haghizadeh, Anahita; Yang, Haeyeon

    2016-03-01

    Periodic nanowires are observed from (001) orientation of Si and GaAs when the surfaces are irradiated interferentially by high power laser pulses. These nanowires are self-assembled and can be strain-free while their period is consistent with interference period. The nanowire morphologies are studied by atomic force microscopy. The observed period between nanowires depends on the wavelengths used and interference angle. The nanowire width increases with laser intensity. The narrowest nanowires observed have the width smaller than 20 nm, which is more than 10 times smaller than the interference period.

  2. Nucleation, Growth, and Bundling of GaN Nanowires in Molecular Beam Epitaxy: Disentangling the Origin of Nanowire Coalescence.

    PubMed

    Kaganer, Vladimir M; Fernández-Garrido, Sergio; Dogan, Pinar; Sabelfeld, Karl K; Brandt, Oliver

    2016-06-01

    We investigate the nucleation, growth, and coalescence of spontaneously formed GaN nanowires in molecular beam epitaxy combining the statistical analysis of scanning electron micrographs with Monte Carlo growth models. We find that (i) the nanowire density is limited by the shadowing of the substrate from the impinging fluxes by already existing nanowires, (ii) shortly after the nucleation stage, nanowire radial growth becomes negligible, and (iii) coalescence is caused by bundling of nanowires. The latter phenomenon is driven by the gain of surface energy at the expense of the elastic energy of bending and becomes energetically favorable once the nanowires exceed a certain critical length. PMID:27168127

  3. Nucleation, Growth, and Bundling of GaN Nanowires in Molecular Beam Epitaxy: Disentangling the Origin of Nanowire Coalescence.

    PubMed

    Kaganer, Vladimir M; Fernández-Garrido, Sergio; Dogan, Pinar; Sabelfeld, Karl K; Brandt, Oliver

    2016-06-01

    We investigate the nucleation, growth, and coalescence of spontaneously formed GaN nanowires in molecular beam epitaxy combining the statistical analysis of scanning electron micrographs with Monte Carlo growth models. We find that (i) the nanowire density is limited by the shadowing of the substrate from the impinging fluxes by already existing nanowires, (ii) shortly after the nucleation stage, nanowire radial growth becomes negligible, and (iii) coalescence is caused by bundling of nanowires. The latter phenomenon is driven by the gain of surface energy at the expense of the elastic energy of bending and becomes energetically favorable once the nanowires exceed a certain critical length.

  4. Lattice thermal conductivity crossovers in semiconductor nanowires.

    PubMed

    Mingo, N; Broido, D A

    2004-12-10

    For binary compound semiconductor nanowires, we find a striking relationship between the nanowire's thermal conductivity kappa(nwire), the bulk material's thermal conductivity kappa(bulk), and the mass ratio of the material's constituent atoms, r, as kappa(bulk)/kappa(nwire) (alpha) (1+1/r)(-3/2). A significant consequence is the presence of crossovers in which a material with higher bulk thermal conductivity than the rest is no longer the best nanowire thermal conductor. We show that this behavior stems from a change in the dominant phonon scattering mechanism with decreasing nanowire size. The results have important implications for nanoscale heat dissipation, thermoelectricity, and thermal conductivity of nanocomposites. PMID:15697834

  5. Optical properties of nanowire metamaterials with gain

    NASA Astrophysics Data System (ADS)

    Lima, Joaquim; Adam, Jost; Rego, Davi; Esquerre, Vitaly; Bordo, Vladimir

    2016-11-01

    The transmittance, reflectance and absorption of a nanowire metamaterial with optical gain are numerically simulated and investigated. It is assumed that the metamaterial is represented by aligned silver nanowires embedded into a semiconductor matrix, made of either silicon or gallium phosphide. The gain in the matrix is modeled by adding a negative imaginary part to the dielectric function of the semiconductor. It is found that the optical coefficients of the metamaterial depend on the gain magnitude in a non-trivial way: they can both increase and decrease with gain depending on the lattice constant of the metamaterial. This peculiar behavior is explained by the field redistribution between the lossy metal nanowires and the amplifying matrix material. These findings are significant for a proper design of nanowire metamaterials with low optical losses for diverse applications.

  6. SiC nanowires: A photocatalytic nanomaterial

    SciTech Connect

    Zhou Weimin; Yan Lijun; Wang Ying; Zhang Yafei

    2006-07-03

    Single-crystal {beta}-SiC nanowires coated with amorphous SiO{sub 2} were synthesized by a simple thermal evaporation technique. The photocatalytic activity of the SiC nanowires was characterized by measuring the photodegradation rate of acetaldehyde catalyzed by SiC as a function of UV irradiation time. It exhibited excellent photocatalytic activity, leading to the efficient decomposition of acetaldehyde by irradiation with UV light. The progress of the photocatalytic reaction can be monitored by the evolution of one of the products, CO{sub 2}. It has been observed that the as-synthesized SiC nanowires (with the SiO{sub 2} coating) have higher catalytic activity than the HF-etched, oxide-free SiC nanowires.

  7. Planar Thermoelectric Microgenerators Based on Silicon Nanowires

    NASA Astrophysics Data System (ADS)

    Dávila, D.; Tarancón, A.; Kendig, D.; Fernández-Regúlez, M.; Sabaté, N.; Salleras, M.; Calaza, C.; Cané, C.; Gràcia, I.; Figueras, E.; Santander, J.; San Paulo, A.; Shakouri, A.; Fonseca, L.

    2011-05-01

    Silicon nanowires have been implemented in microfabricated structures to develop planar thermoelectric microgenerators ( μTEGs) monolithically integrated in silicon to convert heat flow from thermal gradients naturally present in the environment into electrical energy. The compatibility of typical microfabrication technologies and the vapor-liquid-solid (VLS) mechanism employed for silicon nanowire growth has been evaluated. Low-thermal-mass suspended structures have been designed, simulated, and microfabricated on silicon-on-insulator substrates to passively generate thermal gradients and operate as microgenerators using silicon nanowires as thermoelectric material. Both electrical measurements to evaluate the connectivity of the nanowires and thermoreflectance imaging to determine the heat transfer along the device have been employed.

  8. Boron carbide nanowires: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Guan, Zhe

    Bulk boron carbide has been widely used in ballistic armored vest and the property characterization has been heavily focused on mechanical properties. Even though boron carbides have also been projected as a promising class of high temperature thermoelectric materials for energy harvesting, the research has been limited in this field. Since the thermal conductivity of bulk boron carbide is still relatively high, there is a great opportunity to take advantage of the nano effect to further reduce it for better thermoelectric performance. This dissertation work aims to explore whether improved thermoelectric performance can be found in boron carbide nanowires compared with their bulk counterparts. This dissertation work consists of four main parts. (1) Synthesis of boron carbide nanowires. Boron carbide nanowires were synthesized by co-pyrolysis of diborane and methane at low temperatures (with 879 °C as the lowest) in a home-built low pressure chemical vapor deposition (LPCVD) system. The CVD-based method is energy efficient and cost effective. The as-synthesized nanowires were characterized by electron microscopy extensively. The transmission electron microscopy (TEM) results show the nanowires are single crystalline with planar defects. Depending on the geometrical relationship between the preferred growth direction of the nanowire and the orientation of the defects, the as-synthesized nanowires could be further divided into two categories: transverse fault (TF) nanowires grow normal to the defect plane, while axial fault (AF) ones grow within the defect plane. (2) Understanding the growth mechanism of as-synthesized boron carbide nanowires. The growth mechanism can be generally considered as the famous vapor-liquid-solid (VLS) mechanism. TF and AF nanowires were found to be guided by Ni-B catalysts of two phases. A TF nanowire is lead by a hexagonal phase catalyst, which was proved to be in a liquid state during reaction. While an AF nanowires is catalyzed by a

  9. Enhanced Thermoelectric Performance in Rough Silicon Nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Renkun; Hochbaum, Allon I.; Diaz Delgado, Raul; Liang, Wenjie; Garnett, Erik C.; Najarian, Mark; Majumdar, Arun; Yang, Peidong

    2008-03-01

    Due to the disparity between electron (<10 nm) and phonon ( ˜100 nm) mean free paths in silicon, nanostructured Si could effectively block phonon transport by boundary scattering while maintaining electron transport, thereby enhancing thermoelectric figure of merit, ZT. Here we report the wafer-scale electrochemical synthesis and thermoelectric characterization of rough Si nanowires with enhanced ZT, relative to the bulk material. Single nanowire measurements show that their electrical resistivity and Seebeck coefficient are similar to those of bulk Si with similar dopant concentration. Thin nanowires, however, exhibit a 100-fold reduction in thermal conductivity (k), yielding a large ZT = 0.6 at room temperature. Although bulk Si is a poor thermoelectric material, Si nanowire arrays show promise as high-performance, scalable thermoelectric materials.

  10. Electrospun metallic nanowires: Synthesis, characterization, and applications

    NASA Astrophysics Data System (ADS)

    Khalil, Abdullah; Singh Lalia, Boor; Hashaikeh, Raed; Khraisheh, Marwan

    2013-11-01

    Metals are known to have unique thermal, mechanical, electrical, and catalytic properties. On the other hand, metallic nanowires are promising materials for variety of applications such as transparent conductive film for photovoltaic devices, electrodes for batteries, as well as nano-reinforcement for composite materials. Whereas varieties of methods have been explored to synthesize metal nanowires with different characteristics, electrospinning has also been found to be successful for that purpose. Even though electrospinning of polymeric nanofibers is a well-established field, there are several challenges that need to be overcome to use the electrospinning technique for the fabrication of metallic nanowires. These challenges are mainly related to the multi-steps fabrication process and its relation to the structure evolution of the nanowires. In addition to reviewing the literature, this article identifies promising avenues for further research in this area with particular emphasis on the applications that nonwoven metal wires confined in a nano-scale can open.

  11. Locomotion of chemically powered autonomous nanowire motors

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Li, Longqiu; Li, Tianlong; Zhang, Guangyu; Sun, Qian

    2015-08-01

    Physical insights on the hydrodynamics and locomotion of self-propelled nanowire motor under nonequilibrium steady state are investigated using finite element method in accordance with hybrid molecular dynamics/multiparticle collision dynamics and rigid body dynamics. Nanowire motor is discretized into finite segments, and forces of solvent molecule acting on the motor are assumed to be the sum of forces acting on all segments of the motor. We show that the locomotion of nanowire motor is mainly determined by the imbalance forces acting on the catalytic and noncatalytic segments. The average velocity along the axis increases significantly as a function of time prior to reaching equilibrium. The length of nanowire motor shows negligible effect on the velocity of the motor. Preliminary experimental results are provided to validate the current model.

  12. Synthesis and photocurrent of amorphous boron nanowires.

    PubMed

    Ge, Liehui; Lei, Sidong; Hart, Amelia H C; Gao, Guanhui; Jafry, Huma; Vajtai, Robert; Ajayan, Pulickel M

    2014-08-22

    Although theoretically feasible, synthesis of boron nanostructures is challenging due to the highly reactive nature, high melting and boiling points of boron. We have developed a thermal vapor transfer approach to synthesizing amorphous boron nanowire using a solid boron source. The amorphous nature and chemical composition of boron nanowires were characterized by high resolution transmission electron microscopy, selected area electron diffraction, and electron energy loss spectroscopy. Optical properties and photoconduction of boron nanowires have not yet been reported. In our investigation, the amorphous boron nanowire showed much better optical and electrical properties than previously reported photo-response of crystalline boron nanobelts. When excited by a blue LED, the photo/dark current ratio (I/I₀) is 1.5 and time constants in the order of tens of seconds. I/I₀ is 1.17 using a green light. PMID:25061013

  13. Oxide nanowires for spintronics: materials and devices.

    PubMed

    Tian, Yufeng; Bakaul, Saidur Rahman; Wu, Tom

    2012-03-01

    Spintronics, or spin-based data storage and manipulation technology, is emerging as a very active research area because of both new science and potential technological applications. As the characteristic lengths of spin-related phenomena naturally fall into the nanometre regime, researchers start applying the techniques of bottom-up nanomaterial synthesis and assembly to spintronics. It is envisaged that novel physics regarding spin manipulation and domain dynamics can be realized in quantum confined nanowire-based devices. Here we review the recent breakthroughs related to the applications of oxide nanowires in spintronics from the perspectives of both material candidates and device fabrication. Oxide nanowires generally show excellent crystalline quality and tunable physical properties, but more efforts are imperative as we strive to develop novel spintronic nanowires and devices.

