Science.gov

Sample records for metal-insulator phase transition

  1. Switchable Metal-Insulator Phase Transition Metamaterials.

    PubMed

    Hajisalem, Ghazal; Nezami, Mohammadreza S; Gordon, Reuven

    2017-05-10

    We investigate the switching of a gap plasmon tunnel junction between conducting and insulating states. Hysteresis is observed in the second and the third harmonic generation power dependence, which arises by thermally induced disorder ("melting") of a two-carbon self-assembled monolayer between an ultraflat gold surface and metal nanoparticles. The hysteresis is observed for a variety of nanoparticle sizes, but not for larger tunnel junctions where there is no appreciable tunneling. By combining quantum corrected finite-difference time-domain simulations with nonlinear scattering theory, we calculate the changes in the harmonic generation between the tunneling and the insulating states, and good agreement is found with the experiments. This paves the way to a new class of metal-insulator phase transition switchable metamaterials, which may provide next-generation information processing technologies.

  2. Materials Characterization and Microelectronic Implementation of Metal-insulator Transition Materials and Phase Change Materials

    DTIC Science & Technology

    2015-03-26

    MATERIALS CHARACTERIZATION AND MICROELECTRONIC IMPLEMENTATION OF METAL -INSULATOR TRANSITION MATERIALS...MATERIALS CHARACTERIZATION AND MICROELECTRONIC IMPLEMENTATION OF METAL -INSULATOR TRANSITION MATERIALS AND PHASE CHANGE MATERIALS THESIS...DISTRIBUTION UNLIMITED AFIT-ENG-MS-15-M-016 MATERIALS CHARACTERIZATION AND MICROELECTRONIC IMPLEMENTATION OF METAL -INSULATOR TRANSITION

  3. Role of phonons in the metal-insulator phase transition.

    NASA Technical Reports Server (NTRS)

    Langer, W. D.

    1972-01-01

    Review, for the transition series oxides, of the Mattis and Lander model, which is one of electrons interacting with lattice vibrations (electron and phonon interaction). The model displays superconducting, insulating, and metallic phases. Its basic properties evolve from a finite crystallographic distortion associated with a dominant phonon mode and the splitting of the Brillouin zone into two subzones, a property of simple cubic and body centered cubic lattices. The order of the metal-insulator phase transition is examined. The basic model has a second-order phase transition and the effects of additional mechanisms on the model are calculated. The way in which these mechanisms affect the magnetically ordered transition series oxides as described by the Hubbard model is discussed.

  4. Chiral phase transition in lattice QCD as a metal-insulator transition

    SciTech Connect

    Garcia-Garcia, Antonio M.; Osborn, James C.

    2007-02-01

    We investigate the lattice QCD Dirac operator with staggered fermions at temperatures around the chiral phase transition. We present evidence of a metal-insulator transition in the low lying modes of the Dirac operator around the same temperature as the chiral phase transition. This strongly suggests the phenomenon of Anderson localization drives the QCD vacuum to the chirally symmetric phase in a way similar to a metal-insulator transition in a disordered conductor. We also discuss how Anderson localization affects the usual phenomenological treatment of phase transitions a la Ginzburg-Landau.

  5. Separation observation of metal-insulator transition and structural phase transition in VO2

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Tak; Kim, Bong-Jun; Lee, Yong Wook; Chae, Byung Gyu; Yun, Sun Jin; Oh, Soo-Young; Lim, Yong-Sik

    2007-03-01

    An intermediate monoclinic metal phase between the metal-insulator transition (MIT) and the structural phase transition (SPT) is observed with VO2-based two-terminal devices and can be explained in terms of the Mott MIT. The conductivity of this phase linearly increases with increasing temperature up to TSPT 68^oC and becomes maximum at TSPT. The SPT is confirmed by micro-Raman spectroscopy. Optical microscopic observation reveals the absence of a local current path in the metal phase. The current uniformly flows throughout the surface of the VO2 film when the MIT occurs. This device can be used as a programmable critical temperature sensor. (References: New J. Phys. 6 (1994) 52 (http://www.njp.org); Appl. Phys. Lett. 86 (2005) 24210); Physica B 369 (2005) 76; cond-mat/0607577; cond-mat/0608085; cond-mat/0609033).

  6. Sequential insulator-metal-insulator phase transitions of V O2 triggered by hydrogen doping

    NASA Astrophysics Data System (ADS)

    Chen, Shi; Wang, Zhaowu; Fan, Lele; Chen, Yuliang; Ren, Hui; Ji, Heng; Natelson, Douglas; Huang, Yingying; Jiang, Jun; Zou, Chongwen

    2017-09-01

    As a typical correlated oxide, V O2 has attracted significant attentions due to its pronounced thermal-driven metal-insulator transition. Regulating electronic density through electron doping is an effective way to modulate the balance between competing phases in strongly correlated materials. However, the electron-doping triggered phase transitions in V O2 as well as the intermediate states are not fully explored. Here, we report a controlled and reversible phase transition in V O2 films by continuous hydrogen doping. Metallic and insulating phases are successively observed at room temperature as the doping concentration increases. The doped electrons linearly occupy V 3 d -O 2 p hybridized orbitals and consequently modulate the filling of the V O2 conduction band edge states, resulting in the electron-doping driven continuous phase transitions. These results suggest the exceptional sensitivity of V O2 electronic properties to electron concentration and orbital occupancy, providing key information for the phase transition mechanism.

  7. Striped nanoscale phase separation at the metal-insulator transition of heteroepitaxial nickelates.

    PubMed

    Mattoni, G; Zubko, P; Maccherozzi, F; van der Torren, A J H; Boltje, D B; Hadjimichael, M; Manca, N; Catalano, S; Gibert, M; Liu, Y; Aarts, J; Triscone, J-M; Dhesi, S S; Caviglia, A D

    2016-11-02

    Nucleation processes of mixed-phase states are an intrinsic characteristic of first-order phase transitions, typically related to local symmetry breaking. Direct observation of emerging mixed-phase regions in materials showing a first-order metal-insulator transition (MIT) offers unique opportunities to uncover their driving mechanism. Using photoemission electron microscopy, we image the nanoscale formation and growth of insulating domains across the temperature-driven MIT in NdNiO3 epitaxial thin films. Heteroepitaxy is found to strongly determine the nanoscale nature of the phase transition, inducing preferential formation of striped domains along the terraces of atomically flat stepped surfaces. We show that the distribution of transition temperatures is a local property, set by surface morphology and stable across multiple temperature cycles. Our data provide new insights into the MIT of heteroepitaxial nickelates and point to a rich, nanoscale phenomenology in this strongly correlated material.

  8. Striped nanoscale phase separation at the metal-insulator transition of heteroepitaxial nickelates

    NASA Astrophysics Data System (ADS)

    Mattoni, G.; Zubko, P.; Maccherozzi, F.; van der Torren, A. J. H.; Boltje, D. B.; Hadjimichael, M.; Manca, N.; Catalano, S.; Gibert, M.; Liu, Y.; Aarts, J.; Triscone, J.-M.; Dhesi, S. S.; Caviglia, A. D.

    2016-11-01

    Nucleation processes of mixed-phase states are an intrinsic characteristic of first-order phase transitions, typically related to local symmetry breaking. Direct observation of emerging mixed-phase regions in materials showing a first-order metal-insulator transition (MIT) offers unique opportunities to uncover their driving mechanism. Using photoemission electron microscopy, we image the nanoscale formation and growth of insulating domains across the temperature-driven MIT in NdNiO3 epitaxial thin films. Heteroepitaxy is found to strongly determine the nanoscale nature of the phase transition, inducing preferential formation of striped domains along the terraces of atomically flat stepped surfaces. We show that the distribution of transition temperatures is a local property, set by surface morphology and stable across multiple temperature cycles. Our data provide new insights into the MIT of heteroepitaxial nickelates and point to a rich, nanoscale phenomenology in this strongly correlated material.

  9. Approximating metal-insulator transitions

    NASA Astrophysics Data System (ADS)

    Danieli, Carlo; Rayanov, Kristian; Pavlov, Boris; Martin, Gaven; Flach, Sergej

    2015-12-01

    We consider quantum wave propagation in one-dimensional quasiperiodic lattices. We propose an iterative construction of quasiperiodic potentials from sequences of potentials with increasing spatial period. At each finite iteration step, the eigenstates reflect the properties of the limiting quasiperiodic potential properties up to a controlled maximum system size. We then observe approximate Metal-Insulator Transitions (MIT) at the finite iteration steps. We also report evidence on mobility edges, which are at variance to the celebrated Aubry-André model. The dynamics near the MIT shows a critical slowing down of the ballistic group velocity in the metallic phase, similar to the divergence of the localization length in the insulating phase.

  10. Interplay between Ferroelastic and Metal-Insulator Phase Transitions in Strained Quasi-2D VO[subscript 2] Nanoplatelets

    SciTech Connect

    Tselev, Alexander; Strelcov, Evgheni; Luk’yanchuk, Igor A.; Budai, John D.; Tischler, Jonathan Z.; Ivanov, Ilia N.; Jones, Keith; Proksch, Roger; Kalinin, Sergei V.; Kolmakov, Aandrei

    2010-07-06

    Formation of ferroelastic twin domains in vanadium dioxide (VO{sub 2}) nanosystems can strongly affect local strain distributions, and hence couple to the strain-controlled metal-insulator transition. Here we report polarized-light optical and scanning microwave microscopy studies of interrelated ferroelastic and metal-insulator transitions in single-crystalline VO{sub 2} quasi-two-dimensional (quasi-2D) nanoplatelets (NPls). In contrast to quasi-1D single-crystalline nanobeams, the 2D geometric frustration results in emergence of several possible families of ferroelastic domains in NPls, thus allowing systematic studies of strain-controlled transitions in the presence of geometrical frustration. We demonstrate the possibility of controlling the ferroelastic domain population by the strength of the NPl-substrate interaction, mechanical stress, and by the NPl lateral size. Ferroelastic domain species and domain walls are identified based on standard group-theoretical considerations. Using variable temperature microscopy, we imaged the development of domains of metallic and semiconducting phases during the metal-insulator phase transition and nontrivial strain-driven reentrant domain formation. A long-range reconstruction of ferroelastic structures accommodating metal-insulator domain formation has been observed. These studies illustrate that a complete picture of the phase transitions in single-crystalline and disordered VO{sub 2} structures can be drawn only if both ferroelastic and metal-insulator strain effects are taken into consideration and understood.

  11. Interplay between Ferroelastic and Metal-Insulator Phase Transitions in Strained Quasi-2D VO[subscript 2] Nanoplatelets

    SciTech Connect

    Tselev, Alexander; Strelcov, Evgheni; Luk’yanchuk, Igor A.; Budai, John D.; Tischler, Jonathan Z.; Ivanov, Ilia N.; Jones, Keith; Proksch, Roger; Kalinin, Sergei V.; Kolmakov, Andrei

    2011-08-09

    Formation of ferroelastic twin domains in vanadium dioxide (VO{sub 2}) nanosystems can strongly affect local strain distributions, and hence couple to the strain-controlled metal-insulator transition. Here we report polarized-light optical and scanning microwave microscopy studies of interrelated ferroelastic and metal-insulator transitions in single-crystalline VO{sub 2} quasi-two-dimensional (quasi-2D) nanoplatelets (NPls). In contrast to quasi-1D single-crystalline nanobeams, the 2D geometric frustration results in emergence of several possible families of ferroelastic domains in NPls, thus allowing systematic studies of strain-controlled transitions in the presence of geometrical frustration. We demonstrate the possibility of controlling the ferroelastic domain population by the strength of the NPl-substrate interaction, mechanical stress, and by the NPl lateral size. Ferroelastic domain species and domain walls are identified based on standard group-theoretical considerations. Using variable temperature microscopy, we imaged the development of domains of metallic and semiconducting phases during the metal-insulator phase transition and nontrivial strain-driven reentrant domain formation. A long-range reconstruction of ferroelastic structures accommodating metal-insulator domain formation has been observed. These studies illustrate that a complete picture of the phase transitions in single-crystalline and disordered VO{sub 2} structures can be drawn only if both ferroelastic and metal-insulator strain effects are taken into consideration and understood.

  12. Metal - Insulator Transition Driven by Vacancy Ordering in GeSbTe Phase Change Materials

    PubMed Central

    Bragaglia, Valeria; Arciprete, Fabrizio; Zhang, Wei; Mio, Antonio Massimiliano; Zallo, Eugenio; Perumal, Karthick; Giussani, Alessandro; Cecchi, Stefano; Boschker, Jos Emiel; Riechert, Henning; Privitera, Stefania; Rimini, Emanuele; Mazzarello, Riccardo; Calarco, Raffaella

    2016-01-01

    Phase Change Materials (PCMs) are unique compounds employed in non-volatile random access memory thanks to the rapid and reversible transformation between the amorphous and crystalline state that display large differences in electrical and optical properties. In addition to the amorphous-to-crystalline transition, experimental results on polycrystalline GeSbTe alloys (GST) films evidenced a Metal-Insulator Transition (MIT) attributed to disorder in the crystalline phase. Here we report on a fundamental advance in the fabrication of GST with out-of-plane stacking of ordered vacancy layers by means of three distinct methods: Molecular Beam Epitaxy, thermal annealing and application of femtosecond laser pulses. We assess the degree of vacancy ordering and explicitly correlate it with the MIT. We further tune the ordering in a controlled fashion attaining a large range of resistivity. Employing ordered GST might allow the realization of cells with larger programming windows. PMID:27033314

  13. Metal - Insulator Transition Driven by Vacancy Ordering in GeSbTe Phase Change Materials

    NASA Astrophysics Data System (ADS)

    Bragaglia, Valeria; Arciprete, Fabrizio; Zhang, Wei; Mio, Antonio Massimiliano; Zallo, Eugenio; Perumal, Karthick; Giussani, Alessandro; Cecchi, Stefano; Boschker, Jos Emiel; Riechert, Henning; Privitera, Stefania; Rimini, Emanuele; Mazzarello, Riccardo; Calarco, Raffaella

    2016-04-01

    Phase Change Materials (PCMs) are unique compounds employed in non-volatile random access memory thanks to the rapid and reversible transformation between the amorphous and crystalline state that display large differences in electrical and optical properties. In addition to the amorphous-to-crystalline transition, experimental results on polycrystalline GeSbTe alloys (GST) films evidenced a Metal-Insulator Transition (MIT) attributed to disorder in the crystalline phase. Here we report on a fundamental advance in the fabrication of GST with out-of-plane stacking of ordered vacancy layers by means of three distinct methods: Molecular Beam Epitaxy, thermal annealing and application of femtosecond laser pulses. We assess the degree of vacancy ordering and explicitly correlate it with the MIT. We further tune the ordering in a controlled fashion attaining a large range of resistivity. Employing ordered GST might allow the realization of cells with larger programming windows.

  14. Field-Induced Reversible Phase Manipulation in Metal-Insulator Transition using Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Park, Se Jun

    2005-03-01

    Reversible electronic switching between insulating and metallic phases is a novel idea that may allow new types of field effect devices feasible.^1 Here we demonstrate the reversible manipulation between metallic and insulating phases in two-dimensional In nanowire arrays on Si(111) surface near the metal-insulator transition temperature (Tc). The electronic switching of phases was induced by local electric field applied by the probe tip of a scanning tunneling microscope. The field-dependent hysteresis behavior was also observed in tip height measurements as a function of the sample bias, under the constraint of constant tunneling current. A model including the intrinsic bi-stability of the nanometer-scale domains of In nanowire arrays will be discussed. ^1C. Ahn, J. Triscone, J. Mannhart, Nature 6952, 1015 (2003)

  15. Holographic lattices and metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Ling, Yi

    2015-10-01

    This paper is an extension of the talk given at the conference on Gravitation and Cosmology/The Fourth Galileo-Xu Guangqi Meeting. We intend to present a short review on recent progress on the construction of holographic lattices and its application to metal-insulator transition (MIT), which is a fundamentally important phenomenon in condensed matter physics. We will firstly implement the Peierls phase transition by constructing holographic charge density waves which are induced by the spontaneous breaking of translational symmetry. Then we turn to the holographic realization of metal-insulator transition as a quantum critical phenomenon with many strongly correlated electrons involved. The holographic entanglement entropy as a diagnostic for such quantum phase transitions will be briefly mentioned.

  16. Excitonic metal-insulator phase transition of the Mott type in compressed calcium

    NASA Astrophysics Data System (ADS)

    Voronkova, T. O.; Sarry, A. M.; Sarry, M. F.; Skidan, S. G.

    2017-05-01

    It has been experimentally found that, under the static compression of a calcium crystal at room temperature, it undergoes a series of structural phase transitions: face-centered cubic lattice → body-centered cubic lattice → simple cubic lattice. It has been decided to investigate precisely the simple cubic lattice (because it is an alternative lattice) with the aim of elucidating the possibility of the existence of other (nonstructural) phase transitions in it by using for this purpose the Hubbard model for electrons with half-filled ns-bands and preliminarily transforming the initial electronic system into an electron-hole system by means of the known Shiba operators (applicable only to alternative lattices). This transformation leads to the fact that, in the new system of fermions, instead of the former repulsion, there is an attraction between electrons and holes. Elementary excitations of this new system are bound boson pairs—excitons. This system of fermions has been quantitatively analyzed by jointly using the equation-of-motion method and the direct algebraic method. The numerical integration of the analytically exact transcendental equations derived from the first principles for alternative (one-, two-, and three-dimensional) lattices has demonstrated that, in systems of two-species (electrons + hole) fermions, temperature-induced metal-insulator phase transitions of the Mott type are actually possible. Moreover, all these crystals are in fact excitonic insulators. This conclusion is in complete agreement with the analytically exact calculations of the ground state of a one-dimensional crystal (with half-filled bands), which were performed by Lieb and Wu with the aim to find out the Mott insulator-metal transition of another type.

  17. Composition induced metal-insulator quantum phase transition in the Heusler type Fe2VAl

    NASA Astrophysics Data System (ADS)

    Naka, Takashi; Nikitin, Artem M.; Pan, Yu; de Visser, Anne; Nakane, Takayuki; Ishikawa, Fumihiro; Yamada, Yuh; Imai, Motoharu; Matsushita, Akiyuki

    2016-07-01

    We report the magnetism and transport properties of the Heusler compound Fe2+x V1-x Al at  -0.10  ⩽  x  ⩽  0.20 under pressure and a magnetic field. A metal-insulator quantum phase transition occurred at x  ≈  -0.05. Application of pressure or a magnetic field facilitated the emergence of finite zero-temperature conductivity σ 0 around the critical point, which scaled approximately according to the power law (P  -  P c ) γ . At x  ⩽  -0.05, a localized paramagnetic spin appeared, whereas above the ferromagnetic quantum critical point at x  ≈  0.05, itinerant ferromagnetism was established. At the quantum critical points at x  =  -0.05 and 0.05, the resistivity and specific heat exhibited singularities characteristic of a Griffiths phase appearing as an inhomogeneous electronic state.

  18. Phase controlled metal-insulator transition in multi-leg quasiperiodic optical lattices

    NASA Astrophysics Data System (ADS)

    Maiti, Santanu K.; Sil, Shreekantha; Chakrabarti, Arunava

    2017-07-01

    A tight-binding model of a multi-leg ladder network with a continuous quasiperiodic modulation in both the site potential and the inter-arm hopping integral is considered. The model mimics optical lattices where ultra-cold fermionic or bosonic atoms are trapped in double well potentials. It is observed that, the relative phase difference between the on-site potential and the inter-arm hopping integral, which can be controlled by the tuning of the interfering laser beams trapping the cold atoms, can result in a mixed spectrum of one or more absolutely continuous subband(s) and point like spectral measures. This opens up the possibility of a re-entrant metal-insulator transition. The subtle role played by the relative phase difference mentioned above is revealed, and we corroborate it numerically by working out the multi-channel electronic transmission for finite two-, and three-leg ladder networks. The extension of the calculation beyond the two-leg case is trivial, and is discussed in the work.

  19. Suppression of Structural Phase Transition in VO2 by Epitaxial Strain in Vicinity of Metal-insulator Transition

    NASA Astrophysics Data System (ADS)

    Yang, Mengmeng; Yang, Yuanjun; Bin Hong; Wang, Liangxin; Hu, Kai; Dong, Yongqi; Xu, Han; Huang, Haoliang; Zhao, Jiangtao; Chen, Haiping; Song, Li; Ju, Huanxin; Zhu, Junfa; Bao, Jun; Li, Xiaoguang; Gu, Yueliang; Yang, Tieying; Gao, Xingyu; Luo, Zhenlin; Gao, Chen

    2016-03-01

    Mechanism of metal-insulator transition (MIT) in strained VO2 thin films is very complicated and incompletely understood despite three scenarios with potential explanations including electronic correlation (Mott mechanism), structural transformation (Peierls theory) and collaborative Mott-Peierls transition. Herein, we have decoupled coactions of structural and electronic phase transitions across the MIT by implementing epitaxial strain on 13-nm-thick (001)-VO2 films in comparison to thicker films. The structural evolution during MIT characterized by temperature-dependent synchrotron radiation high-resolution X-ray diffraction reciprocal space mapping and Raman spectroscopy suggested that the structural phase transition in the temperature range of vicinity of the MIT is suppressed by epitaxial strain. Furthermore, temperature-dependent Ultraviolet Photoelectron Spectroscopy (UPS) revealed the changes in electron occupancy near the Fermi energy EF of V 3d orbital, implying that the electronic transition triggers the MIT in the strained films. Thus the MIT in the bi-axially strained VO2 thin films should be only driven by electronic transition without assistance of structural phase transition. Density functional theoretical calculations further confirmed that the tetragonal phase across the MIT can be both in insulating and metallic states in the strained (001)-VO2/TiO2 thin films. This work offers a better understanding of the mechanism of MIT in the strained VO2 films.

  20. Suppression of Structural Phase Transition in VO2 by Epitaxial Strain in Vicinity of Metal-insulator Transition

    PubMed Central

    Yang, Mengmeng; Yang, Yuanjun; Bin Hong; Wang, Liangxin; Hu, Kai; Dong, Yongqi; Xu, Han; Huang, Haoliang; Zhao, Jiangtao; Chen, Haiping; Song, Li; Ju, Huanxin; Zhu, Junfa; Bao, Jun; Li, Xiaoguang; Gu, Yueliang; Yang, Tieying; Gao, Xingyu; Luo, Zhenlin; Gao, Chen

    2016-01-01

    Mechanism of metal-insulator transition (MIT) in strained VO2 thin films is very complicated and incompletely understood despite three scenarios with potential explanations including electronic correlation (Mott mechanism), structural transformation (Peierls theory) and collaborative Mott-Peierls transition. Herein, we have decoupled coactions of structural and electronic phase transitions across the MIT by implementing epitaxial strain on 13-nm-thick (001)-VO2 films in comparison to thicker films. The structural evolution during MIT characterized by temperature-dependent synchrotron radiation high-resolution X-ray diffraction reciprocal space mapping and Raman spectroscopy suggested that the structural phase transition in the temperature range of vicinity of the MIT is suppressed by epitaxial strain. Furthermore, temperature-dependent Ultraviolet Photoelectron Spectroscopy (UPS) revealed the changes in electron occupancy near the Fermi energy EF of V 3d orbital, implying that the electronic transition triggers the MIT in the strained films. Thus the MIT in the bi-axially strained VO2 thin films should be only driven by electronic transition without assistance of structural phase transition. Density functional theoretical calculations further confirmed that the tetragonal phase across the MIT can be both in insulating and metallic states in the strained (001)-VO2/TiO2 thin films. This work offers a better understanding of the mechanism of MIT in the strained VO2 films. PMID:26975328

  1. Electrophoretic-like gating used to control metal-insulator transitions in electronically phase separated manganite wires.

    PubMed

    Guo, Hangwen; Noh, Joo H; Dong, Shuai; Rack, Philip D; Gai, Zheng; Xu, Xiaoshan; Dagotto, Elbio; Shen, Jian; Ward, T Zac

    2013-08-14

    Electronically phase separated manganite wires are found to exhibit controllable metal-insulator transitions under local electric fields. The switching characteristics are shown to be fully reversible, polarity independent, and highly resistant to thermal breakdown caused by repeated cycling. It is further demonstrated that multiple discrete resistive states can be accessed in a single wire. The results conform to a phenomenological model in which the inherent nanoscale insulating and metallic domains are rearranged through electrophoretic-like processes to open and close percolation channels.

  2. Interplay between Ferroelastic and Metal-Insulator Phase Transitions in Strained Quasi-Two-Dimensional VO2 Nanoplatelets

    SciTech Connect

    Tselev, Alexander; Strelcov, Evgheni; Luk'yanchuk, Prof. Igor A.; Ivanov, Ilia N; Budai, John D; Tischler, Jonathan Zachary; Jones, Keith M; Proksch, Roger; Kalinin, Sergei V; Kolmakov, Andrei

    2010-01-01

    Formation of ferroelastic twin domains in VO_2 nanosystems can strongly affect local strain distributions, and hence couple to the strain-controlled metal-insulator transition. Here we report polarized-light optical and scanning microwave microscopy studies of interrelated ferroelastic and metal-insulator transitions in single-crystalline vanadium dioxide (VO_2) quasi-two-dimensional (quasi-2D) nanoplatelets (NPls). In contrast to quasi-1D single-crystalline nanobeams, the geometric frustration results in emergence of several possible families of ferroelastic domains in NPls, thus allowing systematic studies of strain-controlled transitions in the presence of geometrical frustration. We demonstrate possibility of controlling the ferroelastic domain population by the strength of the NPl-substrate interaction, mechanical stress, and by the NPl lateral size. Ferroelastic domain species and domain walls are identified based on standard group-theoretical considerations. Using variable temperature microscopy, we imaged the development of domains of metallic and semiconducting phases during the metal-insulator phase transition and non-trivial strain-driven reentrant domain formation. A long-range reconstruction of ferroelastic structures accommodating metal-insulator domain formation has been observed. These studies illustrate that complete picture of the phase transitions in single-crystalline and disordered VO_2 structures can be drawn only if both ferroelastic and metal-insulator strain effects are taken into consideration and understood.

  3. Metal Insulator transition in Vanadium Dioxide

    NASA Astrophysics Data System (ADS)

    Jovaini, Azita; Fujita, Shigeji; Suzuki, Akira; Godoy, Salvador

    2012-02-01

    MAR12-2011-000262 Abstract Submitted for the MAR12 Meeting of The American Physical Society Sorting Category: 03.9 (T) On the metal-insulator-transition in vanadium dioxide AZITA JOVAINI, SHIGEJI FUJITA, University at Buffalo, SALVADOR GODOY, UNAM, AKIRA SUZUKI, Tokyo University of Science --- Vanadium dioxide (VO2) undergoes a metal-insulator transition (MIT) at 340 K with the structural change from tetragonal to monoclinic crystal. The conductivity _/ drops at MIT by four orders of magnitude. The low temperature monoclinic phase is known to have a lower ground-state energy. The existence of the k-vector k is prerequisite for the conduction since the k appears in the semiclassical equation of motion for the conduction electron (wave packet). The tetragonal (VO2)3 unit is periodic along the crystal's x-, y-, and z-axes, and hence there is a three-dimensional k-vector. There is a one-dimensional k for a monoclinic crystal. We believe this difference in the dimensionality of the k-vector is the cause of the conductivity drop. Prefer Oral Session X Prefer .

  4. High resolution Hall measurements across the VO2 metal-insulator transition reveal impact of spatial phase separation

    PubMed Central

    Yamin, Tony; Strelniker, Yakov M.; Sharoni, Amos

    2016-01-01

    Many strongly correlated transition metal oxides exhibit a metal-insulator transition (MIT), the manipulation of which is essential for their application as active device elements. However, such manipulation is hindered by lack of microscopic understanding of mechanisms involved in these transitions. A prototypical example is VO2, where previous studies indicated that the MIT resistance change correlate with changes in carrier density and mobility. We studied the MIT using Hall measurements with unprecedented resolution and accuracy, simultaneously with resistance measurements. Contrast to prior reports, we find that the MIT is not correlated with a change in mobility, but rather, is a macroscopic manifestation of the spatial phase separation which accompanies the MIT. Our results demonstrate that, surprisingly, properties of the nano-scale spatially-separated metallic and semiconducting domains actually retain their bulk properties. This study highlights the importance of taking into account local fluctuations and correlations when interpreting transport measurements in highly correlated systems. PMID:26783076

  5. Role of thermal strain in the metal-insulator and structural phase transition of epitaxial VO2 films

    NASA Astrophysics Data System (ADS)

    Théry, V.; Boulle, A.; Crunteanu, A.; Orlianges, J. C.; Beaumont, A.; Mayet, R.; Mennai, A.; Cosset, F.; Bessaudou, A.; Fabert, M.

    2016-05-01

    The metal-insulator switching characteristics of VO2 play a crucial role in the performances of VO2-based devices. In this paper we study high-quality (010)-oriented epitaxial films grown on (001) sapphire substrates by means of electron-beam evaporation and investigate the role of interface defects and thermal strain on the parallel evolution of the metal-insulator transition (MIT) and structural phase transition (SPT) between the monoclinic (insulator) and rutile (metal) phases. It is demonstrated that the highly-mismatched VO2/Al2O3 interface promotes a domain-matching epitaxial growth process where the film grows in a strain-relaxed state and the lattice distortions are confined at the interface in regions with limited spatial extent. Upon cooling down from the growth temperature, tensile strain is stored in the films as a consequence of the thermal expansion mismatch between VO2 and Al2O3 . The thinnest films exhibit the highest level of tensile strain in the interfacial plane resulting in a shift of both the MIT and the SPT temperatures towards higher values, pointing to a stabilization of the monoclinic/insulating phase. Concomitantly, the electrical switching characteristics are altered (lower resistivity ratio and broader transition) as a result of the presence of structural defects located at the interface. The SPT exhibits a similar evolution with, additionally, a broader hysteresis due to the formation of an intermediate, strain-stabilized phase in the M1-R transition. Films with thickness ranging between 100-300 nm undergo a partial strain relaxation and exhibit the best performances, with a sharp (10°C temperature range) and narrow (hysteresis <4°C) MIT extending over more than four orders of magnitude in resistivity (6 ×104 ).

  6. β phase and γ-β metal-insulator transition in multiferroic BiFeO3

    NASA Astrophysics Data System (ADS)

    Palai, R.; Katiyar, R. S.; Schmid, H.; Tissot, P.; Clark, S. J.; Robertson, J.; Redfern, S. A. T.; Catalan, G.; Scott, J. F.

    2008-01-01

    We report on extensive experimental studies on thin film, single crystal, and ceramics of multiferroic bismuth ferrite BiFeO3 using differential thermal analysis, high-temperature polarized light microscopy, high-temperature and polarized Raman spectroscopy, high-temperature x-ray diffraction, dc conductivity, optical absorption and reflectivity, and domain imaging, and show that epitaxial (001) thin films of BiFeO3 are clearly monoclinic at room temperature, in agreement with recent synchrotron studies but in disagreement with all other earlier reported results. We report an orthorhombic order-disorder β phase between 820 and 925 (±5)°C , and establish the existence range of the cubic γ phase between 925 (±5) and 933 (±5)°C , contrary to all recent reports. We also report the refined Bi2O3-Fe2O3 phase diagram. The phase transition sequence rhombohedral-orthorhombic-cubic in bulk [monoclinic-orthorhombic-cubic in (001)BiFeO3 thin film] differs distinctly from that of BaTiO3 . The transition to the cubic γ phase causes an abrupt collapse of the band gap toward zero (insulator-metal transition) at the orthorhombic-cubic β-γ transition around 930°C . Our band structure models, high-temperature dc resistivity, and light absorption and reflectivity measurements are consistent with this metal-insulator transition.

  7. Resistivity of the insulating phase approaching the two-dimensional metal-insulator transition: The effect of spin polarization

    NASA Astrophysics Data System (ADS)

    Li, Shiqi; Sarachik, M. P.

    2017-01-01

    The resistivities of the dilute, strongly interacting two-dimensional electron systems in the insulating phase of a silicon MOSFET are the same for unpolarized electrons in the absence of magnetic field and for electrons that are fully spin polarized by the presence of an in-plane magnetic field. In both cases the resistivity obeys Efros-Shklovskii variable range hopping ρ (T ) =ρ0exp[(TES/T ) 1 /2] , with TE S and 1 /ρ0 mapping onto each other if one applies a shift of the critical density nc reported earlier. With and without magnetic field, the parameters TE S and 1 /ρ0=σ0 exhibit scaling consistent with critical behavior approaching a metal-insulator transition.

  8. Dynamic phase coexistence and non-Gaussian resistance fluctuations in VO2 near the metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Samanta, Sudeshna; Raychaudhuri, A. K.; Zhong, Xing; Gupta, A.

    2015-11-01

    We have carried out an extensive investigation on the resistance fluctuations (noise) in an epitaxial thin film of VO2 encompassing the metal-insulator transition (MIT) region to investigate the dynamic phase coexistence of metal and insulating phases. Both flicker noise as well as the Nyquist noise (thermal noise) were measured. The experiments showed that flicker noise, which has a 1 /f spectral power dependence, evolves with temperature in the transition region following the evolution of the phase fractions and is governed by activated kinetics. Importantly, closer to the insulating end of the transition, when the metallic phase fraction is low, the magnitude of the noise shows an anomaly and a strong non-Gaussian component of noise develops. In this region, the local electron temperature (as measured through the Nyquist noise thermometry) shows a deviation from the equilibrium bath temperature. It is proposed that this behavior arises due to current crowding where a substantial amount of the current is carried through well separated small metallic islands leading to a dynamic correlated current path redistribution and an enhanced effective local current density. This leads to a non-Gaussian component to the resistance fluctuation and an associated local deviation of the electron temperature from the bath. Our experiment establishes that phase coexistence leads to a strong inhomogeneity in the region of MIT that makes the current transport strongly inhomogeneous and correlated.

  9. Thermodynamic behavior near a metal-insulator transition

    NASA Technical Reports Server (NTRS)

    Paalanen, M. A.; Graebner, J. E.; Bhatt, R. N.; Sachdev, S.

    1988-01-01

    Measurements of the low-temperature specific heat of phosphorus-doped silicon for densities near the metal-insulator transition show an enhancement over the conduction-band itinerant-electron value. The enhancement increases toward lower temperatures but is less than that found for the spin susceptibility. The data are compared with various theoretical models; the large ratio of the spin susceptibility to specific heat indicates the presence of localized spin excitations in the metallic phase as the metal-insulator transition is approached.

  10. Thermodynamic behavior near a metal-insulator transition

    NASA Technical Reports Server (NTRS)

    Paalanen, M. A.; Graebner, J. E.; Bhatt, R. N.; Sachdev, S.

    1988-01-01

    Measurements of the low-temperature specific heat of phosphorus-doped silicon for densities near the metal-insulator transition show an enhancement over the conduction-band itinerant-electron value. The enhancement increases toward lower temperatures but is less than that found for the spin susceptibility. The data are compared with various theoretical models; the large ratio of the spin susceptibility to specific heat indicates the presence of localized spin excitations in the metallic phase as the metal-insulator transition is approached.

  11. Anisotropic phase separation through the metal-insulator transition in amorphous Mo-Ge and Fe-Ge alloys

    SciTech Connect

    Regan, Michael J.

    1993-12-01

    Since an amorphous solid is often defined as that which lacks long-range order, the atomic structure is typically characterized in terms of the high-degree of short-range order. Most descriptions of vapor-deposited amorphous alloys focus on characterizing this order, while assuming that the material is chemically homogeneous beyond a few near neighbors. By coupling traditional small-angle x-ray scattering which probes spatial variations of the electron density with anomalous dispersion which creates a species-specific contrast, one can discern cracks and voids from chemical inhomogeneity. In particular, one finds that the chemical inhomogeneities which have been previously reported in amorphous FexGe1-x and MoxGe1-x are quite anisotropic, depending significantly on the direction of film growth. With the addition of small amounts of metal atoms (x<0.2), no films appear isotropic nor homogeneous through the metal/insulator transition. The results indicate that fluctuations in the growth direction play a pivotal role in preventing simple growth models of a columnar structure or one that evolves systematically as it grows. The anomalous scattering measurements identify the metal atoms (Fe or Mo) as the source of the anisotropy, with the Ge atoms distributed homogeneously. The author has developed a method for using these measurements to determine the compositions of the phase-separating species. The results indicate phase separation into an amorphous Ge and an intermetallic phase of stoichiometry close to FeGe2or MoGe3. Finally, by manipulating the deposited power flux and rates of growth, FexGe1-x films which have the same Fe composition x can be grown to different states of phase separation. These results may help explain the difficulty workers have had in isolating the metal/insulator transition for these and other vapor-deposited amorphous alloys.

  12. Terahertz spectroscopy of the metal insulator transition in vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Hilton, David; Prasankumar, Rohit; Cavalleri, Andrea; Fourmaux, Sylvain; Kieffer, Jean-Claude; Taylor, Antoinette; Averitt, Richard

    2006-03-01

    We employ terahertz spectroscopy to study the metal-insulator phase transition in vanadium dioxide (VO2 ). We measure the terahertz frequency conductivity in the metallic phase that has a real conductivity of 1000 &-1circ; cm-1 and a negligible imaginary conductivity. The observed conductivity dynamics are consistent with a photoinduced transition in spatially inhomogeneous regions of the film, followed by a thermally driven transition to the maximum conductivity.

  13. Synchronization of pairwise-coupled, identical, relaxation oscillators based on metal-insulator phase transition devices: A model study

    NASA Astrophysics Data System (ADS)

    Parihar, Abhinav; Shukla, Nikhil; Datta, Suman; Raychowdhury, Arijit

    2015-02-01

    Computing with networks of synchronous oscillators has attracted wide-spread attention as novel materials and device topologies have enabled realization of compact, scalable and low-power coupled oscillatory systems. Of particular interest are compact and low-power relaxation oscillators that have been recently demonstrated using MIT (metal-insulator-transition) devices using properties of correlated oxides. Further the computational capability of pairwise coupled relaxation oscillators has also been shown to outperform traditional Boolean digital logic circuits. This paper presents an analysis of the dynamics and synchronization of a system of two such identical coupled relaxation oscillators implemented with MIT devices. We focus on two implementations of the oscillator: (a) a D-D configuration where complementary MIT devices (D) are connected in series to provide oscillations and (b) a D-R configuration where it is composed of a resistor (R) in series with a voltage-triggered state changing MIT device (D). The MIT device acts like a hysteresis resistor with different resistances in the two different states. The synchronization dynamics of such a system has been analyzed with purely charge based coupling using a resistive (RC) and a capacitive (CC) element in parallel. It is shown that in a D-D configuration symmetric, identical and capacitively coupled relaxation oscillator system synchronizes to an anti-phase locking state, whereas when coupled resistively the system locks in phase. Further, we demonstrate that for certain range of values of RC and CC, a bistable system is possible which can have potential applications in associative computing. In D-R configuration, we demonstrate the existence of rich dynamics including non-monotonic flows and complex phase relationship governed by the ratios of the coupling impedance. Finally, the developed theoretical formulations have been shown to explain experimentally measured waveforms of such pairwise coupled

  14. Ferromagnetic-nonmagnetic and metal-insulator phase transitions at the interfaces of KTaO{sub 3} and PbTiO{sub 3}

    SciTech Connect

    Yang, Yi; Chen, Jin-Feng; Hu, Lei; Lin, Chen-Sheng; Cheng, Wen-Dan

    2014-10-21

    We studied the electronic and magnetic properties of hole doped KTaO{sub 3}/PbTiO{sub 3} interface using density functional theory methods. Ferromagnetic-nonmagnetic phase transition and metal-insulator phase transition occur simultaneously at the interface with ferroelectric polarization reversal. Furthermore, these two transitions are coupled with each other because hole doping with large concentration of holes gives rise to ferromagnetism. The interfacial magnetization, which is proportional to hole concentration at the interface, can be tuned by ferroelectric polarization, leading to strong intrinsic magnetoelectric effect at the interface of originally nonmagnetic KTaO{sub 3} and PbTiO{sub 3}.

  15. Ferroelectric control of metal-insulator transition

    NASA Astrophysics Data System (ADS)

    He, Xu; Jin, Kui-juan; Ge, Chen; Ma, Zhong-shui; Yang, Guo-zhen

    2016-03-01

    We propose a method of controlling the metal-insulator transition of one perovskite material at its interface with another ferroelectric material based on first principle calculations. The operating principle is that the rotation of oxygen octahedra tuned by the ferroelectric polarization can modulate the superexchange interaction in this perovskite. We designed a tri-color superlattice of (BiFeO3)N/LaNiO3/LaTiO3, in which the BiFeO3 layers are ferroelectric, the LaNiO3 layer is the layer of which the electronic structure is to be tuned, and LaTiO3 layer is inserted to enhance the inversion asymmetry. By reversing the ferroelectric polarization in this structure, there is a metal-insulator transition of the LaNiO3 layer because of the changes of crystal field splitting of the Ni eg orbitals and the bandwidth of the Ni in-plane eg orbital. It is highly expected that a metal-transition can be realized by designing the structures at the interfaces for more materials.

  16. Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition.

    PubMed

    Briggs, Ryan M; Pryce, Imogen M; Atwater, Harry A

    2010-05-24

    We have integrated lithographically patterned VO2 thin films grown by pulsed laser deposition with silicon-on-insulator photonic waveguides to demonstrate a compact in-line absorption modulator for use in photonic circuits. Using single-mode waveguides at lambda=1550 nm, we show optical modulation of the guided transverse-electric mode of more than 6.5 dB with 2 dB insertion loss over a 2-microm active device length. Loss is determined for devices fabricated on waveguide ring resonators by measuring the resonator spectral response, and a sharp decrease in resonator quality factor is observed above 70 degrees C, consistent with switching of VO2 to its metallic phase. A computational study of device geometry is also presented, and we show that it is possible to more than double the modulation depth with modified device structures.

  17. Metal-Insulator Transition and Topological Properties of Pyrochlore Iridates

    NASA Astrophysics Data System (ADS)

    Zhang, Hongbin; Haule, Kristjan; Vanderbilt, David

    2017-01-01

    Combining density functional theory (DFT) and embedded dynamical mean-field theory (DMFT) methods, we study the metal-insulator transition in R2Ir2 O7 (R =Y , Eu, Sm, Nd, Pr, and Bi) and the topological nature of the insulating compounds. Accurate free energies evaluated using the charge self-consistent DFT +DMFT method reveal that the metal-insulator transition occurs for an A -cation radius between that of Nd and Pr, in agreement with experiments. The all-in-all-out magnetic phase, which is stable in the Nd compound but not the Pr one, gives rise to a small Ir4 + magnetic moment of ≈0.4 μB and opens a sizable correlated gap. We demonstrate that within this state-of-the-art theoretical method, the insulating bulk pyrochlore iridates are topologically trivial.

  18. Dielectric breakdown and avalanches at nonequilibrium metal-insulator transitions.

    PubMed

    Shekhawat, Ashivni; Papanikolaou, Stefanos; Zapperi, Stefano; Sethna, James P

    2011-12-30

    Motivated by recent experiments on the finite temperature Mott transition in VO(2) films, we propose a classical coarse-grained dielectric breakdown model where each degree of freedom represents a nanograin which transitions from insulator to metal with increasing temperature and voltage at random thresholds due to quenched disorder. We describe the properties of the resulting nonequilibrium metal-insulator transition and explain the universal characteristics of the resistance jump distribution. We predict that by tuning voltage, another critical point is approached, which separates a phase of boltlike avalanches from percolationlike ones.

  19. Cu(Ir1 − xCrx)2S4: a model system for studying nanoscale phase coexistence at the metal-insulator transition

    PubMed Central

    Božin, E. S.; Knox, K. R.; Juhás, P.; Hor, Y. S.; Mitchell, J. F.; Billinge, S. J. L.

    2014-01-01

    Increasingly, nanoscale phase coexistence and hidden broken symmetry states are being found in the vicinity of metal-insulator transitions (MIT), for example, in high temperature superconductors, heavy fermion and colossal magnetoresistive materials, but their importance and possible role in the MIT and related emergent behaviors is not understood. Despite their ubiquity, they are hard to study because they produce weak diffuse signals in most measurements. Here we propose Cu(Ir1 − xCrx)2S4 as a model system, where robust local structural signals lead to key new insights. We demonstrate a hitherto unobserved coexistence of an Ir4+ charge-localized dimer phase and Cr-ferromagnetism. The resulting phase diagram that takes into account the short range dimer order is highly reminiscent of a generic MIT phase diagram similar to the cuprates. We suggest that the presence of quenched strain from dopant ions acts as an arbiter deciding between the competing ground states. PMID:24518384

  20. Phonons and the metal-insulator transition in VO2

    NASA Astrophysics Data System (ADS)

    Chang, Sung; Alatas, A.

    2005-03-01

    VO2 undergoes a metal-insulator transition (MIT) at TC= 340 K, which is accompanied by a structural phase transition from a high temperature rutile phase to a low temperature monoclinic phase. Although VO2 has been studied extensively for over 40 years, a clear understanding of the origin of the phase transition has not been forthcoming. Still at issue is the relative importance of electron-lattice and electron-electron interactions as driving mechanisms for the MIT. Here, we report the phonon dispersion of VO2, measured along the rutile γ-R direction using high resolution inelastic X-ray scattering. Unusual phonon behavior at the R point, as the MIT is approached, suggests significant electron-phonon coupling.

  1. Distinctive Finite Size Effects on the Phase Diagram and Metal-insulator Transitions of Tungsten-doped Vanadium(IV) Oxide

    SciTech Connect

    L Whittaker; T Wu; C Patridge; S Ganapathy; S Banerjee

    2011-12-31

    The influence of finite size in altering the phase stabilities of strongly correlated materials gives rise to the interesting prospect of achieving additional tunability of solid-solid phase transitions such as those involved in metal-insulator switching, ferroelectricity, and superconductivity. We note here some distinctive finite size effects on the relative phase stabilities of insulating (monoclinic) and metallic (tetragonal) phases of solid-solution W{sub x}V{sub 1-x}O{sub 2}. Ensemble differential scanning calorimetry and individual nanobelt electrical transport measurements suggest a pronounced hysteresis between metal {yields} insulator and insulator {yields} metal phase transformations. Both transitions are depressed to lower critical temperatures upon the incorporation of substitutional tungsten dopants but the impact on the former transition seems far more prominent. In general, the depression in the critical temperatures upon tungsten doping far exceeds corresponding values for bulk W{sub x}V{sub 1-x}O{sub 2} of the same composition. Notably, the depression in phase transition temperature saturates at a relatively low dopant concentration in the nanobelts, thought to be associated with the specific sites occupied by the tungsten substitutional dopants in these structures. The marked deviations from bulk behavior are rationalized in terms of a percolative model of the phase transition taking into account the nucleation of locally tetragonal domains and enhanced carrier delocalization that accompany W{sup 6+} doping in the W{sub x}V{sub 1-x}O{sub 2} nanobelts.

  2. Capacitive network near the metal insulator transition in Vanadium Dioxide

    NASA Astrophysics Data System (ADS)

    Ramirez, J. G.; Patino, E. J.; Schmidt, R.; Sharoni, A.; Gomez, M. E.; Schuller, I. K.

    2011-03-01

    Recent infrared spectroscopy and transport measurements in nano-scaled junction of VO2 have revealed the existence of phase separation into metallic and insulating phases. Here we present Impedance spectroscopy measurements performed in high quality Vanadium dioxide (VO2) thin films for the first time. This technique allows distinguishing between the resistive and capacitive response of the VO2 films and provides the dielectric properties across the metal-insulator transition (MIT). The film capacitance exhibits an unusual increase close to the MIT which implies the formation of a capacitor network produced by the nanoscale phase separation of metallic and insulating phases. This work has been supported by AFOSR, COLCIENCIAS, CENM and Ramon y Cajal Fellowship.

  3. Holographic metal-insulator transition in higher derivative gravity

    NASA Astrophysics Data System (ADS)

    Ling, Yi; Liu, Peng; Wu, Jian-Pin; Zhou, Zhenhua

    2017-03-01

    We introduce a Weyl term into the Einstein-Maxwell-Axion theory in four dimensional spacetime. Up to the first order of the Weyl coupling parameter γ, we construct charged black brane solutions without translational invariance in a perturbative manner. Among all the holographic frameworks involving higher derivative gravity, we are the first to obtain metal-insulator transitions (MIT) when varying the system parameters at zero temperature. Furthermore, we study the holographic entanglement entropy (HEE) of strip geometry in this model and find that the second order derivative of HEE with respect to the axion parameter exhibits maximization behavior near quantum critical points (QCPs) of MIT. It testifies the conjecture in [1,2] that HEE itself or its derivatives can be used to diagnose quantum phase transition (QPT).

  4. Quantum critical transport at a continuous metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Haldar, P.; Laad, M. S.; Hassan, S. R.

    2016-08-01

    In contrast to the first-order correlation-driven Mott metal-insulator transition, continuous disorder-driven transitions are intrinsically quantum critical. Here, we investigate transport quantum criticality in the Falicov-Kimball model, a representative of the latter class in the strong disorder category. Employing cluster-dynamical mean-field theory, we find clear and anomalous quantum critical scaling behavior manifesting as perfect mirror symmetry of scaling curves on both sides of the MIT. Surprisingly, we find that the beta function β (g ) scales as log(g ) deep into the bad-metallic phase as well, providing a sound unified basis for these findings. We argue that such strong localization quantum criticality may manifest in real three-dimensional systems where disorder effects are more important than electron-electron interactions.

  5. On holographic disorder-driven metal-insulator transitions

    NASA Astrophysics Data System (ADS)

    Baggioli, Matteo; Pujolàs, Oriol

    2017-01-01

    We give a minimal holographic model of a disorder-driven metal-insulator transition. It consists in a CFT with a charge sector and a translation-breaking sector that interact in the most generic way allowed by the symmetries and by dynamical consistency. In the gravity dual, it reduces to a Massive Gravity-Maxwell model with a new direct coupling between the gauge field and the metric that is allowed when gravity is massive. We show that the effect of this coupling is to decrease the DC electrical conductivity generically. This gives a nontrivial check that holographic massive gravity can be consistently interpreted as disorder from the CFT perspective. The suppression of the conductivity happens to such an extent that it does not obey any lower bound and it can be very small in the insulating phase. In some cases, the large disorder limit produces gradient instabilities that hint at the formation of modulated phases.

  6. A Review on Disorder-Driven Metal-Insulator Transition in Crystalline Vacancy-Rich GeSbTe Phase-Change Materials.

    PubMed

    Wang, Jiang-Jing; Xu, Ya-Zhi; Mazzarello, Riccardo; Wuttig, Matthias; Zhang, Wei

    2017-07-27

    Metal-insulator transition (MIT) is one of the most essential topics in condensed matter physics and materials science. The accompanied drastic change in electrical resistance can be exploited in electronic devices, such as data storage and memory technology. It is generally accepted that the underlying mechanism of most MITs is an interplay of electron correlation effects (Mott type) and disorder effects (Anderson type), and to disentangle the two effects is difficult. Recent progress on the crystalline Ge₁Sb₂Te₄ (GST) compound provides compelling evidence for a disorder-driven MIT. In this work, we discuss the presence of strong disorder in GST, and elucidate its effects on electron localization and transport properties. We also show how the degree of disorder in GST can be reduced via thermal annealing, triggering a disorder-driven metal-insulator transition. The resistance switching by disorder tuning in crystalline GST may enable novel multilevel data storage devices.

  7. Metal-insulator transition and local moment formation: A spin-density functional approach

    NASA Astrophysics Data System (ADS)

    Ghazali, A.; Leroux-Hugon, P.

    1980-01-01

    A more thorough description of the metal-insulator transition in correlated systems including local moment formation may be achieved through the spin-density functional method when compared to the Hubbard model. We have applied this method to doped semiconductors and found a transition between an insulating phase with local moments and a metallic one without moments.

  8. Metal-insulator transition in NaxWO3: Photoemission spectromicroscopy study

    NASA Astrophysics Data System (ADS)

    Paul, Sanhita; Ghosh, Anirudha; Raj, Satyabrata

    2014-04-01

    We have investigated the validity of percolation model, which is quite often invoked to explain the metal-insulator transition in sodium tungsten bronzes, NaxWO3 by photoelectron spectromicroscopy. The spatially resolved direct spectromicroscopic probing on both the insulating and metallic phases of high quality single crystals of NaxWO3 reveals the absence of any microscopic inhomogeneities embedded in the system within the experimental limit. Neither any metallic domains in the insulating host nor any insulating domains in the metallic host have been found to support the validity of percolation model to explain the metal-insulator transition in NaxWO3.

  9. Disorder-Driven Metal-Insulator Transitions in Deformable Lattices

    NASA Astrophysics Data System (ADS)

    Di Sante, Domenico; Fratini, Simone; Dobrosavljević, Vladimir; Ciuchi, Sergio

    2017-01-01

    We show that, in the presence of a deformable lattice potential, the nature of the disorder-driven metal-insulator transition is fundamentally changed with respect to the noninteracting (Anderson) scenario. For strong disorder, even a modest electron-phonon interaction is found to dramatically renormalize the random potential, opening a mobility gap at the Fermi energy. This process, which reflects disorder-enhanced polaron formation, is here given a microscopic basis by treating the lattice deformations and Anderson localization effects on the same footing. We identify an intermediate "bad insulator" transport regime which displays resistivity values exceeding the Mott-Ioffe-Regel limit and with a negative temperature coefficient, as often observed in strongly disordered metals. Our calculations reveal that this behavior originates from significant temperature-induced rearrangements of electronic states due to enhanced interaction effects close to the disorder-driven metal-insulator transition.

  10. Metal-insulator transition in films of doped semiconductor nanocrystals.

    PubMed

    Chen, Ting; Reich, K V; Kramer, Nicolaas J; Fu, Han; Kortshagen, Uwe R; Shklovskii, B I

    2016-03-01

    To fully deploy the potential of semiconductor nanocrystal films as low-cost electronic materials, a better understanding of the amount of dopants required to make their conductivity metallic is needed. In bulk semiconductors, the critical concentration of electrons at the metal-insulator transition is described by the Mott criterion. Here, we theoretically derive the critical concentration nc for films of heavily doped nanocrystals devoid of ligands at their surface and in direct contact with each other. In the accompanying experiments, we investigate the conduction mechanism in films of phosphorus-doped, ligand-free silicon nanocrystals. At the largest electron concentration achieved in our samples, which is half the predicted nc, we find that the localization length of hopping electrons is close to three times the nanocrystals diameter, indicating that the film approaches the metal-insulator transition.

  11. Anderson metal-insulator transitions with classical magnetic impurities

    SciTech Connect

    Jung, Daniel; Kettemann, Stefan

    2014-08-20

    We study the effects of classical magnetic impurities on the Anderson metal-insulator transition (AMIT) numerically. In particular we find that while a finite concentration of Ising impurities lowers the critical value of the site-diagonal disorder amplitude W{sub c}, in the presence of Heisenberg impurities, W{sub c} is first increased with increasing exchange coupling strength J due to time-reversal symmetry breaking. The resulting scaling with J is compared to analytical predictions by Wegner [1]. The results are obtained numerically, based on a finite-size scaling procedure for the typical density of states [2], which is the geometric average of the local density of states. The latter can efficiently be calculated using the kernel polynomial method [3]. Although still suffering from methodical shortcomings, our method proves to deliver results close to established results for the orthogonal symmetry class [4]. We extend previous approaches [5] by combining the KPM with a finite-size scaling analysis. We also discuss the relevance of our findings for systems like phosphor-doped silicon (Si:P), which are known to exhibit a quantum phase transition from metal to insulator driven by the interplay of both interaction and disorder, accompanied by the presence of a finite concentration of magnetic moments [6].

  12. Metal-insulator transition near a superconducting state

    NASA Astrophysics Data System (ADS)

    Kaveh, M.; Mott, N. F.

    1992-03-01

    We show that when the metal-insulation transition occurs near a superconducting state it results in a different critical behavior from that of amorphous metals or uncompensated doped semiconductors. This difference results from the enhancement of the effective electron-electron interaction caused by fluctuations to the superconducting state. This explains the recent experiments of Micklitz and co-workers on amorphous superconducting mixtures Ga-Ar and Bi-Kr.

  13. The metal-insulator transition in magnetite.

    NASA Technical Reports Server (NTRS)

    Cullen, J. R.; Callen, E.

    1972-01-01

    We describe an electronic model for the low temperature transition in magnetite, in which the average number of electrons on a site is non-integral. The solution of the one-dimensional problem is reviewed, and the connection of the model with the Verwey ordering is discussed. Some of the implication of the three dimensional problem are discussed.

  14. The metal-insulator transition in magnetite.

    NASA Technical Reports Server (NTRS)

    Cullen, J. R.; Callen, E.

    1972-01-01

    We describe an electronic model for the low temperature transition in magnetite, in which the average number of electrons on a site is non-integral. The solution of the one-dimensional problem is reviewed, and the connection of the model with the Verwey ordering is discussed. Some of the implication of the three dimensional problem are discussed.

  15. Metal-insulator transition in a switchable mirror

    NASA Astrophysics Data System (ADS)

    Roy, Arunabha Shasanka

    2001-11-01

    Rare earth hydride films can be converted reversibly from metallic mirrors to insulating windows simply by changing the surrounding hydrogen gas pressure at room temperature. At low temperatures, in situ doping is not possible in this way as hydrogen cannot diffuse. However, our finding of persistent photoconductivity under ultraviolet illumination enables us to tune yttrium hydride through the T = 0 metal-insulator transition. Conductivity and Hall measurements are used to determine the critical exponents in this system: mu = 1.0 +/- 0.1 and zv = 6.0 +/- 0.5. The simultaneous validity of finite-size scaling in the metal and its failure in the insulator motivates a study of the insulating phase of YHx in greater detail. A new transport regime is discovered which is consistent with our earlier determined values for the critical exponents but entails a new scaling dependence of the conductivity on the carrier density n and temperature T. The unusually large value for the product of the static and dynamic critical exponents appears to signify the important role played by electron-electron interactions in this system. Finally, possible schemes for the mechanism underlying the unusual photoconductivity are discussed.

  16. Metal Insulator Transition in p-SiGe

    NASA Astrophysics Data System (ADS)

    Coleridge, Peter

    2001-03-01

    The strained p-SiGe system exhibits many of the characteristics of the Metal Insulator transition first seen in Si-MOSFETs. Magnetoresistance and Hall data is presented for a series of samples with rs between about 4 and 8. Results are analysed using the Renormalisation Group theories of Finkel'stein[1] and Castellani et al.[2]. For samples well into the metallic regime the Hall effect data is generally consistent with this picture with a cross-over from low field to high field behaviour when the Zeeman splitting gμ_BB = 2kT and a spin triplet interaction parameter γ2 close to one. There is, however, a large and unexpected additional ln(B) dependence tentatively attributed to an anomalous Hall effect which is likely to be large here because of the strong spin-orbit coupling. If this is the case it provides a powerful way of probing the magnetisation or spin-texture in the system. Although weak localisation effects appear in the magnetoresistance there is no sign of their expected temperature dependence. The results generally support the view that the interactions are strong and play an important role in the MIT. The relationship to the insulating phase seen in some p-SiGe samples around filling factor 3/2 will also be commented on. [1] A.M. Finkel'stein, Z. Phys. B56, 189 (1984) [2] C. Castellaniet al. Phys. Rev B 30,1596 (1984)

  17. Gas sensor based on metal-insulator transition in VO2 nanowire thermistor.

    PubMed

    Strelcov, Evgheni; Lilach, Yigal; Kolmakov, Andrei

    2009-06-01

    Using temperature driven sharp metal-insulator phase transition in single crystal VO(2) nanowires, the realization of a novel gas sensing concept has been tested. Varying the temperature of the nanowire close to the transition edge, the conductance of the nanowire becomes extremely responsive to the tiny changes in molecular composition, pressure, and temperature of the ambient gas environment. This gas sensing analog of the transition edge sensor radiometry used in astrophysics opens new opportunities in gas sensorics.

  18. Pure electronic metal-insulator transition at the interface of complex oxides

    PubMed Central

    Meyers, D.; Liu, Jian; Freeland, J. W.; Middey, S.; Kareev, M.; Kwon, Jihwan; Zuo, J. M.; Chuang, Yi-De; Kim, J. W.; Ryan, P. J.; Chakhalian, J.

    2016-01-01

    In complex materials observed electronic phases and transitions between them often involve coupling between many degrees of freedom whose entanglement convolutes understanding of the instigating mechanism. Metal-insulator transitions are one such problem where coupling to the structural, orbital, charge, and magnetic order parameters frequently obscures the underlying physics. Here, we demonstrate a way to unravel this conundrum by heterostructuring a prototypical multi-ordered complex oxide NdNiO3 in ultra thin geometry, which preserves the metal-to-insulator transition and bulk-like magnetic order parameter, but entirely suppresses the symmetry lowering and long-range charge order parameter. These findings illustrate the utility of heterointerfaces as a powerful method for removing competing order parameters to gain greater insight into the nature of the transition, here revealing that the magnetic order generates the transition independently, leading to an exceptionally rare purely electronic metal-insulator transition with no symmetry change. PMID:27324948

  19. Pure electronic metal-insulator transition at the interface of complex oxides

    SciTech Connect

    Meyers, D.; Liu, Jian; Freeland, J. W.; Middey, S.; Kareev, M.; Kwon, Jihwan; Zuo, J. M.; Chuang, Yi-De; Kim, J. W.; Ryan, P. J.; Chakhalian, J.

    2016-06-21

    We observed complex materials in electronic phases and transitions between them often involve coupling between many degrees of freedom whose entanglement convolutes understanding of the instigating mechanism. Metal-insulator transitions are one such problem where coupling to the structural, orbital, charge, and magnetic order parameters frequently obscures the underlying physics. We demonstrate a way to unravel this conundrum by heterostructuring a prototypical multi-ordered complex oxide NdNiO3 in ultra thin geometry, which preserves the metal-to-insulator transition and bulk-like magnetic order parameter, but entirely suppresses the symmetry lowering and long-range charge order parameter. Furthermore, these findings illustrate the utility of heterointerfaces as a powerful method for removing competing order parameters to gain greater insight into the nature of the transition, here revealing that the magnetic order generates the transition independently, leading to an exceptionally rare purely electronic metal-insulator transition with no symmetry change.

  20. Metal-insulator transition in epitaxial NdNiO3 thin film: A structural, electrical and optical study

    NASA Astrophysics Data System (ADS)

    Shao, Tao; Qi, Zeming; Wang, Yuyin; Li, Yuanyuan; Yang, Mei; Hu, Chuansheng

    2017-03-01

    NdNiO3 thin film has been prepared by pulsed laser deposition on LaAlO3 (001) single crystalline substrate. Temperature-dependent resistivity measurement shows a sharp metal-insulator transition in such thin film. The phase transition temperature can be tuned from 90 K to 121 K by changing the thickness of thin film. The structure evolution during phase transition is studied by Raman spectroscopy. Optical conductivity reveals that the variation carrier density in the process of phase transition. The results of structural, electrical and optical studies provide useful insights to understand the mechanism of metal-insulator transition of NdNiO3 thin film.

  1. Metal-insulator and charge ordering transitions in oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Singh, Sujay Kumar

    Strongly correlated oxides are a class of materials wherein interplay of various degrees of freedom results in novel electronic and magnetic phenomena. Vanadium oxides are widely studied correlated materials that exhibit metal-insulator transitions (MIT) in a wide temperature range from 70 K to 380 K. In this Thesis, results from electrical transport measurements on vanadium dioxide (VO2) and vanadium oxide bronze (MxV 2O5) (where M: alkali, alkaline earth, and transition metal cations) are presented and discussed. Although the MIT in VO2 has been studied for more than 50 years, the microscopic origin of the transition is still debated since a slew of external parameters such as light, voltage, and strain are found to significantly alter the transition. Furthermore, recent works on electrically driven switching in VO2 have shown that the role of Joule heating to be a major cause as opposed to electric field. We explore the mechanisms behind the electrically driven switching in single crystalline nanobeams of VO2 through DC and AC transport measurements. The harmonic analysis of the AC measurement data shows that non-uniform Joule heating causes electronic inhomogeneities to develop within the nanobeam and is responsible for driving the transition in VO2. Surprisingly, field assisted emission mechanisms such as Poole-Frenkel effect is found to be absent and the role of percolation is also identified in the electrically driven transition. This Thesis also provides a new insight into the mechanisms behind the electrolyte gating induced resistance modulation and the suppression of MIT in VO2. We show that the metallic phase of VO2 induced by electrolyte gating is due to an electrochemical process and can be both reversible and irreversible under different conditions. The kinetics of the redox processes increase with temperature; a complete suppression of the transition and the stabilization of the metallic phase are achievable by gating in the rutile metallic phase

  2. Computation of the correlated metal-insulator transition in vanadium dioxide from first principles.

    PubMed

    Zheng, Huihuo; Wagner, Lucas K

    2015-05-01

    Vanadium dioxide (VO2) is a paradigmatic example of a strongly correlated system that undergoes a metal-insulator transition at a structural phase transition. To date, this transition has necessitated significant post hoc adjustments to theory in order to be described properly. Here we report standard state-of-the-art first principles quantum Monte Carlo (QMC) calculations of the structural dependence of the properties of VO2. Using this technique, we simulate the interactions between electrons explicitly, which allows for the metal-insulator transition to naturally emerge, importantly without ad hoc adjustments. The QMC calculations show that the structural transition directly causes the metal-insulator transition and a change in the coupling of vanadium spins. This change in the spin coupling results in a prediction of a momentum-independent magnetic excitation in the insulating state. While two-body correlations are important to set the stage for this transition, they do not change significantly when VO2 becomes an insulator. These results show that it is now possible to account for electron correlations in a quantitatively accurate way that is also specific to materials.

  3. Photoelectron spectromicroscopy study of metal-insulator transition in NaxWO3

    NASA Astrophysics Data System (ADS)

    Paul, Sanhita; Ghosh, Anirudha; Dudin, Pavel; Barinov, Alexei; Chakraborty, Anirban; Ray, Sugata; Sarma, D. D.; Oishi, Shuji; Raj, Satyabrata

    2013-07-01

    We have investigated the validity of percolation model, which is quite often invoked to explain the metal-insulator transition in sodium tungsten bronzes, NaxWO3 by photoelectron spectromicroscopy. The spatially resolved direct spectromicroscopic probing on both the insulating and metallic phases of high quality single crystals of NaxWO3 reveals the absence of any microscopic inhomogeneities embedded in the system within the experimental limit. Neither any metallic domains in the insulating host nor any insulating domains in the metallic host have been found to support the validity of percolation model to explain the metal-insulator transition in NaxWO3. The possible origin of insulating phase in NaxWO3 is due to the Anderson localization of all the states near EF. The localization occurs because of the strong disorder arising from random distribution of Na+ ions in the WO3 lattice.

  4. Metal-insulator transition in 1 T-TaS 2- xSe x

    NASA Astrophysics Data System (ADS)

    Shiino, O.; Watanabe, T.; Endo, T.; Hanaguri, T.; Kitazawa, K.; Nohara, M.; Takagi, H.; Murayama, C.; Takeshita, N.; Môri, N.; Hasegawa, T.; Yamaguchi, W.

