Kendal, Adrian R; Prieto-Alhambra, Daniel; Arden, Nigel K; Judge, Andrew
2013-01-01
Objectives To compare 10 year mortality rates among patients undergoing metal-on-metal hip resurfacing and total hip replacement in England. Design Retrospective cohort study. Setting English hospital episode statistics database linked to mortality records from the Office for National Statistics. Population All adults who underwent primary elective hip replacement for osteoarthritis from April 1999 to March 2012. The exposure of interest was prosthesis type: cemented total hip replacement, uncemented total hip replacement, and metal-on-metal hip resurfacing. Confounding variables included age, sex, Charlson comorbidity index, rurality, area deprivation, surgical volume, and year of operation. Main outcome measures All cause mortality. Propensity score matching was used to minimise confounding by indication. Kaplan-Meier plots estimated the probability of survival up to 10 years after surgery. Multilevel Cox regression modelling, stratified on matched sets, described the association between prosthesis type and time to death, accounting for variation across hospital trusts. Results 7437 patients undergoing metal-on-metal hip resurfacing were matched to 22 311 undergoing cemented total hip replacement; 8101 patients undergoing metal-on-metal hip resurfacing were matched to 24 303 undergoing uncemented total hip replacement. 10 year rates of cumulative mortality were 271 (3.6%) for metal-on-metal hip resurfacing versus 1363 (6.1%) for cemented total hip replacement, and 239 (3.0%) for metal-on-metal hip resurfacing versus 999 (4.1%) for uncemented total hip replacement. Patients undergoing metal-on-metal hip resurfacing had an increased survival probability (hazard ratio 0.51 (95% confidence interval 0.45 to 0.59) for cemented hip replacement; 0.55 (0.47 to 0.65) for uncemented hip replacement). There was no evidence for an interaction with age or sex. Conclusions Patients with hip osteoarthritis undergoing metal-on-metal hip resurfacing have reduced mortality in the long term compared with those undergoing cemented or uncemented total hip replacement. This difference persisted after extensive adjustment for confounding factors available in our data. The study results can be applied to matched populations, which exclude patients who are very old and have had complex total hip replacements. Although residual confounding is possible, the observed effect size is large. These findings require validation in external cohorts and randomised clinical trials. PMID:24284336
NASA Astrophysics Data System (ADS)
Arirajan, K. A.; Chockalingam, K.; Vignesh, C.
2018-04-01
Implants are the artificial parts to replace the missing bones or joints in human anatomy to give mechanical support. Hip joint replacement is an important issue in orthopaedic surgery. The main concern limiting the long-run success of the total hip replacement is the limited service life. Hip replacement technique is widely used in replacing the femur head and acetabular cup by materials that are highly biocompatible. The success of the artificial hip replacement depends upon proper material selection, structure, and shape of the hip prosthesis. Many orthopaedic analyses have been tried with different materials, but ended with partial success on the application side. It is a critical task for selecting the best material pair in the hip prosthesis design. This work develops the finite element analysis of an artificial hip implant to study highest von Mises stress, contact pressure and elastic strain occurs for the dissimilar material combination. The different bearing couple considered for the analysis are Metal on Metal, Metal on Plastic, Metal on Ceramic, Ceramic on Plastic, Ceramic on Ceramic combinations. The analysis is carried out at different static positions of a human (i.e) standing, sitting. The results reveals that the combination with metal in contact with plastic (i.e) Titanium femoral head paired with Ultra High Molecular Weight Poly Ethylene acetabular cup reduces maximum von Mises stress and also it gives lowest contact pressure than other combination of bearing couples.
21 CFR 888.3370 - Hip joint (hemi-hip) acetabular metal cemented prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hip joint (hemi-hip) acetabular metal cemented... (hemi-hip) acetabular metal cemented prosthesis. (a) Identification. A hip joint (hemi-hip) acetabular metal cemented prosthesis is a device intended to be implanted to replace a portion of the hip joint...
The tribology of metal-on-metal total hip replacements.
Scholes, S C; Unsworth, A
2006-02-01
Total hip surgery is an effective way of alleviating the pain and discomfort caused by diseased or damaged joints. However, in the majority of cases, these joints have a finite life. The main reason for failure is osteolysis (bone resorption). It is well documented that an important cause of osteolysis, and therefore the subsequent loosening and failure of conventional metal- or ceramic-on-ultra-high molecular weight polyethylene joints, is the body's immunological response to the polyethylene wear particles. To avoid this, interest has been renewed in metal-on-metal joints. The intention of this paper is to review the studies that have taken place within different laboratories to determine the tribological performance of new-generation metal-on-metal total hip replacements. These types of joint offer a potential solution to enhance the longevity of prosthetic hip systems; however, problems may arise owing to the effects of metal ion release, which are, as yet, not fully understood.
Hip Resurfacing: An Alternative to Conventional Hip Replacement?
... and capped with a metal prosthesis. The hip socket is fitted with a metal cup. As these ... problem, but higher levels may be problematic. The socket prosthesis for a traditional hip replacement is usually ...
Reito, Aleksi; Elo, Petra; Nieminen, Jyrki; Puolakka, Timo; Eskelinen, Antti
2016-02-01
There are no international guidelines to define adverse reaction to metal debris (ARMD). Muscle fatty atrophy has been reported to be common in patients with failing metal-on-metal (MoM) hip replacements. We assessed whether gluteal muscle fatty atrophy is associated with elevated blood metal ion levels and pseudotumors. 263 consecutive patients with unilateral ASR XL total hip replacement using a posterior approach and with an unoperated contralateral hip were included in the study. All patients had undergone a standard screening program at our institution, including MRI and blood metal ion measurement. Muscle fatty atrophy was graded as being absent, mild, moderate, or severe in each of the gluteal muscles. The prevalence of moderate-to-severe gluteal muscle atrophy was low (12% for gluteus minimus, 10% for gluteus medius, and 2% for gluteus maximus). Muscle atrophy was neither associated with elevated blood metal ion levels (> 5 ppb) nor with the presence of a clear (solid- or mixed-type) pseudotumor seen in MRI. A combination of moderate-to-severe atrophy in MRI, elevated blood metal ion levels, and MRI-confirmed mixed or solid pseudotumor was rare. Multivariable regression revealed that "preoperative diagnosis other than osteoarthrosis" was the strongest predictor of the presence of fatty atrophy. Gluteal muscle atrophy may be a clinically significant finding with influence on hip muscle strength in patients with MoM hip replacement. However, our results suggest that gluteal muscle atrophy seen in MRI is not associated with either the presence or severity of ARMD, at least not in patients who have been operated on using the posterior approach.
Hua, Xijin; Wang, Ling; Al-Hajjar, Mazen; Jin, Zhongmin; Wilcox, Ruth K; Fisher, John
2014-07-01
Finite element models are becoming increasingly useful tools to conduct parametric analysis, design optimisation and pre-clinical testing for hip joint replacements. However, the verification of the finite element model is critically important. The purposes of this study were to develop a three-dimensional anatomic finite element model for a modular metal-on-polyethylene total hip replacement for predicting its contact mechanics and to conduct experimental validation for a simple finite element model which was simplified from the anatomic finite element model. An anatomic modular metal-on-polyethylene total hip replacement model (anatomic model) was first developed and then simplified with reasonable accuracy to a simple modular total hip replacement model (simplified model) for validation. The contact areas on the articulating surface of three polyethylene liners of modular metal-on-polyethylene total hip replacement bearings with different clearances were measured experimentally in the Leeds ProSim hip joint simulator under a series of loading conditions and different cup inclination angles. The contact areas predicted from the simplified model were then compared with that measured experimentally under the same conditions. The results showed that the simplification made for the anatomic model did not change the predictions of contact mechanics of the modular metal-on-polyethylene total hip replacement substantially (less than 12% for contact stresses and contact areas). Good agreements of contact areas between the finite element predictions from the simplified model and experimental measurements were obtained, with maximum difference of 14% across all conditions considered. This indicated that the simplification and assumptions made in the anatomic model were reasonable and the finite element predictions from the simplified model were valid. © IMechE 2014.
[Survey on the use and behaviour of metal-metal hip replacements in Spain].
Calcerrada, N; Fernández-Vega, A; Valls-León, C; Garcia-Cimbrelo, E
2016-01-01
Following medical device alerts published in different countries of problems with metal-on-metal total hip replacements, the Spanish Agency of Medicines and Medical Devices (AEMPS) in collaboration with the Spanish Hip Society Surgery designed a national survey to gather information on the use and behaviour of these hip implants. The survey consisted of a questionnaire sent by e-mail to 283 clinical centre recipients of metal-on-metal hips to be filled in by surgeons with expertise in the field. A total of 257 questionnaires were completed. The response rate of the clinical centres was 36.7%. A total of 97.7% of the responses reported that clinical and radiological follow-ups are carried out, and 79.6% undertook metal ion analyses (chromium and cobalt). A large majority (83.6%) of the responders who had who used surface implants, and 70% of those with large-head implants reported peri-operative complications. The most common complication was pain (25% with surface implants and 30.8% with large-head implants). Currently 80.8% of those responding were considering abandoning implanting of these hip replacements. Despite the many limitations to this study, the survey has allowed us to obtain in a quick first view of the implant scenario of Metal on Metal hip implants in Spain, and to determine the type of patient implanted, the time of implantation, and the experience/expertise of the surgeons, and the type of follow-up carried out. Copyright © 2015 SECOT. Published by Elsevier Espana. All rights reserved.
Gascoyne, Trevor C; Dyrkacz, Richard M; Turgeon, Thomas R; Burnell, Colin D; Wyss, Urs P; Brandt, Jan-M
2014-10-01
Eight retrieved metal-on-metal total hip replacements displayed corrosion damage along the cobalt-chromium alloy liner taper junction with the Ti alloy acetabular shell. Scanning electron microscopy indicated the primary mechanism of corrosion to be grain boundary and associated crevice corrosion, which was likely accelerated through mechanical micromotion and galvanic corrosion resulting from dissimilar alloys. Coordinate measurements revealed up to 4.3mm(3) of the cobalt-chromium alloy taper surface was removed due to corrosion, which is comparable to previous reports of corrosion damage on head-neck tapers. The acetabular liner-shell taper appears to be an additional source of metal corrosion products in modular total hip replacements. Patients with these prostheses should be closely monitored for signs of adverse reaction towards corrosion by-products. Copyright © 2014 Elsevier Inc. All rights reserved.
Metal-on-metal surface replacement: a triumph of hope over reason: opposes.
Su, Edwin P; Su, Sherwin L
2011-09-09
Hip resurfacing has been performed for over a decade but still raises controversy as an alternative to traditional total hip arthroplasty (THA). Concerns exist about the potential complications of hip resurfacing, including femoral neck fracture and osteonecrosis of the femoral head. Recently, attention has been given to the metal-on-metal bearing of hip resurfacing with regard to production of metal ions, possible tissue necrosis, and rare instances of metal hypersensitivity. Given the success of the gold-standard THA, it is understandable why some surgeons believe metal-on-metal surface replacement to be "a triumph of hope over reason." However, this article opposes that viewpoint, demonstrating that data exist to justify the practice of preserving bone in younger patients. Hip resurfacing can maintain femoral bone without the expense of removing additional acetabular bone by using modern implants with incremental sizing. Furthermore, many of the problems cited with the bearing couple (such as excess metal production) have been due to poor implant designs, which have now been removed from the market. Finally, we now realize that the metal-on-metal articulation is more sensitive to malposition; thus, good surgical technique and experience can solve many of the problems that have been cited in the past. National registry results confirm that in a select population, hip resurfacing performs comparably to THA, while fulfilling the goal of bone preservation. Copyright 2011, SLACK Incorporated.
21 CFR 888.3340 - Hip joint metal/composite semi-constrained cemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/composite semi-constrained... Hip joint metal/composite semi-constrained cemented prosthesis. (a) Identification. A hip joint metal/composite semi-constrained cemented prosthesis is a two-part device intended to be implanted to replace a...
Reito, Aleksi; Lainiala, Olli; Elo, Petra; Eskelinen, Antti
2016-01-01
Metal-on-metal (MoM) hip replacements were used for almost a decade before adverse reactions to metal debris (ARMD) were found to be a true clinical problem. Currently, there is a paucity of evidence regarding the usefulness of systematic screening for ARMD. We implemented a systematic review and meta-analysis to establish the prevalence of revision confirmed ARMD stratified by the use of different screening protocols in patients with MoM hip replacements. Five levels of screening were identified: no screening (level 0), targeted blood metal ion measurement and/or cross-sectional imaging (level 1), metal ion measurement without imaging (level 2), metal ion measurement with targeted imaging (level 3) and comprehensive screening (both metal ions and imaging for all; level 4). 122 studies meeting our eligibility criteria were included in analysis. These studies included 144 study arms: 100 study arms with hip resurfacings, 33 study arms with large-diameter MoM total hip replacements (THR), and 11 study arms with medium-diameter MoM THRs. For hip resurfacing, the lowest prevalence of ARMD was seen with level 0 screening (pooled prevalence 0.13%) and the highest with level 4 screening (pooled prevalace 9.49%). Pooled prevalence of ARMD with level 0 screening was 0.29% and with level 4 screening 21.3% in the large-diameter MoM THR group. In metaregression analysis of hip resurfacings, level 4 screening was superior with regard to prevalence of ARMD when compared with other levels. In the large diameter THR group level 4 screening was superior to screening 0,2 and 3. These outcomes were irrespective of follow-up time or study publication year. With hip resurfacings, routine cross-sectional imaging regardless of clinical findings is advisable. It is clear, however, that targeted metal ion measurement and/or imaging is not sufficient in the screening for ARMD in any implant concepts. However, economic aspects should be weighed when choosing the preferred screening level. PMID:26930057
Yan, Yu; Dowson, Duncan; Neville, Anne
2013-02-01
The second generation Metal-on-Metal (MoM) hip replacements have been considered as an alternative to commonly used Polyethylene-on-Metal (PoM) joint prostheses due to polyethylene wear debris induced osteolysis. However, the role of corrosion and the biofilm formed under tribological contact are still not fully understood. Enhanced metal ion concentrations have been reported widely from hair, blood and urine samples of patients who received metal hip replacements and in isolated cases when abnormally high levels have caused adverse local tissue reactions. An understanding of the origin of metal ions is really important in order to design alloys for reduced ion release. Reciprocating pin-on-plate wear tester is a standard instrument to assess the interaction of corrosion and wear. However, more realistic hip simulator can provide a better understanding of tribocorrosion process for hip implants. It is very important to instrument the conventional hip simulator to enable electrochemical measurements. In this study, simple reciprocating pin-on-plate wear tests and hip simulator tests were compared. It was found that metal ions originated from two sources: (a) a depassivation of the contacting surfaces due to tribology (rubbing) and (b) corrosion of nano-sized wear particles generated from the contacting surfaces. Copyright © 2012 Elsevier Ltd. All rights reserved.
Information for Patients Who Have Metal-on-Metal Hip Implants
... can often lead manufacturers to improve an implant’s design and update device labeling for future patients. In ... patients American Association of Hip and Knee Surgeons: Pre Op Surgery Center Patient Education: Hip Replacement Surgery ...
Prospective study on serum metal levels in patients with metal-on-metal lumbar disc arthroplasty.
Gornet, Matthew F; Burkus, J K; Harper, M L; Chan, F W; Skipor, A K; Jacobs, J J
2013-04-01
Metal-on-metal total disc replacement is a recent alternative treatment for degenerative disc disease. Wear and corrosion of these implants can lead to local and systemic transport of metal debris. This prospective longitudinal study examined the serum chromium and cobalt levels in 24 patients with cobalt-chromium alloy metal-on-metal lumbar disc replacements. Serum was assayed for chromium (Cr) and cobalt (Co) using high-resolution inductively-coupled plasma-mass spectrometry. Detection limits were 0.015 ng/mL for Cr and 0.04 ng/mL for Co. Median serum Co levels at pre-op, 3, 6, 12, 24, and 36-months post-op were 0.10, 1.03, 0.96, 0.98, 0.67, and 0.52 ng/mL, respectively. Median serum Cr levels were 0.06, 0.49, 0.65, 0.43, 0.52, and 0.50 ng/mL, respectively. In general, these results indicated that serum Co and Cr levels are elevated at all postoperative time points and are of the same order of magnitude as those observed in well-functioning metal-on-metal surface replacements of the hip and in metal-on-metal total hip replacements at similar postoperative time points.
NASA Astrophysics Data System (ADS)
Muth, John; Poggie, Matthew; Kulesha, Gene; Michael Meneghini, R.
2013-02-01
Hip and knee replacement can dramatically improve a patient's quality of life through pain relief and restored function. Fixation of hip and knee replacement implants to bone is critical to the success of the procedure. A variety of roughened surfaces and three-dimensional porous surfaces have been used to enhance biological fixation on orthopedic implants. Recently, highly porous metals have emerged as versatile biomaterials that may enhance fixation to bone and are suitable to a number of applications in hip and knee replacement surgery. This article provides an overview of several processes used to create these implant surfaces.
[Hip resurfacing arthroplasty].
Witzleb, W-C; Knecht, A; Beichler, T; Köhler, T; Günther, K-P
2004-11-01
In comparison to stemmed total hip replacements, hip resurfacing offers advantages especially in joint stability and amount of femoral bone resection. After the poor results achieved with this concept that were mainly caused by failure of the materials used, reintroduction of the metal-on-metal bearing initiated a renaissance. This bearing, the cementless cup, and the improved surgical technique led to better short- to medium-term results. Revision and complication rates are now comparable to conventional total hip replacements. The functional capacity of the method is higher. Because long-term results are not available, however, questions remain, for instance, the consequences of the higher metal ion serum concentrations or the impossibility of changing the inlay when femoral revision becomes necessary.
Clinical usefulness of blood metal measurements to assess the failure of metal-on-metal hip implants
Sampson, Barry; Hart, Alister
2012-01-01
In April 2010, a Medicines and Healthcare Products Regulatory Agency safety alert concerning all metal-on-metal (MOM) hip replacements recommended measuring chromium and cobalt concentrations when managing patients with painful prostheses. The need for this review is illustrated by the recent surge in requests for these blood tests from orthopaedic surgeons following this alert. The aim is to provide guidance to laboratories in assessing these requests and advising clinicians on interpretation. First, we summarize the basic terminology regarding the types of hip replacements, with emphasis on the MOM type. Second, we describe the clinical concerns over implant-derived wear debris in the local tissues and distant sites. Analytical aspects of the measurement of the relevant metal ions and what factors affect the levels measured are discussed. The application of inductively coupled plasma mass spectrometry techniques to the measurement of these metals is considered in detail. The biological effects of metal wear products are summarized with local toxicity and systemic biological effects considered, including carcinogenicity, genotoxicity and systemic toxicity. Clinical cases are used to illustrate pertinent points. PMID:22155921
Histological features of pseudotumor-like tissues from metal-on-metal hips.