  14. Mode Switching and Filtering in Nanowire Lasers.

    PubMed

    Röder, Robert; Sidiropoulos, Themistoklis P H; Buschlinger, Robert; Riediger, Max; Peschel, Ulf; Oulton, Rupert F; Ronning, Carsten

    2016-04-13

    Coherent light sources confining the light below the vacuum wavelength barrier will drive future concepts of nanosensing, nanospectroscopy, and photonic circuits. Here, we directly image the angular emission of such a light source based on single semiconductor nanowire lasers. It is confirmed that the lasing switches from the fundamental mode in a thin ZnO nanowire to an admixture of several transverse modes in thicker nanowires approximately at the multimode cutoff. The mode competition with higher order modes substantially slows down the laser dynamics. We show that efficient photonic mode filtering in tapered nanowires selects the desired fundamental mode for lasing with improved performance including power, efficiency, and directionality important for an optimal coupling between adjacent nanophotonic waveguides. PMID:27007261

  15. Novel growth of aluminium nitride nanowires.

    PubMed

    Radwan, M; Bahgat, M

    2006-02-01

    This work describes novel growth of aluminium nitride (AIN) nanowires by nitridation of a mixture consists of aluminium and ammonium chloride powders (Al:NH4Cl = 1.5:1 weight ratio) at 1000 degrees C for 1 h in flowing nitrogen gas (1 l/min). XRD analysis of the product showed the formation of pure hexagonal AIN. SEM micrographs of as-synthesized product revealed the growth of homogeneous AIN nanowires (phi 40-150 nm). No droplets were observed at the tips of obtained nanowires which suggests that they were grown mainly by a vapor-phase reactions mechanism. Thermodynamic analysis of possible intermediate reactions in the operating temperatures range illustrates that these nanowires could be grown via spontaneous vapor-phase chlorination-nitridation sequences.

  16. Synthesis of Cu Nanowires with Polycarbonate Template

    SciTech Connect

    Naderi, N.; Hashim, M. R.

    2011-03-30

    Copper nanowires were fabricated into arrays of pores on ion-track etched polycarbonate membrane, using electrodeposition technique. We coated Au thin film layer on one side of membrane in order to have electrical contact. X-ray diffraction analysis shows that the Au layer has a strong (111) texture. The pores which have cylindrical shape with 6 micron length and 30 nm diameter were filled by copper atoms, fabricating Cu nanowires. Energy Disperse Spectrometry (EDS) indicated the picks of copper which filled the pores of substrate. The morphology and structure of Cu nanowires were characterized by SEM, TEM and XRD, respectively. The results show that although all the nanowires do not have uniform diameter, but all of them are continuous along the length.

  17. Electrodeposition and Characterization of Bismuth Telluride Nanowires

    NASA Astrophysics Data System (ADS)

    Frantz, C.; Stein, N.; Gravier, L.; Granville, S.; Boulanger, C.

    2010-09-01

    In this work, we report thermoelectric measurements on electroplated bismuth telluride nanowires. Porous polycarbonate membranes, obtained by ion-track irradiation lithography, were chosen as electroplating templates. Bismuth telluride nanowires were achieved in acidic media under potentiostatic conditions at -100 mV versus saturated silver chloride electrode. The filling ratio of the pores was increased to 80% by adding dimethyl sulfoxide to the electrolyte. Whatever the experimental conditions, the nanowires were polycrystalline in the rhombohedral phase of Bi2Te3. Finally, the power output of arrays of bismuth telluride nanowires was analyzed as a function of load resistance. The results were strongly dependent on the internal resistance, which can be significantly reduced by the presence of dimethyl sulfoxide during electroplating.

  18. Electrical conductivity measurements of bacterial nanowires from Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Maruthupandy, Muthusamy; Anand, Muthusamy; Maduraiveeran, Govindhan; Sait Hameedha Beevi, Akbar; Jeeva Priya, Radhakrishnan

    2015-12-01

    The extracellular appendages of bacteria (flagella) that transfer electrons to electrodes are called bacterial nanowires. This study focuses on the isolation and separation of nanowires that are attached via Pseudomonas aeruginosa bacterial culture. The size and roughness of separated nanowires were measured using transmission electron microscopy (TEM) and atomic force microscopy (AFM), respectively. The obtained bacterial nanowires indicated a clear image of bacterial nanowires measuring 16 nm in diameter. The formation of bacterial nanowires was confirmed by microscopic studies (AFM and TEM) and the conductivity nature of bacterial nanowire was investigated by electrochemical techniques. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), which are nondestructive voltammetry techniques, suggest that bacterial nanowires could be the source of electrons—which may be used in various applications, for example, microbial fuel cells, biosensors, organic solar cells, and bioelectronic devices. Routine analysis of electron transfer between bacterial nanowires and the electrode was performed, providing insight into the extracellular electron transfer (EET) to the electrode. CV revealed the catalytic electron transferability of bacterial nanowires and electrodes and showed excellent redox activities. CV and EIS studies showed that bacterial nanowires can charge the surface by producing and storing sufficient electrons, behave as a capacitor, and have features consistent with EET. Finally, electrochemical studies confirmed the development of bacterial nanowires with EET. This study suggests that bacterial nanowires can be used to fabricate biomolecular sensors and nanoelectronic devices.

  19. Maximizing Tensile Strain in Germanium Nanomembranes for Enhanced Optoelectronic Properties

    NASA Astrophysics Data System (ADS)

    Sanchez Perez, Jose Roberto

    Silicon, germanium, and their alloys, which provide the leading materials platform of microelectronics, are extremely inefficient light emitters because of their indirect fundamental energy band gap. This basic materials property has so far hindered the development of group-IV photonic-active devices, including light emitters and diode lasers, thereby significantly limiting our ability to integrate electronic and photonic functionalities at the chip level. Theoretical studies have predicted that tensile strain in Ge lowers the direct energy band gap relative to the indirect one, and that, with sufficient strain, Ge becomes direct-band gap, thus enabling facile interband light emission and the fabrication of Group IV lasers. It has, however, not been possible to impart sufficient strain to Ge to reach the direct-band gap goal, because bulk Ge fractures at much lower strains. Here it is shown that very thin sheets of Ge(001), called nanomembranes (NMs), can be used to overcome this materials limitation. Germanium nanomembranes (NMs) in the range of thicknesses from 20nm to 100nm were fabricated and then transferred and mounted to a flexible substrate [a polyimide (PI) sheet]. An apparatus was developed to stress the PI/NM combination and provide for in-situ Raman measurements of the strain as a function of applied stress. This arrangement allowed for the introduction of sufficient biaxial tensile strain (>1.7%) to transform Ge to a direct-band gap material, as determined by photoluminescence (PL) measurements and theory. Appropriate shifts in the emission spectrum and increases in PL intensities were observed. The advance in this work was nanomembrane fabrication technology; i.e., making thin enough Ge sheets to accept sufficiently high levels of strain without fracture. It was of interest to determine if the strain at which fracture ultimately does occur can be raised, by evaluating factors that initiate fracture. Attempts to assess the effect of free edges (enchant

  20. Automation of the Characterization of High Purity Germanium Detectors

    NASA Astrophysics Data System (ADS)

    Dugger, Charles ``Chip''

    2014-09-01

    Neutrinoless double beta decay is a rare hypothesized process that may yield valuable insight into the fundamental properties of the neutrino. Currently there are several experiments trying to observe this process, including the Majorana DEMONSTRAOR experiment, which uses high purity germanium (HPGe) detectors to generate and search for these events. Because the event happens internally, it is essential to have the lowest background possible. This is done through passive detector shielding, as well as event discrimination techniques that distinguish between multi-site events characteristic of gamma-radiation, and single-site events characteristic of neutrinoless double beta decay. Before fielding such an experiment, the radiation response of the detectors must be characterized. A robotic arm is being tested for future calibration of HPGe detectors. The arm will hold a source at locations relative to the crystal while data is acquired. Several radioactive sources of varying energy levels will be used to determine the characteristics of the crystal. In this poster, I will present our work with the robot, as well as the characterization of data we took with an underground HPGe detector at the WIPP facility in Carlsbad, NM (2013). Neutrinoless double beta decay is a rare hypothesized process that may yield valuable insight into the fundamental properties of the neutrino. Currently there are several experiments trying to observe this process, including the Majorana DEMONSTRAOR experiment, which uses high purity germanium (HPGe) detectors to generate and search for these events. Because the event happens internally, it is essential to have the lowest background possible. This is done through passive detector shielding, as well as event discrimination techniques that distinguish between multi-site events characteristic of gamma-radiation, and single-site events characteristic of neutrinoless double beta decay. Before fielding such an experiment, the radiation response of

  1. Plasmon resonant cavities in vertical nanowire arrays

    SciTech Connect

    Bora, M; Bond, T; Behymer, E; Chang, A

    2010-02-23

    We investigate tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides. Resonances are observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors over 103 are possible due to plasmon focusing in the inter-wire space.

  2. Development of a new type of germanium detector for dark matter searches

    NASA Astrophysics Data System (ADS)

    Wei, Wenzhao

    Monte Carlo simulation is an important tool used to develop a better understanding of important physical processes. This thesis describes three Monte Carlo simulations used to understand germanium detector response to low energy nuclear recoils and radiogenic backgrounds for direct dark matter searches. The first simulation is the verification of Barker-Mei model, a theoretical model for calculating the ionization efficiency for germanium detector for the energy range of 1 - 100 keV. Utilizing the shape analysis, a bin-to-bin comparison between simulation and experimental data was performed for verifying the accuracy of the Barker-Mei model. A percentage difference within 4% was achieved between data and simulation, which showed the validity of the Barker-Mei model. The second simulation is the study of a new type of germanium detector for n/gamma discrimination at 77 K with plasma time difference in pulse shape. Due to the poor time resolution, conventional P-type Point Contact (PPC) and coaxial germanium detectors are not capable of discriminating nuclear recoils from electron recoils. In this thesis, a new idea of using great detector granularity and plasma time difference in pulse shape to discriminate nuclear recoils from electron recoils with planar germanium detectors in strings was discussed. The anticipated sensitivity of this new detector array is shown for detecting dark matter. The last simulation is a study of a new type of germanium-detector array serving as a PMT screening facility for ultra-low background dark matter experiments using noble liquid xenon as detector material such LUX/LZ and XENON100/XENON1T. A well-shaped germanium detector array and a PMT were simulated to study the detector response to the signal and background for a better understanding of the radiogenic gamma rays from PMTs. The detector efficiency and other detector performance were presented in this work.

  3. HEROICA: an underground facility for the fast screening of germanium detectors

    NASA Astrophysics Data System (ADS)

    Andreotti, E.; Garfagnini, A.; Maneschg, W.; Barros, N.; Benato, G.; Brugnera, R.; Costa, F.; Falkenstein, R.; Guthikonda, K. K.; Hegai, A.; Hemmer, S.; Hult, M.; Jänner, K.; Kihm, T.; Lehnert, B.; Liao, H.; Lubashevskiy, A.; Lutter, G.; Marissens, G.; Modenese, L.; Pandola, L.; Reissfelder, M.; Sada, C.; Salathe, M.; Schmitt, C.; Schulz, O.; Schwingenheuer, B.; Turcato, M.; Ur, C.; von Sturm, K.; Wagner, V.; Westermann, J.