    2000-07-01

    The transition metal dichalcogenide, 1 T-TaS 2, shows metal-insulator transition (MIT) accompanying the nearly commensurate (NC)-commensurate (C) charge density wave (CDW) phase transition at 180 K. It has been proposed that the low-temperature C-CDW phase is a Mott insulator. However, our specific heat and magnetic susceptibility measurements in the 1 T-TaS 2- xSe x system revealed no indications of effective mass enhancement or intrinsic localized spins in the insulating phase. So we propose a new model for the MIT in which the interlayer coupling of the CDW superstructure plays an important role.

  5. Metal-insulator transition in Na{sub x}WO{sub 3}: Photoemission spectromicroscopy study

    SciTech Connect

    Paul, Sanhita Ghosh, Anirudha Raj, Satyabrata

    2014-04-24

    We have investigated the validity of percolation model, which is quite often invoked to explain the metal-insulator transition in sodium tungsten bronzes, Na{sub x}WO{sub 3} by photoelectron spectromicroscopy. The spatially resolved direct spectromicroscopic probing on both the insulating and metallic phases of high quality single crystals of Na{sub x}WO{sub 3} reveals the absence of any microscopic inhomogeneities embedded in the system within the experimental limit. Neither any metallic domains in the insulating host nor any insulating domains in the metallic host have been found to support the validity of percolation model to explain the metal-insulator transition in Na{sub x}WO{sub 3}.

  6. Nanostructural model of metal-insulator transition in layered LixZrNCl superconductors

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    2008-03-01

    The self-organized dopant percolative filamentary model, entirely orbital in character (no fictive spins), has recently quantitatively and specifically explained chemical trends in ceramic layered cuprate superconductors. Here, this model explains the observation of an abrupt jump ΔTc(x) in LixZrNCl powders over a wide composition range Δx , as well as many other features in the resistivity, lattice constants, Raman spectra, upper critical field, and Meissner volume factor. The ceramic data confirm one-dimensional features in realistic structural models of three-dimensional metal-insulator transitions that had been previously only hypothetical. These data provide a “missing link” between the metal-insulator transition in semiconductor impurity bands and cuprate superconductors. They show that all three material families are united by exhibiting an intermediate phase, absent from crystals, but seen in many properties of network glasses.

  7. Thermal transport across a continuous metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Haldar, P.; Laad, M. S.; Hassan, S. R.

    2017-09-01

    The celebrated Wiedemann-Franz (WF) law is believed to be robust in metals as long as interactions between electrons preserve their fermion-quasiparticle character. We study thermal transport and the fate of the WF law close to a continuous metal-insulator transition (MIT) in the Falicov-Kimball model (FKM) using cluster-dynamical mean-field theory (CDMFT). Surprisingly, as for electrical transport, we find robust and novel quantum critical scaling in thermal transport across the MIT. We unearth the deeper reasons for these novel findings in terms of (i) the specific structure of energy-current correlations for the FKM and (ii) the microscopic electronic processes which facilitate energy transport while simultaneously blocking charge transport close to the MIT. However, within (C)DMFT, we also find that the WF law survives at T ⟶0 in the incoherent metal right up to the MIT, even in absence of Landau quasiparticles.

  8. Metal insulator transitions in perovskite SrIrO{sub 3} thin films

    SciTech Connect

    Biswas, Abhijit; Jeong, Yoon Hee; Kim, Ki-Seok

    2014-12-07

    Understanding of metal insulator transitions in a strongly correlated system, driven by Anderson localization (disorder) and/or Mott localization (correlation), is a long standing problem in condensed matter physics. The prevailing fundamental question would be how these two mechanisms contrive to accomplish emergent anomalous behaviors. Here, we have grown high quality perovskite SrIrO{sub 3} thin films, containing a strong spin orbit coupled 5d element Ir, on various substrates such as GdScO{sub 3} (110), DyScO{sub 3} (110), SrTiO{sub 3} (001), and NdGaO{sub 3} (110) with increasing lattice mismatch, in order to carry out a systematic study on the transport properties. We found that metal insulator transitions can be induced in this system; by either reducing thickness (on best lattice matched substrate) or changing degree of lattice strain (by lattice mismatch between film and substrates) of films. Surprisingly these two pathways seek two distinct types of metal insulator transitions; the former falls into disorder driven Anderson type whereas the latter turns out to be of unconventional Mott-Anderson type with the interplay of disorder and correlation. More interestingly, in the metallic phases of SrIrO{sub 3}, unusual non-Fermi liquid characteristics emerge in resistivity as Δρ ∝ T{sup ε} with ε evolving from 4/5 to 1 to 3/2 with increasing lattice strain. We discuss theoretical implications of these phenomena to shed light on the metal insulator transitions.

  9. Phase coexistence near the metal-insulator transition in a compressively strained NdNi O3 film grown on LaAl O3 : Scanning tunneling, noise, and impedance spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Bisht, Ravindra Singh; Samanta, Sudeshna; Raychaudhuri, A. K.

    2017-03-01

    We report an observation of phase coexistence near the metal-insulator transition (MIT) in a film of NdNi O3 grown on crystalline substrate LaAl O3 . This was established through a combination of three techniques, namely, scanning tunneling spectroscopy, 1 /f noise spectroscopy, and impedance spectroscopy experiments. The spatially resolved scanning tunneling spectroscopy showed that the two coexisting phases have different types of density of states (DOS) at the Fermi level. One phase showed a depleted DOS close to EF with a small yet finite correlation gap, while the other coexisting phase showed a metal-like DOS that had no depletion. The existence of the phase separation leads to a jump in the resistance fluctuation (as seen through 1 /f noise spectroscopy) at the transition, and, notably, the fluctuation becomes non-Gaussian when there is a phase separation even in the metallic phase. This was corroborated by the impedance spectroscopy, which showed a broad hump in capacitance at the transition region as a signature of the existence of two phases that have widely different electrical conductivities. The phase separation starts well within the metallic phase much above the transition temperature and makes the sample electronically "inhomogeneous" in nanoscopic scale close to the transition. We discuss certain scenarios that lead to such a phase separation in the general context of strongly correlated oxides.

  10. Identifying the Collective Length in VO2 Metal-Insulator Transitions.

    PubMed

    Yajima, Takeaki; Nishimura, Tomonori; Toriumi, Akira

    2017-03-01

    The "collective length" in VO2 metal-insulator transitions is identified by controlling nanoscale dopant distribution in thin films. The crossover from the local transition to the collective transition is observed, which originates from the increased instability of the metal-insulator domain boundary. This instability renders the transition collective within the "collective length", which will enable the design of collective electronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Origin of the metal-insulator transition of indium atom wires on Si(111)

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Woo; Cho, Jun-Hyung

    2016-06-01

    As a prototypical one-dimensional electron system, self-assembled indium (In) nanowires on the Si(111) surface have been believed to drive a metal-insulator transition by a charge-density-wave (CDW) formation due to Fermi surface nesting. Here, our first-principles calculations demonstrate that the structural phase transition from the high-temperature 4 ×1 phase to the low-temperature 8 ×2 phase occurs through an exothermic reaction with the consecutive bond-breaking and bond-making processes, giving rise to an energy barrier between the two phases as well as a gap opening. This atomistic picture for the phase transition not only identifies its first-order nature but also solves a long-standing puzzle of the origin of the metal-insulator transition in terms of the ×2 periodic lattice reconstruction of In hexagons via bond breakage and new bond formation, not by the Peierls-instability-driven CDW formation.

  12. Metal-Insulator Transition in the Hubbard Model: Correlations and Spiral Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Timirgazin, Marat A.; Igoshev, Petr A.; Arzhnikov, Anatoly K.; Irkhin, Valentin Yu.

    2016-12-01

    The metal-insulator transition (MIT) for the square, simple cubic, and body-centered cubic lattices is investigated within the t-t^' Hubbard model at half-filling by using both the generalized for the case of spiral order Hartree-Fock approximation (HFA) and Kotliar-Ruckenstein slave-boson approach. It turns out that the magnetic scenario of MIT becomes superior over the non-magnetic one. The electron correlations lead to some suppression of the spiral phases in comparison with HFA. We found the presence of a metallic antiferromagnetic (spiral) phase in the case of three-dimensional lattices.

  13. Metal-insulator-metal transition in NdNiO3 films capped by CoFe2O4

    NASA Astrophysics Data System (ADS)

    Saleem, M. S.; Song, C.; Peng, J. J.; Cui, B.; Li, F.; Gu, Y. D.; Pan, F.

    2017-02-01

    Metal-insulator transition features as a transformation from a highly charge conductive state to another state where the charge conductivity is greatly suppressed when decreasing the temperature. Here, we demonstrate two consecutive transitions in NdNiO3 films with CoFe2O4 capping, in which the metal-insulator transition occurs at ˜85 K, followed by an unprecedented insulator-metal transition below 40 K. The emerging insulator-metal transition associated with a weak antiferromagnetic behavior is observed in 20 unit cell-thick NdNiO3 with more than 5 unit cell CoFe2O4 capping. Differently, the NdNiO3 films with thinner CoFe2O4 capping only exhibit metal-insulator transition at ˜85 K, accompanied by a strong antiferromagnetic state below 40 K. Charge transfer from Co to Ni, instead of from Fe to Ni, formulates the ferromagnetic interaction between Ni-Ni and Ni-Co atoms, thus suppressing the antiferromagnetic feature and producing a metallic conductive behavior. Furthermore, a phase diagram for the metal-insulator-metal transition in this system is drawn.

  14. Pure electronic metal-insulator transition at the interface of complex oxides

    DOE PAGES

    Meyers, D.; Liu, Jian; Freeland, J. W.; ...

    2016-06-21

    We observed complex materials in electronic phases and transitions between them often involve coupling between many degrees of freedom whose entanglement convolutes understanding of the instigating mechanism. Metal-insulator transitions are one such problem where coupling to the structural, orbital, charge, and magnetic order parameters frequently obscures the underlying physics. We demonstrate a way to unravel this conundrum by heterostructuring a prototypical multi-ordered complex oxide NdNiO3 in ultra thin geometry, which preserves the metal-to-insulator transition and bulk-like magnetic order parameter, but entirely suppresses the symmetry lowering and long-range charge order parameter. Furthermore, these findings illustrate the utility of heterointerfaces as amore » powerful method for removing competing order parameters to gain greater insight into the nature of the transition, here revealing that the magnetic order generates the transition independently, leading to an exceptionally rare purely electronic metal-insulator transition with no symmetry change.« less

  15. Thermally driven analog of the Barkhausen effect at the metal-insulator transition in vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Huber-Rodriguez, Benjamin; Kwang, Siu Yi; Hardy, Will J.; Ji, Heng; Chen, Chih-Wei; Morosan, Emilia; Natelson, Douglas

    2014-09-01

    The physics of the metal-insulator transition (MIT) in vanadium dioxide remains a subject of intense interest. Because of the complicating effects of elastic strain on the phase transition, there is interest in comparatively strain-free means of examining VO2 material properties. We report contact-free, low-strain studies of the MIT through an inductive bridge approach sensitive to the magnetic response of VO2 powder. Rather than observing the expected step-like change in susceptibility at the transition, we argue that the measured response is dominated by an analog of the Barkhausen effect, due to the extremely sharp jump in the magnetic response of each grain as a function of time as the material is cycled across the phase boundary. This effect suggests that future measurements could access the dynamics of this and similar phase transitions.

  16. Thermal Conductivity and Thermopower near the 2D Metal-Insulator transition, Final Technical Report

    SciTech Connect

    Sarachik, Myriam P.

    2015-02-20

    STUDIES OF STRONGLY-INTERACTING 2D ELECTRON SYSTEMS – There is a great deal of current interest in the properties of systems in which the interaction between electrons (their potential energy) is large compared to their kinetic energy. We have investigated an apparent, unexpected metal-insulator transition inferred from the behavior of the temperature-dependence of the resistivity; moreover, detailed analysis of the behavior of the magnetoresistance suggests that the electrons’ effective mass diverges, supporting this scenario. Whether this is a true phase transition or crossover behavior has been strenuously debated over the past 20 years. Our measurements have now shown that the thermoelectric power of these 2D materials diverges at a finite density, providing clear evidence that this is, in fact, a phase transition to a new low-density phase which may be a precursor or a direct transition to the long sought-after electronic crystal predicted by Eugene Wigner in 1934.

  17. Thermally driven analog of the Barkhausen effect at the metal-insulator transition in vanadium dioxide

    SciTech Connect

    Huber-Rodriguez, Benjamin; Ji, Heng; Chen, Chih-Wei; Kwang, Siu Yi; Hardy, Will J.; Morosan, Emilia; Natelson, Douglas

    2014-09-29

    The physics of the metal-insulator transition (MIT) in vanadium dioxide remains a subject of intense interest. Because of the complicating effects of elastic strain on the phase transition, there is interest in comparatively strain-free means of examining VO{sub 2} material properties. We report contact-free, low-strain studies of the MIT through an inductive bridge approach sensitive to the magnetic response of VO{sub 2} powder. Rather than observing the expected step-like change in susceptibility at the transition, we argue that the measured response is dominated by an analog of the Barkhausen effect, due to the extremely sharp jump in the magnetic response of each grain as a function of time as the material is cycled across the phase boundary. This effect suggests that future measurements could access the dynamics of this and similar phase transitions.

  18. Metal-insulator transitions and magnetic susceptibility in doped cuprate compounds

    NASA Astrophysics Data System (ADS)

    Dzhumanov, S.; Kurbanov, U. T.; Khudayberdiev, Z. S.; Hafizov, A. R.

    2016-11-01

    Results are presented from a theoretical study of the possibility of hole carrier localization and metal-insulator transitions which show up in the temperature dependences of the magnetic susceptibility χ(T) of doped copper-oxide (cuprate) compounds. The criteria for metal-insulator transitions owing to strong hole-lattice interactions and the formation of very narrow polaron bands in these materials with reduced doping level x are analyzed. It is shown that these kinds of metal-insulator transitions occur in underdoped La2-xSrxCuO4 and YBa2Cu3O6+x cuprates (i.e., for x ranging from 0.04 to 0.12). The characteristic temperature dependences χ(T) of the HTSC cuprates are found for different doping levels. These results are in good agreement with experimental data on metal-insulator transitions and the magnetic susceptibility of the HTSC cuprates.

  19. Multilevel radiative thermal memory realized by the hysteretic metal-insulator transition of vanadium dioxide

    SciTech Connect

    Ito, Kota Nishikawa, Kazutaka; Iizuka, Hideo

    2016-02-01

    Thermal information processing is attracting much interest as an analog of electronic computing. We experimentally demonstrated a radiative thermal memory utilizing a phase change material. The hysteretic metal-insulator transition of vanadium dioxide (VO{sub 2}) allows us to obtain a multilevel memory. We developed a Preisach model to explain the hysteretic radiative heat transfer between a VO{sub 2} film and a fused quartz substrate. The transient response of our memory predicted by the Preisach model agrees well with the measured response. Our multilevel thermal memory paves the way for thermal information processing as well as contactless thermal management.

  20. Multilevel radiative thermal memory realized by the hysteretic metal-insulator transition of vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Ito, Kota; Nishikawa, Kazutaka; Iizuka, Hideo

    2016-02-01

    Thermal information processing is attracting much interest as an analog of electronic computing. We experimentally demonstrated a radiative thermal memory utilizing a phase change material. The hysteretic metal-insulator transition of vanadium dioxide (VO2) allows us to obtain a multilevel memory. We developed a Preisach model to explain the hysteretic radiative heat transfer between a VO2 film and a fused quartz substrate. The transient response of our memory predicted by the Preisach model agrees well with the measured response. Our multilevel thermal memory paves the way for thermal information processing as well as contactless thermal management.

  1. Measurement of a solid-state triple point at the metal-insulator transition in VO2.

    PubMed

    Park, Jae Hyung; Coy, Jim M; Kasirga, T Serkan; Huang, Chunming; Fei, Zaiyao; Hunter, Scott; Cobden, David H

    2013-08-22

    First-order phase transitions in solids are notoriously challenging to study. The combination of change in unit cell shape, long range of elastic distortion and flow of latent heat leads to large energy barriers resulting in domain structure, hysteresis and cracking. The situation is worse near a triple point, where more than two phases are involved. The well-known metal-insulator transition in vanadium dioxide, a popular candidate for ultrafast optical and electrical switching applications, is a case in point. Even though VO2 is one of the simplest strongly correlated materials, experimental difficulties posed by the first-order nature of the metal-insulator transition as well as the involvement of at least two competing insulating phases have led to persistent controversy about its nature. Here we show that studying single-crystal VO2 nanobeams in a purpose-built nanomechanical strain apparatus allows investigation of this prototypical phase transition with unprecedented control and precision. Our results include the striking finding that the triple point of the metallic phase and two insulating phases is at the transition temperature, Ttr = Tc, which we determine to be 65.0 ± 0.1 °C. The findings have profound implications for the mechanism of the metal-insulator transition in VO2, but they also demonstrate the importance of this approach for mastering phase transitions in many other strongly correlated materials, such as manganites and iron-based superconductors.

  2. Metal-insulator transition in oriented poly(p-phenylenevinylene)

    NASA Astrophysics Data System (ADS)

    Ahlskog, M.; Menon, Reghu; Heeger, A. J.; Noguchi, T.; Ohnishi, T.

    1997-03-01

    The transport properties of H2 SO4 -doped, tensile drawn, and oriented poly(phenylenevinylene) have been studied in the metallic, critical, and insulating regimes of the disorder-induced metal-insulator transition (M-I) transition. The temperature dependence of the conductivity, σ(T) and the magnetoconductance (MC) were investigated between room temperature and 1.3 K and in magnetic fields up to 8 T, in freshly doped samples and in samples during controlled dedoping (aging). A complete set of measurements were carried out on a single, fully doped sample that was followed during ageing from the metallic state through the critical regime into the insulting state. The transport properties are characterized as a function of the resistivity ratio (ρr), where ρr=[ρ(1.3 K)/ρ(200 K)]. In the metallic regime (ρr<2), σ∥ (300 K)≅10 000 S/cm and σ⊥ (300 K)≅100 S/cm; for T<4 K, a T1/2 dependence is observed for σ(T), and the MC shows positive and negative contributions at low and high fields, respectively. The positive contribution to the MC vanishes at the M-I transition boundary (ρr≅2). The behaviors of σ(T)and the MC are consistent with the weak localization plus electron-electron interaction model. Very near the M-I transition, a field-induced transition from the metallic to the critical regime was observed \\{σ(T)~T0.1 at 8 T\\}. For samples in the critical regime with 4<ρr<30, σ(T)~TΒ at low temperatures. In the insulating state (ρr>50), ρ(T)~exp(T0/T)x indicating variable-range-hopping transport. Although anisotropic, the field and temperature dependences of the transport are similar both parallel and perpendicular to the chain axis, implying that oriented conducting polymers are anisotropic three-dimensional conductors.

  3. Percolation metal-insullator transition in BiSrCaCuO films

    NASA Astrophysics Data System (ADS)

    Okunev, V. D.; Pafomov, N. N.; Svistunov, V. M.; Lewandowski, S. J.; Gierlowski, P.; Kula, W.

    1996-02-01

    An experimental investigation of the metal-insulator trnasition in BiSrCaCuO (BSCCO) films is reported. We performed resistivity, optical-absorption and critical-temperature measurements on several samples obtained by different technological methods. The results agree well with the percolation mechanism of the metal-insulator transition and show interesting correlations between room-temperature conductivity and superconducting properties of the investigated films.

  4. Light scattering by epitaxial VO{sub 2} films near the metal-insulator transition point

    SciTech Connect

    Lysenko, Sergiy Fernández, Felix; Rúa, Armando; Figueroa, Jose; Vargas, Kevin; Cordero, Joseph; Aparicio, Joaquin; Sepúlveda, Nelson

    2015-05-14

    Experimental observation of metal-insulator transition in epitaxial films of vanadium dioxide is reported. Hemispherical angle-resolved light scattering technique is applied for statistical analysis of the phase transition processes on mesoscale. It is shown that the thermal hysteresis strongly depends on spatial frequency of surface irregularities. The transformation of scattering indicatrix depends on sample morphology and is principally different for the thin films with higher internal elastic strain and for the thicker films where this strain is suppressed by introduction of misfit dislocations. The evolution of scattering indicatrix, fractal dimension, surface power spectral density, and surface autocorrelation function demonstrates distinctive behavior which elucidates the influence of structural defects and strain on thermal hysteresis, twinning of microcrystallites, and domain formation during the phase transition.

  5. Near-Field Nanoscopy of Metal-Insulator Phase Transitions Towards Synthesis of Novel Correlated Transition Metal Oxides and Their Interaction with Plasmon Resonances

    DTIC Science & Technology

    2016-01-05

    and to utilize the phase transtion states of VO2 to control and manipulate local plasmon resonaces. First, we imaged the charge dynamics in (MIT) of...transtion states of VO2 to control and manipulate local plasmon resonaces. First, we imaged the charge dynamics in (MIT) of both amorphous VO2 films and...Inorganic Chemistry, (01 2014): 0. doi: 10.1021/ic4026798 Ryan Clark, Sarah Jiaxin Zhu, Shou-Tian Zheng, Xianhui Bu , Shahab Derakhshan. CaYGaO4; a fully

  6. Moderate pressure synthesis of rare earth nickelate with metal-insulator transition using polymeric precursors

    SciTech Connect

    Napierala, C.; Lepoittevin, C.; Edely, M.; Sauques, L.; Giovanelli, F.; Laffez, P.; VanTedeloo, G.

    2010-07-15

    Rare earth nickelates exhibit a reversible metal-semiconductor phase transition that is, in the infrared range, responsible for a thermo-optical contrast. The state of the art synthesis of these compounds usually requires high oxygen pressure to stabilize Ni in the oxidation state 3{sup +}. In this work, using polymeric precursor associated with moderate pressure annealing, we show that it is possible to obtain fully oxidized rare earth nickelate with metal-insulator transition. Using thermogravimetric analysis, X-ray diffraction and transmission electronic microscopy we compare different samples synthesized at different oxygen pressures and demonstrate their structural similarity. Thermo-optical properties were measured, in the infrared range, using reflectance measurements and confirmed the metal-insulator transition at 60 {sup o}C in both samples.TEM observations lead to the conclusion that the structure commonly obtained at 175 bar is perfectly observed in the 20 bar sample without major structural defects. The two samples exhibit a thermochromic behavior and thermo-optical properties of the two samples are equivalent. - Graphical Abstract: Thermochromic behavior of Nd{sub 0.3}Sm{sub 0.7}NiO{sub 3} samples annealed under 20 and 175 bar at 278 and 373 K.

  7. Metal-insulator transition in disordered systems from the one-body density matrix

    NASA Astrophysics Data System (ADS)

    Olsen, Thomas; Resta, Raffaele; Souza, Ivo

    2017-01-01

    The insulating state of matter can be probed by means of a ground state geometrical marker, which is closely related to the modern theory of polarization (based on a Berry phase). In the present work we show that this marker can be applied to determine the metal-insulator transition in disordered systems. In particular, for noninteracting systems the geometrical marker can be obtained from the configurational average of the norm-squared one-body density matrix, which can be calculated within open as well as periodic boundary conditions. This is in sharp contrast to a classification based on the static conductivity, which is only sensible within periodic boundary conditions. We exemplify the method by considering a simple lattice model, known to have a metal-insulator transition as a function of the disorder strength, and demonstrate that the transition point can be obtained accurately from the one-body density matrix. The approach has a general ab initio formulation and could in principle be applied to realistic disordered materials by standard electronic structure methods.

  8. Mott metal-insulator transition in the doped Hubbard-Holstein model

    NASA Astrophysics Data System (ADS)

    Kurdestany, Jamshid Moradi; Satpathy, S.

    2017-08-01

    Motivated by the current interest in the understanding of the Mott insulators away from half-filling, observed in many perovskite oxides, we study the Mott metal-insulator transition in the doped Hubbard-Holstein model using the Hartree-Fock mean field theory. The Hubbard-Holstein model is the simplest model containing both the Coulomb and the electron-lattice interactions, which are important ingredients in the physics of the perovskite oxides. In contrast to the half-filled Hubbard model, which always results in a single phase (either metallic or insulating), our results show that away from half-filling, a mixed phase of metallic and insulating regions occurs. As the dopant concentration is increased, the metallic part progressively grows in volume, until it exceeds the percolation threshold, leading to percolative conduction. This happens above a critical dopant concentration δc, which, depending on the strength of the electron-lattice interaction, can be a significant fraction of unity. This means that the material could be insulating even for a substantial amount of doping, in contrast to the expectation that doped holes would destroy the insulating behavior of the half-filled Hubbard model. While effects of fluctuation beyond the mean field remain an open question, our results provide a starting point for the understanding of the density-driven metal-insulator transition observed in many complex oxides.

  9. Electrodynamics of the conducting polymer polyaniline on the insulating side of the metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Helgren, Erik; Penney, Keith; Diefenbach, Matt; Longnickel, Maryna; Wainwright, Mark; Walker, Eldridge; Al-Azzawi, Sarah; Erhahon, Hendrix; Singley, Jason

    2017-03-01

    Conducting polymer samples of polyaniline (PANI) exhibit a dramatic change in their conductivity as a function of protonation level, analogous with the changes in the transport properties of semiconductors upon doping. In this paper, PANI samples were prepared by protonating with varying concentrations of hydrochloric acid. The complex terahertz frequency-dependent conductivity and the dc conductivity of these samples were measured and analyzed in the framework of the disorder-driven, metal-insulator quantum phase transition. The samples were determined to all fall in the insulating phase of this phase transition. The frequency dependence of both the real and imaginary terahertz conductivity are found to be consistent with theories that include electronic correlation effects.

  10. Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition

    SciTech Connect

    Menges, F.; Spieser, M.; Riel, H.; Gotsmann, B.; Dittberner, M.; Novotny, L.; Passarello, D.; Parkin, S. S. P.

    2016-04-25

    The thermal radiative near field transport between vanadium dioxide and silicon oxide at submicron distances is expected to exhibit a strong dependence on the state of vanadium dioxide which undergoes a metal-insulator transition near room temperature. We report the measurement of near field thermal transport between a heated silicon oxide micro-sphere and a vanadium dioxide thin film on a titanium oxide (rutile) substrate. The temperatures of the 15 nm vanadium dioxide thin film varied to be below and above the metal-insulator-transition, and the sphere temperatures were varied in a range between 100 and 200 °C. The measurements were performed using a vacuum-based scanning thermal microscope with a cantilevered resistive thermal sensor. We observe a thermal conductivity per unit area between the sphere and the film with a distance dependence following a power law trend and a conductance contrast larger than 2 for the two different phase states of the film.

  11. Metal-insulator transitions of bulk and domain-wall states in pyrochlore iridates

    NASA Astrophysics Data System (ADS)

    Ueda, Kentaro

    A family of pyrochlore iridates R2Ir2O7 offers an ideal platform to explore intriguing phases such as topological Mott insulator and Weyl semimetal. Here we report transport and spectroscopic studies on the metal-insulator transition (MIT) induced by the modulations of effective electron correlation and magnetic structures, which is finely tuned by external pressure, chemical substitutions (R = Nd1-x Prx and SmyNd1-y) , and magnetic field. A reentrant insulator-metal-insulator transition is observed near the paramagnetic insulator-metal phase boundary reminiscent of a first-order Mott transition for R = SmyNd1-y compounds (y~0.8). The metallic states on the magnetic domain walls (DWs), which are observed for R = Nd in real space as well as in transport properties, is simultaneously turned into the insulating one. These findings imply that the DW electronic state is intimately linked to the bulk states. For the mixed R = Nd1-x Prx compounds, the divergent behavior of resistivity with antiferromagnetic order is significantly suppressed by applying a magnetic field along [001] direction. It is attributed to the phase transition from the antiferromagnetic insulating state to the novel Weyl (semi-)metal state accompanied by the change of magnetic structure. The present study combined with experiment and theory suggests that there are abundant exotic phases with physical parameters such as electron correlation and Ir-5 d magnetic order pattern. Work performed in collaboration with J. Fujioka, B.-J. Yang, C. Terakura, N. Nagaosa, Y. Tokura (University of Tokyo, RIKEN CEMS), J. Shiogai, A. Tsukazaki, S. Nakamura, S. Awaji (Tohoku University). 1This work was supported by JSPS FIRST Program and Grant-in-Aid for Scientific Research (Grants No. 80609488 and No. 24224009).

  12. Suppression of the weak localization near the metal-insulator transition in two dimensions

    NASA Astrophysics Data System (ADS)

    Rahimi, Maryam; Anissimova, S.; Sakr, M. R.; Kravchenko, S. V.; Klapwijk, T. M.

    2003-03-01

    We have studied the suppression of weak localization by perpendicular magnetic field in low-disordered two-dimensional electron systems in silicon for a range of electron densities. We show that the negative corrections to the resistance, found in the metallic phase, disappear in the vicinity of the metal-insulator transition. Our data suggest that localization is fully suppressed near and at the transition even in zero field, confirming similar results in ultra-clean p-GaAs/AlGaAs heterostructures [1] and verifying their universality. [1] A. P. Mills, A. P. Ramirez, X. P. A. Gao, L. N. Pfeiffer, K. W. West, and S. H. Simon, preprint cond-mat/0101020.

  13. Photocurrent Switching of Monolayer MoS2 Using a Metal-Insulator Transition.

    PubMed

    Lee, Jin Hee; Gul, Hamza Zad; Kim, Hyun; Moon, Byoung Hee; Adhikari, Subash; Kim, Jung Ho; Choi, Homin; Lee, Young Hee; Lim, Seong Chu

    2017-02-08

    We achieve switching on/off the photocurrent of monolayer molybdenum disulfide (MoS2) by controlling the metal-insulator transition (MIT). N-type semiconducting MoS2 under a large negative gate bias generates a photocurrent attributed to the increase of excess carriers in the conduction band by optical excitation. However, under a large positive gate bias, a phase shift from semiconducting to metallic MoS2 is caused, and the photocurrent by excess carriers in the conduction band induced by the laser disappears due to enhanced electron-electron scattering. Thus, no photocurrent is detected in metallic MoS2. Our results indicate that the photocurrent of MoS2 can be switched on/off by appropriately controlling the MIT transition by means of gate bias.

  14. Stable metal-insulator transition in epitaxial SmNiO{sub 3} thin films

    SciTech Connect

    Ha, Sieu D.; Otaki, Miho; Jaramillo, R.; Podpirka, Adrian; Ramanathan, Shriram

    2012-06-15

    Samarium nickelate (SmNiO{sub 3}) is a correlated oxide that exhibits a metal-insulator transition (MIT) above room temperature and is of interest for advanced electronics and optoelectronics. However, studies on SmNiO{sub 3} thin films have been limited to date, in part due to well-known difficulties in stabilizing the Ni{sup 3+} valence state during growth, which are manifested in non-reproducible electrical characteristics. In this work, we show that stable epitaxial SmNiO{sub 3} thin films can be grown by rf magnetron sputtering without extreme post-deposition annealing conditions using relatively high growth pressure (>200 mTorr). At low growth pressure, SmNiO{sub 3} is insulating and undergoes an irreversible MIT at {approx}430 K. As pressure is increased, films become metallic across a large temperature range from 100 to 420 K. At high pressure, films are insulating again but with a reversible and stable MIT at {approx}400 K. Phase transition properties can be continuously tuned by control of the sputtering pressure. - Graphical Abstract: X-ray diffraction (left) and resistivity-temperature characteristics (right) of sputtered SmNiO{sub 3} thin films as a function of sputtering pressure. As sputtering pressure increases, the out-of-plane lattice constant of SmNiO{sub 3} decreases, consistent with enhanced oxygen concentration. Concordantly, the electrical properties are strongly modified, and a reversible metal-insulator phase transition is observed at {approx}400 K in the film grown at high pressure. Highlights: Black-Right-Pointing-Pointer Stable SmNiO{sub 3} films grown by rf sputtering without extreme annealing conditions. Black-Right-Pointing-Pointer High sputtering pressures needed to fully stabilize SmNiO{sub 3}. Black-Right-Pointing-Pointer Reversible metal-insulator transition observed at {approx}400 K, similar to bulk. Black-Right-Pointing-Pointer Electrical properties strongly modifiable by varying sputtering pressure.

  15. Local Peltier-effect-induced reversible metal-insulator transition in VO2 nanowires

    NASA Astrophysics Data System (ADS)

    Takami, Hidefumi; Kanki, Teruo; Tanaka, Hidekazu

    2016-06-01

    We report anomalous resistance leaps and drops in VO2 nanowires with operating current density and direction, showing reversible and nonvolatile switching. This event is associated with the metal-insulator phase transition (MIT) of local nanodomains with coexistence states of metallic and insulating phases induced by thermoelectric cooling and heating effects. Because the interface of metal and insulator domains has much different Peltier coefficient, it is possible that a significant Peltier effect would be a source of the local MIT. This operation can be realized by one-dimensional domain configuration in VO2 nanowires because one straight current path through the electronic domain-interface enables theoretical control of thermoelectric effects. This result will open a new method of reversible control of electronic states in correlated electron materials.

  16. Terahertz transport dynamics in the metal-insulator transition of V2O3 thin film

    NASA Astrophysics Data System (ADS)

    Luo, Y. Y.; Su, F. H.; Zhang, C.; Zhong, L.; Pan, S. S.; Xu, S. C.; Wang, H.; Dai, J. M.; Li, G. H.

    2017-03-01

    The dynamic behavior of thermally-induced metal-insulator transition of V2O3 thin film on Si substrate grown by reactive magnetron sputtering was investigated by the terahertz time-domain spectroscopy. It was found that the THz absorption and optical conductivity of the thin films are temperature-dependent, and the THz amplitude modulation can reach as high as 74.7%. The complex THz optical conductivity in the metallic state of the V2O3 thin films can be well-fitted by the Drude-Smith model, which offer the insight into the electron transport dynamic during the metal-insulator transition of the thin film.

  17. Magnetism variations and susceptibility hysteresis at the metal-insulator phase transition temperature of VO2 in a composite film containing vanadium and tungsten oxides

    NASA Astrophysics Data System (ADS)

    Akande, Amos A.; Rammutla, Koena E.; Moyo, Thomas; Osman, Nadir S. E.; Nkosi, Steven S.; Jafta, Charl J.; Mwakikunga, Bonex W.

    2015-02-01

    We report on the magnetic property of 0.67-WO3+0.33-VOx mixture film deposit on the corning glass substrate using the chemical sol-gel and atmospheric pressure chemical vapor deposition (APCVD) methods. The XRD and Raman spectroscopy confirm species of both materials, and the morphological studies with FIB-SEM and TEM reveal segregation of W and V atoms. XPS reveals that V4+ from VO2 forms only 11% of the film; V3+ in the form of V2O3 form 1% of the film, 21% is V5+ from V2O5 and 67% is given to W6+ from WO3. The analysis of the ESR data shows some sharp changes in the magnetism near the metal-to-insulator (MIT), which could be theoretically interpreted as the ordering or alignment of electron spins from net moment nature to parallel alignment of magnetic moment. The derivatives of magnetic susceptibility established the thermally induced magnetic property: two distinct transitions of 339 K for heating data and 338 K for cooling data for 151.2 mT field were obtained. Similar results were also obtained for 308.7 mT field, 336 K for heating data and 335 K for cooling data. VSM results confirm a paramagnetic phase with a small amount of magnetically ordered phase.

  18. Disorder and metal-insulator transitions in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Jiang, Hua; Chen, Chui-Zhen; Song, Juntao; Sun, Qing-Feng; Wang, Ziqiang; Xie, X. C.

    The Weyl semimetal (WSM) is a newly proposed quantum state of matter. It has Weyl nodes in bulk excitations and Fermi arcs surface states. We study the effects of disorder and localization in WSMs and find three novel phase transitions.(I) Two Weyl nodes near the Brillouin zone boundary can be annihilated pairwise by disorder scattering, resulting in the opening of a topologically nontrivial gap and a transition from a WSM to a three-dimensional (3D) quantum anomalous Hall state. (II) When the two Weyl nodes are well separated in momentum space, the emergent bulk extended states can give rise to a direct transition from a WSM to a 3D diffusive anomalous Hall metal. (III) Two Weyl nodes can emerge near the zone center when an insulating gap closes with increasing disorder, enabling a direct transition from a normal band insulator to a WSM. We determine the phase diagram by numerically computing the localization length and the Hall conductivity, and propose that the novel phase transitions can be realized on a photonic lattice.

  19. Disorder and Metal-Insulator Transitions in Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Chen, Chui-Zhen; Song, Juntao; Jiang, Hua; Sun, Qing-feng; Wang, Ziqiang; Xie, X. C.

    2015-12-01

    The Weyl semimetal (WSM) is a newly proposed quantum state of matter. It has Weyl nodes in bulk excitations and Fermi arc surface states. We study the effects of disorder and localization in WSMs and find three novel phase transitions. (i) Two Weyl nodes near the Brillouin zone boundary can be annihilated pairwise by disorder scattering, resulting in the opening of a topologically nontrivial gap and a transition from a WSM to a three-dimensional quantum anomalous Hall state. (ii) When the two Weyl nodes are well separated in momentum space, the emergent bulk extended states can give rise to a direct transition from a WSM to a 3D diffusive anomalous Hall metal. (iii) Two Weyl nodes can emerge near the zone center when an insulating gap closes with increasing disorder, enabling a direct transition from a normal band insulator to a WSM. We determine the phase diagram by numerically computing the localization length and the Hall conductivity, and propose that the novel phase transitions can be realized on a photonic lattice.

  20. Metal-insulator transition in nanocomposite VO{sub x} films formed by anodic electrodeposition

    SciTech Connect

    Tsui, Lok-kun; Lu, Jiwei; Zangari, Giovanni; Hildebrand, Helga; Schmuki, Patrik

    2013-11-11

    The ability to grow VO{sub 2} films by electrochemical methods would open a low-cost, easily scalable production route to a number of electronic devices. We have synthesized VO{sub x} films by anodic electrodeposition of V{sub 2}O{sub 5}, followed by partial reduction by annealing in Ar. The resulting films are heterogeneous, consisting of various metallic/oxide phases and including regions with VO{sub 2} stoichiometry. A gradual metal insulator transition with a nearly two order of magnitude change in film resistance is observed between room temperature and 140 °C. In addition, the films exhibit a temperature coefficient of resistance of ∼ −2.4%/ °C from 20 to 140 °C.

  1. Mechanism of the metal-insulator transition of hollandite vanadate K2V8O16

    NASA Astrophysics Data System (ADS)

    Toriyama, T.; Konishi, T.; Ohta, Y.

    2012-12-01

    We make the electronic structure calculations of hollandite vanadate K2V8O16 using the generalized gradient approximation (GGA) in the density functional theory, where the Hubbard-type repulsive interaction U is taken into account (GGA+U). We in particular calculate the electronic structure of the low-temperature phase of this material using the crystal structure reported by Komarek et al. We find that the electronic wave functions near the Fermi level are predominantly of the dxy character and form the quasi-one-dimensional energy bands. The energy bands are made of the single chains of the VO6 octahedra rather than the double chains. The effects of strong electron correlations play an essential role here. Based on these results, we discuss possible mechanisms of the observed metal-insulator transition of this material.

  2. Metal-insulator transition in nanocomposite VOx films formed by anodic electrodeposition

    NASA Astrophysics Data System (ADS)

    Tsui, Lok-kun; Hildebrand, Helga; Lu, Jiwei; Schmuki, Patrik; Zangari, Giovanni

    2013-11-01

    The ability to grow VO2 films by electrochemical methods would open a low-cost, easily scalable production route to a number of electronic devices. We have synthesized VOx films by anodic electrodeposition of V2O5, followed by partial reduction by annealing in Ar. The resulting films are heterogeneous, consisting of various metallic/oxide phases and including regions with VO2 stoichiometry. A gradual metal insulator transition with a nearly two order of magnitude change in film resistance is observed between room temperature and 140 °C. In addition, the films exhibit a temperature coefficient of resistance of ˜ -2.4%/ °C from 20 to 140 °C.

  3. Electrical conduction and metal-insulator transition of indium nanowires on Si(111)

    NASA Astrophysics Data System (ADS)

    Hatta, Shinichiro; Noma, Takashi; Okuyama, Hiroshi; Aruga, Tetsuya

    2017-05-01

    We have studied the metal-insulator (MI) transition of indium nanowires on the Si(111) surface by electrical conductivity measurements with a four-point probe. Upon cooling, the sheet conductivity of the high-temperature (4 ×1 ) phase, which is known to have metallic electron bands, exhibited a gradual decrease in quantitative agreement with the Mott's variable range hopping conduction. Upon further cooling, the conductivity exhibited a sharp drop at 120 K, indicating the transition into the insulating (8 ×2 ) phase. The conductivity upon heating from 65 K did not trace the curve during cooling but showed a thermal hysteresis with a width of 8 K. The observation of the hysteresis agrees with the previous electron diffraction experiments, showing that the MI transition is first order. It was further found that, instead of the superheating behavior usually observed in first-order transitions, the transition upon heating starts below Tc, while the supercooling is always observed. This indicates a specific heterogeneous nucleation process only during heating. It is suggested that this is due to the destabilization of the nanowires near the domain boundaries. This is corroborated by the significant decrease of the transition temperature observed on a substrate with a high step density.

  4. Voltage-induced Metal-Insulator Transitions in Perovskite Oxide Thin Films Doped with Strongly Correlelated Electrons

    NASA Astrophysics Data System (ADS)

    Wang, Yudi; Gil Kim, Soo; Chen, I.-Wei

    2007-03-01

    We have observed a reversible metal-insulator transition in perovskite oxide thin films that can be controlled by charge trapping pumped by a bipolar voltage bias. In the as-fabricated state, the thin film is metallic with a very low resistance comparable to that of the metallic bottom electrode, showing decreasing resistance with decreasing temperature. This metallic state switches to a high-resistance state after applying a voltage bias: such state is non-ohmic showing a negative temperature dependence of resistance. Switching at essentially the same voltage bias was observed down to 2K. The metal-insulator transition is attributed to charge trapping that disorders the energy of correlated electron states in the conduction band. By increasing the amount of charge trapped, which increases the disorder relative to the band width, increasingly more insulating states with a stronger temperature dependence of resistivity are accessed. This metal-insulator transition provides a platform to engineer new nonvolatile memory that does not require heat (as in phase transition) or dielectric breakdown (as in most other oxide resistance devices).

  5. Metal-insulator transition at lanthanum aluminate-strontium titanate interface induced by oxygen plasma treatment

    NASA Astrophysics Data System (ADS)

    Dai, Weitao; Cen, Cheng

    The formation of two-dimensional electron gas (2DEG) at lanthanum aluminate (LAO)-strontium titanate (STO) interface, as well as the 2DEG's unique characters in metal-insulator transition, have evoked widespread interest. Highly insulating interfaces are obtained for the structures with LAO thickness below 3 unit cell (uc) and abrupt transition from an insulating to conducting interface was observed for samples with thicker LAO layers. For 3uc LAO/STO samples, reversible nanoscale control of the metal-insulator transition was implemented by a conductive AFM writing. Our research furtherly discovered a very stable metal-insulator transition can be achieved by oxygen plasma (OP) treatment for samples with thicker LAO layers. AFM imaging and XPS measurement demonstrated the low energy OP treatment altered only the surface bonds, which confirmed the importance of surface properties in the heterostructures. Then microscale Hall bars were patterned at the interface and imaged by electrostatic force microscope. Their transport and magnetic properties were measured. This research will promote deeper understanding about the interfacial metal-insulator transition mechanism and open new device opportunities. This work is supported by the Department of Energy Grant No. DE-SC-0010399 and National Science Foundation Grant No. NSF-1454950.

  6. New aspects of the metal-insulator transition in vanadium dioxide nanobeams

    NASA Astrophysics Data System (ADS)

    Cobden, David

    2010-03-01

    The fundamental properties of the famous metal-insulator phase transition in vanadium dioxide are obscured in traditional samples by domain structure. In contrast, single-crystal nanobeams of the material can be prepared in such a way that the frustration is absent, and the stress is zero or almost uniform, even while the transition is taking place. Studying nanobeams using a combination of transport and optical methods has allowed us to obtain a number of new results, including the following. First, the uniform metallic phase can be dramatically supercooled. Second, the so-called M2 insulating phase shows a temperature-independent resistivity at the transition, implicating electron-electron interactions in the controlling mechanism. Third, the M1 and M2 insulating phases have the same thermal electronic gap. Fourth, we establish a new phase diagram of the material as a function of stress along the rutile c-axis which helps to explain a number of recent experiments and some anomalies in the older literature. Work done in collaboration with Jiang Wei, Jae Park, Vinny Roma, Andrew Jones, Sam Berweger, and Markus Raschke.

  7. Metal-insulator transition in random superconducting networks

    SciTech Connect

    Soukoulis, C.M.; Grest, G.S.; Li, Q.

    1988-12-01

    The nature of the eigenstates and the effects on the superconducting-to-normal phase boundary in a two-dimensional random superconducting network are examined by finite-size scaling transfer-matrix calculations within the mean-field Ginzburg-Landau theory of second-order phase transitions. Results for a site-diluted square lattice are presented and a rich structure in the mobility-edge trajectory is obtained. The critical exponent for the slope of the critical field on (p-p/sub c/) is calculated and compared with previous estimates.

  8. Effects of Thickness on the Metal-Insulator Transition in Free-Standing Vanadium Dioxide Nanocrystals.

    PubMed

    Fadlelmula, Mustafa M; Sürmeli, Engin C; Ramezani, Mehdi; Kasırga, T Serkan

    2017-03-08

    Controlling solid state phase transitions via external stimuli offers rich physics along with possibilities of unparalleled applications in electronics and optics. The well-known metal-insulator transition (MIT) in vanadium dioxide (VO2) is one instance of such phase transitions emerging from strong electronic correlations. Inducing the MIT using electric field has been investigated extensively for the applications in electrical and ultrafast optical switching. However, as the Thomas-Fermi screening length is very short, for considerable alteration in the material's properties with electric field induced MIT, crystals below 10 nm are needed. So far, the only way to achieve thin crystals of VO2 has been via epitaxial growth techniques. Yet, stress due to lattice mismatch as well as interdiffusion with the substrate complicate the studies. Here, we show that free-standing vapor-phase grown crystals of VO2 can be milled down to the desired thickness using argon ion-beam milling without compromising their electronic and structural properties. Among our results, we show that even below 4 nm thickness the MIT persists and the transition temperature is lowered in two-terminal devices as the crystal gets thinner. The findings in this Letter can be applied to similar strongly correlated materials to study quantum confinement effects.

  9. Experimental Observation of a Metal-insulator Transition in 2D at Zero Magnetic Field

    NASA Astrophysics Data System (ADS)

    Kravchenko, S. V.

    1996-03-01

    The scaling theory of Abrahams et al. ^1 has had considerable success in describing many features of metal-insulator transitions. Within this theory, which was developed for non-interacting electrons, no such transition is possible in two-dimensional electron systems (2DES) in the absence of a magnetic field. However, we show experimentally that an ultra-high-mobility 2DES on the surface of silicon does exhibit the signature of a true metal-insulator phase transition at zero magnetic field at a critical electron density n_c ~10^11 cm-2. The energy of electron-electron interactions, ignored in the scaling theory,^1 is the dominant parameter in this 2DES. The resistivity, ρ, is empirically found to scale near the critical point both with temperature T and electric field E so that it can be represented by the form ρ(T,n_s)=ρ(T/T_0(n_s)) as Earrow0 or ρ(E,n_s)=ρ(E/E_0(n_s)) as Tarrow0. At the transition, the resistivity is close to 3h/e^2. Both scaling parameters, T0 and E_0, show power law behavior at the critical point. This is characteristic of a true phase transition and strongly resembles, in particular, the superconductor-insulator transition in disordered thin films,^2 as well as the transition between quantum Hall liquid and insulator.^3 Many high-mobility samples from two different sources (Institute for Metrological Service, Russia, and Siemens AG, Germany) with different oxide thicknesses and gate materials have been studied and similar results were found. Work done in collaboration with J. E. Furneaux, Whitney Mason, V. M. Pudalov, and M. D'Iorio, supported by NSF. ^1 E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979). ^2 Y. Liu, K. A. McGreer, B. Nease, D. B. Haviland, G. Martinez, J. W. Halley, and A. M. Goldman, Phys. Rev. Lett. 67, 2068 (1991). ^3 T. Wang, K. P. Clark, G. F. Spencer, A. M. Mack, and W. P. Kirk, Phys. Rev. Lett. 72, 709 (1994).

  10. Metal-insulator transition in the dimerized organic conductor κ -(BEDT-TTF)2Hg (SCN )2Br

    NASA Astrophysics Data System (ADS)

    Ivek, Tomislav; Beyer, Rebecca; Badalov, Sabuhi; Čulo, Matija; Tomić, Silvia; Schlueter, John A.; Zhilyaeva, Elena I.; Lyubovskaya, Rimma N.; Dressel, Martin

    2017-08-01

    The organic charge-transfer salt κ -(BEDT-TTF)2Hg (SCN )2Br is a quasi-two-dimensional metal with a half-filled conduction band at ambient conditions. When cooled below T =80 K , it undergoes a pronounced transition to an insulating phase where the resistivity increases many orders of magnitude. In order to elucidate the nature of this metal-insulator transition, we have performed comprehensive transport, dielectric and optical investigations. The findings are compared with other dimerized κ -(BEDT-TTF) salts, in particular the Cl analog, where a charge-order transition takes place at TCO=30 K .

  11. Antiferromagnetic, metal-insulator, and superconducting phase transitions in underdoped cuprates: Slave-fermion t-J model in the hopping expansion

    SciTech Connect

    Shimizu, Akihiro; Aoki, Koji; Ichinose, Ikuo; Sakakibara, Kazuhiko; Matsui, Tetsuo

    2011-02-01

    We study a system of doped antiferromagnet in three dimensions at finite temperatures using the t-J model, a canonical model of strongly correlated electrons. We employ the slave-fermion representation of electrons, in which an electron is described as a composite of a charged spinless holon and a chargeless spinon. We introduce two kinds of U(1) gauge fields on links as auxiliary fields, one describing resonating valence bonds of antiferromagnetic nearest-neighbor spin pairs and the other for nearest-neighbor hopping amplitudes of holons and spinons in the ferromagnetic channel. To perform a numerical study of the system, we integrate out the fermionic holon field by using the hopping expansion in powers of the hopping amplitude, which is legitimate for the region in and near the insulating phase. The resultant effective model is described in terms of bosonic spinons, two U(1) gauge fields, and a collective field for hole pairs. We study this model by means of Monte Carlo simulations, calculating the specific heat, spin correlation functions, and instanton densities. We obtain a phase diagram in the hole concentration-temperature plane, which is in good agreement with that observed recently for clean and homogeneous underdoped samples.

  12. Electrocaloric effect of metal-insulator transition in VO{sub 2}

    SciTech Connect

    Matsunami, Daichi; Fujita, Asaya

    2015-01-26

    The electrocaloric effect was observed in association with an electric-field induced metal-insulator transition in VO{sub 2} using a calorimetric measurement under an applied voltage. For a VO{sub 2} plate with a 0.4 mm thickness located in the center of a capacitor-like structure, the metal-insulator transition was manipulated by applying a few volts. The occurrence of a transition in such a thick sample with relatively low voltage indicates that a surface charge accumulation mechanism is effective. The isothermal entropy change reached 94 J kg{sup −1} K{sup −1}, while the adiabatic temperature change was calculated as −3.8 K under a voltage change of 0–3 V. The large entropy change is attributed to correlation of the complex freedom among spin, charge, and lattice.

  13. Drastic change of the Casimir force at the metal-insulator transition

    SciTech Connect

    Galkina, E. G.; Ivanov, B. A.; Savel'ev, Sergey; Yampol'skii, V. A.; Nori, Franco

    2009-09-15

    The dependence of the Casimir force on material properties is important for both future applications and to gain further insight on its fundamental aspects. Here we apply the general Lifshitz theory of the Casimir force to low-conducting compounds, or poor metals. For distances in the micrometer range, the Casimir force for a large variety of such materials is described by universal equations containing a few parameters: the effective plasma frequency {omega}{sub p}, dissipation rate {gamma} of the free carriers, and electric permittivity {epsilon}{sub {infinity}} for {omega}{>=}{omega}{sub p} (in the infrared range). This theory of the Casimir force for poor metals can also describe inhomogeneous composite materials containing small regions with different conductivity. The Casimir force for systems involving samples made with compounds that have a metal-insulator transition shows a drastic change of the Casimir force within the transition region, where the metallic and dielectric phases coexist. Indeed, the Casimir force can increase by a factor of 2 near this transition.

  14. Change of universality class of metal-insulator transition due to magnetic ordering

    NASA Astrophysics Data System (ADS)

    de Oliveira, N. A.; Tovar Costa, M. V.; Troper, A.; Japiassú, Gloria M.; Continentino, M. A.

    1999-04-01

    Using a two-band model we report a theory to describe the metal-insulator (MI) transition as a function of an external applied magnetic field in Kondo insulators. To deal with electronic correlations we use a functional integral approach in the static approximation. We show the existence of a critical value of the Coulomb correlation Uc, such that for Utransition is continuous and occurs from a paramagnetic insulator to a paramagnetic metal. In this case this transition is in the universality class of density-driven transitions. For U>Uc, the transition is to a ferromagnetic metal and it is described by different critical exponents.

  15. GW study of the metal-insulator transition of bcc hydrogen

    SciTech Connect

    Li, Je-luen; Rignanese, G.-M.; Chang, Eric K.; Blase, Xavier; Louie, Steven G.

    2002-01-31

    We study the metal-insulator transition in a model Mott system, a bcc hydrogen solid, by performing ab initio quasiparticle band-structure calculations within the GW approximation for a wide range of lattice constants. The value of the critical electron density n-sub c is consistent with Mott's original criterion. For smaller lattice constants, our spin-polarized GW results agree well with previous variational quantum Monte Carlo calculations. For large lattice constants, the computed quasiparticle band gap corresponds to the difference between the ionization energy and electron affinity of an isolated hydrogen atom. Near the metal-insulator transition, we investigate the quality of the quasiparticle wave functions obtained from different starting approximations in density-functional theory. Finally, we gain new insight into the GW method and its applicability to spin-polarized systems, for which several refinements are introduced.

  16. Metal-insulator transition above room temperature in maximum colossal magnetoresistance manganite thin films

    NASA Astrophysics Data System (ADS)

    Chen, X. J.; Habermeier, H.-U.; Zhang, H.; Gu, G.; Varela, M.; Santamaria, J.; Almasan, C. C.

    2005-09-01

    It has been suggested that the maximum magnitude of colossal magnetoresistance occurs in mixed-valent manganites with a tolerance factor t=0.96 [Zhou, Archibald, and Goodenough, Nature (London) 381, 770 (1996)]. However, at t≈0.96 most manganites have relatively low values of the metal-insulator transition temperature TMI(˜60-150K) . Here, we report that a 50 Å La0.9Sr0.1MnO3 thin film with t=0.96 grown on a (100) SrTiO3 substrate has a metal-insulator transition above room temperature, which represents a doubling of TMI compared with its value in the bulk material. We show that this spectacular increase of TMI is a result of the epitaxially compressive strain-induced reduction of the Jahn-Teller distortion.

  17. Verwey Metal-Insulator Transition in Magnetite from the Slave-Boson Approach

    NASA Astrophysics Data System (ADS)

    Sherafati, Mohammad; Satpathy, Sashi; Pettey, Dix

    2013-03-01

    We study the Verwey metal-insulator transition in magnetite (Ref.1) by solving a three-band extended Hubbard Hamiltonian for spinless fermions using the slave-boson approach, which also includes coupling to the local phonon modes. This model is suggested from the earlier density-functional studies of magnetite.(Ref.2) We first solve the 1D Hubbard model for the spinless fermions with nearest-neighbor interaction by both Gutzwiller variational and slave-boson methods and show that these two approaches yield different results unlike in the case of the standard Hubbard model, thereby clarifying some of the discrepancies in the literature (Ref.3), then we extend the formalism to three-band Hamiltonian for magnetite. The results suggest a metal-insulator transition at a critical value for the intersite interaction.

  18. Critical metal-insulator transition and divergence in a two-particle irreducible vertex in disordered and interacting electron systems

    NASA Astrophysics Data System (ADS)

    Janiš, V.; Pokorný, V.

    2014-07-01

    We use the dynamical mean-field approximation to study singularities in the self-energy and a two-particle irreducible vertex induced by the metal-insulator transition of the disordered Falicov-Kimball model. We set general conditions for the existence of a critical metal-insulator transition caused by a divergence of the imaginary part of the self-energy. We calculate explicitly the critical behavior of the self-energy for the symmetric and asymmetric disorder distributions. We demonstrate that the metal-insulator transition is preceded by a pole in a two-particle irreducible vertex. We show that unlike the singularity in the self-energy the divergence in the irreducible vertex does not lead to nonanalyticities in measurable physical quantities. We reveal universal features of the critical metal-insulator transition that are transferable also to the Mott-Hubbard transition in the models of the local Fermi liquid.

  19. Magnetic field induced metal insulator transitions in p-SiGe

    NASA Astrophysics Data System (ADS)

    Coleridge, P. T.

    2003-09-01

    Low density modulation doped p-SiGe, where the holes lie in a strained SiGe quantum well, frequently exhibits anomalous insulating behaviour between filling factors ν=2 and 1. There is also anomalous metallic behavior with a metal-insulator transition between the two. It is shown that in these samples exchange effects are sufficiently large to induce the paramagnetic-ferromagnetic phase transition predicted by Giuliani and Quinn in 1985, also that the metallic and insulating behavior is associated with the coincidence of two Landau levels of opposite spin. A model calculation shows that while a ferromagnetic polarization may occur at integer filling factors screening suppresses it for non-integer filling factors. It is argued the Landau levels then stick-together and allow a spin-density instability to form. Because of the strong spin-orbit coupling in p-SiGe the transport properties of this state differ from those of other systems where a similar quantum Hall ferromagnet probably forms.

  20. Magnetic states, correlation effects and metal-insulator transition in FCC lattice

    NASA Astrophysics Data System (ADS)

    Timirgazin, M. A.; Igoshev, P. A.; Arzhnikov, A. K.; Irkhin, V. Yu

    2016-12-01

    The ground-state magnetic phase diagram (including collinear and spiral states) of the single-band Hubbard model for the face-centered cubic lattice and related metal-insulator transition (MIT) are investigated within the slave-boson approach by Kotliar and Ruckenstein. The correlation-induced electron spectrum narrowing and a comparison with a generalized Hartree-Fock approximation allow one to estimate the strength of correlation effects. This, as well as the MIT scenario, depends dramatically on the ratio of the next-nearest and nearest electron hopping integrals {{t}\\prime}/t . In contrast with metallic state, possessing substantial band narrowing, insulator one is only weakly correlated. The magnetic (Slater) scenario of MIT is found to be superior over the Mott one. Unlike simple and body-centered cubic lattices, MIT is the first order transition (discontinuous) for most {{t}\\prime}/t . The insulator state is type-II or type-III antiferromagnet, and the metallic state is spin-spiral, collinear antiferromagnet or paramagnet depending on {{t}\\prime}/t . The picture of magnetic ordering is compared with that in the standard localized-electron (Heisenberg) model.

  1. Magnetic states, correlation effects and metal-insulator transition in FCC lattice.

    PubMed

    Timirgazin, M A; Igoshev, P A; Arzhnikov, A K; Yu Irkhin, V

    2016-12-21

    The ground-state magnetic phase diagram (including collinear and spiral states) of the single-band Hubbard model for the face-centered cubic lattice and related metal-insulator transition (MIT) are investigated within the slave-boson approach by Kotliar and Ruckenstein. The correlation-induced electron spectrum narrowing and a comparison with a generalized Hartree-Fock approximation allow one to estimate the strength of correlation effects. This, as well as the MIT scenario, depends dramatically on the ratio of the next-nearest and nearest electron hopping integrals [Formula: see text]. In contrast with metallic state, possessing substantial band narrowing, insulator one is only weakly correlated. The magnetic (Slater) scenario of MIT is found to be superior over the Mott one. Unlike simple and body-centered cubic lattices, MIT is the first order transition (discontinuous) for most [Formula: see text]. The insulator state is type-II or type-III antiferromagnet, and the metallic state is spin-spiral, collinear antiferromagnet or paramagnet depending on [Formula: see text]. The picture of magnetic ordering is compared with that in the standard localized-electron (Heisenberg) model.

  2. First-order metal-insulator transition and infrared identification of shape-controlled magnetite nanocrystals

    NASA Astrophysics Data System (ADS)

    Zheng, Lei; Su, Wei; Qi, Zeming; Xu, Yang; Zhou, Min; Xie, Yi

    2011-12-01

    The first-order metal-insulator transition (MIT) in magnetite has been known for a long time but is still controversial in its nature. In this study, well-defined magnetite nanocrystals (NCs) with controllable size, shape and terminated surface are first employed to elucidate this important issue, and new discoveries such as a highly suppressed phase transition temperature are identified by monitoring the variable-temperature electric resistance and infrared spectroscopy. Significantly, by carefully comparing the infrared vibrational bands of the as-prepared magnetite NCs with octahedral and cubic shapes, respectively, we found that these two forms of magnetite NCs exhibited different transmittance changes and frequency shifts of the infrared characteristics, presumably due to the differences in the lattice distortions on the corresponding {001} and {111} terminal surfaces. This result produced evidence in support of the charge ordering of Fe atoms along the low dimensionality at octahedral B sites undergoing the MIT. Taken together, infrared identification was proposed to be an available characterization strategy for MIT, which can reflect more information on the elusive lattice distortion of crystallographic structure or exposed surfaces.

  3. Absence of a magnetic field driven metal-insulator transition in WTe{sub 2}.

    SciTech Connect

    Wang, Y. L.; Thoutam, L. R.; Xiao, Z. L.; Hu, J.; Das, S.; Mao, Z. Q.; Wei, J.; Divan, R.; Luican-Mayer, A.; Crabtree, G. W.; Kwok, W. K.

    2015-11-03

    A hallmark of materials with extremely large magnetoresistance (XMR) is the transformative ‘turn-on’ temperature behavior: when the applied magnetic field H is above certain value, the resistivity versus temperature ρ(T) curve shows a minimum at a field dependent temperature T*, which was seemingly interpreted as a magnetic field driven metal-insulator transition. Here, we demonstrate that ρ(T) curves with ubiquitous turn-on behavior in the newly discovered XMR material WTe2 can be scaled as MR ~ (H/ρ0)m with m ≈ 2 and ρ0 being the resistivity at zero-field. We obtained experimentally and also derived from the observed scaling the magnetic field dependence of the turn-on temperature T* ~ (H-Hc)ν with ν ≈ 1/2, which was earlier used as evidence for a predicted metal-insulator transition. The scaling also leads to a simple quantitative expression for the resistivity ρ* ≈ 2ρ0 at the onset of the XMR behavior, which fits the data remarkably well. These results evidently exclude the possible existence of a magnetic field driven metal-insulator transition in WTe2. This work resolves the origin of the turn-on behavior observed in several XMR materials and also provides a general route for a quantitative understanding of the temperature dependence of MR in both XMR and non-XMR materials.

  4. Heteroepitaxial VO2 thin films on GaN: Structure and metal-insulator transition characteristics

    NASA Astrophysics Data System (ADS)

    Zhou, You; Ramanathan, Shriram

    2012-10-01

    Monolithic integration of correlated oxide and nitride semiconductors may open up new opportunities in solid-state electronics and opto-electronics that combine desirable functional properties of both classes of materials. Here, we report on epitaxial growth and phase transition-related electrical properties of vanadium dioxide (VO2) thin films on GaN epitaxial layers on c-sapphire. The epitaxial relation is determined to be (010)vo2‖(0001)GaN‖(0001)A12O3 and [100]vo2‖[1¯21¯0]A12O3 from x-ray diffraction. VO2 heteroepitaxial growth and lattice mismatch are analyzed by comparing the GaN basal plane (0001) with the almost close packed corrugated oxygen plane in vanadium dioxide and an experimental stereographic projection describing the orientation relationship is established. X-ray photoelectron spectroscopy suggests a slightly oxygen rich composition at the surface, while Raman scattering measurements suggests that the quality of GaN layer is not significantly degraded by the high-temperature deposition of VO2. Electrical characterization of VO2 films on GaN indicates that the resistance changes by about four orders of magnitude upon heating, similar to epitaxial VO2 films grown directly on c-sapphire. It is shown that the metal-insulator transition could also be voltage-triggered at room temperature and the transition threshold voltage scaling variation with temperature is analyzed in the framework of a current-driven Joule heating model. The ability to synthesize high quality correlated oxide films on GaN with sharp phase transition could enable new directions in semiconductor-photonic integrated devices.

  5. Correlating the Energetics and Atomic Motions of the Metal-Insulator Transition of M1 Vanadium Dioxide

    PubMed Central

    Booth, Jamie M.; Drumm, Daniel W.; Casey, Phil S.; Smith, Jackson S.; Seeber, Aaron J.; Bhargava, Suresh K.; Russo, Salvy P.

    2016-01-01

    Materials that undergo reversible metal-insulator transitions are obvious candidates for new generations of devices. For such potential to be realised, the underlying microscopic mechanisms of such transitions must be fully determined. In this work we probe the correlation between the energy landscape and electronic structure of the metal-insulator transition of vanadium dioxide and the atomic motions occurring using first principles calculations and high resolution X-ray diffraction. Calculations find an energy barrier between the high and low temperature phases corresponding to contraction followed by expansion of the distances between vanadium atoms on neighbouring sub-lattices. X-ray diffraction reveals anisotropic strain broadening in the low temperature structure’s crystal planes, however only for those with spacings affected by this compression/expansion. GW calculations reveal that traversing this barrier destabilises the bonding/anti-bonding splitting of the low temperature phase. This precise atomic description of the origin of the energy barrier separating the two structures will facilitate more precise control over the transition characteristics for new applications and devices. PMID:27211303

  6. Oxygen Vacancy Induced Room-Temperature Metal-Insulator Transition in Nickelate Films and Its Potential Application in Photovoltaics.

    PubMed

    Wang, Le; Dash, Sibashisa; Chang, Lei; You, Lu; Feng, Yaqing; He, Xu; Jin, Kui-juan; Zhou, Yang; Ong, Hock Guan; Ren, Peng; Wang, Shiwei; Chen, Lang; Wang, Junling

    2016-04-20

    Oxygen vacancy is intrinsically coupled with magnetic, electronic, and transport properties of transition-metal oxide materials and directly determines their multifunctionality. Here, we demonstrate reversible control of oxygen content by postannealing at temperature lower than 300 °C and realize the reversible metal-insulator transition in epitaxial NdNiO₃ films. Importantly, over 6 orders of magnitude in the resistance modulation and a large change in optical bandgap are demonstrated at room temperature without destroying the parent framework and changing the p-type conductive mechanism. Further study revealed that oxygen vacancies stabilized the insulating phase at room temperature is universal for perovskite nickelate films. Acting as electron donors, oxygen vacancies not only stabilize the insulating phase at room temperature, but also induce a large magnetization of ∼50 emu/cm³ due to the formation of strongly correlated Ni²⁺ t(2g)⁶e(g)² states. The bandgap opening is an order of magnitude larger than that of the thermally driven metal-insulator transition and continuously tunable. Potential application of the newly found insulating phase in photovoltaics has been demonstrated in the nickelate-based heterojunctions. Our discovery opens up new possibilities for strongly correlated perovskite nickelates.