Campbell, Pat; Ebramzadeh, Edward; Nelson, Scott; Takamura, Karren; De Smet, Koen; Amstutz, Harlan C
2010-09-01
Pseudotumor-like periprosthetic tissue reactions around metal-on-metal (M-M) hip replacements can cause pain and lead to revision surgery. The cause of these reactions is not well understood but could be due to excessive wear, or metal hypersensitivity or an as-yet unknown cause. The tissue features may help distinguish reactions to high wear from those with suspected metal hypersensitivity. We therefore examined the synovial lining integrity, inflammatory cell infiltrates, tissue organization, necrosis and metal wear particles of pseudotumor-like tissues from M-M hips revised for suspected high wear related and suspected metal hypersensitivity causes. Tissue samples from 32 revised hip replacements with pseudotumor-like reactions were studied. A 10-point histological score was used to rank the degree of aseptic lymphocytic vasculitis-associated lesions (ALVAL) by examination of synovial lining integrity, inflammatory cell infiltrates, and tissue organization. Lymphocytes, macrophages, plasma cells, giant cells, necrosis and metal wear particles were semiquantitatively rated. Implant wear was measured with a coordinate measuring machine. The cases were divided into those suspected of having high wear and those suspected of having metal hypersensitivity based on clinical, radiographic and retrieval findings. The Mann-Whitney test was used to compare the histological features in these two groups. The tissues from patients revised for suspected high wear had a lower ALVAL score, fewer lymphocytes, but more macrophages and metal particles than those tissues from hips revised for pain and suspected metal hypersensitivity. The highest ALVAL scores occurred in patients who were revised for pain and suspected metal hypersensitivity. Component wear was lower in that group. Pseudotumor-like reactions can be caused by high wear, but may also occur around implants with low wear, likely because of a metal hypersensitivity reaction. Histologic features including synovial integrity, inflammatory cell infiltrates, tissue organization, and metal particles may help differentiate these causes. Painful hips with periprosthetic masses may be caused by high wear, but if this can be ruled out, metal hypersensitivity should be considered.
Madanat, Rami; Hussey, Daniel K; Donahue, Gabrielle S; Potter, Hollis G; Wallace, Robert; Bragdon, Charles R; Muratoglu, Orhun K; Malchau, Henrik
2015-10-01
The purpose of this study was to evaluate whether patients with bilateral metal-on-metal (MoM) hip replacements have symmetric adverse local tissue reactions (ALTRs) at follow-up. An MRI of both hips was performed at a mean time of six years after surgery in 43 patients. The prevalence and severity of ALTRs were found to be similar in simultaneous hips but differences were observed in sequential hips. The order and timing of sequential hip arthroplasties did not affect the severity of ALTRs. Thus, in addition to metal ion exposure from an earlier MoM implant other factors may also play a role in the progression of ALTRs. Bilateral implants should be given special consideration in risk stratification algorithms for management of patients with MoM hip arthroplasty. Copyright © 2015 Elsevier Inc. All rights reserved.
Metal-on-Metal Total Hip Arthroplasty: Quality of Online Patient Information.
Crozier-Shaw, Geoff; Queally, Joseph M; Quinlan, John F
2017-03-01
Metal-on-metal total hip arthroplasty (THA) has generated much attention in the media because of early failure of certain implant systems. This study assessed the quality, accuracy, and readability of online information on metal-on-metal THA. The search terms "metal-on-metal hip replacement" and "metal hip replacement" were entered into the 3 most popular search engines. Information quality was assessed with the DISCERN score and a specific metal-on-metal THA content score. Accuracy of information was assessed with a customized score. Readability of the websites was assessed with the Flesch-Kincaid grade level score. A total of 61 unique websites were assessed. For 56% of websites, the target audience was patients. Media or medicolegal sources accounted for 44% of websites. As assessed by DISCERN (range, 16-80) and metal-on-metal THA (range, 0-25) scores, quality of the websites was moderate at best (47.1 and 9.6, respectively). Accuracy (range, 0-8) of the information presented also was moderate, with a mean score of 6.6. Media and medicolegal websites had the lowest scores for both quality and accuracy, despite making up the greatest proportion of sites assessed. Only 1 website (2%) had a Flesch-Kincaid grade level at or less than the recommended level of 8th grade. This study found that online information on metal-on-metal THA was of poor quality, often was inaccurate, and was presented at an inappropriately high reading level, particularly for media and medicolegal websites. Health care providers should counsel patients on the quality of information available and recommend appropriate online resources. [Orthopedics. 2017; 40(2):e262-e268.]. Copyright 2016, SLACK Incorporated.
2016-10-06
Rheumatoid Arthritis; Osteoarthritis; Post-traumatic Arthritis; Collagen Disorders; Avascular Necrosis; Traumatic Femoral Fractures; Nonunion of Femoral Fractures; Congenital Hip Dysplasia; Slipped Capital Femoral Epiphysis
[Detection of metal ions in hair after metal-metal hip arthroplasty].
Hernandez-Vaquero, D; Rodríguez de la Flor, M; Fernandez-Carreira, J M; Sariego-Muñiz, C
2014-01-01
There is an increase in the levels of metals in the serum and urine after the implantation of some models of metal-metal hip prosthesis. It has recently been demonstrated that there is an association between these levels and the levels found in hair. The aim of this study is to determine the presence of metals in hair, and to find out whether these change over time or with the removal of the implant. The levels of chromium, cobalt and molybdenum were determined in the hair of 45 patients at 3, 4, 5, and 6 years after a hip surface replacement. The mean age was 57.5 years, and two were female. Further surgery was required to remove the replacement and implant a new model with metal-polyethylene friction in 11 patients, 5 of them due to metallosis and a periarticular cyst. The mean levels of metals in hair were chromium 163.27 ppm, cobalt 61.98 ppm, and molybdenum 31.36 ppm, much higher than the levels found in the general population. A decrease in the levels of chromium (43.8%), molybdenum (51.1%), and cobalt (91.1%) was observed at one year in the patients who had further surgery to remove the prosthesis. High concentrations of metals in the hair are observed in hip replacements with metal-metal friction, which decrease when that implant is removed. The determination of metal ions in hair could be a good marker of the metal poisoning that occurs in these arthroplasty models. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.
Vassiliou, K; Scholes, S C; Unsworth, A
2007-01-01
Total hip replacements offer relief to a great many patients every year around the world. With an expected service life of around 25 years on most devices, and with younger and younger patients undergoing this surgery, it is of great importance to understand the mechanisms of their function. Tribological testing of both conventional and hard bearing joint combinations have been conducted in many centres throughout the world, and, after being initially abandoned owing to premature failures, hard bearing combinations have been revisited as viable options for joint replacements. Improved design, manufacturing procedures, and material compositions have led to improved performance over first-generation designs in both metal-on-metal and ceramic-on-ceramic hip prostheses. This paper offers a review of the work conducted in an attempt to highlight the most important factors affecting joint performance and tribology of hard bearing combinations. The tribological performance of these joints is superior to that of conventional metal- or ceramic-on-polymer designs.
Li, Wei; Zhou, Yi-Xin; Wu, Jian; Xu, Hui; Ji, Song-Jie
2009-02-15
To evaluate the bone refilling in the interface between the trabecular metal (TM) acetabular shell and the bone surface according to consecutive X film measuring after surgery. From July 2006 to July 2007, 35 patients (40 hips) accepted total hip replacement using trabecular metal monoblock acetabular cup system (TM). The cup was made of a ellipse shaped press fit Tantalum shell and high cross-linked PE liner (Longevity) with 28 mm inner diameter. The patients demography was: 16 male (20 hips), 19 female (20 hips), 5 bilateral hip replacements, age from 41 - 71 (mean 53), including 18 avascular necrosis hips, 16 osteoarthritis hips (including those secondary to a dysplasia hip), 4 avascular necrosis hips after femoral neck fracture, 2 Ankylosis Spondylitis. All the 40 total hip replacements used posterior approach, using hemispherical acetabular reamer and 2 mm press fit of final metal shell without screw fixation. The consecutive X film was taken at the end time of surgery and 2, 6, 12, 24 weeks, and 12 months. The clinical results was evaluate according to Harris scoring system, and the standard pelvis AP X film was measured at the interface between metal shell and the acetabular bone surface, witch was divided into five regions (A, B, C, D, E). Totally 32 patients (37 hips) were followed with average 8.7 months (7 - 12 months). The Harris before surgery was 50.5 (32 - 85), promoted to 91.0 (72 - 100), including 29 excellent, 6 good, 2 fair, and the total excellent and good rate was 94.6%. Complications include 4 patients leg length discrepancy from 1 - 2 cm, 3 patients moderate thigh pain and released after conservative therapy. No infection and dislocation was found. Twenty-one patients (23 hips) were found lucent line at the bone-metal interface from 1 - 5 mm, most common in B region and BC boundary than C, D, and CD boundary. All the patients followed was found the lucent line disappeared and refilled with bone at X film 24 weeks after surgery, however, no patients was found osteolysis and cup migration. The trabecular metal has strong capacity of bone conductive and bone inducement.
Metal-on-metal hip joint tribology.
Dowson, D; Jin, Z M
2006-02-01
The basic tribological features of metal-on-metal total hip replacements have been reviewed to facilitate an understanding of the engineering science underpinning the renaissance of these hard-on-hard joints. Metal-on-polymer hip replacements operate in the boundary lubrication regime, thus leading to the design guidance to reduce the femoral head diameter as much as is feasible to minimize frictional torque and volumetric wear. This explains why the gold-standard implant of this form from the past half-century had a diameter of only 22.225 mm (7/8 in). Metal-on-metal implants can operate in the mild mixed lubrication regime in which much of the applied load is supported by elastohydrodynamic films. Correct tribological design leads to remarkably low steady state wear rates. Promotion of the most effective elastohydrodynamic films calls for the largest possible head diameters and the smallest clearances that can reasonably be adopted, consistent with fine surface finishes, good sphericity and minimal structural elastic deformation of the cup on its foundations. This guidance, which is opposite in form to that developed for metal-on-polymer joints, is equally valid for solid (monolithic) metallic heads on metallic femoral stems and surface replacement femoral shells. Laboratory measurements of friction and wear in metal-on-metal joints have confirmed their potential to achieve a very mild form of mixed lubrication. The key lies in the generation of effective elastohydrodynamic lubricating films of adequate thickness compared with the composite roughness of the head and cup. The calculation of the film thickness is by no means easy, but the full procedure is outlined and the use of an empirical formula that displays good agreement with calculations based upon the full numerical solutions is explained. The representation of the lambda ratio, lambda, embracing both film thickness and composite roughness, is described.
Microscopical analysis of synovial fluid wear debris from failing CoCr hip prostheses
NASA Astrophysics Data System (ADS)
Ward, M. B.; Brown, A. P.; Cox, A.; Curry, A.; Denton, J.
2010-07-01
Metal on metal hip joint prostheses are now commonly implanted in patients with hip problems. Although hip replacements largely go ahead problem free, some complications can arise such as infection immediately after surgery and aseptic necrosis caused by vascular complications due to surgery. A recent observation that has been made at Manchester is that some Cobalt Chromium (CoCr) implants are causing chronic pain, with the source being as yet unidentified. This form of replacement failure is independent of surgeon or hospital and so some underlying body/implant interface process is thought to be the problem. When the synovial fluid from a failed joint is examined particles of metal (wear debris) can be found. Transmission Electron Microscopy (TEM) has been used to look at fixed and sectioned samples of the synovial fluid and this has identified fine (< 100 nm) metal and metal oxide particles within the fluid. TEM EDX and Electron Energy Loss Spectroscopy (EELS) have been employed to examine the composition of the particles, showing them to be chromium rich. This gives rise to concern that the failure mechanism may be associated with the debris.
Hart, A J; Buddhdev, P; Winship, P; Faria, N; Powell, J J; Skinner, J A
2008-01-01
A cup inclination angle greater than 45 degrees is associated with increased wear rates of metal on polyethylene (MOP) hip replacements. The same maybe true for metal on metal (MOM) hips yet this has not been clearly shown. We measured the acetabular inclination angle from plain radiographs, and whole blood metal ion levels using Inductively Coupled Plasma Mass Spectrometry of 26 patients (mean Harris Hip Score 94 and mean time post op of 22 months) with Birmingham Hip Resurfacings. We identified a threshold level of 50 degrees cup inclination. Below this threshold, the mean whole blood cobalt and chromium were 1.6 ppb and 1.88 ppb respectively; above this threshold, the mean blood cobalt and chromium were 4.45 ppb and 4.3 ppb respectively. These differences were significant cobalt (p<0.01) and chromium (p=0.01). All patients above the threshold had metal levels greater than any of the patients below the threshold. For 14 patients, who returned one year later for a repeat blood metal level measurement, cobalt and chromium levels were very similar. The effect of an acetabular inclination angle of greater than 50 degrees on wear rates of MOM hips, as measured through blood metal ion levels, appears to be similar to that seen with MOP hips. Additionally, our new analytical methods may allow blood metal levels to be used as a realistic biomarker of in vivo wear rate of MOM hips. The implication is that metal levels can be minimised with optimal orientation of the acetabular component.
Compatibility of the totally replaced hip. Reduction of wear by amorphous diamond coating.
Santavirta, Seppo
2003-12-01
Particulate wear debris in totally replaced hips causes adverse local host reactions. The extreme form of such a reaction, aggressive granulomatosis, was found to be a distinct condition and different from simple aseptic loosening. Reactive and adaptive tissues around the totally replaced hip were made of proliferation of local fibroblast like cells and activated macrophages. Methylmethacrylate and high-molecular-weight polyethylene were shown to be essentially immunologically inert implant materials, but in small particulate form functioned as cellular irritants initiating local biological reactions leading to loosening of the implants. Chromium-cobalt-molybdenum is the most popular metallic implant material; it is hard and tough, and the bearings of this metal are partially self-polishing. In total hip implants, prerequisites for longevity of the replaced hip are good biocompatibility of the materials and sufficient tribological properties of the bearings. The third key issue is that the bearing must minimize frictional shear at the prosthetic bone-implant interface to be compatible with long-term survival. Some of the approaches to meet these demands are alumina-on-alumina and metal-on-metal designs, as well as the use of highly crosslinked polyethylene for the acetabular component. In order to avoid the wear-based deleterious properties of the conventional total hip prosthesis materials or coatings, the present work included biological and tribological testing of amorphous diamond. Previous experiments had demonstrated that a high adhesion of tetrahedral amorphous carbon coatings to a substrate can be achieved by using mixing layers or interlayers. Amorphous diamond was found to be biologically inert, and simulator testing indicated excellent wear properties for conventional total hip prostheses, in which either the ball or both bearing surfaces were coated with hydrogen-free tetrahedral amorphous diamond films. Simulator testing with such total hip prostheses showed no measurable wear or detectable delamination after 15,000,000 test cycles corresponding to 15 years of clinical use. The present work clearly shows that wear is one of the basic problems with totally replaced hips. Diamond coating of the bearing surfaces appears to be an attractive solution to improve longevity of the totally replaced hip.
Metal-on-Metal Hip Resurfacing Arthroplasty
Sehatzadeh, S; Kaulback, K; Levin, L
2012-01-01
Background Metal-on-metal (MOM) hip resurfacing arthroplasty (HRA) is in clinical use as an appropriate alternative to total hip arthroplasty in young patients. In this technique, a metal cap is placed on the femoral head to cover the damaged surface of the bone and a metal cup is placed in the acetabulum. Objectives The primary objective of this analysis was to compare the revision rates of MOM HRA using different implants with the benchmark set by the National Institute of Clinical Excellence (NICE). The secondary objective of this analysis was to review the literature regarding adverse biological effects associated with implant material. Review Methods A literature search was performed on February 13, 2012, to identify studies published from January 1, 2009, to February 13, 2012. Results The revision rates for MOM HRA using 6 different implants were reviewed. The revision rates for MOM HRA with 3 implants met the NICE criteria, i.e., a revision rate of 10% or less at 10 years. Two implants had short-term follow-ups and MOM HRA with one of the implants failed to meet the NICE criteria. Adverse tissue reactions resulting in failure of the implants have been reported by several studies. With a better understanding of the factors that influence the wear rate of the implants, adverse tissue reactions and subsequent implant failure can be minimized. Many authors have suggested that patient selection and surgical technique affect the wear rate and the risk of tissue reactions. The biological effects of high metal ion levels in the blood and urine of patients with MOM HRA implants are not known. Studies have shown an increase in chromosomal aberrations in patients with MOM articulations, but the clinical implications and long-term consequences of this increase are still unknown. Epidemiological studies have shown that patients with MOM HRA implants did not have an overall increase in mortality or risk of cancer. There is insufficient clinical data to confirm the teratogenicity of MOM implants in humans. Conclusions Metal-on-metal HRA can be beneficial for appropriately selected patients, provided the surgeon has the surgical skills required for performing this procedure. Plain Language Summary There are many young patients with hip diseases who need to have hip replacement surgery. Although a traditional hip replacement is an acceptable procedure for these patients, some surgeons prefer using a newer technique in young patients called hip resurfacing. In this technique, instead of removing the head of the femoral bone, a metal cap is placed on the femoral head to cover the damaged surface of the bone and a metal cup is placed in the hip socket, similar to the cups used in traditional hip replacement. The analysis of the revision rates (i.e., how soon and in how many patients the surgery needs to be redone) and safety of resurfacing implants showed that generally these implants can last 10 years or more for the majority of young people. Good outcomes can be expected when skilled surgeons perform the surgery in properly selected patients. However, since these implants are made of metal (cobalt and chromium alloy), there is concern about excess metal debris production due to friction between the 2 metal components leading to high levels of metal ions in the blood and urine of patients. The production of metal debris may result in inflammation in the joint or development of a benign soft tissue mass leading to implant failure. However, it has been shown that this risk can be reduced by proper positioning of the implant and the careful selection of patients for this procedure. Little is known about the long-term biological effects of high levels of metal ions in the blood and urine of patients who have received metal implants. There is concern about potential increases in the risk of cancer and the risk of fetal abnormalities, but these effects have not been established yet. However, since cobalt and chromium can pass the placental barrier, implants that are not metal-on-metal are recommended for women at childbearing ages if they need a hip replacement. PMID:23074429
Hartmann, Albrecht; Hannemann, Franziska; Lützner, Jörg; Seidler, Andreas; Drexler, Hans; Günther, Klaus-Peter; Schmitt, Jochen
2013-01-01
Introduction The use of metal-on-metal (MoM) total hip arthroplasty (THA) increased in the last decades. A release of metal products (i.e. particles, ions, metallo-organic compounds) in these implants may cause local and/or systemic adverse reactions. Metal ion concentrations in body fluids are surrogate measures of metal exposure. Objective To systematically summarize and critically appraise published studies concerning metal ion concentrations after MoM THA. Methods Systematic review of clinical trials (RCTs) and epidemiological studies with assessment of metal ion levels (cobalt, chromium, titanium, nickel, molybdenum) in body fluids after implantation of metalliferous hip replacements. Systematic search in PubMed and Embase in January 2012 supplemented by hand search. Standardized abstraction of pre- and postoperative metal ion concentrations stratified by type of bearing (primary explanatory factor), patient characteristics as well as study quality characteristics (secondary explanatory factors). Results Overall, 104 studies (11 RCTs, 93 epidemiological studies) totaling 9.957 patients with measurement of metal ions in body fluids were identified and analyzed. Consistently, median metal ion concentrations were persistently elevated after implantation of MoM-bearings in all investigated mediums (whole blood, serum, plasma, erythrocytes, urine) irrespective of patient characteristics and study characteristics. In several studies very high serum cobalt concentrations above 50 µg/L were measured (detection limit typically 0.3 µg/L). Highest metal ion concentrations were observed after treatment with stemmed large-head MoM-implants and hip resurfacing arthroplasty. Discussion Due to the risk of local and systemic accumulation of metallic products after treatment with MoM-bearing, risk and benefits should be carefully balanced preoperatively. The authors support a proposed „time out“ for stemmed large-head MoM-THA and recommend a restricted indication for hip resurfacing arthroplasty. Patients with implanted MoM-bearing should receive regular and standardized monitoring of metal ion concentrations. Further research is indicated especially with regard to potential systemic reactions due to accumulation of metal products. PMID:23950923
Pulikottil-Jacob, Ruth; Connock, Martin; Kandala, Ngianga-Bakwin; Mistry, Hema; Grove, Amy; Freeman, Karoline; Costa, Matthew; Sutcliffe, Paul; Clarke, Aileen
2016-01-01
Total hip replacement for end stage arthritis of the hip is currently the most common elective surgical procedure. In 2007 about 7.5% of UK implants were metal-on-metal joint resurfacing (MoM RS) procedures. Due to poor revision performance and concerns about metal debris, the use of RS had declined by 2012 to about a 1% share of UK hip procedures. This study estimated the lifetime cost-effectiveness of metal-on-metal resurfacing (RS) procedures versus commonly employed total hip replacement (THR) methods. We performed a cost-utility analysis using a well-established multi-state semi-Markov model from an NHS and personal and social services perspective. We used individual patient data (IPD) from the National Joint Registry (NJR) for England and Wales on RS and THR surgery for osteoarthritis recorded from April 2003 to December 2012. We used flexible parametric modelling of NJR RS data to guide identification of patient subgroups and RS devices which delivered revision rates within the NICE 5% revision rate benchmark at 10 years. RS procedures overall have an estimated revision rate of 13% at 10 years, compared to <4% for most THR devices. New NICE guidance now recommends a revision rate benchmark of <5% at 10 years. 60% of RS implants in men and 2% in women were predicted to be within the revision benchmark. RS devices satisfying the 5% benchmark were unlikely to be cost-effective compared to THR at a standard UK willingness to pay of £20,000 per quality-adjusted life-year. However, the probability of cost effectiveness was sensitive to small changes in the costs of devices or in quality of life or revision rate estimates. Our results imply that in most cases RS has not been a cost-effective resource and should probably not be adopted by decision makers concerned with the cost effectiveness of hip replacement, or by patients concerned about the likelihood of revision, regardless of patient age or gender.