    2013-06-01

    HEROICA (Hades Experimental Research Of Intrinsic Crystal Appliances) is an infrastructure to characterize germanium detectors and has been designed and constructed at the HADES Underground Research Laboratory, located in Mol (Belgium). Thanks to the 223 m overburden of clay and sand, the muon flux is lowered by four orders of magnitude. This natural shield minimizes the exposure of radio-pure germanium material to cosmic radiation resulting in a significant suppression of cosmogenic activation in the germanium detectors. The project has been strongly motivated by a special production of germanium detectors for the GERDA experiment. GERDA, currently collecting data at the Laboratori Nazionali del Gran Sasso of INFN, is searching for the neutrinoless double beta decay of 76Ge. In the near future, GERDA will increase its mass and sensitivity by adding new Broad Energy Germanium (BEGe) detectors. The production of the BEGe detectors is done at Canberra in Olen (Belgium), located about 30 km from the underground test site. Therefore, HADES is used both for storage of the crystals over night, during diode production, and for the characterization measurements. A full quality control chain has been setup and tested on the first seven prototype detectors delivered by the manufacturer at the beginning of 2012. The screening capabilities demonstrate that the installed setup fulfills a fast and complete set of measurements on the diodes and it can be seen as a general test facility for the fast screening of high purity germanium detectors. The results are of major importance for a future massive production and characterization chain of germanium diodes foreseen for a possible next generation 1-tonne double beta decay experiment with 76Ge.

  4. Thermoelectric performance of classical topological insulator nanowires

    NASA Astrophysics Data System (ADS)

    Gooth, Johannes; Göran Gluschke, Jan; Zierold, Robert; Leijnse, Martin; Linke, Heiner; Nielsch, Kornelius

    2015-01-01

    There is currently substantial effort being invested into creating efficient thermoelectric (TE) nanowires based on topological insulator (TI) chalcogenide-type materials. A key premise of these efforts is the assumption that the generally good TE properties that these materials exhibit in bulk form will translate into similarly good or even better TE performance of the same materials in nanowire form. Here, we calculate TE performance of TI nanowires based on Bi2Te3, Sb2Te3 and Bi2Se3 as a function of diameter and Fermi level. We show that the TE performance of TI nanowires does not derive from the properties of the bulk material in a straightforward way. For all investigated systems the competition between surface states and bulk channel causes a significant modification of the TE transport coefficients if the diameter is reduced into the sub 10 μm range. Key aspects are that the surface and bulk states are optimized at different Fermi levels or have different polarity as well as the high surface to volume ratio of the nanowires. This limits the maximum TE performance of TI nanowires and thus their application in efficient TE devices.

  5. Additional compound semiconductor nanowires for photonics

    NASA Astrophysics Data System (ADS)

    Ishikawa, F.

    2016-02-01

    GaAs related compound semiconductor heterostructures are one of the most developed materials for photonics. Those have realized various photonic devices with high efficiency, e. g., lasers, electro-optical modulators, and solar cells. To extend the functions of the materials system, diluted nitride and bismide has been paid attention over the past decade. They can largely decrease the band gap of the alloys, providing the greater tunability of band gap and strain status, eventually suppressing the non-radiative Auger recombinations. On the other hand, selective oxidation for AlGaAs is a vital technique for vertical surface emitting lasers. That enables precisely controlled oxides in the system, enabling the optical and electrical confinement, heat transfer, and mechanical robustness. We introduce the above functions into GaAs nanowires. GaAs/GaAsN core-shell nanowires showed clear redshift of the emitting wavelength toward infrared regime. Further, the introduction of N elongated the carrier lifetime at room temperature indicating the passivation of non-radiative surface recombinations. GaAs/GaAsBi nanowire shows the redshift with metamorphic surface morphology. Selective and whole oxidations of GaAs/AlGaAs core-shell nanowires produce semiconductor/oxide composite GaAs/AlGaOx and oxide GaOx/AlGaOx core-shell nanowires, respectively. Possibly sourced from nano-particle species, the oxide shell shows white luminescence. Those property should extend the functions of the nanowires for their application to photonics.

  6. Positioned growth of InP nanowires

    NASA Astrophysics Data System (ADS)

    Poole, P. J.; Dalacu, D.; Lapointe, J.; Kam, A.; Mnaymneh, K.

    2011-02-01

    We describe two different approaches to growing precisely positioned InP nanowires on InP wafers. Both of these approaches utilize the selective area growth capabilities of Chemical Beam Epitaxy, one using the Au catalysed Vapour-Liquid-Solid (VLS) growth mode, the other being catalyst-free. Growth is performed on InP wafers which are first coated with 20 nm of SiO2. These are then patterned using e-beam lithography to create nanometer scale holes in the SiO2 layer to expose the InP surface. For the VLS growth Au is then deposited into the holes in the SiO2 mask layer using a self-aligned lift-off process. For the catalyst-free growth no Au is deposited. In both cases the deposition of InP results in the formation of InP nanowires. In VLS growth the nanowire diameter is controlled by the size of the Au particle, whereas when catalyst-free the diameter is that of the opening in the SiO2 mask. The orientation of the nanowires is also different, <111>B when using Au particles and <111>A when catalyst-free. For the catalysed growth the effect of the Au particle can be turned off by modifying growth conditions allowing the nanowire to be clad, dramatically enhancing the optical emission from InAs quantum dots grown inside the nanowire.

  7. Solvothermal synthesis of strontium phosphate chloride nanowire

    NASA Astrophysics Data System (ADS)

    Lam, W. M.; Wong, C. T.; Li, Z. Y.; Luk, K. D. K.; Chan, W. K.; Yang, C.; Chiu, K. Y.; Xu, B.; Lu, W. W.

    2007-08-01

    Strontium phosphate chloride nanowire was synthesized via a solvothermal treatment of strontium tri-polyphosphate and Collin salt in 1,4-dioxane at 150 °C. The effects of 1,4-dioxane concentration on particle morphology, crystallinity and phase purity were investigated in this study. The specimen morphology was analyzed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). When the concentration of 1,4-dioxane was below 10%, micron-sized whisker was the dominant form. At 20-25% concentration of 1,4-dioxane, strontium phosphate chloride single-crystalline nanowire was 31±12 nm in diameter and 1.43±0.6 μm in length with an aspect ratio of 52.28±29.41. X-ray diffraction (XRD) pattern of this nanowire matched with that of strontium phosphate chloride (JCPDS #083-0973). When 1,4-dioxane concentration exceeded 25%, nanorod aggregate was the dominant form instead of nanowire. At 20-25% 1,4-dioxane concentration suitable strontium concentration combine with high chemical potential environment favors the formation of nanowires. By adding 1,4-dioxane impure phase such as β-strontium hydrogen phosphate, nanorod formation was suppressed. This method provides an efficient way to synthesize high aspect ratio strontium phosphate chloride nanowire. It has potential bioactive nanocomposite, high mechanical performance bioactive bone cement filler and fluorescent material applications.

  8. Nanowire array and nanowire solar cells and methods for forming the same

    DOEpatents

    Yang, Peidong; Greene, Lori E.; Law, Matthew

    2009-06-09

    Homogeneous and dense arrays of nanowires are described. The nanowires can be formed in solution and can have average diameters of 40-300 nm and lengths of 1-3 .mu.m. They can be formed on any suitable substrate. Photovoltaic devices are also described.

  9. Fabrication of Si3N4 nanowire membranes: free standing disordered nanopapers and aligned nanowire assemblies

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Fang, Minghao; Huang, Zhaohui; Huang, Juntong; Liu, Yan-gai; Wu, Xiaowen

    2016-08-01

    Herein, ultralong silicon nitride nanowires were synthesized via a chemical vapor deposition method by using the low-cost quartz and silicon powder as raw materials. Simple processes were used for the fabrication of disordered and ordered nanowire membranes of pure silicon nitride nanowires. The nanowires in the disordered nanopapers are intertwined with each other to form a paper-like structure which exhibit excellent flame retardancy and mechanical properties. Fourier-transform infrared spectroscopy and thermal gravity analysis were employed to characterize the refractory performance of the disordered nanopapers. Highly ordered nanowire membranes were also assembled through a three-phase assembly approach which make the Si3N4 nanowires have potential use in textured ceramics and semiconductor field. Moreover, the surface nanowires can also be modified to be hydrophobic; this characteristic make the as-prepared nanowires have the potential to be assembled by the more effective Langmuir–Blodgett method and also make the disordered nanopapers possess a super-hydrophobic surface.

  10. Fabrication of Si3N4 nanowire membranes: free standing disordered nanopapers and aligned nanowire assemblies

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Fang, Minghao; Huang, Zhaohui; Huang, Juntong; Liu, Yan-gai; Wu, Xiaowen

    2016-08-01

    Herein, ultralong silicon nitride nanowires were synthesized via a chemical vapor deposition method by using the low-cost quartz and silicon powder as raw materials. Simple processes were used for the fabrication of disordered and ordered nanowire membranes of pure silicon nitride nanowires. The nanowires in the disordered nanopapers are intertwined with each other to form a paper-like structure which exhibit excellent flame retardancy and mechanical properties. Fourier-transform infrared spectroscopy and thermal gravity analysis were employed to characterize the refractory performance of the disordered nanopapers. Highly ordered nanowire membranes were also assembled through a three-phase assembly approach which make the Si3N4 nanowires have potential use in textured ceramics and semiconductor field. Moreover, the surface nanowires can also be modified to be hydrophobic; this characteristic make the as-prepared nanowires have the potential to be assembled by the more effective Langmuir-Blodgett method and also make the disordered nanopapers possess a super-hydrophobic surface.

  11. Nanowire array and nanowire solar cells and methods for forming the same

    DOEpatents

    Yang, Peidong; Greene, Lori; Law, Matthew

    2007-09-04

    Homogeneous and dense arrays of nanowires are described. The nanowires can be formed in solution and can have average diameters of 40-300 nm and lengths of 1-3 .mu.m. They can be formed on any suitable substrate. Photovoltaic devices are also described.

  12. CuO nanowire/microflower/nanowire modified Cu electrode with enhanced electrochemical performance for non-enzymatic glucose sensing.

    PubMed

    Li, Changli; Yamahara, Hiroyasu; Lee, Yaerim; Tabata, Hitoshi; Delaunay, Jean-Jacques

    2015-07-31

    CuO nanowire/microflower structure on Cu foil is synthesized by annealing a Cu(OH)2 nanowire/CuO microflower structure at 250 °C in air. The nanowire/microflower structure with its large surface area leads to an efficient catalysis and charge transfer in glucose detection, achieving a high sensitivity of 1943 μA mM(-1) cm(-2), a wide linear range up to 4 mM and a low detection limit of 4 μM for amperometric glucose sensing in alkaline solution. With a second consecutive growth of CuO nanowires on the microflowers, the sensitivity of the obtained CuO nanowire/microflower/nanowire structure further increases to 2424 μA mM(-1) cm(-2), benefiting from an increased number of electrochemically active sites. The enhanced electrocatalytic performance of the CuO nanowire/microflower/nanowire electrode compared to the CuO nanowire/microflower electrode, CuO nanowire electrode and CuxO film electrode provides evidence for the significant role of available surface area for electrocatalysis. The rational combination of CuO nanowire and microflower nanostructures into a nanowire supporting microflower branching nanowires structure makes it a promising composite nanostructure for use in CuO based electrochemical sensors with promising analytical properties. PMID:26159235

  13. CuO nanowire/microflower/nanowire modified Cu electrode with enhanced electrochemical performance for non-enzymatic glucose sensing.