  7. Nano-optical investigations of the metal-insulator phase behavior of individual VO(2) microcrystals.

    PubMed

    Jones, Andrew C; Berweger, Samuel; Wei, Jiang; Cobden, David; Raschke, Markus B

    2010-05-12

    Despite the relatively simple stoichiometry and structure of VO(2), many questions regarding the nature of its famous metal-insulator transition (MIT) remain unresolved. This is in part due to the prevailing use of polycrystalline film samples and the limited spatial resolution in most studies, hindering access to and control of the complex phase behavior and its inevitable spatial inhomogeneities. Here, we investigate the MIT and associated nanodomain formation in individual VO(2) microcrystals subject to substrate stress. We employ symmetry-selective polarization Raman spectroscopy to identify crystals that are strain-stabilized in either the monoclinic M1 or M2 insulating phase at room-temperature. Raman measurements are further used to characterize the phase dependence on temperature, identifying the appearance of the M2 phase during the MIT. The associated formation and spatial evolution of rutile (R) metallic domains is studied with nanometer-scale spatial resolution using infrared scattering-scanning near-field optical microscopy (s-SNOM). We deduce that even for small crystals of VO(2), the MIT is influenced by the competition between the R, M1, and M2 crystal phases with their different lattice constants subjected to the external substrate-induced stress. The results have important implications for the interpretation of the investigations of conventional polycrystalline thin films where the mutual interaction of constituent crystallites may affect the nature of the MIT in VO(2).

  8. Interaction-Driven Metal-Insulator Transition in Strained Graphene.

    PubMed

    Tang, Ho-Kin; Laksono, E; Rodrigues, J N B; Sengupta, P; Assaad, F F; Adam, S

    2015-10-30

    The question of whether electron-electron interactions can drive a metal to insulator transition in graphene under realistic experimental conditions is addressed. Using three representative methods to calculate the effective long-range Coulomb interaction between π electrons in graphene and solving for the ground state using quantum Monte Carlo methods, we argue that, without strain, graphene remains metallic and changing the substrate from SiO_{2} to suspended samples hardly makes any difference. In contrast, applying a rather large-but experimentally realistic-uniform and isotropic strain of about 15% seems to be a promising route to making graphene an antiferromagnetic Mott insulator.

  9. Charge and orbital orderings associated with metal-insulator transition in V6O13

    NASA Astrophysics Data System (ADS)

    Toriyama, T.; Nakayama, T.; Konishi, T.; Ohta, Y.

    2014-08-01

    Density-functional-theory-based electronic-structure calculations are carried out to elucidate the mechanism of the metal-insulator transition (MIT) of a Wadsley-phase vanadium oxide V6O13. We show that, at the MIT, the orbitals occupied by electrons are reconstructed in the single trellis layers of the V(1) ions, which occurs simultaneously with the transfer of electrons from the V(2) to V(3) ions in the double trellis layers, leaving the V(2) ions nonmagnetic. We discuss that these changes lead to the formation of spin-singlet state associated with the ordering of the dyz and dxz orbitals in the V(1) zigzag chain, together with the formation of the Mott-insulator state with frustrated spin degrees of freedom in the zigzag ladder of the dxy orbitals of the V(3) ions; possible antiferromagnetic ordering patterns are predicted for the latter state. Thus, the spin-singlet and antiferromagnetic states coexist in spatially separated regions at lowest temperatures. The band Jahn-Teller-type instability hidden in the single trellis layer, which is the orbital ordering instability in the strong correlation limit, is suggested to cause the MIT.

  10. Control of plasmonic nanoantennas by reversible metal-insulator transition

    SciTech Connect

    Abate, Yohannes; Marvel, Robert E.; Ziegler, Jed I.; Gamage, Sampath; Javani, Mohammad H.; Stockman, Mark I.; Haglund, Richard F.

    2015-09-11

    We demonstrate dynamic reversible switching of VO2 insulator-to-metal transition (IMT) locally on the scale of 15 nm or less and control of nanoantennas, observed for the first time in the near-field. Using polarization-selective near-field imaging techniques, we simultaneously monitor the IMT in VO2 and the change of plasmons on gold infrared nanoantennas. Structured nanodomains of the metallic VO2 locally and reversibly transform infrared plasmonic dipole nanoantennas to monopole nanoantennas. Fundamentally, the IMT in VO2 can be triggered on femtosecond timescale to allow ultrafast nanoscale control of optical phenomena. In conclusion, these unique features open up promising novel applications in active nanophotonics.

  11. Control of plasmonic nanoantennas by reversible metal-insulator transition

    DOE PAGES

    Abate, Yohannes; Marvel, Robert E.; Ziegler, Jed I.; ...

    2015-09-11

    We demonstrate dynamic reversible switching of VO2 insulator-to-metal transition (IMT) locally on the scale of 15 nm or less and control of nanoantennas, observed for the first time in the near-field. Using polarization-selective near-field imaging techniques, we simultaneously monitor the IMT in VO2 and the change of plasmons on gold infrared nanoantennas. Structured nanodomains of the metallic VO2 locally and reversibly transform infrared plasmonic dipole nanoantennas to monopole nanoantennas. Fundamentally, the IMT in VO2 can be triggered on femtosecond timescale to allow ultrafast nanoscale control of optical phenomena. In conclusion, these unique features open up promising novel applications in activemore » nanophotonics.« less

  12. Control of plasmonic nanoantennas by reversible metal-insulator transition

    PubMed Central

    Abate, Yohannes; Marvel, Robert E.; Ziegler, Jed I.; Gamage, Sampath; Javani, Mohammad H.; Stockman, Mark I.; Haglund, Richard F.

    2015-01-01

    We demonstrate dynamic reversible switching of VO2 insulator-to-metal transition (IMT) locally on the scale of 15 nm or less and control of nanoantennas, observed for the first time in the near-field. Using polarization-selective near-field imaging techniques, we simultaneously monitor the IMT in VO2 and the change of plasmons on gold infrared nanoantennas. Structured nanodomains of the metallic VO2 locally and reversibly transform infrared plasmonic dipole nanoantennas to monopole nanoantennas. Fundamentally, the IMT in VO2 can be triggered on femtosecond timescale to allow ultrafast nanoscale control of optical phenomena. These unique features open up promising novel applications in active nanophotonics. PMID:26358623

  13. Metal-insulator transition in the Hollandite vanadate K2V8O16 investigated by 51V NMR measurements

    NASA Astrophysics Data System (ADS)

    Okai, Katsunori; Itoh, Masayuki; Shimizu, Yasuhiro; Isobe, Masahiko; Yamaura, Jun-Ichi; Ueda, Yutaka

    2009-03-01

    51V NMR measurements have been made on powdered samples to investigate the metal-insulator (MI) transition and the local magnetic properties of the Hollandite vanadate K2V8O16 which undergoes the MI transition at TMI~170 K. An asymmetric 51V NMR spectrum in the metallic phase has the T-dependent negative Knight shift K. The two NMR spectra appears around TMI, showing the coexistence of the metallic and insulating phases in consistent with the two-step first-order transition. The temperature dependence of K and the 51V nuclear spin-lattice relaxation rate indicates the presence of the ferromagnetic spin fluctuations in the metallic phase. A 51V NMR spectrum observed below TMI has the temperature-independent K~0.35%, showing the presence of the nonmagnetic ground state.

  14. Temperature dependence of the first-order metal-insulator transition in VO2 and programmable critical temperature sensor

    NASA Astrophysics Data System (ADS)

    Kim, Bong-Jun; Lee, Yong Wook; Chae, Byung-Gyu; Yun, Sun Jin; Oh, Soo-Young; Kim, Hyun-Tak; Lim, Yong-Sik

    2007-01-01

    For VO2-based two-terminal devices, the first-order metal-insulator transition (MIT, jump) is controlled by an applied voltage and temperature, and an intermediate monoclinic metal phase between the MIT and the structural phase transition (SPT) is observed. The conductivity of this phase linearly increases with increasing temperature up to TSPT≈68°C and becomes maximum at TSPT. Optical microscopic observation reveals the absence of a local current path in the metal phase. The current uniformly flows throughout the surface of the VO2 film when the MIT occurs. This device can be used as a programmable critical temperature sensor where the applied voltage is controlled by a program.

  15. Electron-Phonon Interactions, Metal-Insulator Transitions, and Holographic Massive Gravity

    NASA Astrophysics Data System (ADS)

    Baggioli, Matteo; Pujolàs, Oriol

    2015-06-01

    Massive gravity is holographically dual to "realistic" materials with momentum relaxation. The dual graviton potential encodes the phonon dynamics, and it allows for a much broader diversity than considered so far. We construct a simple family of isotropic and homogeneous materials that exhibit an interaction-driven metal-insulator transition. The transition relates to the formation of polarons—phonon-electron quasibound states that dominate the conductivities, shifting the spectral weight above a mass gap. We characterize the polaron gap, width, and dispersion.

  16. Critical metal-insulator transition due to nuclear quantum effects in Mn-doped GaAs

    NASA Astrophysics Data System (ADS)

    Bae, Soungmin; Raebiger, Hannes

    2016-12-01

    Mn-doped GaAs exhibits a critical metal-insulator transition at the Mn concentration of xcrit≈1 % . Our self-interaction corrected first principles calculation shows that for Mn concentrations x ≳1 % , hole carriers are delocalized in host valence states, and for x ≲1 % , holes tend to be trapped in impurity-band-like states. We further show that for a finite range of concentrations around xcrit the system exhibits a nonadiabatic superposition of these states, i.e., a mixing of electronic and nuclear wave functions. This means that the phase transition is continuous, and its criticality is caused by quantum effects of the atomic nuclei. In other words, the apparently electronic phase transition from the insulator to metal state cannot be described by electronic effects alone.

  17. Dynamically tracking the strain across the metal-insulator transition in VO2 measured using electromechanical resonators.

    PubMed

    Parikh, Pritesh; Chakraborty, Chitraleema; Abhilash, T S; Sengupta, Shamashis; Cheng, Chun; Wu, Junqiao; Deshmukh, Mandar M

    2013-10-09

    We study the strain state of doubly clamped VO2 nanobeam devices by dynamically probing resonant frequency of the nanoscale electromechanical device across the metal-insulator transition. Simultaneous resistance and resonance measurements indicate M1-M2 phase transition in the insulating state with a drop in resonant frequency concomitant with an increase in resistance. The resonant frequency increases by ~7 MHz with the growth of metallic domain (M2-R transition) due to the development of tensile strain in the nanobeam. Our approach to dynamically track strain coupled with simultaneous resistance and resonance measurements using electromechanical resonators enables the study of lattice-involved interactions more precisely than static strain measurements. This technique can be extended to other phase change systems important for device applications.

  18. Voltage- and current-activated metal-insulator transition in VO2-based electrical switches: a lifetime operation analysis

    NASA Astrophysics Data System (ADS)

    Crunteanu, Aurelian; Givernaud, Julien; Leroy, Jonathan; Mardivirin, David; Champeaux, Corinne; Orlianges, Jean-Christophe; Catherinot, Alain; Blondy, Pierre

    2010-12-01

    Vanadium dioxide is an intensively studied material that undergoes a temperature-induced metal-insulator phase transition accompanied by a large change in electrical resistivity. Electrical switches based on this material show promising properties in terms of speed and broadband operation. The exploration of the failure behavior and reliability of such devices is very important in view of their integration in practical electronic circuits. We performed systematic lifetime investigations of two-terminal switches based on the electrical activation of the metal-insulator transition in VO2 thin films. The devices were integrated in coplanar microwave waveguides (CPWs) in series configuration. We detected the evolution of a 10 GHz microwave signal transmitted through the CPW, modulated by the activation of the VO2 switches in both voltage- and current-controlled modes. We demonstrated enhanced lifetime operation of current-controlled VO2-based switching (more than 260 million cycles without failure) compared with the voltage-activated mode (breakdown at around 16 million activation cycles). The evolution of the electrical self-oscillations of a VO2-based switch induced in the current-operated mode is a subtle indicator of the material properties modification and can be used to monitor its behavior under various external stresses in sensor applications.

  19. The electrochemical impact on electrostatic modulation of the metal-insulator transition in nickelates

    SciTech Connect

    Bubel, Simon; Glaudell, Anne M.; Mates, Thomas E.; Chabinyc, Michael L.; Hauser, Adam J.; Stemmer, Susanne

    2015-03-23

    For physical studies of correlated electron systems and for realizing novel device concepts, electrostatic modulation of metal-insulator transitions (MITs) is desired. The inherently high charge densities needed to modulate MITs make this difficult to achieve. The high capacitance of ionic liquids are attractive but, voltages are needed that can be in excess of the electrochemical stability of the system. Here, we show temperature/resistivity data that suggest electrostatic modulation of the MIT temperature of NdNiO{sub 3} in a wide regime. However, additional voltammetric and x-ray photoelectron spectroscopy measurements demonstrate the electrochemical impact of the electrostatic doping approach with ionic liquids.

  20. Controlling the metal insulator transition using the ferroelectric field effect in rare earth nickelates

    NASA Astrophysics Data System (ADS)

    Marshall, Matthew; Disa, Ankit; Kumah, Divine; Chen, Hanghui; Ismail-Beigi, Sohrab; Walker, Fred; Ahn, Charles

    2013-03-01

    A ferroelectric field effect transistor (FE-FET) modulates conductivity in a non-volatile manner by electrostatically accumulating and depleting charge carriers at the interface between a conducting channel and ferroelectric gate. The rare earth nickelate LaNiO3 is metallic in bulk, while other rare earth nickelates, such as NdNiO3, exhibit metal-insulator transitions and anti-ferromagnetic behavior in the bulk. Here, we show that by coupling the ferroelectric polarization of Pb0.8Zr0.2TiO3 (PZT) to the carriers in a nickelate, we can dynamically induce a metal- insulator transition in ultra-thin films of LaNiO3, and induce large changes in the MIT transition temperature in NdNiO3. Density functional theory is used to determine changes in the physical and electronic Ni-O-Ni bond angle of the nickelate at the interface between PZT and LaNiO3. The effect of the ferroelectric polarization is to decrease the Ni-O-Ni bond angle from 180 degrees and increase the carrier effective mass. Related to this change in electronic structure, we observe a change in resistivity of approximately 80% at room temperature for an ultra-thin 3 unit cell thick film of LaNiO3. Work supported by FENA and the NSF under MRSEC DMR 1119826.

  1. Ultrathin and Atomically Flat Transition-Metal Oxide: Promising Building Blocks for Metal-Insulator Electronics.

    PubMed

    Cui, Qingsong; Sakhdari, Maryam; Chamlagain, Bhim; Chuang, Hsun-Jen; Liu, Yi; Cheng, Mark Ming-Cheng; Zhou, Zhixian; Chen, Pai-Yen

    2016-12-21

    We present a new and viable template-assisted thermal synthesis method for preparing amorphous ultrathin transition-metal oxides (TMOs) such as TiO2 and Ta2O5, which are converted from crystalline two-dimensional (2D) transition-metal dichalcogenides (TMDs) down to a few atomic layers. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning transmission electron microscopy (STEM) were used to characterize the chemical composition and bonding, surface morphology, and atomic structure of these ultrathin amorphous materials to validate the effectiveness of our synthesis approach. Furthermore, we have fabricated metal-insulator-metal (MIM) diodes using the TiO2 and Ta2O5 as ultrathin insulating layers with low potential barrier heights. Our MIM diodes show a clear transition from direct tunneling to Fowler-Nordheim tunneling, which was not observed in previously reported MIM diodes with TiO2 or Ta2O5 as the insulating layer. We attribute the improved performance of our MIM diodes to the excellent flatness and low pinhole/defect densities in our TMO insulting layers converted from 2D TMDs, which enable the low-threshold and controllable electron tunneling transport. We envision that it is possible to use the ultrathin TMOs converted from 2D TMDs as the insulating layer of a wide variety of metal-insulator and field-effect electronic devices for various applications ranging from microwave mixing, parametric conversion, infrared photodetection, emissive energy harvesting, to ultrafast electronic switching.

  2. Metal-insulator transition and magnetic fluctuations in polycrystalline Ru1 -xRhxP investigated by 31P NMR

    NASA Astrophysics Data System (ADS)

    Li, Shang; Kobayashi, Yoshiaki; Itoh, Masayuki; Hirai, Daigorou; Takagi, Hidenori

    2017-04-01

    31P NMR measurements have been made on polycrystalline samples to study a metal-insulator (MI) transition and magnetic fluctuations in Ru1 -xRhxP which has metallic (M), pseudogap (PG), insulating (I), and superconducting (SC) phases. We find that RuP undergoes a crossover from the high-temperature (high-T ) M phase to the PG phase with the pseudo spin-gap behavior probed by the nuclear spin-lattice relaxation rate at TPG=330 K . The first-order MI transition is observed to take place from the PG phase to the low-T nonmagnetic I phase with the spin-gap energy of 1250 K at TMI=270 K . In the PG phase of Ru1 -xRhxP with 0 ≤x <0.45 , an analysis based on the modified Korringa relation, which is applicable to an itinerant paramagnet with weak electron correlation, shows that antiferromagnetic (AFM) fluctuations described in the random-phase approximation are enhanced in the low-T and low-x region. Around the PG-M phase boundary at xc˜0.45 , there is the SC phase whose normal state has negligible electron-electron interaction. We discuss the MI transition, the crossover from the M phase to the PG phase, and the magnetic properties of each phase based on the band structure.

  3. Metal-insulator transition in the one-dimensional organic conductor (TSM-TTP)(I 3) 5/3

    NASA Astrophysics Data System (ADS)

    Kawamoto, T.; Mori, T.; Misaki, Y.; Tanaka, K.; Mori, H.; Tanaka, S.

    1998-04-01

    (TSM-TTP)(I 3) 5/3 (TSM-TTP: 2,5-bis[4,5-bis(methylseleno)-1,3-dithiol-2-ylidene]-1,3,4,6-tetrathiapentalene) is a one-dimensional organic conductor which undergoes a metal-insulator transition at TMI≈20 K. High pressure resistivity, ESR, and static magnetic susceptibility measurements have been carried out to clarify the origin of the metal-insulator transition. The metal-insulator transition temperature is not completely suppressed even under a pressure of 11.8 kbar. The ESR line shape shows no anomaly and the magnetic susceptibility shows a slight increase below 70 K, and remains paramagnetic down to 1.75 K; no evidence of spin-Peierls or antiferromagnetic transition is obtained.

  4. Reconfigurable van der Waals Heterostructured Devices with Metal-Insulator Transition.

    PubMed

    Heo, Jinseong; Jeong, Heejeong; Cho, Yeonchoo; Lee, Jaeho; Lee, Kiyoung; Nam, Seunggeol; Lee, Eun-Kyu; Lee, Sangyeob; Lee, Hyangsook; Hwang, Sungwoo; Park, Seongjun

    2016-11-09

    Atomically thin two-dimensional (2D) materials range from semimetallic graphene to insulating hexagonal boron nitride to semiconducting transition-metal dichalcogenides. Recently, metal-insulator-semiconductor field effect transistors built from these 2D elements were studied for flexible and transparent electronics. However, to induce ambipolar characteristics for alternative power-efficient circuitry, ion-gel gating is often employed for high capacitive coupling, limiting stable operation at ambient conditions. Here, we report reconfigurable MoTe2 optoelectronic transistors with all 2D components, where the device can be reconfigured by both drain and gate voltages. Eight different configurations for each fixed voltage are spatially resolved by scanning photocurrent microscopy. In addition, metal-insulator transitions are observed in both electron and hole carriers under 2 V due to strong Coulomb interaction in the system. Furthermore, the vertical tunneling photocurrent through multiple van der Waals layers between the gate and source contacts is measured. Our reconfigurable devices offer potential building blocks for system-on-a-chip optoelectronics.

  5. Visualizing the interfacial evolution from charge compensation to metallic screening across the manganite metal-insulator transition.

    PubMed

    Mundy, Julia A; Hikita, Yasuyuki; Hidaka, Takeaki; Yajima, Takeaki; Higuchi, Takuya; Hwang, Harold Y; Muller, David A; Kourkoutis, Lena F

    2014-03-17

    Electronic changes at polar interfaces between transition metal oxides offer the tantalizing possibility to stabilize novel ground states yet can also cause unintended reconstructions in devices. The nature of these interfacial reconstructions should be qualitatively different for metallic and insulating films as the electrostatic boundary conditions and compensation mechanisms are distinct. Here we directly quantify with atomic-resolution the charge distribution for manganite-titanate interfaces traversing the metal-insulator transition. By measuring the concentration and valence of the cations, we find an intrinsic interfacial electronic reconstruction in the insulating films. The total charge observed for the insulating manganite films quantitatively agrees with that needed to cancel the polar catastrophe. As the manganite becomes metallic with increased hole doping, the total charge build-up and its spatial range drop substantially. Direct quantification of the intrinsic charge transfer and spatial width should lay the framework for devices harnessing these unique electronic phases.

  6. Dynamically tracking the joule heating effect on the voltage induced metal-insulator transition in VO2 crystal film

    NASA Astrophysics Data System (ADS)

    Liao, G. M.; Chen, S.; Fan, L. L.; Chen, Y. L.; Wang, X. Q.; Ren, H.; Zhang, Z. M.; Zou, C. W.

    2016-04-01

    Insulator to metal phase transitions driven by external electric field are one of the hottest topics in correlated oxide study. While this electric triggered phenomena always mixes the electric field switching effect and joule thermal effect together, which are difficult to clarify the intrinsic mechanism. In this paper, we investigate the dynamical process of voltage-triggered metal-insulator transition (MIT) in a VO2 crystal film and observe the temperature dependence of the threshold voltages and switching delay times, which can be explained quite well based on a straightforward joule thermal model. By conducting the voltage controlled infrared transmittance measurement, the delayed infrared transmission change is also observed, further confirming the homogeneous switching process for a large-size film. All of these results show strong evidences that joule thermal effect plays a dominated role in electric-field-induced switching of VO2 crystal.

  7. Comprehensive studies of interfacial strain and oxygen vacancy on metal-insulator transition of VO2 film

    NASA Astrophysics Data System (ADS)

    Fan, L. L.; Chen, S.; Liao, G. M.; Chen, Y. L.; Ren, H.; Zou, C. W.

    2016-06-01

    As a typical strong correlation material, vanadium dioxide (VO2) has attracted wide interest due to its particular metal-insulator transition (MIT) property. However, the relatively high critical temperature (T c) of ~68 °C seriously hinders its practical applications. Thus modulating the phase transition process and decreasing the T c close to room temperature have been hot topics for VO2 study. In the current work, we conducted a multi-approach strategy to control the phase transition of VO2 films, including the interfacial tensile/compressive strain and oxygen vacancies. A synchrotron radiation reciprocal space mapping technique was used to directly record the interfacial strain evolution and variations of lattice parameters. The effects of interfacial strain and oxygen vacancies in the MIT process were systematically investigated based on band structure and d-orbital electron occupation. It was suggested that the MIT behavior can be modulated through the combined effects of the interfacial strain and oxygen vacancies, achieving the distinct phase transition close to room temperature. The current findings not only provide better understanding for strain engineering and oxygen vacancies controlling phase transition behavior, but also supply a combined way to control the phase transition of VO2 film, which is essential for VO2 film based device applications in the future.

  8. Diffusion Monte Carlo study of the metal-insulator transition in stretched graphene

    NASA Astrophysics Data System (ADS)

    Chen, Li; Wagner, Lucas K.

    At low energies and equilibrium geometries, graphene is well-described by a single-band Hubbard model, with U/t 1.4, which is well within the semimetal regime. One would expect that under tensile stress, U/t should increase and a transition from semimetal to Mott insulator should occur. However, the bonding σ electrons are also affected by the stretching and may affect the applicability of the single-band model. At the same time, the critical region near the metal-insulator transition is a highly multi-determinantal ground state which is a challenging case for fixed node diffusion Monte Carlo simulations. We address progress on both these points by assessing a number of wave functions for the critical region around the transition and assessing the validity of the single-band Hubbard model using the method of Ref 1. This work was supported by NSF DMR 1206242.

  9. Metal-insulator-transition in SrTiO3 induced by argon bombardment combined with field effect

    SciTech Connect

    Xu, Jie; Zhu, Zhengyong; Zhao, Hengliang; Luo, Zhijiong

    2014-12-15

    By fabricating the Field-Effect-Transistors on argon bombardment SrTiO3 substrates, not only we have achieved one of the best mobility for Field-Effect-Transistors fabricated on SrTiO3, but also realized strong field induced Metal-Insulator-Transition. The critical sheet resistance for the Metal-Insulator-Transition is only 1/7 of the value obtained in the former experiments, indicating a different mechanism. Further study shows that the Metal-Insulator-Transition can be attributed to the oxygen vacancies formed after the bombardment becoming the electron donor under the electric field modulation, increasing SrTiO3 surface electron density and transforming the substrate into metallic state.

  10. Electronic Excitations and Metal-Insulator Transition inPoly(3-hexylthiophene) Organic Field-Effect Transistors

    SciTech Connect

    Sai, N.; Li, Z.Q.; Martin, M.C.; Basov, D.N.; Di Ventra, M.

    2006-11-07

    We carry out a comprehensive theoretical and experimentalstudy of charge injection in poly(3-hexylthiophene) (P3HT) to determinethe most likely scenario for metal-insulator transition in this system.Wecalculate the optical-absorption frequencies corresponding to a polaronand a bipolaron lattice in P3HT. We also analyze the electronicexcitations for three possible scenarios under which a first- or asecond-order metal-insulator transition can occur in doped P3HT. Thesetheoretical scenarios are compared with data from infrared absorptionspectroscopy on P3HT thin-film field-effect transistors (FETs). Ourmeasurements and theoretical predictions suggest that charge-inducedlocalized states in P3HT FETs are bipolarons and that the highest dopinglevel achieved in our experiments approaches that required for afirst-order metal-insulator transition.

  11. Role of magnetic and orbital ordering at the metal-insulator transition in NdNiO{sub 3}

    SciTech Connect

    Scagnoli, V.; Staub, U.; Mulders, A. M.; Janousch, M.; Meijer, G. I.; Hammerl, G.; Tonnerre, J. M.; Stojic, N.

    2006-03-01

    Soft x-ray resonant scattering at the Ni L{sub 2,3} edges is used to test models of magnetic- and orbital-ordering below the metal-insulator transition in NdNiO{sub 3}. The large branching ratio of the L{sub 3} to L{sub 2} intensities of the (1/2 0 1/2) reflection and the observed azimuthal angle and polarization dependence originates from a noncollinear magnetic structure. The absence of an orbital signal and the noncollinear magnetic structure show that the nickelates are materials for which orbital ordering is absent at the metal-insulator transition.

  12. Charge Mediated Reversible Metal-Insulator Transition in Monolayer MoTe2 and WxMo1-xTe2 Alloy.

    PubMed

    Zhang, Chenxi; Kc, Santosh; Nie, Yifan; Liang, Chaoping; Vandenberghe, William G; Longo, Roberto C; Zheng, Yongping; Kong, Fantai; Hong, Suklyun; Wallace, Robert M; Cho, Kyeongjae

    2016-08-23

    Metal-insulator transitions in low-dimensional materials under ambient conditions are rare and worth pursuing due to their intriguing physics and rich device applications. Monolayer MoTe2 and WTe2 are distinguished from other TMDs by the existence of an exceptional semimetallic distorted octahedral structure (T') with a quite small energy difference from the semiconducting H phase. In the process of transition metal alloying, an equal stability point of the H and the T' phase is observed in the formation energy diagram of monolayer WxMo1-xTe2. This thermodynamically driven phase transition enables a controlled synthesis of the desired phase (H or T') of monolayer WxMo1-xTe2 using a growth method such as chemical vapor deposition (CVD) and molecular beam epitaxy (MBE). Furthermore, charge mediation, as a more feasible method, is found to make the T' phase more stable than the H phase and induce a phase transition from the H phase (semiconducting) to the T' phase (semimetallic) in monolayer WxMo1-xTe2 alloy. This suggests that a dynamic metal-insulator phase transition can be induced, which can be exploited for rich phase transition applications in two-dimensional nanoelectronics.

  13. Density inhomogeneity driven percolation metal-insulator transition and dimensional crossover in graphene nanoribbons.

    PubMed

    Adam, S; Cho, S; Fuhrer, M S; Das Sarma, S

    2008-07-25

    Transport in graphene nanoribbons with an energy gap in the spectrum is considered in the presence of random charged impurity centers. At low carrier density, we predict and establish that the system exhibits a density inhomogeneity driven two dimensional metal-insulator transition that is in the percolation universality class. For very narrow graphene nanoribbons (with widths smaller than the disorder induced length scale), we predict that there should be a dimensional crossover to the 1D percolation universality class with observable signatures in the transport gap. In addition, there should be a crossover to the Boltzmann transport regime at high carrier densities. The measured conductivity exponent and the critical density are consistent with this percolation transition scenario.

  14. Low-energy description of the metal-insulator transition in the rare-earth nickelates

    NASA Astrophysics Data System (ADS)

    Subedi, Alaska; Peil, Oleg E.; Georges, Antoine

    2015-02-01

    We propose a simple theoretical description of the metal-insulator transition of rare-earth nickelates. The theory involves only two orbitals per nickel site, corresponding to the low-energy antibonding eg states. In the monoclinic insulating state, bond-length disproportionation splits the manifold of eg bands, corresponding to a modulation of the effective on-site energy. We show that, when subject to a local Coulomb repulsion U and Hund's coupling J , the resulting bond-disproportionated state is a paramagnetic insulator for a wide range of interaction parameters. Furthermore, we find that when U -3 J is small or negative, a spontaneous instability to bond disproportionation takes place for large enough J . This minimal theory emphasizes that a small or negative charge-transfer energy, a large Hund's coupling, and a strong coupling to bond disproportionation are the key factors underlying the transition. Experimental consequences of this theoretical picture are discussed.

  15. Hund's coupling and the metal-insulator transition in the two-band Hubbard model

    NASA Astrophysics Data System (ADS)

    Pruschke, Th.; Bulla, R.

    2005-03-01

    The Mott-Hubbard metal-insulator transition is investigated in a two-band Hubbard model within dynamical mean-field theory. To this end, we use a suitable extension of Wilson’s numerical renormalization group for the solution of the effective two-band single-impurity Anderson model. This method is non-perturbative and, in particular, allows to take into account the full exchange part of the Hund’s rule coupling between the two orbitals. We discuss in detail the influence of the various Coulomb interactions on thermodynamic and dynamic properties, for both the impurity and the lattice model. The exchange part of the Hund’s rule coupling turns out to play an important role for the physics of the two-band Hubbard model and for the nature of the Mott-transition.

  16. Metal-insulator transition and nonlinear optical responseof sputter-deposited V3O5 thin films

    NASA Astrophysics Data System (ADS)

    Rúa, Armando; Díaz, Ramón D.; Kumar, Nardeep; Lysenko, Sergiy; Fernández, Félix E.

    2017-06-01

    The compound V3O5, a member of the vanadium oxide Magnéli series, exhibits a metal-insulator transition near 430 K, the highest known temperature value among all vanadium oxides. It has been studied before mainly in single-crystal form, and for the very few cases in which thin films have been fabricated before, the procedure has required extensive post-deposition annealing of other oxides or vanadium metal at high temperatures in tightly controlled atmospheres. For the present work, V3O5 films were deposited directly on SiO2 glass substrates, without subsequent annealing, by DC magnetron sputtering. X-ray diffraction study of the samples evidenced oxygen deficiency, accommodated by oxygen vacancies. Resistivity measurements from 300 to 500 K revealed the metal-insulator transition by Tc ˜ 430 K, with an associated resistivity change by a factor of 20, and no detectable hysteresis in heating-cooling cycles, in agreement with most single-crystal studies. Resistivity values obtained were, however, lower than published results for bulk crystal values, particularly at temperatures below Tc. This was attributed to conduction electrons generated by the oxygen vacancies. Gradual resistivity increase in a very thin sample, through heating in air at temperatures up to 500 K, lends support to this argument. Using a pump-probe scattering technique, the V3O5 films were also probed for ultrafast nonlinear optical response. A reduction in the transient relative scattered light signal was recorded, which reached -10% within ˜800 fs. This observed response, likely related to the photoinduced insulator-to-metal phase transition, should stimulate additional interest in this material.

  17. Disorder-induced metal-insulator transition in cooled silver and copper nanoparticles: A statistical study

    NASA Astrophysics Data System (ADS)

    Medrano Sandonas, Leonardo; Landauro, Carlos V.

    2017-08-01

    The existence of a disorder-induced metal-insulator transition (MIT) has been proved in cooled silver and copper nanoparticles by using level spacing statistics. Nanoparticles are obtained by employing molecular dynamics simulations. Results show that structural disorder is not strong enough to affect their electronic character, and it remains in the metallic regime. Whereas, electronic properties cross to the insulating regime after increasing the chemical disorder strength, W / t . Then, based on scaling theory, we have found that the critical chemical disorder WC / t in which MIT happens for silver and copper nanoparticles are 24.0 ± 1.1 and 22.3 ± 0.9 , respectively. Its universality has also been studied.

  18. Enhanced conductivity and metal-insulator transition of ultrathin CaRuO3 in superlattices

    NASA Astrophysics Data System (ADS)

    Xu, Haoran; Chen, Binbin; Jin, Feng; Guo, Zhuang; Gao, Guanyin; Chen, Feng; Wu, Wenbin

    2016-12-01

    Transport characteristics of CaRuO3(CRO)/SmFeO3(SFO) superlattices are studied as a function of the thickness of CRO (0.8 nm ≤ t CRO ≤ 3.2 nm). An abrupt enhancement of the conductivity is observed on superlattices, although ultrathin CRO film show a very high resistance and SFO single layer is insulating. The superlattices with t CRO between 2.0 and 3.2 nm retain a metallic state. As t CRO decreases to 1.6 nm or even thinner in superlattices, the metallic state turns to insulating state. The metal-insulator transition could be attributed to the comparable scale for the disorder length and the electron travel distance at small t CRO value, which causes a change from weak localization to strong localization.

  19. Magnetically driven metal-insulator transition in NaOsO3.

    PubMed

    Calder, S; Garlea, V O; McMorrow, D F; Lumsden, M D; Stone, M B; Lang, J C; Kim, J-W; Schlueter, J A; Shi, Y G; Yamaura, K; Sun, Y S; Tsujimoto, Y; Christianson, A D

    2012-06-22

    The metal-insulator transition (MIT) is one of the most dramatic manifestations of electron correlations in materials. Various mechanisms producing MITs have been extensively considered, including the Mott (electron localization via Coulomb repulsion), Anderson (localization via disorder), and Peierls (localization via distortion of a periodic one-dimensional lattice) mechanisms. One additional route to a MIT proposed by Slater, in which long-range magnetic order in a three dimensional system drives the MIT, has received relatively little attention. Using neutron and x-ray scattering we show that the MIT in NaOsO(3) is coincident with the onset of long-range commensurate three dimensional magnetic order. While candidate materials have been suggested, our experimental methodology allows the first definitive demonstration of the long predicted Slater MIT.

  20. Magnetically Driven Metal-Insulator Transition in NaOsO3

    SciTech Connect

    Calder, Stuart A; Christianson, Andrew D; Lumsden, Mark D; Lang, Jonathan; Stone, Matthew B; McMorrow, D. F.; Garlea, Vasile O; Kim, Jong-Woo; Schlueter, J. A.; Shi, Y. G.; Yamaura, K.; Sun, Y. S.; Tsujimoto, Y.

    2012-01-01

    The metal-insulator transition (MIT) is one of the most dramatic manifestations of electron correlations in materials. Various mechanisms producing MITs have been extensively considered, including the Mott (electron localization via Coulomb repulsion), Anderson (localization via disorder), and Peierls (local- ization via distortion of a periodic one-dimensional lattice) mechanisms. One additional route to a MIT proposed by Slater, in which long-range magnetic order in a three dimensional system drives the MIT, has received relatively little attention. Using neutron and x-ray scattering we show that the MIT in NaOsO3 is coincident with the onset of long-range commensurate three dimensional magnetic order. While candidate materials have been suggested, our experimental methodology allows the first definitive demonstration of the long predicted Slater MIT.

  1. Surface states, surface metal-insulator, and surface insulator-metal transitions

    NASA Astrophysics Data System (ADS)

    Tosatti, E.

    1995-05-01

    An informal discussion of various cases where two-dimensional surface metal-insulator structural and charge-density-wave instabilities driven by partly filled surface states have been advocated is presented. These include reconstructions of clean semiconductor surfaces and of W(100) and Mo(100), as well as anomalies on the hydrogen-covered surfaces H/W(110) and H/Mo(110), and possibly alkali-covered surfaces such as K/Cu(111). In addition, there is a discussion of the opposite type of phenomena, namely surface insulator-metal transitions, which can be argued to occur on (alpha)-Ga(001), high-temperature Ge(111), and probably Be(0001).

  2. Metal-insulator transition in two-dimensional random fermion systems of chiral symmetry classes

    NASA Astrophysics Data System (ADS)

    König, E. J.; Ostrovsky, P. M.; Protopopov, I. V.; Mirlin, A. D.

    2012-05-01

    Field-theoretical approach to Anderson localization in 2D disordered fermionic systems of chiral symmetry classes (BDI, AIII, CII) is developed. Important representatives of these symmetry classes are random hopping models on bipartite lattices at the band center. As was found by Gade and Wegner two decades ago within the sigma-model formalism, quantum interference effects in these classes are absent to all orders of perturbation theory. We demonstrate that the quantum localization effects emerge when the theory is treated nonperturbatively. Specifically, they are controlled by topological vortexlike excitations of the sigma models. We derive renormalization-group equations including these nonperturbative contributions. Analyzing them, we find that the 2D disordered systems of chiral classes undergo a metal-insulator transition driven by topologically induced Anderson localization. We also show that the Wess-Zumino and Z2 θ terms on surfaces of 3D topological insulators (in classes AIII and CII, respectively) overpower the vortex-induced localization.

  3. Hallmarks of Metal Insulator transition in Doped Sr2IrO4

    NASA Astrophysics Data System (ADS)

    Cao, Yue; Wang, Qiang; Dhaka, Rajendra; Waugh, Justin; Reber, Theodore; Li, Haoxiang; Parham, Stephen; Zhou, Xiaoqing; Park, Seung Ryong; Qi, Tongfei; Korneta, Oleksandr; Plumb, Nicholas; Bostwick, Aaron; Rotenberg, Eli; Denlinger, Jonathan; Hermele, Michael; Cao, Gang; Dessau, Daniel

    2014-03-01

    How Mott insulators acquire metallicity upon the introduction of extra carriers lies at the heart of correlated electron physics. The evolution of the electronic structure and low energy dynamics in the ultra-low doped region where the Mottness begins to break down is a critical place to study this physics. We report ARPES studies of the Rh and La doped Sr2IrO4 and show the appearance and evolution of a pseudogap and Fermi arcs. Further more we present evidence how the Mott gap breaks down with a profound change in the band structure. The experimental results in the doped iridates resemble those observed in the cuprate systems, which are prototype Mott insulators, and suggest we could establish a series of signatures that occur in the metal insulator transition. Now at Los Alamos National Lab.

  4. Magnetic field induced metal-insulator transition in a kagome nanoribbon

    NASA Astrophysics Data System (ADS)

    Dey, Moumita; Maiti, Santanu K.; Karmakar, S. N.

    2011-11-01

    In the present work, we investigate two-terminal electron transport through a finite width kagome lattice nanoribbon in presence of a perpendicular magnetic field. We employ a simple tight-binding (T-B) Hamiltonian to describe the system and obtain the transmission properties by using Green's function technique within the framework of Landauer-Büttiker formalism. After presenting an analytical description of energy dispersion relation of a kagome nanoribbon in presence of the magnetic field, we investigate numerically the transmittance spectra together with the density of states and current-voltage characteristics. It is shown that for a specific value of the Fermi energy, the kagome network can exhibit a magnetic field induced metal-insulator transition, which is the central investigation of this communication. Our analysis may be inspiring in designing low-dimensional switching devices.

  5. Mott metal-insulator transition in a metallic liquid - Gutzwiller molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Barros, Kipton; Chern, Gia-Wei; Batista, Cristian D.; Kress, Joel D.; Kotliar, Gabriel

    2015-03-01

    Molecular dynamics (MD) simulations are crucial to modern computational physics, chemistry, and materials science, especially when combined with potentials derived from density-functional theory. However, even in state of the art MD codes, the on-site Coulomb repulsion is only treated at the self-consistent Hartree-Fock level. This standard approximation may miss important effects due to electron correlations. The Gutzwiller variational method captures essential correlated-electron physics yet is much faster than, e.g., the dynamical-mean field theory approach. We present our efficient Gutzwiller-MD implementation. With it, we investigate the Mott metal-insulator transition in a metallic fluid and uncover several surprising static and dynamic properties of this system.

  6. Effect of crystal-field splitting and interband hybridization on the metal-insulator transitions of strongly correlated systems

    NASA Astrophysics Data System (ADS)

    Poteryaev, Alexander I.; Ferrero, Michel; Georges, Antoine; Parcollet, Olivier

    2008-07-01

    We investigate a quarter-filled two-band Hubbard model involving a crystal-field splitting, which lifts the orbital degeneracy as well as an interorbital hopping (interband hybridization). Both terms are relevant to the realistic description of correlated materials such as transition-metal oxides. The nature of the Mott metal-insulator transition is clarified and is found to depend on the magnitude of the crystal-field splitting. At large values of the splitting, a transition from a two-band to a one-band metal is first found as the on-site repulsion is increased and is followed by a Mott transition for the remaining band, which follows the single-band (Brinkman-Rice) scenario well documented previously within dynamical mean-field theory. At small values of the crystal-field splitting, a direct transition from a two-band metal to a Mott insulator with partial orbital polarization is found, which takes place simultaneously for both orbitals. This transition is characterized by a vanishing of the quasiparticle weight for the majority orbital but has a first-order character for the minority orbital. It is pointed out that finite-temperature effects may easily turn the metallic regime into a bad metal close to the orbital polarization transition in the metallic phase.

  7. Two-dimensional metal-insulator transition as a strong localization induced crossover phenomenon

    NASA Astrophysics Data System (ADS)

    Das Sarma, S.; Hwang, E. H.

    2014-06-01

    Low-disorder and high-mobility two-dimensional (2D) electron (or hole) systems confined in semiconductor heterostructures undergo an apparent metal-insulator transition (MIT) at low temperatures as the carrier density (n) is varied. In some situations, the 2D MIT can be caused at a fixed low carrier density by changing an externally applied in-plane magnetic field parallel to the 2D layer. The goal of the current work is to obtain the critical density (nc) for the 2D MIT with the system being an effective metal (Anderson insulator) for density n above (below) nc. We study the 2D MIT phenomenon theoretically as a possible strong localization induced crossover process controlled by the Ioffe-Regel criterion, kFl=1, where kF(n) is the 2D Fermi wave vector and l (n) is the disorder-limited quantum mean free path on the metallic side. Calculating the quantum mean free path in the effective metallic phase from a realistic Boltzmann transport theory including disorder scattering effects, we solve the integral equation (with l depending on n through multidimensional integrals) defined by the Ioffe-Regel criterion to obtain the nonuniversal critical density nc as a function of the applicable physical experimental parameters including disorder strength, in-plane magnetic field, spin and valley degeneracy, background dielectric constant and carrier effective mass, and temperature. The key physics underlying the nonuniversal parameter dependence of the critical density is the density dependence of the screened Coulomb disorder. Our calculated results for the crossover critical density nc appear to be in qualitative and semiquantitative agreement with the available experimental data in different 2D semiconductor systems lending credence to the possibility that the apparent 2D MIT signals the onset of the strong localization crossover in disordered 2D systems. We also compare the calculated critical density obtained from the Ioffe-Regel criterion with that obtained from a

  8. Metal-Insulator Transition in Nanoparticle Solids: Insights from Kinetic Monte Carlo Simulations

    DOE PAGES

    Qu, Luman; Vörös, Márton; Zimanyi, Gergely T.

    2017-08-01

    Progress has been rapid in increasing the efficiency of energy conversion in nanoparticles. However, extraction of the photo-generated charge carriers remains challenging. Encouragingly, the charge mobility has been improved recently by driving nanoparticle (NP) films across the metal-insulator transition (MIT). To simulate MIT in NP films, we developed a hierarchical Kinetic Monte Carlo transport model. Electrons transfer between neighboring NPs via activated hopping when the NP energies differ by more than an overlap energy, but transfer by a non-activated quantum delocalization, if the NP energies are closer than the overlap energy. As the overlap energy increases, emerging percolating clusters supportmore » a metallic transport across the entire film. We simulated the evolution of the temperature-dependent electron mobility. We analyzed our data in terms of two candidate models of the MIT: (a) as a Quantum Critical Transition, signaled by an effective gap going to zero; and (b) as a Quantum Percolation Transition, where a sample-spanning metallic percolation path is formed as the fraction of the hopping bonds in the transport paths is going to zero. We found that the Quantum Percolation Transition theory provides a better description of the MIT. We also observed an anomalously low gap region next to the MIT. We discuss the relevance of our results in the light of recent experimental measurements.« less

  9. Metal insulator transition induced by the magnetic field in n-type GaSb

    NASA Astrophysics Data System (ADS)

    Ghezzi, C.; Magnanini, R.; Parisini, A.

    2005-10-01

    The metal-insulator (MI) transition induced by a magnetic field was evidenced for the first time in compensated n-type GaSb layers grown by molecular beam epitaxy. The free electron densities were in the low 10 16 cm -3 range or even slightly lower, so that the zero-field 3D electron gas was degenerate and, at the BMI magnetic field of the MI transition, it populates only the spin-split 0 (+) Landau level (extreme quantum limit). On the metallic side of the MI transition a T1/3 dependence of the conductivity was assumed to fit the low- T data and to estimate the BMI value, which resulted of 9.1 T in the purest sample. The MI transition manifests in a strong increase of the diagonal resistivity with the magnetic field, but not of the Hall coefficient, suggesting that the apparent electron density is practically constant, whereas the mobility varies strongly. The evidence of a maximum in the temperature dependence of the Hall coefficient has been explained through a two channels transport mechanism involving localized and extended states.

  10. Critical behavior of ultrasonic attenuation near interaction-driven metal-insulator transitions

    NASA Astrophysics Data System (ADS)

    Dobrosavljević, V.; Kirkpatrick, T. R.; Chen, Changfeng; Belitz, D.

    1991-09-01

    We consider the critical behavior of the ultrasonic attenuation (UA) near interaction-driven metal-insulator transitions. To first order in the disorder no localization corrections are found. Using a field-theoretical nonlinear σ-model representation, and performing a renormalization-group analysis, we show that the absence of first-order corrections follows from the presence of two scaling parts for the UA. The critical exponents for the UA are shown to be sensitive to both the symmetry class and the interaction range, in contrast to the behavior of the conductivity. We have examined the cases of strong magnetic fields and of magnetic impurities where the critical exponents prove to be universal for Coulomb interactions, but are found to be nonuniversal for short-ranged interactions. The UA was further examined near the pseudomagnetic transition that occurs in the absence of magnetic perturbations. In that case, the UA critical exponents were found to vanish, indicating that the UA stays uncritical at this transition.

  11. Functionalized graphene as a model system for the two-dimensional metal-insulator transition

    PubMed Central

    Osofsky, M. S.; Hernández, S. C.; Nath, A.; Wheeler, V. D.; Walton, S. G.; Krowne, C. M.; Gaskill, D. K.

    2016-01-01

    Reports of metallic behavior in two-dimensional (2D) systems such as high mobility metal-oxide field effect transistors, insulating oxide interfaces, graphene, and MoS2 have challenged the well-known prediction of Abrahams, et al. that all 2D systems must be insulating. The existence of a metallic state for such a wide range of 2D systems thus reveals a wide gap in our understanding of 2D transport that has become more important as research in 2D systems expands. A key to understanding the 2D metallic state is the metal-insulator transition (MIT). In this report, we explore the nature of a disorder induced MIT in functionalized graphene, a model 2D system. Magneto-transport measurements show that weak-localization overwhelmingly drives the transition, in contradiction to theoretical assumptions that enhanced electron-electron interactions dominate. These results provide the first detailed picture of the nature of the transition from the metallic to insulating states of a 2D system. PMID:26860789

  12. Critical Behavior in Doping-Driven Metal-Insulator Transition on Single-Crystalline Organic Mott-FET.

    PubMed

    Sato, Yoshiaki; Kawasugi, Yoshitaka; Suda, Masayuki; Yamamoto, Hiroshi M; Kato, Reizo

    2017-02-08

    We present the carrier transport properties in the vicinity of a doping-driven Mott transition observed at a field-effect transistor (FET) channel using a single crystal of the typical two-dimensional organic Mott insulator κ-(BEDT-TTF)2CuN(CN)2Cl (κ-Cl). The FET shows a continuous metal-insulator transition (MIT) as electrostatic doping proceeds. The phase transition appears to involve two-step crossovers, one in Hall measurement and the other in conductivity measurement. The crossover in conductivity occurs around the conductance quantum e(2)/h, and hence is not associated with "bad metal" behavior, which is in stark contrast to the MIT in half-filled organic Mott insulators or that in doped inorganic Mott insulators. Through in-depth scaling analysis of the conductivity, it is found that the above carrier transport properties in the vicinity of the MIT can be described by a high-temperature Mott quantum critical crossover, which is theoretically argued to be a ubiquitous feature of various types of Mott transitions.

  13. Metal-insulator transition in low dimensional La{sub 0.75}Sr{sub 0.25}VO{sub 3} thin films

    SciTech Connect

    Dao, Tran M.; Mondal, Partha S.; Takamura, Y.; Arenholz, E.; Lee, Jaichan

    2011-06-15

    We report on the metal-insulator transition that occurs as a function of film thickness in ultrathin La{sub 0.75}Sr{sub 0.25}VO{sub 3} films. The metal-insulator transition displays a critical thickness of 5 unit cell. Above the critical thickness, metallic films exhibit a temperature driven metal-insulator transition with weak localization behavior. With decreasing film thickness, oxygen octahedron rotation in the films increases, causing enhanced electron-electron correlation. The electronelectron correlations in ultrathin films induce the transition from metal to insulator in addition to Anderson localization.

  14. Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides.

    PubMed

    Zhu, Shiyang; Lo, G Q; Kwong, D L

    2013-04-08

    An extremely compact Si phase modulator is proposed and validated, which relies on effective modulation of the real part of modal index of horizontal metal-insulator-Si-insulator-metal plasmonic waveguides by a voltage applied between the metal cover and the Si core. Proof-of-concept devices are fabricated on silicon-on-insulator substrates using standard complementary metal-oxide-semiconductor technology using copper as the metal and thermal silicon dioxide as the insulator. A modulator with a 1-μm-long phase shifter inserted in an asymmetric Si Mach-Zehnder interferometer exhibits 9-dB extinction ratio under a 6-V/10-kHz voltage swing. Numerical simulations suggest that high speed and low driving voltage could be achieved by shortening the distance between the Si core and the n(+)-contact and by using a high-κ dielectric as the insulator, respectively.

  15. Metal-Insulator Transitions in Epitaxial LaVO(3) and LaTiO(3) Films

    DTIC Science & Technology

    2012-08-01

    are insulating in the bulk—has led to an explosion of research activity in perovskite transition-metal oxide heterostructures. The most well-known...ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS metal insulator transition, oxide ...effects must be duly taken into consideration when interpreting metallic behavior in these complex oxide heterostructures. This work is supported by the

  16. Scaling Theory of a Compressibility-Driven Metal-Insulator Transition in a Two-Dimensional Electron Fluid.

    PubMed

    Belitz, D; Kirkpatrick, T R

    2016-12-02

    We present a scaling description of a metal-insulator transition in two-dimensional electron systems that is driven by a vanishing compressibility rather than a vanishing diffusion coefficient. A small set of basic assumptions leads to a consistent theoretical framework that is compatible with existing transport and compressibility measurements, and allows us to make predictions for other observables. We also discuss connections between these ideas and other theories of transitions to an incompressible quantum fluid.

  17. Magnetic Superstructure and Metal-Insulator Transition in Mn-Substituted Sr3Ru2O7

    NASA Astrophysics Data System (ADS)

    Hossain, M. A.; Bohnenbuck, B.; Chuang, Y.-D.; Geck, J.; Tokura, Y.; Yoshida, Y.; Hussain, Z.; Keimer, B.; Sawatzky, G. A.; Damascelli, A.

    2010-03-01

    We present a temperature-dependent resonant elastic soft x-ray scattering (REXS) study of the metal-insulator transition in Sr3(Ru1-xMnx)2O7, performed at both Ru and Mn L-edges. Resonant magnetic superstructure reflections, which indicate an incipient instability of the parent compound, are detected below the transition. Based on modelling of the REXS intensity from randomly distributed Mn impurities, we establish the inhomogeneous nature of the metal-insulator transition, with an effective percolation threshold corresponding to an anomalously low x˜0.05 Mn substitution. In collaboration with A.G. Cruz Gonzalez, J.D. Denlinger (Berkeley Lab), I. Zegkinoglou, M.W. Haverkort (MPI, Stuttgart), I.S. Elfimov, D.G. Hawthorn (UBC), R. Mathieu, S. Satow, H. Takagi (Tokyo), H.-H. Wu and C. Sch"ußler-Langeheine (Cologne).

  18. Linear-in-temperature resistivity close to a topological metal insulator transition in ultra-multi valley fcc-ytterbium

    NASA Astrophysics Data System (ADS)

    Enderlein, Carsten; Fontes, Magda; Baggio-Saitovich, Elisa; Continentino, Mucio A.

    2016-01-01

    The semimetal-to-semiconductor transition in fcc-Yb under modest pressure can be considered a picture book example of a metal-insulator transition of the Lifshitz type. We have performed transport measurements at low temperatures in the closest vicinity of the transition and related DFT calculations of the Fermi surface. Our resistivity measurements show a linear temperature dependence with an unusually low dρ / dT at low temperatures approaching the MIT. The calculations suggest fcc-ytterbium being an ultra-multi valley system with 24 electron and 6 hole pockets in the Brillouin zone. Such Fermi surface topology naturally supports the appearance of strongly correlated phases. An estimation of the quasiparticle-enhanced effective mass shows that the scattering rate is by at least two orders of magnitude lower than in other materials which exhibit linear-in-T behavior at a quantum critical point. However, we cannot exclude an excessive effective mass enhancement, when the van Hove singularity touches the Fermi level.

  19. Three-terminal field effect switches probing the electrically triggered Metal-Insulator Transition in Vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Gokul; Ko, Changhyun; Ruzmetov, Dmitry; Narayanamurti, Venkatesh; Ramanathan, Shriram

    2010-03-01

    Electrostatic control of the Metal-Insulator Transition (MIT) in correlated oxides is valuable, both as a probe of the nature of the phase transition, as well as being a critical aspect of novel switching devices based on Mott insulators. Of much recent interest among this class of materials, is vanadium dioxide (VO2), a correlated semiconductor which exhibits a thermally induced MIT close to room temperature, and has also been shown to undergo an ultra-fast switching of conductivity by optical and electrical means. Among many of the experiments demonstrating an electrically triggered transition, however, the attendant phenomenon of Joule heating in the current channel raises questions about the triggering mechanism. To carefully address this issue, we explore the fabrication of three terminal field-effect devices, in which the resistance of a VO2 based channel may be modulated by a gate electric field in the absence of any significant current induced heating. In this talk we present details of the fabrication, the technical challenges involved in implementing them, and results of gated I-V measurements performed on these devices along with our interpretation of the observed effects.

  20. Influence of oxygen flow rate on metal-insulator transition of vanadium oxide thin films grown by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ma, Xu; Liu, Xinkun; Li, Haizhu; Zhang, Angran; Huang, Mingju

    2017-03-01

    High-quality vanadium oxide ( VO2) films have been fabricated on Si (111) substrates by radio frequency (RF) magnetron sputtering deposition method. The sheet resistance of VO2 has a significant change (close to 5 orders of magnitude) in the process of the metal-insulator phase transition (MIT). The field emission-scanning electron microscope (FE-SEM) results show the grain size of VO2 thin films is larger with the increase of oxygen flow. The X-ray diffraction (XRD) results indicate the thin films fabricated at different oxygen flow rates grow along the (011) crystalline orientation. As the oxygen flow rate increases from 3 sccm to 6 sccm, the phase transition temperature of the films reduces from 341 to 320 K, the width of the thermal hysteresis loop decreases from 32 to 9 K. The thin films fabricated in the condition of 5 sccm have a high temperature coefficient of resistance (TCR) -3.455%/K with a small resistivity of 2.795 ρ/Ω cm.

  1. Metal-Insulator Transition of c-Axis-Controlled V2O3 Thin Film

    NASA Astrophysics Data System (ADS)

    Shimazu, Yuichi; Okumura, Teppei; Tsuchiya, Takashi; Shimada, Atsushi; Tanabe, Kenji; Tokiwa, Kazuyasu; Kobayashi, Masaki; Horiba, Koji; Kumigashira, Hiroshi; Higuchi, Tohru

    2015-06-01

    We prepared c-axis-controlled V2O3 thin films by RF magnetron sputtering and proved their metal-insulator transition (MIT) in terms of electronic structure. The lattice constant of the c-axis depends on the film thickness and the lattice mismatch of the substrate and V2O3. MIT is observed at a temperature of ˜150 K in the V2O3 thin films with the lattice constants of c = 13.942 and 13.992 Å, although the V2O3 thin film with c = 13.915 Å exhibits metallic conductivity without MIT. The electron correlation energy, which corresponds to the energy difference between the lower Hubbard band and the upper Hubbard band, increases with increasing lattice constant of the c-axis. Bandwidths also depend on the lattice constant of the c-axis. The intensity of the a1g orbital around the Fermi level decreases with increasing lattice constant of the c-axis. These results suggest that the electron correlation interaction and bandwidths play important roles in the MIT of c-axis-controlled V2O3 thin films.

  2. Weak localization and the approach to metal-insulator transition in single crystalline germanium nanowires

    NASA Astrophysics Data System (ADS)

    Sett, Shaili; Das, K.; Raychaudhuri, A. K.

    2017-03-01

    We study the low-temperature electronic transport properties of single germanium nanowires (NWs) with diameters down to 45 nm to investigate the weak localization (WL) behavior and approach to metal-insulator transition (MIT) within them. The NWs (single crystalline) we investigate lie on the metallic side of the MIT with an extrapolated zero temperature conductivity {σ0} in the range 23 to 1790 (Ω cm)-1 and show a temperature-dependent conductivity which below 30 K can be described by a 3D WL behavior with Thouless length {{L}\\text{Th}}˜ {{T}-\\frac{p{2}}} and p˜ 4 . From the observed value of {σ0} and the value of the critical carrier concentration n c, it is observed that the approach to MIT can be described by the scaling equation {σ0}˜ {{≤ft(n-{{n}\\text{c}}\\right)}ν} with ν ≈ 0.6 , which is a value expected for an uncompensated system. The investigation establishes a NW size limit for the applicability of 3D scaling theories.

  3. Mobility engineering and a metal-insulator transition in monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Radisavljevic, Branimir; Kis, Andras

    2013-09-01

    Two-dimensional (2D) materials are a new class of materials with interesting physical properties and applications ranging from nanoelectronics to sensing and photonics. In addition to graphene, the most studied 2D material, monolayers of other layered materials such as semiconducting dichalcogenides MoS2 or WSe2 are gaining in importance as promising channel materials for field-effect transistors (FETs). The presence of a direct bandgap in monolayer MoS2 due to quantum-mechanical confinement allows room-temperature FETs with an on/off ratio exceeding 108. The presence of high- κ dielectrics in these devices enhanced their mobility, but the mechanisms are not well understood. Here, we report on electrical transport measurements on MoS2 FETs in different dielectric configurations. The dependence of mobility on temperature shows clear evidence of the strong suppression of charged-impurity scattering in dual-gate devices with a top-gate dielectric. At the same time, phonon scattering shows a weaker than expected temperature dependence. High levels of doping achieved in dual-gate devices also allow the observation of a metal-insulator transition in monolayer MoS2 due to strong electron-electron interactions. Our work opens up the way to further improvements in 2D semiconductor performance and introduces MoS2 as an interesting system for studying correlation effects in mesoscopic systems.

  4. Phonon Anomalies and Metal Insulator Transition in Fe(1-x)Co(x)Si

    NASA Astrophysics Data System (ADS)

    Delaire, Olivier; Lucas, Matthew; Stone, Matthew; Abernathy, Douglas; Marty, Karol; Kent, Paul; Sales, Brian; Mandrus, David

    2010-03-01

    The Fe(1-x)Co(x)-Si ordered compound (B20 structure) undergoes a metal-insulator transition upon doping with Co or heating. FeSi is a narrow band-gap semiconductor, whereas CoSi is a metal. Phonons were measured on both single crystals and powders as function of composition and temperature, using inelastic neutron scattering. A reciprocal-space time-of-flight tomography technique, as well as conventional triple-axis spectrometry, were used to map extensive regions of the FeSi dispersions. The phonon branches in FeSi exhibit an excess softening compared to those of CoSi, which appears in better agreement with a pure volume effect. Using first-principles electronic structure calculations and ab-initio molecular dynamics, the anomalies are explained in terms of a metallization induced by thermal disorder. This effect is also related to other cases where the electronic structure leads to anomalous temperature dependencies of the phonons.

  5. Metal-insulator transition and the role of electron correlation in FeO2

    NASA Astrophysics Data System (ADS)

    Jang, Bo Gyu; Kim, Duck Young; Shim, Ji Hoon

    2017-02-01

    Iron oxide is a key compound to understand the state of the deep Earth. It has been believed that previously known oxides such as FeO and Fe2O3 will be dominant at the mantle conditions. However, the recent observation of FeO2 shed another light to the composition of the deep lower mantle (DLM), and thus understanding of the physical properties of FeO2 will be critical to model the DLM. Here, we report the electronic structure and structural properties of FeO2 by using density functional theory and dynamic mean-field theory. The crystal structure of FeO2 is composed of Fe2 + and O22 - dimers, where the Fe ions are surrounded by the octahedral O atoms. We found that FeO2 shows a metal-insulator transition (MIT) under high pressure. The MIT is not a Mott type but a band insulator type which is driven by the O2 dimer bond length change. However, the correlation effect of Fe 3 d orbitals should be considered to correctly describe O2 dimer bond length of FeO2 and the MIT.

  6. Metal-insulator transitions in LaTiO3 / CaTiO3 superlattices

    NASA Astrophysics Data System (ADS)

    Seo, Sung Seok A.; Lee, Ho Nyung

    2010-03-01

    Strongly correlated electrons at an interface of complex oxide heterostructures often show interesting behaviors that require an introduction of new physical concepts. For example, the metallic transport behavior found in the superlattices of a Mott insulator LaTiO3 and a band insulator SrTiO3 (STO) has established the concept of interfacial electronic reconstruction. In this work, we have studied the transport property of a new type of Mott/band insulator LaTiO3/CaTiO3 (LTO/CTO) superlattices grown by pulsed laser deposition (PLD). In order to rule out concerns about the PLD plume-triggered oxygen vacancies generated in STO substrates, which might influence transport measurement, and to investigate the effect of epitaxial strain, we have used insulating NdGaO3 substrates. While both LTO and CTO single films are highly insulating, we have observed intriguing metal-insulator transitions (MIT) in the LTO/CTO superlattices depending on the global LTO/CTO thickness ratio and temperature. (Note that LTO/STO superlattices are metallic at all temperatures (2-300 K)). In this talk, we will discuss the origin of the MIT in the scheme of self compensation mechanism of d-electrons at the hetero-interface between LTO and CTO.

  7. Unusual behaviour of thermal conductivity in vanadium dioxide across the metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Hippalgaonkar, Kedar; Lee, Sangwook; Ko, Changhyun; Yang, Fan; Suh, Joonki; Liu, Kai; Wang, Kevin; Zhang, Xiang; Dames, Chris; Wu, Junqiao

    In an electrically conductive solid, the Wiedemann-Franz (WF) law requires the electronic contribution to thermal conductivity to be proportional to the product of electrical conductivity and absolute temperature , where the ratio is the Lorenz number, typically not much different from the Sommerfeld value L0 = 2.44x10-8 W-ohm-K-2 at room temperature. The WF law reflects a basic property of metals where charge and heat are both carried by the same quasiparticles that both experience elastic scattering. At temperatures below the Debye temperature, the WF law has been experimentally shown to be robust in conventional conductors, with violations theoretically predicted or experimentally observed in strongly correlated electron systems or Luttinger liquids. However, the experimentally observed violations are at very low temperatures. Here we report breakdown of the WF law in a strongly correlated metal, in which the electronic thermal conductivity and L nearly vanish at temperatures above room temperature, where the electronic thermal conductivity amounts to only <~5% of the value expected from the WF law. Unusual behaviour of thermal conductivity in vanadium dioxide across the metal-insulator transition.

  8. Weak localization and the approach to metal-insulator transition in single crystalline germanium nanowires.

    PubMed

    Sett, Shaili; Das, K; Raychaudhuri, A K

    2017-03-22

    We study the low-temperature electronic transport properties of single germanium nanowires (NWs) with diameters down to 45 nm to investigate the weak localization (WL) behavior and approach to metal-insulator transition (MIT) within them. The NWs (single crystalline) we investigate lie on the metallic side of the MIT with an extrapolated zero temperature conductivity [Formula: see text] in the range 23 to 1790 [Formula: see text] cm)(-1) and show a temperature-dependent conductivity which below 30 K can be described by a 3D WL behavior with Thouless length [Formula: see text] and [Formula: see text]. From the observed value of [Formula: see text] and the value of the critical carrier concentration n c, it is observed that the approach to MIT can be described by the scaling equation [Formula: see text] with [Formula: see text], which is a value expected for an uncompensated system. The investigation establishes a NW size limit for the applicability of 3D scaling theories.

  9. Carbon kagome lattice and orbital-frustration-induced metal-insulator transition for optoelectronics.

    PubMed

    Chen, Yuanping; Sun, Y Y; Wang, H; West, D; Xie, Yuee; Zhong, J; Meunier, V; Cohen, Marvin L; Zhang, S B

    2014-08-22

    A three-dimensional elemental carbon kagome lattice, made of only fourfold-coordinated carbon atoms, is proposed based on first-principles calculations. Despite the existence of 60° bond angles in the triangle rings, widely perceived to be energetically unfavorable, the carbon kagome lattice is found to display exceptional stability comparable to that of C(60). The system allows us to study the effects of triangular frustration on the electronic properties of realistic solids, and it demonstrates a metal-insulator transition from that of graphene to a direct gap semiconductor in the visible blue region. By minimizing s-p orbital hybridization, which is an intrinsic property of carbon, not only the band edge states become nearly purely frustrated p states, but also the band structure is qualitatively different from any known bulk elemental semiconductors. For example, the optical properties are similar to those of direct-gap semiconductors GaN and ZnO, whereas the effective masses are comparable to or smaller than those of Si.