Tribochemical Characterization and Tribocorrosive Behavior of CoCrMo Alloys: A Review
Toh, Wei Quan; Liu, Erjia; Tor, Shu Beng
2017-01-01
Orthopedic implants first started out as an all-metal hip joint replacement. However, poor design and machinability as well as unsatisfactory surface finish subjected the all-metal joint replacement to being superseded by a polyethylene bearing. Continued improvement in manufacturing techniques together with the reality that polyethylene wear debris can cause hazardous reactions in the human body has brought about the revival of metal-on-metal (MOM) hip joints in recent years. This has also led to a relatively new research area that links tribology and corrosion together. This article aims at reviewing the commonly used tribochemical methods adopted in the analysis of tribocorrosion and putting forward some of the models and environmental factors affecting the tribocorrosive behavior of CoCrMo alloys, a widely-used class of biomaterial for orthopedic implants. PMID:29278375
Tribochemical Characterization and Tribocorrosive Behavior of CoCrMo Alloys: A Review.
Toh, Wei Quan; Tan, Xipeng; Bhowmik, Ayan; Liu, Erjia; Tor, Shu Beng
2017-12-26
Orthopedic implants first started out as an all-metal hip joint replacement. However, poor design and machinability as well as unsatisfactory surface finish subjected the all-metal joint replacement to being superseded by a polyethylene bearing. Continued improvement in manufacturing techniques together with the reality that polyethylene wear debris can cause hazardous reactions in the human body has brought about the revival of metal-on-metal (MOM) hip joints in recent years. This has also led to a relatively new research area that links tribology and corrosion together. This article aims at reviewing the commonly used tribochemical methods adopted in the analysis of tribocorrosion and putting forward some of the models and environmental factors affecting the tribocorrosive behavior of CoCrMo alloys, a widely-used class of biomaterial for orthopedic implants.
Cip, Johannes; von Strempel, Archibald; Bach, Christian; Luegmair, Matthias; Benesch, Thomas; Martin, Arno
2014-11-01
Taper junctions of large diameter metal-on-metal femoral heads and femoral stems were described as metal ion generator due to accelerated wear and corrosion. However, literature about the Articular Surface Replacement (ASR) total hip arthroplasty (THA) invariably deals with stems manufactured by DePuy Orthopedics (Warsaw, IN, USA). Nothing is known whether different stems with common 12/14 mm tapers affect failure rate or ion release. 99 ASR THA (88 patients) implanted with CoxaFit or ARGE Geradschaft stems (K-Implant, Hannover, Germany) were retrospectively analyzed. After a mean follow-up of 3.5 years revision rate was 24.5%, mostly due to adverse reaction to metal debris (ARMD). CT scan revealed component loosening in 10.3% and pseudotumoral lesions in 12.6%. Elevated ion concentrations (>7 μg/l) were found in 38.6%. Copyright © 2014 Elsevier Inc. All rights reserved.
Jin, Z M; Dowson, D; Fisher, J
1997-01-01
Lubrication mechanisms and contact mechanics have been analysed for total hip joint replacements made from hard bearing surfaces such as metal-on-metal and ceramic-on-ceramic. A similar analysis for ultra-high molecular weight polyethylene (UHMWPE) against a hard bearing surface has also been carried out and used as a reference. The most important factor influencing the predicted lubrication film thickness has been found to be the radial clearance between the ball and the socket. Full fluid film lubrication may be achieved in these hard/hard bearings provided that the surface finish of the bearing surface and the radial clearance are chosen correctly and maintained. Furthermore, there is a close relation between the predicted contact half width and the predicted lubrication film thickness. Therefore, it is important to analyse the contact mechanics in artificial hip joint replacements. Practical considerations of manufacturing these bearing surfaces have also been discussed.
Size of metallic and polyethylene debris particles in failed cemented total hip replacements
NASA Technical Reports Server (NTRS)
Lee, J. M.; Salvati, E. A.; Betts, F.; DiCarlo, E. F.; Doty, S. B.; Bullough, P. G.
1992-01-01
Reports of differing failure rates of total hip prostheses made of various metals prompted us to measure the size of metallic and polyethylene particulate debris around failed cemented arthroplasties. We used an isolation method, in which metallic debris was extracted from the tissues, and a non-isolation method of routine preparation for light and electron microscopy. Specimens were taken from 30 cases in which the femoral component was of titanium alloy (10), cobalt-chrome alloy (10), or stainless steel (10). The mean size of metallic particles with the isolation method was 0.8 to 1.0 microns by 1.5 to 1.8 microns. The non-isolation method gave a significantly smaller mean size of 0.3 to 0.4 microns by 0.6 to 0.7 microns. For each technique the particle sizes of the three metals were similar. The mean size of polyethylene particles was 2 to 4 microns by 8 to 13 microns. They were larger in tissue retrieved from failed titanium-alloy implants than from cobalt-chrome and stainless-steel implants. Our results suggest that factors other than the size of the metal particles, such as the constituents of the alloy, and the amount and speed of generation of debris, may be more important in the failure of hip replacements.
Ebreo, D; Bell, P J; Arshad, H; Donell, S T; Toms, A; Nolan, J F
2013-08-01
Metal artefact reduction (MAR) MRI is now widely considered to be the standard for imaging metal-on-metal (MoM) hip implants. The Medicines and Healthcare Products Regulatory Agency (MHRA) has recommended cross-sectional imaging for all patients with symptomatic MoM bearings. This paper describes the natural history of MoM disease in a 28 mm MoM total hip replacement (THR) using MAR MRI. Inclusion criteria were patients with MoM THRs who had not been revised and had at least two serial MAR MRI scans. All examinations were reported by an experienced observer and classified as A (normal), B (infection) or C1-C3 (mild, moderate, severe MoM-related abnormalities). Between 2002 and 2011 a total of 239 MRIs were performed on 80 patients (two to four scans per THR); 63 initial MRIs (61%) were normal. On subsequent MRIs, six initially normal scans (9.5%) showed progression to a disease state; 15 (15%) of 103 THRs with sequential scans demonstrated worsening disease on subsequent imaging. Most patients with a MoM THR who do not undergo early revision have normal MRI scans. Late progression (from normal to abnormal, or from mild to more severe MoM disease) is not common and takes place over several years.
The benefits of metal-on-metal total hip replacements.
Müller, M E
1995-02-01
The Müller's cast prosthesis with a concentric metal-on-metal articulation and 3 sliding bearings was used in Switzerland from 1965 to 1967. During the next 10 to 15 years, a number of hips in which the metal-to-metal systems were implanted were revised. Rather than osteoporosis and cranial migration occurring, the acetabular roofs were often sclerotic and the components showed no or only minor migration. At surgery, the capsule was almost normal and without signs of inflammation. Histologically, the capsule did not show the usual masses of giant cells associated with polyethylene particles. In the mid-1980s, different designs of metal-on-metal articulations were tested. From 1987 to 1990, this author developed, together with the biomaterial division of Sulzer Medical Technology, a pure titanium shell with a polyethylene-backed 28-mm forged cobalt-chromium liner insert. This combination has been successful, with no revisions required to date. In summary, with the present metal-on-metal articulations it is now possible to stop using the polyethylene. The successful long-term results of the cast cobalt-chromium metal-on-metal articulations of 1966 hold much promise for the future of the new-forged, more-precise, metallic socket.
2017-06-27
Rheumatoid Arthritis; Osteoarthritis; Post-traumatic Arthritis; Collagen Disorders; Avascular Necrosis; Traumatic Femoral Fractures; Nonunion of Femoral Fractures; Congenital Hip Dysplasia; Slipped Capital Femoral Epiphysis
[Intra-prosthetic dislocation of the Bousquet dual mobility socket].
Lecuire, F; Benareau, I; Rubini, J; Basso, M
2004-05-01
The Bousquet system is a dual mobility head-polyethylene polyethylene-metal cup socket. The polyethylene insert retaining the femoral head moves in the noncemented metal cup, increasing both mobility and stability. Between 1989 and 1997, seven cases of intra-prosthetic dislocation (six patients) were observed. The femoral head escaped from the polyethylene insert due to wear. On the average, this complication occurred ten Years after implantation. Risk of dislocation was high in six of the seven hips. All patients had a large sized stem screwed into the femoral neck. There was a characteristic radiological aspect with loss of the concentric head metal cup configuration. The head was applied against the upper wall of the metal cup. Surgical replacement was undertaken early in six patients by simply changing the insert without modifying the other stable components. Outcome remained good at three to eight Years. One patient underwent late surgery. The insert and the cup were replaced with a classical implant. Functional outcome was good but recurrent dislocation occurred. At mid-term, intra-prosthetic dislocation of dual mobility sockets appears to be exceptional. Dislocation results from polyethylene wear leading to failure of the insert to retain the prosthetic head. Wear is favored by direct phenomena (direct contact between neck and insert which can occur early if there is a small difference in the head and neck diameters) or indirect phenomena (factors limiting polyethylene metal-cup mobility). Surgical treatment is necessary. If undertaken early, replacement with a modular head and insert can be sufficient if the prosthesis has not loosened but the metal cup may have to be replaced in the event of metal-metal contact between the head and the cup. Prosthesis loosening, wear of the metal cup, or an identified cause of dislocation imply replacing the failing implants. Implantation of the dual mobility system is particularly interesting for patients with a high risk of dislocation or a chronically unstable hip prosthesis. Careful technique is required to reduce or retard the risk of intra-prosthetic dislocation. Intra-prosthetic dislocation of a dual mobility socket is an exceptional complication at mid-term. Surgical treatment is required but may be limited to simple insert replacement. Systematic use of this type of implant in young subjects must be carefully examined, but for us, the risk of dislocation does not outweigh the advantages of this original concept of dual mobility. This type of socket remains an useful preventive technique for high-risk hips or for curative treatment of recurrent dislocation.
Figueiredo-Pina, C G; Yan, Y; Neville, A; Fisher, J
2008-04-01
Hip simulator studies have been carried out extensively to understand and test artificial hip implants in vitro as an efficient alternative to obtaining long-term results in vivo. Recent studies have shown that a ceramic-on-metal material combination lowers the wear by up to 100 times in comparison with a typical metal-on-metal design. The reason for this reduction remains unclear and for this reason this study has undertaken simple tribometer tests to understand the fundamental material loss mechanisms in two material combinations: metal-on-metal and ceramic-on-ceramic. A simple-configuration reciprocating pin-on-plate wear study was performed under open-circuit potential (OCP) and with applied cathodic protection (CP) in a serum solution using two tribological couples: firstly, cobalt-chromium (Co-Cr) pins against Co-Cr plates; secondly, Co-Cr pins against alumina (Al2O3) plates. The pin and plate surfaces prior to and after testing were examined by profilometry and scanning electron microscopy. The results showed a marked reduction in wear when CP was applied, indicating that total material degradation under the OCP condition was attributed to corrosion processes. The substitution of the Co-Cr pin with an Al2O3 plate also resulted in a dramatic reduction in wear, probably due to the reduction in the corrosion-wear interactions between the tribological pair.
Brock, Timothy M; Sidaginamale, Raghavendra; Rushton, Steven; Nargol, Antoni V F; Bowsher, John G; Savisaar, Christina; Joyce, Tom J; Deehan, David J; Lord, James K; Langton, David J
2015-12-01
Taper wear at the head-neck junction is a possible cause of early failure in large head metal-on-metal (LH-MoM) hip replacements. We hypothesized that: (i) taper wear may be more pronounced in certain product designs; and (ii) an increased abductor moment arm may be protective. The tapers of 104 explanted LH-MoM hip replacements revised for adverse reaction to metal debris (ARMD) from a single manufacturer were analyzed for linear and volumetric wear using a co-ordinate measuring machine. The mated stem was a shorter 12/14, threaded trunnion (n=72) or a longer, smooth 11/13 trunnion (n=32). The abductor moment arm was calculated from pre-revision radiographs. Independent predictors of linear and volumetric wear included taper angle, stem type, and the horizontal moment arm. Tapers mated with the threaded 12/14 trunnion had significantly higher rates of volumetric wear (0.402 mm3/yr vs. 0.123 mm3/yr [t=-2.145, p=0.035]). There was a trend to larger abductor moment arms being protective (p=0.055). Design variation appears to play an important role in taper-trunnion junction failure. We recommend that surgeons bear these findings in mind when considering the use of a short, threaded trunnion with a cobalt-chromium head. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Heart failure after conventional metal-on-metal hip replacements
Gillam, Marianne H; Pratt, Nicole L; Inacio, Maria C S; Roughead, Elizabeth E; Shakib, Sepehr; Nicholls, Stephen J; Graves, Stephen E
2017-01-01
Background and purpose — It is unclear whether metal particles and ions produced by mechanical wear and corrosion of hip prostheses with metal-on-metal (MoM) bearings have systemic adverse effects on health. We compared the risk of heart failure in patients with conventional MoM total hip arthroplasty (THA) and in those with metal-on-polyethylene (MoP) THA. Patients and methods — We conducted a retrospective cohort study using data from the Australian Government Department of Veterans’ Affairs health claims database on patients who received conventional THA for osteoarthritis between 2004 and 2012. The MoM THAs were classified into groups: Articular Surface Replacement (ASR) XL Acetabular System, other large-head (LH) (> 32 mm) MoM, and small-head (SH) (≤ 32 mm) MoM. The primary outcome was hospitalization for heart failure after THA. Results — 4,019 patients with no history of heart failure were included (56% women). Men with an ASR XL THA had a higher rate of hospitalization for heart failure than men with MoP THA (hazard ratio (HR) = 3.2, 95% CI: 1.6–6.5). No statistically significant difference in the rate of heart failure was found with the other LH MoM or SH MoM compared to MoP in men. There was no statistically significant difference in heart failure rate between exposure groups in women. Interpretation — An association between ASR XL and hospitalization for heart failure was found in men. While causality between ASR XL and heart failure could not be established in this study, it highlights an urgent need for further studies to investigate the possibility of systemic effects associated with MoM THA. PMID:27759468
Huang, Phil; Lyons, Matt; O'Sullivan, Michael
2018-02-01
Despite the well-documented decline in the use of metal-on-metal (MoM) implants over the last decade, there are still controversies regarding whether all MoM implants are created equally. Complications such as elevated serum metal ion levels, aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL) and pseudotumours have all been well documented, but recent studies suggest increased risk of infection with MoM bearing surfaces. Most of these studies however have small patient numbers. The purpose of this study was to examine the cumulative incidence of revision for infection of MoM bearing surfaces in primary hip arthroplasty at a national and single-surgeon level. Data was collected from the Australian Orthopaedic Association National Joint Replacement Registry, which contains over 98% of all arthroplasties performed in Australia since 2001. The cumulative incidence of revision for infection was extracted at a national level and single-surgeon level. Two hundred seventy-six thousand eight hundred seventy-eight subjects were documented in the Australian registry. The 10-year cumulative percent revision for infection of MoM bearing surfaces in primary total hip replacement (THR) was 2.5% at a national level, compared to 0.8% for other bearing surfaces. The senior author contributed 1755 subjects with 7-year follow-up and a cumulative percent revision for infection of MoM bearing surfaces in primary THR of 36.9%, compared to 2.0% for other bearing surfaces. The cumulative percent of revision of MoM bearing surfaces is higher compared to other bearing surfaces; this is especially pronounced in cumulative percent of revision for infection. There was a higher cumulative percent of revision for infection in MoM bearings surfaces (in particular, large-head MoM) compared to other bearing surfaces at both the national and individual-surgeon level.
Reduction of metal artifacts: beam hardening and photon starvation effects
NASA Astrophysics Data System (ADS)
Yadava, Girijesh K.; Pal, Debashish; Hsieh, Jiang
2014-03-01
The presence of metal-artifacts in CT imaging can obscure relevant anatomy and interfere with disease diagnosis. The cause and occurrence of metal-artifacts are primarily due to beam hardening, scatter, partial volume and photon starvation; however, the contribution to the artifacts from each of them depends on the type of hardware. A comparison of CT images obtained with different metallic hardware in various applications, along with acquisition and reconstruction parameters, helps understand methods for reducing or overcoming such artifacts. In this work, a metal beam hardening correction (BHC) and a projection-completion based metal artifact reduction (MAR) algorithms were developed, and applied on phantom and clinical CT scans with various metallic implants. Stainless-steel and Titanium were used to model and correct for metal beam hardening effect. In the MAR algorithm, the corrupted projection samples are replaced by the combination of original projections and in-painted data obtained by forward projecting a prior image. The data included spine fixation screws, hip-implants, dental-filling, and body extremity fixations, covering range of clinically used metal implants. Comparison of BHC and MAR on different metallic implants was used to characterize dominant source of the artifacts, and conceivable methods to overcome those. Results of the study indicate that beam hardening could be a dominant source of artifact in many spine and extremity fixations, whereas dental and hip implants could be dominant source of photon starvation. The BHC algorithm could significantly improve image quality in CT scans with metallic screws, whereas MAR algorithm could alleviate artifacts in hip-implants and dentalfillings.