    PubMed

    Li, Changli; Yamahara, Hiroyasu; Lee, Yaerim; Tabata, Hitoshi; Delaunay, Jean-Jacques

    2015-07-31

    CuO nanowire/microflower structure on Cu foil is synthesized by annealing a Cu(OH)2 nanowire/CuO microflower structure at 250 °C in air. The nanowire/microflower structure with its large surface area leads to an efficient catalysis and charge transfer in glucose detection, achieving a high sensitivity of 1943 μA mM(-1) cm(-2), a wide linear range up to 4 mM and a low detection limit of 4 μM for amperometric glucose sensing in alkaline solution. With a second consecutive growth of CuO nanowires on the microflowers, the sensitivity of the obtained CuO nanowire/microflower/nanowire structure further increases to 2424 μA mM(-1) cm(-2), benefiting from an increased number of electrochemically active sites. The enhanced electrocatalytic performance of the CuO nanowire/microflower/nanowire electrode compared to the CuO nanowire/microflower electrode, CuO nanowire electrode and CuxO film electrode provides evidence for the significant role of available surface area for electrocatalysis. The rational combination of CuO nanowire and microflower nanostructures into a nanowire supporting microflower branching nanowires structure makes it a promising composite nanostructure for use in CuO based electrochemical sensors with promising analytical properties.

  14. CuO nanowire/microflower/nanowire modified Cu electrode with enhanced electrochemical performance for non-enzymatic glucose sensing

    NASA Astrophysics Data System (ADS)

    Li, Changli; Yamahara, Hiroyasu; Lee, Yaerim; Tabata, Hitoshi; Delaunay, Jean-Jacques

    2015-07-01

    CuO nanowire/microflower structure on Cu foil is synthesized by annealing a Cu(OH)2 nanowire/CuO microflower structure at 250 °C in air. The nanowire/microflower structure with its large surface area leads to an efficient catalysis and charge transfer in glucose detection, achieving a high sensitivity of 1943 μA mM-1 cm-2, a wide linear range up to 4 mM and a low detection limit of 4 μM for amperometric glucose sensing in alkaline solution. With a second consecutive growth of CuO nanowires on the microflowers, the sensitivity of the obtained CuO nanowire/microflower/nanowire structure further increases to 2424 μA mM-1 cm-2, benefiting from an increased number of electrochemically active sites. The enhanced electrocatalytic performance of the CuO nanowire/microflower/nanowire electrode compared to the CuO nanowire/microflower electrode, CuO nanowire electrode and CuxO film electrode provides evidence for the significant role of available surface area for electrocatalysis. The rational combination of CuO nanowire and microflower nanostructures into a nanowire supporting microflower branching nanowires structure makes it a promising composite nanostructure for use in CuO based electrochemical sensors with promising analytical properties.

  15. Why self-catalyzed nanowires are most suitable for large-scale hierarchical integrated designs of nanowire nanoelectronics

    NASA Astrophysics Data System (ADS)

    Noor Mohammad, S.

    2011-10-01

    Nanowires are grown by a variety of mechanisms, including vapor-liquid-solid, vapor-quasiliquid-solid or vapor-quasisolid-solid, oxide-assisted growth, and self-catalytic growth (SCG) mechanisms. A critical analysis of the suitability of self-catalyzed nanowires, as compared to other nanowires, for next-generation technology development has been carried out. Basic causes of superiority of self-catalyzed (SCG) nanowires over other nanowires have been described. Polytypism in nanowires has been studied, and a model for polytypism has been proposed. The model predicts polytypism in good agreement with available experiments. This model, together with various evidences, demonstrates lower defects, dislocations, and stacking faults in SCG nanowires, as compared to those in other nanowires. Calculations of carrier mobility due to dislocation scattering, ionized impurity scattering, and acoustic phonon scattering explain the impact of defects, dislocations, and stacking faults on carrier transports in SCG and other nanowires. Analyses of growth mechanisms for nanowire growth directions indicate SCG nanowires to exhibit the most controlled growth directions. In-depth investigation uncovers the fundamental physics underlying the control of growth direction by the SCG mechanism. Self-organization of nanowires in large hierarchical arrays is crucial for ultra large-scale integration (ULSI). Unique features and advantages of self-organized SCG nanowires, unlike other nanowires, for this ULSI have been discussed. Investigations of nanowire dimension indicate self-catalyzed nanowires to have better control of dimension, higher stability, and higher probability, even for thinner structures. Theoretical calculations show that self-catalyzed nanowires, unlike catalyst-mediated nanowires, can have higher growth rate and lower growth temperature. Nanowire and nanotube characteristics have been found also to dictate the performance of nanoelectromechanical systems. Defects, such as

  16. Nanoscale manipulation of Ge nanowires by ion hammering

    SciTech Connect

    Picraux, Samuel T; Romano, Lucia; Rudawski, Nicholas G; Holzworth, Monta R; Jones, Kevin S; Choi, S G

    2009-01-01

    Nanowires generated considerable interest as nanoscale interconnects and as active components of both electronic and electromechanical devices. However, in many cases, manipulation and modification of nanowires are required to realize their full potential. It is essential, for instance, to control the orientation and positioning of nanowires in some specific applications. This work demonstrates a simple method to reversibly control the shape and the orientation of Ge nanowires by using ion beams. Initially, crystalline nanowires were partially amorphized by 30 keY Ga+-implantation. After amorphization, viscous flow and plastic deformation occurred due to the ion hammering effect, causing the nanowires to bend toward the beam direction. The bending was reversed multiple times by ion-implanting the opposite side of the nanowires, resulting in straightening of the nanowires and subsequent bending in the opposite direction. This ion hammering effect demonstrates the detailed manipulation of nanoscale structures is possible through the use of ion irradiation.

  17. Radium needle used to calibrate germanium gamma-ray detector.

    PubMed

    Kamboj, S; Lovett, D; Kahn, B; Walker, D

    1993-03-01

    A standard platinum-iridium needle that contains 374 MBq 226Ra was tested as a source for calibrating a portable germanium detector used with a gamma-ray spectrometer for environmental radioactivity measurements. The counting efficiencies of the 11 most intense gamma rays emitted by 226Ra and its short-lived radioactive progeny at energies between 186 and 2,448 keV were determined, at the full energy peaks, to construct a curve of counting efficiency vs. energy. The curve was compared to another curve between 43 and 1,596 keV obtained with a NIST mixed-radionuclide standard. It was also compared to the results of a Monte Carlo simulation. The 226Ra source results were consistent with the NIST standard between 248 and 1,596 keV. The Monte Carlo simulation gave a curve parallel to the curve for the combined radium and NIST standard data between 250 and 2,000 keV, but at higher efficiency.

  18. Synthesis of germanium nanocrystals in high temperature supercritical CO(2).

    PubMed

    Lu, Xianmao; Korgel, Brian A; Johnston, Keith P

    2005-07-01

    Germanium nanocrystals were synthesized in supercritical (sc) CO(2) by thermolysis of diphenylgermane (DPG) or tetraethylgermane (TEG) with octanol as a capping ligand at 500 °C and 27.6 MPa. The Ge nanocrystals were characterized with high resolution transmission electron microscopy (HRTEM), energy-dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD). On the basis of TEM, the mean diameters of the nanocrystals made from DPG and TEG were 10.1 and 5.6 nm, respectively. The synthesis in sc-CO(2) produced much less organic contamination compared with similar reactions in organic supercritical fluids. When the same reaction of DPG with octanol was performed in the gas phase without CO(2) present, bulk Ge crystals were formed instead of nanocrystals. Thus, the solvation of the hydrocarbon ligands by CO(2) was sufficient to provide steric stabilization. The presence of steric stabilization in CO(2) at a reduced temperature of 2.5, with a reduced solvent density of only 0.4, may be attributed to a reduction in the differences between ligand-ligand interactions and ligand-CO(2) interactions relative to thermal energy.

  19. Proton-induced radiation damage in germanium detectors

    SciTech Connect

    Bruckner, J.; Korfer, M.; Wanke, H. , Mainz ); Schroeder, A.N.F. ); Figes, D.; Dragovitsch, P. ); Englert, P.A.J. ); Starr, R.; Trombka, J.I. . Goddard Space Flight Center); Taylor, I. ); Drake, D.M.; Shunk, E.R. )

    1991-04-01

    High-purity germanium (HPGe) detectors will be used in future space missions for gamma-ray measurements and will be subject to interactions with energetic particles. To simulate this process several large-volume n-type HPGe detectors were incrementally exposed to a particle fluence of up to 10{sub 8} protons cm{sup {minus}2} (proton energy: 1.5 GeV) at different operating temperatures (90 to 120 K) to induce radiation damage. Basic scientific as well as engineering data on detector performance were collected. During the incremental irradiation, the peak shape produced by the detectors showed a significant change from a Gaussian shape to a broad complex structure. After the irradiation all detectors were thoroughly characterized by measuring many parameters. To remove the accumulated radiation damage the detectors were stepwise annealed at temperatures T {le} 110{degrees}C while staying specially designed cryostats. This paper shows that n-type HPGe detectors can be used in charged particles environments as high-energy resolution devices until a certain level of radiation damage is accumulated and that the damage can be removed at moderate annealing temperatures and the detector returned to operating condition.

  20. Germanium Detector Crystal Axis Orientation for the MAJORANA Demonstrator

    NASA Astrophysics Data System (ADS)

    Letourneau, Hannah

    2013-10-01

    The MAJORANA Demonstrator, currently being constructed at Sanford Underground Research Facility in Lead, South Dakota, is an array of germanium detectors which will be used to search for neutrinoless double beta decay, which would demonstrate that neutrinos have a Majorana mass term and lepton number is not conserved. An important characteristic of semiconductor detectors is the crystal axis orientation, because the propagation of electromagnetic signals is attenuated by the location of the interaction relative to the axis of the crystal. Conventionally, a goniometer is used to position a collimated low energy gamma source in many small increments around the detector to measure the rise time at each position. However, due to physical constraints from the casing of the Demonstrator, a different method must be developed. At the University of Washington this summer, I worked with a 76 Ge point-contact detector. I found the crystal axis orientation first with Americium 241, a lower energy gamma source. Then, I used a higher energy source, Thorium 232, in conjunction with the only a few angular reference points to also calculate rise time. Also, I wrote code to process the data. The success of this method will be evaluated and discussed. NSF

  1. Photothermal ionization spectroscopy of donors in high-purity germanium

    SciTech Connect

    Darken, L.S.

    1989-02-01

    The results of narrow linewidth (0.10 cm/sup -1/ FWHM) photothermal ionization spectroscopy (PTIS) investigations of shallow donors in high-purity germanium are reported. The donors observed include phosphorus, arsenic, lithium, a hydrogen-oxygen complex, and three lithium-related complexes. One lithium-related complex designated D(Li,Y) is reported here for the first time. Within experimental accuracy, energies of the excited states with respect to the conduction band are the same for all donors. Fourteen different 1S..-->..excited state transitions (five previously unreported, two others seen for the first time in PTIS from the ground state) have been observed. The Zeeman effect was used to help identify these levels. PTIS lines from the ground state to 2P/sub 0/ and 3P/sub 0/ were found to be relatively weak but their intensity was in good agreement with the intensity calculated by means of the Cascade theory. In as-grown samples, linewidth broadening of group V donors was observed that depended on the square root of the dislocation density (etch pit density) and with features expected from deformation potential theory.