  10. Multifractality and Conformal Invariance at 2D Metal-Insulator Transition in the Spin-Orbit Symmetry Class

    NASA Astrophysics Data System (ADS)

    Obuse, Hideaki; Subramaniam, Arvind; Furusaki, Akira; Gruzberg, Ilya; Ludwig, Andreas

    2007-03-01

    We study the multifractality of critical wave functions at boundaries and corners at the Anderson metal-insulator transition for noninteracting electrons in the two-dimensional (2D) spin-orbit (symplectic) universality class. We find that the multifractal exponents near a boundary are different from those in the bulk. The exponents at a corner are found to be directly related to those at a straight boundary through a relation arising from conformal invariance. This provides direct numerical evidence for conformal invariance at the 2D spin-orbit metal-insulator transition. We also show that the presence of boundaries modifies the multifractality of the whole sample even in the thermodynamic limit.

  11. Mg-doped VO2 nanoparticles: hydrothermal synthesis, enhanced visible transmittance and decreased metal-insulator transition temperature.

    PubMed

    Zhou, Jiadong; Gao, Yanfeng; Liu, Xinling; Chen, Zhang; Dai, Lei; Cao, Chuanxiang; Luo, Hongjie; Kanahira, Minoru; Sun, Chao; Yan, Liuming

    2013-05-28

    This paper reports the successful preparation of Mg-doped VO2 nanoparticles via hydrothermal synthesis. The metal-insulator transition temperature (T(c)) decreased by approximately 2 K per at% Mg. The Tc decreased to 54 °C with 7.0 at% dopant. The composite foils made from Mg-doped VO2 particles displayed excellent visible transmittance (up to 54.2%) and solar modulation ability (up to 10.6%). In addition, the absorption edge blue-shifted from 490 nm to 440 nm at a Mg content of 3.8 at%, representing a widened optical band gap from 2.0 eV for pure VO2 to 2.4 eV at 3.8 at% doping. As a result, the colour of the Mg-doped films was modified to increase their brightness and lighten the yellow colour over that of the undoped-VO2 film. A first principle calculation was conducted to understand how dopants affect the optical, Mott phase transition and structural properties of VO2.

  12. Variation of optical conductivity spectra in the course of bandwidth-controlled metal-insulator transitions in pyrochlore iridates

    NASA Astrophysics Data System (ADS)

    Ueda, K.; Fujioka, J.; Tokura, Y.

    2016-06-01

    We spectroscopically investigate a series of pyrochlore iridates R2Ir2O7 (R : rare-earth and Y ions) where the metal-insulator transitions are induced by systematic bandwidth control via chemical substitutions of R ions. We establish the phase diagram of R2Ir2O7 , as endorsed by the variation of the optical conductivity spectra, in which the competing phases including paramagnetic insulator (PI), paramagnetic metal (PM), and antiferromagnetic insulator (AFI) show up as a function of bandwidth and temperature. For small R -ionic radius (R = Y-Sm), i.e., strongly correlated region, pronounced peaks on the edge of the optical gap are discerned below the magnetic transition temperature TN, which is attributable to exciton and magnon sideband absorptions. It turns out that the estimated nearest-neighbor exchange interaction increases as R -ionic radius increases, whereas TN monotonically decreases, indicating that the all-in all-out magnetic order arises from the interplay among several exchange interactions inherent to extended 5 d orbitals on the frustrated lattice. For larger R -ionic radius (R = Sm-Pr), i.e., relatively weakly correlated region, the optical conductivity spectra markedly change below 0.3 eV in the course of PM-AFI transition, implying that the magnetic order induces the insulating state. In particular, we have found distinct electrodynamics in the composition of R =Nd0.5Pr0.5 which is located on the boundary of the quantum PM-AFI transition, pointing to the possible emergence of unconventional topological electronic phases related possibly to the correlated Weyl electrons.

  13. Novel Electronic Behavior Driving NdNiO3 Metal-Insulator Transition.

    PubMed

    Upton, M H; Choi, Yongseong; Park, Hyowon; Liu, Jian; Meyers, D; Chakhalian, J; Middey, S; Kim, Jong-Woo; Ryan, Philip J

    2015-07-17

    We present evidence that the metal-insulator transition (MIT) in a tensile-strained NdNiO3 (NNO) film is facilitated by a redistribution of electronic density and that it neither requires Ni charge disproportionation nor a symmetry change [U. Staub et al., Phys. Rev. Lett. 88, 126402 (2002); R. Jaramillo et al., Nat. Phys. 10, 304 (2014)]. Given that epitaxial tensile strain in thin NNO films induces preferential occupancy of the e(g) d(x(2)-y(2)) orbital we propose that the larger transfer integral of this orbital state with the O 2p orbital state mediates a redistribution of electronic density from the Ni atom. A decrease in the Ni d(x(2)-y(2)) orbital occupation is directly observed by resonant inelastic x-ray scattering below the MIT temperature. Furthermore, an increase in the Nd charge occupancy is measured by x-ray absorption at the Nd L(3) edge. Both spin-orbit coupling and crystal field effects combine to break the degeneracy of the Nd 5d states, shifting the energy of the Nd e(g) d(x(2)-y(2)) orbit towards the Fermi level, allowing the A site to become an active acceptor during the MIT. This work identifies the relocation of electrons from the Ni 3d to the Nd 5d orbitals across the MIT. We propose that the insulating gap opens between the Ni 3d and O 2p states, resulting from Ni 3d electron localization. The transition seems to be neither a purely Mott-Hubbard transition nor a simple charge transfer.

  14. Novel Electronic Behavior Driving NdNiO3 Metal-Insulator Transition

    NASA Astrophysics Data System (ADS)

    Upton, M. H.; Choi, Yongseong; Park, Hyowon; Liu, Jian; Meyers, D.; Chakhalian, J.; Middey, S.; Kim, Jong-Woo; Ryan, Philip J.

    2015-07-01

    We present evidence that the metal-insulator transition (MIT) in a tensile-strained NdNiO3 (NNO) film is facilitated by a redistribution of electronic density and that it neither requires Ni charge disproportionation nor a symmetry change [U. Staub et al., Phys. Rev. Lett. 88, 126402 (2002); R. Jaramillo et al., Nat. Phys. 10, 304 (2014)]. Given that epitaxial tensile strain in thin NNO films induces preferential occupancy of the eg dx2-y2 orbital we propose that the larger transfer integral of this orbital state with the O 2 p orbital state mediates a redistribution of electronic density from the Ni atom. A decrease in the Ni dx2-y2 orbital occupation is directly observed by resonant inelastic x-ray scattering below the MIT temperature. Furthermore, an increase in the Nd charge occupancy is measured by x-ray absorption at the Nd L3 edge. Both spin-orbit coupling and crystal field effects combine to break the degeneracy of the Nd 5 d states, shifting the energy of the Nd eg dx2-y2 orbit towards the Fermi level, allowing the A site to become an active acceptor during the MIT. This work identifies the relocation of electrons from the Ni 3 d to the Nd 5 d orbitals across the MIT. We propose that the insulating gap opens between the Ni 3 d and O 2 p states, resulting from Ni 3 d electron localization. The transition seems to be neither a purely Mott-Hubbard transition nor a simple charge transfer.

  15. Mg doping of thermochromic VO2 films enhances the optical transmittance and decreases the metal-insulator transition temperature

    NASA Astrophysics Data System (ADS)

    Mlyuka, N. R.; Niklasson, G. A.; Granqvist, C. G.

    2009-10-01

    Thermochromic films of MgxV1-xO2 were made by reactive dc magnetron sputtering onto heated glass. The metal-insulator transition temperature decreased by ˜3 K/at. %Mg, while the optical transmittance increased concomitantly. Specifically, the transmittance of visible light and of solar radiation was enhanced by ˜10% when the Mg content was ˜7 at. %. Our results point at the usefulness of these films for energy efficient fenestration.

  16. Dynamically Babinet-invertible metasurface: a capacitive-inductive reconfigurable filter for terahertz waves using vanadium-dioxide metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Urade, Yoshiro; Nakata, Yosuke; Okimura, Kunio; Nakanishi, Toshihiro; Miyamaru, Fumiaki; Takeda, Mitsuo W.; Kitano, Masao

    2016-03-01

    This paper proposes a reconfigurable planar metamaterial that can be switched between capacitive and inductive responses using local changes in the electrical conductivity of its constituent material. The proposed device is based on Babinet's principle and exploits the singular electromagnetic responses of metallic checkerboard structures, which are dependent on the local electrical conductivity. Utilizing the heating-induced metal-insulator transition of vanadium dioxide ($\\mathrm{VO}_2$), the proposed metamaterial is designed to compensate for the effect of the substrate and is experimentally characterized in the terahertz regime. This reconfigurable metamaterial can be utilized as a switchable filter and as a switchable phase shifter for terahertz waves.

  17. Heteroepitaxial VO{sub 2} thin films on GaN: Structure and metal-insulator transition characteristics

    SciTech Connect

    Zhou You; Ramanathan, Shriram

    2012-10-01

    Monolithic integration of correlated oxide and nitride semiconductors may open up new opportunities in solid-state electronics and opto-electronics that combine desirable functional properties of both classes of materials. Here, we report on epitaxial growth and phase transition-related electrical properties of vanadium dioxide (VO{sub 2}) thin films on GaN epitaxial layers on c-sapphire. The epitaxial relation is determined to be (010){sub vo{sub 2}} parallel (0001){sub GaN} parallel (0001){sub A1{sub 2O{sub 3}}} and [100]{sub vo{sub 2}} parallel [1210]{sub GaN} parallel [0110]{sub A1{sub 2O{sub 3}}} from x-ray diffraction. VO{sub 2} heteroepitaxial growth and lattice mismatch are analyzed by comparing the GaN basal plane (0001) with the almost close packed corrugated oxygen plane in vanadium dioxide and an experimental stereographic projection describing the orientation relationship is established. X-ray photoelectron spectroscopy suggests a slightly oxygen rich composition at the surface, while Raman scattering measurements suggests that the quality of GaN layer is not significantly degraded by the high-temperature deposition of VO{sub 2}. Electrical characterization of VO{sub 2} films on GaN indicates that the resistance changes by about four orders of magnitude upon heating, similar to epitaxial VO{sub 2} films grown directly on c-sapphire. It is shown that the metal-insulator transition could also be voltage-triggered at room temperature and the transition threshold voltage scaling variation with temperature is analyzed in the framework of a current-driven Joule heating model. The ability to synthesize high quality correlated oxide films on GaN with sharp phase transition could enable new directions in semiconductor-photonic integrated devices.

  18. Metal-insulator transition of valence-controlled VO2 thin film prepared by RF magnetron sputtering using oxygen radical

    NASA Astrophysics Data System (ADS)

    Suetsugu, Takaaki; Shimazu, Yuichi; Tsuchiya, Takashi; Kobayashi, Masaki; Minohara, Makoto; Sakai, Enju; Horiba, Koji; Kumigashira, Hiroshi; Higuchi, Tohru

    2016-06-01

    We have prepared b-axis-oriented VO2 thin films by RF magnetron sputtering using oxygen radicals as the reactive gas. The VO2 thin films consist of a mixed-valence V3+/V4+ state formed by oxygen vacancies. The V3+ ratio strongly depends on the film thickness and the oxygen partial pressure of the radical gun during deposition. The lattice constant of the b-axis increases and the metal-insulator transition (MIT) temperature decreases with decreasing V3+ ratio, although the VO2 thin films with a high V3+ ratio of 42% do not exhibit MIT. The bandwidths and spectral weights of V 3d a1g and \\text{e}\\text{g}σ bands at around the Fermi level, which correspond to the insulating phase at 300 K, are smaller in the VO2 thin films with a low V3+ ratio. These results indicate that the control of the mixed-valence V3+/V4+ state is important for the MIT of b-axis-oriented VO2 thin films.

  19. Metal-insulator transition in RbC60 polymer fulleride studied by ESR and electron-spin relaxation

    NASA Astrophysics Data System (ADS)

    Atsarkin, V. A.; Demidov, V. V.; Vasneva, G. A.

    1997-10-01

    The ESR intensity, line shape, and longitudinal electron-spin relaxation in the polymer phase of the RbC60 fulleride are investigated in the temperature range 4.2metal-insulator transition region (25-50 K). It is found that below 50 K the ESR line can be separated into two Lorentzian components ascribed to conduction electrons and some localized paramagnetic centers (with concentration of about 0.03 per formula unit) with allowance made for the relaxation bottleneck. The decrease of the conduction-electron susceptibility obeys an activation law with the characteristic energy Δ/kB=80+/-10 K related to the opening of a gap 2Δ~100 cm -1. The same quantity is found by analyzing both longitudinal and transverse relaxation caused by fluctuations of internal fields with correlation time τc~ exp(2Δ/kBT). Below 25 K, the temperature dependencies of the linewidth and the relaxation times change abruptly, revealing the development of a new ordered state. The nature of this state is discussed.

  20. Tuning the metal-insulator transition in NdNiO3 heterostructures via Fermi surface instability and spin fluctuations

    NASA Astrophysics Data System (ADS)

    Dhaka, R. S.; Das, Tanmoy; Plumb, N. C.; Ristic, Z.; Kong, W.; Matt, C. E.; Xu, N.; Dolui, Kapildeb; Razzoli, E.; Medarde, M.; Patthey, L.; Shi, M.; Radović, M.; Mesot, Joël

    2015-07-01

    We employed in situ pulsed laser deposition (PLD) and angle-resolved photoemission spectroscopy (ARPES) to investigate the mechanism of the metal-insulator transition (MIT) in NdNiO3 (NNO) thin films, grown on NdGaO3(110) and LaAlO3(100) substrates. In the metallic phase, we observe three-dimensional hole and electron Fermi surface (FS) pockets formed from strongly renormalized bands with well-defined quasiparticles. Upon cooling across the MIT in NNO/NGO sample, the quasiparticles lose coherence via a spectral weight transfer from near the Fermi level to localized states forming at higher binding energies. In the case of NNO/LAO, the bands are apparently shifted upward with an additional holelike pocket forming at the corner of the Brillouin zone. We find that the renormalization effects are strongly anisotropic and are stronger in NNO/NGO than NNO/LAO. Our study reveals that substrate-induced strain tunes the crystal field splitting, which changes the FS properties, nesting conditions, and spin-fluctuation strength, and thereby controls the MIT via the formation of an electronic order parameter with QAF˜(1 /4 ,1 /4 ,1 /4 ±δ ) .

  1. Dynamics of the metal-insulator transition of donor-doped SrTi O3

    NASA Astrophysics Data System (ADS)

    Meyer, René; Zurhelle, Alexander F.; De Souza, Roger A.; Waser, Rainer; Gunkel, Felix

    2016-09-01

    The electrical properties of donor-doped SrTi O3 (n -STO) are profoundly affected by an oxidation-induced metal-insulator transition (MIT). Here we employ dynamical numerical simulations to examine the high-temperature MIT of n -STO over a large range of time and length scales. The simulations are based on the Nernst-Planck equations, the continuity equations, and the Poisson equation, in combination with surface lattice disorder equilibria serving as time-dependent boundary conditions. The simulations reveal that n -STO, upon oxidation, develops a kinetic space charge region (SCR) in the near-surface region. The surface concentrations of the variously mobile defects (electrons, Sr vacancies, and O vacancies) are found to vary over time and to differ considerably from the values of the new equilibrium. The formation of the SCR in which electrons are strongly depleted occurs within nanoseconds, i.e., it yields a fast MIT in the near-surface region during the oxidation process. As a result of charge (over-)compensation by Sr vacancies incorporated at the surface of n -STO, this SCR is much more pronounced than conventionally expected. In addition, we find an anomalous increase of O vacancy concentration at the surface upon oxidation caused by the SCR. Our simulations show that the SCR fades in the long term as a result of the slow in-diffusion of Sr vacancies. We discuss implications for the electrical conductivity of n -STO crystals used as substrates for epitaxial oxide thin films, of n -STO thin films and interfaces, and of polycrystalline n -STO with various functionalities.

  2. Changes in the electronic structure and spin dynamics across the metal-insulator transition in LaLa1-xSrxCoO3

    DOE PAGES

    Smith, R. X.; Hoch, M. J. R.; Moulton, W. G.; ...

    2016-01-25

    The magnetoelectronic properties of La1-xSrxCoO3, which include giant magnetoresistance, are strongly dependent on the level of hole doping. The system evolves, with increasing x, from a spin glass insulator to a metallic ferromagnet with a metal-insulator (MI) transition at xC ~ 0.18. Nanoscale phase separation occurs in the insulating phase and persists, to some extent, into the just-metallic phase. The present experiments at 4.2 K have used 139La NMR to investigate the transition from hopping dynamics for x < xC to Korringa-like ferromagnetic metal behavior for x > xC. A marked decrease in the spin-lattice relaxation rate is found inmore » the vicinity of xC as the MI transition is crossed. Lastly, this behavior is accounted for in terms of the evolution of the electronic structure and dynamics with cluster size.« less

  3. Electrolysis-induced protonation of VO2 thin film transistor for the metal-insulator phase modulation

    NASA Astrophysics Data System (ADS)

    Katase, Takayoshi; Endo, Kenji; Ohta, Hiromichi

    2016-02-01

    Compared to state-of-the-art modulation techniques, protonation is the most ideal to control the electrical and optical properties of transition metal oxides (TMOs) due to its intrinsic non-volatile operation. However, the protonation of TMOs is not typically utilized for solid-state devices because of imperative high-temperature annealing treatment in hydrogen source. Although one solution for room temperature (RT) protonation of TMOs is liquid-phase electrochemistry, it is unsuited for practical purposes due to liquid-leakage problem. Herein we demonstrate solid-state RT-protonation of vanadium dioxide (VO2), which is a well-known thermochromic TMO. We fabricated the three terminal thin-film-transistor structure on an insulating VO2 film using a water-infiltrated nanoporous glass, which serves as a solid electrolyte. For gate voltage application, water electrolysis and protonation/deprotonation of VO2 film surface occurred, leading to reversible metal-insulator phase conversion of ~11-nm-thick VO2 layer. The protonation was clearly accompanied by the structural change from an insulating monoclinic to a metallic tetragonal phase. Present results offer a new route for the development of electro-optically active solid-state devices with TMO materials by engineering RT protonation.

  4. Ultracold fermions in a one-dimensional bipartite optical lattice: Metal-insulator transitions driven by shaking

    NASA Astrophysics Data System (ADS)

    Di Liberto, M.; Malpetti, D.; Japaridze, G. I.; Morais Smith, C.

    2014-08-01

    We theoretically investigate the behavior of a system of fermionic atoms loaded in a bipartite one-dimensional optical lattice that is under the action of an external time-periodic driving force. By using Floquet theory, an effective model is derived. The bare hopping coefficients are renormalized by zeroth-order Bessel functions of the first kind with different arguments for the nearest-neighbor and next-nearest-neighbor hopping. The insulating behavior characterizing the system at half filling in the absence of driving is dynamically suppressed, and for particular values of the driving parameter the system becomes either a standard metal or an unconventional metal with four Fermi points. The existence of the four-Fermi-point metal relies on the fact that, as a consequence of the shaking procedure, the next-nearest-neighbor hopping coefficients become significant compared to the nearest-neighbor ones. We use the bosonization technique to investigate the effect of on-site Hubbard interactions on the four-Fermi-point metal-insulator phase transition. Attractive interactions are expected to enlarge the regime of parameters where the unconventional metallic phase arises, whereas repulsive interactions reduce it. This metallic phase is known to be a Luther-Emery liquid (spin-gapped metal) for both repulsive and attractive interactions, contrary to the usual Hubbard model, which exhibits a Mott-insulator phase for repulsive interactions. Ultracold fermions in driven one-dimensional bipartite optical lattices provide an interesting platform for the realization of this long-studied four-Fermi-point unconventional metal.

  5. Positive-bias gate-controlled metal-insulator transition in ultrathin VO2 channels with TiO2 gate dielectrics.

    PubMed

    Yajima, Takeaki; Nishimura, Tomonori; Toriumi, Akira

    2015-12-14

    The next generation of electronics is likely to incorporate various functional materials, including those exhibiting ferroelectricity, ferromagnetism and metal-insulator transitions. Metal-insulator transitions can be controlled by electron doping, and so incorporating such a material in transistor channels will enable us to significantly modulate transistor current. However, such gate-controlled metal-insulator transitions have been challenging because of the limited number of electrons accumulated by gate dielectrics, or possible electrochemical reaction in ionic liquid gate. Here we achieve a positive-bias gate-controlled metal-insulator transition near the transition temperature. A significant number of electrons were accumulated via a high-permittivity TiO2 gate dielectric with subnanometre equivalent oxide thickness in the inverse-Schottky-gate geometry. An abrupt transition in the VO2 channel is further exploited, leading to a significant current modulation far beyond the capacitive coupling. This solid-state operation enables us to discuss the electrostatic mechanism as well as the collective nature of gate-controlled metal-insulator transitions, paving the pathway for developing functional field effect transistors.

  6. Voltage Control of Metal-insulator Transition and Non-volatile Ferroelastic Switching of Resistance in VOx/PMN-PT Heterostructures

    PubMed Central

    Nan, Tianxiang; Liu, Ming; Ren, Wei; Ye, Zuo-Guang; Sun, Nian X.

    2014-01-01

    The central challenge in realizing electronics based on strongly correlated electronic states, or ‘Mottronics', lies in finding an energy efficient way to switch between the distinct collective phases with a control voltage in a reversible and reproducible manner. In this work, we demonstrate that a voltage-impulse-induced ferroelastic domain switching in the (011)-oriented 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-PT) substrates allows a robust non-volatile tuning of the metal-insulator transition in the VOx films deposited onto them. In such a VOx/PMN-PT heterostructure, the unique two-step electric polarization switching covers up to 90% of the entire poled area and contributes to a homogeneous in-plane anisotropic biaxial strain, which, in turn, enables the lattice changes and results in the suppression of metal-insulator transition in the mechanically coupled VOx films by 6 K with a resistance change up to 40% over a broad range of temperature. These findings provide a framework for realizing in situ and non-volatile tuning of strain-sensitive order parameters in strongly correlated materials, and demonstrate great potentials in delivering reconfigurable, compactable, and energy-efficient electronic devices. PMID:25088796

  7. Voltage control of metal-insulator transition and non-volatile ferroelastic switching of resistance in VOx/PMN-PT heterostructures.

    PubMed

    Nan, Tianxiang; Liu, Ming; Ren, Wei; Ye, Zuo-Guang; Sun, Nian X

    2014-08-04

    The central challenge in realizing electronics based on strongly correlated electronic states, or 'Mottronics', lies in finding an energy efficient way to switch between the distinct collective phases with a control voltage in a reversible and reproducible manner. In this work, we demonstrate that a voltage-impulse-induced ferroelastic domain switching in the (011)-oriented 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-PT) substrates allows a robust non-volatile tuning of the metal-insulator transition in the VOx films deposited onto them. In such a VOx/PMN-PT heterostructure, the unique two-step electric polarization switching covers up to 90% of the entire poled area and contributes to a homogeneous in-plane anisotropic biaxial strain, which, in turn, enables the lattice changes and results in the suppression of metal-insulator transition in the mechanically coupled VOx films by 6 K with a resistance change up to 40% over a broad range of temperature. These findings provide a framework for realizing in situ and non-volatile tuning of strain-sensitive order parameters in strongly correlated materials, and demonstrate great potentials in delivering reconfigurable, compactable, and energy-efficient electronic devices.

  8. Metal-insulator transition in the hollandite K2V8O16 with a frustrated zigzag ladder probed by V51 NMR

    NASA Astrophysics Data System (ADS)

    Shimizu, Yasuhiro; Okai, Katsunori; Itoh, Masayuki; Isobe, Masahiro; Yamaura, Jun-Ichi; Yamauchi, Touru; Ueda, Yutaka

    2011-04-01

    We report the experimental results of V51 NMR measurements on the hollandite K2V8O16 consisting of a frustrated zigzag ladder with the orbital degrees of freedom. The metal-insulator transition is found to involve the spin-singlet formation by the V51 Knight shift K, the nuclear spin-lattice relaxation rate 1/T1, and the spin-echo decay rate 1/T2 measurements. In the insulating state, the anisotropic electric-field gradient supports the dxy orbital order with the spin singlet along the chain. The dxy orbital is magnetically most active in the metallic state, as observed by the anisotropic Knight shift, which suggests the strong electron correlation in the dxy band. Despite the large enhancement of the spin susceptibility, no apparent spin correlation is developed in the frustrated metallic state. Pressure suppresses the electron correlation continuously, as highlighted in the decrease of the metal-insulator transition and the spin susceptibility keeping the largest dxy contribution in the metallic state. A robust spin-singlet insulating phase with the large spin gap and paramagnetic spins appears above 1 GPa, which suggests a competition of the charge-orbital ordering pattern.

  9. Voltage Control of Metal-insulator Transition and Non-volatile Ferroelastic Switching of Resistance in VOx/PMN-PT Heterostructures

    NASA Astrophysics Data System (ADS)

    Nan, Tianxiang; Liu, Ming; Ren, Wei; Ye, Zuo-Guang; Sun, Nian X.

    2014-08-01

    The central challenge in realizing electronics based on strongly correlated electronic states, or `Mottronics', lies in finding an energy efficient way to switch between the distinct collective phases with a control voltage in a reversible and reproducible manner. In this work, we demonstrate that a voltage-impulse-induced ferroelastic domain switching in the (011)-oriented 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-PT) substrates allows a robust non-volatile tuning of the metal-insulator transition in the VOx films deposited onto them. In such a VOx/PMN-PT heterostructure, the unique two-step electric polarization switching covers up to 90% of the entire poled area and contributes to a homogeneous in-plane anisotropic biaxial strain, which, in turn, enables the lattice changes and results in the suppression of metal-insulator transition in the mechanically coupled VOx films by 6 K with a resistance change up to 40% over a broad range of temperature. These findings provide a framework for realizing in situ and non-volatile tuning of strain-sensitive order parameters in strongly correlated materials, and demonstrate great potentials in delivering reconfigurable, compactable, and energy-efficient electronic devices.

  10. Multifractality and Conformal Invariance at 2D Metal-Insulator Transition in the Spin-Orbit Symmetry Class

    NASA Astrophysics Data System (ADS)

    Obuse, H.; Subramaniam, A. R.; Furusaki, A.; Gruzberg, I. A.; Ludwig, A. W. W.

    2007-04-01

    We study the multifractality (MF) of critical wave functions at boundaries and corners at the metal-insulator transition (MIT) for noninteracting electrons in the two-dimensional (2D) spin-orbit (symplectic) universality class. We find that the MF exponents near a boundary are different from those in the bulk. The exponents at a corner are found to be directly related to those at a straight boundary through a relation arising from conformal invariance. This provides direct numerical evidence for conformal invariance at the 2D spin-orbit MIT. The presence of boundaries modifies the MF of the whole sample even in the thermodynamic limit.

  11. Metal insulator transition with ferrimagnetic order in epitaxial thin films of spinel NiCo2O4

    NASA Astrophysics Data System (ADS)

    Silwal, Punam; Miao, Ludi; Stern, Ilan; Zhou, Xiaolan; Hu, Jin; Ho Kim, Dae

    2012-01-01

    We have grown epitaxial thin films of spinel NiCo2O4 on single crystalline MgAl2O4 (001) substrates by pulsed laser deposition. Magnetization measurement revealed hysteresis loops consistent with the reported ferrimagnetic order. The electrical transport exhibits a metallic behavior with the lowest resistivity of 0.8 mΩ cm and a metal insulator transition around the Néel temperature. The systematic variation in the properties of the films grown at different growth temperatures indicates a close relationship between the magnetic order and electrical transport.

  12. Electric controlling of surface metal-insulator transition in the doped BaTiO3 film

    NASA Astrophysics Data System (ADS)

    Xun, Wei; Hao, Xiang; Pan, Tao; Zhong, Jia-Lin; Ma, Chun-Lan; Hou, Fang; Wu, Yin-Zhong

    2017-07-01

    Based on first-principles calculations, the BaTiO3(BTO) film with local La-doping is studied. For a selected concentration and position of doping, the surface metal-insulator transition occurs under the applied electric field, and the domain appears near the surface for both bipolar states. Furthermore, for the insulated surface state, i.e., the downward polarization state in the doped film, the gradient bandgap structure is achieved, which favors the absorption of solar energy. Our investigation can provide an alternative avenue in modification of surface property and surface screening effect in polar materials.

  13. Unusual valence state and metal-insulator transition in BaV10O15 probed by hard x-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Yoshino, T.; Okawa, M.; Kajita, T.; Dash, S.; Shimoyama, R.; Takahashi, K.; Takahashi, Y.; Takayanagi, R.; Saitoh, T.; Ootsuki, D.; Yoshida, T.; Ikenaga, E.; Saini, N. L.; Katsufuji, T.; Mizokawa, T.

    2017-02-01

    We have studied the electronic structure of BaV10O15 across the metal-insulator transition with V trimerization by means of hard-x-ray photoemission spectroscopy (HAXPES) and mean-field calculations. The V 2 p HAXPES indicates V2.5 +-V3 + charge fluctuation in the metallic phase, and V2+-V3+ charge order in the insulating phase. The V2.5 +-V3 + charge fluctuation is consistent with the mean-field solution where a V 3 d a1 g electron is shared by two V sites with face-sharing VO6 octahedra. The valence-band HAXPES of the metallic phase exhibits pseudogap opening at the Fermi level associated with the charge fluctuation, and a band gap ˜200 meV is established in the insulating phase due to the switching of charge correlation.

  14. Metal-insulator transition characteristics of vanadium dioxide thin films synthesized by ultrasonic nebulized spray pyrolysis of an aqueous combustion mixture

    NASA Astrophysics Data System (ADS)

    Bharathi, R.; Naorem, Rameshwari; Umarji, A. M.

    2015-08-01

    We report the synthesis of high quality vanadium dioxide (VO2) thin films by a novel spray pyrolysis technique, namely ultrasonic nebulized spray pyrolysis of aqueous combustion mixture (UNSPACM). This simple and cost effective two step process involves synthesis of a V2O5 film on an LaAlO3 substrate followed by a controlled reduction to form single phase VO2. The formation of M1 phase (P21/c) is confirmed by Raman spectroscopic studies. A thermally activated metal-insulator transition (MIT) was observed at 61 ^\\circ C, where the resistivity changes by four orders of magnitude. Activation energies for the low conduction phase and the high conduction phase were obtained from temperature variable resistance measurements. The infrared spectra also show a dramatic change in reflectance from 13% to over 90% in the wavelength range of 7-15 μ m. This indicates the suitability of the films for optical switching applications at infrared frequencies.

  15. Covalency, Excitons, Double Counting and the Metal-Insulator Transition in Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Wang, Xin

    2012-02-01

    We present single-site dynamical mean-field studies of realistic models of transition metal oxides, including the cuprate superconductors and rare earth nickelates (in bulk and superlattice form). We include orbital multiplet effects and hybridization to ligands. We explicitly calculate the d-d exciton spectra for cuprates, finding sharp exciton lines in both metallic and insulating phases, which should be visible in experiments. We also find that the additional d3z^2-r^2 orbital does not contribute to an additional Fermi surface at any reasonable doping, in contradiction to previous slave-boson studies. The hybridization to ligands is shown to have crucial effects, for example suppressing the ferro-orbital order previously found in Hubbard model studies of nickelates. Hybridization to ligands is shown to be most naturally parametrized by the d-orbital occupancy. For cuprates and nickelates, insulating behavior is found to be present only for a very narrow range of d-occupancy, irrespective of the Coulomb repulsion. The d-occupancy predicted by standard band calculations is found to be very far from the values required to obtain an insulating phase, calling into question the interpretation of these materials as charge transfer insulators. [4pt] This work is done in collaboration with A.J. Millis, M.J. Han, C.A. Marianetti, L. de' Medici, and H.T. Dang, and is supported by NSF-DMR-1006282, the Army Office of Scientific Research, and the Condensed Matter Theory Center and CNAM at University of Maryland. [4pt] [1] X. Wang, H. T. Dang, and A. J. Millis, Phys. Rev. B 84, 014530 (2011).[0pt] [2] X. Wang, M. J. Han, L. de' Medici, C. A. Marianetti, and A. J. Millis, arXiv:1110.2782.[0pt] [3] M. J. Han, X. Wang, C. A. Marianetti, and A. J. Millis, Phys. Rev. Lett. 107, 206804 (2011).

  16. Metal-insulator transition in Bi-Pb-Sr-Ca-Y-Cu-O caused by a change in the structural modulation

    NASA Astrophysics Data System (ADS)

    Fukushima, Noburu; Yoshiki, Masahiko

    1994-07-01

    A metal-insulator transition was observed in the layered cuprate Bi2-xPbxSr2Ca0.3Y0.7Cu2O8+d, where the carrier concentration is not changed but the structural modulation was relaxed with increasing lead content x. Resistivity measurements and x-ray-photoelectron-spectroscopy (XPS) valence-band spectra manifested the occurrence of the metal-insulator transition; XPS core-level spectra, together with the results of a chemical analysis, confirmed that in this system the degree of the electron filling is constant. This metal-insulator transition is believed to arise from the change in the Cu-O-Cu bonding angle, as well as those in some nonlayered transition-metal perovskites.

  17. Doping-driven metal-insulator transitions and charge orderings in the extended Hubbard model

    NASA Astrophysics Data System (ADS)

    Kapcia, K. J.; Robaszkiewicz, S.; Capone, M.; Amaricci, A.

    2017-03-01

    We perform a thorough study of the extended Hubbard model featuring local and nearest-neighbor Coulomb repulsion. Using the dynamical mean-field theory we investigated the zero-temperature phase diagram of this model as a function of the chemical doping. The interplay between local and nonlocal interactions drives a variety of phase transitions connecting two distinct charge-ordered insulators, i.e., half filled and quarter filled, a charge-ordered metal and a Mott-insulating phase. We characterize these transitions and the relative stability of the solutions and we show that the two interactions conspire to stabilize the quarter-filled charge-ordered phase.

  18. Magnetic and Metal-Insulator Transition in natural Transition Metal Sulfides

    NASA Astrophysics Data System (ADS)

    Wang, Renxiong; Metz, Tristin; Liu, I.-Lin; Wang, Kefeng; Wang, Xiangfeng; Jeffries, J. R.; Saha, S. R.; Greene, R. L.; Paglione, J.; Santelli, C. C.; Post, J.,

    In collaboration with the Smithsonian Institution's National Museum of Natural History, we present detailed studies of a class of natural minerals with potential to harbor correlated behavior. Transition metal sulfide minerals, such as Bornite (Cu5FeS4), are an important family of compounds known for their thermoelectric properties. We will present low temperature experimental studies of magnetic transitions and focus on a compound that exhibits a metal to insulator transition concident with entrance to an antiferromagnetic ground state, suggesting a potentially interesting system with promise for realizing new correlated states of matter in a naturally occurring mineral.

  19. Magnetic Superstructure and Metal-Insulator Transition in Mn-Substituted Sr3 Ru 2 O 7

    NASA Astrophysics Data System (ADS)

    Hossain, M. A.; Zhu, Z. H.; Bohnenbuck, B.; Chuang, Y.-D.; Yoshida, Y.; Hussain, Z.; Keimer, B.; Elfimov, I. S.; Sawatzky, G. A.; Damascelli, A.

    2011-03-01

    We present a temperature-dependent resonant elastic soft x-ray scattering (REXS) study of the metal-insulator transition in Sr 3 (Ru 1-x Mn x)2 O7 , performed at both Ru and Mn L -edges. Resonant magnetic superstructure reflections together with ab-initio density functional theory calculations identify the ground state as a spin checkerboard with blocks of 4 spins up and 4 spins down. Based on modelling of the REXS intensity from randomly distributed Mn impurities, we establish the inhomogeneous nature of the metal-insulator transition, with an effective percolation threshold corresponding to an anomalously low x ~ 0.05 Mn substitution. Perhaps more important, our results suggest that the same checkerboard instability might be present already in the parent compound Sr 3 Ru 2 O7 . In collaboration with: A.G. Cruz Gonzalez, J.D. Denlinger (Berkeley) I. Zegkinoglou, M.W. Haverkort (MPI) J. Geck, D.G. Hawthorn (UBC) R. Mathieu, Y. Tokura, S. Satow, H. Takagi (Tokyo) H.-H. Wu and C. Schussler-Langeheine (Cologne).

  20. Robust antiferromagnetic spin waves across the metal-insulator transition in hole-doped BaMn2As2

    DOE PAGES

    Ramazanoglu, M.; Sapkota, A.; Pandey, Abhishek; ...

    2017-06-01

    BaMn2 As2 is an antiferromagnetic insulator where a metal-insulator transition occurs with hole doping via the substitution of Ba with K. The metal-insulator transition causes only a small suppression of the Néel temperature (TN) and the ordered moment, suggesting that doped holes interact weakly with the Mn spin system. Powder inelastic neutron scattering measurements were performed on three different samples of Ba1 - xKxMn2 As2 with x = 0 , 0.125, and 0.25 to study the effect of hole doping and metallization on the spin dynamics. We compare the neutron intensities to a linear spin-wave theory approximation to the J1more » $-$ J2 $-$ Jc Heisenberg model. Hole doping is found to introduce only minor modifications to the exchange energies and spin gap. The changes observed in the exchange constants are consistent with the small drop of TN with doping.« less

  1. Effect of Structural Relaxation on the Metal-Insulator Transition in Heavily Underdoped YBa $_2 2 Cu _3 3 O _{7-delta }$ 7 - δ Single Crystals

    NASA Astrophysics Data System (ADS)

    Vovk, R. V.; Dobrovolskiy, O. V.; Nazyrov, Z. F.; Kotvitskaya, K. A.; Chroneos, A.

    2015-08-01

    We report the results of a study of the effect of structural relaxation on the basal-plane conductivity of heavily underdoped high- YBaCuO single crystals. An increase of the oxygen deficiency in YBaCuO has been found to strengthen localization effects and to lead to the realization of a transition of the metal-insulator type, which always precedes the superconducting transition. In addition, a 5-day room-temperature annealing of the samples has been revealed to result in a notable shift of the metal-insulator transition point toward higher temperatures.

  2. Metal-insulator transition in NiS2-x Se x : chemical vs external pressure effects

    NASA Astrophysics Data System (ADS)

    Marini, C.; Valentini, M.; Perucchi, A.; Dore, P.; Sarma, D. D.; Lupi, S.; Postorino, P.

    2011-03-01

    The Se alloying (x)- and the pressure (P)-induced metal-insulator transitions on the strongly correlated NiS2-x Se x system have been investigated through Raman and infrared (IR) spectroscopies. Raman and IR responses of NiS2 to lattice compression are correlated to a metallization transition, occurring at ∼4 GPa. This result suggests a strong interaction between lattice and electronic degrees of freedom. In particular, IR measurements carried out by applying P on NiS2 (i.e. lattice contraction) and on Se alloying (i.e. lattice expansion) reveal that in both cases a metallic state is obtained. Our optical spectroscopy results deviate from the idea of a simple scaling factor between P and x previously claimed by transport measurements, but, on the contrary, point out the substantially different microscopic origin of the two transitions.

  3. Mott metal-insulator transition induced by utilizing a glasslike structural ordering in low-dimensional molecular conductors

    NASA Astrophysics Data System (ADS)

    Hartmann, Benedikt; Müller, Jens; Sasaki, Takahiko

    2014-11-01

    We utilize a glasslike structural transition in order to induce a Mott metal-insulator transition in the quasi-two-dimensional organic charge-transfer salt κ -(BEDT-TTF)2Cu [N (CN)2Br ]. In this material, the terminal ethylene groups of the BEDT-TTF molecules can adopt two different structural orientations within the crystal structure, namely eclipsed (E) and staggered (S) with the relative orientation of the outer C-C bonds being parallel and canted, respectively. These two conformations are thermally disordered at room temperature and undergo a glasslike ordering transition at Tg˜75 K. When cooling through Tg, a small fraction that depends on the cooling rate remains frozen in the S configuration, which is of slightly higher energy, corresponding to a controllable degree of structural disorder. We demonstrate that, when thermally coupled to a low-temperature heat bath, a pulsed heating current through the sample causes a very fast relaxation with cooling rates at Tg of the order of several 1000 K /min . The freezing of the structural degrees of freedom causes a decrease of the electronic bandwidth W with increasing cooling rate, and hence a Mott metal-insulator transition as the system crosses the critical ratio (W/U ) c of bandwidth to on-site Coulomb repulsion U . Due to the glassy character of the transition, the effect is persistent below Tg and can be reversibly repeated by melting the frozen configuration upon warming above Tg. Both by exploiting the characteristics of slowly changing relaxation times close to this temperature and by controlling the heating power, the materials can be fine-tuned across the Mott transition. A simple model allows for an estimate of the energy difference between the E and S state as well as the accompanying degree of frozen disorder in the population of the two orientations.

  4. Theory of the metal-insulator transition in Pr Ru4 P12 and Pr Fe4 P12

    NASA Astrophysics Data System (ADS)

    Curnoe, S. H.; Harima, H.; Takegahara, K.; Ueda, K.

    2004-12-01

    All symmetry-allowed couplings between the 4f2 -electron ground state doublet of trivalent praseodymium in PrRu4P12 and PrFe4P12 and displacements of the phosphorus, iron, or ruthenium ions are considered. Two types of displacements can change the crystal lattice from body-centred cubic to simple orthorhombic or to simple cubic. The first type lowers the point group symmetry from tetrahedral to orthorhombic, while the second type leaves it unchanged, with corresponding space group reductions Im3¯→Pmmm and Im3¯→Pm3¯ , respectively. In former case, the lower point group symmetry splits the degeneracy of the 4f2 doublet into states with opposite quadrupole moment, which then leads to antiquadrupolar ordering, as in PrFe4P12 . Either kind of displacement may conspire with nesting of the Fermi surface to cause the metal-insulator or partial metal-insulator transition observed in PrFe4P12 and PrRu4P12 . We investigate this scenario using band-structure calculations, and it is found that displacements of the phosphorus ions in PrRu4P12 (with space-group reduction Im3¯→Pm3¯ ) open a gap everywhere on the Fermi surface.

  5. Tuning the metal-insulator transition via epitaxial strain and Co doping in NdNiO{sub 3} thin films grown by polymer-assisted deposition

    SciTech Connect

    Yao, Dan; Shi, Lei Zhou, Shiming; Liu, Haifeng; Zhao, Jiyin; Li, Yang; Wang, Yang

    2016-01-21

    The epitaxial NdNi{sub 1-x}Co{sub x}O{sub 3} (0 ≤ x ≤ 0.10) thin films on (001) LaAlO{sub 3} and (001) SrTiO{sub 3} substrates were grown by a simple polymer-assisted deposition technique. The co-function of the epitaxial strain and Co doping on the metal-insulator transition in perovskite nickelate NdNiO{sub 3} thin films is investigated. X-ray diffraction and scanning electron microscopy reveal that the as-prepared thin films exhibit good crystallinity and heteroepitaxy. The temperature dependent resistivities of the thin films indicate that both the epitaxial strain and Co doping lower the metal-insulator (MI) transition temperature, which can be treated as a way to tune the MI transition. Furthermore, under the investigated Co-doping levels, the MI transition temperature (T{sub MI}) shifts to low temperatures with Co content increasing under both compressive and tensile strain, and the more distinction is in the former situation. When x is increased up to 0.10, the insulating phase is completely suppressed under the compressive strain. With the strain increases from compression to tension, the resistivities are enhanced both in the metal and insulating regions. However, the Co-doping effect on the resistivity shows a more complex situation. As Co content x increases from zero to 0.10, the resistivities are reduced both in the metal and insulating regions under the tensile strain, whereas they are enhanced in the high-temperature metal region under the compressive strain. Based on the temperature dependent resistivity in the metal regions, it is suggested that the electron-phonon coupling in the films becomes weaker with the increase of both the strain and Co-doping.

  6. Metal-Insulator Transition of strained SmNiO3 Thin Films: Structural, Electrical and Optical Properties

    NASA Astrophysics Data System (ADS)

    Torriss, B.; Margot, J.; Chaker, M.

    2017-01-01

    Samarium nickelate (SmNiO3) thin films were successfully synthesized on LaAlO3 and SrTiO3 substrates using pulsed-laser deposition. The Mott metal-insulator (MI) transition of the thin films is sensitive to epitaxial strain and strain relaxation. Once the strain changes from compressive to tensile, the transition temperature of the SmNiO3 samples shifts to slightly higher values. The optical conductivity reveals the strong dependence of the Drude spectral weight on the strain relaxation. Actually, compressive strain broadens the bandwidth. In contrast, tensile strain causes the effective number of free carriers to reduce which is consistent with the d-band narrowing.

  7. Superconductivity and bandwidth-controlled Mott metal-insulator transition in 1T-TaS2-xSex

    NASA Astrophysics Data System (ADS)

    Ang, R.; Miyata, Y.; Ieki, E.; Nakayama, K.; Sato, T.; Liu, Y.; Lu, W. J.; Sun, Y. P.; Takahashi, T.

    2013-09-01

    We have performed high-resolution angle-resolved photoemission spectroscopy (ARPES) of layered chalcogenide 1T-TaS2-xSex to elucidate the electronic states especially relevant to the occurrence of superconductivity. We found a direct evidence for a Ta-5d-derived electron pocket associated with the superconductivity, which is fragile against a Mott-gap opening observed in the insulating ground state for S-rich samples. In particular, a strong electron-electron interaction-induced Mott gap driven by a Ta 5d orbital also exists in the metallic ground state for Se-rich samples, while finite ARPES intensity near the Fermi level likely originating from a Se 4p orbital survives, indicative of the orbital-selective nature of the Mott transition. Present results suggest that effective electron correlation and p-d hybridization play a crucial role to tune the superconductivity and Mott metal-insulator transition.

  8. Metal-Insulator Transition of strained SmNiO3 Thin Films: Structural, Electrical and Optical Properties

    PubMed Central

    Torriss, B.; Margot, J.; Chaker, M.

    2017-01-01

    Samarium nickelate (SmNiO3) thin films were successfully synthesized on LaAlO3 and SrTiO3 substrates using pulsed-laser deposition. The Mott metal-insulator (MI) transition of the thin films is sensitive to epitaxial strain and strain relaxation. Once the strain changes from compressive to tensile, the transition temperature of the SmNiO3 samples shifts to slightly higher values. The optical conductivity reveals the strong dependence of the Drude spectral weight on the strain relaxation. Actually, compressive strain broadens the bandwidth. In contrast, tensile strain causes the effective number of free carriers to reduce which is consistent with the d-band narrowing. PMID:28098240

  9. Tunable Anderson metal-insulator transition in quantum spin-Hall insulators

    NASA Astrophysics Data System (ADS)

    Chen, Chui-Zhen; Liu, Haiwen; Jiang, Hua; Sun, Qing-feng; Wang, Ziqiang; Xie, X. C.

    2015-06-01

    We numerically study disorder effects in the Bernevig-Hughes-Zhang (BHZ) model, and we find that the Anderson transition of a quantum spin-Hall insulator (QSHI) is determined by model parameters. The BHZ Hamiltonian is equivalent to two decoupled spin blocks that belong to the unitary class. In contrast to the common belief that a two-dimensional unitary system scales to an insulator except at certain critical points, we find, through calculations scaling properties of the localization length, level statistics, and participation ratio, that a possible exotic metallic phase emerges between the QSHI and normal insulator phases in the InAs/GaSb-type BHZ model. On the other hand, direct transition from a QSHI to a normal insulator is found in the HgTe/CdTe-type BHZ model. Furthermore, we show that the metallic phase originates from the Berry phase and can survive both inside and outside the gap.

  10. Studies on electric triggering of the metal-insulator transition in VO2 thin films between 77 K and 300 K

    NASA Astrophysics Data System (ADS)

    Yang, Zheng; Hart, Sean; Ko, Changhyun; Yacoby, Amir; Ramanathan, Shriram

    2011-08-01

    We investigate the electrically triggered metal-insulator transition (E-MIT) in VO2 thin films at temperatures far below the structural phase transition temperature (˜340 K). At 77 K, the maximum current jump observed across the E-MIT is nearly 300×. The threshold voltage for E-MIT decreases slightly from ˜2.0 V at 77 K to ˜1.1 V at 300 K across ˜200 nm thick films, which scales weakly over the temperature range of 77-300 K with an activation energy of ˜5 meV. The phase transition properties are found to be stable after over one thousand scans, indicating reproducible measurements. Analysis of the scaling behavior suggests that the observed weak temperature-dependence of the threshold voltages for E-MIT is smaller than that predicted for a purely current induced Joule heating effect and may include contribution from field effect or carrier injection under applied bias. The results are of potential relevance to the field of phase transition oxide electronics and further understanding of the transition mechanisms.

  11. Superconductor-Metal-Insulator transition in two dimensional Ta thin Films

    NASA Astrophysics Data System (ADS)

    Park, Sun-Gyu; Kim, Eunseong

    2013-03-01

    Superconductor-insulator transition has been induced by tuning film thickness or magnetic field. Recent electrical transport measurements of MoGe, Bi, Ta thin films revealed an interesting intermediate metallic phase which intervened superconducting and insulating phases at certain range of magnetic field. Especially, Ta thin films show the characteristic IV behavior at each phase and the disorder tuned intermediate metallic phase [Y. Li, C. L. Vicente, and J. Yoon, Physical Review B 81, 020505 (2010)]. This unexpected metallic phase can be interpreted as a consequence of vortex motion or contribution of fermionic quasiparticles. In this presentation, we report the scaling behavior during the transitions in Ta thin film as well as the transport measurements in various phases. Critical exponents v and z are obtained in samples with wide ranges of disorder. These results reveal new universality class appears when disorder exceeds a critical value. Dynamical exponent z of Superconducting sample is found to be 1, which is consistent with theoretical prediction of unity. z in a metallic sample is suddenly increased to be approximately 2.5. This critical exponent is much larger than the value found in other system and theoretical prediction. We gratefully acknowledge the financial support by the National Research Foundation of Korea through the Creative Research Initiatives.

  12. Direct measurement of sheet resistance Rsquare in cuprate systems: evidence of a fermionic scenario in a metal-insulator transition.

    PubMed

    Orgiani, P; Aruta, C; Balestrino, G; Born, D; Maritato, L; Medaglia, P G; Stornaiuolo, D; Tafuri, F; Tebano, A

    2007-01-19

    The metal-insulator transition (MIT) has been studied in Ba(0.9)Nd(0.1)CuO(2+x)/CaCuO2 ultrathin cuprate structures. Such structures allow for the direct measurement of the 2D sheet resistance R( square), eliminating ambiguity in the definition of the effective thickness of the conducting layer in high temperature superconductors. The MIT occurs at room temperature for experimental values of R(square) close to the 25.8 kOmega universal quantum resistance. All data confirm the assumption that each CaCuO2 layer forms a 2D superconducting sheet within the superconducting block, which can be described as weak-coupled equivalent sheets in parallel.

  13. Tuning directional dependent metal-insulator transitions in quasi-1D quantum wires with spin-orbit density wave instability

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy

    2016-07-01

    We study directional dependent band gap evolutions and metal-insulator transitions (MITs) in model quantum wire systems within the spin-orbit density wave (SODW) model. The evolution of MIT is studied as a function of varying anisotropy between the intra-wire hopping ({{t}\\parallel} ) and inter-wire hopping ({{t}\\bot} ) with Rashba spin-orbit coupling. We find that as long as the anisotropy ratio (β ={{t}\\bot}/{{t}\\parallel} ) remains below 0.5, and the Fermi surface nesting is tuned to {{\\mathbf{Q}}1}=≤ft(π,0\\right) , an exotic SODW induced MIT easily develops, with its critical interaction strength increasing with increasing anisotropy. As β \\to 1 (2D system), the nesting vector switches to {{\\mathbf{Q}}2}=≤ft(π,π \\right) , making this state again suitable for an isotropic MIT. Finally, we discuss various physical consequences and possible applications of the directional dependent MIT.

  14. The metal-insulator transition in the organic conductor β″-(BEDT-TTF)2Hg(SCN)2Cl

    NASA Astrophysics Data System (ADS)

    Li, Weiwu; Rose, Eva; Tran, Minh Vu; Hübner, Ralph; Łapiński, Andrzej; Świetlik, Roman; Torunova, Svetlana A.; Zhilyaeva, Elena I.; Lyubovskaya, Rimma N.; Dressel, Martin

    2017-08-01

    We explore the nature of the metal-insulator transition in the two-dimensional organic compound β″-(BEDT-TTF)2Hg(SCN)2Cl by x-ray, electrical transport, ESR, Raman, and infrared investigations. Magnetic and vibrational spectroscopy concurrently reveal a gradual dimerization along the stacking direction (a -b ) , setting in already at the crossover temperature of 150 K from the metallic to the insulating state. A spin gap of Δσ=47 meV is extracted. From the activated resistivity behavior below T = 55 K, a charge gap of Δρ=60 meV is derived. At TCO = 72 K, the C=C vibrational modes reveal the development of a charge-ordered state with a charge disproportionation of 2 δρ=0.34 e . In addition to a slight structural dimerization, charge-order causes stripes most likely perpendicular to the stacks.

  15. Metal-insulator transition by isovalent anion substitution in Ga1-xMnxAs: Implications to ferromagnetism

    SciTech Connect

    Stone, P.R.; Alberi, K.; Tardif, S.K.Z.; Beeman, J.W.; Yu, K.M.; Walukiewicz, W.; Dubon, O.D.

    2008-02-07

    We have investigated the effect of partial isovalent anion substitution in Ga1-xMnxAs on electrical transport and ferromagnetism. Substitution of only 2.4percent of As by P induces a metal-insulator transition at a constant Mn doping of x=0.046 while the replacement of 0.4 percent As with N results in the crossover from metal to insulator for x=0.037. This remarkable behavior is consistent with a scenario in which holes located within an impurity band are scattered by alloy disorder in the anion sublattice. The shorter mean free path of holes, which mediate ferromagnetism, reduces the Curie temperature TC from 113 K to 60 K (100 K to 65 K) upon the introduction of 3.1 percent P (1percent N) into the As sublattice.

  16. Joule Heating-Induced Metal-Insulator Transition in Epitaxial VO2/TiO2 Devices.

    PubMed

    Li, Dasheng; Sharma, Abhishek A; Gala, Darshil K; Shukla, Nikhil; Paik, Hanjong; Datta, Suman; Schlom, Darrell G; Bain, James A; Skowronski, Marek

    2016-05-25

    DC and pulse voltage-induced metal-insulator transition (MIT) in epitaxial VO2 two terminal devices were measured at various stage temperatures. The power needed to switch the device to the ON-state decrease linearly with increasing stage temperature, which can be explained by the Joule heating effect. During transient voltage induced MIT measurement, the incubation time varied across 6 orders of magnitude. Both DC I-V characteristic and incubation times calculated from the electrothermal simulations show good agreement with measured values, indicating Joule heating effect is the cause of MIT with no evidence of electronic effects. The width of the metallic filament in the ON-state of the device was extracted and simulated within the thermal model.

  17. Tuning the metal-insulator transition temperature of Sm0.5Nd0.5NiO3 thin films via strain

    NASA Astrophysics Data System (ADS)

    Gardner, H. Jeffrey; Singh, Vijay; Zhang, Le; Hong, Xia

    2014-03-01

    We have investigated the effect of substrate induced strain and film thickness on the metal-insulator transition of the correlated oxide Sm0.5Nd0.5NiO3 (SNNO). We have fabricated epitaxial 3 - 40 nm thick SNNO films on (001) LaAlO3 (LAO), (001) SrTiO3 (STO), and (110) NdGaO3 (NGO) via off-axis RF magnetron sputtering. The SNNO films are atomically smooth with (001) orientation as determined by atomic force microscopy and x-ray diffraction. SNNO films grown on LAO, subject to compressive strain, exhibit a sharp metal-insulator transition at lower temperatures. Conversely, films grown on STO and NGO, subject to tensile strain, exhibit a smeared albeit above room temperature metal-insulator transition. For all substrates, we have observed that the metal-insulator transition temperature (TMI) increases monotonically with decreasing film thickness until the electrically dead layer is reached (below 4 nm). We discuss the effect of strain and oxygen deficiencies on the TMI of SNNO thin films.

  18. Thickness-dependent evolution of structure, electronic structure, and metal-insulator transition in ultrathin V2O3(0001) films on Ag(001)

    NASA Astrophysics Data System (ADS)

    Kundu, Asish K.; Menon, Krishnakumar S. R.

    2017-05-01

    Epitaxial hexagonal V2O3(0001) films were grown on cubic Ag(001) substrate for coverages ranging from 1-20 monolayers equivalent (MLE) and have studied their structure, electronic structure and the metal-insulator transition (MIT) using Low Energy Electron Diffraction (LEED), X-ray Photoelectron Spectroscopy (XPS) and Angle-Resolved Photoemission Spectroscopy (ARPES) techniques. Detailed LEED and XPS study reveal that, for the lower film coverages (∼1 MLE), a complex (coexisting phase of) vanadium oxide is formed while from 3 MLE coverage onwards, three-dimensional crystallites of V2O3 grows epitaxially. Our LEED results also show that the hexagonal surface of V2O3(0001) is stabilizing on top of square symmetry substrate by the formation of twin-domain structure, where each domain is rotated by 90o. Our photoemission results show that the surface of V2O3 is more insulating than its bulk, similar to the case of many strongly correlated oxide surfaces which is discussed based on the valence band electronic structure with varying probing depth. Evolution of the surface electronic structure was also studied as a function of the film thickness. Further, the effect of lattice strain, film thickness and the domain formation on the metal-insulator transition (MIT) are discussed. The change in the orbital occupancy of (a1 g, egπ) and (egπ, egπ) orbitals of V 3 d, a vanishing of quasiparticle (QP) peak and opening an energy gap at the Fermi level is observed below a critical temperature as a consequence of the MIT.

  19. Magnetic and metal-insulator transitions in coupled spin-fermion systems

    DOE PAGES

    Mondaini, R.; Paiva, T.; Scalettar, R. T.

    2014-10-14

    We use quantum Monte Carlo to determine the magnetic and transport properties of coupled square lattice spin and fermionic planes as a model for a metal-insulator interface. Specifically, layers of Ising spins with an intra-layer exchange constant J interact with the electronic spins of several adjoining metallic sheets via a coupling JH. When the chemical potential cuts across the band center, that is, at half-filling, the Neel temperature of antiferromagnetic (J > 0) Ising spins is enhanced by the coupling to the metal, while in the ferromagnetic case (J < 0) the metallic degrees of freedom reduce the ordering temperature.more » In the former case, a gap opens in the fermionic spectrum, driving insulating behavior, and the electron spins also order. This induced antiferromagnetism penetrates more weakly as the distance from the interface increases, and also exhibits a non-monotonic dependence on JH. For doped lattices an interesting charge disproportionation occurs where electrons move to the interface layer to maintain half-filling there.« less

  20. Magnetic and metal-insulator transitions in coupled spin-fermion systems

    SciTech Connect

    Mondaini, R.; Paiva, T.; Scalettar, R. T.

    2014-10-14

    We use quantum Monte Carlo to determine the magnetic and transport properties of coupled square lattice spin and fermionic planes as a model for a metal-insulator interface. Specifically, layers of Ising spins with an intra-layer exchange constant J interact with the electronic spins of several adjoining metallic sheets via a coupling JH. When the chemical potential cuts across the band center, that is, at half-filling, the Neel temperature of antiferromagnetic (J > 0) Ising spins is enhanced by the coupling to the metal, while in the ferromagnetic case (J < 0) the metallic degrees of freedom reduce the ordering temperature. In the former case, a gap opens in the fermionic spectrum, driving insulating behavior, and the electron spins also order. This induced antiferromagnetism penetrates more weakly as the distance from the interface increases, and also exhibits a non-monotonic dependence on JH. For doped lattices an interesting charge disproportionation occurs where electrons move to the interface layer to maintain half-filling there.

  1. Magnetic and metal-insulator transitions in coupled spin-fermion systems

    NASA Astrophysics Data System (ADS)

    Mondaini, R.; Paiva, T.; Scalettar, R. T.

    2014-10-01

    We use quantum Monte Carlo method to determine the magnetic and transport properties of coupled square lattice spin and fermionic planes as a model for a metal-insulator interface. Specifically, layers of Ising spins with an intralayer exchange constant J interact with the electronic spins of several adjoining metallic sheets via a coupling JH. When the chemical potential cuts across the band center, that is, at half-filling, the Néel temperature of antiferromagnetic (J >0) Ising spins is enhanced by the coupling to the metal, while in the ferromagnetic case (J <0), the metallic degrees of freedom reduce the ordering temperature. In the former case, a gap opens in the fermionic spectrum, driving insulating behavior, and the electron spins also order. This induced antiferromagnetism penetrates more weakly as the distance from the interface increases, and also exhibits a nonmonotonic dependence on JH. For doped lattices, an interesting charge disproportionation occurs where electrons move to the interface layer to maintain half-filling there.

  2. Martensitic accommodation strain and the metal-insulator transition in manganites

    NASA Astrophysics Data System (ADS)

    Podzorov, V.; Kim, B. G.; Kiryukhin, V.; Gershenson, M. E.; Cheong, S.-W.

    2001-10-01

    In this paper, we report polarized optical microscopy and electrical transport studies of manganese oxides that reveal that the charge ordering transition in these compounds exhibits typical signatures of a martensitic transformation. We demonstrate that specific electronic properties of charge-ordered manganites stem from a combination of martensitic accommodation strain and effects of strong electron correlations. This intrinsic strain is strongly affected by the grain boundaries in ceramic samples. Consistently, our studies show a remarkable enhancement of low field magnetoresistance and the grain size effect on the resistivity in polycrystalline samples and suggest that the transport properties of this class of manganites are governed by the charge-disordered insulating phase stabilized at low temperature by virtue of martensitic accommodation strain. High sensitivity of this phase to strains and magnetic field leads to a variety of striking phenomena, such as unusually high magnetoresistance (1010%) in low magnetic fields.

  3. Quantum transport in 3D Weyl semimetals: Is there a metal-insulator transition?

    NASA Astrophysics Data System (ADS)

    Ziegler, Klaus

    2016-12-01

    We calculate the transport properties of three-dimensional Weyl fermions in a disordered environment. The resulting conductivity depends only on the Fermi energy and the scattering rate. First we study the conductivity at the spectral node for a fixed scattering rate and obtain a continuous transition from an insulator at weak disorder to a metal at stronger disorder. Within the self-consistent Born approximation the scattering rate depends on the Fermi energy. Then it is crucial that the limits of the conductivity for a vanishing Fermi energy and a vanishing scattering rate do not commute. As a result, there is also metallic behavior in the phase with vanishing scattering rate and only a quantum critical point remains as an insulating phase. The latter turns out to be a critical fixed point in terms of a renormalization-group flow.

  4. Volume-based considerations for the metal-insulator transition of CMR oxides

    SciTech Connect

    Neumeier, J.J. |; Hundley, M.F.; Cornelius, A.L.; Andres, K.

    1998-03-01

    The sensitivity of {rho} [electrical resistivity] to changes in volume which occur through: (1) applied pressure, (2) variations in temperature, and (3) phase transitions, is evaluated for some selected CMR oxides. It is argued that the changes in volume associated with phase changes are large enough to produce self pressures in the range of 0.18 to 0.45 GPa. The extreme sensitivity of the electrical resistivity to pressure indicates that these self pressures are responsible for large features in the electrical resistivity and are an important component for occurrence the metallicity below {Tc}. It is suggested that this is related to a strong volume dependence of the electron phonon coupling in the CMR oxides.

  5. Thermopower analysis of the electronic structure around the metal-insulator transition in V1-xWxO2

    NASA Astrophysics Data System (ADS)

    Katase, Takayoshi; Endo, Kenji; Ohta, Hiromichi

    2014-10-01

    The electronic structure across the metal-insulator (MI) transition of electron-doped V1-xWxO2 epitaxial films (x =0-0.06) grown on α-Al2O3 substrates was studied by means of thermopower (S) measurements. Significant increase of |S | values accompanied by MI transition was observed, and the transition temperatures of S (TS) decreased with x in a good linear relation with MI transition temperatures. |S| values of V1-xWxO2 films at T>TS were constant at low values of 23μVK-1 independently of x, which reflects a metallic electronic structure, whereas those at T

  6. Universal role of quantum uncertainty in Anderson metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Cheng, W. W.; Zhang, Z. J.; Gong, L. Y.; Zhao, S. M.

    2016-07-01

    We explore quantum uncertainty, based on Wigner-Yanase skew information, in various one-dimensional single-electron wave functions. For the power-law function and eigenfunctions in the Aubry-André model, the electronic localization properties are well-defined. For them, we find that quantum uncertainty is relatively small and large for delocalized and localized states, respectively. And around the transition points, the first-order derivative of the quantum uncertainty exhibits singular behavior. All these characters can be used as signatures of the transition from a delocalized phase to a localized one. With this criterion, we also study the quantum uncertainty in one-dimensional disorder system with long-range correlated potential. The results show that the first-order derivative of spectrum-averaged quantum uncertainty is minimal at a certain correlation exponent αm for a finite system, and has perfect finite-size scaling behaviors around αm. By extrapolating αm, the threshold value αc ≃ 1.56 ± 0.02 is obtained for the infinite system. Thus we give another perspective and propose a consistent interpretation for the discrepancies about localization property in the long-range correlated potential model. These results suggest that the quantum uncertainty can provide us with a new physical intuition to the localization transition in these models.

  7. Novel Metal-Insulator Transition at the SmTiO3/SrTiO3 Interface

    NASA Astrophysics Data System (ADS)

    Ahadi, Kaveh; Stemmer, Susanne

    2017-06-01

    We report on a metal-insulator transition (MIT) that is observed in an electron system at the SmTiO3/SrTiO3 interface. This MIT is characterized by an abrupt transition at a critical temperature, below which the resistance changes by more than an order of magnitude. The temperature of the transition systematically depends on the carrier density, which is tuned from ˜1 ×1014 to 3 ×1014 cm-2 by changing the SmTiO3 thickness. An analysis of the transport properties shows non-Fermi-liquid behavior and mass enhancement as the carrier density is lowered. We compare the MIT characteristics with those of known MITs in other material systems and show that they are distinctly different in several aspects. We tentatively conclude that both long-range Coulomb interactions and the fixed charge at the polar interface are likely to play a role in this MIT. The strong dependence on the carrier density makes this MIT of interest for field-tunable devices.