Hua, Xijin; Li, Junyan; Wang, Ling; Jin, Zhongmin; Wilcox, Ruth; Fisher, John
2014-01-01
Edge loading can negatively impact the biomechanics and long-term performance of hip replacements. Although edge loading has been widely investigated for hard-on-hard articulations, limited work has been conducted for hard-on-soft combinations. The aim of the present study was to investigate edge loading and its effect on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR). A three-dimensional finite element model was developed based on a modular MoP bearing. Different cup inclination angles and head lateral microseparation were modelled and their effect on the contact mechanics of the modular MoP hip replacement were examined. The results showed that lateral microseparation caused loading of the head on the rim of the cup, which produced substantial increases in the maximum von Mises stress in the polyethylene liner and the maximum contact pressure on both the articulating surface and backside surface of the liner. Plastic deformation of the liner was observed under both standard conditions and microseparation conditions, however, the maximum equivalent plastic strain in the liner under microseparation conditions of 2000 µm was predicted to be approximately six times that under standard conditions. The study has indicated that correct positioning the components to avoid edge loading is likely to be important clinically even for hard-on-soft bearings for THR. PMID:25218504
Green, Ben; Griffiths, Emily; Almond, Solomon
2017-01-24
There were at least 31,171 metal-on-metal (MoM) hip implants in the UK between 2003 and 2011. Some of these were subject to failure and widescale recalls and revisions followed. This is a presentation of ten cases (mean age 60 years) where we evaluated neuropsychiatric morbidity following metal-on-metal hip implant failure and revision. Implants were ASR total hip replacement (acetabular implant, taper sleeve adaptor and unipolar femoral implants) performed between 2005 and 2009. This case series describes, for the first time, neuropsychiatric complications after revision where there has been cobalt and chromium toxicity. Pre-revision surgery, nine patients had toxic levels of chromium and cobalt (mean level chromium 338 nmol/l, mean cobalt 669.4 nmol/l). Depression assessment showed 9 of 9 respondents fulfilled the BDI criteria for depression and 3 of these were being treated. 7 of 9 patients showing short term memory deficit with mean mini mental state examination score of 24.2. The normal population mean MMSE for this group would be expected to be 28 with <25 indicating possible dementia. We found neurocognitive and depressive deficits after cobalt and chromium metallosis following MoM implant failure. Larger studies of neurocognitive effects are indicated in this group. There may be implications for public health.
Andrews, Rebecca E; Shah, Karan M; Wilkinson, J Mark; Gartland, Alison
2011-10-01
Metal-on-metal hip replacement (MOMHR) using large diameter bearings has become a popular alternative to conventional total hip arthroplasty, but is associated with elevated local tissue and circulating levels of chromium (Cr) and cobalt (Co) ions that may affect bone health. We examined the effects of acute and chronic exposure to these metals on human osteoblast and osteoclast formation and function over a clinically relevant concentration range previously reported in serum and within hip synovial fluid in patients after MOMHR. SaOS-2 cells were cultured with Co(2+), Cr(3+) and Cr(6+) for 3 days after which an MTS assay was used to assess cell viability, for 13 days after which alkaline phosphatase and cell viability were assessed and for 21 days after which nodule formation was assessed. Monocytes were isolated from human peripheral blood and settled onto dentine disks then cultured with M-CSF and RANKL plus either Co(2+), Cr(3+) or Cr(6+) ions for 21 days from day 0 or between days 14 and 21. Cells were fixed and stained for TRAP and osteoclast number and amount of resorption per dentine disk determined. Co(2+) and Cr(3+) did not affect osteoblast survival or function over the clinically equivalent concentration range, whilst Cr(6+) reduced osteoblast survival and function at concentrations within the clinically equivalent serum range after MOMHR (IC(50) =2.2 μM). In contrast, osteoclasts were more sensitive to metal ions exposure. At serum levels a mild stimulatory effect on resorption in forming osteoclasts was found for Co(2+) and Cr(3+), whilst at higher serum and synovial equivalent concentrations, and with Cr(6+), a reduction in cell number and resorption was observed. Co(2+) and Cr(6+) within the clinical range reduced cell number and resorption in mature osteoclasts. Our data suggest that metal ions at equivalent concentrations to those found in MOMHR affect bone cell health and may contribute to the observed bone-related complications of these prostheses. Copyright © 2011 Elsevier Inc. All rights reserved.
Langton, David John; Sidaginamale, Raghavendra Prasad; Avery, Peter; Waller, Sue; Tank, Ghanshyabhai; Lord, James; Joyce, Thomas; Cooke, Nick; Logishetty, Raj; Nargol, Antoni Viraf Francis
2016-01-01
Objectives To determine risk factors for revision in patients implanted with a commonly used metal on metal (MoM) hip replacement. Design Retrospective cohort study in combination with a prospective national retrieval study (Northern Retrieval Registry (NRR)). Setting Combined orthopaedic unit in combination with the NRR. Participants All patients implanted with a DePuy Pinnacle MoM hip prostheses by the 2 senior authors were invited to attend for a review which included clinical examination, blood metal ion measurements, radiographs and targeted imaging. Explanted components underwent wear analysis using validated methodology and these results were compared with those obtained from the NRR. Results 489 MoM Pinnacle hips were implanted into 434 patients (243 females and 191 males). Of these, 352 patients attended the MoM recall clinics. 64 patients had died during the study period. For the purposes of survival analysis, non-attendees were assumed to have well-functioning prostheses. The mean follow-up of the cohort as a whole was 89 months. 71 hips were revised. Prosthetic survival for the whole cohort was 83.6% (79.9–87.3) at 9 years. The majority of explanted devices exhibited signs of taper junction failure. Risk factors for revision were bilateral MoM prostheses, smaller Pinnacle liners, and implantation in 2006 and later years. A significant number of devices were found to be manufactured out of their specifications. This was confirmed with analysis of the wider data set from the NRR. Conclusions This device was found to have an unacceptably high revision rate. Bilateral prostheses, those implanted into female patients and devices implanted in later years were found to be at greater risk. A significant number of explanted components were found to be manufactured with bearing diameters outside of the manufacturer's stated tolerances. Our findings highlight the clinical importance of hitherto unrecognised variations in device production. PMID:27130159
Outcomes of a metal-on-metal total hip replacement system.
Matharu, G S; Theivendran, K; Pynsent, P B; Jeys, L; Pearson, A M; Dunlop, D J
2014-10-01
High short-term failure rates have been reported for a variety of metal-on-metal (MoM) total hip replacements (THRs) owing to adverse reactions to metal debris (ARMD). This has led to the withdrawal of certain poorly performing THRs. This study analysed the outcomes of a MoM THR system. Between 2004 and 2010, 578 uncemented MoM THRs (511 patients, mean age: 60.0 years) were implanted at one specialist centre. The THR system used consisted of the Corail(®) stem, Pinnacle(®) cup, Ultamet(®) liner and Articul/eze(®) femoral head (all DePuy, Leeds, UK). All patients were recalled for clinical review with imaging performed as necessary. The mean follow-up duration was 5.0 years (range: 1.0-9.1 years). Overall, 39 hips (6.7%) in 38 patients (all 36 mm femoral head size) underwent revision at a mean time of 3.5 years (range: 0.01-8.3 years) from the index THR with 30 revisions (77%) performed in women. The cumulative eight-year survival rate for all THRs was 88.9% (95% confidence interval [CI]: 78.5-93.4%), with no difference (p=0.053) between male (95.2%, 95% CI: 84.2-98.7%) and female patients (85.3%, 95% CI: 70.2-92.1%) at eight years. Seventeen revisions (44%) were performed for ARMD. There was no significant difference in absolute postoperative Oxford hip scores between men and women (p=0.608). The mean acetabular inclination in unrevised THRs was 44.0°. Forty-seven non-revised THRs (8.7%) had blood metal ion concentrations above recommended thresholds (seven had periprosthetic effusions). Although this MoM THR system has not failed as dramatically as other similar designs, we recommend against continued use and advise regular clinical surveillance to identify ARMD early.
Artifact Reduction in X-Ray CT Images of Al-Steel-Perspex Specimens Mimicking a Hip Prosthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madhogarhia, Manish; Munshi, P.; Lukose, Sijo
2008-09-26
X-ray Computed Tomography (CT) is a relatively new technique developed in the late 1970's, which enables the nondestructive visualization of the internal structure of objects. Beam hardening caused by the polychromatic spectrum is an important problem in X-ray computed tomography (X-CT). It leads to various artifacts in reconstruction images and reduces image quality. In the present work we are considering the Artifact Reduction in Total Hip Prosthesis CT Scan which is a problem of medical imaging. We are trying to reduce the cupping artifact induced by beam hardening as well as metal artifact as they exist in the CT scanmore » of a human hip after the femur is replaced by a metal implant. The correction method for beam hardening used here is based on a previous work. Simulation study for the present problem includes a phantom consisting of mild steel, aluminium and perspex mimicking the photon attenuation properties of a hum hip cross section with metal implant.« less
The influence of resting periods on friction in the artificial hip.
Nassutt, Roman; Wimmer, Markus A; Schneider, Erich; Morlock, Michael M
2003-02-01
Insufficient tribologic performance of total joint components is a major cause of prostheses failure. Wear has been studied intensively using testing machines that apply continuous motions. Human locomotion, however, is not well represented by continuous motions alone. Singular events and resting periods are a substantial part of daily activities. Resting does influence adhesion in the artificial joint with possible effects on friction, wear, and loosening. The current study evaluated the effects of resting on the frictional properties of hip prosthesis components. The activity measurements of 32 patients with artificial hip replacements were analyzed for resting durations of the hip. A pin-on-ball screening device was used to determine friction after characteristic resting periods and during continuous oscillating motion. All common articulation pairings were investigated. Prolonged and frequent resting periods of the hip were found for the patients. Initial friction increased with increasing resting duration for all tested materials (between 41% and 191%). The metal-on-metal articulations showed the highest friction level (0.098 for sliding) and the highest increase (191%) in friction with resting duration (0.285 after resting periods of 60 seconds). A high static frictional moment after resting periods might present a risk for aseptic implant loosening. Therefore, large head diameters of metal-on-metal joints should be used with caution, especially when additional unfavorable risk factors such as obesity, weak bone-implant interface, or high activity level are present.
Gaillard, Melissa D; Gross, Thomas P
2017-06-02
The Nordic registry reports patients under 50 years old with total hip replacements realize only 83% 10-year implant survivorship. These results do not meet the 95% 10-year survivorship guideline posed by the UK's National Institute for Health and Care Excellence (NICE) in 2014. The purpose of this study is threefold: First, we evaluate if metal-on-metal hip resurfacing arthroplasty meets these high standards in younger patients. Next, we compare outcomes between age groups to determine if younger patients are at higher risk for revision or complication. Lastly, we assess how outcomes between sexes changed over time. From January 2001 to August 2013, a single surgeon performed 1285 metal-on-metal hip resurfacings in patients younger than 50 years old. We compared these to an older cohort matched by sex and BMI. Kaplan-Meier implant survivorship was 96.5% at 10 years and 96.3% at 12 years; this did not differ from implant survivorship for older patients. Implant survivorship at 12 years was 98 and 93% for younger men and women, respectively; survivorship for women improved from 93 to 97% by using exclusively Biomet implants. There were four (0.3%) adverse wear-related failures, with no instances of wear or problematic ion levels since 2009. Activity scores improved from 5.4 ± 2.3 preoperatively to 7.6 ± 1.9 postoperatively (p < 0.0001), with 43% of patients reporting a UCLA activity score of 9 or 10. Hip resurfacing exceeds the stricter 2014 NICE survivorship criteria independently in men and women even when performed on patients under 50 years old.
Ten-Year Outcome of Serum Metal Ion Levels After Primary Total Hip Arthroplasty
Levine, Brett R.; Hsu, Andrew R.; Skipor, Anastasia K.; Hallab, Nadim J.; Paprosky, Wayne G.; Galante, Jorge O.; Jacobs, Joshua J.
2013-01-01
Abstract: We previously reported on the metal ion concentrations of cobalt, chromium, and titanium that were found in the serum of patients three years after they had undergone primary total hip arthroplasty as compared with the concentrations found in the serum of control patients who did not have an implant. This study is a concise update on the serum metal levels found in a cohort of these patients ten years after the time of hip implantation. Of the original seventy-five subjects, metal ion levels were available for forty patients (53%). Ten patients (hybrid group) had received a hybrid total hip replacement that consisted of a modular cobalt-alloy femoral stem with a cobalt-alloy femoral head that had been inserted with cement and a titanium acetabular socket that had been inserted without cement. Nine patients (cobalt-chromium [CoCr] group) had received an implant with an extensively porous-coated modular cobalt-alloy femoral stem and femoral head along with a titanium acetabular socket; the femoral and acetabular components had each been inserted without cement. Eight patients (titanium group) had undergone insertion of a proximally porous-coated modular titanium-alloy femoral stem with a cobalt-alloy femoral head and a titanium acetabular socket; the femoral and acetabular components had each been inserted without cement. Thirteen patients (control group) from the original control group of patients who had not received an implant served as control subjects. Serum metal levels were measured with use of high-resolution sector field inductively coupled plasma mass spectrometry. The hybrid total hip arthroplasty group had mean cobalt levels that were 3.2 times higher at 120 months than they were at baseline, and the cobalt levels in that group were significantly higher than those in the titanium total hip arthroplasty group at thirty-six, sixty, eighty-four, ninety-six, and 120 months (p < 0.01). The hybrid group had mean chromium levels that were 3.9 times higher at 120 months than they were at baseline, and the CoCr total hip arthroplasty group had chromium levels that were 3.6 times higher at 120 months than they were at baseline. The serum titanium levels were higher in the titanium group at all follow-up time intervals as compared with the levels in all other groups, and the level in the titanium group at 120 months was eighteen times higher than it was at baseline (p < 0.01). Patients with well-functioning primary metal-on-polyethylene total hip replacements had elevated serum metal levels for as many as ten years postoperatively. Furthermore, metal release at the modular femoral head-neck junctions, rather than passive dissolution from porous ingrowth surfaces, was likely the dominant source of serum cobalt and chromium. Level of Evidence: Therapeutic Level II. See Instructions for Authors for a complete description of levels of evidence. PMID:23515985
Langton, David J; Sidaginamale, Raghavendra P; Joyce, Thomas J; Natu, Shonali; Blain, Peter; Jefferson, Robert Drysdale; Rushton, Stephen; Nargol, Antoni V F
2013-01-01
Objective To determine whether elevated blood cobalt (Co) concentrations are associated with early failure of metal-on-metal (MoM) hip resurfacings secondary to adverse reaction to metal debris (ARMD). Design Cohort study. Setting Single centre orthopaedic unit. Participants Following the identification of complications potentially related to metal wear debris, a blood metal ion screening programme was instigated at our unit in 2007 for all patients with Articular Surface Replacement (ASR) and Birmingham MoM hip resurfacings. Patients were followed annually unless symptoms presented earlier. Symptomatic patients were investigated with ultrasound scan and joint aspiration. The clinical course of all 278 patients with ‘no pain’ or ‘slight/occasional’ pain and a Harris Hip Score greater than or equal to 95 at the time of venesection were documented. A retrospective analysis was subsequently conducted using mixed effect modelling to investigate the temporal pattern of blood Co levels in the patients and survival analysis to investigate the potential role of case demographics and blood Co levels as risk factors for subsequent failure secondary to ARMD. Results Blood Co concentration was a positive and significant risk factor (z=8.44, p=2×10–16) for joint failure, as was the device, where the Birmingham Hip Resurfacing posed a significantly reduced risk for revision by 89% (z=−3.445, p=0.00005 (95% CI on risk 62 to 97)). Analysis using Cox-proportional hazards models indicated that men had a 66% lower risk of joint failure than women (z=−2.29419, p=0.0218, (95% CI on risk reduction 23 to 89)). Conclusions The results suggest that elevated blood metal ion concentrations are associated with early failure of MoM devices secondary to adverse reactions to metal debris. Co concentrations greater than 20 µg/l are frequently associated with metal staining of tissues and the development of osteolysis. Development of soft tissue damage appears to be more complex with females and patients with ASR devices seemingly more at risk when exposed to equivalent doses of metal debris. PMID:23482990
Levašič, Vesna; Milošev, Ingrid; Zadnik, Vesna
2018-01-01
Background and purpose Despite the increasing number of total hip replacements (THRs), their systemic influence is still not known. We have studied the influence of specific features of THRs—the bearing surface, the use of bone cement and the material of the stem—on the cancer incidence. Patients and methods In a retrospective cohort study we identified 8,343 patients with THRs performed at Valdoltra Hospital from September 1, 1997 to December 31, 2009. Patient data were linked to national cancer and population registries. The standardized incidence ratios (SIR) and Poisson regression relative risks (RR) were calculated for all and specific cancers. Results General cancer risk in our cohort was comparable to the population risk. Comparing with population, the risk of prostate cancer was statistically significantly higher in patients with metal-on-metal bearings (SIR =1.35); with metal-on-polyethylene bearings (SIR =1.30), with non-cemented THRs (SIR =1.40), and with titanium alloy THRs (SIR =1.41). In these last 3 groups there was a lower risk of hematopoietic tumors (SIR =0.69; 0.66 and 0.66 respectively). Risk of kidney cancer was significantly higher in the non-metal-on-metal, non-cemented, and titanium alloy groups (SIR =1.30; 1.46 and 1.41 respectively). Risk of colorectal and lung cancer was significantly lower in the investigated cohort (SIR =0.82 and 0.83, respectively). Risk for all cancers combined as well as for prostate and skin cancer, shown by Poisson analysis, was higher in the metal-on-metal group compared with non-metal-on-metal group (RR =1.56; 2.02 and 1.92, respectively). Interpretation Some associations were found between the THRs’ features, especially a positive association between metal-on-metal bearings, and specific cancers. PMID:29388497
Wong, James Min-Leong; Liu, Yen-Liang; Graves, Stephen; de Steiger, Richard
2015-11-01
More than 15,000 primary hip resurfacing arthroplasties have been recorded by the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) with 884 primary procedures requiring revision for reasons other than infection, a cumulative percent revision rate at 12 years of 11%. However, few studies have reported the survivorship of these revision procedures. (1) What is the cumulative percent rerevision rate for revision procedures for failed hip resurfacings? (2) Is there a difference in rerevision rate among different types of revision or bearing surfaces? The AOANJRR collects data on all primary and revision hip joint arthroplasties performed in Australia and after verification against health department data, checking of unmatched procedures, and subsequent retrieval of unreported procedures is able to obtain an almost complete data set relating to hip arthroplasty in Australia. Revision procedures are linked to the known primary hip arthroplasty. There were 15,360 primary resurfacing hip arthroplasties recorded of which 884 had undergone revision and this was the cohort available to study. The types of revisions were acetabular only, femoral only, or revision of both acetabular and femoral components. With the exception of the acetabular-only revisions, all revisions converted hip resurfacing arthroplasties to conventional (stemmed) total hip arthroplasties (THAs). All initial revisions for infection were excluded. The survivorship of the different types of revisions and that of the different bearing surfaces used were estimated using the Kaplan-Meier method and compared using Cox proportional hazard models. Cumulative percent revision was calculated by determining the complement of the Kaplan-Meier survivorship function at that time multiplied by 100. Of the 884 revisions recorded, 102 underwent further revision, a cumulative percent rerevision at 10 years of 26% (95% confidence interval, 19.6-33.5). There was no difference in the rate of rerevision between acetabular revision and combined femoral and acetabular revision (hazard ratio [HR], 1.06 [0.47-2], p = 0.888), femoral revision and combined femoral and acetabular revision (HR, 1.00 [0.65-2], p = 0.987), and acetabular revision and femoral revision (HR, 1.06 [0.47-2], p = 0.893). There was no difference in the rate of rerevision when comparing different bearing surfaces (metal-on-metal versus ceramic-on-ceramic HR, 0.46 [0.16-1.29], p = 0.141; metal-on-metal versus ceramic-on-crosslinked polyethylene HR, 0.51 [0.15-1.76], p = 0.285; metal-on-metal versus metal-on-crosslinked polyethylene HR, 0.62 [0.20-1.89], p = 0.399; and metal-on-metal versus oxinium-on-crosslinked polyethylene HR, 0.53 [0.14-2.05], p = 0.356). Revision of a primary hip resurfacing arthroplasty is associated with a high risk of rerevision. This study may help surgeons guide their patients about the outcomes in the longer term after the first revision of hip resurfacing arthroplasty. Level III, therapeutic study.