  2. Etching of germanium-tin using ammonia peroxide mixture

    SciTech Connect

    Dong, Yuan; Ong, Bin Leong; Wang, Wei; Gong, Xiao; Liang, Gengchiau; Yeo, Yee-Chia; Zhang, Zheng; Pan, Jisheng; Tok, Eng-Soon

    2015-12-28

    The wet etching of germanium-tin (Ge{sub 1-x}Sn{sub x}) alloys (4.2% < x < 16.0%) in ammonia peroxide mixture (APM) is investigated. Empirical fitting of the data points indicates that the etch depth of Ge{sub 1-x}Sn{sub x} is proportional to the square root of the etch time t and decreases exponentially with increasing x for a given t. In addition, X-ray photoelectron spectroscopy results show that increasing t increases the intensity of the Sn oxide peak, whereas no obvious change is observed for the Ge oxide peak. This indicates that an accumulation of Sn oxide on the Ge{sub 1-x}Sn{sub x} surface decreases the amount of Ge atoms exposed to the etchant, which accounts for the decrease in etch rate with increasing etch time. Atomic force microscopy was used to examine the surface morphologies of the Ge{sub 0.918}Sn{sub 0.082} samples. Both root-mean-square roughness and undulation periods of the Ge{sub 1-x}Sn{sub x} surface were observed to increase with increasing t. This work provides further understanding of the wet etching of Ge{sub 1-x}Sn{sub x} using APM and may be used for the fabrication of Ge{sub 1-x}Sn{sub x}-based electronic and photonic devices.

  3. Isotopic germanium targets for high beam current applications at GAMMASPHERE.

    SciTech Connect

    Greene, J. P.; Lauritsen, T.

    2000-11-29

    The creation of a specific heavy ion residue via heavy ion fusion can usually be achieved through a number of beam and target combinations. Sometimes it is necessary to choose combinations with rare beams and/or difficult targets in order to achieve the physics goals of an experiment. A case in point was a recent experiment to produce {sup 152}Dy at very high spins and low excitation energy with detection of the residue in a recoil mass analyzer. Both to create the nucleus cold and with a small recoil-cone so that the efficiency of the mass analyzer would be high, it was necessary to use the {sup 80}Se on {sup 76}Ge reaction rather than the standard {sup 48}Ca on {sup 108}Pd reaction. Because the recoil velocity of the {sup 152}Dy residues was very high using this symmetric reaction (5% v/c), it was furthermore necessary to use a stack of two thin targets to reduce the Doppler broadening. Germanium targets are fragile and do not withstand high beam currents, therefore the {sup 76}Ge target stacks were mounted on a rotating target wheel. A description of the {sup 76}Ge target stack preparation will be presented and the target performance described.

  4. Measurement of Compton scattering in phantoms by germanium detectors

    SciTech Connect

    Zasadny, K.R.; Koral, K.F. . Medical Center); Floyd, C.E. Jr.; Jaszczak, R.J. . Dept. of Radiology)

    1990-04-01

    Quantitative Anger-camera tomography requires correction for Compton scattering. The Anger camera spectral-fitting technique can measure scatter fractions at designated positions in an image allowing for correction. To permit verification of those measurements for {sup 131}I, the authors have determined scatter fractions with a high-purity germanium (HPGe) detector and various phantom configurations. The scatter fraction values for {sup 99m}Tc were also measured and are compared to results from Monte Carlo simulation. The phantom consisted of a 22.2 cm diameter {times} 18.6 cm high cylinder filled with water and a 6 cm diameter water-filled sphere placed at various locations inside the cylinder. Radioisotope is added to either the sphere or the cylinder. The source is collimated by an Anger camera collimator and the active area of the HPGe detector is defined by a 0.6 cm diameter hole in a lead shielding mask. Corrections include accounting for the HPGe detector efficiency as a function of gamma-ray energy, the finite energy resolution of detector and the HPGe detector energy resolution compared to that for a NaI(Tl) Anger camera.

  5. Point defect states in Sb-doped germanium

    SciTech Connect

    Patel, Neil S. Monmeyran, Corentin; Agarwal, Anuradha; Kimerling, Lionel C.

    2015-10-21

    Defect states in n-type Sb-doped germanium were investigated by deep-level transient spectroscopy. Cobalt-60 gamma rays were used to generate isolated vacancies and interstitials which diffuse and react with impurities in the material to form four defect states (E{sub 37}, E{sub 30}, E{sub 22}, and E{sub 21}) in the upper half of the bandgap. Irradiations at 77 K and 300 K as well as isothermal anneals were performed to characterize the relationships between the four observable defects. E{sub 37} is assigned to the Sb donor-vacancy associate (E-center) and is the only vacancy containing defect giving an estimate of 2 × 10{sup 11 }cm{sup −3} Mrad{sup −1} for the uncorrelated vacancy-interstitial pair introduction rate. The remaining three defect states are interstitial associates and transform among one another. Conversion ratios between E{sub 22}, E{sub 21}, and E{sub 30} indicate that E{sub 22} likely contains two interstitials.

  6. Size-dependent color tuning of efficiently luminescent germanium nanoparticles.

    PubMed

    Shirahata, Naoto; Hirakawa, Daigo; Masuda, Yoshitake; Sakka, Yoshio

    2013-06-18

    It is revealed that rigorous control of the size and surface of germanium nanoparticles allows fine color tuning of efficient fluorescence emission in the visible region. The spectral line widths of each emission were very narrow (<500 meV). Furthermore, the absolute fluorescence quantum yields of each emission were estimated to be 4-15%, which are high enough to be used as fluorescent labeling tags. In this study, a violet-light-emitting nanoparticle is demonstrated to be a new family of luminescent Ge. Such superior properties of fluorescence were observed from the fractions separated from one mother Ge nanoparticle sample by the fluorescent color using our developed combinatorial column technique. It is commonly believed that a broad spectral line width frequently observed from Ge nanoparticle appears because of an indirect band gap nature inherited even in nanostructures, but the present study argues that such a broad luminescence spectrum is expressed as an ensemble of different spectral lines and can be separated into the fractions emitting light in each wavelength region by the appropriate postsynthesis process.

  7. Stability and exfoliation of germanane: a germanium graphane analogue.

    PubMed

    Bianco, Elisabeth; Butler, Sheneve; Jiang, Shishi; Restrepo, Oscar D; Windl, Wolfgang; Goldberger, Joshua E

    2013-05-28

    Graphene's success has shown not only that it is possible to create stable, single-atom-thick sheets from a crystalline solid but that these materials have fundamentally different properties than the parent material. We have synthesized for the first time, millimeter-scale crystals of a hydrogen-terminated germanium multilayered graphane analogue (germanane, GeH) from the topochemical deintercalation of CaGe2. This layered van der Waals solid is analogous to multilayered graphane (CH). The surface layer of GeH only slowly oxidizes in air over the span of 5 months, while the underlying layers are resilient to oxidation based on X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy measurements. The GeH is thermally stable up to 75 °C; however, above this temperature amorphization and dehydrogenation begin to occur. These sheets can be mechanically exfoliated as single and few layers onto SiO2/Si surfaces. This material represents a new class of covalently terminated graphane analogues and has great potential for a wide range of optoelectronic and sensing applications, especially since theory predicts a direct band gap of 1.53 eV and an electron mobility ca. five times higher than that of bulk Ge.

  8. Defect Density Characterization of Detached-Grown Germanium Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Cobb, S. D.; Volz, M. P.; Szoke, J.; Szofran, F. R.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Several (111)-oriented, Ga-doped germanium crystals were grown in pyrolytic boron nitride (pBN) containers by the Bridgman and the detached Bridgman growth techniques. Growth experiments in closed-bottom pBN containers resulted in nearly completely detached-grown crystals, because the gas pressure below the melt can build up to a higher pressure than above the melt. With open-bottom tubes the gas pressure above and below the melt is balanced during the experiment, and thus no additional force supports the detachment. In this case the crystals grew attached to the wall. Etch pit density (EPD) measurements along the axial growth direction indicated a strong improvement of the crystal quality of the detached-grown samples compared to the attached samples. Starting in the seed with an EPD of 6-8 x 10(exp 3)/square cm it decreased in the detached-grown crystals continuously to about 200-500/square cm . No significant radial difference between the EPD on the edge and the middle of the crystal exists. In the attached grown samples the EPD increases up to a value of about 2-4 x 10(exp 4)/square cm (near the edge) and up to 1 x 10(exp 4)/square cm in the middle of the sample. Thus the difference between the detached- and the attached-grown crystals with respect to the EPD is approximately two orders of magnitude.

  9. Spin Qubits in Germanium Structures with Phononic Gap

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, V. N.; Vasko, F. T.; Hafiychuk, V. V.; Dykman, M. I.; Petukhov, A. G.

    2014-01-01

    We propose qubits based on shallow donor electron spins in germanium structures with phononic gap. We consider a phononic crystal formed by periodic holes in Ge plate or a rigid cover / Ge layer / rigid substrate structure with gaps approximately a few GHz. The spin relaxation is suppressed dramatically, if the Zeeman frequency omegaZ is in the phononic gap, but an effective coupling between the spins of remote donors via exchange of virtual phonons remains essential. If omegaZ approaches to a gap edge in these structures, a long-range (limited by detuning of omegaZ) resonant exchange interaction takes place. We estimate that ratio of the exchange integral to the longitudinal relaxation rate exceeds 10(exp 5) and lateral scale of resonant exchange 0.1 mm. The exchange contribution can be verified under microwave pumping through oscillations of spin echo signal or through the differential absorption measurements. Efficient manipulation of spins due to the Rabi oscillations opens a new way for quantum information applications.

  10. X-ray Characterization of Detached-Grown Germanium Crystals

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Schweizer, M.; Raghothamachar, B.; Dudley, M.; Szoke, J.; Cobb, S. D.; Szofran, F. R.

    2005-01-01

    Germanium (111)-oriented crystals have been grown by the vertical Bridgman technique, in both detached and attached configurations. Microstructural characterization of these crystals has been performed using synchrotron white beam x-ray topography (SWBXT) and double axis x-ray diffraction. Dislocation densities were measured from x-ray topographs obtained using the reflection geometry. For detached-grown crystals, the dislocation density is 4-6 x 10(exp 4) per square centimeter in the seed region, and decreases in the direction of growth to less than 10(exp 3) per square centimeter, and in some crystals reaches less than 10(exp 2) per square centimeter. For crystals grown in the attached configuration, dislocation densities were on the order of 10(exp 4) per square centimeter in the middle of the crystals, increasing to greater than 10(exp 5) per square centimeter near the edge. The measured dislocation densities are in excellent agreement with etch pit density results. The rocking curve linewidths were relatively insensitive to the dislocation densities. However, broadening and splitting of the rocking curves were observed in the vicinity of subgrain boundaries identified by x-ray topography in some of the attached-grown crystals.

  11. Strip interpolation in silicon and germanium strip detectors.

    SciTech Connect

    Wulf, E. A.; Phlips, B. F.; Johnson, W. N.; Kurfess, J. D.; Lister, C. J.; Kondev, F.; Physics; Naval Research Lab.

    2004-01-01

    The position resolution of double-sided strip detectors is limited by the strip pitch and a reduction in strip pitch necessitates more electronics. Improved position resolution would improve the imaging capabilities of Compton telescopes and PET detectors. Digitizing the preamplifier waveform yields more information than can be extracted with regular shaping electronics. In addition to the energy, depth of interaction, and which strip was hit, the digitized preamplifier signals can locate the interaction position to less than the strip pitch of the detector by looking at induced signals in neighboring strips. This allows the position of the interaction to be interpolated in three dimensions and improve the imaging capabilities of the system. In a 2 mm thick silicon strip detector with a strip pitch of 0.891 mm, strip interpolation located the interaction of 356 keV gamma rays to 0.3 mm FWHM. In a 2 cm thick germanium detector with a strip pitch of 5 mm, strip interpolation of 356 keV gamma rays yielded a position resolution of 1.5 mm FWHM.

  12. Development of a Germanium Small-Animal SPECT System

    PubMed Central

    Johnson, Lindsay C.; Ovchinnikov, Oleg; Shokouhi, Sepideh; Peterson, Todd E.