  8. Field Effect and Strongly Localized Carriers in the Metal-Insulator Transition Material VO(2).

    PubMed

    Martens, K; Jeong, J W; Aetukuri, N; Rettner, C; Shukla, N; Freeman, E; Esfahani, D N; Peeters, F M; Topuria, T; Rice, P M; Volodin, A; Douhard, B; Vandervorst, W; Samant, M G; Datta, S; Parkin, S S P

    2015-11-06

    The intrinsic field effect, the change in surface conductance with an applied transverse electric field, of prototypal strongly correlated VO(2) has remained elusive. Here we report its measurement enabled by epitaxial VO(2) and atomic layer deposited high-κ dielectrics. Oxygen migration, joule heating, and the linked field-induced phase transition are precluded. The field effect can be understood in terms of field-induced carriers with densities up to ∼5×10(13)  cm(-2) which are trongly localized, as shown by their low, thermally activated mobility (∼1×10(-3)  cm(2)/V s at 300 K). These carriers show behavior consistent with that of Holstein polarons and strongly impact the (opto)electronics of VO(2).

  9. Reversible metal-insulator transition of Ar-irradiated LaAl O3 /SrTi O3 interfaces

    NASA Astrophysics Data System (ADS)

    Aurino, P. P.; Kalabukhov, A.; Tuzla, N.; Olsson, E.; Klein, A.; Erhart, P.; Boikov, Y. A.; Serenkov, I. T.; Sakharov, V. I.; Claeson, T.; Winkler, D.

    2015-10-01

    The conducting state of a quasi-two-dimensional electron gas (q2DEG), formed at the heterointerface between the two wide-bandgap insulators LaAl O3 (LAO) and SrTi O3 , can be made completely insulating by low-energy, 150-eV, A r+ irradiation. The metallic behavior of the interface can be recovered by high-temperature oxygen annealing. The electrical transport properties of the recovered q2DEG are exactly the same as before the irradiation. Microstructural investigations confirm that the transition is not due to physical etching or crystal lattice distortion of the LAO film below its critical thickness. They also reveal a correlation between electrical state, LAO film surface amorphization, and argon ion implantation. The experimental results are in agreement with density functional theory calculations of Ar implantation and migration in the LAO film. This suggests that the metal-insulator transition may be caused by charge trapping in the defect amorphous layer created during the ion irradiation.

  10. A persistent metal-insulator transition at the surface of an oxygen-deficient, epitaxial manganite film.

    PubMed

    Snijders, Paul C; Gao, Min; Guo, Hangwen; Cao, Guixin; Siemons, Wolter; Gao, Hongjun; Ward, Thomas Z; Shen, Jian; Gai, Zheng

    2013-10-21

    The oxygen stoichiometry has a large influence on the physical and chemical properties of complex oxides. Most of the functionality in e.g. catalysis and electrochemistry depends in particular on control of the oxygen stoichiometry. In order to understand the fundamental properties of intrinsic surfaces of oxygen-deficient complex oxides, we report on in situ temperature dependent scanning tunnelling spectroscopy experiments on pristine oxygen deficient, epitaxial manganite films. Although these films are insulating in subsequent ex situ in-plane electronic transport experiments at all temperatures, in situ scanning tunnelling spectroscopic data reveal that the surface of these films exhibits a metal-insulator transition (MIT) at 120 K, coincident with the onset of ferromagnetic ordering of small clusters in the bulk of the oxygen-deficient film. The surprising proximity of the surface MIT transition temperature of nonstoichiometric films with that of the fully oxygenated bulk suggests that the electronic properties in the surface region are not significantly affected by oxygen deficiency in the bulk. This carries important implications for the understanding and functional design of complex oxides and their interfaces with specific electronic properties in catalysis, oxide electronics and electrochemistry.

  11. Monolayer MoS2 metal insulator transition based memcapacitor modeling with extension to a ternary device

    NASA Astrophysics Data System (ADS)

    Khan, Abdul Karim; Lee, Byoung Hun

    2016-09-01

    Memcapacitor model based on its one possible physical realization is developed and simulated in order to know its limitation before making a real device. The proposed device structure consists of vertically stacked dielectric layer and MoS2 monolayer between two external metal plates. The Metal Insulator Transition (MIT) phenomenon of MoS2 monolayer is represented in terms of percolation probabilty which is used as the system state. Cluster based site percolation theory is used to mimic the MIT of MoS2 which shows slight discontinuous change in MoS2 monolayer conductivity. The metal to insulator transition switches the capacitance of the device in hysterical way. An Ioffe Regel criterion is used to determine the MIT state of MoS2 monolayer. A good control of MIT time in the range of psec is also achieved by changing a single parameter in the model. The model shows memcapacitive behavior with an edge of fast switching (in psec range) over the previous general models. The model is then extended into vertical cascaded version which behaves like a ternary device instead of binary.

  12. Tunable metal-insulator transition in Nd1-xYxNiO3 (x = 0.3, 0.4) perovskites thin film at near room temperature

    NASA Astrophysics Data System (ADS)

    Shao, Tao; Qi, Zeming; Wang, Yuyin; Li, Yuanyuan; Yang, Mei; Wang, Yu; Zhang, Guobin; Liu, Miao

    2015-07-01

    Metal-insulator transition (MIT) occurs due to the charge disproportionation and lattice distortions in rare-earth nickelates. Existing studies revealed that the MIT behavior of rare-earth nickelates is fairly sensitive to external stress/pressure, suggesting a viable route for MIT strain engineering. Unlike applying extrinsic strain, the MIT can also be modulated by through rare-earth cation mixing, which can be viewed as intrinsic quantum stress. We choose Nd1-XYXNiO3 (x = 0.3, 0.4) perovskites thin films as a prototype system to exhibit the tunable sharp MIT at near room temperature. By adjusting Y concentration, the transition temperature of the thin films can be changed within the range of 340-360 K. X-ray diffraction, X-ray absorption fine structure (XAFS), and in situ infrared spectroscopy are employed to probe the structural and optical property variation affected by composition and temperature. The infrared transmission intensity decreases with temperature across the MIT, indicating a pronounced thermochromic effect. Meanwhile, the XAFS result exhibits that the crystal atomistic structure changes accompanying with the Y atoms incorporation and MIT phase transition. The heavily doped Y atoms result in the pre-edge peak descent and Ni-O bond elongation, suggesting an enhanced charge disproportionation effect and the weakening of hybridization between Ni-3d and O-2p orbits.

  13. Directing colloidal assembly and a metal-insulator transition using quenched-disordered polymeric networks

    NASA Astrophysics Data System (ADS)

    Phan, Anh; Jadrich, Ryan; Schweizer, Kenneth

    2015-03-01

    Replica integral equation and effective medium theory methods are employed to elucidate how to massively reconfigure a colloidal assembly and realize equilibrium states of high electrical conductivity at low physical volume fractions. This is achieved by employing variable mesh size networks of rigid rod or semiflexible polymers as a templating internal field. By exploiting bulk phase separation frustration and the tunable competing processes of colloid adsorption on the low dimensional network and fluctuation-driven colloid clustering in the pore spaces, distinct spatial organizations of greatly enhanced particle contacts can be achieved. As a result, a continuous, but very abrupt, transition from an insulating to metallic-like state can be realized via a small change of either the colloid-template or colloid-colloid attraction strength. Polymer conformational fluctuations are found to significantly modify the physical adsorption process and hence the ability of colloids to organize along the filamentary network strands. Qualitatively new physical behavior can emerge as the pore size approaches the colloid diameter, reflecting strong frustrating constraints of the template on colloidal assembly.

  14. Orbital electronic occupation effect on metal-insulator transition in Ti x V1-x O2

    NASA Astrophysics Data System (ADS)

    Huang, Kang; Meng, Yifan; Xu, XiaoFeng; Chen, Pingping; Lu, Aijiang; Li, Hui; Wu, Binhe; Wang, Chunrui; Chen, Xiaoshuang

    2017-09-01

    A series of Ti x V1-x O2 (0%  ⩽  x  ⩽  4.48%) thin films on c-plane sapphire substrates have been fabricated by co-sputtering oxidation solutions, and the metal-insulator transition temperature (T MIT) of Ti x V1-x O2 films rises monotonically at the rate of 1.64 K/at.% Ti. The x-ray diffraction measurement results show that, after Ti4+ ion doping, the rutile structure expands along the c r axis while shrinking along the a r and b r axis simultaneously. It makes the V-O bond length shorter, which is believed to upshift the π * orbitals. The rising of π * orbitals in Ti-doped VO2 has been illustrated by ultraviolet-infrared spectroscopy and first-principles calculation. With the Ti4+ ion doping concentration increasing, the energy levels of π * orbitals are elevated and the electronic occupation of π * orbitals decreases, which weakens the shielding for the strong electron-electron correlations in the d|| orbital and result in the T MIT rising. The research reveals that the T MIT of VO2 can be effected by the electronic occupancy of π * orbitals in a rutile state, which is helpful for developing VO2-based thermal devices.

  15. Metal-insulator transition in Pt-C nanowires grown by focused-ion-beam-induced deposition

    SciTech Connect

    Fernandez-Pacheco, A.; Ibarra, M. R.; De Teresa, J. M.; Cordoba, R.

    2009-05-01

    We present a study of the transport properties of Pt-C nanowires created by focused-ion-beam (FIB)-induced deposition. By means of the measurement of the resistance while the deposit is being performed, we observe a progressive decrease in the nanowire resistivity with thickness, changing from 10{sup 8} {mu}{omega} cm for thickness {approx}20 nm to a lowest saturated value of 700 {mu}{omega} cm for thickness >150 nm. Spectroscopy analysis indicates that this dependence on thickness is caused by a gradient in the metal-carbon ratio as the deposit is grown. We have fabricated nanowires in different ranges of resistivity and studied their conduction mechanism as a function of temperature. A metal-insulator transition as a function of the nanowire thickness is observed. The results will be discussed in terms of the Mott-Anderson theory for noncrystalline materials. An exponential decrease in the conductance with the electric field is found for the most resistive samples, a phenomenon understood by the theory of hopping in lightly doped semiconductors under strong electric fields. This work explains the important discrepancies found in the literature for Pt-C nanostructures grown by FIB and opens the possibility to tune the transport properties of this material by an appropriate selection of the growth parameters.

  16. Metal-insulator transition in tin doped indium oxide (ITO) thin films: Quantum correction to the electrical conductivity

    NASA Astrophysics Data System (ADS)

    Kaushik, Deepak Kumar; Kumar, K. Uday; Subrahmanyam, A.

    2017-01-01

    Tin doped indium oxide (ITO) thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes) in low temperatures (25-300 K). The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl˜1; kF is the Fermi wave vector and l is the electron mean free path) and degenerate semiconductors. The transport of charge carriers (electrons) in these disordered ITO thin films takes place via the de-localized states. The disorder effects lead to the well-known `metal-insulator transition' (MIT) which is observed at 110 K in these ITO thin films. The MIT in ITO thin films is explained by the quantum correction to the conductivity (QCC); this approach is based on the inclusion of quantum-mechanical interference effects in Boltzmann's expression of the conductivity of the disordered systems. The insulating behaviour observed in ITO thin films below the MIT temperature is attributed to the combined effect of the weak localization and the electron-electron interactions.

  17. Electric field induced metal-insulator transition and colossal magnetoresistance in CdCr2S4

    NASA Astrophysics Data System (ADS)

    Sun, C. P.; Lin, C. C.; Her, J. L.; Taran, S.; Chou, C. C.; Chan, C. L.; Huang, C. L.; Berger, H.; Yang, H. D.

    2008-03-01

    Multiferroic ordering existing in a single material is a recent hot topic in the field of condensed matter physics due to its potential application in device control. The chromium chalcogenide spinel CdCr2S4 is one of the attractive materials investigated by Hemberger et al. recently.[1] Based on the electrical measurement, there is no discontinuity through the ferromagnetic ordering at TC ˜ 85K.[2] We measure the temperature dependent resistance under various electric fields to investigate the electrical properties of the present material. To our knowledge, we first observe the electric field induced metal-insulator transition in this material around TC. Moreover, a colossal magnetoresistance (CMR), which is comparable to that of manganese-based CMR material, is also observed near TC. The origin for these properties is discussed. [1] J. Hemberger, P. Lunkenheimer, R. Fichtl, H.-A. Krug von Nidda, V. Tsurkan, A. Loidl, Nature 434, 364 (2006). [2] P. K. Baltzer, H. W. Lehmann, and M. Robbins, Phys. Rev. Lett. 15, 493 (1965).

  18. Variable-range hopping conduction and metal-insulator transition in amorphous RexSi1-x thin films

    NASA Astrophysics Data System (ADS)

    Lisunov, K. G.; Vinzelberg, H.; Arushanov, E.; Schumann, J.

    2011-09-01

    Resistivity, ρ(T), of the amorphous RexSi1-x thin films with x = 0.285-0.351 is investigated in the interval of T ~ 300-0.03 K. At x = 0.285-0.324 the activated behavior of ρ(T) is governed by the Mott and the Shklovskii-Efros variable-range hopping (VRH) conduction mechanisms in different temperature intervals and the three-dimensional regime of the hopping. Between x = 0.328 and 0.351 the activationless dependence of ρ(T) takes place. The critical behavior of the characteristic VRH temperatures and of the Coulomb gap, Δ, pertinent to proximity to the metal-insulator transition at the critical value of xc ≈ 0.327, is observed. The analysis of the critical behavior of Δ yields directly the critical exponent of the dielectric permittivity, η = 2.1 ± 0.2, in agreement with the theoretical prediction, η = 2. On the other hand, the values of the critical exponent of the correlation length ν ~ 0.8-1.1 close to the expected value of unity can be obtained from the analysis of the critical behavior of the VRH characteristic temperatures under an additional assumption of a strong underbarrier scattering of hopping charge carriers in conditions, when the concentration of scattering centers considerably exceeds the concentration of sites involved in the hopping.

  19. Investigation on onset voltage and conduction channel temperature in voltage-induced metal-insulator transition of vanadium dioxide

    SciTech Connect

    Yoon, Joonseok; Kim, Howon; Ju, Honglyoul; Mun, Bongjin Simon; Park, Changwoo

    2016-03-28

    The characteristics of onset voltages and conduction channel temperatures in the metal-insulator transition (MIT) of vanadium dioxide (VO{sub 2}) devices are investigated as a function of dimensions and ambient temperature. The MIT onset voltage varies from 18 V to 199 V as the device length increases from 5 to 80 μm at a fixed width of 100 μm. The estimated temperature at local conduction channel increases from 110 to 370 °C, which is higher than the MIT temperature (67 °C) of VO{sub 2}. A simple Joule-heating model is employed to explain voltage-induced MIT as well as to estimate temperatures of conduction channel appearing after MIT in various-sized devices. Our findings on VO{sub 2} can be applied to micro- to nano-size tunable heating devices, e.g., microscale scanning thermal cantilevers and gas sensors.

  20. Suppression of the metal-insulator transition temperature in thin La0.7Sr0.3MnO3 films

    NASA Astrophysics Data System (ADS)

    Angeloni, M.; Balestrino, G.; Boggio, N. G.; Medaglia, P. G.; Orgiani, P.; Tebano, A.

    2004-12-01

    In this paper, we illustrate an approach to discriminate between epitaxial strain and other factors responsible for the decrease of the metal-insulator transition temperature (TP) in thin La0.7Sr0.3MnO3 films grown by pulsed laser deposition. Using this approach, we have estimated the effect of the biaxial strain on TP. Ultrathin films, independent of epitaxial strain, do not show any metal-insulator transition over the full temperature range. This finding confirms the existence of an interface dead layer. The strain-independent decrease in TP, relative to its bulk value, observed for a much wider thickness range (up to about 1000Å) can most likely be attributed to oxygen deficiency.

  1. Electronic properties and the nature of metal-insulator transition in NdNiO3 prepared at ambient oxygen pressure

    NASA Astrophysics Data System (ADS)

    Hooda, M. K.; Yadav, C. S.

    2016-06-01

    We report the electronic properties of the NdNiO3, prepared at the ambient oxygen pressure condition. The metal-insulator transition temperature is observed at 192 K, but the low temperature state is found to be less insulating compared to the NdNiO3 prepared at high oxygen pressure. The electric resistivity, Seebeck coefficient and thermal conductivity of the compound show large hysteresis below the metal-insulator transition. The large value of the effective mass (m*~8me) in the metallic state indicates the narrow character of the 3d band. The electric conduction at low temperatures (T=2-20 K) is governed by the variable range hopping of the charge carriers.

  2. Localization-driven metal-insulator transition in epitaxial hole-doped Nd1-x Sr x NiO3 ultrathin films

    NASA Astrophysics Data System (ADS)

    Wang, Le; Chang, Lei; Yin, Xinmao; Rusydi, Andrivo; You, Lu; Zhou, Yang; Fang, Liang; Wang, Junling

    2017-01-01

    Advances in thin film growth technologies make it possible to obtain ultra-thin perovskite oxide films and open the window for controlling novel electronic phases for use in functional nanoscale electronics, such as switches and sensors. Here, we study the thickness-dependent transport characteristics of high-quality ultrathin Nd0.9Sr0.1NiO3 (Sr-NNO) films, which were grown on LaAlO3 (0 0 1) single-crystal substrates by using pulsed laser deposition method. Thick Sr-NNO films (25 unit cells) exhibit metallic behavior with the electrical resistivity following the T  n (n  <  2) law corresponding to a non-Fermi liquid system, while a temperature driven metal-insulator transition (MIT) is observed with films of less than 15 unit cells. The transition temperature increases with reducing film thickness, until the insulating characteristic is observed even at room temperature. The emergence of the insulator ground state can be attributed to weak localization driven MIT expected by considering Mott-Ioffe-Regel limit. Furthermore, the magneto-transport study of Sr-NNO ultrathin films also confirms that the observed MIT is due to the disorder-induced localization rather than the electron-electron interactions.

  3. Charge Disproportionation without Charge Transfer in the Rare-Earth-Element Nickelates as a Possible Mechanism for the Metal-Insulator Transition

    NASA Astrophysics Data System (ADS)

    Johnston, Steve; Mukherjee, Anamitra; Elfimov, Ilya; Berciu, Mona; Sawatzky, George A.

    2014-03-01

    We study a model for the metal-insulator (M-I) transition in the rare-earth-element nickelates RNiO3, based upon a negative charge transfer energy and coupling to a rocksaltlike lattice distortion of the NiO6 octahedra. Using exact diagonalization and the Hartree-Fock approximation we demonstrate that electrons couple strongly to these distortions. For small distortions the system is metallic, with a ground state of predominantly d8L character, where L_ denotes a ligand hole. For sufficiently large distortions (δdNi-O˜0.05-0.10 Å), however, a gap opens at the Fermi energy as the system enters a periodically distorted state alternating along the three crystallographic axes, with (d8L_2)S =0(d8)S=1 character, where S is the total spin. Thus the M-I transition may be viewed as being driven by an internal volume "collapse" where the NiO6 octahedra with two ligand holes shrink around their central Ni, while the remaining octahedra expand accordingly, resulting in the (1/2, 1/2, 1/2) superstructure observed in x-ray diffraction in the insulating phase. This insulating state is an example of charge ordering achieved without any actual movement of the charge.

  4. Pressure dependence of the metal-insulator transition in κ-(BEDT-TTF)2Hg(SCN)2Cl: optical and transport studies

    NASA Astrophysics Data System (ADS)

    Löhle, A.; Rose, E.; Singh, S.; Beyer, R.; Tafra, E.; Ivek, T.; Zhilyaeva, E. I.; Lyubovskaya, R. N.; Dressel, M.

    2017-02-01

    The two-dimensional organic conductor κ-(BEDT-TTF)2-Hg(SCN)2Cl exhibits a pronounced metal-insulator transition at {{T}\\text{CO}}=30 K. From the splitting of the molecular vibrations, the phase transition can be unambiguously assigned to charge-ordering with 2{δρ}=0.2e . We have investigated the pressure evolution of this behavior by temperature-dependent electrical transport measurements and optical investigations applying hydrostatic pressure up to 12 kbar. The data reveal a mean-field like down-shift of {{T}\\text{CO}}≤ft( p\\right) with a critical pressure of {{p}c}=0.7+/- 0.1 kbar and a metallic state above the suppression of the charge-ordered state; no traces of superconductivity could be identified down to T  =  1.5 K. As the charge order {δρ} sets in abruptly with decreasing temperature, its size remains unaffected by pressure. However, the fraction of charge imbalanced molecules decreases until it is completely absent above 1.6 kbar.

  5. Charge disproportionation without charge transfer in the rare-earth nickelates as a possible mechanism for the metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Johnston, Steven; Mukherjee, Anamitra; Elfimov, Ilya; Berciu, Mona; Sawatzky, George

    2014-03-01

    We study a model for the metal-insulator (MI) transition in the rare-earth nickelates RNiO3, based upon a negative charge transfer energy and coupling to a rock-salt like lattice distortion of the NiO6 octahedra. Using exact diagonalization and the Hartree-Fock approximation we demonstrate that electrons couple strongly to these distortions. For small distortions the system is metallic, with ground state of predominantly d8 ligand character, where ligand denotes a ligand hole. For sufficiently large distortions (δdNi - O ~ 0 . 05 - 0 . 10 Å), however, a gap opens at the Fermi energy as the system enters a periodically distorted state alternating along the three crystallographic axes, with (d8 ligand2) S = 0(d8) S = 1 character, where S is the total spin. Thus the MI transition may be viewed as being driven by an internal volume ``collapse'' where the NiO6 octahedra with two ligand holes shrink around their central Ni, while the remaining octahedra expand accordingly, resulting in the superstructure observed in x-ray diffraction in the insulating phase. This insulating state is an example of charge ordering achieved without any actual movement of the charge, similar to that reported in a prior DMFT study.

  6. Interfacial reaction between metal-insulator transition material NbO2 thin film and wide band gap semiconductor GaN

    NASA Astrophysics Data System (ADS)

    Posadas, Agham; Kvit, Alexander; Demkov, Alexander

    Materials that undergo a metal-insulator transition (MIT) are potentially useful for a wide variety of applications including electronic and opto-electronic switches, memristors, sensors, and coatings. In most such materials, the MIT is driven by temperature. In one such material, NbO2, the MIT mechanism is primarily of the Peierls-type, in which the dimerization of the Nb atoms without electron correlation causes the transition from metallic to semiconducting. We describe our initial work at combining NbO2 and GaN in epitaxial form, which could be potentially useful in resistive switching devices operating at very high temperatures. We grow NbO2 films on GaN(0001)/Si(111) substrates using reactive molecular beam epitaxy from a metal evaporation source and molecular oxygen. X-ray diffraction shows that the films are found to grow with a single out of plane orientation but with three symmetry-related orientation domains in the plane. In situ x-ray photoelectron spectroscopy confirms that the phase pure NbO2 is formed but that a chemical reaction occurs between the GaN and NbO2 during the growth forming a polycrystalline interfacial layer. We perform STEM-EELS analysis of the film and the interface to further elucidate their chemical and structural properties.

  7. Pressure dependence of the metal-insulator transition in κ-(BEDT-TTF)2Hg(SCN)2Cl: optical and transport studies.

    PubMed

    Löhle, A; Rose, E; Singh, S; Beyer, R; Tafra, E; Ivek, T; Zhilyaeva, E I; Lyubovskaya, R N; Dressel, M

    2017-02-08

    The two-dimensional organic conductor κ-(BEDT-TTF)2-Hg(SCN)2Cl exhibits a pronounced metal-insulator transition at [Formula: see text] K. From the splitting of the molecular vibrations, the phase transition can be unambiguously assigned to charge-ordering with [Formula: see text]. We have investigated the pressure evolution of this behavior by temperature-dependent electrical transport measurements and optical investigations applying hydrostatic pressure up to 12 kbar. The data reveal a mean-field like down-shift of [Formula: see text] with a critical pressure of [Formula: see text] kbar and a metallic state above the suppression of the charge-ordered state; no traces of superconductivity could be identified down to T  =  1.5 K. As the charge order [Formula: see text] sets in abruptly with decreasing temperature, its size remains unaffected by pressure. However, the fraction of charge imbalanced molecules decreases until it is completely absent above 1.6 kbar.

  8. Compositionally controlled metal-insulator transition in Tl{sub 2-x}In{sub x}TeO{sub 6}

    SciTech Connect

    Siritanon, Theeranun; Sleight, A.W.; Subramanian, M.A.

    2011-04-15

    Tl{sub 2}TeO{sub 6} and In{sub 2}TeO{sub 6} are both known to crystallize in the Na{sub 2}SiF{sub 6}-type structure. We find Tl{sub 2}TeO{sub 6} is metallic, whereas In{sub 2}TeO{sub 6} is an insulator. We have prepared a complete Tl{sub 2-x}In{sub x}TeO{sub 6} series in a search for a compositionally controlled metal-insulator transition that might be expected if a complete solid solution can be obtained. Unit cell edges and volume vary monotonically with no indication of a miscibility gap. The metal-insulator transition occurs at an x value of about 1.4, which can be rationalized on a percolation model. No superconductivity could be detected down to 5 K. -- Graphical abstract: A complete solid solution between Tl{sub 2}TeO{sub 6} and In{sub 2}TeO{sub 6} is formed. A compositionally controlled metal-insulator transition occurs in Tl{sub 2-x}In{sub x}TeO{sub 6} at an x value of about 1.5. No superconductivity could be detected down to 5 K. Display Omitted Research highlights: {yields} A complete solid solution between Tl{sub 2}TeO{sub 6} and In{sub 2}TeO{sub 6} is formed. {yields} A compositionally controlled metal-insulator transition occurs in Tl{sub 2-x}In{sub x}TeO{sub 6} at an x value of about 1.5, which can be rationalized on a percolation model. {yields} No superconductivity could be detected down to 5 K.

  9. Mg doping of thermochromic VO{sub 2} films enhances the optical transmittance and decreases the metal-insulator transition temperature

    SciTech Connect

    Mlyuka, N. R.; Niklasson, G. A.; Granqvist, C. G.

    2009-10-26

    Thermochromic films of Mg{sub x}V{sub 1-x}O{sub 2} were made by reactive dc magnetron sputtering onto heated glass. The metal-insulator transition temperature decreased by {approx}3 K/at. %Mg, while the optical transmittance increased concomitantly. Specifically, the transmittance of visible light and of solar radiation was enhanced by {approx}10% when the Mg content was {approx}7 at. %. Our results point at the usefulness of these films for energy efficient fenestration.

  10. Metal-insulator transition in 3d transition-metal oxides with ABO 3 and A 2BO 4 type structures

    NASA Astrophysics Data System (ADS)

    Eisaki, H.; Ido, T.; Magoshi, K.; Mochizuki, M.; Yamatsu, H.; Ito, T.; Uchida, S.

    1991-12-01

    3d transition-metal oxides with perovskite and K 2NiF 4 crystal structures, (La,Sr)VO 3, (La,Sr)FeO 3, (La,Sr)CoO 3, LaNiO 3 and (La,Sr) 2NiO 4 systems are investigated focusing on the effect of carrier doping performed by the A-site ion substitution. Both (La,Sr)VO 3 and (La,Sr)CoO 3 systems show an insulator to metal transition by Sr substitution, however, the magnetic behavior differs drastically. The mid-infrared structure induced by Sr substitution is observed in the optical spectra of (La,Sr) 2NiO 4 system. Relation between the behavior of metal-insulator transition and the variation of the electronic and/or spin structure in these systems is discussed in comparison with the high-T c copper oxides.

  11. Mechanisms of spin-flipping and metal-insulator transition in nano-Fe3O4

    NASA Astrophysics Data System (ADS)

    Dito Fauzi, Angga; Aziz Majidi, Muhammad; Rusydi, Andrivo

    2017-04-01

    Fe3O4 is a half-metallic ferrimagnet with {{T}\\text{C}}∼ 860 K exhibiting metal-insulator transition (MIT) at  ∼120 K. In bulk form, the saturation magnetization is 0.6 Tesla (∼471 emu cm‑3). A recent experimental study has shown that the saturation magnetization of nano-Fe3O4 thin films can achieve up to  ∼760 emu cm‑3, attributed to spin-flipping of Fe ions at tetrahedral sites assisted by oxygen vacancies (V O). Such a system has shown to have higher MIT temperature (∼150 K). The spin-flipping is a new phenomenon in Fe3O4, while the MIT is a long-standing one. Here, we propose a model and calculations to investigate the mechanisms of both phenomena. Our results show that, for the system without V O, the ferrimagnetic configuration is energetically favorable. Remakably, upon inclusion of V O, the ground-state configuration switches into ferromagnetic. As for the MIT, by proposing temperature dependences of some hopping integrals in the model, we demonstrate that the system without and with V O undergo the MIT in slightly different ways, leading to higher MIT temperature for the system with V O, in agreement with the experimental data. Our results also show that the MIT in both systems occur concomitantly with the redistribution of electrons among the three Fe ions in each Fe3O4 formula unit. As such temperature dependences of hopping integrals may arise due to dynamic Jahn–Teller effects, our phenomenological theory may provide a way to reconcile existing theories relating the MIT to the structural transition and the charge ordering.

  12. Proton spin-lattice relaxation mechanisms and the metal-insulator transition in cerium hydrides

    NASA Astrophysics Data System (ADS)

    Zamir, D.; Barnes, R. G.; Salibi, N.; Cotts, R. M.; Phua, T.-T.; Torgeson, D. R.; Peterson, D. T.

    1984-01-01

    Nuclear-magnetic-resonance (NMR) experiments have been done on cerium hydride (CeHx) samples to search for correlations between NMR properties and known electrical conductivity changes as a function of hydrogen concentration and temperature. Data are presented for the 1H spin-lattice relaxation rate R1 (=1T1) and some line shapes for 2.10<=x<=2.92 for temperatures from about 100 to 375 K. Although two 1H resonances are observed at some temperatures, proton spin-lattice relaxation is characterized by a single relaxation time at each x and T. To a good approximation R1=AT+R, where AT is attributed to direct dipolar coupling between protons and the electronic magnetic dipole moment of Ce3+, and R is an essentially temperature-independent term attributed to indirect [Ruderman-Kittel-Kasuya-Yosida (RKKY)] coupling to the Ce3+ moment. The AT term is so large that for most experiments the proton-proton dipolar and proton-conduction-electron couplings are negligible. The x dependence of the constant A is consistent with the dipolar coupling. The constant R decreases in a steep manner as x is increased above x~2.65 just below the regime 2.75transition occurs in CeHx. It is proposed that R~Nd(EF) and that the RKKY interaction includes coupling through the d-band density of states. The marked decreases in R1 and in the electrical conductivity that are associated with the concentration-dependent transition are thus attributed to the vanishing electron density of states at the Fermi surface. No temperature-dependent transition in R1 is found. Results are consistent with a Mott transition model in which the electron donors are hydrogen vacancies.

  13. Intrinsic evolutions of optical functions, band gap, and higher-energy electronic transitions in VO2 film near the metal-insulator transition region

    NASA Astrophysics Data System (ADS)

    Li, W. W.; Yu, Q.; Liang, J. R.; Jiang, K.; Hu, Z. G.; Liu, J.; Chen, H. D.; Chu, J. H.

    2011-12-01

    Transmittance spectra of (011) vanadium dioxide (VO2) film have been studied in the temperature range of 45-80 °C. Owing to increasing carrier concentration, the near-infrared extinction coefficient and optical conductivity around metal-insulator transition (MIT) rapidly increase with the temperature. Moreover, three electronic transitions can be uniquely assigned and show the hysteresis behavior near the MIT region. It was found that the optical band gap decreases from 0.457 to 0.042 eV before the MIT, then reduces to zero for the metal state. This confirms the fact that the a1g and egπ bands are moved close and finally overlap with the temperature.

  14. Localization, mobility edges, and metal-insulator transition in a class of one-dimensional slowly varying deterministic potentials

    NASA Astrophysics Data System (ADS)

    Das Sarma, S.; He, Song; Xie, X. C.

    1990-03-01

    We study the localization properties of the one-dimensional nearest-neighbor tight-binding Schrödinger equation, un+1+un-1+Vnun=Eun, where the on-site potential Vn is neither periodic (the ``Bloch'' case) nor random (the ``Anderson'' case), but is aperiodic or pseudorandom. In particular, we consider in detail a class of slowly varying potential with a typical example being Vn=λ cos(παnν) with 0<ν<1. We develop an asymptotic semiclassical technique to calculate exactly (in the large-n limit) the density of states and the Lyapunov exponent for this model. We also carry out numerical work involving direct diagonalization and recursive transfer-matrix calculations to study localization properties of the model. Our theoretical results are essentially in exact agreement with the numerical results. Our most important finding is that, for λ<2, there is a metal-insulator transition in this one-dimensional model (ν<1) with the mobility edges located at energies Ec=+/-||2-λ||. Eigenstates at the band center (||E||<||Ec||) are all extended whereas the band-edge states (||E||>||Ec||) are all localized. Another interesting finding is that, in contrast to higher-dimensional random-disorder situations, the density of states, D(E), in this model is not necessarily smooth through the mobility edge, but may diverge according to D(E)~||E-Ec||-δ. The Lyapunov exponent γ (or, the inverse localization length) behaves at Ec as γ(E)~||E-Ec||β, with β=1-δ. We solve the exact critical behavior of the general model, deriving analytic expressions for D(E), γ(E), and the exponents δ and β. We find that λ, α, and ν are all irrelevant variables in the renormalization-group sense for the localization critical properties of the model. We also give detailed numerical results for a number of different forms of Vn.

  15. Metal-insulator transition in variably doped (Bi(1-x)Sb(x))2Se3 nanosheets.

    PubMed

    Lee, Chee Huei; He, Rui; Wang, ZhenHua; Qiu, Richard L J; Kumar, Ajay; Delaney, Conor; Beck, Ben; Kidd, T E; Chancey, C C; Sankaran, R Mohan; Gao, Xuan P A

    2013-05-21

    Topological insulators are novel quantum materials with metallic surface transport but insulating bulk behavior. Often, topological insulators are dominated by bulk contributions due to defect induced bulk carriers, making it difficult to isolate the more interesting surface transport characteristics. Here, we report the synthesis and characterization of nanosheets of a topological insulator Bi2Se3 with variable Sb-doping levels to control the electron carrier density and surface transport behavior. (Bi(1-x)Sb(x))2Se3 thin films of thickness less than 10 nm are prepared by epitaxial growth on mica substrates in a vapor transport setup. The introduction of Sb in Bi2Se3 effectively suppresses the room temperature electron density from ∼4 × 10(13) cm(-2) in pure Bi2Se3 (x = 0) to ∼2 × 10(12) cm(-2) in (Bi(1-x)Sb(x))2Se3 at x ∼ 0.15, while maintaining the metallic transport behavior. At x ≳ ∼0.20, a metal-insulator transition (MIT) is observed, indicating that the system has transformed into an insulator in which the metallic surface conduction is blocked. In agreement with the observed MIT, Raman spectroscopy reveals the emergence of vibrational modes arising from Sb-Sb and Sb-Se bonds at high Sb concentrations, confirming the appearance of the Sb2Se3 crystal structure in the sample. These results suggest that nanostructured chalcogenide films with controlled doping can be a tunable platform for fundamental studies and electronic applications of topological insulator systems.

  16. Exotic topological states near a quantum metal-insulator transition in pyrochlore iridates

    NASA Astrophysics Data System (ADS)

    Tian, Zhaoming

    Pyrochlore iridates have attracted great interest as prime candidates that may host topologically nontrivial states, spin ice ordering and quantum spin liquid states, in particular through the interplay between different degrees of freedom, such as local moments and mobile electrons. Based on our extensive study using our high quality single crystals, we will discuss such examples, i.e. chiral spin liquid in a quadratic band touching state, Weyl semimetallic state and chiral domain wall transport nearby a quantum insulator-semimetal transition in pyrochlore iridates. This work is based on the collaboration with Nakatsuji Satoru, Kohama Yoshimitsu, Tomita Takahiro, Kindo Koichi, Jun J. Ishikawa, Balents Leon, Ishizuka Hiroaki, Timothy H. Hsieh. ZM. Tian was supported by JSPS Postdoctoral Fellowship (No.P1402).

  17. Three-dimensional electronic structures and the metal-insulator transition in Ruddlesden-Popper iridates

    NASA Astrophysics Data System (ADS)

    Yamasaki, A.; Fujiwara, H.; Tachibana, S.; Iwasaki, D.; Higashino, Y.; Yoshimi, C.; Nakagawa, K.; Nakatani, Y.; Yamagami, K.; Aratani, H.; Kirilmaz, O.; Sing, M.; Claessen, R.; Watanabe, H.; Shirakawa, T.; Yunoki, S.; Naitoh, A.; Takase, K.; Matsuno, J.; Takagi, H.; Sekiyama, A.; Saitoh, Y.

    2016-09-01

    In this study, we systematically investigate three-dimensional (3D) momentum (ℏ k )-resolved electronic structures of Ruddlesden-Popper-type iridium oxides Srn +1IrnO3 n +1 using soft-x-ray (SX) angle-resolved photoemission spectroscopy (ARPES). Our results provide direct evidence of an insulator-to-metal transition that occurs upon increasing the dimensionality of the IrO2-plane structure. This transition occurs when the spin-orbit-coupled jeff=1 /2 band changes its behavior in the dispersion relation and moves across the Fermi energy. In addition, an emerging band along the Γ (0,0,0)-R (π ,π ,π ) direction is found to play a crucial role in the metallic characteristics of SrIrO3. By scanning the photon energy over 350 eV, we reveal the 3D Fermi surface in SrIrO3 and kz-dependent oscillations of photoelectron intensity in Sr3Ir2O7 . In contrast to previously reported results obtained using low-energy photons, folded bands derived from lattice distortions and/or magnetic ordering make significantly weak (but finite) contributions to the k -resolved photoemission spectrum. At the first glance, this leads to the ambiguous result that the observed k -space topology is consistent with the unfolded Brillouin zone (BZ) picture derived from a nonrealistic simple square or cubic Ir lattice. Through careful analysis, we determine that a superposition of the folded and unfolded band structures has been observed in the ARPES spectra obtained using photons in both ultraviolet and SX regions. To corroborate the physics deduced using low-energy ARPES studies, we propose to utilize SX-ARPES as a powerful complementary technique, as this method surveys more than one whole BZ and provides a panoramic view of electronic structures.

  18. Magnetism and Metal-Insulator Transition in Fe(Sb1−xTex)2

    SciTech Connect

    Petrovic, C.; Hu, R.; Mitrovic, V.F.

    2009-02-09

    We have investigated structural, magnetic, and transport properties of Fe(Sb{sub 1-x}Te{sub x}){sub 2} single crystals. Whereas metallic ground state is induced for x = 0.001, canted antiferromagnetism is observed for 0.1 {le} x {le} 0.4 with an intermediate ferromagnetic phase for x = 0.2. With higher Te doping, semiconducting behavior is restored and the variable range hopping conduction mechanism dominates at low temperatures for 0.4 {le} x {le} 0.6. We discuss our results within the framework of inverted metal to insulator in correlated electron insulators.

  19. Resistance noise at the metal-insulator transition in thermochromic VO2 films

    NASA Astrophysics Data System (ADS)

    Topalian, Zareh; Li, Shu-Yi; Niklasson, Gunnar A.; Granqvist, Claes G.; Kish, Laszlo B.

    2015-01-01

    Thermochromic VO2 films were prepared by reactive DC magnetron sputtering onto heated sapphire substrates and were used to make 100-nm-thick samples that were 10 μm wide and 100 μm long. The resistance of these samples changed by a factor ˜2000 in the 50 < Ts < 70 °C range of temperature Ts around the "critical" temperature Tc between a low-temperature semiconducting phase and a high-temperature metallic-like phase of VO2. Power density spectra S(f) were extracted for resistance noise around Tc and demonstrated unambiguous 1/f behavior. Data on S(10 Hz)/Rs2 scaled as Rsx, where Rs is sample resistance; the noise exponent x was -2.6 for Ts < Tc and +2.6 for Ts > Tc. These exponents can be reconciled with the Pennetta-Trefán-Reggiani theory [Pennetta et al., Phys. Rev. Lett. 85, 5238 (2000)] for lattice percolation with switching disorder ensuing from random defect generation and healing in steady state. Our work hence highlights the dynamic features of the percolating semiconducting and metallic-like regions around Tc in thermochromic VO2 films.

  20. Giant positive magnetoresistance and field-induced metal insulator transition in Cr2NiGa

    NASA Astrophysics Data System (ADS)

    Pramanick, S.; Dutta, P.; Chatterjee, S.; Giri, S.; Majumdar, S.

    2017-01-01

    We report the magneto-transport properties of the newly synthesized Heusler compound Cr2NiGa which crystallizes in a disordered cubic B2 structure belonging to the Pm\\bar{3} m space group. The sample is found to be paramagnetic down to 2 K with metallic characteristics. On application of a magnetic field, a significantly large increase in resistivity is observed which corresponds to magnetoresistance as high as 112% at 150 kOe of field at the lowest temperature. Most remarkably, the sample shows a negative temperature coefficient of resistivity below about 50 K under the application of field  ⩾80 kOe, signifying a field-induced metal to ‘insulating’ transition. The observed magnetoresistance follows Kohler’s rule below 20 K indicating the validity of the semiclassical model of electronic transport in metals with a single relaxation time. A multi-band model for electronic transport, originally proposed for semimetals, is found to be appropriate to describe the magneto-transport behavior of the sample.

  1. Tuning the metal-insulator transition in NdNiO3 thin films

    NASA Astrophysics Data System (ADS)

    Shiyani, T.; Shekhada, K. G.; Savaliya, C. R.; Markna, J. H.

    2017-05-01

    The RNiO3 (R is rare earth) perovskites are famous for their metal to insulator transition (MIT). The temperature can be transformed and depends on the nature of the rare earth. The MIT in thin films and heterostructures of RNiO3 propose the chance to control the MIT as a function of thickness via strain using different substrates. We have reported the electrical transport properties of NdNiO3/NdGaO3, and NNO/NGO/STO structures. These structures were fabricated by pulsed laser deposition (PLD) method. The temperature of the MIT changes from 155K to 195 K. The electrical resistivity of the heterostructures undergoes MIT, depending on the thickness and deposition conditions. Thickness and deposition temperature were found to have a great impact on the electrical transport properties. The shift in TMI changes with thickness and it larger for thinner NdNiO3. The MIT of NNO thin films is responsive to strain and its partial relaxation creates an inhomogeneous strain field that broadens the MIT. This study may be potentially applicable to Mott transistor devices.

  2. Tunneling Spectroscopy of Amorphous Magnetic Rare Earth-Si Alloys near the Metal-Insulator Transition

    NASA Astrophysics Data System (ADS)

    Xiong, P.; Zink, B. L.; Tran, M. Q.; Gebala, A. E.; Wilcox, E. M.; Hellman, F.; Dynes, R. C.

    1997-03-01

    Amorphous dilute magnetic semiconductors exhibit striking differences in the electrical and magneto-transport behavior from their crystalline or nonmagnetic analogs.(F. Hellman et al., Phys. Rev. Lett. 77, 4652 (1996).) Magnetic impurities cause a large suppression of conductivity below 50 K in a-Si_xGd_1-x and a-Si_xTb_1-x relative to the nonmagnetic a-Si_xY_1-x (x ~ 0.85-0.9). Application of a magnetic field increases the conductivity by orders of magnitude. We have fabricated good quality tunnel junctions on a-Si:Gd and the nonmagnetic a-Si:Y to probe the electronic density of states in these two systems. We present the results of the tunneling spectroscopy and its magnetic field dependence for a series of the two alloys at different compositions. We will discuss the correlation between the tunneling spectra and the transport properties and its implications on the possible origin of the magnetic field tuned insulator-metal transition in a-Si:Gd. Research Supported by ONR Grant No. N000149151320 and NSF Grant No. DMR-9208599.

  3. Topological textures and metal-insulator transition in Reentrant Integer Quantum Hall Effect: role of disorder

    NASA Astrophysics Data System (ADS)

    Lyanda-Geller, Yuli; Simion, George

    2015-03-01

    We investigate a ground state of the two-dimensional (2D) electron liquid in the presence of disorder for Landau level filling factors, for which the re-entrant integer quantum Hall effect is observed. Our particular interest is the range of filling factors, which in a clean 2D system is favorable to formation of the two-electron (2e) bubble crystal. For the smooth random potential due to charged impurities placed far away from the 2D gas, the ground state is a lightly distorted 2e bubble crystal. However, for positively or negatively charged residual impurities located approximately within about three magnetic lengths from the 2D electrons, the ground state contains charged 2e complexes formed either by positively charged impurity and 3e defect bubble, or negatively charged impurity and 2e defect bubble. In the vicinity of 1e and 3e defect bubbles, the 2e bubbles of the crystal change their shape from round to elongated forming hedgehog (for 1e defect) or vortex (for 3e defect) textures. The topological textures due to these complexes interact with vortex and hedgehog excitations, generated as temperature increases that are not bound by residual impurities. The temperature of insulator to metal transition calculated with both bound and unbound defects agrees with experiment. Research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010544.

  4. Metal-insulator transition of the two-band Hubbard model in infinite dimension and its relevance to a strongly correlated electron system: NiS2-xSex

    NASA Astrophysics Data System (ADS)

    Watanabe, H.; Doniach, S.

    1998-02-01

    We report a study of metal-insulator transition of a strongly correlated two-band Hubbard model using a dynamical mean-field theory approach. We find that the Mott transition appears at half filling even at T=0 in contrast to the one-band Hubbard model. The transition is characterized by the development of a ``Kondo-like'' peak near Fermi level. We also find a signature of the coexistence of metallic and antiferromagnetic phases from the study of the single-particle Green's function and the magnetic long-range order due to the superexchange coupling between the correlated electrons. We then suggest the relevance of our results to the metal-insulator transition and the recent angle-resolved photoemission measurements of NiS2-xSex. We also study the effect of carrier doping and the comparison of our findings with the experimental results suggests the possible importance of departures from stoichiometry associated with the Se substitution. The relevance of our results to high-temperature superconductivity is also discussed.

  5. Metal-insulator transition in a weakly interacting disordered electron system

    NASA Astrophysics Data System (ADS)

    Ekuma, C. E.; Yang, S.-X.; Terletska, H.; Tam, K.-M.; Vidhyadhiraja, N. S.; Moreno, J.; Jarrell, M.

    2015-11-01

    The interplay of interactions and disorder is studied using the Anderson-Hubbard model within the typical medium dynamical cluster approximation. Treating the interacting, nonlocal cluster self-energy [Σc[G ˜] (i ,j ≠i ) ] up to second order in the perturbation expansion of interactions, U2, with a systematic incorporation of nonlocal spatial correlations and diagonal disorder, we explore the initial effects of electron interactions (U ) in three dimensions. We find that the critical disorder strength (WcU), required to localize all states, increases with increasing U ; implying that the metallic phase is stabilized by interactions. Using our results, we predict a soft pseudogap at the intermediate W close to WcU and demonstrate that the mobility edge (ωɛ) is preserved as long as the chemical potential, μ , is at or beyond the mobility edge energy.

  6. The Unusual Metal-Insulator Transition in Ca(2-x)Sr(x)RuO(4)

    NASA Astrophysics Data System (ADS)

    Rice, T. Maurice

    2002-03-01

    The isoelectronic compounds Ca_2-xSr_xRuO4 offer a rare opportunity to follow the evolution of the electronic structure from a multiband metal, Sr_2RuO_4, to a Mott insulator, Ca_2RuO_4. The evolution is not at all monotonic but proceeds through a series of intermediate regions with unexpected behavior [1]. Sr_2RuO4 is a good metal with the 4 electrons in the t_2g-subshell of the Ru^4+-ions distributed equally in 3 bands. These in turn separate into a d_xy-band which disperses in both directions in the RuO_2-planes and d_xz/d_yz-bands dispersing only in one direction. The hybridization between these components occurs only through very weak interplanar processes. Substituting Ca for Sr leads to band narrowing through a rotation of the RuO_4-octahedra. A series of electronic structure calculations [2] using the LDA+DMFT method to incorporate strong correlations, predict an unusual state with 3 electrons localizing in the narrower d_xz/d_yz bands while the last electron remains itinerant in the broader d_xy-band. The observation of a strongly enhanced and temperature dependent spin susceptibility in the metallic state at x=0.5 is attributed to the S=1/2 local moments of the localized hole in the d_xz/d_yz-orbitals. The superexchange interaction between the local moments is strongly dependent on the specific orbital occupation and so glassy behavior in the orbital ordering can account for the glassy behavior observed in the susceptibility in the range 0.2 < x < 0.5. The final transition to a Mott insulator at x < 0.2 is driven by a compression of the RuO_4-octahedra and a switch to an electronic configuration with a filled d_xy-orbital and 2 electrons in the d_xz/d_yz orbitals which has a S=1 local moment expected for a Ru^4+-ion. [1] S. Nakatsuji and Y. Maeno, Phys. Rev. Lett. 84, 2666 (2000). [2] V.I. Anisimov, I.A. Nekrasov, D.E. Kondakov, T.M. Rice, and M. Sigrist, cond-mat0107095 and Eur. Phys. Jour. B (in press).

  7. Metal-Insulator Transitions.

    ERIC Educational Resources Information Center

    Mott, Nevill

    1978-01-01

    Explains how changes in temperature, pressure, magnetic field or alloy composition can affect the electronic band structure of substances, leading in some cases to dramatic changes in conductivity. (GA)

  8. Metal-Insulator Transitions.

    ERIC Educational Resources Information Center

    Mott, Nevill

    1978-01-01

    Explains how changes in temperature, pressure, magnetic field or alloy composition can affect the electronic band structure of substances, leading in some cases to dramatic changes in conductivity. (GA)

  9. Observations of a metal-insulator transition and strong surface states in Bi2-x SbxSe3 thin films.

    PubMed

    Zhang, Cheng; Yuan, Xiang; Wang, Kai; Chen, Zhi-Gang; Cao, Baobao; Wang, Weiyi; Liu, Yanwen; Zou, Jin; Xiu, Faxian

    2014-11-05

    High-quality thin films of the topological insulator Bi2-xSbxSe3 are grown by molecular beam epitaxy. A metal-insulator transition along with strong surface states - revealed by Shubnikov-de Haas oscillations - is observed as the Sb concentration is increased. This system represents a widely tunable platform for achieving high surface conduction, suppressing the bulk influence, and manipulating the band structure of topological insulators. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Role of long range Coulomb interaction near the disorder driven metal-insulator transition in Ga1-xMnxAs

    NASA Astrophysics Data System (ADS)

    Mahmoudian, S.; Miranda, E.; Dobrosavljevic, V.

    2013-03-01

    Surprising signatures of interaction effects on disorder-driven localization have recently been observed by scanning tunneling microscopy of Ga1-xMnxAs, where visualizing the electronic wave function near the metal-insulator transition revealed[1] a pronounced suppression of the local tunneling density of states (LDOS) and enhanced localization only near the Fermi energy. These features highlight the limitation of the non-interacting picture, and point to the crucial importance of the long-range Coulomb interaction. Here, we implement a theoretical approach based on the recently developed Typical-Medium Theory,[2] the conceptually simplest approach to interaction-localization. We show that the presence of long-range Coulomb interaction leads to the simultaneous opening of a soft pseudogap in both the typical (geometrically averaged) and the average (algebraically averaged) LDOS, as the transition is approached. This result is consistent with the experimentally observed features of the STM spectra, suggesting new experiments that should be performed to fully characterize the quantum critical behavior at the metal-insulator transition

  11. Metal-insulator transition in Nd{sub 1−x}Eu{sub x}NiO{sub 3}: Entropy change and electronic delocalization

    SciTech Connect

    Jardim, R. F. Andrade, S.; Barbeta, V. B.; Escote, M. T.; Cordero, F.; Torikachvili, M. S.

    2015-05-07

    The metal-insulator (MI) phase transition in Nd{sub 1–x}Eu{sub x}NiO{sub 3}, 0 ≤ x ≤ 0.35, has been investigated through the pressure dependence of the electrical resistivity ρ(P, T) and measurements of specific heat C{sub P}(T). The MI transition temperature (T{sub MI}) increases with increasing Eu substitution and decreases with increasing pressure. Two distinct regions for the Eu dependence of dT{sub MI}/dP were found: (i) for x ≤ 0.15, dT{sub MI}/dP is nearly constant and ∼−4.3 K/kbar; (ii) for x ≥ 0.15, dT{sub MI}/dP increases with x and it seems to reach a saturation value ∼−6.2 K/kbar for the x = 0.35 sample. This change is accompanied with a strong decrease in the thermal hysteresis in ρ(P, T) between the cooling and warming cycles, observed in the vicinity of T{sub MI}. The entropy change (ΔS) at T{sub MI} for the sample x = 0, estimated by using the dT{sub MI}/dP data and the Clausius-Clapeyron equation, resulted in ΔS ∼ 1.2 J/mol K, a value in line with specific heat measurements. When the Eu concentration is increased, the antiferromagnetic (AF) and the MI transitions are separated in temperature, permitting that an estimate of the entropy change due to the AF/Paramagnetic transition be carried out, yielding ΔS{sub M} ∼ 200 mJ/mol K. This value is much smaller than that expected for a s = 1/2 spin system. The analysis of ρ(P, T) and C{sub P}(T) data indicates that the entropy change at T{sub MI} is mainly due to the electronic delocalization and not related to the AF transition.

  12. Size-dependent metal-insulator transition in platinum-dispersed silicon dioxide thin film: A candidate for future non-volatile memory

    NASA Astrophysics Data System (ADS)

    Chen, Albert B. K.

    Non-volatile random access memories (NVRAM) are promising data storage and processing devices. Various NVRAM, such as FeRAM and MRAM, have been studied in the past. But resistance switching random access memory (RRAM) has demonstrated the most potential for replacing flash memory in use today. In this dissertation, a novel RRAM material design that relies upon an electronic transition, rather than a phase change (as in chalcogenide Ovonic RRAM) or a structural change (such in oxide and halide filamentary RRAM), is investigated. Since the design is not limited to a single material but applicable to general combinations of metals and insulators, the goal of this study is to use a model material to delineate the intrinsic features of the electronic metal/insulator transition in random systems and to demonstrate their relevance to reliable memory storage and retrieval. We fabricated amorphous SiO2 thin films embedded with randomly dispersed Pt atoms. Macroscopically, this random material exhibits a percolation transition in electric conductivity similar to the one found in various insulator/metal granular materials. However, at Pt concentrations well below the bulk percolation limit, a distinct insulator to metal transition occurs in the thickness direction as the film thickness falls below electron's "diffusion" distance, which is the tunneling distance at 0K. The thickness-triggered metal- to-insulator transition (MIT) can be similarly triggered by other conditions: (a) a changing Pt concentration (a concentration-triggered MIT), (b) a changing voltage/polarity (voltage-triggered MIT), and (c) an UV irradiation (photon-triggered MIT). The resistance switching characteristics of this random material were further investigated in several device configurations under various test conditions. These include: materials for the top and bottom electrodes, fast pulsing, impedance spectroscopy, static stressing, retention, fatigue and temperature from 10K to 448K. The SiO2-Pt

  13. The metal-insulator transition in vanadium dioxide: A view at bulk and surface contributions for thin films and the effect of annealing

    NASA Astrophysics Data System (ADS)

    Yin, W.; West, K. G.; Lu, J. W.; Pei, Y.; Wolf, S. A.; Reinke, P.; Sun, Y.

    2009-06-01

    Vanadium dioxide is investigated as potential oxide barrier in spin switches, and in order to incorporate VO2 layers in complex multilayer devices, it is necessary to understand the relation between bulk and surface/interface properties. Highly oriented VO2 thin films were grown on (0001) sapphire single crystal substrates with reactive bias target ion beam deposition. In the analysis of the VO2 films, bulk-sensitive methods [x-ray diffraction (XRD) and transport measurements] and surface sensitive techniques [photoelectron spectroscopy (PES) and scanning tunneling microscopy and spectroscopy] were employed. The samples were subjected to heating cycles with annealing temperatures of up to 425 and 525K. Prior to annealing the VO2 films exhibit the transition from the monoclinic to the tetragonal phase with the concurrent change in conductivity by more than a factor of 103 and their phase purity is confirmed by XRD. Annealing to 425K and thus cycling across the metal-insulator transition (MIT) temperature has no impact on the bulk properties of the VO2 film but the surface undergoes irreversible electronic changes. The observation of the valence band with PES during the annealing illustrates that the surface adopts a partially metallic character, which is retained after cooling. Annealing to a higher temperature (525K ) triggers a modification of the bulk, which is evidenced by a considerable reduction in the MIT characteristics, and a degradation in crystallite morphology. The local measurement of the conductivity with scanning tunneling spectroscopy shows the transition of the surface from predominantly semiconducting surface prior to annealing to a surface with an overwhelming contribution from metallic sections afterward. The spatial distribution of metallic regions cannot be linked in a unique manner to the crystallite size or location within the crystallites. The onset of oxygen depletion at the surface is held responsible for this behavior. The onset of bulk

  14. Ground-state oxygen holes and the metal-insulator transition in the negative charge-transfer rare-earth nickelates

    NASA Astrophysics Data System (ADS)

    Bisogni, Valentina; Catalano, Sara; Green, Robert J.; Gibert, Marta; Scherwitzl, Raoul; Huang, Yaobo; Strocov, Vladimir N.; Zubko, Pavlo; Balandeh, Shadi; Triscone, Jean-Marc; Sawatzky, George; Schmitt, Thorsten

    2016-10-01

    The metal-insulator transition and the intriguing physical properties of rare-earth perovskite nickelates have attracted considerable attention in recent years. Nonetheless, a complete understanding of these materials remains elusive. Here we combine X-ray absorption and resonant inelastic X-ray scattering (RIXS) spectroscopies to resolve important aspects of the complex electronic structure of rare-earth nickelates, taking NdNiO3 thin film as representative example. The unusual coexistence of bound and continuum excitations observed in the RIXS spectra provides strong evidence for abundant oxygen holes in the ground state of these materials. Using cluster calculations and Anderson impurity model interpretation, we show that distinct spectral signatures arise from a Ni 3d8 configuration along with holes in the oxygen 2p valence band, confirming suggestions that these materials do not obey a conventional positive charge-transfer picture, but instead exhibit a negative charge-transfer energy in line with recent models interpreting the metal-insulator transition in terms of bond disproportionation.

  15. Ground-state oxygen holes and the metal-insulator transition in the negative charge-transfer rare-earth nickelates.

    PubMed

    Bisogni, Valentina; Catalano, Sara; Green, Robert J; Gibert, Marta; Scherwitzl, Raoul; Huang, Yaobo; Strocov, Vladimir N; Zubko, Pavlo; Balandeh, Shadi; Triscone, Jean-Marc; Sawatzky, George; Schmitt, Thorsten

    2016-10-11

    The metal-insulator transition and the intriguing physical properties of rare-earth perovskite nickelates have attracted considerable attention in recent years. Nonetheless, a complete understanding of these materials remains elusive. Here we combine X-ray absorption and resonant inelastic X-ray scattering (RIXS) spectroscopies to resolve important aspects of the complex electronic structure of rare-earth nickelates, taking NdNiO3 thin film as representative example. The unusual coexistence of bound and continuum excitations observed in the RIXS spectra provides strong evidence for abundant oxygen holes in the ground state of these materials. Using cluster calculations and Anderson impurity model interpretation, we show that distinct spectral signatures arise from a Ni 3d(8) configuration along with holes in the oxygen 2p valence band, confirming suggestions that these materials do not obey a conventional positive charge-transfer picture, but instead exhibit a negative charge-transfer energy in line with recent models interpreting the metal-insulator transition in terms of bond disproportionation.

  16. Noise and Phase Transitions

    NASA Astrophysics Data System (ADS)

    Chen, Zhi; Yu, Clare C.

    2006-03-01

    Noise is present in many physical systems and is often viewed as a nuisance. Yet it can also be a probe of microscopic fluctuations. There have been indications recently that the noise in the resistivity increases in the vicinity of the metal-insulator transition. But what are the characteristics of the noise associated with well-understood first and second order phase transitions? It is well known that critical fluctuations are associated with second order phase transitions, but do these fluctuations lead to enhanced noise? We have addressed these questions using Monte Carlo simulations to study the noise in the 2D Ising model which undergoes a second order phase transition, and in the 5-state Potts model which undergoes a first order phase transition. We monitor these systems as the temperature drops below the critical temperature. At each temperature, after equilibration is established, we obtain the time series of quantities characterizing the properties of the system, i.e., the energy and magnetization per site. We apply different methods, such as the noise power spectrum, the Detrended Fluctuation Analysis (DFA) and the second spectrum of the noise, to analyze the fluctuations in these quantities.

  17. Effects of low-energy excitations on spectral properties at higher binding energy: the metal-insulator transition of VO(2).

    PubMed

    Gatti, Matteo; Panaccione, Giancarlo; Reining, Lucia

    2015-03-20

    The effects of electron interaction on spectral properties can be understood in terms of coupling between excitations. In transition-metal oxides, the spectral function close to the Fermi level and low-energy excitations between d states have attracted particular attention. In this work we focus on photoemission spectra of vanadium dioxide over a wide (10 eV) range of binding energies. We show that there are clear signatures of the metal-insulator transition over the whole range due to a cross coupling of the delocalized s and p states with low-energy excitations between the localized d states. This coupling can be understood by advanced calculations based on many-body perturbation theory in the GW approximation. We also advocate the fact that tuning the photon energy up to the hard-x-ray range can help to distinguish fingerprints of correlation from pure band-structure effects.

  18. Electron lone pair distortion facilitated metal-insulator transition in β-Pb{sub 0.33}V{sub 2}O{sub 5} nanowires

    SciTech Connect

    Wangoh, L.; Quackenbush, N. F.; Marley, P. M.; Banerjee, S.; Sallis, S.; Fischer, D. A.; Woicik, J. C.; Piper, L. F. J.

    2014-05-05

    The electronic structure of β-Pb{sub 0.33}V{sub 2}O{sub 5} nanowires has been studied with x-ray photoelectron spectroscopy techniques. The recent synthesis of defect-free β-Pb{sub 0.33}V{sub 2}O{sub 5} nanowires resulted in the discovery of an abrupt voltage-induced metal insulator transition. First principle calculations predicted an additional V-O-Pb hybridized “in-gap” state unique to this vanadium bronze playing a significant role in facilitating the transition. We confirm the existence, energetic position, and orbital character of the “in-gap” state. Moreover, we reveal that this state is a hybridized Pb 6s–O 2p antibonding lone pair state resulting from the asymmetric coordination of the Pb{sup 2+} ions.

  19. Gold clusters on Nb-doped SrTiO3: effects of metal-insulator transition on heterogeneous Au nanocatalysis.

    PubMed

    Zhou, Miao; Feng, Yuan Ping; Zhang, Chun

    2012-07-21

    Doping induced metal-insulator transition (MIT) in transition-metal (TM) oxides has been the topic of continued interest outside the field of catalysis chemistry. In this paper, via ab initio (GGA+U) calculations, we show that Nb-doping induced MIT in SrTiO(3) causes a dimensionality crossover of supported Au clusters, and at the same time, greatly enhances the stability and catalytic activity of these clusters. Underlying the predicted high catalytic activity of Au clusters towards the CO oxidation is the MIT induced interaction between the O(2) antibonding 2π* orbital and Au conduction bands, leading to a shift in the population of electrons from Au to the antibonding orbital and the activation of the O(2) molecule. We expect these results to provide a new methodology for the control of catalytic performance of TM-oxide supported Au nanoclusters.

  20. Thickness-Induced Metal-Insulator Transition in Sb-doped SnO2 Ultrathin Films: The Role of Quantum Confinement

    PubMed Central

    Ke, Chang; Zhu, Weiguang; Zhang, Zheng; Soon Tok, Eng; Ling, Bo; Pan, Jisheng

    2015-01-01

    A thickness induced metal-insulator transition (MIT) was firstly observed in Sb-doped SnO2 (SnO2:Sb) epitaxial ultrathin films deposited on sapphire substrates by pulsed laser deposition. Both electrical and spectroscopic studies provide clear evidence of a critical thickness for the metallic conductivity in SnO2:Sb thin films and the oxidation state transition of the impurity element Sb. With the shrinkage of film thickness, the broadening of the energy band gap as well as the enhancement of the impurity activation energy was studied and attributed to the quantum confinement effect. Based on the scenario of impurity level pinning and band gap broadening in quantum confined nanostructures, we proposed a generalized energy diagram to understand the thickness induced MIT in the SnO2:Sb system. PMID:26616286

  1. Multistep metal insulator transition in VO{sub 2} nanowires on Al{sub 2}O{sub 3} (0001) substrates

    SciTech Connect

    Takami, Hidefumi; Kanki, Teruo E-mail: h-tanaka@sanken.osaka-u.ac.jp; Tanaka, Hidekazu E-mail: h-tanaka@sanken.osaka-u.ac.jp

    2014-01-13

    We observed a temperature- and voltage-induced multistep metal-insulator transition (MIT) in vanadium dioxide nanowires fabricated on Al{sub 2}O{sub 3} (0001) substrates. Nanowires with a width of 200 nm showed a multistep MIT that exhibited a resistivity change of nearly two orders of magnitude in a 0.5 K temperature step. These multistep resistivity jumps can be understood as a transition of a single domain, whose size is estimated to be around 50–70 nm from numerical calculation. We found that the temperature-induced isotropic conductive behavior of the nanowires becomes similar to the voltage-induced anisotropic one as their width decreases.

  2. Low-temperature oriented growth of vanadium dioxide films on CoCrTa metal template on Si and vertical metal-insulator transition

    SciTech Connect

    Okimura, Kunio; Mian, Md.Suruz

    2012-09-15

    The authors achieved oriented growth of vanadium dioxide (VO{sub 2}) films on CoCrTa metal template grown on an Si substrate. Low-temperature ({approx}250 Degree-Sign C) deposition of VO{sub 2} films using inductively coupled-plasma-assisted sputtering technique realized an abrupt interface between VO{sub 2} and CoCrTa layers, suppressing the oxidation and diffusion of metal components. The films revealed a metal-insulator transition with resistance change of over 2 orders of magnitude. The CoCrTa film, in which Co hexagonal crystalline grains with c-axis orientation were surrounded by segregated Cr and Ta, serves for the oriented growth of VO{sub 2} crystalline film, enabling higher orders of transition in resistance and low voltage switching, even for the vertical (out-of-plane) direction.

  3. Orbital magnetic field driven metal-insulator transition in spinless extended Falicov-Kimball model on a triangular lattice

    NASA Astrophysics Data System (ADS)

    Yadav, Umesh K.

    2017-01-01

    Ground state properties of spinless, extended Falicov-Kimball model (FKM) on a finite size triangular lattice with orbital magnetic field normal to the lattice are studied using numerical diagonalization and Monte-Carlo simulation methods. We show that the ground state configurations of localized electrons strongly depend on the magnetic field. Magnetic field induces a metal to insulator transition accompanied by segregated phase to an ordered regular phase except at density nf = 1 / 2 of localized electrons. It is proposed that magnetic field can be used as a new tool to produce segregated phase which was otherwise accessible only either with correlated hopping or with large on-site interactions.

  4. Improved metal-insulator-transition characteristics of ultrathin VO{sub 2} epitaxial films by optimized surface preparation of rutile TiO{sub 2} substrates

    SciTech Connect

    Martens, Koen; Aetukuri, Nagaphani; Jeong, Jaewoo; Samant, Mahesh G.; Parkin, Stuart S. P.