Steinberg, Julia; Shah, Karan M.; Gartland, Alison; Zeggini, Eleftheria
2017-01-01
ABSTRACT Metal‐on‐metal (MOM) hip resurfacing has recently been a popular prosthesis choice for the treatment of symptomatic arthritis, but results in the release of cobalt and chromium ions into the circulation that can be associated with adverse clinical effects. The mechanism underlying these effects remains unclear. While chromosomal aneuploidy and translocations are associated with this exposure, the presence of subtle structural epigenetic modifications in patients with MOM joint replacements remains unexplored. Consequently, we analyzed whole blood DNA methylation in 34 OA patients with MOM hip resurfacing (MOM HR) compared to 34 OA patients with non‐MOM total hip replacements (non‐MOM THR), using the genome‐wide Illumina HumanMethylation 450k BeadChip. No probes showed differential methylation significant at 5% false‐discovery rate (FDR). We also tested association of probe methylation levels with blood chromium and cobalt levels directly; there were no significant associations at 5% FDR. Finally, we used the “epigenetic clock” to compare estimated to actual age at sample for all individuals. We found no significant difference between MOM HR and non‐MOM THR, and no correlation of age acceleration with blood metal levels. Our results suggest the absence of large methylation differences systemically following metal exposure, however, larger sample sizes will be required to identify potential small effects. Any DNA methylation changes that may occur in the local periprosthetic tissues remain to be elucidated. © 2017 The Authors. Orthopaedic Research Society. Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:2323–2328, 2017. PMID:28098396
Simultaneous measurement of friction and wear in hip simulators.
Haider, Hani; Weisenburger, Joel N; Garvin, Kevin L
2016-05-01
We propose and have evaluated a method to measure hip friction during wear testing on a popular multi-station hip simulator. A 6-degree-of-freedom load cell underneath the specimen sensed forces and torques during implant wear testing of simulated walking. This included internal-external and adduction-abduction rotations which are often neglected during friction testing on pendulum-type machines. Robust mathematical analysis and data processing provided friction estimates in three simultaneous orthogonal rotations, over extended multi-million cycle wear tests. We tested various bearing couples including metal-on-plastic, ceramic-on-plastic, and metal-on-metal material couples. In one test series, new and intentionally scratched CoCrMo 40-mm-diameter femoral heads were tested against conventional ultrahigh-molecular-weight polyethylene, highly cross-linked, and highly cross-linked with vitamin E versions. The scratching significantly increased friction and doubled the wear of all groups. Before scratching, friction levels for the aforementioned plastic groups were 0.056 ± 0.0060, 0.062 ± 0.0080, and 0.070 ± 0.0045, respectively, but after scratching increased to 0.088 ± 0.018, 0.076 ± 0.0066, and 0.082 ± 0.0049, respectively, all statistically significant increases (p = 0.00059, 0.00005, 0.0115, respectively). In another test series of 44-mm femoral head diameter hips, metal-on-plastic hips with conventional ultrahigh-molecular-weight polyethylene showed the lowest friction at 0.045 ± 0.0085, followed by highly cross-linked with 0.046 ± 0.0035 (not significantly different). In a ceramic-on-plastic design with conventional ultrahigh-molecular-weight polyethylene, higher friction 0.079 ± 0.0070 was measured likely due to that ceramic surface being rougher than usual. Metal-on-metal hips were compared without and with a TiN coating, resulting in 0.049 ± 0.014 and 0.097 ± 0.020 friction factors, respectively (statistically significant, p < 0.001), and the coating wore away on all coated hips eventually. Higher friction mostly correlated with higher wear or damage to femoral heads or implant coatings, except for the highly cross-linked wear resistant ultrahigh-molecular-weight polyethylene which had slightly higher friction, confirming the same finding in other independent studies. This type of friction measurements can help screen for clamping and elevated wear of metal-on-metal and resurfacing total hip replacements, surgical malpositioning, and abraded and otherwise damaged surfaces. © IMechE 2016.
Pazzaglia, U E; Apostoli, P; Congiu, T; Catalani, S; Marchese, M; Zarattini, G
2011-09-01
A patient with a total hip replacement developed optic, acoustic and peripheral neuropathy from metal ions intoxication, due to the wear products released from the prosthesis. Subsequently the kinetics of the metal ions was studied. Massive wear and acute intoxication allowed a study of the metal ions kinetics and of EDTA treatment. Plasma and other organic fluids were saturated by each of the metal ions released from the exposed surface according to the solubility of each ion; a larger fraction of Co ions was bound within red cells, while the plasmatic fraction appeared more movable. In a patient with a prosthesis subjected to wear, the ions released are from the prosthetic and from the debris surface (spread in the body). The latter is a function of the number and size of particles. Revision of the prosthesis from the point of view of the metal ions kinetics corresponded to a reduction of the releasing surface because of debris washed out by irrigation and tissue excision; however, the metal particles spread by lymphatic circulation continued to release ions even though the source of wear had been removed. Early diagnosis of high metal wear can be ascertained with mass spectrometry and after revision high levels of metal ions can only be reduced with repeated chelating treatment. It is preferable not to revise fractured ceramic components with a polyethylene-metal articulation.
Metal-on-Metal Hip Retrieval Analysis: A Case Report
Pace, Thomas B.; Rusaw, Kara A.; Minette, Lawrence J.; Shirley, Brayton R.; Snider, Rebecca G.; DesJardins, John D.
2013-01-01
This is a case report involving a single case with severe bone and soft tissue destruction in a young male patient with a 10-year-metal on-metal total hip arthroplasty. Following complete aseptic erosion of the affected hip greater trochanter and abductor muscles, the hip was revised for recurrent instability. Histological examination of the patient's periprosthetic tissues, serological studies, and review of recent medical reports of similar cases were used to support an explanation of the destructive process and better contribute to our understanding of human reaction to metal debris in some patients following metal-on-metal hip arthroplasty. PMID:23840999
Hussey, Daniel K; Madanat, Rami; Donahue, Gabrielle S; Rolfson, Ola; Muratoglu, Orhun K; Malchau, Henrik
2016-01-01
Background and purpose Blood metal ion levels can be an indicator for detecting implant failure in metal-on-metal (MoM) hip arthroplasties. Little is known about the effect of bilateral MoM implants on metal ion levels and patient-reported outcomes. We compared unilateral patients and bilateral patients with either an ASR hip resurfacing (HR) or an ASR XL total hip replacement (THR) and investigated whether cobalt or chromium was associated with a broad spectrum of patient outcomes. Patients and methods From a registry of 1,328 patients enrolled in a multicenter prospective follow-up of the ASR Hip System, which was recalled in 2010, we analyzed data from 659 patients (311 HR, 348 THR) who met our inclusion criteria. Cobalt and chromium blood metal ion levels were measured and a 21-item patient-reported outcome measures (PROMs) questionnaire was used mean 6 years after index surgery. Results Using a minimal threshold of ≥7 ppb, elevated chromium ion levels were found to be associated with worse health-related quality of life (HRQoL) (p < 0.05) and hip function (p < 0.05) in women. These associations were not observed in men. Patients with a unilateral ASR HR had lower levels of cobalt ions than bilateral ASR HR patients (p < 0.001) but similar levels of chromium ions (p = 0.09). Unilateral ASR XL THR patients had lower chromium and cobalt ion levels (p < 0.005) than bilateral ASR XL THR patients. Interpretation Chromium ion levels of ≥7 ppb were associated with reduced functional outcomes in female MoM patients. PMID:27459602
Connelly, James W; Galea, Vincent P; Laaksonen, Inari; Matuszak, Sean J; Madanat, Rami; Muratoglu, Orhun; Malchau, Henrik
2018-04-19
The purpose of this study was to identify which patient and clinical factors are predictive of adverse local tissue reaction (ALTR) and to use these factors to create a highly sensitive algorithm for indicating metal artifact reduction sequence magnetic resonance imaging (MARS-MRI) in Articular Surface Replacement (ASR) XL total hip arthroplasty patients. Our secondary aim was to compare our algorithm to existing national guidelines on when to take MARS-MRI in metal-on-metal total hip arthroplasty patients. The study consisted of 137 patients treated with unilateral ASR XL implants from a prospective, multicenter study. Patients underwent MARS-MRI regardless of clinical presentation at a mean of 6.2 (range, 3.3-10.4) years from surgery. Univariate and multivariate analyses were conducted to determine which variables were predictive of ALTR. Predictors were used to create an algorithm to indicate MARS-MRI. Finally, we compared our algorithm's ability to detect ALTR to existing guidelines. We found a visual analog scale pain score ≥2 (odds ratio [OR] = 2.53; P = .023), high blood cobalt (OR = 1.05; P = .023), and male gender (OR = 2.37; P = .034) to be significant predictors of ALTR presence in our cohort. The resultant algorithm achieved 86.4% sensitivity and 60.2% specificity in detecting ALTR within our cohort. Our algorithm had the highest area under the curve and was the only guideline that was significantly predictive of ALTR (P = .014). Our algorithm including patient-reported pain and sex-specific cutoffs for blood cobalt levels could predict ALTR and indicate MARS-MRI in our cohort of ASR XL metal-on-metal patients with high sensitivity. Level II, diagnostic study. Copyright © 2018 Elsevier Inc. All rights reserved.
Tribolayer Formation in a Metal-on-Metal (MoM) Hip Joint: An Electrochemical Investigation
Mathew, MT; Nagelli, C; Pourzal, R; Fischer, A; Laurent, MP; Jacobs, JJ; Wimmer, MA
2013-01-01
The demand for total hip replacement (THR) surgery is increasing in the younger population due to faster rehabilitation and more complete restoration of function. Up to 2009, metal-on-metal (MoM) hip joint bearings were a popular choice due to their design flexibility, post-operative stability and relatively low wear rates. The main wear mechanisms that occur along the bearing surface of MoM joints are tribochemical reactions that deposit a mixture of wear debris, metal ions and organic matrix of decomposed proteins known as a tribolayer. No in-depth electrochemical studies have been reported on the structure and characteristics of this tribolayer or about the parameters involved in its formation. In this study, we conducted an electrochemical investigation of different surfaces (bulk-like: control, nano-crystalline: new implant and tribolayer surface: retrieved implant) made out of two commonly used hip CoCrMo alloys (high-carbon and low-carbon). As per ASTM standard, cyclic polarization tests and electrochemical impedance spectroscopy tests were conducted. The results obtained from electrochemical parameters for different surfaces clearly indicated a reduction in corrosion for the tribolayer surface (Icorr: 0.76 μA/cm2). Further, polarization resistance (Rp:2.39±0.60MΩ/cm2) and capacitance (Cdl:15.20±0.75 μF/cm2) indicated variation in corrosion kinetics for the tribolayer surface, that attributed to its structure and stability in a simulated body environment. PMID:24099949
Yang, Li-qing; Li, Xi; Fu, Qin; Wang, Cheng
2013-07-01
To retrospectively study early therapeutic effects of the ceramics to ceramics prosthesis design in treating hip disease. From October 2007 to September 2010, 42 patients (44 hips) with hip disease underwent replacement of total hip. Hip prosthesis designs included the Pinnacle ceramics to ceramics and the Duraloc metal to polyethylene,produced by DePuy Company, all were non-bone cement type of artificial hip joint. Twenty patients (22 hips) were performed with ceramics to ceramics total hip prosthesis (CoC group, there were 12 males and 8 females, aged from 21 to 49 years) and 22 patients (22 hips) were performed with metal to polyethylene total hip prosthesis (MoP group, there were 13 males and 9 females, aged from 42 to 55 years). All the surgical approachs were posterolateral, and the routine anticoagulation and the corresponding functional exercise were performed after operation. The follow-up time was 6 months at least including clinical and radiographic observation. Measured the motion of joint and evaluated the function of hip joint according to Harris classification. All clinical effects were satisfactory and no dislocation ,loosening,infection, deep venous thrombosis and other complications occurred. There was no statistical significance in Harris scoring and the motion of joint between two groups before and after operation (P>0.05). The clinical effect of ceramics to ceramics prosthesis design in improving clinical symptoms and the motion of joint is coordinate with metal to polyethylene total hip prosthesis, however, its advantages and long-term efficacy need further observing. The ceramics to ceramics prosthesis design may be a good choice for the young patients with hip disease because of its good wear resistance.
21 CFR 888.3300 - Hip joint metal constrained cemented or uncemented prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hip joint metal constrained cemented or uncemented... metal constrained cemented or uncemented prosthesis. (a) Identification. A hip joint metal constrained... Administration on or before December 26, 1996 for any hip joint metal constrained cemented or uncemented...
Russell, R C; Ghassemi, A; Dorrell, J H; Powles, D P
2009-08-01
The purpose of this study was to evaluate the mid- to long-term survivorship of Bimetric cementless total hip replacement and assess how it is affected by the acetabular design. This was a retrospective analysis of 127 Bimetric cementless total hip replacements in 110 patients with a follow-up of 7-18 years. A single design stem and three different cementless metal-backed acetabular designs were used. Patients were assessed clinically using the Harris hip score and radiologically by independent review of current hip radiographs. There was only one case of aseptic loosening of the femoral stem. The earliest acetabular design showed a high failure rate whilst the latter two designs showed a 96% survivorship at a mean of 9.5 years. We conclude that a combination of the bimetric stem with either of the latter acetabular cup designs has a good mid- to long-term performance.
The effects on bone cells of metal ions released from orthopaedic implants. A review
Sansone, Valerio; Pagani, Davide; Melato, Marco
2013-01-01
Summary The increasing use of orthopedic implants and, in particular, of hip and knee joint replacements for young and active patients, has stimulated interest and concern regarding the chronic, long-term effects of the materials used. This review focuses on the current knowledge of the adverse biologic reactions to metal particles released from orthopaedic implants in vivo and in vitro. More specifically, the purpose of this article is to provide an overview of the current literature about the adverse effects of metal particles on bone cells and peri-implant bone. PMID:23858309
Importance of preclinical evaluation of wear in hip implant designs using simulator machines.
Trommer, Rafael Mello; Maru, Márcia Marie
2017-01-01
Total hip arthroplasty (THA) is a surgical procedure that involves the replacement of the damaged joint of the hip by an artificial device. Despite the recognized clinical success of hip implants, wear of the articulating surfaces remains as one of the critical issues influencing performance. Common material combinations used in hip designs comprise metal-on-polymer (MoP), ceramic-on-polymer (CoP), metal-on-metal (MoM), and ceramic-on-ceramic (CoC). However, when the design of the hip implant is concerned besides the materials used, several parameters can influence its wear performance. In this scenario, where the safety and efficacy for the patient are the main issues, it is fundamental to evaluate and predict the wear rate of the hip implant design before its use in THA. This is one of the issues that should be taken into account in the preclinical evaluation step of the product, in which simulated laboratory tests are necessary. However, it is fundamental that the applied motions and loads can reproduce the wear mechanisms physiologically observed in the patient. To replicate the in vivo angular displacements and loadings, special machines known as joint simulators are employed. This article focuses on the main characteristics related to the wear simulation of hip implants using mechanical simulators, giving information to surgeons, researchers, regulatory bodies, etc., about the importance of preclinical wear evaluation. A critical analysis is performed on the differences in the principles of operation of simulators and their effects on the final results, and about future trends in wear simulation.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/metal semi-constrained, with a... Devices § 888.3320 Hip joint metal/metal semi-constrained, with a cemented acetabular component, prosthesis. (a) Identification. A hip joint metal/metal semi-constrained, with a cemented acetabular...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hip joint metal/metal semi-constrained, with a... Devices § 888.3320 Hip joint metal/metal semi-constrained, with a cemented acetabular component, prosthesis. (a) Identification. A hip joint metal/metal semi-constrained, with a cemented acetabular...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/polymer/metal semi-constrained... Devices § 888.3358 Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis. (a) Identification. A hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis is a device...
Measurement of small lesions near metallic implants with mega-voltage cone beam CT
NASA Astrophysics Data System (ADS)
Grigorescu, Violeta; Prevrhal, Sven; Pouliot, Jean
2008-03-01
Metallic objects severely limit diagnostic CT imaging because of their high X-ray attenuation in the diagnostic energy range. In contrast, radiation therapy linear accelerators now offer CT imaging with X-ray energies in the megavolt range, where the attenuation coefficients of metals are significantly lower. We hypothesized that Mega electron-Voltage Cone-Beam CT (MVCT) implemented on a radiation therapy linear accelerator can detect and quantify small features in the vicinity of metallic implants with accuracy comparable to clinical Kilo electron-Voltage CT (KVCT) for imaging. Our test application was detection of osteolytic lesions formed near the metallic stem of a hip prosthesis, a condition of severe concern in hip replacement surgery. Both MVCT and KVCT were used to image a phantom containing simulated osteolytic bone lesions centered around a Chrome-Cobalt hip prosthesis stem with hemispherical lesions with sizes and densities ranging from 0.5 to 4 mm radius and 0 to 500 mg•cm -3, respectively. Images for both modalities were visually graded to establish lower limits of lesion visibility as a function of their size. Lesion volumes and mean density were determined and compared to reference values. Volume determination errors were reduced from 34%, on KVCT, to 20% for all lesions on MVCT, and density determination errors were reduced from 71% on KVCT to 10% on MVCT. Localization and quantification of lesions was improved with MVCT imaging. MVCT offers a viable alternative to clinical CT in cases where accurate 3D imaging of small features near metallic hardware is critical. These results need to be extended to other metallic objects of different composition and geometry.
Hahn, Michael; Busse, Björn; Procop, Mathias; Zustin, Jozef; Amling, Michael; Katzer, Alexander
2017-10-01
Most resurfacing systems are manufactured from cobalt-chromium alloys with metal-on-metal (MoM) bearing couples. Because the quantity of particulate metal and corrosion products which can be released into the periprosthetic milieu is greater in MoM bearings than in metal-on-polyethylene (MoP) bearings, it is hypothesized that the quantity and distribution of debris released by the MoM components induce a compositional change in the periprosthetic bone. To determine the validity of this claim, nondestructive µ-X-ray fluorescence analysis was carried out on undecalcified histological samples from 13 femoral heads which had undergone surface replacement. These samples were extracted from the patients after gradient time points due to required revision surgery. Samples from nonintervened femoral heads as well as from a MoP resurfaced implant served as controls. Light microscopy and µ-X-ray fluorescence analyses revealed that cobalt debris was found not only in the soft tissue around the prosthesis and the bone marrow, but also in the mineralized bone tissue. Mineralized bone exposed to surface replacements showed significant increases in cobalt concentrations in comparison with control specimens without an implant. A maximum cobalt concentration in mineralized hard tissue of up to 380 ppm was detected as early as 2 years after implantation. Values of this magnitude are not found in implants with a MoP surface bearing until a lifetime of more than 20 years. This study demonstrates that hip resurfacing implants with MoM bearings present a potential long-term health risk due to rapid cobalt ion accumulation in periprosthetic hard tissue. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1855-1862, 2017. © 2016 Wiley Periodicals, Inc.