    2015-01-01

    Advances in fabrication techniques, electronics, and mechanical cooling systems have given rise to germanium detectors suitable for biomedical imaging. We are developing a small-animal SPECT system that uses a double-sided Ge strip detector. The detector’s excellent energy resolution may help to reduce scatter and simplify processing of multi-isotope imaging, while its ability to measure depth of interaction has the potential to mitigate parallax error in pinhole imaging. The detector’s energy resolution is <1% FWHM at 140 keV and its spatial resolution is approximately 1.5 mm FWHM. The prototype system described has a single-pinhole collimator with a 1-mm diameter and a 70-degree opening angle with a focal length variable between 4.5 and 9 cm. Phantom images from the gantry-mounted system are presented, including the NEMA NU-2008 phantom and a hot-rod phantom. Additionally, the benefit of energy resolution is demonstrated by imaging a dual-isotope phantom with 99mTc and 123I without cross-talk correction. PMID:26755832

  13. Environmental Radioactivity: Gamma Ray Spectroscopy with Germanium detector

    NASA Astrophysics Data System (ADS)

    Vyas, Gargi; Beausang, Cornelius; Hughes, Richard; Tarlow, Thomas; Gell, Kristen; University of Richmond Physics Team

    2013-10-01

    A CF-1000BRL series portable Air Particle Sampler with filter paper as filter media was placed in one indoor and one outdoor location at 100 LPM flow rate on six dates under alternating rainy and warm weather conditions over the course of sixteen days in May 2013. The machine running times spanned between 6 to 69 hours. Each filter paper was then put in a germanium gamma ray detector, and the counts ranged from 93000 to 250000 seconds. The spectra obtained were analyzed by the CANBERRA Genie 2000 software, corrected using a background spectrum, and calibrated using a 20.27 kBq activity multi-nuclide source. We graphed the corrected counts (from detector analysis time)/second (from air sampler running time)/liter (from the air sampler's flow rate) of sharp, significantly big peaks corresponding to a nuclide in every sample against the sample number along with error bars. The graphs were then used to compare the samples and they showed a similar trend. The slight differences were usually due to the different running times of the air sampler. The graphs of about 22 nuclides were analyzed. We also tried to recognize the nuclei to which several gamma rays belonged that were displayed but not recognized by the Genie 2000 software.

  14. Polarized light scattering from individual semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Wu, Jian

    This thesis addresses the light scattering, particularly Raman and Rayleigh scattering from quasi one dimensional semiconductor nanowires, such as Zn1-xMnxS and GaP nanowires. Many of the results stem from measurements of individual wires. Four original works are presented in the thesis: (1) The growth of diluted magnetic semiconductor (DMS) Zn1-xMnxS (0≤x<0.6) nanowires using a three-zone furnace and two solid sources is reported (Chapter 2.4). The vibrational properties of the DMS nanowires with different Zn/Mn ratios were studied by correlating their Raman scattering spectra with the composition and structure measured by x-Ray energy dispersive spectroscopy (XEDS) and selected area electron diffraction (SAD). We find that the transverse optical (TO) phonon band disappears at the lowest Mn concentrations, while the longitudinal optical (LO) phonon band position was found insensitive to x. Three additional Raman bands were observed between the ZnS q=0 TO and LO phonons when Mn atoms were present in the nanowires (Chapter 5); (2) Polarized Raman scattering on individual crystalline GaP nanowires with diameters 40 individual crystalline GaP nanowires with diameters 40nanowires are found to act like a nearly perfect dipole antenna and the bulk Raman selection rules are masked leading to a polarized scattering intensity function I(theta) ˜ cos4theta where theta is the angle between nanowire axis and the incident laser polarization. For larger diameter (70nanowires, a model based on the interplay between photon confinement and bulk Raman scattering are proposed to explain the experimental data. This work realizes a fundamental understanding of Raman scattering in semiconductor nanowires and furthermore, the antenna effects are essential to the analysis of all electro-optic effects in small diameter filaments (Chapter 7); (3) Results of polarized Rayleigh back-scattering studies are

  15. Cu-doping induced ferromagnetism in ZnO nanowires.

    PubMed

    Xu, Congkang; Yang, Kaikun; Huang, Liwei; Wang, Howard

    2009-03-28

    Cu-doped and undoped ZnO nanowires have been successfully fabricated at 600 degrees C using a vapor transport approach. Comprehensive structural analyses on as-fabricated nanowires reveal highly crystalline ZnO nanowires with 0.5 at. % of substitutional Cu doping. Ferromagnetism has been observed in Cu-doped ZnO nanowires but not in undoped ones, which is probably associated with defects involving both Cu dopants and Zn interstitials.

  16. Manganese oxide nanowires, films, and membranes and methods of making

    DOEpatents

    Suib, Steven Lawrence; Yuan, Jikang

    2011-02-15

    Nanowires, films, and membranes comprising ordered porous manganese oxide-based octahedral molecular sieves and methods of making the same are disclosed. A method for forming nanowires includes hydrothermally treating a chemical precursor composition in a hydrothermal treating solvent to form the nanowires, wherein the chemical precursor composition comprises a source of manganese cations and a source of counter cations, and wherein the nanowires comprise ordered porous manganese oxide-based octahedral molecular sieves.

  17. Synthesis and characterization of Co2FeAl nanowires

    NASA Astrophysics Data System (ADS)

    Sapkota, Keshab R.; Gyawali, Parshu; Forbes, Andrew; Pegg, Ian L.; Philip, John

    2012-06-01

    We report the growth and characterization of Co2FeAl nanowires. Nanowires are grown using electrospinning method and the diameters range from 50 to 500 nm. These nanowires exhibit cubic crystal structure with a lattice constant of a =5.639 Å. The nanowires exhibit ferromagnetic behavior with a very high Curie temperature. The temperature dependent magnetization behavior displays an anomaly in the temperature range 600-850 K, which disappears at higher external magnetic fields.

  18. Silicon nanowires: Growth, transport and device physics

    NASA Astrophysics Data System (ADS)

    Garnett, Erik Christian

    2009-11-01

    Silicon is the second most abundant element in the earth's crust and has been the backbone of the information technology revolution. It is the most well-studied material in all of solid-state chemistry and physics and has been used to make a variety of devices including transistors, resonators, and solar cells. Nanowires could provide advantages over bulk silicon; however, there are many fundamental challenges that must be overcome in order to use them in high-performance, reproducible devices. The first chapter of this dissertation gives an introduction to nanoscience with an emphasis on the working principles of the nanowire devices that are discussed later and the problems that face nanowire implementation. Chapter two demonstrates that platinum nanoparticles can be substituted for gold as the nanowire growth catalyst without sacrificing crystalline quality, epitaxial growth or electrical properties. Replacing gold with a clean-room compatible material such as platinum is important to allow for nanowire integration into microfabricated devices. Chapter three focuses on making horizontal surround-gate field effect transistors for capacitance-voltage measurements. These devices are used to extract the dopant profile and density of interface states from individual nanowires, showing results consistent with planar control samples and simulations. The results are encouraging because they suggest low surface recombination velocities (similar to bulk planar wafers) should be possible as long as the nanowire surface is smooth and well-faceted. Chapter four demonstrates two low-cost, scalable methods for fabricating silicon nanowire photovoltaics. Because of the rough surface induced by the electroless etching process and the poor junction quality from the nanocrystalline chemical vapor deposition film, the efficiency of cells made with the first approach is relatively low at about 0.5%. The second approach, using an assembly of silica beads, deep reactive ion etching

  19. Biallelic and Genome Wide Association Mapping of Germanium Tolerant Loci in Rice (Oryza sativa L.)

    PubMed Central

    Talukdar, Partha; Douglas, Alex; Price, Adam H.; Norton, Gareth J.

    2015-01-01

    Rice plants accumulate high concentrations of silicon. Silicon has been shown to be involved in plant growth, high yield, and mitigating biotic and abiotic stresses. However, it has been demonstrated that inorganic arsenic is taken up by rice through silicon transporters under anaerobic conditions, thus the ability to efficiently take up silicon may be considered either a positive or a negative trait in rice. Germanium is an analogue of silicon that produces brown lesions in shoots and leaves, and germanium toxicity has been used to identify mutants in silicon and arsenic transport. In this study, two different genetic mapping methods were performed to determine the loci involved in germanium sensitivity in rice. Genetic mapping in the biparental cross of Bala × Azucena (an F6 population) and a genome wide association (GWA) study with 350 accessions from the Rice Diversity Panel 1 were conducted using 15 μM of germanic acid. This identified a number of germanium sensitive loci: some co-localised with previously identified quantitative trait loci (QTL) for tissue silicon or arsenic concentration, none co-localised with Lsi1 or Lsi6, while one single nucleotide polymorphism (SNP) was detected within 200 kb of Lsi2 (these are genes known to transport silicon, whose identity was discovered using germanium toxicity). However, examining candidate genes that are within the genomic region of the loci detected above reveals genes homologous to both Lsi1 and Lsi2, as well as a number of other candidate genes, which are discussed. PMID:26356220

  20. Biallelic and Genome Wide Association Mapping of Germanium Tolerant Loci in Rice (Oryza sativa L.).

    PubMed

    Talukdar, Partha; Douglas, Alex; Price, Adam H; Norton, Gareth J

    2015-01-01

    Rice plants accumulate high concentrations of silicon. Silicon has been shown to be involved in plant growth, high yield, and mitigating biotic and abiotic stresses. However, it has been demonstrated that inorganic arsenic is taken up by rice through silicon transporters under anaerobic conditions, thus the ability to efficiently take up silicon may be considered either a positive or a negative trait in rice. Germanium is an analogue of silicon that produces brown lesions in shoots and leaves, and germanium toxicity has been used to identify mutants in silicon and arsenic transport. In this study, two different genetic mapping methods were performed to determine the loci involved in germanium sensitivity in rice. Genetic mapping in the biparental cross of Bala × Azucena (an F6 population) and a genome wide association (GWA) study with 350 accessions from the Rice Diversity Panel 1 were conducted using 15 μM of germanic acid. This identified a number of germanium sensitive loci: some co-localised with previously identified quantitative trait loci (QTL) for tissue silicon or arsenic concentration, none co-localised with Lsi1 or Lsi6, while one single nucleotide polymorphism (SNP) was detected within 200 kb of Lsi2 (these are genes known to transport silicon, whose identity was discovered using germanium toxicity). However, examining candidate genes that are within the genomic region of the loci detected above reveals genes homologous to both Lsi1 and Lsi2, as well as a number of other candidate genes, which are discussed.

  1. Electrodeposition of germanium at elevated temperatures and pressures from ionic liquids.

    PubMed

    Wu, Minxian; Vanhoutte, Gijs; Brooks, Neil R; Binnemans, Koen; Fransaer, Jan

    2015-05-14

    The electrodeposition of germanium at elevated temperatures up to 180 °C and pressures was studied from the ionic liquids 1-butyl-1-methylpyrrolidinium dicyanamide and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide containing [GeCl4(BuIm)2] (where BuIm = 1-butylimidazole) or GeCl4. Cyclic voltammetry (CV), electrochemical quartz crystal microbalance (EQCM), rotating ring-disk electrode (RRDE), scanning electron microscope (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), electron backscatter diffraction (EBSD) and Auger electron spectroscopy (AES) were used to investigate the electrochemical behavior and the properties of the electrodeposited germanium. Electrodeposition at elevated temperatures leads to higher deposition rates due to: (1) increase in the diffusion rate of the electroactive germanium compounds; (2) faster electrochemical kinetics in the electrolyte; and (3) higher electrical conductivity of the electrodeposited germanium film. Moreover, the morphology of the germanium film is also of a better quality at higher electrodeposition temperatures due to an increase in adatom mobility.