    2014-02-24

    Key to the growth of epitaxial, atomically thin films is the preparation of the substrates on which they are deposited. Here, we report the growth of atomically smooth, ultrathin films of VO{sub 2} (001), only ∼2 nm thick, which exhibit pronounced metal-insulator transitions, with a change in resistivity of ∼500 times, at a temperature that is close to that of films five times thicker. These films were prepared by pulsed laser deposition on single crystalline TiO{sub 2}(001) substrates that were treated by dipping in acetone, HCl and HF in successive order, followed by an anneal at 700–750  °C in flowing oxygen. This pretreatment removes surface contaminants, TiO{sub 2} defects, and provides a terraced, atomically smooth surface.

  5. Substrate-mediated strain effect on the role of thermal heating and electric field on metal-insulator transition in vanadium dioxide nanobeams

    PubMed Central

    Kim, Min-Woo; Jung, Wan-Gil; Hyun-Cho; Bae, Tae-Sung; Chang, Sung-Jin; Jang, Ja-Soon; Hong, Woong-Ki; Kim, Bong-Joong

    2015-01-01

    Single-crystalline vanadium dioxide (VO2) nanostructures have recently attracted great attention because of their single domain metal-insulator transition (MIT) nature that differs from a bulk sample. The VO2 nanostructures can also provide new opportunities to explore, understand, and ultimately engineer MIT properties for applications of novel functional devices. Importantly, the MIT properties of the VO2 nanostructures are significantly affected by stoichiometry, doping, size effect, defects, and in particular, strain. Here, we report the effect of substrate-mediated strain on the correlative role of thermal heating and electric field on the MIT in the VO2 nanobeams by altering the strength of the substrate attachment. Our study may provide helpful information on controlling the properties of VO2 nanobeam for the device applications by changing temperature and voltage with a properly engineered strain. PMID:26040637

  6. Thermoelectric effect across the metal-insulator domain walls in VO2 microbeams.

    PubMed

    Cao, J; Fan, W; Zheng, H; Wu, J

    2009-12-01

    We report on measurements of Seebeck effect in single-crystal VO(2) microbeams across their metal-insulator phase transition. One-dimensionally aligned metal-insulator domain walls were reversibly created and eliminated along single VO(2) beams by varying temperature, which allows for accurate extraction of the net contribution to the Seebeck effect from these domain walls. We observed significantly lower Seebeck coefficient in the metal-insulator coexisting regime than predicted by a linear combination of contributions from the insulator and metal domains. This indicates that the net contribution of the domain walls has an opposite sign from that of the insulator and metal phases separately. Possible origins that may be responsible for this unexpected effect were discussed in the context of complications in this correlated electron material.

  7. Temperature and electric field induced metal-insulator transition in atomic layer deposited VO2 thin films

    NASA Astrophysics Data System (ADS)

    Tadjer, Marko J.; Wheeler, Virginia D.; Downey, Brian P.; Robinson, Zachary R.; Meyer, David J.; Eddy, Charles R.; Kub, Fritz J.

    2017-10-01

    Amorphous vanadium oxide (VO2) films deposited by atomic layer deposition (ALD) were crystallized with an ex situ anneal at 660-670 °C for 1-2 h under a low oxygen pressure (10-4 to 10-5 Torr). Under these conditions the crystalline VO2 phase was maintained, while formation of the V2O5 phase was suppressed. Electrical transition from the insulator to the metallic phase was observed in the 37-60 °C range, with an ROFF/RON ratio of up to about 750 and ΔTC ≅ 7-10 °C. Lateral electric field applied across two-terminal device structures induced a reversible phase change, with a room temperature transition field of about 25 kV/cm in the VO2 sample processed with the 2 h long O2 anneal. Both the width and slope of the field induced MIT I-V hysteresis were dependent upon the VO2 crystalline quality.

  8. Charge driven metal-insulator transitions in LaMnO3|SrTiO3 (111) superlattices

    NASA Astrophysics Data System (ADS)

    Cossu, F.; Tahini, H. A.; Singh, N.; Schwingenschlögl, U.

    2017-06-01

    Interfaces of perovskite oxides, due to the strong interplay between the lattice, charge and spin degrees of freedom, can host various phase transitions, which is particularly interesting if these transitions can be tuned by external fields. Recently, ferromagnetism was found together with a seemingly insulating state in superlattices of manganites and titanates. We therefore study the (111) oriented (\\text{LaMnO}_3)6-x\\vert(\\text{SrTiO}_3)6+x~(x = -0.5, 0, 0.5) superlattices by means of ab initio calculations, predicting a ferromagnetic ground state due to double exchange in all cases. We shed light on the ferromagnetic coupling in the LaMnO3 region and at the interfaces. The insulating states of specific superlattices can be understood on the basis of Jahn-Teller modes and electron/hole doping.

  9. Changes in the electronic structure and spin dynamics across the metal-insulator transition in LaLa1-xSrxCoO3

    SciTech Connect

    Smith, R. X.; Hoch, M. J. R.; Moulton, W. G.; Kuhns, P. L.; Reyes, A. P.; Boebinger, G. S.; Zheng, H.; Mitchell, J. F.

    2016-01-25

    The magnetoelectronic properties of La1-xSrxCoO3, which include giant magnetoresistance, are strongly dependent on the level of hole doping. The system evolves, with increasing x, from a spin glass insulator to a metallic ferromagnet with a metal-insulator (MI) transition at xC ~ 0.18. Nanoscale phase separation occurs in the insulating phase and persists, to some extent, into the just-metallic phase. The present experiments at 4.2 K have used 139La NMR to investigate the transition from hopping dynamics for x < xC to Korringa-like ferromagnetic metal behavior for x > xC. A marked decrease in the spin-lattice relaxation rate is found in the vicinity of xC as the MI transition is crossed. Lastly, this behavior is accounted for in terms of the evolution of the electronic structure and dynamics with cluster size.

  10. Theory of the magnetic and metal-insulator transitions in RNiO3 bulk and layered structures.

    PubMed

    Lau, Bayo; Millis, Andrew J

    2013-03-22

    A slave rotor--Hartree-Fock formalism is presented for studying the properties of the p-d model describing perovskite transition metal oxides, and a flexible and efficient numerical formalism is developed for its solution. The methodology is shown to yield, within a unified formulation, the significant aspects of the rare-earth nickelate phase diagram, including the paramagnetic metal state observed for the LaNiO3 and the correct ground-state magnetic order of insulating compounds. It is then used to elucidate ground state changes occurring as morphology is varied from bulk to strained and unstrained thin-film form. For ultrathin films, epitaxial strain and charge transfer to the apical out-of-plane oxygen sites are shown to have significant impact on the phase diagram.

  11. Theory of the Magnetic and Metal-Insulator Transitions in RNiO3 Bulk and Layered Structures

    NASA Astrophysics Data System (ADS)

    Lau, Bayo; Millis, Andrew J.

    2013-03-01

    A slave rotor—Hartree-Fock formalism is presented for studying the properties of the p-d model describing perovskite transition metal oxides, and a flexible and efficient numerical formalism is developed for its solution. The methodology is shown to yield, within a unified formulation, the significant aspects of the rare-earth nickelate phase diagram, including the paramagnetic metal state observed for the LaNiO3 and the correct ground-state magnetic order of insulating compounds. It is then used to elucidate ground state changes occurring as morphology is varied from bulk to strained and unstrained thin-film form. For ultrathin films, epitaxial strain and charge transfer to the apical out-of-plane oxygen sites are shown to have significant impact on the phase diagram.

  12. Theory of the magnetic and metal-insulator transitions in RNiO3 bulk and layered

    NASA Astrophysics Data System (ADS)

    Lau, Bayo; Millis, Andrew J.

    2013-03-01

    A slave rotor-Hartree Fock formalism is presented for studying the properties of the p-d model describing perovskite transition metal oxides, and a flexible and efficient numerical formalism is developed for its solution. The methodology is shown to yield, within an unified formulation, the significant aspects of the rare earth nickelate phase diagram, including the paramagnetic metal state observed for the LaNiO3 and the correct ground-state magnetic order of insulating compounds. It is then used to elucidate ground state changes occurring as morphology is varied from bulk to strained and un-strained thin-film form. For ultrathin films, epitaxial strain and charge-transfer to the apical out-of-plane oxygen sites are shown to have significant impact on the phase diagram. This effort is supported by US National Science Foundation under grant NSF-DMR-1006282

  13. Metal-insulator transition in CuIr2S4: XAS results, structure revisited, electronic structure proposed

    NASA Astrophysics Data System (ADS)

    Croft, Mark

    2006-03-01

    Interestingly, the magnetism in the spinel compound Fe3O4 (loadstone), constitutes the correlated electron material/problem of the greatest antiquity known to man. The Verwy transition problem in Fe3O4 is, by comparison, young at only 67 years of age. Recently experimental and theoretical insights into such exotic magnetic, charge, and orbital orderings in transition metal (T) spinel compounds have been rapidly emerging. The leitmotifs in these works involve: frustrated tripartite crossing 1D chains of edge-sharing T-ligand octahedra; T-d(t2g) orbital ordering onto subsets of these chains which involve d-d overlap; dimmer formation on these chains; and/or charge ordering on the chains dependent on band filling. Understanding the low temperature structural and metal (M) to insulator (I) transition in the spinel compound CuIr2S4 provides a key link in the generalization to other such systems. S K-edge X-ray absorption spectroscopy (XAS) measurements across this M-I transition reflect a dramatic Ir d-electronic state redistribution^1. These results stimulated a detailed re-evaluation of the of I-phase crystal structure in terms of: decoupled chains of IrS6 octahedra along the (110)-type directions; and an Ir^3+ (Ir^4+-Ir^4+) Ir^3+ repeat pattern ordering, where the (Ir^4+-Ir^4+) pair forms a dimmer. Further, the electronic state changes, evidenced by the XAS, motivated a model in which the I-phase involves: an orbital ordering of the highest lying t2g electron into 1D chains; the 3/4 filling of this 1D band dictating the periodicity of the orbital/charge ordering; and the direct t2g-t2g dimmer bonding production of an antibonding state prominent in the S-K edge spectrum. The generalization of these concepts to other transition metal spinels will be addressed. ^1M. Croft, W. Caliebe, H. Woo, T. A. Tyson, D. Sills, Y. S. Hor, S-W. Cheong, V. Kiryukhin, and S-J. Oh, Phys. Rev. B 67 (Rapid Comm.), 201102 (2003)

  14. Field-dependent perpendicular magnetic anisotropy and interfacial metal-insulator transition in CoFeB/MgO systems

    NASA Astrophysics Data System (ADS)

    Barsukov, Igor; Fu, Yu; Safranski, C.; Chen, Yu-Jin; Youngblood, B.; Goncalves, A.; Sampaio, L.; Arias, R.; Spasova, M.; Farle, M.; Krivorotov, I.

    2015-03-01

    The CoFeB/MgO systems play a central role in magnetic tunnel junction devices due to the high tunneling magnetoresistance ratio. A strong perpendicular anisotropy (PMA) and voltage-controlled anisotropy are beneficial for spintronics application. We study PMA in thin films of Ta/Co20Fe60B20/MgO in the thickness range of 0.9-2.5 nm and find that it can be best described by the first two order terms. Surprisingly, we find PMA to be strongly field-dependent. Our results show that the field dependence has significant implications for determining and customizing magnetic anisotropy in spintronic applications. Our data suggest that it can be caused by an inhomogeneous interfacial spin pinning with a possibly ferrimagnetic phase at the CoFeB/MgO interface. We perform magnetometry and transport measurements and find a magnetization peak and resistance transitions at 160K, which are consistent with the presence of an interfacial oxide phase undergoing a Morin-like transition.

  15. Sudden slowing down of charge carrier dynamics at the Mott metal-insulator transition in kappa-(D{sub 8}-BEDT-TTF){sub 2}Cu[N(CN){sub 2}]Br.

    SciTech Connect

    Brandenburg, J.; Muller, J.; Schlueter, J. A.

    2012-02-01

    We investigate the dynamics of correlated charge carriers in the vicinity of the Mott metal-insulator (MI) transition in the quasi-two-dimensional organic charge-transfer salt {kappa}-(D{sub 8}-BEDT-TTF){sub 2}Cu[N(CN){sub 2}]Br by means of fluctuation (noise) spectroscopy. The observed 1/f-type fluctuations are quantitatively very well described by a phenomenological model based on the concept of non-exponential kinetics. The main result is a correlation-induced enhancement of the fluctuations accompanied by a substantial shift of spectral weight to low frequencies in the vicinity of the Mott critical endpoint. This sudden slowing down of the electron dynamics, observed here in a pure Mott system, may be a universal feature of MI transitions. Our findings are compatible with an electronic phase separation in the critical region of the phase diagram and offer an explanation for the not yet understood absence of effective mass enhancement when crossing the Mott transition.

  16. Directing Colloidal Assembly and a Metal-Insulator Transition Using a Quench-Disordered Porous Rod Template

    NASA Astrophysics Data System (ADS)

    Jadrich, Ryan B.; Schweizer, Kenneth S.

    2014-11-01

    Replica and effective-medium theory methods are employed to elucidate how to massively reconfigure a colloidal assembly to achieve globally homogeneous, strongly clustered, and percolated equilibrium states of high electrical conductivity at low physical volume fractions. A key idea is to employ a quench-disordered, large-mesh rigid-rod network as a templating internal field. By exploiting bulk phase separation frustration and the tunable competing processes of colloid adsorption on the low-dimensional network and fluctuation-driven colloid clustering in the pore spaces, two distinct spatial organizations of greatly enhanced particle contacts can be achieved. As a result, a continuous, but very abrupt, transition from an insulating to metallic-like state can be realized via a small change of either the colloid-template or colloid-colloid attraction strength. The approach is generalizable to more complicated template or colloidal architectures.

  17. Key role of lattice symmetry in the metal-insulator transition of NdNiO3 films

    SciTech Connect

    Zhang, Jack Y.; Kim, Honggyu; Mikheev, Evgeny; Hauser, Adam J.; Stemmer, Susanne

    2016-04-01

    Here, bulk NdNiO3 exhibits a metal-to-insulator transition (MIT) as the temperature is lowered that is also seen in tensile strained films. In contrast, films that are under a large compressive strain typically remain metallic at all temperatures. To clarify the microscopic origins of this behavior, we use position averaged convergent beam electron diffraction in scanning transmission electron microscopy to characterize strained NdNiO3 films both above and below the MIT temperature. We show that a symmetry lowering structural change takes place in case of the tensile strained film, which undergoes an MIT, but is absent in the compressively strained film. Using space group symmetry arguments, we show that these results support the bond length disproportionation model of the MIT in the rare-earth nickelates. Furthermore, the results provide insights into the non-Fermi liquid phase that is observed in films for which the MIT is absent.

  18. Key role of lattice symmetry in the metal-insulator transition of NdNiO3 films

    PubMed Central

    Zhang, Jack Y.; Kim, Honggyu; Mikheev, Evgeny; Hauser, Adam J.; Stemmer, Susanne

    2016-01-01

    Bulk NdNiO3 exhibits a metal-to-insulator transition (MIT) as the temperature is lowered that is also seen in tensile strained films. In contrast, films that are under a large compressive strain typically remain metallic at all temperatures. To clarify the microscopic origins of this behavior, we use position averaged convergent beam electron diffraction in scanning transmission electron microscopy to characterize strained NdNiO3 films both above and below the MIT temperature. We show that a symmetry lowering structural change takes place in case of the tensile strained film, which undergoes an MIT, but is absent in the compressively strained film. Using space group symmetry arguments, we show that these results support the bond length disproportionation model of the MIT in the rare-earth nickelates. Furthermore, the results provide insights into the non-Fermi liquid phase that is observed in films for which the MIT is absent. PMID:27033955

  19. Hopping conduction in p-type MoS{sub 2} near the critical regime of the metal-insulator transition

    SciTech Connect

    Park, Tae-Eon; Jang, Chaun E-mail: presto@kist.re.kr; Suh, Joonki; Wu, Junqiao; Seo, Dongjea; Park, Joonsuk; Lin, Der-Yuh; Huang, Ying-Sheng; Choi, Heon-Jin; Chang, Joonyeon E-mail: presto@kist.re.kr

    2015-11-30

    We report on temperature-dependent charge and magneto transport of chemically doped MoS{sub 2}, p-type molybdenum disulfide degenerately doped with niobium (MoS{sub 2}:Nb). The temperature dependence of the electrical resistivity is characterized by a power law, ρ(T) ∼ T{sup −0.25}, which indicates that the system resides within the critical regime of the metal-insulator (M-I) transition. By applying high magnetic field (∼7 T), we observed a 20% increase in the resistivity at 2 K. The positive magnetoresistance shows that charge transport in this system is governed by the Mott-like three-dimensional variable range hopping (VRH) at low temperatures. According to relationship between magnetic-field and temperature dependencies of VRH resistivity, we extracted a characteristic localization length of 19.8 nm for MoS{sub 2}:Nb on the insulating side of the M-I transition.

  20. Role of temperature-dependent O-p-Fe-d hybridization parameter in the metal-insulator transition of Fe3O4: a theoretical study

    NASA Astrophysics Data System (ADS)

    Fauzi, A. D.; Majidi, M. A.; Rusydi, A.

    2017-04-01

    We propose a simple tight-binding based model for Fe3O4 that captures the preference of ferrimagnetic over ferromagnetic spin configuration of the system. Our model is consistent with previous theoretical and experimental studies suggesting that the system is half metallic, in which spin polarized electrons hop only among the Fe B sites. To address the metal-insulator transition (MIT) we propose that the strong correlation among electrons, which may also be influenced by the electron-phonon interactions, manifest as the temperature-dependence of the O-p-Fe-d hybridization parameter, particularly Fe-d belonging to one of the Fe B sites (denoted as {t}{{FeB}-{{O}}}(2)). By proposing that this parameter increases as the temperature decreases, our density-of-states calculation successfully captures a gap opening at the Fermi level, transforming the system from half metal to insulator. Within this model along with the corresponding choice of parameters and a certain profile of the temperature dependence of {t}{{FeB}-{{O}}}(2), we calculate the resistivity of the system as a function of temperature. Our calculation result reveals the drastic uprising trend of the resistivity profile as the temperature decreases, with the MIT transition temperature located around 100 K, which is in agreement with experimental data.

  1. Modulation of metal-insulator transitions by field-controlled strain in NdNiO3/SrTiO3/PMN-PT (001) heterostructures

    PubMed Central

    Heo, Seungyang; Oh, Chadol; Eom, Man Jin; Kim, Jun Sung; Ryu, Jungho; Son, Junwoo; Jang, Hyun Myung

    2016-01-01

    The band width control through external stress has been demonstrated as a useful knob to modulate metal-insulator transition (MIT) in RNiO3 as a prototype correlated materials. In particular, lattice mismatch strain using different substrates have been widely utilized to investigate the effect of strain on transition temperature so far but the results were inconsistent in the previous literatures. Here, we demonstrate dynamic modulation of MIT based on electric field-controlled pure strain in high-quality NdNiO3 (NNO) thin films utilizing converse-piezoelectric effect of (001)-cut - (PMN-PT) single crystal substrates. Despite the difficulty in the NNO growth on rough PMN-PT substrates, the structural quality of NNO thin films has been significantly improved by inserting SrTiO3 (STO) buffer layers. Interestingly, the MIT temperature in NNO is downward shifted by ~3.3 K in response of 0.25% in-plane compressive strain, which indicates less effective TMI modulation of field-induced strain than substrate-induced strain. This study provides not only scientific insights on band-width control of correlated materials using pure strain but also potentials for energy-efficient electronic devices. PMID:26916618

  2. Modulation of metal-insulator transitions by field-controlled strain in NdNiO3/SrTiO3/PMN-PT (001) heterostructures

    NASA Astrophysics Data System (ADS)

    Heo, Seungyang; Oh, Chadol; Eom, Man Jin; Kim, Jun Sung; Ryu, Jungho; Son, Junwoo; Jang, Hyun Myung

    2016-02-01

    The band width control through external stress has been demonstrated as a useful knob to modulate metal-insulator transition (MIT) in RNiO3 as a prototype correlated materials. In particular, lattice mismatch strain using different substrates have been widely utilized to investigate the effect of strain on transition temperature so far but the results were inconsistent in the previous literatures. Here, we demonstrate dynamic modulation of MIT based on electric field-controlled pure strain in high-quality NdNiO3 (NNO) thin films utilizing converse-piezoelectric effect of (001)-cut - (PMN-PT) single crystal substrates. Despite the difficulty in the NNO growth on rough PMN-PT substrates, the structural quality of NNO thin films has been significantly improved by inserting SrTiO3 (STO) buffer layers. Interestingly, the MIT temperature in NNO is downward shifted by ~3.3 K in response of 0.25% in-plane compressive strain, which indicates less effective TMI modulation of field-induced strain than substrate-induced strain. This study provides not only scientific insights on band-width control of correlated materials using pure strain but also potentials for energy-efficient electronic devices.

  3. Modulation of metal-insulator transitions by field-controlled strain in NdNiO3/SrTiO3/PMN-PT (001) heterostructures.

    PubMed

    Heo, Seungyang; Oh, Chadol; Eom, Man Jin; Kim, Jun Sung; Ryu, Jungho; Son, Junwoo; Jang, Hyun Myung

    2016-02-26

    The band width control through external stress has been demonstrated as a useful knob to modulate metal-insulator transition (MIT) in RNiO3 as a prototype correlated materials. In particular, lattice mismatch strain using different substrates have been widely utilized to investigate the effect of strain on transition temperature so far but the results were inconsistent in the previous literatures. Here, we demonstrate dynamic modulation of MIT based on electric field-controlled pure strain in high-quality NdNiO3 (NNO) thin films utilizing converse-piezoelectric effect of (001)-cut Pb(Mg(1/3)Nb(2/3)O3-(PbTiO3) (PMN-PT) single crystal substrates. Despite the difficulty in the NNO growth on rough PMN-PT substrates, the structural quality of NNO thin films has been significantly improved by inserting SrTiO3 (STO) buffer layers. Interestingly, the MIT temperature in NNO is downward shifted by ~3.3 K in response of 0.25% in-plane compressive strain, which indicates less effective TMI modulation of field-induced strain than substrate-induced strain. This study provides not only scientific insights on band-width control of correlated materials using pure strain but also potentials for energy-efficient electronic devices.

  4. Tunable metal-insulator transition in Nd{sub 1−x}Y{sub x}NiO{sub 3} (x = 0.3, 0.4) perovskites thin film at near room temperature

    SciTech Connect

    Shao, Tao; Qi, Zeming Wang, Yuyin; Li, Yuanyuan; Yang, Mei; Zhang, Guobin; Wang, Yu; Liu, Miao

    2015-07-13

    Metal-insulator transition (MIT) occurs due to the charge disproportionation and lattice distortions in rare-earth nickelates. Existing studies revealed that the MIT behavior of rare-earth nickelates is fairly sensitive to external stress/pressure, suggesting a viable route for MIT strain engineering. Unlike applying extrinsic strain, the MIT can also be modulated by through rare-earth cation mixing, which can be viewed as intrinsic quantum stress. We choose Nd{sub 1−X}Y{sub X}NiO{sub 3} (x = 0.3, 0.4) perovskites thin films as a prototype system to exhibit the tunable sharp MIT at near room temperature. By adjusting Y concentration, the transition temperature of the thin films can be changed within the range of 340–360 K. X-ray diffraction, X-ray absorption fine structure (XAFS), and in situ infrared spectroscopy are employed to probe the structural and optical property variation affected by composition and temperature. The infrared transmission intensity decreases with temperature across the MIT, indicating a pronounced thermochromic effect. Meanwhile, the XAFS result exhibits that the crystal atomistic structure changes accompanying with the Y atoms incorporation and MIT phase transition. The heavily doped Y atoms result in the pre-edge peak descent and Ni-O bond elongation, suggesting an enhanced charge disproportionation effect and the weakening of hybridization between Ni-3d and O-2p orbits.

  5. Key role of lattice symmetry in the metal-insulator transition of NdNiO3 films

    DOE PAGES

    Zhang, Jack Y.; Kim, Honggyu; Mikheev, Evgeny; ...

    2016-04-01

    Here, bulk NdNiO3 exhibits a metal-to-insulator transition (MIT) as the temperature is lowered that is also seen in tensile strained films. In contrast, films that are under a large compressive strain typically remain metallic at all temperatures. To clarify the microscopic origins of this behavior, we use position averaged convergent beam electron diffraction in scanning transmission electron microscopy to characterize strained NdNiO3 films both above and below the MIT temperature. We show that a symmetry lowering structural change takes place in case of the tensile strained film, which undergoes an MIT, but is absent in the compressively strained film. Usingmore » space group symmetry arguments, we show that these results support the bond length disproportionation model of the MIT in the rare-earth nickelates. Furthermore, the results provide insights into the non-Fermi liquid phase that is observed in films for which the MIT is absent.« less

  6. Synthetic beta-K(0.33)V2O5 nanorods: a metal-insulator transition in vanadium oxide bronze.

    PubMed

    Zhang, Xiaodong; Yan, Wensheng; Xie, Yi

    2011-12-02

    We found a linear relationship between the metal-insulator transition (MIT) temperature and the A(+) ionic radius of the beta-A(0.33)V(2)O(5) bronze family, leading our attention to beta-K(0.33)V(2)O(5) which has been neglected for a long time. We have introduced a facile hydrothermal method to obtain the single-crystalline beta-K(0.33)V(2)O(5) nanorods. As expected, both the temperature-dependence of the resistivity and magnetization demonstrated MITs at about 72 K for beta-K(0.33)V(2)O(5), thus matching well with the linear relationship described above. The beta-K(0.33)V(2)O(5) was assigned as a new member of the beta-A(0.33)V(2)O(5) bronze family for their similar crystal and electronic structures and their MIT property; this addition enriches the beta-A(0.33)V(2)O(5) bronze family.

  7. Correlation-induced metal-insulator transitions in d0 magnetic superlattices based on alkaline-earth monoxides: Insights from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Lu, Yi-Lin; Dong, Shengjie; Zhou, Baozeng; Zhao, Hui; Wu, Ping

    2015-06-01

    Using first-principles density functional theory calculations, we have investigated the electronic structure and magnetic properties of four superlattices (MO)1/(MX)1 (001) (M=Ca and Sr; X=N and C). Our results show that compared with standard GGA approach, the GGA plus effective Ueff scheme can correct electronic structure and magnetic properties in some extent. With enhancing electronic correlation, for (CaO)1/(CaN)1, (SrO)1/(SrN)1, and (SrO)1/(SrC)1, the bands across Fermi level are divided into two parts and the shape of isotropic spherical spin atmosphere becomes anisotropic dumbbell-like with specific orientation, accompanying metal-insulator transitions. For (CaO)1/(CaC)1, the states just smearing with the Fermi level shift to lower energy region below Fermi level, indicating the transformation from a nearly half metal to an actual half metal occurs. The different behavior of (CaO)1/(CaC)1 compared with three other compounds may be caused by the larger ionization energy of calcium than that of strontium and the smaller electronegativity of carbon than that of nitrogen.

  8. Localization length and impurity dielectric susceptibility in the critical regime of the metal-insulator transition in homogeneously doped p-type Ge

    SciTech Connect

    Watanabe, Michio; Itoh, Kohei M.; Ootuka, Youiti; Haller, Eugene E.

    2000-07-15

    We have determined the localization length {xi} and the impurity dielectric susceptibility {chi}{sub imp} as a function of Ga acceptor concentrations (N) in nominally uncompensated {sup 70}Ge:Ga just below the critical concentration (N{sub c}) for the metal-insulator transition. Both {xi} and {chi}{sub imp} diverge at N{sub c} according to the functions {xi}{proportional_to}(1-N/N{sub c}){sup -{nu}} and {chi}{sub imp}{proportional_to}(N{sub c}/N-1){sup -{zeta}}, respectively, with {nu}=1.2{+-}0.3 and {zeta}=2.3{+-}0.6 for 0.99N{sub c}

  9. Chromium-niobium co-doped vanadium dioxide films: Large temperature coefficient of resistance and practically no thermal hysteresis of the metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Miyazaki, Kenichi; Shibuya, Keisuke; Suzuki, Megumi; Sakai, Kenichi; Fujita, Jun-ichi; Sawa, Akihito

    2016-05-01

    We investigated the effects of chromium (Cr) and niobium (Nb) co-doping on the temperature coefficient of resistance (TCR) and the thermal hysteresis of the metal-insulator transition of vanadium dioxide (VO2) films. We determined the TCR and thermal-hysteresis-width diagram of the V1-x-yCrxNbyO2 films by electrical-transport measurements and we found that the doping conditions x ≳ y and x + y ≥ 0.1 are appropriate for simultaneously realizing a large TCR value and an absence of thermal hysteresis in the films. By using these findings, we developed a V0.90Cr0.06Nb0.04O2 film grown on a TiO2-buffered SiO2/Si substrate that showed practically no thermal hysteresis while retaining a large TCR of 11.9%/K. This study has potential applications in the development of VO2-based uncooled bolometers.

  10. Metal-Insulator Transition and the Temperature of the Pseudogap Anomaly Opening in Praseodymium Doped Y1-zPrzBa2Cu3O7-δ Single Crystals

    NASA Astrophysics Data System (ADS)

    Vovk, R. V.; Nazyrov, Z. F.; Goulatis, I. L.; Chroneos, A.; Pinto Simoes, V. M.

    2013-02-01

    The influence of praseodymium doping on the electrical resistivity in the ab-plane of Y1-zPrzBa2Cu3O7-δ single crystals, is investigated. It is determined that as the concentration of praseodymium (0.0 ≤ z ≤ 0.5) is rising there occurs a significant shift of the temperature regions, corresponding to the metal-insulator transitions, as well as to the regime of the implementation of the pseudogap anomaly. The part of the curves related to the metal-insulator transition are well described by means of an asymptotic dependence that corresponds to the implementation of a quantum critical regime in the system, the so-called law of the "one third".

  11. Simultaneous metal-insulator and antiferromagnetic transitions in orthorhombic perovskite iridate S r0.94I r0.78O2.68 single crystals

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Terzic, J.; Ye, Feng; Wan, X. G.; Wang, D.; Wang, Jinchen; Wang, Xiaoping; Schlottmann, P.; Yuan, S. J.; Cao, G.

    2016-06-01

    The orthorhombic perovskite SrIr O3 is a semimetal, an intriguing exception in iridates where the strong spin-orbit interaction coupled with electron correlations tends to impose an insulating state. We report results of our investigation of bulk single-crystal S r0.94I r0.78O2.68 or Ir-deficient, orthorhombic perovskite SrIr O3 . It retains the same crystal structure as stoichiometric SrIr O3 but exhibits a sharp, simultaneous antiferromagnetic (AFM) and metal-insulator (MI) transition occurring in the basal-plane resistivity at 185 K. Above it, the basal-plane resistivity features an extended regime of almost linear temperature dependence up to 800 K but the strong electronic anisotropy renders an insulating behavior in the out-of-plane resistivity. The Hall resistivity undergoes an abrupt sign change and grows below 40 K, which along with the Sommerfeld constant of 20 mJ /mol K2 suggests a multiband effect. All results including our first-principles calculations underscore a delicacy of the paramagnetic, metallic state in SrIr O3 that is in close proximity to an AFM insulating state. The contrasting ground states in isostructural S r0.94I r0.78O2.68 and SrIr O3 illustrate a critical role of lattice distortions and Ir deficiency in rebalancing the ground state in the iridates. Finally, the concurrent AFM and MI transitions reveal a direct correlation between the magnetic transition and formation of an activation gap in the iridate, which is conspicuously absent in S r2Ir O4 .

  12. Metal-insulator transition in Ba3Fe1 -xRu2 +xO9 : Interplay between site disorder, chemical percolation, and electronic structure

    NASA Astrophysics Data System (ADS)

    Middey, S.; Aich, Payel; Meneghini, C.; Mukherjee, K.; Sampathkumaran, E. V.; Siruguri, V.; Mahadevan, P.; Ray, Sugata

    2016-11-01

    Perovskites containing barium metal at the A site often take up unusual hexagonal structures having more than one type of possible sites for the B cation to occupy. This opens up various different B -B - or B -O-B -type connectivities and consequent physical properties which are naturally missing in cubic perovskites. BaRuO3 is one such system where doping of Ru (4 d4 ) by other transition metals (Mn +) creates similar conditions, giving rise to various M -Ru interactions. Interestingly, the 6 H hexagonal structure of doped barium ruthenate triple perovskite (Ba3M Ru2O9 ) seems to possess some internal checks because within the structure M ion always occupies the 2 a site and Ru goes to the 4 f site, allowing only M -O-Ru 180∘ and Ru-O-Ru 90∘ interactions to occur. The only exception is observed in the case of the Fe dopant, which allows us to study almost the full Ba3Fe1 -xRu2 +xO9 series of compounds with wide ranges of x because here Fe ions have the ability to freely go to the 4 f sites and Ru readily takes up the 2 a positions. Therefore, here one has the opportunity to probe the evolution of electronic and magnetic properties as a function of doping by going from BaRuO3 (paramagnetic metal) to BaFeO3 (ferromagnetic insulator). Our detailed experimental and theoretical results show that the series does exhibit a percolative metal-insulator transition with an accompanying but not coincidental magnetic transition as a function of x .

  13. Universality classes of metal-insulator transitions in strongly correlated electron systems and mechanism of high-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Imada, Masatoshi

    2005-08-01

    We study three regimes of the Mott transitions characterized by classical, marginally quantum, and quantum. In the classical regime, the quantum degeneracy temperature is lower than the critical temperature of the Mott transition Tc , below which the first-order transition occurs. The quantum regime describes the Tc=0 boundary of the continuous transition. The marginal quantum region appears sandwiched by these two regimes. The classical transition is described by the Ising universality class. However, the Ginzburg-Landau-Wilson scheme breaks down when the quantum effects dominate. The marginal quantum critical region is categorized to an unusual universality class, where the order parameter exponent β , the susceptibility exponent γ , and the field exponent δ are given by β=d/2 , γ=2-d/2 , and δ=4/d , respectively, with d being the spatial dimensionality. It is shown that the transition is always at the upper critical dimension irrespective of the spatial dimensions. Therefore the mean-field exponents and the hyperscaling description become both valid at any dimension. The obtained universality classes agree with the recent experimental results on the Mott criticality in organic conductors such as κ-(ET)2Cu[N(CN)2]Cl and transition-metal compounds such as V2O3 . The marginal quantum criticality is characterized by the critically enhanced electron-density fluctuations at small wave number. The characteristic energy scale of the density fluctuation extends to the order of the Mott gap in contrast to the spin and orbital fluctuation scales and causes various unusual properties. The mode coupling theory shows that the marginal quantum criticality further generates non-Fermi-liquid properties in the metallic side. The effects of the long-range Coulomb force in the filling-control Mott transition are also discussed. A mechanism of high-temperature superconductivity emerges from the density fluctuations at small wave number inherent in the marginal quantum

  14. Transport properties and metal-insulator transition in oxygen deficient LaNiO3: a density functional theory study

    NASA Astrophysics Data System (ADS)

    Misra, D.; Kundu, T. K.

    2016-09-01

    Density functional theory with appropriate functional has been employed to investigate the metal to insulator transition in oxygen deficient LaNiO3-x (x = 0.0, 0.25, 0.5, 1.0) compounds. While the metallic nature of LaNiO3 is characterized by the low temperature Fermi liquid behavior of resistivity and a finite density of states at the Fermi level, the density of states and the transport properties clearly identify LaNiO2.75 as a semiconductor, and LaNiO2.5 as an insulator, which is followed by another insulator to semiconductor transition with further increase of x to ‘1’ in LaNiO2. This oxygen vacancy controlled metal to insulator transition is explained on the basis of non-adiabatic polaronic transport. From the covalency metric calculation of the chemical bonding and the Bader charge transfer analysis, this metal to insulator transition is attributed to the enhanced covalent part in the chemical bonding and reduced charge transfer from Ni to O atoms in LaNiO3-x compounds.

  15. LETTER TO THE EDITOR: The Mott metal - insulator transition in the two-dimensional Hubbard model at half-filling with lifetime effects within the moment approach

    NASA Astrophysics Data System (ADS)

    Rodríguez-Núñez, J. J.; Schafroth, S.

    1998-06-01

    We explore the effect of the self-energy, 0953-8984/10/23/002/img5, having a single pole, 0953-8984/10/23/002/img6, with spectral weight 0953-8984/10/23/002/img7 and quasi-particle lifetime 0953-8984/10/23/002/img8, on the density of states. We obtain the set of parameters 0953-8984/10/23/002/img6, 0953-8984/10/23/002/img7, and 0953-8984/10/23/002/img8 by means of the moment approach (exact sum rules) of Nolting. Due to our choice of self-energy, the system is not a Fermi liquid for any value of the interaction, a result which also holds in the moment approach of Nolting without lifetime effects. Our self-energy satisfies the Kramers - Kronig relationships since it is analytic in one of the complex half-planes. By increasing the value of the local interaction, 0953-8984/10/23/002/img12, at half-filling 0953-8984/10/23/002/img13, there is a transition from a paramagnetic metal to a paramagnetic insulator (a Mott metal - insulator transition) for values of 0953-8984/10/23/002/img12 of the order of 0953-8984/10/23/002/img15 (W is the bandwidth) which is in agreement with numerical results for finite lattices and for an infinite number of dimensions 0953-8984/10/23/002/img16. These results expose the main weakness of the spherical approximation of Nolting: a finite gap for any finite value of the interaction, i.e., an insulator for any finite value of 0953-8984/10/23/002/img12. Lifetime effects are absolutely indispensable to making our scheme work better than that based on improving the narrowing band factor, 0953-8984/10/23/002/img18, beyond that obtained from the spherical approximation of Nolting.

  16. Tuning the metal-insulator transition in d1 and d2 perovskites by epitaxial strain: A first-principles-based study

    NASA Astrophysics Data System (ADS)

    Sclauzero, Gabriele; Dymkowski, Krzysztof; Ederer, Claude

    2016-12-01

    We investigate the effect of epitaxial strain on the Mott metal-insulator transition (MIT) in perovskite systems with d1 and d2 electron configurations of the transition metal (TM) cation. We first discuss the general trends expected from the changes in the crystal-field splitting and in the hopping parameters that are induced by epitaxial strain. We argue that the strain-induced crystal-field splitting generally favors the Mott-insulating state, whereas the strain-induced changes in the hopping parameters favor the metallic state under compressive strain and the insulating state under tensile strain. Thus the two effects can effectively cancel each other under compressive strain, while they usually cooperate under tensile strain, in this case favoring the insulating state. We then validate these general considerations by performing electronic structure calculations for several d1 and d2 perovskites, using a combination of density functional theory (DFT) and dynamical mean-field theory (DMFT). We isolate the individual effects of strain-induced changes in either hopping or crystal-field by performing DMFT calculations where we fix one type of parameter to the corresponding unstrained DFT values. These calculations confirm our general considerations for SrVO3 (d1) and LaVO3 (d2), whereas the case of LaTiO3 (d1) is distinctly different, due to the strong effect of the octahedral tilt distortion in the underlying perovskite crystal structure. Our results demonstrate the possibility to tune the electronic properties of correlated TM oxides by using epitaxial strain, which allows to control the strength of electronic correlations and the vicinity to the Mott MIT.

  17. Metal-Insulator-Semiconductor Photodetectors

    PubMed Central

    Lin, Chu-Hsuan; Liu, Chee Wee

    2010-01-01

    The major radiation of the Sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III–V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows. PMID:22163382

  18. Metal-insulator-semiconductor photodetectors.

    PubMed

    Lin, Chu-Hsuan; Liu, Chee Wee

    2010-01-01

    The major radiation of the sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III-V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows.

  19. Magnetic Field Induced Metal-Insulator Transition in Pr_1-x(La_1-ySr_y)_xMnO3 (x=0.45, y=0.15)

    NASA Astrophysics Data System (ADS)

    Ye, F.; Fernandez-Baca, J. A.; Dai, P.; Tomioka, Y.; Tokura, Y.

    2004-03-01

    Recently, the electronic phase diagram of Pr_1-x(Ca_1-ySr_y)_xMnO3 (x=0.45)has been studied in the vicinity of the metal-insulator transition boundary. By controlling the eg electron bandwidth W, the ground state can be tuned to change from a charged-ordered (CO) and orbitally-ordered (OO) state (y<=0.2) to a ferromagnetic metallic state (y>0.25). This system has been reported to exhibit bicritical features near y =0.25. We have used elastic and inelastic neutron scattering to study the magnetic correlations and spin dynamics of the sample near the insulator-metal boundary. The insulating CO/OO ground state of y=0.15 can be melted by the application of external field. The evolution of the CO/OO when a magnetic field is applied will be discussed in the context of the competing interactions that may be responsible for the CMR effect. This work was supported by the U.S. DOE under Contract No. DE-AC05-00OR22725 with UT-Batelle, LLC; and by NSF grant DMR-0139882.

  20. Controlling the sharpness of metal-insulator transition in epitaxial (La1-xPrx)0.67Ca0.33MnO3 (0 ≤ x ≤ 0.35) films

    NASA Astrophysics Data System (ADS)

    Chen, Pingfan; Huang, Zhen; Tan, Xuelian; Chen, Binbin; Zhi, Bowen; Gao, Guanyin; Chen, Feng; Wu, Wenbin

    2014-10-01

    We report that epitaxial strain and chemical doping can be used cooperatively to tune the sharpness of metal-insulator transition (MIT) in epitaxial (La1-xPrx)0.67Ca0.33MnO3 (LPCMO) films. Compared to multiple MITs in anisotropically strained LPCMO/(LaAlO3)0.3(SrAl0.5Ta0.5O3)0.7(001)C (LSAT) films with a phase-separated ground state, the lattice-matched LPCMO/NdGaO3(110)Or (NGO) films show a sharp MIT near the Curie temperature (TC), with a ferromagnetic-metallic ground state. The sharpness of MIT, as evaluated by the temperature coefficient of resistance (TCR), can be two times larger in LPCMO/NGO films than in LPCMO/LSAT films. Moreover, for LPCMO/NGO films, TCR greatly relies on the Pr doping level x, where a maximum TCR value of 88.17% K-1 can be obtained at x = 0.25, but shows less dependence on the film thicknesses. These results suggest that the combination of epitaxial strain and chemical doping could be employed to control not only the ground state of the manganite films, but the sharpness of MIT at various TC, providing the feasibility to design manganite-based infrared devices in a broad temperature range.

  1. Superconductivity and crystal structural origins of the metal-insulator transition in Ba6 -xSrxNb10O30 tetragonal tungsten bronzes

    NASA Astrophysics Data System (ADS)

    Kolodiaznyi, Taras; Sakurai, Hiroya; Isobe, Masaaki; Matsushita, Yoshitaka; Forbes, Scott; Mozharivskyj, Yurij; Munsie, Timothy J. S.; Luke, Graeme M.; Gurak, Mary; Clarke, David R.

    2015-12-01

    Ba6 -xSrxNb10O30 solid solution with 0 ≤ x ≤6 forms the filled tetragonal tungsten bronze (TTB) structure. The Ba-end member crystallizes in the highest symmetry P 4 /m b m space group (a =b =12.5842 (18 )Å and c =3.9995 (8 )Å ) and so do all the compositions with 0 ≤ x ≤5 . The Sr-end member of the solid solution crystallizes in the tentatively assigned A m a m space group (a *=17.506 (4 )Å , b *=34.932 (7 )Å , and c *=7.7777 (2 )Å ). The latter space group is related to the parent P 4 /m b m TTB structure as a * ≈ √{2 }a ,b * ≈2 √{2 }a ,c *=2 c . Low-temperature specific heat measurements indicate that the Ba-rich compositions with x ≤2 are conventional BCS superconductors with TC ≤1.6 K and superconducting energy gaps of ≤0.38 meV. The values of the TC in the cation-filled Nb-based TTBs reported here are comparable with those of the unfilled KxWO3 and NaxWO3 TTBs having large alkali ion deficiency. As the unit cell volume decreases with increasing x , an unexpected metal-insulator transition (MIT) in Ba6 -xSrxNb10O30 occurs at x ≥3 . We discuss the possible origins of the MIT in terms of the carrier concentration, symmetry break, and Anderson localization.

  2. The metal-insulator phase transition in mixed potassium-rubidium electro-sodalites.

    PubMed

    Madsen, Georg K H

    2004-09-01

    The collapse under pressure of the antiferromagnetic ground state of the potassium-rubidium electro-sodalite is studied using the linearized augmented plane wave with local orbitals method. Special considerations needed for setting up this basis for systems such as the electro-sodalites are discussed. It is demonstrated that the magnetism collapses at a unit-cell volume similar to potassium electro-sodalite and rubidium electro-sodalite. A critical pressure of 8 GPa is predicted. The mechanism behind the collapse is a mixing of the F-center states with the highly diffuse unoccupied p states of the alkali atoms.

  3. Spin-orbit contribution to the Hall coefficient approaching the metal-insulator transition: An explanation for the critical behavior of Ge:Sb

    NASA Astrophysics Data System (ADS)

    Castner, T. G.

    1990-09-01

    It is demonstrated that the band spin-orbit contribution to the Hall conductivity σyx can qualitatively explain the critical behavior of the Hall coefficient RH for Ge:Sb reported by Field and Rosenbaum. The spin-orbit contribution to σyx for n-type Ge has been experimentally determined by Chazalviel and leads to an R-1H versus (n/nc-1) dependence that is consistent with the Ge:Sb data. This result demonstrates a significant extraordinary contribution to RH for some very weakly paramagnetic metal-insulator systems when closely approaching the critical density nc.

  4. Decoupling of structural and electronic phase transitions in VO2.

    PubMed

    Tao, Zhensheng; Han, Tzong-Ru T; Mahanti, Subhendra D; Duxbury, Phillip M; Yuan, Fei; Ruan, Chong-Yu; Wang, Kevin; Wu, Junqiao

    2012-10-19

    Using optical, TEM, and ultrafast electron diffraction experiments we find that single crystal VO(2) microbeams gently placed on insulating substrates or metal grids exhibit different behaviors, with structural and metal-insulator transitions occurring at the same temperature for insulating substrates, while for metal substrates a new monoclinic metal phase lies between the insulating monoclinic phase and the metallic rutile phase. The structural and electronic phase transitions in these experiments are strongly first order and we discuss their origins in the context of current understanding of multiorbital splitting, strong correlation effects, and structural distortions that act cooperatively in this system.

  5. Magnetotransport properties of strained Ga0.95Mn0.05As epilayers close to the metal-insulator transition: Description using Aronov-Altshuler three-dimensional scaling theory

    NASA Astrophysics Data System (ADS)

    Honolka, J.; Masmanidis, S.; Tang, H. X.; Awschalom, D. D.; Roukes, M. L.

    2007-06-01

    The magnitude of the anisotropic magnetoresistance (AMR) and the longitudinal resistance in compressively strained Ga0.95Mn0.05As epilayers were measured down to temperatures as low as 30mK . Below temperatures of 3K , the conductivity decreases ∝T1/3 over 2 orders of magnitude in temperature. The conductivity can be well described within the framework of a three-dimensional scaling theory of Anderson’s transition in the presence of spin scattering in semiconductors. It is shown that the samples are on the metallic side but very close to the metal-insulator transition. At lowest temperatures, a decrease in the AMR effect is observed, which is assigned to changes in the coupling between the remaining itinerant carriers and the local Mn 5/2 -spin moments.

  6. Nonadiabatic effects in a generalized Jahn-Teller lattice model: Heavy and light polarons, pairing, and the metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Majerníková, Eva; Riedel, J.; Shpyrko, S.

    2002-05-01

    The self-consistent ground state polaron potential of one-dimensional lattice of two-level molecules with spinless electrons and two dispersionless phonon modes with linear coupling and quantum phonon-assisted (nonadiabatic) transitions between the levels is found anharmonic in phonon displacements. As a function of these, the potential shows a crossover from two nonequivalent broad minima to a single narrow minimum which correspond to the positions of the levels in the ground state. Generalized variational approach respecting the mixing of levels (reflection) via a variational parameter implies prominent nonadiabatic effects: (i) In the limit of the symmetric E⊗e Jahn-Teller situation they cause transition between the regime of the predominantly one-level ``heavy'' polaron and a ``light'' polaron oscillating between the levels due to phonon assistance with almost vanishing polaron displacement. Vanishing polaron selflocalization implies enhancement of the electron transfer due to decrease of the ``heavy'' polaron mass (undressing) at the point of the transition. There can occur pairing of ``light'' polarons due to exchange of virtual phonons. Continuous transition to new energy ground state close to the transition from ``heavy'' polaron phase to ``light'' (bi)polaron phase occurs. In the ``heavy'' phase, we have found anomalous (anharmonic) enhancements of quantum fluctuations of the phonon coordinate, conjugated momentum and their product in the ground state as functions of the effective coupling which reach their maxima at E⊗e JT symmetry. They decrease rapidly to their harmonic values as soon as the ``light'' phase is stabilized. (ii) Nonadiabatic dependence of the polaron mass (Debye-Waller screening) on the optical phonon frequency appears. (iii) The contribution of Rabi oscillations to the transfer enhances significantly quantum shift of the insulator-metal transition line to higher values of the critical effective electron-phonon coupling supporting so

  7. Phases and Phase Transitions

    NASA Astrophysics Data System (ADS)

    Gitterman, Moshe

    2014-09-01

    In discussing phase transitions, the first thing that we have to do is to define a phase. This is a concept from thermodynamics and statistical mechanics, where a phase is defined as a homogeneous system. As a simple example, let us consider instant coffee. This consists of coffee powder dissolved in water, and after stirring it we have a homogeneous mixture, i.e., a single phase. If we add to a cup of coffee a spoonful of sugar and stir it well, we still have a single phase -- sweet coffee. However, if we add ten spoonfuls of sugar, then the contents of the cup will no longer be homogeneous, but rather a mixture of two homogeneous systems or phases, sweet liquid coffee on top and coffee-flavored wet sugar at the bottom...

  8. Role of microstructures on the M1-M2 phase transition in epitaxial VO2 thin films

    PubMed Central

    Ji, Yanda; Zhang, Yin; Gao, Min; Yuan, Zhen; Xia, Yudong; Jin, Changqing; Tao, Bowan; Chen, Chonglin; Jia, Quanxi; Lin, Yuan

    2014-01-01

    Vanadium dioxide (VO2) with its unique sharp resistivity change at the metal-insulator transition (MIT) has been extensively considered for the near-future terahertz/infrared devices and energy harvesting systems. Controlling the epitaxial quality and microstructures of vanadium dioxide thin films and understanding the metal-insulator transition behaviors are therefore critical to novel device development. The metal-insulator transition behaviors of the epitaxial vanadium dioxide thin films deposited on Al2O3 (0001) substrates were systematically studied by characterizing the temperature dependency of both Raman spectrum and Fourier transform infrared spectroscopy. Our findings on the correlation between the nucleation dynamics of intermediate monoclinic (M2) phase with microstructures will open a new avenue for the design and integration of advanced heterostructures with controllable multifunctionalities for sensing and imaging system applications. PMID:24798056

  9. Raman scattering investigation across the magnetic and metal-insulator transition in rare earth nickelate RNiO3 ( R=Sm , Nd) thin films

    NASA Astrophysics Data System (ADS)

    Girardot, C.; Kreisel, J.; Pignard, S.; Caillault, N.; Weiss, F.

    2008-09-01

    We report a temperature-dependent Raman scattering investigation of thin-film rare earth nickelates SmNiO3 , NdNiO3 , and Sm0.60Nd0.40NiO3 which present a metal-to-insulator (MI) transition at TMI and an antiferromagnetic-paramagnetic Néel transition at TN . Our results provide evidence that all investigated samples present a structural phase transition at TMI but the Raman signature across TMI is significantly different for NdNiO3 (TMI=TN) compared to SmNiO3 and Sm0.60Nd0.40NiO3 (TMI≠TN) . It is namely observed that the paramagnetic-insulator phase (TNtransition. The observed behavior might well be a general feature for all rare earth nickelates with TMI≠TN and illustrates intriguing coupling mechanism in the TN

  10. The metal-insulator transition in nanocrystalline Pr0.67Ca0.33MnO3: the correlation between supercooling and kinetic arrest.

    PubMed

    Rawat, R; Chaddah, P; Bag, Pallab; Das, Kalipada; Das, I

    2012-10-17

    The transition and hysteresis widths of a disorder broadened first order magnetic transition vary in H-T space which influences the co-existing phase fraction at low temperature arising due to kinetic arrest of the first order transition. We explored the role of change in the relative width of the supercooling/superheating band and kinetic arrest band for a ferromagnetic metallic to antiferromagnetic insulating transition. It is shown that for a correlated kinetic arrest and supercooling bands, the topology of the devitrification curves (or transformation across the (H(K),T(K)) band during warming) changes with the change in the relative width of these two bands. In addition to this, for a broader kinetic arrest band, the transformation temperature across the superheating band under constant H now depends on the arrested phase fraction. These predictions have been tested on nanocrystalline Pr(0.67)Ca(0.33)MnO(3), which is known to show a large variation in hysteresis width in H-T space. This is the first report where correlation between the kinetic arrest band and the supercooling band has been shown experimentally, in contrast to the universal observation of anticorrelation reported so far.

  11. Infrared spectroscopic study of the local structural changes across the metal insulator transition in nickel-doped GdBaCo{sub 2}O{sub 5.5}

    SciTech Connect

    Yasodha, P.; Premila, M.; Bharathi, A.; Valsakumar, M.C.; Rajaraman, R.; Sundar, C.S.

    2010-11-15

    Phonons in GdBaCo{sub 2}O{sub 5.5} have been identified using infrared spectroscopy and their mode assignments have been carried out using ab initio lattice dynamical calculations. Metal insulator transitions in undoped and nickel-doped GdBaCo{sub 2}O{sub 5.5} have been probed using infrared absorption spectroscopy. The phonon modes corresponding to the bending mode of the CoO{sub 6} octahedra/pyramids are seen to soften, broaden and develop an asymmetry across the insulator-metal transition pointing to extensive electron phonon interaction effects in these systems. Correlated changes of the phonon line shape parameters associated with the transition indicate a suppression of T{sub MIT} with increased nickel doping of the cobalt sublattice. Temperature dependence of the octahedral stretching mode frequencies in undoped GdBaCo{sub 2}O{sub 5.5} points to distinct structural distortions accompanying the high temperature metallic transition. - Graphical abstract: Softening of the bending mode across T{sub MIT}.

  12. Suppression of the metal-insulator transition by magnetic field in (Pr{sub 1−y}Y{sub y}){sub 0.7}Ca{sub 0.3}CoO{sub 3} (y = 0.0625)

    SciTech Connect

    Naito, Tomoyuki Fujishiro, Hiroyuki; Nishizaki, Terukazu; Kobayashi, Norio; Hejtmánek, Jiří; Knížek, Karel; Jirák, Zdeněk

    2014-06-21

    The (Pr{sub 1−y}Y{sub y}){sub 0.7}Ca{sub 0.3}CoO{sub 3} compound (y = 0.0625, T{sub MI-SS}=40 K), at the lower limit for occurrence of the first-order metal-insulator (MI) and simultaneous spin-state (SS) transitions, has been studied using electrical resistivity and magnetization measurements in magnetic fields up to 17 T. The isothermal experiments demonstrate that the low-temperature insulating phase can be destabilized by an applied field and the metallic phase returns well below the transition temperature T{sub MI-SS}. The reverse process with decreasing field occurs with a significant hysteresis. The temperature scans taken at fixed magnetic fields reveal a parabolic-like decrease in T{sub MI-SS} with increasing field strength and a complete suppression of the MI-SS transition in fields above 9 T.

  13. Depressed Phase Transition in Solution-Grown VO2 Nanostructures

    SciTech Connect

    Whittaker, L.; Jaye, C; Fu, Z; Fischer, D; Banerjee, S

    2009-01-01

    The first-order metal-insulator phase transition in VO{sub 2} is characterized by an ultrafast several-orders-of-magnitude change in electrical conductivity and optical transmittance, which makes this material an attractive candidate for the fabrication of optical limiting elements, thermochromic coatings, and Mott field-effect transistors. Here, we demonstrate that the phase-transition temperature and hysteresis can be tuned by scaling VO{sub 2} to nanoscale dimensions. A simple hydrothermal protocol yields anisotropic free-standing single-crystalline VO{sub 2} nanostructures with a phase-transition temperature depressed to as low as 32 C from 67 C in the bulk. The observations here point to the importance of carefully controlling the stochiometry and dimensions of VO{sub 2} nanostructures to tune the phase transition in this system.

  14. Depressed phase transition in solution-grown VO2 nanostructures.

    PubMed

    Whittaker, Luisa; Jaye, Cherno; Fu, Zugen; Fischer, Daniel A; Banerjee, Sarbajit

    2009-07-01

    The first-order metal-insulator phase transition in VO(2) is characterized by an ultrafast several-orders-of-magnitude change in electrical conductivity and optical transmittance, which makes this material an attractive candidate for the fabrication of optical limiting elements, thermochromic coatings, and Mott field-effect transistors. Here, we demonstrate that the phase-transition temperature and hysteresis can be tuned by scaling VO(2) to nanoscale dimensions. A simple hydrothermal protocol yields anisotropic free-standing single-crystalline VO(2) nanostructures with a phase-transition temperature depressed to as low as 32 degrees C from 67 degrees C in the bulk. The observations here point to the importance of carefully controlling the stoichiometry and dimensions of VO(2) nanostructures to tune the phase transition in this system.

  15. Finite-size driven topological and metal-insulator transition in (Bi1-xInx)2 Se3thin films

    NASA Astrophysics Data System (ADS)

    Salehi, Maryam; Shapourian, Hassan; Koirala, Nikesh; Brahlek, Matthew; Moon, Jisoo; Oh, Seongshik

    In a topological insulator (TI), if one of its heavy elements is replaced by a light one, the spin-orbit coupling (SOC) strength decreases and eventually the TI transforms into a normal insulator beyond a critical level of substitution.This is the standard description of the topological phase transition (TPT). However, this notion of TPT, driven solely by the SOC (or something equivalent), is not complete for finite size samples considering that the thickness of the topological surface states diverges at the critical point. Here, on specially-engineered (BixIn1-x)2 Se3 thin films, using systematic transport measurments we show that not only the SOC but also the finite sample size can induce TPT. This study sheds light on the role of spatial confinement as an extra tuning parameter controlling the topological critical point.

  16. Finite-temperature phase transitions in the ionic Hubbard model

    NASA Astrophysics Data System (ADS)

    Kim, Aaram J.; Choi, M. Y.; Jeon, Gun Sang

    2014-04-01

    We investigate paramagnetic metal-insulator transitions in the infinite-dimensional ionic Hubbard model at finite temperatures. By means of the dynamical mean-field theory with an impurity solver of the continuous-time quantum Monte Carlo method, we show that an increase in the interaction strength brings about a crossover from a band insulating phase to a metallic one, followed by a first-order transition to a Mott insulating phase. The first-order transition turns into a crossover above a certain critical temperature, which becomes higher as the staggered lattice potential is increased. Further, analysis of the temperature dependence of the energy density discloses that the intermediate metallic phase is a Fermi liquid. It is also found that the metallic phase is stable against strong staggered potentials even at very low temperatures.

  17. Role of tetravalent ion in metal-insulator transition in (La{sub 0.1}Ca{sub 0.9})(Mn{sub 1-x}Ti{sub x})O{sub 3}

    SciTech Connect

    Taguchi, Hideki; Sonoda, Masanori; Nagao, Mahiko; Kido, Hiroyasu

    1996-11-01

    Perovskite-type (La{sub 0.1}Ca{sub 0.9})(Mn{sub 1-x}Ti{sub x})O{sub 3} (0 {le} x {le} 0.9) has the orthorhombic GdFeO{sub 3}-type structure with the space group Pnma. With increasing x, the average (Mn, Ti)-O distance increases linearly and the average angles for (Mn,Ti)-O-(Mn, Ti) decrease slightly. The electrical resistivity ({rho}) of all manganates was measured in the temperature range from 10 to 953 K. All manganates are n-type semiconductors at low temperature. At high temperature, the manganates exhibit a metal-insulator transition in the range O{le}x{le}0.3. d{rho}/dT in the metallic region depends on the composition. From these results, it is considered that the Ti{sup 4+} ion makes the cation-anion-cation overlap integrals ({Delta}{sub cac}{sup {pi}} and {Delta}{sub cac}{sup {sigma}}) weaken.

  18. Manganese-induced magnetic symmetry breaking and its correlation with the metal-insulator transition in bilayered S r3(Ru1-xM nx) 2O7

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Ye, Feng; Tian, Wei; Cao, Huibo; Chi, Songxue; Hu, Biao; Diao, Zhenyu; Tennant, David A.; Jin, Rongying; Zhang, Jiandi; Plummer, Ward

    2017-06-01

    Bilayered S r3R u2O7 is an unusual metamagnetic metal with inherently antiferromagnetic (AFM) and ferromagnetic (FM) fluctuations. Partial substitution of Ru by Mn results in the establishment of a metal-insulator transition (MIT) at TMIT and AFM ordering at TM in S r3(Ru1-xM nx) 2O7 . Using elastic neutron scattering, we investigated the effect of Mn doping on the magnetic structure, in-plane magnetic correlation lengths and their correlation to the MIT in S r3(Ru1-xM nx) 2O7 (x =0.06 and 0.12). With the increase of Mn doping (x ) from 0.06 to 0.12 or the decrease of temperatures for x =0.12 , an evolution from an in-plane short-range to long-range antiferromagnetic (AFM) ground state occurs. For both compounds, the magnetic ordering has a double-stripe configuration, and the onset of magnetic correlation with an anisotropic behavior coincides with the sharp rise in electrical resistivity and specific heat. Since it does not induce a measurable lattice distortion, the double-stripe antiferromagnetic order with anisotropic spin texture breaks symmetry from a C4 v crystal lattice to a C2 v magnetic sublattice. These observations shed light on an age-old question regarding the Slater versus Mott-type MIT.

  19. Relationship between superconductor and metal-insulator transitions in a large class of tetragonal 1:2:3 cuprates Ca-R-Ba-Cu-O (R=La,Nd)

    NASA Astrophysics Data System (ADS)

    Goldschmidt, D.; Knizhnik, A.; Direktovitch, Y.; Reisner, G. M.; Eckstein, Y.

    1995-11-01

    We report superconductor and transport properties of a large class of tetragonal 1:2:3 cuprates represented by the chemical formula (CaxR1-x)[Ba3-z-xRz-(1-x)]Cu3Oy, where R=La or Nd and existing as high-purity materials in a large range of z and x. At a given z, these materials maintain, through compensating cosubstitutions, a constant charge Q of the noncopper cations (Q=6+z) independent of x. By accurate control of oxygen content y, both cation and anion charge sources were kept constant. Under these isoelectronic conditions (constant electron concentration n) big changes in transition temperature Tc, resistivity ρ and thermopower (TEP) S occur, suggesting that the microscopic hole density in the CuO2 planes h changes. Having a single Tmaxc (maximal Tc), this material family behaves as a single material. Besides, for all values of Q, x, and y and for each R we show that Tc, ρ, and S can each be represented by a single curve when plotted as a function of y-yM-I(Q,x), where yM-I denotes the value of y at the metal-insulator (M-I) transition. Therefore, there exists a one to one correspondence between h and y-yM-I, but there is no straightforward relation between h and n. We found an empirical formula describing the functional dependence of yM-I on Q and x. This allows one to estimate yM-I, Tc, ρ, and S in many materials. Our results are interpreted in terms of a simple band picture which is modified to consider the existence of low-mobility states in the vicinity of EF. This accounts for the relatively low TEP at the M-I transition.

  20. Theoretical study of the thickness dependence of the metal-insulator transition in Bi2Sr2Co2O8 nanosheets

    NASA Astrophysics Data System (ADS)

    Huang, Xiaokun; Zhang, Weiyi

    2017-07-01

    The bulk Bi2Sr2Co2O8 crystal is an insulator at low temperature and experiences an insulator-metal transition at TC≈60 K . The new experiment showed that TC increases to 140 K for a mechanically exfoliated nanosheet of four blocks and is beyond room temperature for nanosheets thinner than four blocks. We show that the thickness-dependent insulator-metal transition observed in Bi2Sr2Co2O8 nanosheets can naturally be explained by the strongly correlated low-spin-state insulator (LS state) and intermediate-spin-low-spin-state metal (IS-LS state). In particular, the energy difference between the LS state and IS-LS state qualitatively reproduces the trend of the transition temperature with the nanosheet thickness. The predicted transition temperature of a nanosheet with three blocks is only slightly above room temperature, a result that can be used to check our proposed mechanism. Further experiments on the distinct magnetotransport properties and spin-fluctuation behaviors of the LS state and IS-LS state are also very helpful to resolve the issue. The weak interblock binding is also consistent with the layer-resolved partial densities of states.

  1. Enhanced ferromagnetic and metal insulator transition in Sm0.55Sr0.45MnO3 thin films: Role of oxygen vacancy induced quenched disorder

    NASA Astrophysics Data System (ADS)

    Srivastava, M. K.; Siwach, P. K.; Kaur, A.; Singh, H. K.

    2010-11-01

    Effect of quenched disorder (QD) caused by oxygen vacancy (OV) and substrate induced inhomogeneous compressive strain, on the magnetic and transport properties of oriented polycrystalline Sm0.55Sr0.45MnO3 thin films is investigated. QD is related intimately to the ordering/disordering of the OVs and controls the paramagnetic-ferromagnetic/insulator-metal transition. OV ordered films show enhanced TC/TIM˜165 K, which is depressed by oxygen annealing. OV disordering realized by quenching reduces TC/TIM. The first order IM transition observed in SSMO single crystals is transformed into nonhysteretic and continuous one in the OV ordered films. QD appears to be diluted by OV disorder/annihilation and results in stronger carrier localization.

  2. Characterization of quantum phase transition using holographic entanglement entropy

    NASA Astrophysics Data System (ADS)

    Ling, Yi; Liu, Peng; Wu, Jian-Pin

    2016-06-01

    The entanglement exhibits extremal or singular behavior near quantum critical points (QCPs) in many condensed matter models. These intriguing phenomena, however, still call for a widely accepted understanding. In this paper we study this issue in holographic framework. We investigate the connection between the holographic entanglement entropy (HEE) and the quantum phase transition (QPT) in a lattice-deformed Einstein-Maxwell-Dilaton theory. Novel backgrounds exhibiting metal-insulator transitions (MIT) have been constructed in which both metallic phase and insulating phase have vanishing entropy density in zero temperature limit. We find that the first order derivative of HEE with respect to lattice parameters exhibits extremal behavior near QCPs. We propose that it would be a universal feature that HEE or its derivatives with respect to system parameters can characterize QPT in a generic holographic system. Our work opens a window for understanding the relation between entanglement and the QPT from a holographic perspective.