Sessa, Giuseppe; Testa, Gianluca; Gioitta Iachino, Salvatore; Costarella, Luciano; Puma Pagliarello, Calogero; Ferrante, Margherita; Grasso, Alfina; Pavone, Vito
2018-05-01
Beginning in 2008, metal-on-metal prostheses have been in the spotlight owing to much higher revision rates than expected. Adverse local tissue reactions have been well described in the literature as potential complications. Between 2012 and 2013, 13 patients with metal-on-metal total hip replacements were evaluated clinically and radiologically and with laboratory samples. The same tests were repeated between 2015 and 2016 on eight patients to assess any changes. In the laboratory assessment, we searched for chromium, cobalt, molybdenum, and nickel in blood and urine samples over 24 h. Clinical assessment has shown good score in all patients except one. On a second examination, between 2015 and 2016, all patients obtained results similar to those obtained in the first assessment, except a patient, who reported a recent fall. In the radiological assessment between 2012 and 2013, results were optimal, apart from a case of aseptic mobilization. The patients reassessed 3 years after the first examination showed radiological results similar to those previously obtained, apart from a patient, who showed signals of mobilization. Metal levels found in their blood decreased in most cases after 3 years. Urine levels of nickel increased in five subjects, and chromium levels increased in four, but levels of cobalt and molybdenum decreased in four patients. It could be hypothesized that the decreasing trend of metal ion levels is associated with a stable wear status. On the contrary, a progressive increase in metal ion levels must be considered as early proof of implant loosening.
21 CFR 888.3390 - Hip joint femoral (hemi-hip) metal/polymer cemented or uncemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint femoral (hemi-hip) metal/polymer... § 888.3390 Hip joint femoral (hemi-hip) metal/polymer cemented or uncemented prosthesis. (a) Identification. A hip joint femoral (hemi-hip) metal/polymer cemented or uncemented prosthesis is a two-part...
Van Der Straeten, Catherine; De Smet, Koen A
2016-01-01
This paper reports the consensus of an international faculty of expert metal-on-metal (MoM) hip resurfacing surgeons, with a combined experience of over 40,000 cases, on the current status of hip resurfacing arthroplasty. Indications, design and metallurgy issues, release of metal ions and adverse soft tissue reactions to particles, management of problematic cases and revisions, as well as required experience and training are covered. The overall consensus is that MoM hip resurfacing should not be banned and should be viewed separately from MoM total hip arthroplasty (THA) with a large diameter head because of the different design and wear behaviour related to the taper/trunnion connection. The use of hip resurfacing has decreased worldwide but specialist centres continue to advocate hip resurfacing in young and active male patients. Regarding age the general recommendation is to avoid hip resurfacing in men older than 65 and in women older than 55, depending on the patient activity and bone quality. Female gender is considered a relative contraindication. Most surgeons would not implant a MoM hip in women who would still like a child. Regardless of gender, there is a consensus not to perform hip resurfacing in case of a femoral head size smaller than 46 mm and in patients with renal insufficiency or with a known metal allergy. Regarding follow-up of hip resurfacing and detection of adverse local tissue reactions, metal ion measurements, MRI and ultrasound are advocated depending on the local expertise. The consensus is that hip resurfacing should be limited to high volume hip surgeons, who are experienced in hip resurfacing or trained to perform hip resurfacing in a specialist centre.
Ghassemi, A.; Dorrell, J. H.; Powles, D. P.
2008-01-01
The purpose of this study was to evaluate the mid- to long-term survivorship of Bimetric cementless total hip replacement and assess how it is affected by the acetabular design. This was a retrospective analysis of 127 Bimetric cementless total hip replacements in 110 patients with a follow-up of 7–18 years. A single design stem and three different cementless metal-backed acetabular designs were used. Patients were assessed clinically using the Harris hip score and radiologically by independent review of current hip radiographs. There was only one case of aseptic loosening of the femoral stem. The earliest acetabular design showed a high failure rate whilst the latter two designs showed a 96% survivorship at a mean of 9.5 years. We conclude that a combination of the bimetric stem with either of the latter acetabular cup designs has a good mid- to long-term performance. PMID:18551293
Galea, V P; Laaksonen, I; Matuszak, S J; Connelly, J W; Muratoglu, O; Malchau, H
2017-04-01
Our first aim was to determine whether there are significant changes in the level of metal ions in the blood at mid-term follow-up, in patients with an Articular Surface Replacement (ASR) arthroplasty. Secondly, we sought to identify risk factors for any increases. The study involved 435 patients who underwent unilateral, metal-on-metal (MoM) hip resurfacing (HRA) or total hip arthroplasty (THA). These patients all had one measurement of the level of metal ions in the blood before seven years had passed post-operatively (early evaluation) and one after seven years had passed post-operatively (mid-term evaluation). Changes in ion levels were tested using a Wilcoxon signed-rank test. We identified subgroups at the highest risk of increase using a multivariable linear logistic regression model. There were significant increases in the levels of metal ions for patients who underwent both MoM HRA (Chromium (Cr): 0.5 parts per billion (ppb); Cobalt (Co): 1.1 ppb) and MoM THA (Cr: 0.5 ppb; Co: 0.7 ppb). In a multivariable model considering MoM HRAs, the change in the levels of metal ions was influenced by female gender (Co: Odds Ratio (OR) 1.42; p = 0.002 and Cr: OR 1.08; p = 0.006). The change was found to be irrespective of the initial level for the MoM HRAs, whereas there was a negative relationship between the initial level and the change in the level for those with a MoM THA (Co: OR -0.43; p < 0.001 and Cr: OR -0.14; p = 0.033). The levels of metal ions in the blood increase significantly over the period until mid-term follow-up in patients with both a MoM HRA and those with a MoM THA. We recommend that the levels of metal ions be measured most frequently for women with a MoM HRA. While those with a MoM THA appear to stabilise at a certain level, the accuracy of this trend is not yet clear. Vigilant follow-up is still recommended. Cite this article: Bone Joint J 2017;99-B(4 Supple B):33-40. ©2017 Galea et al.
Hua, Xijin; Li, Junyan; Jin, Zhongmin; Fisher, John
2016-06-01
The occurrence of edge loading in hip joint replacement has been associated with many factors such as prosthetic design, component malposition and activities of daily living. The present study aimed to quantify the occurrence of edge loading/contact at the articulating surface and to evaluate the effect of cup angles and edge loading on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR) during different daily activities. A three-dimensional finite element model was developed based on a modular MoP bearing system. Different cup inclination and anteversion angles were modelled and six daily activities were considered. The results showed that edge loading was predicted during normal walking, ascending and descending stairs activities under steep cup inclination conditions (≥55°) while no edge loading was observed during standing up, sitting down and knee bending activities. The duration of edge loading increased with increased cup inclination angles and was affected by the cup anteversion angles. Edge loading caused elevated contact pressure at the articulating surface and substantially increased equivalent plastic strain of the polyethylene liner. The present study suggested that correct positioning the component to avoid edge loading that may occur during daily activities is important for MoP THR in clinical practice. Copyright © 2016. Published by Elsevier Ltd.
Metal-on-Metal Total Hip Resurfacing Arthroplasty: An Evidence-Based Analysis.
2006-01-01
The objective of this review was to assess the safety and effectiveness of metal on metal (MOM) hip resurfacing arthroplasty for young patients compared with that of total hip replacement (THR) in the same population. Total hip replacement has proved to be very effective for late middle-aged and elderly patients with severe degenerative diseases of the hips. As indications for THR began to include younger patients and those with a more active life style, the longevity of the implant became a concern. Evidence suggests that these patients experience relatively higher rates of early implant failure and the need for revision. The Swedish hip registry, for example, has demonstrated a survival rate in excess of 80% at 20 years for those aged over 65 years, whereas this figure was 33% by 16 years in those aged under 55 years. Hip resurfacing arthroplasty is a bone-conserving alternative to THR that restores normal joint biomechanics and load transfer. The technique has been used around the world for more than 10 years, specifically in the United Kingdom and other European countries. Metal-on-metal hip resurfacing arthroplasty is an alternative procedure to conventional THR in younger patients. Hip resurfacing arthroplasty is less invasive than THR and addresses the problem of preserving femoral bone stock at the initial operation. This means that future hip revisions are possible with THR if the initial MOM arthroplasty becomes less effective with time in these younger patients. The procedure involves the removal and replacement of the surface of the femoral head with a hollow metal hemisphere, which fits into a metal acetabular cup. Hip resurfacing arthroplasty is a technically more demanding procedure than is conventional THR. In hip resurfacing, the femoral head is retained, which makes it much more difficult to access the acetabular cup. However, hip resurfacing arthroplasty has several advantages over a conventional THR with a small (28 mm) ball. First, the large femoral head reduces the chance of dislocation, so that rates of dislocation are less than those with conventional THR. Second, the range of motion with hip resurfacing arthroplasty is higher than that achieved with conventional THR. A variety of MOM hip resurfacing implants are used in clinical practice. Six MOM hip resurfacing implants have been issued licences in Canada. A search of electronic bibliographies (OVID Medline, Medline In-Process and Other Non-Indexed Citations, Embase, Cochrane CENTRAL and DSR, INAHTA) was undertaken to identify evidence published from Jan 1, 1997 to October 27, 2005. The search was limited to English-language articles and human studies. The literature search yielded 245 citations. Of these, 11 met inclusion criteria (9 for effectiveness, 2 for safety). The result of the only reported randomized controlled trial on MOM hip resurfacing arthroplasty could not be included in this assessment, because it used a cemented acetabular component, whereas in the new generation of implants, a cementless acetabular component is used. After omitting this publication, only case series remained. HEALTH OUTCOMES: The Harris hip score and SF-12 are 2 measures commonly used to report health outcomes in MOM hip resurfacing arthroplasty studies. Other scales used are the Oxford hip score and the University of California Los Angeles hip score. The case series showed that the mean revision rate of MOM hip resurfacing arthroplasty is 1.5% and the incidence of femoral neck fracture is 0.67%. Across all studies, 2 cases of osteonecrosis were reported. Four studies reported improvement in Harris hip scores. However, only 1 study reported a statistically significant improvement. Three studies reported improvement in SF-12 scores, of which 2 reported a significant improvement. One study reported significant improvement in UCLA hip score. Two studies reported postoperative Oxford hip scores, but no preoperative values were reported. None of the reviewed studies reported procedure-related deaths. Four studies reported implant survival rates ranging from 94.4% to 99.7% for a follow-up period of 2.8 to 3.5 years. Three studies reported on the range of motion. One reported improvement in all motions including flexion, extension, abduction-adduction, and rotation, and another reported improvement in flexion. Yet another reported improvement in range of motion for flexion abduction-adduction and rotation arc. However, the author reported a decrease in the range of motion in the arc of flexion in patients with Brooker class III or IV heterotopic bone (all patients were men). SAFETY OF METAL-ON-METAL HIP RESURFACING ARTHROPLASTY: There is a concern about metal wear debris and its systemic distribution throughout the body. Detectable metal concentrations in the serum and urine of patients with metal hip implants have been described as early as the 1970s, and this issue is still controversial after 35 years. Several studies have reported high concentration of cobalt and chromium in serum and/or urine of the patients with metal hip implants. Potential toxicological effects of the elevated metal ions have heightened concerns about safety of MOM bearings. This is of particular concern in young and active patients in whom life expectancy after implantation is long. Since 1997, 15 studies, including 1 randomized clinical trial, have reported high levels of metal ions after THR with metal implants. Some of these studies have reported higher metal levels in patients with loose implants. Because patients who receive a MOM hip arthroplasty are shown to be exposed to high concentrations of metallic ions, the Medical Advisory Secretariat searched the literature for reports of adverse biological effects of cobalt and chromium. Cobalt and chromium make up the major part of the metal articulations; therefore, they are a focus of concern. To date, only one study has examined the incidence of cancer after MOM and polyethylene on metal total hip arthroplasties. The results were compared to that of general population in Finland. The mean duration of follow-up for MOM arthroplasty was 15.7 years; for polyethylene arthroplasty, it was 12.5 years. The standardized incidence ratio for all cancers in the MOM group was 0.95 (95% CI, 0.79-1.13). In the polyethylene on metal group it was 0.76 (95% CI, 0.68-0.86). The combined standardized incidence ratio for lymphoma and leukemia in the patients who had MOM THR was 1.59 (95% CI, 0.82-2.77). It was 0.59 (95% CI, 0.29-1.05) for the patients who had polyethylene on metal THR. Patients with MOM THR had a significantly higher risk of leukemia. All patients who had leukemia were aged over than 60 years. EPIDEMIOLOGICAL STUDIES OF MYOCARDIOPATHY OF BEER DRINKERS: An unusual type of myocardiopathy, characterized by pericardial effusion, elevated hemoglobin concentrations, and congestive heart failure, occurred as an epidemic affecting 48 habitual beer drinkers in Quebec City between 1965 and 1966. This epidemic was directly related the consumption of a popular beer containing cobalt sulfate. The epidemic appeared 1 month after cobalt sulfate was added to the specific brewery, and no further cases were seen a month after this specific chemical was no longer used in making this beer. A beer of the same name is made in Montreal, and the only difference at that time was that the Quebec brand of beer contained about 10 times more cobalt sulphate. Cobalt has been added to some Canadian beers since 1965 to improve the stability of the foam but it has been added in larger breweries only to draught beer. However, in small breweries, such as those in Quebec City, separate batches were not brewed for bottle and draught beer; therefore, cobalt was added to all of the beer processed in this brewery. In March 1966, a committee was appointed under the chairmanship of the Deputy Minister of Health for Quebec that included members of the department of forensic medicine of Quebec's Ministry of Justice, epidemiologists, members of Food and Drug Directorate of Ottawa, toxicologists, biomedical researchers, pathologists, and members of provincial police. Epidemiological studies were carried out by the Provincial Ministry of Health and the Quebec City Health Department. The association between the development of myocardiopathy and the consumption of the particular brand of beer was proven. The mortality rate of this epidemic was 46.1% and those who survived were desperately ill, and recovered only after a struggle for their lives. Similar cases were seen in Omaha (Nebraska). The epidemic started after a cobalt additive was used in 1 of the beers marketed in Nebraska. Sixty-four patients with the clinical diagnosis of alcoholic myocardiopathy were seen during an 18-month period (1964-1965). Thirty of these patients died. The first patient became ill within 1 month after cobalt was added to the beer, and the last patient was seen within 1 month of withdrawal of cobalt. A similar epidemic occurred in Minneapolis, Minnesota. Between 1964 and 1967, 42 patients with acute heart failure were admitted to a hospital in Minneapolis, Minnesota. Twenty of these patients were drinking 6 to 30 bottles per day of a particular brand of beer exclusively. The other 14 patients also drank the same brand of beer, but not exclusively. The mortality rate from the acute illness was 18%, but late deaths accounted for a total mortality rate of 43%. Examination of the tissue from these patients revealed markedly abnormal changes in myofibrils (heart muscles), mitochondria, and sarcoplasmic reticulum. In Belgium, a similar epidemic was reported in 1966, in which, cobalt was used in some Belgian beers. (ABSTRACT TRUNCATED)
2008-01-01
Hip resurfacing is an attractive concept because it preserves rather than removes the femoral head and neck. Most early designs had high failure rates, but one unique design had a femoral stem. Because that particular device appeared to have better implant survival, this study assessed the clinical outcome and long-term survivorship of a hip resurfacing prosthesis. Four hundred forty-five patients (561 hips) were retrospectively reviewed after a minimum of 20 years’ followup or until death; 23 additional patients were lost to followup. Patients received a metal femoral prosthesis with a small curved stem. Three types of acetabular reconstructions were used: (1) cemented polyurethane; (2) metal-on-metal; and (3) polyethylene secured with cement or used as the liner of a two-piece porous-coated implant. Long-term results were favorable with the metal-on-metal combination only. The mean overall Harris hip score was 92 at 2 years of followup. None of the 121 patients (133 hips) who received metal-on-metal articulation experienced failure. The failure rate with polyurethane was 100%, and the failure rate with cemented polyethylene was 41%. Hip resurfacing with a curved-stem femoral component had a durable clinical outcome when a metal-on-metal articulation was used. Level of Evidence: Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18338217
Krishnamoorthy, Vignesh P; Perumal, Rajamani; Daniel, Alfred J; Poonnoose, Pradeep M
2015-12-01
Templating of the acetabular cup size in Total Hip Replacement (THR) is normally done using conventional radiographs. As these are being replaced by digital radiographs, it has become essential to create a technique of templating using digital films. We describe a technique that involves templating the digital films using the universally available acetate templates for THR without the use of special software. Preoperative digital radiographs of the pelvis were taken with a 30 mm diameter spherical metal ball strapped over the greater trochanter. Using standard acetate templates provided by the implant company on magnified digital radiographs, the size of the metal ball (X mm) and acetabular cup (Y mm) were determined. The size of the acetabular cup to be implanted was estimated using the formula 30*Y/X. The estimated size was compared with the actual size of the cup used at surgery. Using this technique, it was possible to accurately predict the acetabular cup size in 28/40 (70%) of the hips. When the accuracy to within one size was considered, templating was correct in 90% (36/40). When assessed by two independent observers, there was good intra-observer and inter-observer reliability with intra-class correlation coefficient values greater than 0.8. It was possible to accurately and reliably predict the size of the acetabular cup, using acetate templates on digital films, without any digital templates.
Retrieval analysis of ceramic-coated metal-on-polyethylene total hip replacements.
Khatkar, Harman; Hothi, Harry; de Villiers, Danielle; Lausmann, Christian; Kendoff, Daniel; Gehrke, Thorsten; Skinner, John; Hart, Alister
2017-06-01
Ceramic coatings have been used in metal-on-polyethylene (MOP) hips to reduce the risk of wear and also infection; the clinical efficacy of this remains unclear. This retrieval study sought to better understand the performance of coated bearing surfaces. Forty-three coated MOP components were analysed post-retrieval for evidence of coating loss and gross polyethylene wear. Coating loss was graded using a visual semi-quantitative protocol. Evidence of gross polyethylene wear was determined by radiographic analysis and visual inspection of the retrieved implants. All components with gross polyethylene wear (n = 10) were revised due to a malfunctioning acetabular component; 35 % (n = 15) of implants exhibited visible coating loss and the incidence of polyethylene wear in samples with coating loss was 54 %, significantly (p = 0.02) elevated compared to samples with intact coatings (14 %). In this study we found evidence of coating loss on metal femoral heads which was associated with increased wear of the corresponding polyethylene acetabular cups.
Renner, Lisa; Faschingbauer, Martin; Boettner, Friedrich
2015-08-01
Previous studies showed poor outcomes for patients undergoing revision of failed metal-on-metal total hip arthroplasty (MoM-THA) and resurfacing (RS) with an increased risk of dislocation. Dual mobility inserts are an option to retain the acetabular component and change the metal-on-metal bearing to plastic-on-metal. The current study analyzes the rationale for the off-label use of a dual mobility poly insert (MDM X3, Stryker, Mahwah, NJ) in a Birmingham metal shell (Smith & Nephew, Memphis, TN). Based on retrievals from the implant database the study compared the clearance between 20 BHR shells, 31 MDM poly inserts and 24 ADM acetabular components of different sizes. The radial clearance was calculated for each possible combination of implants [n = 81 (MDM/BHR) and n = 119 (MDM/ADM)]. An MDM mobile bearing poly insert in an ADM shell has an average clearance of 0.314 mm (SD 0.031) compared to 0.234 mm (SD 0.030) in a BHR shell (p < 0.01). The minimal clearance is 0.246 and 0.163 mm, respectively. 30.9 % of the MDM/BHR clearances were within the range of the MDM/ADM bearing and 88.9 % had a clearance of more than 0.2 mm. Clearances of the MDM poly insert in a BHR shell are reduced, and although the majority of combinations appear safe, the indication needs to be made on an individual base carefully considering alternative treatment options.
Ultrasound screening of periarticular soft tissue abnormality around metal-on-metal bearings.