  2. Microwave properties of metallic nanowires

    NASA Astrophysics Data System (ADS)

    Goglio, G.; Pignard, S.; Radulescu, A.; Piraux, L.; Huynen, I.; Vanhoenacker, D.; Vander Vorst, A.

    1999-09-01

    We report on the microwave properties of arrays of parallel magnetic nanowires constituted of nickel, cobalt, or Ni/Fe alloy embedded in nanoporous track-etched polymer membranes. The experiments consist of transmission measurements carried out on microwave stripline structures using a magnetically loaded membrane as the substrate. Measurements were performed at frequencies ranging from 100 MHz to 40 GHz and under static magnetic fields up to 5.6 kOe applied along the wires axis. Resonance phenomena have been observed in the magnitude of the complex transmission coefficient at frequencies which depend on the nature of the material and applied static magnetic field. Results are consistent with those expected for a ferromagnetic resonance (FMR) experiment and the observed behaviors are analyzed in the framework of the classical FMR theory.

  3. Energy spectrum and wavefunction of electrons in hybrid superconducting nanowires

    NASA Astrophysics Data System (ADS)

    Kruchinin, S. P.

    2016-03-01

    Recent experiments have fabricated structured arrays. We study hybrid nanowires, in which normal and superconducting regions are in close proximity, by using the Bogoliubov-de Gennes equations for superconductivity in a cylindrical nanowire. We succeed to obtain the quantum energy levels and wavefunctions of a superconducting nanowire. The obtained spectra of electrons remind Hofstadter’s butterfly.

  4. Quantum Conductance in Metal Nanowires

    NASA Astrophysics Data System (ADS)

    Ugarte, Daniel

    2004-03-01

    Quantum Conductance in Metal Nanowires D. Ugarte Brazilian National Synchrotron Light Laboratory C.P. 6192, 13084-971 Campinas SP, Brazil. Electrical transport properties of metallic nanowires (NWs) have received great attention due to their quantum conductance behavior. Atomic scale wires can be generated by stretching metal contacts; during the elongation and just before rupture, the NW conductance shows flat plateaus and abrupt jumps of approximately a conductance quantum. In this experiments, both the NW atomic arrangement and conductance change simultaneously, making difficult to discriminate electronic and structural effects. In this work, the atomic structure of NWs was studied by time-resolved in situ experiments in a high resolution transmission electron microscope, while their electrical properties using an UHV mechanically controllable break junction (MCBJ). From the analysis of numerous HRTEM images and videos, we have deduced that metal (Au, Ag, Pt, etc.) junctions generated by tensile deformation are crystalline and free of defects. The neck structure is strongly dependent on the surface properties of the analyzed metal, this was verified by comparing different metal NWs (Au, Ag, Cu), which have similar atomic structure (FCC), but show very different faceting patterns. The correlation between the observed structural and transport properties of NW points out that the quantum conductance behavior is defined by preferred atomic arrangement at the narrowest constriction. In the case of magnetic (ex. Fe,Co,Ni) or quasi-magnetic (ex. Pd) wires, we have observed that one-atom-thick structures show a conductance of half the quantum as expected for a fully spin polarized current. This phenomenon seems to occur spontaneously for magnetic suspended atom-chains in zero magnetic field and at room temperature. These results open new opportunities for spin control in nanostructures. Funded by FAPESP, LNLS and CNPq.

  5. Topological Insulator Nanowires and Nanoribbons

    SciTech Connect

    Kong, D.S.

    2010-06-02

    Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi{sub 2}Se{sub 3} material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive for dissipationless electronics and spintronics applications. Nanoscale topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface states and are promising candidates for devices. Here we report the synthesis and characterization of high quality single crystalline Bi{sub 2}Se{sub 3} nanomaterials with a variety of morphologies. The synthesis of Bi{sub 2}Se{sub 3} nanowires and nanoribbons employs Au-catalyzed vapor-liquid-solid (VLS) mechanism. Nanowires, which exhibit rough surfaces, are formed by stacking nanoplatelets along the axial direction of the wires. Nanoribbons are grown along [11-20] direction with a rectangular crosssection and have diverse morphologies, including quasi-one-dimensional, sheetlike, zigzag and sawtooth shapes. Scanning tunneling microscopy (STM) studies on nanoribbons show atomically smooth surfaces with {approx}1 nm step edges, indicating single Se-Bi-Se-Bi-Se quintuple layers. STM measurements reveal a honeycomb atomic lattice, suggesting that the STM tip couples not only to the top Se atomic layer, but also to the Bi atomic layer underneath, which opens up the possibility to investigate the contribution of different atomic orbitals to the topological surface states. Transport measurements of a single nanoribbon device (four terminal resistance and Hall resistance) show great promise for nanoribbons as candidates to study topological surface states.

  6. Semiconductor nanowires and nanowire heterostructures: Fundamental transport phenomena and application in nanoelectronics

    NASA Astrophysics Data System (ADS)

    Xiang, Jie

    Semiconductor nanowires are emerging among the most promising family of materials to impact future electronics owing to the highly controlled growth, which has enabled predictable variation of structure and composition on multiple length scales. This thesis presents study on two critical scientific areas: understanding the potentially unique nature of 1D electrical transport in nanowires and corresponding enhancements in device performance. First, we describe using solid state reaction to transform single crystal silicon nanowires into metallic nickel silicide nanowires, which possess low resistivity and high current density. NiSi/Si nanowire heterostructures were also created with atomically sharp metal/semiconductor interface and shown to enable FETs with outstanding performance. Next we will focus on exploring the unique physics of 1D transport. Inspired by band structure engineering in planar 2D electron gas systems, we have designed and synthesized undoped Ge/Si core/shell nanowire heterostructures using the CVD method. Transport measurements on individual nanowire confirmed the formation of a hole gas and an absence of Schottky barrier at the metal contacts. Significantly, conductance quantization was observed at low temperature suggestive of ballistic transport through discrete 1D subbands. This 1D hole gas has created a new platform for studies in low-dimensional physics. Here we show studies of mesoscopic Josephson junctions using Ge/Si core/shell nanowires with superconducting contacts, which exhibit a dissipationless supercurrent. A systematic investigation of the multiple Andreev reflection phenomena as well as supercurrent quantization from quantum confinement effect in the narrow nanowire channel will be presented. Furthermore, we have utilized the 1D hole gas and incorporated high-kappa dielectrics using atomic layer deposition and metal top-gate to fabricate high performance Ge/Si nanowire FETs with scaled transconductance and on-current values 3

  7. 25 Gbps silicon photonics multi-mode fiber link with highly alignment tolerant vertically illuminated germanium photodiode

    NASA Astrophysics Data System (ADS)

    Okumura, Tadashi; Wakayama, Yuki; Matsuoka, Yasunobu; Oda, Katsuya; Sagawa, Misuzu; Takemoto, Takashi; Nomoto, Etsuko; Arimoto, Hideo; Tanaka, Shigehisa

    2015-02-01

    For a multi mode fiber optical link, a high speed silicon photonics receiver based on a highly alignment tolerant vertically illuminated germanium photodiode was developed. The germanium photodiode has 20 GHz bandwidth and responsivity of 0.5 A/W with highly alignment tolerance for passive optical assembly. The receiver achieves 25 Gbps error free operation after 100 m multi mode fiber transmission.

  8. Multiphysical simulation analysis of the dislocation structure in germanium single crystals

    NASA Astrophysics Data System (ADS)

    Podkopaev, O. I.; Artemyev, V. V.; Smirnov, A. D.; Mamedov, V. M.; Sid'ko, A. P.; Kalaev, V. V.; Kravtsova, E. D.; Shimanskii, A. F.

    2016-09-01

    To grow high-quality germanium crystals is one of the most important problems of growth industry. The dislocation density is an important parameter of the quality of single crystals. The dislocation densities in germanium crystals 100 mm in diameter, which have various shapes of the side surface and are grown by the Czochralski technique, are experimentally measured. The crystal growth is numerically simulated using heat-transfer and hydrodynamics models and the Alexander-Haasen dislocation model in terms of the CGSim software package. A comparison of the experimental and calculated dislocation densities shows that the dislocation model can be applied to study lattice defects in germanium crystals and to improve their quality.

  9. Syntheses and spectroscopy of germanium and tin compounds with biorelevant ligands

    NASA Astrophysics Data System (ADS)

    Breitinger, D. K.; Grützner, T.; Wick, H.; Schimmer, O.; Eschelbach, H.

    1997-06-01

    The germanium and tin compounds diaquabis(glycolato)germanium(IV) Ge(OCH 2COO) 2(H 2O) 2 ( 1), bis(thioglycolato)-, bis(thiolactato)-, and bis(thiohydracrylato)-germanium(IV) Ge(SJCOO) 2 (J = CH 2 ( 2), CH(CH 3) ( 3), CH 2CH 2 ( 4)), as well as the tetrakis(alkylthioglycolato)tetrels Tt(SCH 2COOR) 4 (Tt = Ge ( 5, 6) and Sn ( 7, 8); R = Me, i-Pr, respectively), under study for their antimutagenic properties, were studied by vibrational spectrometry. Some of the skeletal vibrations of the octahedral 1 and otherwise tetrahedral compounds were assigned. Data from 1H- and 13C- NMR spectra and from mass spectra are also reported.

  10. σ-Bond electron delocalization of branched oligogermanes and germanium containing oligosilanes

    PubMed Central

    Hlina, Johann; Zitz, Rainer; Wagner, Harald; Stella, Filippo; Baumgartner, Judith; Marschner, Christoph

    2014-01-01

    In order to evaluate the influence of germanium atoms in oligo- and polysilanes, a number of oligosilane compounds were prepared where two or more silicon atoms were replaced by germanium. While it can be expected that the structural features of thus altered molecules do not change much, the more interesting question is, whether this modification would have a profound influence on the electronic structure, in particular on the property of σ-bond electron delocalization. The UV-spectroscopic comparison of the oligosilanes with germanium enriched oligosilanes and also with oligogermanes showed a remarkable uniform picture. The expected bathochromic shift for oligogermanes and Ge-enriched oligosilanes was observed but its extent was very small. For the low energy absorption band the bathochromic shift from a hexasilane chain (256 nm) to a hexagermane chain with identical substituent patterns (259 nm) amounts to a mere 3 nm. PMID:25431502

  11. Germanium and Silicon Nanocrystal Thin-Film Field-Effect Transistors from Solution

    SciTech Connect

    Holman, Zachary C.; Liu, Chin-Yi; Kortshagen, Uwe R.

    2010-07-09

    Germanium and silicon have lagged behind more popular II-VI and IV-VI semiconductor materials in the emerging field of semiconductor nanocrystal thin film devices. We report germanium and silicon nanocrystal field-effect transistors fabricated by synthesizing nanocrystals in a plasma, transferring them into solution, and casting thin films. Germanium devices show n-type, ambipolar, or p-type behavior depending on annealing temperature with electron and hole mobilities as large as 0.02 and 0.006 cm2 V-1 s-1, respectively. Silicon devices exhibit n-type behavior without any postdeposition treatment, but are plagued by poor film morphology.