  3. Electric field effect near the metal-insulator transition of a two-dimensional electron system in SrTiO3

    NASA Astrophysics Data System (ADS)

    Ahadi, Kaveh; Shoron, Omor F.; Marshall, Patrick B.; Mikheev, Evgeny; Stemmer, Susanne

    2017-02-01

    SmTiO3/SrTiO3 interfaces exhibit a two-dimensional electron system with carrier densities in the order of 3 × 1014 cm-2 due to the polar discontinuity at the interface. Here, electric field effect is used to investigate an electron system at this interface whose carrier density has been depleted substantially by the gate metal and by reducing the thickness of the SmTiO3. At zero applied gate voltage, the sheet resistance exceeds the quantum resistance, h/e2, by more than an order of magnitude, and the SrTiO3 channel is in the hopping transport regime. The electric field modulates the carrier density in the channel, which approaches the transition to a metal at positive gate bias. The channel resistances are found to scale by a single parameter that depends on the gate voltage, similar to two-dimensional electron systems in high-quality semiconductors.

  4. Cosmological phase transitions

    SciTech Connect

    Kolb, E.W. |

    1993-10-01

    If modern ideas about the role of spontaneous symmetry breaking in fundamental physics are correct, then the Universe should have undergone a series of phase transitions early in its history. The study of cosmological phase transitions has become an important aspect of early-Universe cosmology. In this lecture I review some very recent work on three aspects of phase transitions: the electroweak transition, texture, and axions.

  5. Separation of intra- and intergranular magnetotransport properties in nanocrystalline diamond films on the metallic side of the metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Janssens, S. D.; Pobedinskas, P.; Vacik, J.; Petráková, V.; Ruttens, B.; D'Haen, J.; Nesládek, M.; Haenen, K.; Wagner, P.

    2011-08-01

    A systematic study on the morphology and electronic properties of thin heavily boron-doped nanocrystalline diamond (NCD) films is presented. The films have nominally the same thickness (≈150 nm) and are grown with a fixed B/C ratio (5000 ppm) but with different C/H ratios (0.5-5%) in the gas phase. The morphology of the films is investigated by x-ray diffraction and atomic force microscopy measurements, which confirm that lower C/H ratios lead to a larger average grain size. Magnetotransport measurements reveal a decrease in resistivity and a large increase in mobility, approaching the values obtained for single-crystal diamond as the average grain size of the films increases. In all films, the temperature dependence of resistivity decreases with larger grains and the charge carrier density and mobility are thermally activated. It is possible to separate the intra- and intergrain contributions for resistivity and mobility, which indicates that in these complex systems Matthiessen's rule is followed. The concentration of active charge carriers is reduced when the boron-doped NCD is grown with a lower C/H ratio. This is due to lower boron incorporation, which is confirmed by neutron depth profiling.

  6. Spin-orbit tuned metal-insulator transitions in single-crystal Sr₂Ir1–xRhxO₄ (0≤x≤1)

    DOE PAGES

    Qi, T. F.; Korneta, O. B.; Li, L.; ...

    2012-09-06

    Sr₂IrO₄ is a magnetic insulator driven by spin-orbit interaction (SOI) whereas the isoelectronic and isostructural Sr₂RhO₄ is a paramagnetic metal. The contrasting ground states have been shown to result from the critical role of the strong SOI in the iridate. Our investigation of structural, transport, magnetic, and thermal properties reveals that substituting 4d Rh⁴⁺ (4d⁵) ions for 5d Ir⁴⁺ (5d⁵) ions in Sr₂IrO₄ directly reduces the SOI and rebalances the competing energies so profoundly that it generates a rich phase diagram for Sr₂Ir1–xRhxO₄ featuring two major effects: (1) Light Rh doping (0 ≤ x ≤ 0.16) prompts a simultaneous andmore » precipitous drop in both the electrical resistivity and the magnetic ordering temperature TC, which is suppressed to zero at x = 0.16 from 240 K at x = 0. (2) However, with heavier Rh doping [0.24 < x < 0.85 (±0.05)] disorder scattering leads to localized states and a return to an insulating state with spin frustration and exotic magnetic behavior that only disappears near x = 1. The intricacy of Sr₂Ir1–xRhxO₄ is further highlighted by comparison with Sr₂Ir1–xRuxO₄ where Ru⁴⁺ (4d⁴) drives a direct crossover from the insulating to metallic states.« less

  7. Quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Vojta, Matthias

    2003-12-01

    In recent years, quantum phase transitions have attracted the interest of both theorists and experimentalists in condensed matter physics. These transitions, which are accessed at zero temperature by variation of a non-thermal control parameter, can influence the behaviour of electronic systems over a wide range of the phase diagram. Quantum phase transitions occur as a result of competing ground state phases. The cuprate superconductors which can be tuned from a Mott insulating to a d-wave superconducting phase by carrier doping are a paradigmatic example. This review introduces important concepts of phase transitions and discusses the interplay of quantum and classical fluctuations near criticality. The main part of the article is devoted to bulk quantum phase transitions in condensed matter systems. Several classes of transitions will be briefly reviewed, pointing out, e.g., conceptual differences between ordering transitions in metallic and insulating systems. An interesting separate class of transitions is boundary phase transitions where only degrees of freedom of a subsystem become critical; this will be illustrated in a few examples. The article is aimed at bridging the gap between high-level theoretical presentations and research papers specialized in certain classes of materials. It will give an overview on a variety of different quantum transitions, critically discuss open theoretical questions, and frequently make contact with recent experiments in condensed matter physics.

  8. Characterization of Metal-Insulator-Transition (MIT) Phase Change Materials (PCM) for Reconfigurable Components, Circuits, and Systems

    DTIC Science & Technology

    2013-03-01

    17  Figure 7: Structure of GeTe based micro-switching component with copper electrodes [21... Copper Telluride) and GST (Germanium Antimony Telluride) thin films [35]. ...... 31  Figure 17. Temperature-dependent sheet resistance for 200nm...force and depending on which bank of switches is in an “on” state, the capacitance across the device will vary. By using electroplated gold contacts

  9. Broadband planar multilayered absorbers tuned by VO2 phase transition

    NASA Astrophysics Data System (ADS)

    Peng, Hao; Ji, Chunhui; Lu, Lulu; Li, Zhe; Li, Haoyang; Wang, Jun; Wu, Zhiming; Jiang, Yadong; Xu, Jimmy; Liu, Zhijun

    2017-08-01

    The metal-insulator transition makes vanadium dioxide an attractive material for developing reconfigurable optoelectronic components. Here we report on dynamically tunable broadband absorbers consisting of planar multilayered thin films. By thermally triggering the phase transition of vanadium dioxide, the effective impedance of multilayered structures is tuned in or out of the condition of impedance matching to free-space, leading to switchable broadband absorptions. Two types of absorbers are designed and demonstrated by using either the insulating or metallic state of vanadium dioxide at the impedance matched condition. The planar multilayered absorbers exhibit tunable absorption bands over the wavelength ranges of 5-9.3 μm and 3.9-8.2 μm, respectively. A large modulation depth up to 88% is measured. The demonstrated broadband absorbance tunability is of potential interest for reconfigurable bolometric sensing, camouflaging, and modulation of mid-infrared lights.

  10. Holographic magnetic phase transition

    SciTech Connect

    Lifschytz, Gilad; Lippert, Matthew

    2009-09-15

    We study four-dimensional interacting fermions in a strong magnetic field, using the holographic Sakai-Sugimoto model of intersecting D4- and D8-branes in the deconfined, chiral-symmetric parallel phase. We find that as the magnetic field is varied, while staying in the parallel phase, the fermions exhibit a first-order phase transition in which their magnetization jumps discontinuously. Properties of this transition are consistent with a picture in which some of the fermions jump to the lowest Landau level. Similarities to known magnetic phase transitions are discussed.

  11. Direct observation of nanoscale Peltier and Joule effects at metal-insulator domain walls in vanadium dioxide nanobeams.

    PubMed

    Favaloro, Tela; Suh, Joonki; Vermeersch, Bjorn; Liu, Kai; Gu, Yijia; Chen, Long-Qing; Wang, Kevin X; Wu, Junqiao; Shakouri, Ali

    2014-05-14

    The metal to insulator transition (MIT) of strongly correlated materials is subject to strong lattice coupling, which brings about the unique one-dimensional alignment of metal-insulator (M-I) domains along nanowires or nanobeams. Many studies have investigated the effects of stress on the MIT and hence the phase boundary, but few have directly examined the temperature profile across the metal-insulating interface. Here, we use thermoreflectance microscopy to create two-dimensional temperature maps of single-crystalline VO2 nanobeams under external bias in the phase coexisting regime. We directly observe highly localized alternating Peltier heating and cooling as well as Joule heating concentrated at the M-I domain boundaries, indicating the significance of the domain walls and band offsets. Utilizing the thermoreflectance technique, we are able to elucidate strain accumulation along the nanobeam and distinguish between two insulating phases of VO2 through detection of the opposite polarity of their respective thermoreflectance coefficients. Microelasticity theory was employed to predict favorable domain wall configurations, confirming the monoclinic phase identification.

  12. Analytical approach to the quantum-phase transition in the one-dimensional spinless Holstein model

    NASA Astrophysics Data System (ADS)

    Sykora, S.; Hübsch, A.; Becker, K. W.

    2006-05-01

    We study the one-dimensional Holstein model of spinless fermions interacting with dispersion-less phonons by using a recently developed projector-based renormalization method (PRM). At half-filling the system shows a metal-insulator transition to a Peierls distorted state at a critical electron-phonon coupling where both phases are described within the same theoretical framework. The transition is accompanied by a phonon softening at the Brillouin zone boundary and a gap in the electronic spectrum. For different filling, the phonon softening appears away from the Brillouin zone boundary and thus reflects a different type of broken symmetry state.

  13. Quantum Phase Transitions

    DTIC Science & Technology

    2011-05-01

    Park, NC 27709-2211 15. SUBJECT TERMS Quantum Thoery Phase transitions Subir Sachdev Harvard University Office of Sponsored Research 1350...magnetism, and solvable models obtained from string theory. After introducing the basic theory, it moves on to a detailed description of the canonical...students and researchers in condensed matter physics and particle and string theory. Print | Close Quantum Phase Transitions 2nd Edition Subir Sachdev

  14. Electronic Griffiths Phases and Quantum Criticality at Disordered Mott Transitions

    NASA Astrophysics Data System (ADS)

    Dobrosavljevic, Vladimir

    2012-02-01

    The effects of disorder are investigated in strongly correlated electronic systems near the Mott metal-insulator transition. Correlation effects are foundootnotetextE. C. Andrade, E. Miranda, and V. Dobrosavljevic, Phys. Rev. Lett., 102, 206403 (2009). to lead to strong disorder screening, a mechanism restricted to low-lying electronic states, very similar to what is observed in underdoped cuprates. These results suggest, however, that this effect is not specific to disordered d-wave superconductors, but is a generic feature of all disordered Mott systems. In addition, the resulting spatial inhomogeneity rapidly increasesootnotetextE. C. Andrade, E. Miranda, and V. Dobrosavljevic, Phys. Rev. Lett., 104 (23), 236401 (2010). as the Mott insulator is approached at fixed disorder strength. This behavior, which can be described as an Electronic Griffiths Phase, displays all the features expected for disorder-dominated Infinite-Randomness Fixed Point scenario of quantum criticality.

  15. Electroweak phase transitions

    SciTech Connect

    Anderson, G.W.

    1991-09-16

    An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles and completes at a temperature where the order parameter, {l_angle}{phi}{r_angle}{sub T} is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially function of {l_angle}{phi}{r_angle}{sub T}. In very minimal extensions of the standard model it is quite easy to increase {l_angle}{phi}{r_angle}{sub T} so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value {l_angle}{phi}{r_angle} = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state {l_angle}{phi}{r_angle} = 246 GeV unstable. The requirement that the state {l_angle}{phi}{r_angle} = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field.

  16. Electroweak phase transitions

    SciTech Connect

    Anderson, G.W.

    1991-09-16

    An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles and completes at a temperature where the order parameter, {l angle}{phi}{r angle}{sub T} is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially function of {l angle}{phi}{r angle}{sub T}. In very minimal extensions of the standard model it is quite easy to increase {l angle}{phi}{r angle}{sub T} so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value {l angle}{phi}{r angle} = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state {l angle}{phi}{r angle} = 246 GeV unstable. The requirement that the state {l angle}{phi}{r angle} = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field.

  17. Molecular to atomic phase transition in hydrogen under high pressure.

    PubMed

    McMinis, Jeremy; Clay, Raymond C; Lee, Donghwa; Morales, Miguel A

    2015-03-13

    The metallization of high-pressure hydrogen, together with the associated molecular to atomic transition, is one of the most important problems in the field of high-pressure physics. It is also currently a matter of intense debate due to the existence of conflicting experimental reports on the observation of metallic hydrogen on a diamond-anvil cell. Theoretical calculations have typically relied on a mean-field description of electronic correlation through density functional theory, a theory with well-known limitations in the description of metal-insulator transitions. In fact, the predictions of the pressure-driven dissociation of molecules in high-pressure hydrogen by density functional theory is strongly affected by the chosen exchange-correlation functional. In this Letter, we use quantum Monte Carlo calculations to study the molecular to atomic transition in hydrogen. We obtain a transition pressure of 447(3) GPa, in excellent agreement with the best experimental estimate of the transition 450 GPa based on an extrapolation to zero band gap from experimental measurements. Additionally, we find that C2/c is stable almost up to the molecular to atomic transition, in contrast to previous density functional theory (DFT) and DFT+quantum Monte Carlo studies which predict large stability regimes for intermediary molecular phases.

  18. String mediated phase transitions

    NASA Technical Reports Server (NTRS)

    Copeland, ED; Haws, D.; Rivers, R.; Holbraad, S.

    1988-01-01

    It is demonstrated from first principles how the existence of string-like structures can cause a system to undergo a phase transition. In particular, the role of topologically stable cosmic string in the restoration of spontaneously broken symmetries is emphasized. How the thermodynamic properties of strings alter when stiffness and nearest neighbor string-string interactions are included is discussed.

  19. Non percolative nature of the metal-insulator transition and persistence of local Jahn-Teller distortions in the rhombohedral regime of La1-xCaxMnO3

    DOE PAGES

    Shatnawi, Mouath; Bozin, Emil S.; Mitchell, J. F.; ...

    2016-04-25

    Evolution of the average and local crystal structure of Ca-doped LaMnO3 has been studied across the metal to insulator (MI) and the orthorhombic to rhombohedral (OR) structural phase transitions over a broad temperature range for two Ca concentrations (x = 0.18,0.22). Combined Rietveld and high real space resolution atomic pair distribution function (PDF) analysis of neutron total scattering data was carried out with aims of exploring the possibility of nanoscale phase separation (PS) in relation to MI transition, and charting the evolution of local Jahn-Teller (JT) distortion of MnO6 octahedra across the OR transition at TS~720 K. The study utilizedmore » explicit two-phase PDF structural modeling, revealing that away from TMI there is no evidence for nanoscale phase coexistence. The local JT distortions disappear abruptly upon crossing into the metallic regime both with doping and temperature, with only a small temperature-independent signature of quenched disorder being observable at low temperature as compared to CaMnO3. The results hence do not support the percolative scenario for the MI transition in La1–xCaxMnO3 based on PS, and question its ubiquity in the manganites. In contrast to LaMnO3 that exhibits long-range orbital correlations and sizable octahedral distortions at low temperature, the doped samples with compositions straddling the MI boundary exhibit correlations (in the insulating regime) limited to only ~1 nm with observably smaller distortions. In the x = 0.22 sample local JT distortions are found to persist across the OR transition and deep into the R phase (up to ~1050 K), where they are crystallographically prohibited. As a result, their magnitude and subnanometer spatial extent remain unchanged.« less

  20. Non percolative nature of the metal-insulator transition and persistence of local Jahn-Teller distortions in the rhombohedral regime of La1-xCaxMnO3

    SciTech Connect

    Shatnawi, Mouath; Bozin, Emil S.; Mitchell, J. F.; Billinge, Simon J. L.

    2016-04-25

    Evolution of the average and local crystal structure of Ca-doped LaMnO3 has been studied across the metal to insulator (MI) and the orthorhombic to rhombohedral (OR) structural phase transitions over a broad temperature range for two Ca concentrations (x = 0.18,0.22). Combined Rietveld and high real space resolution atomic pair distribution function (PDF) analysis of neutron total scattering data was carried out with aims of exploring the possibility of nanoscale phase separation (PS) in relation to MI transition, and charting the evolution of local Jahn-Teller (JT) distortion of MnO6 octahedra across the OR transition at TS~720 K. The study utilized explicit two-phase PDF structural modeling, revealing that away from TMI there is no evidence for nanoscale phase coexistence. The local JT distortions disappear abruptly upon crossing into the metallic regime both with doping and temperature, with only a small temperature-independent signature of quenched disorder being observable at low temperature as compared to CaMnO3. The results hence do not support the percolative scenario for the MI transition in La1–xCaxMnO3 based on PS, and question its ubiquity in the manganites. In contrast to LaMnO3 that exhibits long-range orbital correlations and sizable octahedral distortions at low temperature, the doped samples with compositions straddling the MI boundary exhibit correlations (in the insulating regime) limited to only ~1 nm with observably smaller distortions. In the x = 0.22 sample local JT distortions are found to persist across the OR transition and deep into the R phase (up to ~1050 K), where they are crystallographically prohibited. As a result, their magnitude and subnanometer spatial extent remain unchanged.

  1. Non percolative nature of the metal-insulator transition and persistence of local Jahn-Teller distortions in the rhombohedral regime of La1-xCaxMnO3

    SciTech Connect

    Shatnawi, Mouath; Bozin, Emil S.; Mitchell, J. F.; Billinge, Simon J. L.

    2016-04-25

    Evolution of the average and local crystal structure of Ca-doped LaMnO3 has been studied across the metal to insulator (MI) and the orthorhombic to rhombohedral (OR) structural phase transitions over a broad temperature range for two Ca concentrations (x = 0.18,0.22). Combined Rietveld and high real space resolution atomic pair distribution function (PDF) analysis of neutron total scattering data was carried out with aims of exploring the possibility of nanoscale phase separation (PS) in relation to MI transition, and charting the evolution of local Jahn-Teller (JT) distortion of MnO6 octahedra across the OR transition at TS~720 K. The study utilized explicit two-phase PDF structural modeling, revealing that away from TMI there is no evidence for nanoscale phase coexistence. The local JT distortions disappear abruptly upon crossing into the metallic regime both with doping and temperature, with only a small temperature-independent signature of quenched disorder being observable at low temperature as compared to CaMnO3. The results hence do not support the percolative scenario for the MI transition in La1–xCaxMnO3 based on PS, and question its ubiquity in the manganites. In contrast to LaMnO3 that exhibits long-range orbital correlations and sizable octahedral distortions at low temperature, the doped samples with compositions straddling the MI boundary exhibit correlations (in the insulating regime) limited to only ~1 nm with observably smaller distortions. In the x = 0.22 sample local JT distortions are found to persist across the OR transition and deep into the R phase (up to ~1050 K), where they are crystallographically prohibited. As a result, their magnitude and subnanometer spatial extent remain unchanged.

  2. Tools for Studying Quantum Emergence near Phase Transitions

    NASA Astrophysics Data System (ADS)

    Imada, Masatoshi; Onoda, Shigeki; Mizusaki, Takahiro; Watanabe, Shinji

    2003-12-01

    We review recent studies on developing tools for quantum complex phenomena. The tools have been applied for clarifying the perspective of the Mott transitions and the phase diagram of metals, Mott insulators and magnetically ordered phases in the two-dimensional Hubbard model. The path-integral renormalization-group (PIRG) method has made it possible to numerically study correlated electrons even with geometrical frustration effects without biases . It has numerically clarified the phase diagram at zero temperature, T = 0, in the parameter space of the onsite Coulomb repulsion, the geometrical frustration amplitude and the chemical potential. When the bandwidth is controlled at half filling, the first-order transition between insulating and metallic phases is evidenced. In contrast, the filling-control transition shows diverging critical fluctuations for spin and charge responses with decreasing doping concentration. Near the Mott transition, a nonmagnetic spin-liquid phase appears in a region with large frustration effects. The phase is characterized remarkably by gapless spin excitations and the vanishing dispersion of spin excitations. Magnetic orders quantum mechanically melt through diverging magnon mass. The correlator projection method (CPM) is formulated as an extension of the operator projection theory. This method also allows an extension of the dynamical mean-field theory (DMFT) with systematic inclusion of the momentum dependence in the self-energy. It has enabled determining the phase diagram at T > 0, where the boundary surface of the first-order metal-insulator transition at half filling terminates on the critical end curve at T = Tc. The critical end curve is characterized by the diverging compressibility. The single particle spectra show strong renormalization of low-energy spectra, generating largely momentum dependent and flat dispersion. The results of two tools consistently suggest that the strong competitions of various phases with underlying

  3. Detecting phase transitions and crossovers in Hubbard models using the fidelity susceptibility

    NASA Astrophysics Data System (ADS)

    Huang, Li; Wang, Yilin; Wang, Lei; Werner, Philipp

    2016-12-01

    A generalized version of the fidelity susceptibility of single-band and multiorbital Hubbard models is systematically studied using single-site dynamical mean-field theory in combination with a hybridization expansion continuous-time quantum Monte Carlo impurity solver. We find that the fidelity susceptibility is extremely sensitive to changes in the state of the system. It can be used as a numerically inexpensive tool to detect and characterize a broad range of phase transitions and crossovers in Hubbard models, including (orbital-selective) Mott metal-insulator transitions, magnetic phase transitions, high-spin to low-spin transitions, Fermi-liquid to non-Fermi-liquid crossovers, and spin-freezing crossovers.

  4. Model for continuous thermal metal to insulator transition

    NASA Astrophysics Data System (ADS)

    Jian, Chao-Ming; Bi, Zhen; Xu, Cenke

    2017-09-01

    We propose a d -dimensional interacting Majorana fermion model with quenched disorder, which gives us a continuous quantum phase transition between a diffusive thermal metal phase with a finite entropy density to an insulator phase with zero entropy density. This model is based on coupled Sachdev-Ye-Kitaev model clusters, and hence has a controlled large-N limit. The metal-insulator transition is accompanied by a spontaneous time-reversal symmetry breaking. We perform controlled calculations to show that the energy diffusion constant jumps to zero discontinuously at the metal-insulator transition, while the time-reversal symmetry-breaking order parameter increases continuously.

  5. Emergence and Phase Transitions

    NASA Astrophysics Data System (ADS)

    Sikkema, Arnold

    2006-05-01

    Phase transitions are well defined in physics through concepts such as spontaneous symmetry breaking, order parameter, entropy, and critical exponents. But emergence --- also exhibiting whole-part relations (such as top-down influence), unpredictability, and insensitivity to microscopic detail --- is a loosely-defined concept being used in many disciplines, particularly in psychology, biology, philosophy, as well as in physics[1,2]. I will review the concepts of emergence as used in the various fields and consider the extent to which the methods of phase transitions can clarify the usefulness of the concept of emergence both within the discipline of physics and beyond.1. Robert B. Laughlin, A Different Universe: Reinventing Physics from the Bottom Down (New York: Basic Books, 2005). 2. George F.R. Ellis, ``Physics and the Real World'', Physics Today, vol. 58, no. 7 (July 2005) pp. 49-54.

  6. Synthesis, characterization and phase transitions of single-crystalline vanadium(IV) oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Whittaker, Luisa

    The influence of finite size in altering the phase stabilities of strongly correlated materials gives rise to the interesting prospect of achieving additional tunability of solid-solid phase transitions such as those involved in metal-insulator switching, ferroelectricity, and superconductivity. The peculiarities in the electronic structure of the seemingly simple binary vanadium oxide VO 2, as manifested in a pronounced metal-insulator phase transition in proximity to room temperature, have made it the subject of extensive theoretical and experimental investigations over the last several decades. VO2 exhibits a first-order metal-insulator phase transition near room temperature at 68 °C in the bulk. Associated with the phase transition are dramatic changes in the electrical conductivity, optical properties of VO2 at all wavelengths, and a structural transition from an insulating, low-temperature monoclinic phase to a metallic, high-temperature tetragonal phase. Such properties make VO2 a suitable material for Mott field-effect transistors, optical switching devices, thermochromic coatings, and electronic devices exhibiting sharp thresholdlike variation of electrical and optical properties in response to external stimuli such as temperature and voltage. Scaling VO2 to nanoscale dimensions has recently been possible and has allowed well-defined VO2 nanostructures to serve as model systems for measurements of intrinsic properties without obscuration from grain boundary connectivities and domain dynamics. Geometric confinement, substrate interactions, and varying defect densities of VO2 nanostructures gives rise to an electronic and structural phase diagram that is substantially altered from the bulk. In my talk, I will outline two distinct hydrothermal approaches for the synthesis of 1D single-crystalline VO2 nanostructures exhibiting a substantial diminution in the metal-insulator phase transition temperature based on (a) the hydrothermal hydration, exfoliation, and

  7. Millimeter Wave Metal-Insulator-Metal Detector/Mixer Diode.

    DTIC Science & Technology

    1983-12-01

    AO-A138 391 MILLIMETER WAVE METAL-INSULATOR- METAL DETECTOR /MIXER 1/1 DIODE(VI NORTH CAROLIN A AGRICULTURAL A NO TECHNI CA L STATE UNIV GREENSRO. C TV...163-A I V AFWAL-TR-83-1179 MILLIMETER WAVE METAL-INSULATOR- METAL DETECTOR /MIXER DIODE CHUNG YU NORTH CAROLINA A&T STATE UNIVERSITY GREENSBORO, NORTH...TITLE (ad subsorle.I S. TYPE CrjflT&PEO OER MILLIMETER WAVE May, 1981--July, 1983 METAL-INSULATOR- METAL DETECTOR /MIXER G. PERFORMING ORG. REPORT

  8. Effect of thermal treatment on the performance of ZnO based metal-insulator-semiconductor ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Ali, Ghusoon M.; Chakrabarti, P.

    2010-07-01

    The article reports fabrication, characterization, and testing of the performance of ZnO-based metal-insulator-semiconductor (MIS) Schottky barrier ultraviolet photodetectors under varying thermal treatment. The ZnO thin film was grown on p-type Si ⟨100⟩ substrate by using sol-gel technique. The electrical and optical characteristics of MIS photodetector were studied. The study revealed that the performance of the device improves with increasing postmetal deposition annealing temperature up to 250 °C approximately. For annealing temperature beyond 250 °C the performance of the device degrades drastically. The variation in the electrical and photoresponse properties of MIS photodetector can be attributed to combined effects of interfacial reaction and phase transition during the annealing process.

  9. Condensation phase transitions in ferrofluids.

    PubMed

    Iskakova, L Yu; Smelchakova, G A; Zubarev, A Yu

    2009-01-01

    Experiments show that under suitable conditions magnetic particles in ferrofluids and other polar suspensions undergo condensation phase transitions and form dense liquidlike or solidlike phases. The problem of fundamental features and scenarios of the phase transitions is one of the central problems of the physics of these systems. This work deals with the theoretical study of scenarios of condensation phase transitions in ferrofluids, consisting of identical magnetic particles. Our results show that, unlike the classical condensation phase transitions, the appearance of the linear chains precedes the magnetic particle bulk condensation. The effect of the chains on the diagrams of the equilibrium phase transitions is studied.

  10. Metal-insulator transition upon heating and negative-differential-resistive-switching induced by self-heating in BaCo{sub 0.9}Ni{sub 0.1}S{sub 1.8}

    SciTech Connect

    Fisher, B.; Genossar, J.; Chashka, K. B.; Patlagan, L.; Reisner, G. M.

    2014-04-14

    The layered compound BaCo{sub 1−x}Ni{sub x}S{sub 2−y} (0.05 < x < 0.2 and 0.05 < y < 0.2) exhibits an unusual first-order structural and electronic phase transition from a low-T monoclinic paramagnetic metal to a high-T tetragonal antiferromagnetic insulator around 200 K with huge hysteresis (∼40 K) and large volume change (∼0.01). Here, we report on unusual voltage-controlled resistive switching followed by current-controlled resistive switching induced by self-heating in polycrystalline BaCo{sub 1−x}Ni{sub x}S{sub 2−y} (nominal x = 0.1 and y = 0.2). These were due to the steep metal to insulator transition upon heating followed by the activated behavior of the resistivity above the transition. The major role of Joule heating in switching is supported by the absence of nonlinearity in the current as function of voltage, I(V), obtained in pulsed measurements, in the range of electric fields relevant to d.c. measurements. The voltage-controlled negative differential resistance around the threshold for switching was explained by a simple model of self-heating. The main difficulty in modeling I(V) from the samples resistance as function of temperature R(T) was the progressive increase of R(T), and to a lesser extend the decrease of the resistance jumps at the transitions, caused by the damage induced by cycling through the transitions by heating or self-heating. This was dealt with by following systematically R(T) over many cycles and by using the data of R(T) in the heating cycle closest to that of the self-heating one.

  11. Mott-Hubbard transition in the mass-imbalanced Hubbard model

    NASA Astrophysics Data System (ADS)

    Philipp, Marie-Therese; Wallerberger, Markus; Gunacker, Patrik; Held, Karsten

    2017-06-01

    The mass-imbalanced Hubbard model represents a continuous evolution from the Hubbard to the Falicov-Kimball model. We employ dynamical mean field theory and study the paramagnetic metal-insulator transition, which has a very different nature for the two limiting models. Our results indicate that the metal-insulator transition rather resembles that of the Hubbard model as soon as a tiny hopping between the more localized fermions is switched on. At low temperatures we observe a first-order metal-insulator transition and a three peak structure. The width of the central peak is the same for the more and less mobile fermions when approaching the phase transition, which agrees with our expectation of a common Kondo temperature and phase transition for the two species.

  12. Optical transmission theory for metal-insulator-metal periodic nanostructures

    NASA Astrophysics Data System (ADS)

    Blanchard-Dionne, Andre-Pierre; Meunier, Michel

    2017-01-01

    A semi-analytical formalism for the optical properties of a metal-insulator-metal periodic nanostructure using coupled-mode theory is presented. This structure consists in a dielectric layer in between two metallic layers with periodic one-dimensional nanoslit corrugation. The model is developed using multiple-scattering formalism, which defines transmission and reflection coefficients for each of the interface as a semi-infinite medium. Total transmission is then calculated using a summation of the multiple paths of light inside the structure. This method allows finding an exact solution for the transmission problem in every dimension regime, as long as a sufficient number of diffraction orders and guided modes are considered for the structure. The resonant modes of the structure are found to be related to the metallic slab only and to a combination of both the metallic slab and dielectric layer. This model also allows describing the resonant behavior of the system in the limit of a small dielectric layer, for which discontinuities in the dispersion curves are found. These discontinuities result from the out-of-phase interference of the different diffraction orders of the system, which account for field interaction for both inner interfaces of the structure.

  13. Optical transmission theory for metal-insulator-metal periodic nanostructures

    NASA Astrophysics Data System (ADS)

    Blanchard-Dionne, Andre-Pierre; Meunier, Michel

    2016-11-01

    A semi-analytical formalism for the optical properties of a metal-insulator-metal periodic nanostructure using coupled-mode theory is presented. This structure consists in a dielectric layer in between two metallic layers with periodic one-dimensional nanoslit corrugation. The model is developed using multiple-scattering formalism, which defines transmission and reflection coefficients for each of the interface as a semi-infinite medium. Total transmission is then calculated using a summation of the multiple paths of light inside the structure. This method allows finding an exact solution for the transmission problem in every dimension regime, as long as a sufficient number of diffraction orders and guided modes are considered for the structure. The resonant modes of the structure are found to be related to the metallic slab only and to a combination of both the metallic slab and dielectric layer. This model also allows describing the resonant behavior of the system in the limit of a small dielectric layer, for which discontinuities in the dispersion curves are found. These discontinuities result from the out-of-phase interference of the different diffraction orders of the system, which account for field interaction for both inner interfaces of the structure.

  14. Quantum phase transition in space

    SciTech Connect

    Damski, Bogdan; Zurek, Wojciech H

    2008-01-01

    A quantum phase transition between the symmetric (polar) phase and the phase with broken symmetry can be induced in a ferromagnetic spin-1 Bose-Einstein condensate in space (rather than in time). We consider such a phase transition and show that the transition region in the vicinity of the critical point exhibits scalings that reflect a compromise between the rate at which the transition is imposed (i.e., the gradient of the control parameter) and the scaling of the divergent healing length in the critical region. Our results suggest a method for the direct measurement of the scaling exponent {nu}.

  15. Phase transitions in disordered systems

    NASA Astrophysics Data System (ADS)

    Hrahsheh, Fawaz Y.

    Disorder can have a wide variety of consequences for the physics of phase transitions. Some transitions remain unchanged in the presence of disorder while others are completely destroyed. In this thesis we study the effects of disorder on several classical and quantum phase transitions in condensed matter systems. After a brief introduction, we study the ferromagnetic phase transition in a randomly layered Heisenberg magnet using large-scale Monte-Carlo simulations. Our results provide numerical evidence for the exotic infinite-randomness scenario. We study classical and quantum smeared phase transitions in substitutional alloys A1-xBx. Our results show that the disorder completely destroys the phase transition with a pronounced tail of the ordered phase developing for all compositions x < 1. In addition, we find that short-ranged disorder correlations can have a dramatic effect on the transition. Moreover, we show an experimental realization of the composition-tuned ferromagnetic-to-paramagnetic quantum phase transition in Sr1-xCa xRuO3. We investigate the effects of disorder on first-order quantum phase transitions on the example of the N-color quantum Ashkin-Teller model. By means of a strong disorder renormalization group, we demonstrate that disorder rounds the first-order transition to a continuous one for both weak and strong coupling between the colors. Finally, we investigate the superfluid-insulator quantum phase transition of one-dimensional bosons with off-diagonal disorder by means of large-scale Monte-Carlo simulations. Beyond a critical disorder strength, we find nonuniversal, disorder dependent critical behavior.

  16. Fluctuation driven electroweak phase transition

    NASA Technical Reports Server (NTRS)

    Gleiser, Marcelo; Kolb, Edward W.

    1991-01-01

    We examine the dynamics of the electroweak phase transition in the early Universe. For Higgs masses in the range 46 less than or = M sub H less than or = 150 GeV and top quark masses less than 200 GeV, regions of symmetric and asymmetric vacuum coexist to below the critical temperature, with thermal equilibrium between the two phases maintained by fluctuations of both phases. We propose that the transition to the asymmetric vacuum is completed by percolation of these subcritical fluctuations. Our results are relevant to scenarios of baryogenesis that invoke a weakly first-order phase transition at the electroweak scale.

  17. Phase transitions in metastable phases of silicon

    NASA Astrophysics Data System (ADS)

    Zeng, Zhidan; Zeng, Qiaoshi; Mao, Wendy L.; Qu, Shaoxing

    2014-03-01

    Phase transitions in indentation induced Si-III/XII phases were investigated using a diamond anvil cell and nanoindentation combined with micro-Raman spectroscopy. The in situ high pressure Raman results demonstrate that the Si-III and Si-XII phases have very similar Raman spectra, indicating their relative amount cannot be determined if they are both present in a sample. The Si-III and Si-XII phases coexist in the indentations produced by a nanoindenter on a single crystalline silicon wafer as a result of the local residual compressive stresses near 1 GPa. High power laser annealing on the indentations can initiate a rapid Si-III/XII → Si-I phase transition. The newly formed polycrystalline Si-I phase initially has very small grain size, and the grains grow when the annealing time is extended. Si-IV phase was not observed in our experiment.

  18. High efficient unidirectional surface plasmon excitation utilizing coupling between metal-insulator-metal waveguide and metal-insulator interface

    NASA Astrophysics Data System (ADS)

    Huang, Zhixiang; Xu, Ke; Pan, Deng

    2017-04-01

    A new structure is proposed, which can realize parallel coupling between metal-insulator-metal (MIM) waveguide and plasmon on metal-insulator (MI) interface. An example for wavelength of 680 nm shows the coupling efficiency can be high as 82%, with short coupling length of 1.2 μm. By using MIM waveguide with proper length, a unidirectional plasmon generator is realized. The generator shows excitation efficiency as high as 78%, with high extinction ratio as 1:170. It also shows a good tolerance for the wavelength. The results are of vital importance for optical integration and unidirectional plasmon excitation.

  19. Phase transitions via selective elemental vacancy engineering in complex oxide thin films

    NASA Astrophysics Data System (ADS)

    Lee, Sang A.; Jeong, Hoidong; Woo, Sungmin; Hwang, Jae-Yeol; Choi, Si-Young; Kim, Sung-Dae; Choi, Minseok; Roh, Seulki; Yu, Hosung; Hwang, Jungseek; Kim, Sung Wng; Choi, Woo Seok

    2016-04-01

    Defect engineering has brought about a unique level of control for Si-based semiconductors, leading to the optimization of various opto-electronic properties and devices. With regard to perovskite transition metal oxides, O vacancies have been a key ingredient in defect engineering, as they play a central role in determining the crystal field and consequent electronic structure, leading to important electronic and magnetic phase transitions. Therefore, experimental approaches toward understanding the role of defects in complex oxides have been largely limited to controlling O vacancies. In this study, we report on the selective formation of different types of elemental vacancies and their individual roles in determining the atomic and electronic structures of perovskite SrTiO3 (STO) homoepitaxial thin films fabricated by pulsed laser epitaxy. Structural and electronic transitions have been achieved via selective control of the Sr and O vacancy concentrations, respectively, indicating a decoupling between the two phase transitions. In particular, O vacancies were responsible for metal-insulator transitions, but did not influence the Sr vacancy induced cubic-to-tetragonal structural transition in epitaxial STO thin film. The independent control of multiple phase transitions in complex oxides by exploiting selective vacancy engineering opens up an unprecedented opportunity toward understanding and customizing complex oxide thin films.

  20. Phase transitions via selective elemental vacancy engineering in complex oxide thin films

    PubMed Central

    Lee, Sang A.; Jeong, Hoidong; Woo, Sungmin; Hwang, Jae-Yeol; Choi, Si-Young; Kim, Sung-Dae; Choi, Minseok; Roh, Seulki; Yu, Hosung; Hwang, Jungseek; Kim, Sung Wng; Choi, Woo Seok

    2016-01-01

    Defect engineering has brought about a unique level of control for Si-based semiconductors, leading to the optimization of various opto-electronic properties and devices. With regard to perovskite transition metal oxides, O vacancies have been a key ingredient in defect engineering, as they play a central role in determining the crystal field and consequent electronic structure, leading to important electronic and magnetic phase transitions. Therefore, experimental approaches toward understanding the role of defects in complex oxides have been largely limited to controlling O vacancies. In this study, we report on the selective formation of different types of elemental vacancies and their individual roles in determining the atomic and electronic structures of perovskite SrTiO3 (STO) homoepitaxial thin films fabricated by pulsed laser epitaxy. Structural and electronic transitions have been achieved via selective control of the Sr and O vacancy concentrations, respectively, indicating a decoupling between the two phase transitions. In particular, O vacancies were responsible for metal-insulator transitions, but did not influence the Sr vacancy induced cubic-to-tetragonal structural transition in epitaxial STO thin film. The independent control of multiple phase transitions in complex oxides by exploiting selective vacancy engineering opens up an unprecedented opportunity toward understanding and customizing complex oxide thin films. PMID:27033718

  1. Triggering One-Dimensional Phase Transition with Defects at the Graphene Zigzag Edge.

    PubMed

    Deng, Qingming; Zhao, Jiong

    2016-02-10

    One well-known argument about a one-dimensional (1D) system is that 1D phase transition at finite temperature cannot exist even though this concept depends on conditions such as range of interaction, external fields, and periodicity. Therefore, 1D systems usually have random fluctuations with intrinsic domain walls arising that naturally bring disorder during transition. Herein, we introduce a real 1D system in which artificially created defects can induce a well-defined 1D phase transition. The dynamics of structural reconstructions at graphene zigzag edges are examined by in situ aberration-corrected transmission electron microscopy. Combined with an in-depth analysis by ab initio simulations and quantum chemical molecular dynamics, the complete defect induced 1D phase transition dynamics at graphene zigzag edge is clearly demonstrated and understood on the atomic scale. Further, following this phase transition scheme, graphene nanoribbons (GNR) with different edge symmetries can be fabricated and, according to our electronic structure and quantum transport calculations, a metal-insulator-semiconductor transition for ultrathin GNRs is proposed.

  2. Metallic, insulating and superconducting states in κ-ET2X systems, where ET is the BEDT-TTF (bis(ethylenedithio)tetrathiafulvalene) molecule

    NASA Astrophysics Data System (ADS)

    Ivanov, Valery A.; Ugolkova, Elena A.; Zhuravlev, Mikhail Ye.

    1998-08-01

    An electronic structure and normal and superconducting properties are reviewed for layered organic materials on the basis of bis(ethylenedithio)tetrathiafulvalene molecule (BEDT-TTF, hereafter ET) with essential intraET electron and cross-dimer κ-packing in ET-plane. The metall-insulator phase transition is derived for realistic model of κ-ET2X salts. Based on the Fermi-surface topology and electron correlations the d-symmetry of superconducting order parameter is obtained with interplay between its nodes on the Fermi surface and superconducting phase characteristics. The results are in agreement with measured nonactivated temperature dependencies of NMR-relaxation rate of central carbon 13C spins in ET and superconducting specific heat.

  3. Metal-insulator-metal capacitor using electrosprayed nanoparticles

    NASA Astrophysics Data System (ADS)

    Véliz, Bremnen; Bermejo, Sandra; Coll, Arnau; Castañer, Luis

    2014-07-01

    An electrospray technique has been used to deposit SiO2 nanoparticles as insulator layer of a metal-insulator-metal device. Impedance spectroscopy measurements show that a 4.4 factor increase in capacitance is achieved compared to a continuous dielectric layer of the same permittivity and dimensions.

  4. Abrupt Depletion Layer Approximation for the Metal Insulator Semiconductor Diode.

    ERIC Educational Resources Information Center

    Jones, Kenneth

    1979-01-01

    Determines the excess surface change carrier density, surface potential, and relative capacitance of a metal insulator semiconductor diode as a function of the gate voltage, using the precise questions and the equations derived with the abrupt depletion layer approximation. (Author/GA)

  5. Abrupt Depletion Layer Approximation for the Metal Insulator Semiconductor Diode.

    ERIC Educational Resources Information Center

    Jones, Kenneth

    1979-01-01

    Determines the excess surface change carrier density, surface potential, and relative capacitance of a metal insulator semiconductor diode as a function of the gate voltage, using the precise questions and the equations derived with the abrupt depletion layer approximation. (Author/GA)

  6. Characterization of polycrystalline VO2 thin film with low phase transition temperature fabricated by high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lin, Tiegui; Wang, Langping; Wang, Xiaofeng; Zhang, Yufen

    2016-04-01

    VO2 is a unique material that undergoes a reversible phase transformation around 68∘C. Currently, applications of VO2 on smart windows are limited by its high transition temperature. In order to reduce the temperature, VO2 thin film was fabricated on quartz glass substrate by high power impulse magnetron sputtering with a modulated pulsed power. The phase transition temperature has been reduced to as low as 32∘C. In addition, the VO2 film possesses a typical metal-insulator transition. X-ray diffraction and selected area electron diffraction patterns reveal that an obvious lattice distortion has been formed in the as-deposited polycrystalline VO2 thin film. X-ray photoelectron spectroscopy proves that oxygen vacancies have been formed in the as-deposited thin film, which will induce a lattice distortion in the VO2 thin film.

  7. Structural phase transition and phonon instability in Cu12Sb4S13

    NASA Astrophysics Data System (ADS)

    May, A. F.; Delaire, O.; Niedziela, J. L.; Lara-Curzio, E.; Susner, M. A.; Abernathy, D. L.; Kirkham, M.; McGuire, M. A.

    2016-02-01

    A structural phase transition has been discovered in the synthetic tetrahedrite Cu12Sb4S13 at approximately 88 K. Upon cooling, the material transforms from its known cubic symmetry to a tetragonal unit cell that is characterized by an in-plane ordering that leads to a doubling of the unit cell volume. Specific heat capacity measurements demonstrate a hysteresis of more than two degrees in the associated anomaly. A similar hysteresis was observed in powder x-ray diffraction measurements, which also indicate a coexistence of the two phases, and together these results suggest a first-order transition. This structural transition coincides with a recently-reported metal-insulator transition, and the structural instability is related to the very low thermal conductivity κ in these materials. Inelastic neutron scattering was used to measure the phonon density of states in Cu12Sb4S13 and Cu10Zn2Sb4S13 , both of which possess a localized, low-energy phonon mode associated with strongly anharmonic copper displacements that suppress κ . In Cu12Sb4S13 , signatures of the phase transition are observed in the temperature dependence of the localized mode, which disappears at the structural transition. In contrast, in the cubic Zn-doped material, the mode is at slightly higher-energy but observable for all temperatures, though it softens upon cooling.

  8. Structural phase transition and phonon instability in Cu12Sb4S13

    DOE PAGES

    May, Andrew F.; Delaire, Olivier A.; Niedziela, Jennifer L.; ...

    2016-02-08

    In this study, a structural phase transition has been discovered in the synthetic tetrahedrite Cu12Sb4S13 at approximately 88 K. Upon cooling, the material transforms from its known cubic symmetry to a tetragonal unit cell that is characterized by an in-plane ordering that leads to a doubling of the unit cell volume. Specific heat capacity measurements demonstrate a hysteresis of more than two degrees in the associated anomaly. A similar hysteresis was observed in powder x-ray diffraction measurements, which also indicate a coexistence of the two phases, and together these results suggest a first-order transition. This structural transition coincides with amore » recently-reported metal-insulator transition, and the structural instability is related to the very low thermal conductivity κ in these materials. Inelastic neutron scattering was used to measure the phonon density of states in Cu12Sb4S13 and Cu10Zn2Sb4S13, both of which possess a localized, low-energy phonon mode associated with strongly anharmonic copper displacements that suppress κ. In Cu12Sb4S13, signatures of the phase transition are observed in the temperature dependence of the localized mode, which disappears at the structural transition. In contrast, in the cubic Zn-doped material, the mode is at slightly higher-energy but observable for all temperatures, though it softens upon cooling.« less

  9. Learning phase transitions by confusion

    NASA Astrophysics Data System (ADS)

    van Nieuwenburg, Evert P. L.; Liu, Ye-Hua; Huber, Sebastian D.

    2017-02-01

    Classifying phases of matter is key to our understanding of many problems in physics. For quantum-mechanical systems in particular, the task can be daunting due to the exponentially large Hilbert space. With modern computing power and access to ever-larger data sets, classification problems are now routinely solved using machine-learning techniques. Here, we propose a neural-network approach to finding phase transitions, based on the performance of a neural network after it is trained with data that are deliberately labelled incorrectly. We demonstrate the success of this method on the topological phase transition in the Kitaev chain, the thermal phase transition in the classical Ising model, and the many-body-localization transition in a disordered quantum spin chain. Our method does not depend on order parameters, knowledge of the topological content of the phases, or any other specifics of the transition at hand. It therefore paves the way to the development of a generic tool for identifying unexplored phase transitions.

  10. Phase transition in Liouville theory

    SciTech Connect

    Johnston, D. )

    1989-11-15

    We suggest that the vortices arising in a Kosterlitz-Thouless phase transition in Liouville theory correspond to transitions between different genera, producing the plumber's nightmare'' and other phases that have been predicted in fluid membrane theory from energetic considerations. This transition has previously been invoked by Cates to explain the degeneration of numerical simulations of Gaussian random surfaces into branched polymers. The difficulty in quantizing Liouville theory for {ital d}{gt}1 is conjectured to be due to our insistence on working at a fixed genus.

  11. Phase transition in Liouville theory

    NASA Astrophysics Data System (ADS)

    Johnston, D.

    1989-11-01

    We suggest that the vortices arising in a Kosterlitz-Thouless phase transition in Liouville theory correspond to transitions between different genera, producing the ``plumber's nightmare'' and other phases that have been predicted in fluid membrane theory from energetic considerations. This transition has previously been invoked by Cates to explain the degeneration of numerical simulations of Gaussian random surfaces into branched polymers. The difficulty in quantizing Liouville theory for d>1 is conjectured to be due to our insistence on working at a fixed genus.

  12. Griffiths singularity of quantum phase transition in ion-gated ZrNCl

    NASA Astrophysics Data System (ADS)

    Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro

    Recent technological advances of thin films fabrication, especially mechanical exfoliation, led to discoveries of less-disordered highly-crystalline two-dimensional (2D) superconductors; atomically thin NbSe2 and ion-gated 2D materials, which show intrinsic properties of 2D superconductors with minimal disorder; for example, metallic ground state, and unconventional 2D Ising superconductivity due to pure spin-valley locking effect. In this talk, we focus on magnetotransport properties of an ionic-liquid gated ZrNCl, which exhibited Griffiths singularity-like behavior in superconductor-metal-insulator transition induced by magnetic fields at low carrier concentrations. The overall behavior is quite similar to the recent results of superconducting Ga thin films, in which quantum Griffiths singularity was observed in vortex-glass state. We will discuss the relationship between Griffiths singularity and quantum tunneling or flux flow of vortices phase (vortex liquid) in our system

  13. Dispersion of metal-insulator-metal plasmon polaritons probed by cathodoluminescence imaging spectroscopy

    SciTech Connect

    Kuttge, Martin; Cai, Wei; Garcia de Abajo, F. Javier; Polman, Albert

    2009-07-15

    Cathodoluminescence imaging spectroscopy is used to excite and characterize the resonant modes of Fabry-Perot resonators for surface plasmon polaritons confined in a metal-insulator-metal (MIM) geometry. The smallest MIM plasmon wavelength derived from the observed mode pattern is found to be 160 nm in cavities with a 10 nm SiO{sub 2} layer for a free-space wavelength of 645 nm. The measured wavelength agrees well with values from analytical dispersion relation calculations. Calculations of the excitation probability show that the resonant excitation of MIM plasmons depends strongly on the electron energy due to phase retardation effects resulting from the finite electron velocity.

  14. Low-Power All-Optical Bistable Device of Twisted-Nematic Liquid Crystal Based on Surface Plasmons in a Metal-Insulator-Metal Structure

    NASA Astrophysics Data System (ADS)

    Tien Thanh, Pham; Tanaka, Daisuke; Fujimura, Ryushi; Takanishi, Yoichi; Kajikawa, Kotaro

    2013-01-01

    A low-power all-optical bistable device of twisted-nematic liquid crystal (TN-LC) is reported, on the basis of coupled surface plasmons (SPs) in a metal-insulator-metal (MIM) structure. The lowest threshold switching illumination was 0.3 mW/mm2, which is much lower than the value we previously reported for a similar all-optical TN-LC device based on the coupled SPs in a gold grating. The threshold illumination is lower at higher temperature up to the phase transition. The TN-LC device is promising for two-dimensional optical memories or spatial light modulators, since the structure is simple and free from electronic circuits.

  15. Carrier tuning the metal-insulator transition of epitaxial La0.67Sr0.33MnO3 thin film on Nb doped SrTiO3 substrate

    NASA Astrophysics Data System (ADS)

    Zhan, J. M.; Li, P. G.; Liu, H.; Tao, S. L.; Ma, H.; Shen, J. Q.; Pan, M. J.; Zhang, Z. J.; Wang, S. L.; Yuan, G. L.

    2016-04-01

    La0.67Sr0.33MnO3 (LSMO) thin films were deposited on (001)SrTiO3(STO) and n-type doped Nb:SrTiO3(NSTO) single crystal substrates respectively. The metal to insulator transition temperature(TMI) of LSMO film on NSTO is lower than that on STO, and the TMI of LSMO can be tuned by changing the applied current in the LSMO/NSTO p-n junction. Such behaviors were considered to be related to the carrier concentration redistribution in LSMO film caused by the change of depletion layer thickness in p-n junction which depends greatly on the applied electric field. The phenomenon could be used to configure artificial devices and exploring the underlying physics.

  16. Phase Transitions in Brownian Pumps

    NASA Astrophysics Data System (ADS)

    Dierl, Marcel; Dieterich, Wolfgang; Einax, Mario; Maass, Philipp

    2014-04-01

    We study stochastic particle transport between two reservoirs along a channel, where the particles are pumped against a bias by a traveling wave potential. It is shown that phase transitions of period-averaged densities or currents occur inside the channel when exclusion interactions between the particles are taken into account. These transitions reflect those known for the asymmetric simple exclusion process. We argue that their occurrence is a generic feature of Brownian motors operating in open systems.

  17. Robust Interfacial Exchange Bias and Metal-Insulator Transition Influenced by the LaNiO3 Layer Thickness in La0.7Sr0.3MnO3/LaNiO3 Superlattices.

    PubMed

    Zhou, Guowei; Song, Cheng; Bai, Yuhao; Quan, Zhiyong; Jiang, Fengxian; Liu, Wenqing; Xu, Yongbing; Dhesi, Sarnjeet S; Xu, Xiaohong

    2017-01-25

    Artificial heterostructures based on LaNiO3 (LNO) have been widely investigated with the aim to realize the insulating antiferromagnetic state of LNO. In this work, we grew [(La0.7Sr0.3MnO3)5-(LaNiO3)n]12 superlattices on (001)-oriented SrTiO3 substrates by pulsed laser deposition and observed an unexpected exchange bias effect in field-cooled hysteresis loops. Through X-ray absorption spectroscopy and magnetic circular dichroism experiments, we found that the charge transfer at the interfacial Mn and Ni ions can induce a localized magnetic moment. A remarkable increase of exchange bias field and a transition from metal to insulator were simultaneously observed upon decreasing the thickness of the LNO layer, indicating the antiferromagnetic insulator state in 2 unit cells LNO ultrathin layers. The robust exchange bias of 745 Oe in the superlattice is caused by an interfacial localized magnetic moment and an antiferromagnetic state in the ultrathin LNO layer, pinning the ferromagnetic La0.7Sr0.3MnO3 layers together. Our results demonstrate that artificial interface engineering is a useful method to realize novel magnetic and transport properties.

  18. Metal-insulator transitions induced by doping in LaNiO{sub 3}: LaNi{sub 0.95}M{sub 0.05}O{sub 3} (M = Mo, W, Sb, Ti, Cu, Zn) perovskites

    SciTech Connect

    Alvarez, I.; Veiga, M.L.; Pico, C.

    1998-03-01

    Structural characterization and electronic properties of the LaNi{sub 0.95}M{sub 0.05}O{sub 3} (M = Mo, W, Sb, Ti, Cu, Zn) perovskite-like system are reported. These compounds can be regarded as being derived from LaNiO{sub 3} by partial substitution of Ni{sup 3+} in this material by M{sup 6+}, M{sup 5+}, M{sup 4+}, or M{sup 2+} formal cations, with a partial reduction of Ni{sup 3+} to Ni{sup 2+} taking place. X-ray powder diffraction data were analyzed by means of the Rietveld method and show that all the title materials present perovskite-type structure with a rhombohedral (S.G. R{bar 3}c) or orthorhombic (S.G. Pbnm) symmetry, depending on the nature of the M cation. In all cases, Ni and M cations are placed at random in octahedral B-sites of perovskite structure. Electrical resistivity measurements (four probe method) show metal-to-insulator (M-I) transitions for M = Mo, W, Ti, Cu, Zn at temperatures of about 50K and a semiconductor behavior for the Sb sample in the whole temperature range explored. Magnetic susceptibility measurements show the presence of weak ferromagnetic interactions for M = Sb and Pauli paramagnetism for the remaining compounds.

  19. Martensitic phase transition involving dislocations

    NASA Astrophysics Data System (ADS)

    Le, K. C.; Günther, C.

    2015-06-01

    A model of solid-solid phase transition involving dislocations in crystals is proposed within the nonlinear continuum dislocation theory (CDT). The co-existence of phases having piecewise constant plastic slip in laminates is possible for the two-well free energy density. The jumps of the plastic slip across the phase interfaces determine the surface dislocation densities at those incoherent boundaries. The number of phase interfaces should be determined by comparing the energy of dislocation arrays and the relaxed energy minimized among uniform plastic slips.

  20. Phase transition transistors based on strongly-correlated materials

    NASA Astrophysics Data System (ADS)

    Nakano, Masaki

    2013-03-01

    The field-effect transistor (FET) provides electrical switching functions through linear control of the number of charges at a channel surface by external voltage. Controlling electronic phases of condensed matters in a FET geometry has long been a central issue of physical science. In particular, FET based on a strongly correlated material, namely ``Mott transistor,'' has attracted considerable interest, because it potentially provides gigantic and diverse electronic responses due to a strong interplay between charge, spin, orbital and lattice. We have investigated electric-field effects on such materials aiming at novel physical phenomena and electronic functions originating from strong correlation effects. Here we demonstrate electrical switching of bulk state of matter over the first-order metal-insulator transition. We fabricated FETs based on VO2 with use of a recently developed electric-double-layer transistor technique, and found that the electrostatically induced carriers at a channel surface drive all preexisting localized carriers of 1022 cm-3 even inside a bulk to motion, leading to bulk carrier delocalization beyond the electrostatic screening length. This non-local switching of bulk phases is achieved with just around 1 V, and moreover, a novel non-volatile memory like character emerges in a voltage-sweep measurement. These observations are apparently distinct from those of conventional FETs based on band insulators, capturing the essential feature of collective interactions in strongly correlated materials. This work was done in collaboration with K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura. This work was supported by the Japan Society for the Promotion of Science (JSAP) through its ``Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program).''

  1. Phase transitions in nuclear matter

    SciTech Connect

    Glendenning, N.K.

    1984-11-01

    The rather general circumstances under which a phase transition in hadronic matter at finite temperature to an abnormal phase in which baryon effective masses become small and in which copious baryon-antibaryon pairs appear is emphasized. A preview is also given of a soliton model of dense matter, in which at a density of about seven times nuclear density, matter ceases to be a color insulator and becomes increasingly color conducting. 22 references.

  2. Spin-orbit tuned metal-insulator transitions in single-crystal Sr₂Ir1–xRhxO₄ (0≤x≤1)

    SciTech Connect

    Qi, T. F.; Korneta, O. B.; Li, L.; Butrouna, K.; Cao, V. S.; Wan, Xiangang; Schlottmann, P.; Kaul, R. K.; Cao, G.

    2012-09-06

    Sr₂IrO₄ is a magnetic insulator driven by spin-orbit interaction (SOI) whereas the isoelectronic and isostructural Sr₂RhO₄ is a paramagnetic metal. The contrasting ground states have been shown to result from the critical role of the strong SOI in the iridate. Our investigation of structural, transport, magnetic, and thermal properties reveals that substituting 4d Rh⁴⁺ (4d⁵) ions for 5d Ir⁴⁺ (5d⁵) ions in Sr₂IrO₄ directly reduces the SOI and rebalances the competing energies so profoundly that it generates a rich phase diagram for Sr₂Ir1–xRhxO₄ featuring two major effects: (1) Light Rh doping (0 ≤ x ≤ 0.16) prompts a simultaneous and precipitous drop in both the electrical resistivity and the magnetic ordering temperature TC, which is suppressed to zero at x = 0.16 from 240 K at x = 0. (2) However, with heavier Rh doping [0.24 < x < 0.85 (±0.05)] disorder scattering leads to localized states and a return to an insulating state with spin frustration and exotic magnetic behavior that only disappears near x = 1. The intricacy of Sr₂Ir1–xRhxO₄ is further highlighted by comparison with Sr₂Ir1–xRuxO₄ where Ru⁴⁺ (4d⁴) drives a direct crossover from the insulating to metallic states.

  3. Quantum phase transitions in ultrathin films of metal

    NASA Astrophysics Data System (ADS)

    Mack, Anthony Michael

    1997-11-01

    Conductance measurements of ultrathin films of amorphous bismuth are presented. The measurements were performed at temperatures down to 0.15K as a function of temperature and film thickness. Such films are known to become superconducting when the conductance reaches ˜4esp2/h. Careful analysis of the insulating state reveals a crossover near esp2/h, with hopping conduction below and weak localization above. A corresponding change in behavior is also evident in plots of G vs. d at esp2/h. A crossover conductance, Gsbcr ˜ (30 ± 1kOmega)sp{-1}, was extracted by examining the derivative of the G vs. d curves. A scaling analysis is performed yielding an excellent collapse of the data with critical exponents nu z = 6.9 ± 0.7. Ultrathin films of Pd (which is not superconducting) also show a crossover, but at Gsbcr ˜ (56 ± 6kOmega)sp{-1}. The Bi and Pd data sets are collapsed together onto the same curve yielding nu z = 7.2 ± 1.0 for Pd. The success of the scaling analysis supports the view that the crossover is the finite temperature signature of a quantum phase transition occurring at T = 0. The transition is between phases identified as (weakly localized) metal and insulator, which may make this the first observation of a metal-insulator transition in a two-dimensional system. The scaling analysis developed for the crossover at esp2/h was applied to the superconductor-insulator transition as well. While the collapse of the data is poor, the analysis yields a single value of the critical exponent nu z = 1.99 ± 0.09. A previous analysis yielded two separate (and inconsistent) values of nu z on the insulating and superconducting sides. The analysis was also applied to the case of the field-driven superconductor-insulator transition. The resulting collapse is excellent yielding a critical exponent nu z = 0.637 ± 0.010. The scaling parameter deviates from a power law in T above 0.7K. Since the data presented only extends down to 0.5K, the critical region accessed is

  4. Electron-phonon coupling and structural phase transitions in early transition metal oxides and chalcogenides

    NASA Astrophysics Data System (ADS)

    Farley, Katie Elizabeth

    promising catalyst for electrocatalytic water splitting and can catalyze the hydrogen evolution reaction that is utilized within photoelectrochemical cells. Chapters 4 and 5 delve into the synthesis and doping of VO2, which undergoes a metal to insulator transition. Chapter 4 develops a detailed understanding of the influence of doping on the MIT and reports the activation energies of the monoclinic→rutile (insulator→metal) and rutile→monoclinic (metal?insulator) transitions. The dynamical effects of doping on hysteresis are considered for both Mo- and W-doped VO2. Chapter 5 reports the development of synthetic route to produce optical grade VO2 with considerable size control. Smart window applications for this material require small particle sizes in order to reduce visible light scattering. This chapter systematically explores hydrothermal syntheses for the preparation of VO2 and allows for development of mechanistic postulates for obtaining size control.

  5. Magnetic fields from phase transitions

    NASA Astrophysics Data System (ADS)

    Hindmarsh, Mark; Everett, Allen

    1998-11-01

    The generation of primordial magnetic fields from cosmological phase transitions is discussed, paying particular attention to the electroweak transition and to the various definitions of the ``average'' field that have been put forward. It is emphasized that only the volume average has dynamical significance as a seed for galactic dynamos. On rather general grounds of causality and energy conservation, it is shown that, in the absence of MHD effects that transfer power in the magnetic field from small to large scales, processes occurring at the electroweak transition cannot generate fields stronger than 10-20 G on a scale of 0.5 Mpc. However, it is implausible that this upper bound could ever be reached, as it would require all the energy in the Universe to be turned into a magnetic field coherent at the horizon scale. Non-linear MHD effects seem therefore to be necessary if the electroweak transition is to create a primordial seed field.

  6. Low-voltage current noise in long quantum superconductor/insulator/normal-metal/insulator/superconductor junctions.

    SciTech Connect

    Kopnin, N. B.; Galperin, Y. M.; Vinokur, V.; Materials Science Division; Helsinki Univ. Tech.; L.D. Landau Inst. for Theoretical Physics; Univ. Oslo; A.F. Ioffe Physico-Tech. Inst. of Russian Academy of Sciences

    2007-01-01

    The current noise in long superconductor/insulator/normal-metal/insulator/superconductor junctions at low temperatures is sensitive to the population of the subgap states, which is far from equilibrium even at low bias voltages. A nonequilibrium distribution is established due to an interplay between voltage-driven interlevel Landau-Zener transitions and intralevel inelastic relaxation. The Fano factor (the ratio of the zero-frequency noise to the dc current) is enhanced drastically, being proportional to the number of times which a particle flies along the Andreev trajectory before it escapes from the level due to inelastic scattering. For weak Landau-Zener transitions, the enhancement is even larger due to a smaller dc current.

  7. Infrared-transmittance tunable metal-insulator conversion device with thin-film-transistor-type structure on a glass substrate

    NASA Astrophysics Data System (ADS)

    Katase, Takayoshi; Endo, Kenji; Ohta, Hiromichi

    2017-05-01

    Infrared (IR) transmittance tunable metal-insulator conversion was demonstrated on a glass substrate by using thermochromic vanadium dioxide (VO2) as the active layer in a three-terminal thin-film-transistor-type device with water-infiltrated glass as the gate insulator. Alternative positive/negative gate-voltage applications induce the reversible protonation/deprotonation of a VO2 channel, and two-orders of magnitude modulation of sheet-resistance and 49% modulation of IR-transmittance were simultaneously demonstrated at room temperature by the metal-insulator phase conversion of VO2 in a non-volatile manner. The present device is operable by the room-temperature protonation in an all-solid-state structure, and thus it will provide a new gateway to future energy-saving technology as an advanced smart window.

  8. Pressure induced quantum phase transitions in metallic oxides and pnictides

    NASA Astrophysics Data System (ADS)

    Fallah Tafti, Fazel

    Quantum phase transitions occur as a result of competing ground states. The focus of the present work is to understand quantum criticality and its consequences when the competition is between insulating and metallic ground states. Metal-insulator transitions are studied by means of electronic transport measurements and quantum critical points are approached by applying hydrostatic pressure in two different compounds namely Eu2Ir22O 7 and FeCrAs. The former is a ternary metal oxide and the latter is a ternary metal pnictide. A major component of this work was the development of the ultra-high pressure measurements by means of Anvil cells. A novel design is introduced which minimizes the alignment accessory components hence, making the cell more robust and easier to use. Eu2Ir22O7 is a ternary metal oxide and a member of the pyrochlore iridate family. Resistivity measurements under pressure in moissanite anvil cells show the evolution of the ground state of the system from insulating to metallic. The quantum phase transition at Pc ˜ 6 GPa appears to be continuous. A remarkable correspondence is revealed between the effect of the hydrostatic pressure on Eu2Ir22O7 and the effect of chemical pressure by changing the R size in the R2Ir2O7 series. This suggests that in both cases the tuning parameter controls the t2g bandwidth of the iridium 5d electrons. Moreover, hydrostatic pressure unveils a curious cross-over from incoherent to conventional metallic behaviour at a T* > 150 K in the neighbourhood of Pc, suggesting a connection between the high and low temperature phases. The possibility of a topological semi-metallic ground state, predicted in recent theoretical studies, is explained. FeCrAs is a ternary metal pnictide with Fermi liquid specific heat and susceptibility behaviour but non-metallic non-Fermi liquid resistivity behaviour. Characteristic properties of the compound are explained and compared to those of superconducting pnictides. Antiferromagnetic (AFM

  9. Mott metal-insulator transition on compressible lattices.

    PubMed

    Zacharias, Mario; Bartosch, Lorenz; Garst, Markus

    2012-10-26

    The critical properties of the finite temperature Mott end point are drastically altered by a coupling to crystal elasticity, i.e., whenever it is amenable to pressure tuning. Similar as for critical piezoelectric ferroelectrics, the Ising criticality of the electronic system is preempted by an isostructural instability, and long-range shear forces suppress microscopic fluctuations. As a result, the end point is governed by Landau criticality. Its hallmark is, thus, a breakdown of Hooke's law of elasticity with a nonlinear strain-stress relation characterized by a mean-field exponent. Based on a quantitative estimate, we predict critical elasticity to dominate the temperature range ΔT*/T(c)≃8%, close to the Mott end point of κ-(BEDT-TTF)(2)X.