Nishii, Takashi; Sakai, Takashi; Takao, Masaki; Yoshikawa, Hideki; Sugano, Nobuhiko
2012-06-01
Although metal hypersensitivity or pseudotumors are concerns for metal-on-metal (MoM) bearings, detailed pathologies of patterns, severity, and incidence of periprosthetic soft tissue lesions are incompletely understood. We examined the potential of ultrasound for screening of periarticular soft tissue lesions around MoM bearings. Ultrasound examinations were conducted in 88 hips (79 patients) with MoM hip resurfacings or MoM total hip arthroplasties with a large femoral head. Four qualitative ultrasound patterns were shown, including normal pattern in 69 hips, joint-expansion pattern in 11 hips, cystic pattern in 5 hips, and mass pattern in 3 hips. Hips with the latter 3 abnormal patterns showed significantly higher frequency of clinical symptoms, without significant differences of sex, duration of implantation, head sizes, and cup abduction/anteversion angles, compared with hips with normal pattern. Ultrasound examination provides sensitive screening of soft tissue reactions around MoM bearings and may be useful in monitoring progression and defining treatment for periarticular soft tissue abnormalities. Copyright © 2012 Elsevier Inc. All rights reserved.
21 CFR 888.3400 - Hip joint femoral (hemi-hip) metallic resurfacing prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint femoral (hemi-hip) metallic resurfacing... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3400 Hip joint femoral (hemi-hip) metallic resurfacing prosthesis. (a) Identification. A hip joint femoral (hemi-hip...
21 CFR 888.3370 - Hip joint (hemi-hip) acetabular metal cemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint (hemi-hip) acetabular metal cemented... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3370 Hip joint (hemi-hip) acetabular metal cemented prosthesis. (a) Identification. A hip joint (hemi-hip) acetabular...
Espallargas, N; Fischer, A; Muñoz, A Igual; Mischler, S; Wimmer, M A
2017-06-01
Artificial hip joints operate in aqueous biofluids that are highly reactive towards metallic surfaces. The reactivity at the metal interface is enhanced by mechanical interaction due to friction, which can change the near-surface structure of the metal and surface chemistry. There are now several reports in the literature about the in-situ generation of reaction films and tribo-metallurgical transformations on metal-on-metal hip joints. This paper summarizes current knowledge and provides a mechanistic interpretation of the surface chemical and metallurgical phenomena. Basic concepts of corrosion and wear are illustrated and used to interpret available literature on in-vitro and in-vivo studies of metal-on-metal hip joints. Based on this review, three forms of tribomaterial, characterized by different combinations of oxide films and organic layers, can be determined. It is shown that the generation of these tribofilms can be related to specific electrochemical and mechanical phenomena in the metal interface. It is suggested that the generation of this surface reaction layer constitutes a way to minimize (mechanical) wear of MoM hip implants.
Espallargas, N.; Fischer, A.; Muñoz, A. Igual; Mischler, S.; Wimmer, M.A.
2017-01-01
Artificial hip joints operate in aqueous biofluids that are highly reactive towards metallic surfaces. The reactivity at the metal interface is enhanced by mechanical interaction due to friction, which can change the near-surface structure of the metal and surface chemistry. There are now several reports in the literature about the in-situ generation of reaction films and tribo-metallurgical transformations on metal-on-metal hip joints. This paper summarizes current knowledge and provides a mechanistic interpretation of the surface chemical and metallurgical phenomena. Basic concepts of corrosion and wear are illustrated and used to interpret available literature on in-vitro and in-vivo studies of metal-on-metal hip joints. Based on this review, three forms of tribomaterial, characterized by different combinations of oxide films and organic layers, can be determined. It is shown that the generation of these tribofilms can be related to specific electrochemical and mechanical phenomena in the metal interface. It is suggested that the generation of this surface reaction layer constitutes a way to minimize (mechanical) wear of MoM hip implants. PMID:28808674
Alternative materials to improve total hip replacement tribology.
Santavirta, Seppo; Böhler, Max; Harris, William H; Konttinen, Yrjö T; Lappalainen, Reijo; Muratoglu, Orhun; Rieker, Claude; Salzer, Martin
2003-08-01
An improvement in tribology of bearing surfaces is an effective means of increasing the longevity of total hip replacement (THR). Currently, 3 approaches are available to achieve this aim: first, use of highly cross-linked UHMWPE; second, aluminum oxide ceramic bearings, and third, metal-on-metal bearings. Cross-linking reduces the wear resistance of UHMWPE markedly without impairment of other significant properties of the material. Simulator studies and some clinical long-term (10-22 years) follow-up surveys suggest an almost immeasurable wear of the highly cross-linked UHMWPE-based acetabular components during an expected clinical life span. Bioinert alumina ceramic (aluminum oxide) was introduced 3 decades ago for THR-bearing surfaces to improve performance and longevity. Alumina ceramic is entirely biostable and bioinert and has good mechanical properties. For correctly positioned alumina-on-alumina bearings, the annual linear wear rate has been reported to be 3.9 microm. Alumina heads have been successfully used in combination with polyethylene sockets, but as regards wear, the best results have been obtained with alumina-on-alumina bearings. In ceramic THR bearings, precise manufacture and contact surface geometry, including optimal clearance, are most important. For the currently available products, the component fracture risk is almost nonexistent (less than 1 per 1000). Metal-on-metal bearings were used in the early stage of THR surgery, although not all old designs were successful. More recent analyses of the early series have shown the advantages of metal-on-metal to be better and have led to a renaissance of this articulation. Initially, stainless steel was used because it was easy to manufacture and polish. Current metal-on-metal bearings are based on cobalt-chromium-molybdenum alloys with varying carbon contents. Such bearings are self-polishing. Linear wear rates remain at the level of a few microm a year. An improvement in technology has increased the life span of the above three THR-bearing systems. Although the technical solutions differ considerably, they all seem to improve clearly the tribology and longevity of the THR. Each of these bearing concepts will probably permit the use of larger head sizes, to reduce the risk of impingement and luxations.
Lass, R; Grübl, A; Kolb, A; Domayer, S; Csuk, C; Kubista, B; Giurea, A; Windhager, R
2014-03-05
Second-generation, metal-on-metal bearings were introduced in 1988, to reduce wear and avoid polyethylene particle-induced osteolysis from total hip arthroplasty. In 2007, we reported the long-term results of ninety-eight patients (105 hips) who underwent primary cementless total hip arthroplasty involving the use of a prosthesis with a high-carbide-concentration, metal-on-metal articulating surface between November 1992 and May 1994. The present study gives an update on this patient cohort. At a minimum of seventeen years postoperatively, forty-nine patients (fifty-two hips) were available for follow-up examination. We retrospectively evaluated clinical and radiographic results as well as serum metal concentration. The mean patient age at the time of the index arthroplasty was fifty-six years. Three cups (6% of the hips) and one stem (2% of the hips) were revised because of aseptic loosening of the implants combined with focal osteolysis. At the time of the latest follow-up evaluation, the mean Harris hip score was 88.8 points, and the mean University of California Los Angeles (UCLA) activity score was 6.7 points. The cumulative rate of implant survival, with aseptic failure as the end point, was 93.0% at 18.8 years. The median serum cobalt concentration in patients whose hip implant was the only source of cobalt was 0.70 μg/L (range, 0.4 to 5.1 μg/L), showing no increase in the value as noted at a minimum of ten years of follow-up. The clinical and radiographic results of our study, which, to our knowledge, represent the longest duration of follow-up for a series of cementless total hip arthroplasties with use of a 28-mm metal-on-metal bearing, continue to be comparable with the results observed for other hard-on-hard bearings.
Hart, Alister J; Skinner, John A; Henckel, Johann; Sampson, Barry; Gordon, Fabiana
2011-09-01
Many factors affect the blood metal ion levels after metal-on-metal (MOM) hip arthroplasty. The main surgically adjustable variable is the amount of coverage of the head provided by the cup which is a function of the inclination and version angles. However, most studies have used plain radiographs which have questionable precision and accuracy, particularly for version and large diameter metal heads; further, these studies do not simultaneously assess version and inclination. Thus the relationship between version and blood metal ions levels has not been resolved. We determined whether cup inclination and version influence blood metal ion levels while adjusting for age at assessment, gender, body mass index, horizontal femoral offset, head size, manufacturer hip type, and Oxford hip score. We prospectively followed 100 individuals (51 females, 49 males) with unilateral MOM hip resurfacing who underwent clinical assessment, CT scanning, and blood metal ion measurement. Multiple regression analysis was used to determine which variables were predictors of blood metal ion levels and to model the effect of these variables. Only cup inclination, version angles, and gender influenced blood cobalt or chromium levels. Cobalt and chromium levels positively correlated with inclination angle and negatively correlated with version angle. The effect of changes in version angle was less than for inclination angle. Based on our observations, we developed a formula to predict the effect of these parameters on metal ion levels. Our data suggest insufficient cup version can cause high blood metal ions after MOM hip arthroplasty. We were unable to show that excessive version caused high levels. Level II, prognostic study. See Guidelines for Authors for a complete description of levels of evidence.
Prentice, Jennifer R; Blackwell, Christopher S; Raoof, Naz; Bacon, Paul; Ray, Jaydip; Hickman, Simon J; Wilkinson, J Mark
2014-01-01
Case reports of patients with mal-functioning metal-on-metal hip replacement (MoMHR) prostheses suggest an association of elevated circulating metal levels with visual and auditory dysfunction. However, it is unknown if this is a cumulative exposure effect and the impact of prolonged low level exposure, relevant to the majority of patients with a well-functioning prosthesis, has not been studied. Twenty four male patients with a well-functioning MoMHR and an age and time since surgery matched group of 24 male patients with conventional total hip arthroplasty (THA) underwent clinical and electrophysiological assessment of their visual and auditory health at a mean of ten years after surgery. Median circulating cobalt and chromium concentrations were higher in patients after MoMHR versus those with THA (P<0.0001), but were within the Medicines and Healthcare Products Regulatory Agency (UK) investigation threshold. Subjective auditory tests including pure tone audiometric and speech discrimination findings were similar between groups (P>0.05). Objective assessments, including amplitude and signal-to-noise ratio of transient evoked and distortion product oto-acoustic emissions (TEOAE and DPOAE, respectively), were similar for all the frequencies tested (P>0.05). Auditory brainstem responses (ABR) and cortical evoked response audiometry (ACR) were also similar between groups (P>0.05). Ophthalmological evaluations, including self-reported visual function by visual functioning questionnaire, as well as binocular low contrast visual acuity and colour vision were similar between groups (P>0.05). Retinal nerve fibre layer thickness and macular volume measured by optical coherence tomography were also similar between groups (P>0.05). In the presence of moderately elevated metal levels associated with well-functioning implants, MoMHR exposure does not associate with clinically demonstrable visual or auditory dysfunction.
Agins, H J; Alcock, N W; Bansal, M; Salvati, E A; Wilson, P D; Pellicci, P M; Bullough, P G
1988-03-01
We conducted extensive histological examination of the tissues that were adjacent to the prosthesis in nine hips that had a failed total arthroplasty. The prostheses were composed of titanium alloy (Ti-6Al-4V) and ultra-high molecular weight polyethylene. The average time that the prosthesis had been in place in the tissue was 33.5 months (range, eleven to fifty-seven months). Seven arthroplasties were revised because of aseptic loosening and two, for infection. In eight hips cement had been used and in one (that had a porous-coated implant for fifty-two months) no cement had been utilized. Intense histiocytic and plasma-cell reaction was noted in the pseudocapsular tissue. There was copious metallic staining of the lining cells. Polyethylene debris and particles of cement with concomitant giant-cell reaction were present in five hips. Atomic absorption spectrophotometry revealed values for titanium of fifty-sic to 3700 micrograms per gram of dry tissue (average, 1047 micrograms per gram; normal, zero microgram per gram), for aluminum of 2.1 to 396 micrograms per gram (average, 115 micrograms per gram; normal, zero micrograms per gram), and for vanadium of 2.9 to 220 micrograms per gram (average, sixty-seven micrograms per gram; normal, 1.2 micrograms per gram). The highest values were found in the hip in which surgical revision was performed at fifty-seven months. The concentrations of the three elements in the soft tissues were similar to those in the metal of the prostheses. The factors to which failure was attributed were: vertical orientation of the acetabular component (five hips), poor cementing technique on the femoral side (three hips), infection (two hips), and separation of a sintered pad made of pure titanium (one hip). A femoral component that is made of titanium alloy can undergo severe wear of the surface and on the stem, where it is loose, with liberation of potentially toxic local concentrations of metal debris into the surrounding tissues. It may contribute to infection and loosening.
Han, Seung Chol; Chung, Yong Eun; Lee, Young Han; Park, Kwan Kyu; Kim, Myeong Jin; Kim, Ki Whang
2014-10-01
The objective of our study was to determine the feasibility of using Metal Artifact Reduction (MAR) software for abdominopelvic dual-energy CT in patients with metal hip prostheses. This retrospective study included 33 patients (male-female ratio, 19:14; mean age, 63.7 years) who received total hip replacements and 20 patients who did not have metal prostheses as the control group. All of the patients underwent dual-energy CT. The quality of the images reconstructed using the MAR algorithm and of those reconstructed using the standard reconstruction was evaluated in terms of the visibility of the bladder wall, pelvic sidewall, rectal shelf, and bone-prosthesis interface and the overall diagnostic image quality with a 4-point scale. The mean and SD attenuation values in Hounsfield units were measured in the bladder, pelvic sidewall, and rectal shelf. For validation of the MAR interpolation algorithm, pelvis phantoms with small bladder "lesions" and metal hip prostheses were made, and images of the phantoms both with and without MAR reconstruction were evaluated. Image quality was significantly better with MAR reconstruction than without at all sites except the rectal shelf, where the image quality either had not changed or had worsened after MAR reconstruction. The mean attenuation value was changed after MAR reconstruction to its original expected value at the pelvic sidewall (p < 0.001) and inside the bladder (p < 0.001). The SD attenuation value was significantly decreased after MAR reconstruction at the pelvic sidewall (p = 0.019) but did not show significant differences at the bladder (p = 0.173) or rectal shelf (p = 0.478). In the phantom study, all lesions obscured by metal artifacts on the standard reconstruction images were visualized after MAR reconstruction; however, new artifacts had developed in other parts of the MAR reconstruction images. The use of MAR software with dual-energy CT decreases metal artifacts and increases diagnostic confidence in the assessment of the pelvic cavity but also introduces new artifacts that can obscure pelvic structures.
21 CFR 888.3300 - Hip joint metal constrained cemented or uncemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal constrained cemented or uncemented... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3300 Hip joint metal constrained cemented or uncemented prosthesis. (a) Identification. A hip joint metal constrained...
Predictivity and fate of metal ion release from metal-on-metal total hip prostheses.
Nicolli, Annamaria; Bisinella, Gianluca; Padovani, Giovanni; Vitella, Antonio; Chiara, Federica; Trevisan, Andrea
2014-09-01
Blood metal ion levels in 72 patients with large head metal-on-metal hip arthroplasty were studied to determine the correlation between the values measured in whole blood and urine. Urinary cobalt and chromium levels of 30μg and 21μg, respectively, adjusted to creatinine were found to correspond to the 7μg/l cut-off value that has been accepted in whole blood. Cobalt and chromium levels in whole blood and urine both significantly correlated with increased acetabular component inclination angle over 50 degrees and pain scores. There was no correlation with socket anteversion angle or femoral head diameter. The data support the use of urinary measurement of metal ions adjusted to creatinine to monitor patients with large head metal-on-metal total hip arthroplasty. Copyright © 2014 Elsevier Inc. All rights reserved.
21 CFR 888.3310 - Hip joint metal/polymer constrained cemented or uncemented prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hip joint metal/polymer constrained cemented or... Hip joint metal/polymer constrained cemented or uncemented prosthesis. (a) Identification. A hip joint metal/polymer constrained cemented or uncemented prosthesis is a device intended to be implanted to...
21 CFR 888.3340 - Hip joint metal/composite semi-constrained cemented prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hip joint metal/composite semi-constrained cemented prosthesis. 888.3340 Section 888.3340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Hip joint metal/composite semi-constrained cemented prosthesis. (a) Identification. A hip joint metal...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/polymer or ceramic/polymer... Devices § 888.3410 Hip joint metal/polymer or ceramic/polymer semiconstrained resurfacing cemented prosthesis. (a) Identification. A hip joint metal/polymer or ceramic/polymer semi-constrained resurfacing...
21 CFR 888.3310 - Hip joint metal/polymer constrained cemented or uncemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/polymer constrained cemented or... Hip joint metal/polymer constrained cemented or uncemented prosthesis. (a) Identification. A hip joint metal/polymer constrained cemented or uncemented prosthesis is a device intended to be implanted to...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hip joint metal/polymer or ceramic/polymer... Devices § 888.3410 Hip joint metal/polymer or ceramic/polymer semiconstrained resurfacing cemented prosthesis. (a) Identification. A hip joint metal/polymer or ceramic/polymer semi-constrained resurfacing...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hip joint metal/polymer or ceramic/polymer... Devices § 888.3410 Hip joint metal/polymer or ceramic/polymer semiconstrained resurfacing cemented prosthesis. (a) Identification. A hip joint metal/polymer or ceramic/polymer semi-constrained resurfacing...
21 CFR 888.3310 - Hip joint metal/polymer constrained cemented or uncemented prosthesis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hip joint metal/polymer constrained cemented or... Hip joint metal/polymer constrained cemented or uncemented prosthesis. (a) Identification. A hip joint metal/polymer constrained cemented or uncemented prosthesis is a device intended to be implanted to...
21 CFR 888.3310 - Hip joint metal/polymer constrained cemented or uncemented prosthesis.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hip joint metal/polymer constrained cemented or... Hip joint metal/polymer constrained cemented or uncemented prosthesis. (a) Identification. A hip joint metal/polymer constrained cemented or uncemented prosthesis is a device intended to be implanted to...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hip joint metal/polymer or ceramic/polymer... Devices § 888.3410 Hip joint metal/polymer or ceramic/polymer semiconstrained resurfacing cemented prosthesis. (a) Identification. A hip joint metal/polymer or ceramic/polymer semi-constrained resurfacing...
21 CFR 888.3310 - Hip joint metal/polymer constrained cemented or uncemented prosthesis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hip joint metal/polymer constrained cemented or... Hip joint metal/polymer constrained cemented or uncemented prosthesis. (a) Identification. A hip joint metal/polymer constrained cemented or uncemented prosthesis is a device intended to be implanted to...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hip joint metal/polymer or ceramic/polymer... Devices § 888.3410 Hip joint metal/polymer or ceramic/polymer semiconstrained resurfacing cemented prosthesis. (a) Identification. A hip joint metal/polymer or ceramic/polymer semi-constrained resurfacing...
Revision total hip arthoplasty: factors associated with re-revision surgery.