  12. The MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-beta Decay of Germanium-76

    SciTech Connect

    Schubert, Alexis G.; Aguayo, Estanislao; Avignone, F. T.; Zhang, C.; Back, Henning O.; Barabash, Alexander S.; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Collar, J. I.; Combs, Dustin C.; Cooper, R. J.; Detwiler, Jason A.; Leon, Jonathan D.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Esterline, James H.; Fast, James E.; Fields, N.; Finnerty, P.; Fraenkle, Florian; Gehman, Victor M.; Giovanetti, G. K.; Green, M.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, Reyco; Hime, Andrew; Hoppe, Eric W.; Horton, Mark; Howard, Stanley; Howe, Mark; Johnson, R. A.; Keeter, K.; Keillor, Martin E.; Keller, C.; Kephart, Jeremy D.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; LaRoque, B. H.; Leviner, L.; Loach, J. C.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Merriman, Jason H.; Miller, M. L.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; Overman, Nicole R.; Phillips, D.; Poon, Alan; Perumpilly, Gopakumar; Prior, Gersende; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Sobolev, V.; Steele, David; Strain, J.; Thomas, K.; Timkin, V.; Tornow, Werner; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, J. F.; Wolfe, B. A.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir

    2012-09-28

    The observation of neutrinoless double-beta decay would determine whether the neutrino is a Majorana particle and provide information on the absolute scale of neutrino mass. The MAJORANA Collaboration is constructing the DEMONSTRATOR, an array of germanium detectors, to search for neutrinoless double-beta decay of 76Ge. The DEMONSTRATOR will contain 40 kg of germanium; up to 30 kg will be enriched to 86% in 76Ge. The DEMONSTRATOR will be deployed deep underground in an ultra-low-background shielded environment. Operation of the DEMONSTRATOR aims to determine whether a future tonne-scale germanium experiment can achieve a background goal of one count per tonne-year in a 4-keV region of interest around the 76Ge neutrinoless double-beta decay Q-value of 2039 keV.

  13. Chromatographic separation of germanium and arsenic for the production of high purity (77)As.

    PubMed

    Gott, Matthew D; DeGraffenreid, Anthony J; Feng, Yutian; Phipps, Michael D; Wycoff, Donald E; Embree, Mary F; Cutler, Cathy S; Ketring, Alan R; Jurisson, Silvia S

    2016-04-01

    A simple column chromatographic method was developed to isolate (77)As (94±6% (EtOH/HCl); 74±11 (MeOH)) from germanium for potential use in radioimmunotherapy. The separation of arsenic from germanium was based on their relative affinities for different chromatographic materials in aqueous and organic environments. Using an organic or mixed mobile phase, germanium was selectively retained on a silica gel column as germanate, while arsenic was eluted from the column as arsenate. Subsequently, enriched (76)Ge (98±2) was recovered for reuse by elution with aqueous solution (neutral to basic). Greater than 98% radiolabeling yield of a (77)As-trithiol was observed from methanol separated [(77)As]arsenate [17].

  14. Elasticity, anelasticity, and microplasticity of directionally crystallized aluminum-germanium alloys

    NASA Astrophysics Data System (ADS)

    Kardashev, B. K.; Korchunov, B. N.; Nikanorov, S. P.; Osipov, V. N.; Fedorov, V. Yu.

    2014-07-01

    The structure, Young's modulus defect, and internal friction in aluminum-germanium alloys have been studied under conditions of longitudinal elastic vibrations with a strain amplitude in the range of 10-6-3 × 10-4 at frequencies about 100 kHz. The ribbon-shaped samples of the alloys with the germanium content from 35 to 64 wt % have been produced by drawing from the melt by the Stepanov method at a rate of 0.1 mm/s. It has been shown that the dependences of the Young's modulus defect, logarithmic decrement, and vibration stress amplitude on the germanium content in the alloy at a constant strain amplitude have an extremum at 53 wt % Ge. This composition corresponds to the eutectic composition. The dependences of the Young's modulus defect, the decrement, and vibration stress amplitude at a constant microstrain amplitude have been explained by the vibrational displacements of dislocations, which depend on the alloy structure.

  15. Cloud point preconcentration of germanium and determination by hydride generation atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Böyükbayram, A. Elif; Volkan, Mürvet

    2000-07-01

    Cloud point methodology has been successfully employed for the preconcentration of germanium at trace levels from aqueous samples prior to hydride generation flame atomic absorption spectrometry (HGAAS). Germanium was taken into complex with quercetin in aqueous non-ionic surfactant (Triton X-114) medium and concentrated in the surfactant rich phase by bringing the solution to the cloud point temperature (19°C). The preconcentration of only 50 ml of solution with 0.1% Triton X-114 and 2×10 -5 M quercetin at pH 6.4 gives a preconcentration factor of 200. Under these conditions, the detection limit (3 s) and the sensitivity of the cloud-point extraction-HGAAS system were 0.59 and 0.0620 μg l -1, respectively. The extraction efficiency was investigated at low germanium concentrations (10-30 μg l -1) and satisfactory recoveries (93-105%) were obtained.

  16. Micro grooving on single-crystal germanium for infrared Fresnel lenses

    NASA Astrophysics Data System (ADS)

    Yan, Jiwang; Maekawa, Kouki; Tamaki, Jun'ichi; Kuriyagawa, Tsunemoto

    2005-10-01

    Single-crystal germanium is an excellent optical material in the infrared wavelength range. The development of germanium Fresnel lenses not only improves the optical imaging quality but also enables the miniaturization of optical systems. In the present work, we developed a ductile-mode micro grooving process for fabricating Fresnel lenses on germanium. We used a sharply pointed diamond tool to generate the micro Fresnel structures under three-axis ultraprecision numerical control. By adopting a small angle between the cutting edge and the tangent of the objective surface, this method enables the uniform thinning of the undeformed chip thickness to the nanometric range, and thus provides complete ductile regime machining of brittle materials. Under the present conditions, a Fresnel lens which has a form error of 0.5 µm and surface roughness of 20-50 nm Ry (peak-to-valley) was fabricated successfully during a single tool pass.

  17. PREFACE: 2nd Workshop on Germanium Detectors and Technologies

    NASA Astrophysics Data System (ADS)

    Abt, I.; Majorovits, B.; Keller, C.; Mei, D.; Wang, G.; Wei, W.

    2015-05-01

    The 2nd workshop on Germanium (Ge) detectors and technology was held at the University of South Dakota on September 14-17th 2014, with more than 113 participants from 8 countries, 22 institutions, 15 national laboratories, and 8 companies. The participants represented the following big projects: (1) GERDA and Majorana for the search of neutrinoless double-beta decay (0νββ) (2) SuperCDMS, EDELWEISS, CDEX, and CoGeNT for search of dark matter; (3) TEXONO for sub-keV neutrino physics; (4) AGATA and GRETINA for gamma tracking; (5) AARM and others for low background radiation counting; (5) as well as PNNL and LBNL for applications of Ge detectors in homeland security. All participants have expressed a strong desire on having better understanding of Ge detector performance and advancing Ge technology for large-scale applications. The purpose of this workshop was to leverage the unique aspects of the underground laboratories in the world and the germanium (Ge) crystal growing infrastructure at the University of South Dakota (USD) by brining researchers from several institutions taking part in the Experimental Program to Stimulate Competitive Research (EPSCoR) together with key leaders from international laboratories and prestigious universities, working on the forefront of the intensity to advance underground physics focusing on the searches for dark matter, neutrinoless double-beta decay (0νββ), and neutrino properties. The goal of the workshop was to develop opportunities for EPSCoR institutions to play key roles in the planned world-class research experiments. The workshop was to integrate individual talents and existing research capabilities, from multiple disciplines and multiple institutions, to develop research collaborations, which includes EPSCor institutions from South Dakota, North Dakota, Alabama, Iowa, and South Carolina to support multi-ton scale experiments for future. The topic areas covered in the workshop were: 1) science related to Ge

  18. An estimate of the Germanium isotopic composition of the Ocean.

    NASA Astrophysics Data System (ADS)

    Galy, A.; Rouxel, O.; Mantoura, S.; Elderfield, H.; de La Rocha, C.

    2004-12-01

    Ge is a trace element in seawater whose biogeochemistry is dominated by its Si-like behaviour. Its residence time is poorly constrained but could be close to the mixing time of the ocean. In addition, hydrothermal vents are enriched in Ge (relative to Si) and this excess has been witnessed in the water column. Moreover, Si isotopic variations have been reported in the ocean, related to the precipitation of biogenic opal, while the Si residence time is slightly higher than the Ge residence time. Therefore, variations in the isotopic composition of dissolved Ge in the ocean are expected provided that at least one of the major input or output of Ge has a different isotopic composition. Given the low Ge concentration (around 40 picomol/kg) and the state-of-the art analytical facilities, a direct measurement of the isotopic composition of the seawater is barely conceivable. The major input of Ge into the ocean are the rivers and the hydrothermal vents, while the removal of Ge occurs through the precipitation of biogenic opal and the early diagenesis of passive margins. The mechanism of the later is, however, not well established but could be related to the precipitation of Fe-oxyhydroxide. So the measurement of marine authigenic minerals, biogenic silica and the comparison with an estimate of the bulk silicate Earth (BSE) composition will give some constraints on the Germanium isotopic composition of the ocean. A new technique for the precise and accurate determination of Ge stable isotope compositions has been developed and applied to silicate, sulfide, and biogenic material. The analyses were performed using a continuous flow hydride generation system coupled to a Nu Instrument MC-ICPMS. Samples have been purified through anion and cation exchange resins to separate Ge from matrix elements and potential interferences. Deep sea clays have a similar isotopic composition that MORBs or granites, suggesting that isotopic composition of the dissolved Ge in rivers might not

  19. Germanium as a Material to Enable Silicon Photonics

    NASA Astrophysics Data System (ADS)

    Ichikawa, R.; Takita, S.; Ishikawa, Y.; Wada, K.

    Germanium has been an enabler of the information age. Ge on Si nucleates Si photonics as well as high-speed CMOS electronics. Recently, Ge has played a significant role in integrating materials such as III-Vs on Si. The structure of GaAs on a thick Ge layer on Si has been studied for many years to expand its device application menu such as lasers, high-performance transistors, and tandem solar cells on Si. However, an ultra-thin Ge buffer layer (referred to as (Ge) hereafter) technology described in this chapter has created new fields for applications. One of the emerging fields is the structure and properties of AlGaAs/GaAs/(Ge)/Si/Ge, which has been impossible to create previously using the thick Ge buffer on Si technology. Here, we demonstrate an application as a new green power generation platform, i.e., high-efficiency cost-effective tandem solar cells using Si as a cell as well as the mechanical substrate. The (Ge) thickness has not been fully optimized yet, but is in the range 10-20 nm. Our design for a tandem solar cell shows that its theoretical efficiency reaches 43%. The key attributes are the crystalline quality and surface roughness of ultrathin (Ge). We have experimentally optimized the (Ge) buffer thickness to achieve both requirements and prototyped Ge solar cells on Si. The Ge solar cells have successfully reproduced their ideal external quantum efficiency. This is the proof of concept of the success of the Ge challenge as the material enabler to integrate Si and GaAs.

  20. Low-energy tetrahedral polymorphs of carbon, silicon, and germanium

    NASA Astrophysics Data System (ADS)

    Mujica, Andrés; Pickard, Chris J.; Needs, Richard J.

    2015-06-01

    Searches for low-energy tetrahedral polymorphs of carbon and silicon have been performed using density functional theory computations and the ab initio random structure searching approach. Several of the hypothetical phases obtained in our searches have enthalpies that are lower or comparable to those of other polymorphs of group 14 elements that have either been experimentally synthesized or recently proposed as the structure of unknown phases obtained in experiments, and should thus be considered as particularly interesting candidates. A structure of P b a m symmetry with 24 atoms in the unit cell was found to be a low-energy, low-density metastable polymorph in carbon, silicon, and germanium. In silicon, P b a m is found to have a direct band gap at the zone center with an estimated value of 1.4 eV, which suggests applications as a photovoltaic material. We have also found a low-energy chiral framework structure of P 41212 symmetry with 20 atoms per cell containing fivefold spirals of atoms, whose projected topology is that of the so-called Cairo-type two-dimensional pentagonal tiling. We suggest that P 41212 is a likely candidate for the structure of the unknown phase XIII of silicon. We discuss P b a m and P 41212 in detail, contrasting their energetics and structures with those of other group 14 elements, particularly the recently proposed P 42/n c m structure, for which we also provide a detailed interpretation as a network of tilted diamondlike tetrahedra.