  10. Mott Metal-Insulator Transition on Compressible Lattices

    NASA Astrophysics Data System (ADS)

    Zacharias, Mario; Bartosch, Lorenz; Garst, Markus

    2012-10-01

    The critical properties of the finite temperature Mott end point are drastically altered by a coupling to crystal elasticity, i.e., whenever it is amenable to pressure tuning. Similar as for critical piezoelectric ferroelectrics, the Ising criticality of the electronic system is preempted by an isostructural instability, and long-range shear forces suppress microscopic fluctuations. As a result, the end point is governed by Landau criticality. Its hallmark is, thus, a breakdown of Hooke’s law of elasticity with a nonlinear strain-stress relation characterized by a mean-field exponent. Based on a quantitative estimate, we predict critical elasticity to dominate the temperature range ΔT*/Tc≃8%, close to the Mott end point of κ-(BEDT-TTF)2X.

  11. Disorder-induced localization in crystalline phase-change materials.

    PubMed

    Siegrist, T; Jost, P; Volker, H; Woda, M; Merkelbach, P; Schlockermann, C; Wuttig, M

    2011-03-01

    Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal-insulator transition without a structural change are therefore of interest. Mechanisms leading to metal-insulator transition include electron correlation (Mott transition) or disorder (Anderson localization), but a clear distinction is difficult. Here we report on a metal-insulator transition on increasing annealing temperature for a group of crystalline phase-change materials, where the metal-insulator transition is due to strong disorder usually associated only with amorphous solids. With pronounced disorder but weak electron correlation, these phase-change materials form an unparalleled quantum state of matter. Their universal electronic behaviour seems to be at the origin of the remarkable reproducibility of the resistance switching that is crucial to their applications in non-volatile-memory devices. Controlling the degree of disorder in crystalline phase-change materials might enable multilevel resistance states in upcoming storage devices.

  12. Sliding Over a Phase Transition

    NASA Astrophysics Data System (ADS)

    Tosatti, Erio; Benassi, Andrea; Vanossi, Andrea; Santoro, Giuseppe E.

    2011-03-01

    The frictional response experienced by a stick-slip slider when a phase transition occurs in the underlying solid substrate is a potentially exciting, poorly explored problem. We show, based on 2-dimensional simulations modeling the sliding of a nanotip, that indeed friction may be heavily affected by a continuous structural transition. First, friction turns nonmonotonic as temperature crosses the transition, peaking at the critical temperature Tc where fluctuations are strongest. Second, below Tc friction depends upon order parameter directions, and is much larger for those where the frictional slip can cause a local flip. This may open a route towards control of atomic scale friction by switching the order parameter direction by an external field or strain, with possible application to e.g., displacive ferroelectrics such as BaTi O3 , as well as ferro- and antiferro-distortive materials. Supported by project ESF FANAS/AFRI sponsored by the Italian Research Council (CNR).

  13. Superconducting tantalum nitride-based normal metal-insulator-superconductor tunnel junctions

    SciTech Connect

    Chaudhuri, S.; Maasilta, I. J.

    2014-03-24

    We report the development of superconducting tantalum nitride (TaN{sub x}) normal metal-insulator-superconductor (NIS) tunnel junctions. For the insulating barrier, we used both AlO{sub x} and TaO{sub x} (Cu-AlO{sub x}-Al-TaN{sub x} and Cu-TaO{sub x}-TaN{sub x}), with both devices exhibiting temperature dependent current-voltage characteristics which follow the simple one-particle tunneling model. The superconducting gap follows a BCS type temperature dependence, rendering these devices suitable for sensitive thermometry and bolometry from the superconducting transition temperature T{sub C} of the TaN{sub x} film at ∼5 K down to ∼0.5 K. Numerical simulations were also performed to predict how junction parameters should be tuned to achieve electronic cooling at temperatures above 1 K.

  14. Mid-infrared intersubband polaritons in dispersive metal-insulator-metal resonators

    SciTech Connect

    Manceau, J.-M. Ongarello, T.; Colombelli, R.; Zanotto, S.; Sorba, L.; Tredicucci, A.; Biasiol, G.

    2014-08-25

    We demonstrate room-temperature strong coupling between a mid-infrared (λ = 9.9 μm) intersubband transition and the fundamental cavity mode of a metal-insulator-metal resonator. Patterning of the resonator surface enables surface-coupling of the radiation and introduces an energy dispersion which can be probed with angle-resolved reflectivity. In particular, the polaritonic dispersion presents an accessible energy minimum at k = 0 where—potentially—polaritons can accumulate. We also show that it is possible to maximize the coupling of photons into the polaritonic states and—simultaneously—to engineer the position of the minimum Rabi splitting at a desired value of the in-plane wavevector. This can be precisely accomplished via a simple post-processing technique. The results are confirmed using the temporal coupled mode theory formalism and their significance in the context of the strong critical coupling concept is highlighted.

  15. Metal-insulator quantum critical point beneath the high Tc superconducting dome

    PubMed Central

    Sebastian, Suchitra E.; Harrison, N.; Altarawneh, M. M.; Mielke, C. H.; Liang, Ruixing; Bonn, D. A.; Lonzarich, G. G.; Hardy, W. N.

    2010-01-01

    An enduring question in correlated systems concerns whether superconductivity is favored at a quantum critical point (QCP) characterized by a divergent quasiparticle effective mass. Despite such a scenario being widely postulated in high Tc cuprates and invoked to explain non-Fermi liquid transport signatures, experimental evidence is lacking for a critical divergence under the superconducting dome. We use ultrastrong magnetic fields to measure quantum oscillations in underdoped YBa2Cu3O6+x, revealing a dramatic doping-dependent upturn in quasiparticle effective mass at a critical metal-insulator transition beneath the superconducting dome. Given the location of this QCP under a plateau in Tc in addition to a postulated QCP at optimal doping, we discuss the intriguing possibility of two intersecting superconducting subdomes, each centered at a critical Fermi surface instability. PMID:20304800

  16. Tunable color filters based on metal-insulator-metal resonators.

    PubMed

    Diest, Kenneth; Dionne, Jennifer A; Spain, Merrielle; Atwater, Harry A

    2009-07-01

    We report a method for filtering white light into individual colors using metal-insulator-metal resonators. The resonators are designed to support photonic modes at visible frequencies, and dispersion relations are developed for realistic experimental configurations. Experimental results indicate that passive Ag/Si(3)N(4)/Au resonators exhibit color filtering across the entire visible spectrum. Full field electromagnetic simulations were performed on active resonators for which the resonator length was varied from 1-3 microm and the output slit depth was systematically varied throughout the thickness of the dielectric layer. These resonators are shown to filter colors based on interference between the optical modes within the dielectric layer. By careful design of the output coupling, the resonator can selectively couple to intensity maxima of different photonic modes and, as a result, preferentially select any of the primary colors. We also illustrate how refractive index modulation in metal-insulator-metal resonators can yield actively tunable color filters. Simulations using lithium niobate as the dielectric layer and the top and bottom Ag layers as electrodes, indicate that the output color can be tuned over the visible spectrum with an applied field.

  17. Phase Diagram of the Frustrated Hubbard Model

    NASA Astrophysics Data System (ADS)

    Zitzler, R.; Tong, N.-H.; Pruschke, Th.; Bulla, R.

    2004-07-01

    The Mott-Hubbard metal-insulator transition in the paramagnetic phase of the one-band Hubbard model has long been used to describe similar features in real materials like V2O3. In this Letter we investigate the antiferromagnetic phase of this model with frustration. At T=0 we find a first-order transition from a paramagnetic metal to an antiferromagnetic insulator. We show that even in the presence of strong magnetic frustration, the paramagnetic metal-insulator transition is hidden inside an extended antiferromagnetic region. This raises the question of whether the one-band Hubbard model with frustration is sufficient to describe the phase diagram of V2O3 or similar transition metal oxides even qualitatively.

  18. Mott transitions in three-component Falicov-Kimball model

    NASA Astrophysics Data System (ADS)

    Nguyen, Duong-Bo; Tran, Minh-Tien

    2013-01-01

    Metal-insulator transitions are studied within a three-component Falicov-Kimball model, which mimics a mixture of one-component and two-component fermionic particles with local repulsive interactions in optical lattices. Within the model, the two-component fermionic particles are able to hop in the lattice, while the one-component fermionic particles are localized. The model is studied by using the dynamical mean-field theory with exact diagonalization. Its homogeneous solutions establish Mott transitions for both commensurate and incommensurate fillings between one-third and two-thirds. At commensurate one-third and two-thirds fillings, the Mott transition occurs for any density of hopping particles, while at incommensurate fillings, the Mott transition can occur only for density one-half of hopping particles. At half-filling, depending on the repulsive interactions, the reentrant effect of the Mott insulator is observed. As increasing local interaction of hopping particles, the first insulator-metal transition is continuous, whereas the second metal-insulator transition is discontinuous. The second metal-insulator transition crosses a finite region where both metallic and insulating phase coexist. At third-filling, the Mott transition is established only for strong repulsive interactions. A phase separation occurs together with the phase transition.

  19. Phase transitions in random surfaces

    NASA Astrophysics Data System (ADS)

    Baig, M.; Espriu, D.; Wheater, J. F.

    1989-03-01

    We investigate the statistical properties of triangulated random surfaces of fixed connectivity embedded in d-dimensional space and weighted with an action that contains the extrinsic curvature of the surface as well as the usual Nambu-Goto term. Numerically, we find no second-order phase transition for finite values of the rigidity coupling, in contrast to results obtained by Kantor and Nelson using a different action. Rather, there is a third order "crumpling" transition which, however, is not associated with an infinite correlation length between the normals to the surface. We compare the Monte Carlo results with several approximations, particularly with the mean field solution of the model. Our results indicate that there are no fixed points other than those already found in perturbation theory. We comment on several other aspects of random surfaces.

  20. Interacting Weyl fermions: Phases, phase transitions, and global phase diagram

    NASA Astrophysics Data System (ADS)

    Roy, Bitan; Goswami, Pallab; Juričić, Vladimir

    2017-05-01

    We study the effects of short-range interactions on a generalized three-dimensional Weyl semimetal, where the band touching points act as the (anti)monopoles of Abelian Berry curvature of strength n . We show that any local interaction has a negative scaling dimension -2 /n . Consequently, all Weyl semimetals are stable against weak short-range interactions. For sufficiently strong interactions, we demonstrate that the Weyl semimetal either undergoes a first-order transition into a band insulator or a continuous transition into a symmetry breaking phase. A translational symmetry breaking axion insulator and a rotational symmetry breaking semimetal are two prominent candidates for the broken symmetry phase. At the one-loop order, the correlation length exponent for continuous transitions is ν =n /2 , indicating their non-Gaussian nature for any n >1 . We also discuss the scaling of the thermodynamic and transport quantities in general Weyl semimetals as well as inside broken symmetry phases.

  1. Phases and phase transitions in disordered quantum systems

    NASA Astrophysics Data System (ADS)

    Vojta, Thomas

    2013-08-01

    These lecture notes give a pedagogical introduction to phase transitions in disordered quantum systems and to the exotic Griffiths phases induced in their vicinity. We first review some fundamental concepts in the physics of phase transitions. We then derive criteria governing under what conditions spatial disorder or randomness can change the properties of a phase transition. After introducing the strong-disorder renormalization group method, we discuss in detail some of the exotic phenomena arising at phase transitions in disordered quantum systems. These include infinite-randomness criticality, rare regions and quantum Griffiths singularities, as well as the smearing of phase transitions. We also present a number of experimental examples.

  2. Brain Performance versus Phase Transitions

    NASA Astrophysics Data System (ADS)

    Torres, Joaquín J.; Marro, J.

    2015-07-01

    We here illustrate how a well-founded study of the brain may originate in assuming analogies with phase-transition phenomena. Analyzing to what extent a weak signal endures in noisy environments, we identify the underlying mechanisms, and it results a description of how the excitability associated to (non-equilibrium) phase changes and criticality optimizes the processing of the signal. Our setting is a network of integrate-and-fire nodes in which connections are heterogeneous with rapid time-varying intensities mimicking fatigue and potentiation. Emergence then becomes quite robust against wiring topology modification—in fact, we considered from a fully connected network to the Homo sapiens connectome—showing the essential role of synaptic flickering on computations. We also suggest how to experimentally disclose significant changes during actual brain operation.

  3. Work and quantum phase transitions: quantum latency.

    PubMed

    Mascarenhas, E; Bragança, H; Dorner, R; França Santos, M; Vedral, V; Modi, K; Goold, J

    2014-06-01

    We study the physics of quantum phase transitions from the perspective of nonequilibrium thermodynamics. For first-order quantum phase transitions, we find that the average work done per quench in crossing the critical point is discontinuous. This leads us to introduce the quantum latent work in analogy with the classical latent heat of first order classical phase transitions. For second order quantum phase transitions the irreversible work is closely related to the fidelity susceptibility for weak sudden quenches of the system Hamiltonian. We demonstrate our ideas with numerical simulations of first, second, and infinite order phase transitions in various spin chain models.

  4. Imaging metal-like monoclinic phase stabilized by surface coordination effect in vanadium dioxide nanobeam

    NASA Astrophysics Data System (ADS)

    Li, Zejun; Wu, Jiajing; Hu, Zhenpeng; Lin, Yue; Chen, Qi; Guo, Yuqiao; Liu, Yuhua; Zhao, Yingcheng; Peng, Jing; Chu, Wangsheng; Wu, Changzheng; Xie, Yi

    2017-06-01

    In correlated systems, intermediate states usually appear transiently across phase transitions even at the femtosecond scale. It therefore remains an open question how to determine these intermediate states--a critical issue for understanding the origin of their correlated behaviour. Here we report a surface coordination route to successfully stabilize and directly image an intermediate state in the metal-insulator transition of vanadium dioxide. As a prototype metal-insulator transition material, we capture an unusual metal-like monoclinic phase at room temperature that has long been predicted. Coordinate bonding of L-ascorbic acid molecules with vanadium dioxide nanobeams induces charge-carrier density reorganization and stabilizes metallic monoclinic vanadium dioxide, unravelling orbital-selective Mott correlation for gap opening of the vanadium dioxide metal-insulator transition. Our study contributes to completing phase-evolution pathways in the metal-insulator transition process, and we anticipate that coordination chemistry may be a powerful tool for engineering properties of low-dimensional correlated solids.

  5. Metal-Insulator-Semiconductor Nanowire Network Solar Cells.

    PubMed

    Oener, Sebastian Z; van de Groep, Jorik; Macco, Bart; Bronsveld, Paula C P; Kessels, W M M; Polman, Albert; Garnett, Erik C

    2016-06-08

    Metal-insulator-semiconductor (MIS) junctions provide the charge separating properties of Schottky junctions while circumventing the direct and detrimental contact of the metal with the semiconductor. A passivating and tunnel dielectric is used as a separation layer to reduce carrier recombination and remove Fermi level pinning. When applied to solar cells, these junctions result in two main advantages over traditional p-n-junction solar cells: a highly simplified fabrication process and excellent passivation properties and hence high open-circuit voltages. However, one major drawback of metal-insulator-semiconductor solar cells is that a continuous metal layer is needed to form a junction at the surface of the silicon, which decreases the optical transmittance and hence short-circuit current density. The decrease of transmittance with increasing metal coverage, however, can be overcome by nanoscale structures. Nanowire networks exhibit precisely the properties that are required for MIS solar cells: closely spaced and conductive metal wires to induce an inversion layer for homogeneous charge carrier extraction and simultaneously a high optical transparency. We experimentally demonstrate the nanowire MIS concept by using it to make silicon solar cells with a measured energy conversion efficiency of 7% (∼11% after correction), an effective open-circuit voltage (Voc) of 560 mV and estimated short-circuit current density (Jsc) of 33 mA/cm(2). Furthermore, we show that the metal nanowire network can serve additionally as an etch mask to pattern inverted nanopyramids, decreasing the reflectivity substantially from 36% to ∼4%. Our extensive analysis points out a path toward nanowire based MIS solar cells that exhibit both high Voc and Jsc values.

  6. QCD Phase Transitions, Volume 15

    SciTech Connect

    Schaefer, T.; Shuryak, E.

    1999-03-20

    The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theorists working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.

  7. Coherently Coupled ZnO and VO2 Interface studied by Photoluminescence and electrical transport across a phase transition

    NASA Astrophysics Data System (ADS)

    Srivastava, Amar; Saha, S.; Annadi, A.; Zhao, Y. L.; Gopinadhan, K.; Wang, X.; Naomi, N.; Liu, Z. Q.; Dhar, S.; Herng, T. S.; Nina, Bao; Ariando, -; Ding, Jun; Venkatesan, T.

    2012-02-01

    In this work we report a study of a coherently coupled interface consisting of a ZnO layer grown on top of an oriented VO2 layer on sapphire by photoluminescence and electrical transport measurements across the VO2 metal insulator phase transition (MIT). The photoluminescence of the ZnO layer showed a broad hysteresis induced by the phase transition of VO2 while the width of the electrical hysteresis was narrow and unaffected by the over layer. The enhanced width of the PL hysteresis was due to the formation of defects during the MIT as evidenced by a broad hysteresis in the opposite direction to that of the band edge PL in the defect luminescense. Unlike VO2 the defects in ZnO did not fully recover across the phase transition. From the defect luminescence data, oxygen interstitials were found to be the predominant defects in ZnO mediated by the strain from the VO2 phase transition. Such coherently coupled interfaces could be of use in characterizing the stability of a variety of interfaces and also for novel device application.

  8. Phase transition in the organic conductor (TTM-TTP)I{3} studied by infrared and Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Świetlik, R.; Yakushi, K.; Yamamoto, K.; Kawamoto, T.; Mori, T.

    2004-04-01

    Polarised infrared reflectance (600 10000 cm-1) as well as Raman scattering spectra of the organic conductor (TTM-TTP)I{3} were investigated as a function of temperature, below and above the metal insulator phase transition at T=160 K. The IR electronic dispersion was analysed in terms of a Lorentz model and optical transport parameters were determined. The phase transition at 160 K has nearly no influence on IR spectra. The Raman scattering was studied for different excitations (λ =514.5, 632.6 and 785 nm). Within the C=C stretching region three Raman bands at 1436, 1453 and 1486 cm-1 were found and assigned to the three TTM-TTP modes of ag symmetry. Due to the phase transition the band at 1486 cm-1 splits into two lines at about 1487 and 1500 cm-1. We relate this splitting to an asymmetric deformation of TTM-TTP. Key words. TTM-TTP salt - organic metal - IR and Raman spectra - phase transition.

  9. Dynamics of a Quantum Phase Transition

    SciTech Connect

    Zurek, Wojciech H.; Dorner, Uwe; Zoller, Peter

    2005-09-02

    We present two approaches to the dynamics of a quench-induced phase transition in the quantum Ising model. One follows the standard treatment of thermodynamic second order phase transitions but applies it to the quantum phase transitions. The other approach is quantum, and uses Landau-Zener formula for transition probabilities in avoided level crossings. We show that predictions of the two approaches of how the density of defects scales with the quench rate are compatible, and discuss the ensuing insights into the dynamics of quantum phase transitions.

  10. Cloud regimes as phase transitions

    NASA Astrophysics Data System (ADS)

    Stechmann, Samuel N.; Hottovy, Scott

    2016-06-01

    Clouds are repeatedly identified as a leading source of uncertainty in future climate predictions. Of particular importance are stratocumulus clouds, which can appear as either (i) closed cells that reflect solar radiation back to space or (ii) open cells that allow solar radiation to reach the Earth's surface. Here we show that these clouds regimes -- open versus closed cells -- fit the paradigm of a phase transition. In addition, this paradigm characterizes pockets of open cells as the interface between the open- and closed-cell regimes, and it identifies shallow cumulus clouds as a regime of higher variability. This behavior can be understood using an idealized model for the dynamics of atmospheric water as a stochastic diffusion process. With this new conceptual viewpoint, ideas from statistical mechanics could potentially be used for understanding uncertainties related to clouds in the climate system and climate predictions.

  11. The phase transition of W-doped VO2 nanoparticles synthesized by an improved thermolysis method.

    PubMed

    Hou, Jiwei; Zhang, Jianwu; Wang, Zhongping; Zhang, Zengming; Ding, Zejun

    2013-02-01

    High-quality thermochromic monoclinic VO2(M) and series of W-doped V(1-x)W(x)O2(M) nanoparticles were successfully synthesized by an improved thermolysis method. The products were investigated using X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) technologies. The measurement of DSC revealed that the metal-insulator phase transition (MIT) of 2.0% W-doped VO2 sample occurred at 25.6 degrees C, which was much lower than the MIT of host VO2(M) nanoparticles at 67.6 degrees C. The results showed that the proportion of the transmittance of tetragonal phase reached only about 29% of that of monoclinic phase for 0.5% W-doped VO2 at the wavenumber 900 cm(-1), which indicated W-doped VO2(M) was an intelligent window and optical switch materials.

  12. Aspects of the electroweak phase transition

    SciTech Connect

    Huet, P.

    1992-11-01

    The electroweak phase transition is reviewed in light of some recent developments. Emphasis is on the issue whether the transition is first or second order and its possible role in the generation of the baryon asymmetry of the universe.

  13. Current fluctuations at a phase transition

    NASA Astrophysics Data System (ADS)

    Gerschenfeld, A.; Derrida, B.

    2011-10-01

    The ABC model is a simple diffusive one-dimensional non-equilibrium system which exhibits a phase transition. Here we show that the cumulants of the currents of particles through the system become singular near the phase transition. At the transition, they exhibit an anomalous dependence on the system size (an anomalous Fourier's law). An effective theory for the dynamics of the single mode which becomes unstable at the transition allows one to predict this anomalous scaling.

  14. Broadband polarization-independent wide-angle and reconfigurable phase transition hybrid metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Yahiaoui, Riad; Ouslimani, Habiba Hafdallah

    2017-09-01

    We report the simulation, fabrication, and experimental characterization of a single-layer broadband, polarization-insensitive and wide-angle near perfect metamaterial absorber (MA) in the microwave regime. The topology of the resonators is chosen in such a way that is capable of supporting simultaneously multiple plasmon resonances at adjacent frequencies, which lead to a broadband operation of the MA. Absorption larger than 80% at normal incidence covering a broad frequency range (between 7.4 GHz and 10.4 GHz) is demonstrated experimentally and through numerical simulations. Furthermore, the performance of the metamaterial absorber is kept constant up to an incident angle of 30°, for both TE and TM-polarizations. In addition, a hybrid model of the MA is proposed and implemented numerically in order to dynamically tune the absorption window. The hybrid MA is controlled by incorporating vanadium dioxide (VO2) temperature-driven metal-insulator phase transition material, which enables the transition from broadband (80% absorption and 3 GHz bandwidth) to narrowband (80% absorption and 0.7 GHz bandwidth) absorption window. Our proposed single-layer MA offers substantial advantages due to its low-cost and simplicity of fabrication. The results are very promising, suggesting a potential use of the MA in wide variety of applications including solar energy harvesting, biosensing, imaging, and stealth technology.

  15. Quantum phase transitions in disordered antiferromagnets

    NASA Astrophysics Data System (ADS)

    Yu, Rong

    Recently quantum phase transitions have attracted the interest of both theorists and experimentalists in condensed matter physics. Quantum magnets provide a perfect playground for studying these phase transitions since they can be triggered by many control parameters such as frustration, lattice dimerization, and magnetic field. Most previous studies have focused on the magnetic properties in pure systems. In these systems, responses to the triggering parameters are found to be uniform, leading to homogeneous phases. However little progress has been made so far on the phase transitions and properties in disordered quantum magnets because they are more complicated systems, and few theoretical tools can be applied. In this thesis we use the stochastic series expansion quantum Monte Carlo method to study quantum phase transitions in disordered magnets. We find that disordered magnets can behave quite differently from pure systems. The system inhomogeneity can strongly affect phase transitions by changing their universality class. We also find order-disorder transitions are often accompanied by the appearance of novel quantum disordered phases, in which magnetic properties behave highly nontrivial, even singular. In this thesis two examples are studied in great detail. The first one is the phase diagram of an inhomogeneous, bond-diluted two-dimensional antiferromagnet near the percolation threshold. We show that the magnetic transition can be tuned by the inhomogeneity of the dilution from a classical percolation to a quantum phase transition. Interestingly the quantum transition still takes the nature of a renormalized percolative transition, with continuously varying critical exponents. A gapless quantum disordered phase with no magnetic long-range order but geometric percolation is found. The low-temperature uniform susceptibility diverges as a non-universal power-law of the temperature in this phase, indicating that this is a quantum Griffiths phase. In the second

  16. Phase transitions of quadrupolar fluids

    NASA Astrophysics Data System (ADS)

    O'Shea, Seamus F.; Dubey, Girija S.; Rasaiah, Jayendran C.

    1997-07-01

    Gibbs ensemble simulations are reported for Lennard-Jones particles with embedded quadrupoles of strength Q*=Q/(ɛσ5)1/2=2.0 where ɛ and σ are the Lennard-Jones parameters. Calculations revealing the effect of the dispersive forces on the liquid-vapor coexistence were carried out by scaling the attractive r-6 term in the Lennard-Jones pair potential by a factor λ ranging from 0 to 1. Liquid-vapor coexistence is observed for all values of λ including λ=0 for Q*=2.0, unlike the corresponding dipolar fluid studied by van Leeuwen and Smit et al. [Phys. Rev. Lett. 71, 3991 (1993)] which showed no phase transition below λ=0.35 when the reduced dipole moment μ*=2.0. The simulation data are analyzed to estimate the critical properties of the quadrupolar fluid and their dependence on the strength λ of the dispersive force. The critical temperature and pressure show a clear quadratic dependence on λ, while the density is less confidently identified as being linear in λ. The compressibility is roughly linear in λ.

  17. Tuning the metal-insulator crossover and magnetism in SrRuO3 by ionic gating

    PubMed Central

    Yi, Hee Taek; Gao, Bin; Xie, Wei; Cheong, Sang-Wook; Podzorov, Vitaly

    2014-01-01

    Reversible control of charge transport and magnetic properties without degradation is a key for device applications of transition metal oxides. Chemical doping during the growth of transition metal oxides can result in large changes in physical properties, but in most of the cases irreversibility is an inevitable constraint. Here we report a reversible control of charge transport, metal-insulator crossover and magnetism in field-effect devices based on ionically gated archetypal oxide system - SrRuO3. In these thin-film devices, the metal-insulator crossover temperature and the onset of magnetoresistance can be continuously and reversibly tuned in the range 90–250 K and 70–100 K, respectively, by application of a small gate voltage. We infer that a reversible diffusion of oxygen ions in the oxide lattice dominates the response of these materials to the gate electric field. These findings provide critical insights into both the understanding of ionically gated oxides and the development of novel applications. PMID:25308251

  18. Tuning the metal-insulator crossover and magnetism in SrRuO3 by ionic gating

    DOE PAGES

    Yi, Hee Taek; Gao, Bin; Xie, Wei; ...

    2014-10-13

    Reversible control of charge transport and magnetic properties without degradation is a key for device applications of transition metal oxides. Chemical doping during the growth of transition metal oxides can result in large changes in physical properties, but in most of the cases irreversibility is an inevitable constraint. We report a reversible control of charge transport, metal-insulator crossover and magnetism in field-effect devices based on ionically gated archetypal oxide system - SrRuO3. In these thin-film devices, the metal-insulator crossover temperature and the onset of magnetoresistance can be continuously and reversibly tuned in the range 90–250 K and 70–100 K, respectively,more » by application of a small gate voltage. We infer that a reversible diffusion of oxygen ions in the oxide lattice dominates the response of these materials to the gate electric field. These findings provide critical insights into both the understanding of ionically gated oxides and the development of novel applications.« less

  19. Tuning the metal-insulator crossover and magnetism in SrRuO3 by ionic gating

    SciTech Connect

    Yi, Hee Taek; Gao, Bin; Xie, Wei; Cheong, Sang -Wook; Podzorov, Vitaly

    2014-10-13

    Reversible control of charge transport and magnetic properties without degradation is a key for device applications of transition metal oxides. Chemical doping during the growth of transition metal oxides can result in large changes in physical properties, but in most of the cases irreversibility is an inevitable constraint. We report a reversible control of charge transport, metal-insulator crossover and magnetism in field-effect devices based on ionically gated archetypal oxide system - SrRuO3. In these thin-film devices, the metal-insulator crossover temperature and the onset of magnetoresistance can be continuously and reversibly tuned in the range 90–250 K and 70–100 K, respectively, by application of a small gate voltage. We infer that a reversible diffusion of oxygen ions in the oxide lattice dominates the response of these materials to the gate electric field. These findings provide critical insights into both the understanding of ionically gated oxides and the development of novel applications.

  20. Transport and screen blockage characteristics of reflective metallic insulation materials

    SciTech Connect

    Brocard, D.N.

    1984-01-01

    In the event of a LOCA within a nuclear power plant, it is possible for insulation debris to be generated by the break jet. Such debris has the potential for PWR sump screen (or BWR RHR suction inlet) blockage and thus can affect the long-term recirculation capability. In addition to the variables of break jet location and orientation, the types and quantities of debris which could be generated are dependent on the insulation materials employed. This experimental investigation was limited to reflective metallic insulation and components thereof. The study was aimed at determining the flow velocities needed to transport the insulation debris to the sump screens and the resulting modes of screen blockage. The tests revealed that thin metallic foils (0.0025 in. and 0.004 in.) could transport at low flow velocities, 0.2 to 0.5 ft/sec. Thicker foils (0.008 in.) transported at higher velocities, 0.4 to 0.8 ft/sec, and as fabricated half cylinder insulation units required velocities in excess of 1.0 ft/sec for transport. The tests also provided information on screen blockage patterns that showed blockage could occur at the lower portion of the screen as foils readily flipped on the screen when reaching it.

  1. Metal-Insulator Photocathode Heterojunction for Directed Electron Emission

    SciTech Connect

    Droubay, Timothy C.; Chambers, Scott A.; Joly, Alan G.; Hess, Wayne P.; Nemeth, Karoly; Harkay, Katherine C.; Spentzouris, Linda

    2014-02-14

    New photocathode materials capable of producing intense and directed electron pulses are needed for development of next generation light sources and dynamic transmission electron microscopy. Ideal photocathodes should have high photoemission quantum efficiency (QE) and be capable of delivering collimated and well-shaped pulses of consistent charge under high-field operating conditions. High-brightness and low-intrinsic emittance electron pulses have been predicted for hybrid metal-insulator photocathode designs constructed from three to four monolayer MgO films on atomically flat silver. Here we use angle-resolved photoelectron spectroscopy to confirm directional photoemission and a large increase in QE under ultraviolet laser excitation of an ultrathin MgO film on Ag(001). We observe new low-binding energy photoemission, not seen for Ag(001), and greater electron emission in the normal direction. Under 4.66 eV laser excitation, the photoemission quantum efficiency of the MgO/Ag(001) hybrid photocathode is a factor of seven greater than that for clean Ag(001).

  2. Metal-insulator-metal plasmonic absorbers: influence of lattice.

    PubMed

    Chen, Yiting; Dai, Jin; Yan, Min; Qiu, Min

    2014-12-15

    We experimentally demonstrate three kinds of metal-insulator-metal based plasmonic absorbers consisting of arrays of gold nanodisks distributed in different lattices, including square, triangular and honeycomb lattices. It's found that resonances originated from localized surface plasmon undergo little changes with respect to different lattice distributions of the nanodisks. The interparticle coupling results in a minor bandwidth broadening of the fundamental mode. Different from square- and triangular-lattice absorbers, honeycomb-lattice absorber possesses a unique red-shifting (with respect to incident angles) narrow-band high-order mode, which originates from coupling of incident light to propagating surface plasmon polariton (SPP) waves. Similar high-order mode can also be generated in square-lattice absorber by increasing the period so that a smaller reciprocal lattice vector can be introduced to excite the SPP mode. Furthermore, we show that two types of resonances can interact and create Fano-type resonances. The simulation results agree well with the experimental results.

  3. Optical properties of non-dilute metal insulator composites

    NASA Astrophysics Data System (ADS)

    Tuncer, Enis; Niklasson, Gunnar A.

    2008-09-01

    The description of the optical properties of metal-insulator composites in the non-dilute region is a long standing problem. In this letter we extract the spectral density function of cobalt-amorphous aluminum oxide composites from optical and near-infrared data. The spectral functions are accurately computed numerically with the help of a recently developed technique. It is observed that the spectral features of the prepared composites change with increasing cobalt content. For low concentrations of cobalt, only one depolarization peak is found that corresponds to the Maxwell Garnett approximation. For concentrations higher than 11% cobalt, three effective depolarization factors are resolved that move towards low spectral parameter values with increasing cobalt content. Such a multi-peak structure arises naturally in fractal equivalent circuit models for the optical properties. A comparison with a deterministic fractal model is presented to illustrate the strength of the spectral density representation and to better comprehend our results. We conclude that the observed behavior gives important information on the relation of the optical characteristics to the composite micro-structure.

  4. Local bias-induced phase transitions

    SciTech Connect

    Seal, Katyayani; Baddorf, Arthur P.; Jesse, Stephen; Kalinin, Sergei V.; Nikiforov, Maxim; Proksch, Roger; Rodriguez, Brian J.; Maksymovych, Petro; Kholkin, Andrei L.

    2008-11-27

    Electrical bias-induced phase transitions underpin a wide range of applications from data storage to energy generation and conversion. The mechanisms behind these transitions are often quite complex and in many cases are extremely sensitive to local defects that act as centers for local transformations or pinning. Furthermore, using ferroelectrics as an example, we review methods for probing bias-induced phase transitions and discuss the current limitations and challenges for extending the methods to field-induced phase transitions and electrochemical reactions in energy storage, biological and molecular systems.

  5. Local bias-induced phase transitions

    DOE PAGES

    Seal, Katyayani; Baddorf, Arthur P.; Jesse, Stephen; ...

    2008-11-27

    Electrical bias-induced phase transitions underpin a wide range of applications from data storage to energy generation and conversion. The mechanisms behind these transitions are often quite complex and in many cases are extremely sensitive to local defects that act as centers for local transformations or pinning. Furthermore, using ferroelectrics as an example, we review methods for probing bias-induced phase transitions and discuss the current limitations and challenges for extending the methods to field-induced phase transitions and electrochemical reactions in energy storage, biological and molecular systems.

  6. Phase transitions in the web of science

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    2015-06-01

    The Internet age is changing the structure of science, and affecting interdisciplinary interactions. Publication profiles connecting mathematics with molecular biology and condensed matter physics over the last 40 years exhibit common phase transitions indicative of the critical role played by specific interdisciplinary interactions. The strengths of the phase transitions quantify the importance of interdisciplinary interactions.

  7. Cancer as a dynamical phase transition.

    PubMed

    Davies, Paul Cw; Demetrius, Lloyd; Tuszynski, Jack A

    2011-08-25

    This paper discusses the properties of cancer cells from a new perspective based on an analogy with phase transitions in physical systems. Similarities in terms of instabilities and attractor states are outlined and differences discussed. While physical phase transitions typically occur at or near thermodynamic equilibrium, a normal-to-cancer (NTC) transition is a dynamical non-equilibrium phenomenon, which depends on both metabolic energy supply and local physiological conditions. A number of implications for preventative and therapeutic strategies are outlined.

  8. Analysis of Nuclear Quantum Phase Transitions

    SciTech Connect

    Li, Z. P.; Meng, J.; Niksic, T.; Vretenar, D.; Lalazissis, G. A.; Ring, P.

    2009-08-26

    A microscopic analysis, based on nuclear energy density functionals, is presented for shape phase transitions in Nd isotopes. Low-lying excitation spectra and transition probabilities are calculated starting from a five-dimensional Hamiltonian, with parameters determined by constrained relativistic mean-field calculations for triaxial shapes. The results reproduce available data, and show that there is an abrupt change of structure at N = 90, that corresponds to a first-order quantum phase transition between spherical and axially deformed shapes.

  9. Phase transition in a super superspin glass

    NASA Astrophysics Data System (ADS)

    Mathieu, R.; De Toro, J. A.; Salazar, D.; Lee, S. S.; Cheong, J. L.; Nordblad, P.

    2013-06-01

    We here confirm the occurrence of spin glass phase transition and extract estimates of associated critical exponents of a highly monodisperse and densely compacted system of bare maghemite nanoparticles. This system has earlier been found to behave like an archetypal spin glass, with, e.g., a sharp transition from paramagnetic to non-equilibrium behavior, suggesting that this system undergoes a spin glass phase transition at a relatively high temperature, Tg ∼ 140 K.

  10. Geometric phases and quantum phase transitions in open systems.

    PubMed

    Nesterov, Alexander I; Ovchinnikov, S G

    2008-07-01

    The relationship is established between quantum phase transitions and complex geometric phases for open quantum systems governed by a non-Hermitian effective Hamiltonian with accidental crossing of the eigenvalues. In particular, the geometric phase associated with the ground state of the one-dimensional dissipative Ising model in a transverse magnetic field is evaluated, and it is demonstrated that the related quantum phase transition is of the first order.

  11. Quantum phase transitions in disordered magnets

    NASA Astrophysics Data System (ADS)

    Nozadze, David

    We study the effects of quenched weak disorder on quantum phase transitions in disordered magnets. The presence of disorder in the system can lead to a variety of exotic phenomena, e.g., the smearing of transitions or quantum Griffiths singularities. Phase transitions are smeared if individual spatial regions can order independently of the bulk system. In paper I, we study smeared quantum phase transitions in binary alloys A1-xBx that are tuned by changing the composition x. We show that in this case the ordered phase is extended over all compositions x < 1. We also study the composition dependence of observables. In paper II, we investigate the influence of spatial disorder correlations on smeared phase transitions. As an experimental example, we demonstrate in paper III, that the composition-driven ferromagnetic-toparamagnetic quantum phase transition in Sr1-xCaxRuO3 is smeared. When individual spatial regions cannot order but fluctuate slowly, the phase transition is characterized by strong singularities in the quantum Griffiths phase. In paper IV, we develop a theory of the quantum Griffiths phases in disordered ferromagnetic metals. We show that the quantum Griffiths singularities are stronger than the usual power-law quantum Griffiths singularities in insulating magnets. In paper V, we present an efficient numerical method for studying quantum phase transitions in disordered systems with O(N) order parameter symmetry in the large-N limit. Our algorithm solves iteratively the large-N self-consistent equations for the renormalized distances from criticality. Paper VI is devoted to the study of transport properties in the quantum Griffiths phase associated with the antiferromagnetic quantum phase transition in a metal. We find unusual behavior of transport properties which is in contrast to the normal Fermi-liquid behavior.

  12. Exploring structural phase transitions of ion crystals

    PubMed Central

    Yan, L. L.; Wan, W.; Chen, L.; Zhou, F.; Gong, S. J.; Tong, X.; Feng, M.

    2016-01-01

    Phase transitions have been a research focus in many-body physics over past decades. Cold ions, under strong Coulomb repulsion, provide a repealing paradigm of exploring phase transitions in stable confinement by electromagnetic field. We demonstrate various conformations of up to sixteen laser-cooled 40Ca+ ion crystals in a home-built surface-electrode trap, where besides the usually mentioned structural phase transition from the linear to the zigzag, two additional phase transitions to more complicated two-dimensional configurations are identified. The experimental observation agrees well with the numerical simulation. Heating due to micromotion of the ions is analysed by comparison of the numerical simulation with the experimental observation. Our investigation implies very rich and complicated many-body behaviour in the trapped-ion systems and provides effective mechanism for further exploring quantum phase transitions and quantum information processing with ultracold trapped ions. PMID:26865229

  13. First-Order Dynamical Phase Transitions

    NASA Astrophysics Data System (ADS)

    Canovi, Elena; Werner, Philipp; Eckstein, Martin

    2014-12-01

    Recently, dynamical phase transitions have been identified based on the nonanalytic behavior of the Loschmidt echo in the thermodynamic limit [Heyl et al., Phys. Rev. Lett. 110, 135704 (2013)]. By introducing conditional probability amplitudes, we show how dynamical phase transitions can be further classified, both mathematically, and potentially in experiment. This leads to the definition of first-order dynamical phase transitions. Furthermore, we develop a generalized Keldysh formalism which allows us to use nonequilibrium dynamical mean-field theory to study the Loschmidt echo and dynamical phase transitions in high-dimensional, nonintegrable models. We find dynamical phase transitions of first order in the Falicov-Kimball model and in the Hubbard model.

  14. Microscopic Description of Nuclear Quantum Phase Transitions

    SciTech Connect

    Niksic, T.; Vretenar, D.; Lalazissis, G. A.; Ring, P.

    2007-08-31

    The relativistic mean-field framework, extended to include correlations related to restoration of broken symmetries and to fluctuations of the quadrupole deformation, is applied to a study of shape transitions in Nd isotopes. It is demonstrated that the microscopic self-consistent approach, based on global effective interactions, can describe not only general features of transitions between spherical and deformed nuclei, but also the singular properties of excitation spectra and transition rates at the critical point of quantum shape phase transition.

  15. Astrophysical Implications of the QCD Phase Transition

    SciTech Connect

    Schaffner-Bielich, J.; Sagert, I.; Hempel, M.; Pagliara, G.; Fischer, T.; Mezzacappa, Anthony; Thielemann, Friedrich-Karl W.; Liebendoerfer, Matthias

    2009-01-01

    The possible role of a first order QCD phase transition at nonvanishing quark chemical potential and temperature for cold neutron stars and for supernovae is delineated. For cold neutron stars, we use the NJL model with a nonvanishing color superconducting pairing gap, which describes the phase transition to the 2SC and the CFL quark matter phases at high baryon densities. We demonstrate that these two phase transitions can both be present in the core of neutron stars and that they lead to the appearance of a third family of solution for compact stars. In particular, a core of CFL quark matter can be present in stable compact star configurations when slightly adjusting the vacuum pressure to the onset of the chiral phase transition from the hadronic model to the NJL model. We show that a strong first order phase transition can have a strong impact on the dynamics of core collapse supernovae. If the QCD phase transition sets in shortly after the first bounce, a second outgoing shock wave can be generated which leads to an explosion. The presence of the QCD phase transition can be read off from the neutrino and antineutrino signal of the supernova.

  16. Programmable mechanical resonances in MEMS by localized joule heating of phase change materials.

    PubMed

    Manca, Nicola; Pellegrino, Luca; Kanki, Teruo; Yamasaki, Syouta; Tanaka, Hidekazu; Siri, Antonio Sergio; Marré, Daniele

    2013-11-26

    A programmable micromechanical resonator based on a VO2 thin film is reported. Multiple mechanical eigenfrequency states are programmed using Joule heating as local power source, gradually driving the phase transition of VO2 around its Metal-Insulator transition temperature. Phase coexistence of domains is used to tune the stiffness of the device via local control of internal stresses and mechanical properties. This study opens perspectives for developing mechanically configurable nanostructure arrays.

  17. Phase transitions in liquid crystal + aerosil gels

    NASA Astrophysics Data System (ADS)

    Ramazanoglu, Mehmet Kerim

    Liquid Crystals (LCs) are found in many different phases, the most well-known, basic ones being Isotropic (I), Nematic (N), and Smectic-A (SmA). LCs show a rich variety of phase transitions between these phases. This makes them very interesting materials in which to study the basics of phase transitions and related topics. In the low symmetry phases, LCs show both positional and directional orders. X-ray scattering is an important tool to study these phase transitions as it probes the instantaneous positional correlations in these phases. Random forces have a nontrivial effect on ordering in nature, and the problem of phase transitions in the presence of a random field is a current and not well-understood topic. It has been found that aerosils posses a quenched randomness in the mixture of LC+aerosil samples, forming a gel random network which destroys long-range order (LRO) in the SmA phase. This can be modeled as a random field problem. In the N to SmA phase transition in 4O.8 LC (butyloxybenzlidene octylaniline), orientational order (N ) is modified by a 1-D density wave describing 2-D fluid layer spacing structure (SmA). Likewise the I to Sm A phase transition in 10CB LC (decylcyanobiphenyl), a transitional ordered phase develops without going through an orientational ordered phase. To study these phase transitions with aerosil dispersion carries the opportunity to probe the effect of induced quenched random disorder on phase transitions, which are 2nd order in the first case and 1st order in the second case. A two-component line-shape analysis is developed to define the phases in all temperature ranges. It consists of the thermal and the static structure factors. The reentered nematic (RN) phase of the [6:8]OCB+aerosil gels ([6:8]OCB is a mixture of hexyloxycyanobiphenyl and octyloxcyanobiphenyl) is another interesting case in which to study the quenched random disorder effects. The weak SmA phase of [6:8]OCB+aerosil gels is followed by a RN phase at low

  18. Electroweak phase transition in ultraminimal technicolor

    SciTech Connect

    Jaervinen, Matti; Sannino, Francesco; Ryttov, Thomas A.

    2009-05-01

    We unveil the temperature-dependent electroweak phase transition in new extensions of the standard model in which the electroweak symmetry is spontaneously broken via strongly coupled, nearly conformal dynamics achieved by the means of multiple matter representations. In particular, we focus on the low energy effective theory introduced to describe ultra minimal walking technicolor at the phase transition. Using the one-loop effective potential with ring improvement, we identify regions of parameter space, which yield a strong first-order transition. A striking feature of the model is the existence of a second phase transition associated to the electroweak-singlet sector. The interplay between these two transitions leads to an extremely rich phase diagram.

  19. Deep-level spectroscopy in metal-insulator-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Kurtz, A.; Muñoz, E.; Chauveau, J. M.; Hierro, A.

    2017-02-01

    In this study we present a method for measuring bulk traps using deep-level spectroscopy techniques in metal-insulator-semiconductor (MIS) structures. We will focus on deep-level transient spectroscopy (DLTS), although this can be extended to deep-level optical spectroscopy (DLOS) and similar techniques. These methods require the modulation of a depletion region either from a Schottky junction or from a highly asymmetric p-n junction, junctions that may not be realizable in many current material systems. This is the case of wide-bandgap semiconductor families that present a doping asymmetry or have a high residual carrier concentration or surface carrier accumulation, such as InGaN or ZnO. By adding a thin insulating layer and forming an MIS structure this problem can be circumvented and DLTS/DLOS can be performed under certain conditions. A model for the measurement of bulk traps in MIS structures is thus presented, focusing on the similarities with standard DLTS, maintaining when possible links to existing knowledge on DLTS and related techniques. The model will be presented from an equivalent circuit point of view. The effect of the insulating layer on DLTS is evaluated by a combination of simulations and experiments, developing methods for the measurement of these type of devices. As a validation, highly doped ZnO:Ga MIS devices have been successfully characterized and compared with a reference undoped sample using the methods described in this work, obtaining the same intrinsic levels previously reported in the literature but in material doped as high as 1× {{10}18} cm-3.

  20. Generalized Entanglement and Quantum Phase Transitions

    NASA Astrophysics Data System (ADS)

    Somma, Rolando; Barnum, Howard; Knill, Emanuel; Ortiz, Gerardo; Viola, Lorenzo

    2006-07-01

    Quantum phase transitions in matter are characterized by qualitative changes in some correlation functions of the system, which are ultimately related to entanglement. In this work, we study the second-order quantum phase transitions present in models of relevance to condensed-matter physics by exploiting the notion of generalized entanglement [Barnum et al., Phys. Rev. A 68, 032308 (2003)]. In particular, we focus on the illustrative case of a one-dimensional spin-1/2 Ising model in the presence of a transverse magnetic field. Our approach leads to tools useful for distinguishing between the ordered and disordered phases in the case of broken-symmetry quantum phase transitions. Possible extensions to the study of other kinds of phase transitions as well as of the relationship between generalized entanglement and computational efficiency are also discussed.

  1. Generalized Entanglement and Quantum Phase Transitions

    NASA Astrophysics Data System (ADS)

    Somma, Rolando; Barnum, Howard; Knill, Emanuel; Ortiz, Gerardo; Viola, Lorenzo

    Quantum phase transitions in matter are characterized by qualitative changes in some correlation functions of the system, which are ultimately related to entanglement. In this work, we study the second-order quantum phase transitions present in models of relevance to condensed-matter physics by exploiting the notion of generalized entanglement [Barnum et al., Phys. Rev. A 68, 032308 (2003)]. In particular, we focus on the illustrative case of a one-dimensional spin-1/2 Ising model in the presence of a transverse magnetic field. Our approach leads to tools useful for distinguishing between the ordered and disordered phases in the case of broken-symmetry quantum phase transitions. Possible extensions to the study of other kinds of phase transitions as well as of the relationship between generalized entanglement and computational efficiency are also discussed.

  2. Phase transitions in QCD and string theory

    NASA Astrophysics Data System (ADS)

    Campell, Bruce A.; Ellis, John; Kalara, S.; Nanopoulos, D. V.; Olive, Keith A.

    1991-02-01

    We develop a unified effective field theory approach to the high-temperature phase transitions in QCD and string theory, incorporating winding modes (time-like Polyakov loops, vortices) as well as low-mass states (pseudoscalar mesons and glueballs, matter and dilaton supermultiplets). Anomalous scale invariance and the Z3 structure of the centre of SU(3) decree a first-order phase transition with simultaneous deconfinement and Polyakov loop condensation in QCD, whereas string vortex condensation is a second-order phase transition breaking a Z2 symmetry. We argue that vortex condensation is accompanied by a dilaton phase transition to a strong coupling regime, and comment on the possible role of soliton degrees of freedom in the high-temperature string phase. On leave of absence from the School of Physics & Astronomy, University of Minnesota, Minneapolis, Minnesota, USA.

  3. Phase transition of aragonite in abalone nacre

    NASA Astrophysics Data System (ADS)

    An, Yuanlin; Liu, Zhiming; Wu, Wenjian

    2013-04-01

    Nacre is composed of about 95 vol.% aragonite and 5 vol.% biopolymer and famous for its "brick and mortar" microstructure. The phase transition temperature of aragonite in nacre is lower than the pure aragonite. In situ XRD was used to identify the phase transition temperature from aragonite to calcite in nacre, based on the analysis of TG-DSC of fresh nacre and demineralized nacre. The results indicate that the microstructure and biopolymer are the two main factors that influence the phase transition temperature of aragonite in nacre.

  4. Reflective plasmonic waveplates based on metal-insulator-metal subwavelength rectangular annular arrays

    NASA Astrophysics Data System (ADS)

    Chen, Zhonghui; Wang, Chinhua; Xu, Fuyang; Lou, Yimin; Cao, Bing; Li, Xiaofeng

    2014-04-01

    We propose and present a quarter-wave plate using metal-insulator-metal (MIM) structure with sub-wavelength rectangular annular arrays (RAA) patterned in the upper Au film. It is found that by manipulating asymmetric width of the annular gaps along two orthogonal directions, the reflected amplitude and phase of the two orthogonal components can be well controlled via the RAA metasurface tuned by the MIM cavity effect, in which the localized surface plasmon resonance dip can be flattened with the cavity length. A quarter-wave plate has been realized through an optimized design at 1.55 μm, in which the phase difference variation of less than 2% of the π/2 between the two orthogonal components can be obtained in an ultra-wide wavelength range of about 130 nm, and the reflectivity is up to ˜90% within the whole working wavelength band. It provides a great potential for applications in advanced nanophotonic devices and integrated photonic systems.

  5. Resonant modes in metal/insulator/metal metamaterials: An analytical study on near-field couplings

    NASA Astrophysics Data System (ADS)

    Ma, Shaojie; Xiao, Shiyi; Zhou, Lei

    2016-01-01

    Metamaterials (MTMs) in a metal/insulator/metal (MIM) configuration have drawn much attention recently, but the resonances in such systems are still not fully understood. Here, we employ a rigorous mode expansion method to analytically study the resonance properties of a model MIM MTM where the top metallic layer consists of an array of metallic stripes. Our analyses, supported by full-wave simulations and microwave experiments, provide a unified platform to understand the resonances in such systems, in which two previously established models are found valid only at certain extreme conditions. In particular, the resonance in such a system undergoes a transition from a vertical Fabry-Pérot type to a transverse type as the spacer thickness shrinks, and the resonance frequency saturates at a particular value in the thin-spacer limit. Finally, we derive a set of analytical formulas to describe how the essential properties (i.e., resonance frequency and quality factor) of the resonance depend on the structural details of the system and verify these analytical relationships by full-wave simulations in MIM systems with complex microstructures.

  6. Discovering phase transitions with unsupervised learning

    NASA Astrophysics Data System (ADS)

    Wang, Lei

    2016-11-01

    Unsupervised learning is a discipline of machine learning which aims at discovering patterns in large data sets or classifying the data into several categories without being trained explicitly. We show that unsupervised learning techniques can be readily used to identify phases and phases transitions of many-body systems. Starting with raw spin configurations of a prototypical Ising model, we use principal component analysis to extract relevant low-dimensional representations of the original data and use clustering analysis to identify distinct phases in the feature space. This approach successfully finds physical concepts such as the order parameter and structure factor to be indicators of a phase transition. We discuss the future prospects of discovering more complex phases and phase transitions using unsupervised learning techniques.

  7. Critical behaviours of contact near phase transitions

    PubMed Central

    Chen, Y.-Y.; Jiang, Y.-Z.; Guan, X.-W.; Zhou, Qi

    2014-01-01

    A central quantity of importance for ultracold atoms is contact, which measures two-body correlations at short distances in dilute systems. It appears in universal relations among thermodynamic quantities, such as large momentum tails, energy and dynamic structure factors, through the renowned Tan relations. However, a conceptual question remains open as to whether or not contact can signify phase transitions that are insensitive to short-range physics. Here we show that, near a continuous classical or quantum phase transition, contact exhibits a variety of critical behaviours, including scaling laws and critical exponents that are uniquely determined by the universality class of the phase transition, and a constant contact per particle. We also use a prototypical exactly solvable model to demonstrate these critical behaviours in one-dimensional strongly interacting fermions. Our work establishes an intrinsic connection between the universality of dilute many-body systems and universal critical phenomena near a phase transition. PMID:25346226

  8. Phase transition phenomenon: A compound measure analysis

    NASA Astrophysics Data System (ADS)

    Kang, Bo Soo; Park, Chanhi; Ryu, Doojin; Song, Wonho

    2015-06-01

    This study investigates the well-documented phenomenon of phase transition in financial markets using combined information from both return and volume changes within short time intervals. We suggest a new measure for the phase transition behaviour of markets, calculated as a return distribution conditional on local variance in volume imbalance, and show that this measure successfully captures phase transition behaviour under various conditions. We analyse the intraday trade and quote dataset from the KOSPI 200 index futures, which includes detailed information on the original order size and the type of each initiating investor. We find that among these two competing factors, the submitted order size yields more explanatory power on the phenomenon of market phase transition than the investor type.

  9. Magnetic fields from the electroweak phase transition

    SciTech Connect

    Tornkvist, O.

    1998-02-01

    I review some of the mechanisms through which primordial magnetic fields may be created in the electroweak phase transition. I show that no magnetic fields are produced initially from two-bubble collisions in a first-order transition. The initial field produced in a three-bubble collision is computed. The evolution of fields at later times is discussed.

  10. Electrically driven phase transition in magnetite nanostructures.

    PubMed

    Lee, Sungbae; Fursina, Alexandra; Mayo, John T; Yavuz, Cafer T; Colvin, Vicki L; Sofin, R G Sumesh; Shvets, Igor V; Natelson, Douglas

    2008-02-01

    Magnetite (Fe3O4), an archetypal transition-metal oxide, has been used for thousands of years, from lodestones in primitive compasses to a candidate material for magnetoelectronic devices. In 1939, Verwey found that bulk magnetite undergoes a transition at TV approximately 120 K from a high-temperature 'bad metal' conducting phase to a low-temperature insulating phase. He suggested that high-temperature conduction is through the fluctuating and correlated valences of the octahedral iron atoms, and that the transition is the onset of charge ordering on cooling. The Verwey transition mechanism and the question of charge ordering remain highly controversial. Here, we show that magnetite nanocrystals and single-crystal thin films exhibit an electrically driven phase transition below the Verwey temperature. The signature of this transition is the onset of sharp conductance switching in high electric fields, hysteretic in voltage. We demonstrate that this transition is not due to local heating, but instead is due to the breakdown of the correlated insulating state when driven out of equilibrium by electrical bias. We anticipate that further studies of this newly observed transition and its low-temperature conducting phase will shed light on how charge ordering and vibrational degrees of freedom determine the ground state of this important compound.

  11. Electrically driven phase transition in magnetite nanostructures

    NASA Astrophysics Data System (ADS)

    Lee, Sungbae; Fursina, Alexandra; Mayo, John T.; Yavuz, Cafer T.; Colvin, Vicki L.; Sumesh Sofin, R. G.; Shvets, Igor V.; Natelson, Douglas

    2008-02-01

    Magnetite (Fe3O4), an archetypal transition-metal oxide, has been used for thousands of years, from lodestones in primitive compasses to a candidate material for magnetoelectronic devices. In 1939, Verwey found that bulk magnetite undergoes a transition at TV~120K from a high-temperature `bad metal' conducting phase to a low-temperature insulating phase. He suggested that high-temperature conduction is through the fluctuating and correlated valences of the octahedral iron atoms, and that the transition is the onset of charge ordering on cooling. The Verwey transition mechanism and the question of charge ordering remain highly controversial. Here, we show that magnetite nanocrystals and single-crystal thin films exhibit an electrically driven phase transition below the Verwey temperature. The signature of this transition is the onset of sharp conductance switching in high electric fields, hysteretic in voltage. We demonstrate that this transition is not due to local heating, but instead is due to the breakdown of the correlated insulating state when driven out of equilibrium by electrical bias. We anticipate that further studies of this newly observed transition and its low-temperature conducting phase will shed light on how charge ordering and vibrational degrees of freedom determine the ground state of this important compound.

  12. Persistent homology analysis of phase transitions

    NASA Astrophysics Data System (ADS)

    Donato, Irene; Gori, Matteo; Pettini, Marco; Petri, Giovanni; De Nigris, Sarah; Franzosi, Roberto; Vaccarino, Francesco

    2016-05-01

    Persistent homology analysis, a recently developed computational method in algebraic topology, is applied to the study of the phase transitions undergone by the so-called mean-field XY model and by the ϕ4 lattice model, respectively. For both models the relationship between phase transitions and the topological properties of certain submanifolds of configuration space are exactly known. It turns out that these a priori known facts are clearly retrieved by persistent homology analysis of dynamically sampled submanifolds of configuration space.

  13. Persistent homology analysis of phase transitions.

    PubMed

    Donato, Irene; Gori, Matteo; Pettini, Marco; Petri, Giovanni; De Nigris, Sarah; Franzosi, Roberto; Vaccarino, Francesco

    2016-05-01

    Persistent homology analysis, a recently developed computational method in algebraic topology, is applied to the study of the phase transitions undergone by the so-called mean-field XY model and by the ϕ^{4} lattice model, respectively. For both models the relationship between phase transitions and the topological properties of certain submanifolds of configuration space are exactly known. It turns out that these a priori known facts are clearly retrieved by persistent homology analysis of dynamically sampled submanifolds of configuration space.

  14. Polymorphic Phase Transition in Superhydrous Phase B

    SciTech Connect

    Koch-Muller,M.; Dera, P.; Fei, Y.; Hellwig, H.; Liu, Z.; Van Orman, J.; Wirth, R.

    2005-01-01

    We synthesized superhydrous phase B (shy-B) at 22 GPa and two different temperatures: 1200 C (LT) and 1400 C (HT) using a multi-anvil apparatus. The samples were investigated by transmission electron microscopy (TEM), single crystal X-ray diffraction, Raman and IR spectroscopy. The IR spectra were collected on polycrystalline thin-films and single crystals using synchrotron radiation, as well as a conventional IR source at ambient conditions and in situ at various pressures (up to 15 GPa) and temperatures (down to -180 C). Our studies show that shy-B exists in two polymorphic forms. As expected from crystal chemistry, the LT polymorph crystallizes in a lower symmetry space group (Pnn2), whereas the HT polymorph assumes a higher symmetry space group (Pnnm). TEM shows that both modifications consist of nearly perfect crystals with almost no lattice defects or inclusions of additional phases. IR spectra taken on polycrystalline thin films exhibit just one symmetric OH band and 29 lattice modes for the HT polymorph in contrast to two intense but asymmetric OH stretching bands and at least 48 lattice modes for the LT sample. The IR spectra differ not only in the number of bands, but also in the response of the bands to changes in pressure. The pressure derivatives for the IR bands are higher for the HT polymorph indicating that the high symmetry form is more compressible than the low symmetry form. Polarized, low-temperature single-crystal IR spectra indicate that in the LT-polymorph extensive ordering occurs not only at the Mg sites but also at the hydrogen sites.

  15. Contemporary research of dynamically induced phase transitions

    NASA Astrophysics Data System (ADS)

    Hull, L. M.

    2017-01-01

    Dynamically induced phase transitions in metals, within the present discussion, are those that take place within a time scale characteristic of the shock waves and any reflections or rarefactions involved in the loading structure along with associated plastic flow. Contemporary topics of interest include the influence of loading wave shape, the effect of shear produced by directionality of the loading relative to the sample dimensions and initial velocity field, and the loading duration (kinetic effects, hysteresis) on the appearance and longevity of a transformed phase. These topics often arise while considering the loading of parts of various shapes with high explosives, are typically two or three-dimensional, and are often selected because of the potential of the transformed phase to significantly modify the motion. In this paper, we look at current work on phase transitions in metals influenced by shear reported in the literature, and relate recent work conducted at Los Alamos on iron's epsilon phase transition that indicates a significant response to shear produced by reflected elastic waves. A brief discussion of criteria for the occurrence of stress induced phase transitions is provided. Closing remarks regard certain physical processes, such as fragmentation and jet formation, which may be strongly influenced by phase transitions.

  16. Contemporary Research of Dynamically Induced Phase Transitions

    NASA Astrophysics Data System (ADS)

    Hull, Lawrence

    2015-06-01

    Dynamically induced phase transitions in metals, within the present discussion, are those that take place within a time scale characteristic of the shock waves and any reflections or rarefactions involved in the loading structure along with associated plastic flow. Contemporary topics of interest include the influence of loading wave shape, the effect of shear produced by directionality of the loading relative to the sample dimensions and initial velocity field, and the loading duration (kinetic effects, hysteresis) on the appearance and longevity of a transformed phase. These topics often arise while considering the loading of parts of various shapes with high explosives, are typically two or three-dimensional, and are often selected because of the potential of the transformed phase to significantly modify the motion. In this paper, we look at current work on phase transitions in metals influenced by shear reported in the literature, and relate recent work conducted at Los Alamos on iron's epsilon phase transition that indicates a significant response to shear produced by reflected elastic waves. A brief discussion of criteria for the occurrence of stress induced phase transitions is provided. Closing remarks regard certain physical processes, such as fragmentation and jet formation, which may be strongly influenced by phase transitions. Supported by the DoD/DOE Joint Munitions Technology Development Program.

  17. Cancer as a dynamical phase transition

    PubMed Central

    2011-01-01

    This paper discusses the properties of cancer cells from a new perspective based on an analogy with phase transitions in physical systems. Similarities in terms of instabilities and attractor states are outlined and differences discussed. While physical phase transitions typically occur at or near thermodynamic equilibrium, a normal-to-cancer (NTC) transition is a dynamical non-equilibrium phenomenon, which depends on both metabolic energy supply and local physiological conditions. A number of implications for preventative and therapeutic strategies are outlined. PMID:21867509

  18. Supercooling and phase coexistence in cosmological phase transitions

    SciTech Connect

    Megevand, Ariel; Sanchez, Alejandro D.

    2008-03-15

    Cosmological phase transitions are predicted by particle physics models, and have a variety of important cosmological consequences, which depend strongly on the dynamics of the transition. In this work we investigate in detail the general features of the development of a first-order phase transition. We find thermodynamical constraints on some quantities that determine the dynamics, namely, the latent heat, the radiation energy density, and the false-vacuum energy density. Using a simple model with a Higgs field, we study numerically the amount and duration of supercooling and the subsequent reheating and phase coexistence. We analyze the dependence of the dynamics on the different parameters of the model, namely, the energy scale, the number of degrees of freedom, and the couplings of the scalar field with bosons and fermions. We also inspect the implications for the cosmological outcomes of the phase transition.

  19. The tetragonal-like to rutile structural phase transition in epitaxial VO2/TiO2 (001) thick films

    NASA Astrophysics Data System (ADS)

    Qiu, Hongbo; Yang, Memgmeng; Dong, Yongqi; Xu, Han; Hong, Bin; Gu, Yueliang; Yang, Yuanjun; Zou, Chongwen; Luo, Zhenlin; Gao, Chen

    2015-11-01

    A controllable metal-insulator transition (MIT) of VO2 has been highly desired due to its huge potential applications in memory storage, smart windows or optical switching devices. Recently, interfacial strain engineering has been recognized as an effective approach to tuning the MIT of epitaxial VO2 films. However, the strain-involved structural evolution during the MIT process is still not clear, which prevents comprehensively understanding and utilizing interfacial strain engineering in VO2 films. In this work, we have systematically studied the epitaxial VO2 thick films grown on TiO2 (001) single crystal substrate and the structural transition at the boundary of MIT region. By using in situ temperature-dependent high-resolution x-ray diffractions, a tetragonal-like (‘T-like’) to ‘rutile’ structural phase transition is identified during the MIT process. The room-temperature crystal phase of epitaxial VO2/TiO2(001) thick film is clarified to be tetragonal-like, neither strained-rutile phase nor monoclinic phase. The calculated atomic structure of this T-like phase VO2 resembles that of the M1 phase VO2, which has been verified by their similar Raman spectra. More, the crystal lattices of the coexisted phases in the MIT region were revealed in detail. The current findings will not only show some clues on the MIT mechanism study from the structural point of view, but also favor the interface engineering assisted VO2-based devices and applications in the future.

  20. Electroweak phase transition in nearly conformal technicolor

    SciTech Connect

    Cline, James M.; Jaervinen, Matti; Sannino, Francesco

    2008-10-01

    We examine the temperature-dependent electroweak phase transition in extensions of the standard model in which the electroweak symmetry is spontaneously broken via strongly coupled, nearly conformal dynamics. In particular, we focus on the low energy effective theory used to describe minimal walking technicolor at the phase transition. Using the one-loop effective potential with ring improvement, we identify significant regions of parameter space which yield a sufficiently strong first-order transition for electroweak baryogenesis. The composite particle spectrum corresponding to these regions can be produced and studied at the Large Hadron Collider experiment. We note the possible emergence of a second phase transition at lower temperatures. This occurs when the underlying technicolor theory possesses a nontrivial center symmetry.