Khatod, Monti; Cafri, Guy; Inacio, Maria C S; Schepps, Alan L; Paxton, Elizabeth W; Bini, Stefano A
2015-03-04
The survivorship of implants after revision total hip arthroplasty and risk factors associated with re-revision are not well defined. We evaluated the re-revision rate with use of the institutional total joint replacement registry. The purpose of this study was to determine patient, implant, and surgeon factors associated with re-revision total hip arthroplasty. A retrospective cohort study was conducted. The total joint replacement registry was used to identify patients who had undergone revision total hip arthroplasty for aseptic reasons from April 1, 2001, to December 31, 2010. The end point of interest was re-revision total hip arthroplasty. Risk factors evaluated for re-revision total hip arthroplasty included: patient risk factors (age, sex, body mass index, race, and general health status), implant risk factors (fixation type, bearing surface, femoral head size, and component replacement), and surgeon risk factors (volume and experience). A multivariable Cox proportional hazards model was used. Six hundred and twenty-nine revision total hip arthroplasties with sixty-three (10%) re-revisions were evaluated. The mean cohort age (and standard deviation) was 57.0 ± 12.4 years, the mean body mass index (and standard deviation) was 29.5 ± 6.1 kg/m(2), and most of the patients were women (64.5%) and white (81.9%) and had an American Society of Anesthesiologists score of <3 (52.9%). The five-year implant survival after revision total hip arthroplasty was 86.8% (95% confidence interval, 83.57% to 90.25%). In adjusted models, age, total number of revision surgical procedures performed by the surgeon, fixation, and bearing surface were associated with the risk of re-revision. For every ten-year increase in patient age, the hazard ratio for re-revision decreases by a factor of 0.72 (95% confidence interval, 0.58 to 0.90). For every five revision surgical procedures performed by a surgeon, the risk of revision decreases by a factor of 0.93 (95% confidence interval, 0.86 to 0.99). At the time of revision, a new or retained cemented femoral implant or all-cemented hip implant increases the risk of revision by a factor of 3.19 (95% confidence interval, 1.22 to 8.38) relative to a retained or new uncemented hip implant. A ceramic on a highly cross-linked polyethylene bearing articulation decreases the hazard relative to metal on highly cross-linked polyethylene by a factor of 0.32 (95% confidence interval, 0.11 to 0.95). Metal on constrained bearing increases the hazard relative to metal on highly cross-linked polyethylene by a factor of 3.32 (95% confidence interval, 1.16 to 9.48). When evaluating patient, implant, and surgical factors at the time of revision total hip arthroplasty, age, surgeon experience, implant fixation, and bearing surfaces had significant impacts on the risk of re-revision. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.
Biotribology of artificial hip joints
Di Puccio, Francesca; Mattei, Lorenza
2015-01-01
Hip arthroplasty can be considered one of the major successes of orthopedic surgery, with more than 350000 replacements performed every year in the United States with a constantly increasing rate. The main limitations to the lifespan of these devices are due to tribological aspects, in particular the wear of mating surfaces, which implies a loss of matter and modification of surface geometry. However, wear is a complex phenomenon, also involving lubrication and friction. The present paper deals with the tribological performance of hip implants and is organized in to three main sections. Firstly, the basic elements of tribology are presented, from contact mechanics of ball-in-socket joints to ultra high molecular weight polyethylene wear laws. Some fundamental equations are also reported, with the aim of providing the reader with some simple tools for tribological investigations. In the second section, the focus moves to artificial hip joints, defining materials and geometrical properties and discussing their friction, lubrication and wear characteristics. In particular, the features of different couplings, from metal-on-plastic to metal-on-metal and ceramic-on-ceramic, are discussed as well as the role of the head radius and clearance. How friction, lubrication and wear are interconnected and most of all how they are specific for each loading and kinematic condition is highlighted. Thus, the significant differences in patients and their lifestyles account for the high dispersion of clinical data. Furthermore, such consideration has raised a new discussion on the most suitable in vitro tests for hip implants as simplified gait cycles can be too far from effective implant working conditions. In the third section, the trends of hip implants in the years from 2003 to 2012 provided by the National Joint Registry of England, Wales and Northern Ireland are summarized and commented on in a discussion. PMID:25621213
Cobalt toxicity after revision total hip replacement due to fracture of a ceramic head.
Pelayo-de Tomás, J M; Novoa-Parra, C; Gómez-Barbero, P
Symptomatic cobalt toxicity from a failed total hip replacement is a rare, but devastating complication. Potential clinical findings include cardiomyopathy, hypothyroidism, skin rash, visual and hearing impairment, polycythaemia, weakness, fatigue, cognitive impairment, and neuropathy. The case is presented of a 74year-old man in whom, after a ceramic-ceramic replacement and two episodes of prosthetic dislocation, it was decided to replace it with a polyethylene-metal total hip arthroplasty (THA). At 6months after the revision he developed symptoms of cobalt toxicity, confirmed by analytical determination (serum cobalt level=651.2μg/L). After removal of the prosthesis, the levels of chromium and cobalt in blood and urine returned to normal, with the patient currently being asymptomatic. It is recommended to use a new ceramic on ceramic bearing at revision, in order to minimise the risk of wear-related cobalt toxicity following breakage of ceramic components. Copyright © 2016 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.
Bouchet, R; Mercier, N; Saragaglia, D
2011-02-01
Dislocation is a frequent complication of total hip arthroplasties (THA) especially in older patients, especially when using a posterior approach. In these cases, dual mobility (DM) cups developed by Gilles Bousquet in 1975 can be indicated to reduce this complication risk. Dual mobility cups reduce the rate of dislocation in primary total hip arthroplasty using posterior approach in a single-surgeon series. Test this hypothesis in a controlled study to compare the rate of dislocation in primary total hip arthroplasties done in patients over 50 years old either with a dual mobility cup or a conventional metal-on-polyethylene 28-mm diameter head. Two consecutive series of primary total hip replacements were performed by a single surgeon using a posterolateral approach. The piriformis tendon was left intact. The DM series included 105 patients who underwent arthroplasty between January 2005 and June 2007 with a dual mobility cup (60 women and 45 men, mean age 76.6±5.65 years old [53-93]). The control series (S series) included 108 patients who underwent arthroplasty (56 women and 52 men, mean age 74.2±5.9 years old [53-87]) with a conventional 28-mm polyethylene cup between January 2003 and June 2005. All hip replacements included a 28-mm metal-polyethylene cup and a 12-14-mm Morse taper. Both groups were comparable for gender, diagnosis, body mass index, type of anesthesia and ASA score distribution. All patients included in this series had a minimum follow-up of 1 year. There were no dislocations in the DM series and five early dislocations (before the third month) in the S series for a rate of 4.63%. Although the rate of dislocation was higher in the S series (4.63% vs 0%), the difference was barely significant (P=0.0597). This study comparing the incidence of dislocations after THA with conventional or dual mobility cups, shows that even using a posterior approach and in older patients, dual mobility cups increase stability with no postoperative dislocations. Although results are barely significant, a larger series should confirm the benefit of this implant. In this series, morbidity was not increased with dual mobility cups. Level III: retrospective case-control study. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Attenuation of radionuclide activity by metal-cup arthroplasties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenthall, L.; Rosenthall, S.
1985-04-01
The half-value layers of stainless steel, bone cement, and polyethylene were measured for /sup 99m/Tc, /sup 67/Ga, /sup 111/In, and /sup 201/TI to render some insight into the attenuating effects of the metallic cup and other components used in surface-replacement revision arthroplasty. On theoretic consideration, a twofold increase in /sup 99m/Tc-methylene diphosphonate in bone inside the cup should not be attenuated to the point of escaping detection on the radionuclide images of the hip. /sup 67/Ga, using the 184 and 300 keV peaks, and /sup 111/In have greater half-value layers than /sup 99m/Tc and are subject to less attenuation bymore » the metallic cup.« less
Metal-on-Metal Total Hip Resurfacing Arthroplasty
2006-01-01
Executive Summary Objective The objective of this review was to assess the safety and effectiveness of metal on metal (MOM) hip resurfacing arthroplasty for young patients compared with that of total hip replacement (THR) in the same population. Clinical Need Total hip replacement has proved to be very effective for late middle-aged and elderly patients with severe degenerative diseases of the hips. As indications for THR began to include younger patients and those with a more active life style, the longevity of the implant became a concern. Evidence suggests that these patients experience relatively higher rates of early implant failure and the need for revision. The Swedish hip registry, for example, has demonstrated a survival rate in excess of 80% at 20 years for those aged over 65 years, whereas this figure was 33% by 16 years in those aged under 55 years. Hip resurfacing arthroplasty is a bone-conserving alternative to THR that restores normal joint biomechanics and load transfer. The technique has been used around the world for more than 10 years, specifically in the United Kingdom and other European countries. The Technology Metal-on-metal hip resurfacing arthroplasty is an alternative procedure to conventional THR in younger patients. Hip resurfacing arthroplasty is less invasive than THR and addresses the problem of preserving femoral bone stock at the initial operation. This means that future hip revisions are possible with THR if the initial MOM arthroplasty becomes less effective with time in these younger patients. The procedure involves the removal and replacement of the surface of the femoral head with a hollow metal hemisphere, which fits into a metal acetabular cup. Hip resurfacing arthroplasty is a technically more demanding procedure than is conventional THR. In hip resurfacing, the femoral head is retained, which makes it much more difficult to access the acetabular cup. However, hip resurfacing arthroplasty has several advantages over a conventional THR with a small (28 mm) ball. First, the large femoral head reduces the chance of dislocation, so that rates of dislocation are less than those with conventional THR. Second, the range of motion with hip resurfacing arthroplasty is higher than that achieved with conventional THR. A variety of MOM hip resurfacing implants are used in clinical practice. Six MOM hip resurfacing implants have been issued licences in Canada. Review Strategy A search of electronic bibliographies (OVID Medline, Medline In-Process and Other Non-Indexed Citations, Embase, Cochrane CENTRAL and DSR, INAHTA) was undertaken to identify evidence published from Jan 1, 1997 to October 27, 2005. The search was limited to English-language articles and human studies. The literature search yielded 245 citations. Of these, 11 met inclusion criteria (9 for effectiveness, 2 for safety). The result of the only reported randomized controlled trial on MOM hip resurfacing arthroplasty could not be included in this assessment, because it used a cemented acetabular component, whereas in the new generation of implants, a cementless acetabular component is used. After omitting this publication, only case series remained. Summary of Findings Health Outcomes The Harris hip score and SF-12 are 2 measures commonly used to report health outcomes in MOM hip resurfacing arthroplasty studies. Other scales used are the Oxford hip score and the University of California Los Angeles hip score. The case series showed that the mean revision rate of MOM hip resurfacing arthroplasty is 1.5% and the incidence of femoral neck fracture is 0.67%. Across all studies, 2 cases of osteonecrosis were reported. Four studies reported improvement in Harris hip scores. However, only 1 study reported a statistically significant improvement. Three studies reported improvement in SF-12 scores, of which 2 reported a significant improvement. One study reported significant improvement in UCLA hip score. Two studies reported postoperative Oxford hip scores, but no preoperative values were reported. None of the reviewed studies reported procedure-related deaths. Four studies reported implant survival rates ranging from 94.4% to 99.7% for a follow-up period of 2.8 to 3.5 years. Three studies reported on the range of motion. One reported improvement in all motions including flexion, extension, abduction-adduction, and rotation, and another reported improvement in flexion. Yet another reported improvement in range of motion for flexion abduction-adduction and rotation arc. However, the author reported a decrease in the range of motion in the arc of flexion in patients with Brooker class III or IV heterotopic bone (all patients were men). Safety of Metal-on-Metal Hip Resurfacing Arthroplasty There is a concern about metal wear debris and its systemic distribution throughout the body. Detectable metal concentrations in the serum and urine of patients with metal hip implants have been described as early as the 1970s, and this issue is still controversial after 35 years. Several studies have reported high concentration of cobalt and chromium in serum and/or urine of the patients with metal hip implants. Potential toxicological effects of the elevated metal ions have heightened concerns about safety of MOM bearings. This is of particular concern in young and active patients in whom life expectancy after implantation is long. Since 1997, 15 studies, including 1 randomized clinical trial, have reported high levels of metal ions after THR with metal implants. Some of these studies have reported higher metal levels in patients with loose implants. Adverse Biological Effects of Cobalt and Chromium Because patients who receive a MOM hip arthroplasty are shown to be exposed to high concentrations of metallic ions, the Medical Advisory Secretariat searched the literature for reports of adverse biological effects of cobalt and chromium. Cobalt and chromium make up the major part of the metal articulations; therefore, they are a focus of concern. Risk of Cancer To date, only one study has examined the incidence of cancer after MOM and polyethylene on metal total hip arthroplasties. The results were compared to that of general population in Finland. The mean duration of follow-up for MOM arthroplasty was 15.7 years; for polyethylene arthroplasty, it was 12.5 years. The standardized incidence ratio for all cancers in the MOM group was 0.95 (95% CI, 0.79–1.13). In the polyethylene on metal group it was 0.76 (95% CI, 0.68–0.86). The combined standardized incidence ratio for lymphoma and leukemia in the patients who had MOM THR was 1.59 (95% CI, 0.82–2.77). It was 0.59 (95% CI, 0.29–1.05) for the patients who had polyethylene on metal THR. Patients with MOM THR had a significantly higher risk of leukemia. All patients who had leukemia were aged over than 60 years. Cobalt Cardiotoxicity Epidemiological Studies of Myocardiopathy of Beer Drinkers An unusual type of myocardiopathy, characterized by pericardial effusion, elevated hemoglobin concentrations, and congestive heart failure, occurred as an epidemic affecting 48 habitual beer drinkers in Quebec City between 1965 and 1966. This epidemic was directly related the consumption of a popular beer containing cobalt sulfate. The epidemic appeared 1 month after cobalt sulfate was added to the specific brewery, and no further cases were seen a month after this specific chemical was no longer used in making this beer. A beer of the same name is made in Montreal, and the only difference at that time was that the Quebec brand of beer contained about 10 times more cobalt sulphate. Cobalt has been added to some Canadian beers since 1965 to improve the stability of the foam but it has been added in larger breweries only to draught beer. However, in small breweries, such as those in Quebec City, separate batches were not brewed for bottle and draught beer; therefore, cobalt was added to all of the beer processed in this brewery. In March 1966, a committee was appointed under the chairmanship of the Deputy Minister of Health for Quebec that included members of the department of forensic medicine of Quebec’s Ministry of Justice, epidemiologists, members of Food and Drug Directorate of Ottawa, toxicologists, biomedical researchers, pathologists, and members of provincial police. Epidemiological studies were carried out by the Provincial Ministry of Health and the Quebec City Health Department. The association between the development of myocardiopathy and the consumption of the particular brand of beer was proven. The mortality rate of this epidemic was 46.1% and those who survived were desperately ill, and recovered only after a struggle for their lives. Similar cases were seen in Omaha (Nebraska). The epidemic started after a cobalt additive was used in 1 of the beers marketed in Nebraska. Sixty-four patients with the clinical diagnosis of alcoholic myocardiopathy were seen during an 18-month period (1964–1965). Thirty of these patients died. The first patient became ill within 1 month after cobalt was added to the beer, and the last patient was seen within 1 month of withdrawal of cobalt. A similar epidemic occurred in Minneapolis, Minnesota. Between 1964 and 1967, 42 patients with acute heart failure were admitted to a hospital in Minneapolis, Minnesota. Twenty of these patients were drinking 6 to 30 bottles per day of a particular brand of beer exclusively. The other 14 patients also drank the same brand of beer, but not exclusively. The mortality rate from the acute illness was 18%, but late deaths accounted for a total mortality rate of 43%. Examination of the tissue from these patients revealed markedly abnormal changes in myofibrils (heart muscles), mitochondria, and sarcoplasmic reticulum. In Belgium, a similar epidemic was reported in 1966, in which, cobalt was used in some Belgian beers. There was a difference in mortality between the Canadian or American epidemic and this series. Only 1 of 24 patients died, 1.5 years after the diagnosis. In March 1965, at an international meeting in Brussels, a new heart disease in chronic beer drinkers was described. This disease consists of massive pericardial effusion, low cardiac output, raised venous pressure, and polycythemia in some cases. This syndrome was thought to be different from the 2 other forms of alcoholic heart disease (beriberi and a form characterized by myocardial fibrosis). The mystery of the above epidemics as stated by investigators is that the amount of cobalt added to the beer was below the therapeutic doses used for anemia. For example, 24 pints of Quebec brand of beer in Quebec would contain 8 mg of cobalt chloride, whereas an intake of 50 to 100 mg of cobalt as an antianemic agent has been well tolerated. Thus, greater cobalt intake alone does not explain the occurrence of myocardiopathy. It seems that there are individual differences in cobalt toxicity. Other features, like subclinical alcoholic heart disease, deficient diet, and electrolyte imbalance could have been precipitating factors that made these patients susceptible to cobalt’s toxic effects. In the Omaha epidemic, 60% of the patients had weight loss, anorexia, and occasional vomiting and diarrhea 2 to 6 months before the onset of cardiac symptoms. In the Quebec epidemic, patients lost their appetite 3 to 6 months before the diagnosis of myocardiopathy and developed nausea in the weeks before hospital admission. In the Belgium epidemic, anorexia was one of the most predominant symptoms at the time of diagnosis, and the quality and quantity of food intake was poor. Alcohol has been shown to increase the uptake of intracoronary injected cobalt by 47%. When cobalt enters the cells, calcium exits; this shifts the cobalt to calcium ratio. The increased uptake of cobalt in alcoholic patients may explain the high incidence of cardiomyopathies in beer drinkers’ epidemics. As all of the above suggest, it may be that prior chronic exposure to alcohol and/or a nutritionally deficient diet may have a marked synergistic effect with the cardiotoxicity of cobalt. Conclusions MOM hip resurfacing arthroplasty has been shown to be an effective arthroplasty procedure as tested in younger patients. However, evidence for effectiveness is based only on 7 case series with short duration of follow-up (2.8–3.5 years). There are no RCTs or other well-controlled studies that compare MOM hip resurfacing with THR. Revision rates reported in the MOM studies using implants currently licensed in Canada (hybrid systems, uncemented acetabular, and cemented femoral) range from 0.3% to 3.6% for a mean follow-up ranging from 2.8 to 3.5 years. Fracture of femoral neck is not very common; it occurs in 0.4% to 2.2% of cases (as observed in a short follow-up period). All the studies that measured health outcomes have reported improvement in Harris Hip and SF-12 scores; 1 study reported significant reduction in pain and improvement in function, and 2 studies reported significant improvement in SF-12 scores. One study reported significant improvement in UCLA Hip scores. Concerns remain on the potential adverse effects of metal ions. Longer-term follow-up data will help to resolve the inconsistency of findings on adverse effects, including toxicity and carcinogenicity. Ontario-Based Economic Analysis The device cost for MOM ranges from $4,300 to $6,000 (Cdn). Traditional hip replacement devices cost about $2,000 (Cdn). Using Ontario Case Costing Initiative data, the total estimated costs for hip resurfacing surgery including physician fees, device fees, follow-up consultation, and postsurgery rehabilitation is about $15,000 (Cdn). Figure 1: Cost of Total Hip Replacement Surgery in Ontario Hip Resurfacing Surgery (Based on 2005/06 inflationary-adjusted rates) Weighted Average (Academic Community! al-inclusive hospitalization cost of surgery $ 6.767.18 Device Cost $ 5,400.00 Additional Medication $ 330.75 Follow-up Consultation $ 190.30 Rehab (per outpatient CCAC case) $ 1,500.00 OH P costs (average) $ 1,068.60 Total Estimated Cost $ 15,256.83 MOM hip arthroplasty is generally recommended for patients aged under 55 years because its bone-conserving advantage enables patients to “buy time” and hence helps THRs to last over the lifetime of the patient. In 2004/2005, 15.9% of patients who received THRs were aged 55 years and younger. It is estimated that there are from 600 to 1,000 annual MOM hip arthroplasty surgeries in Canada with an estimated 100 to 150 surgeries in Ontario. Given the increased public awareness of this device, it is forecasted that demand for MOM hip arthroplasty will steadily increase with a conservative estimate of demand rising to 1,400 cases by 2010 (Figure 10). The net budget impact over a 5-year period could be $500,000 to $4.7 million, mainly because of the increasing cost of the device. Figure 2: Projected Number of Metal-on-Metal Hip Arthroplasty Surgeries in Ontario: to 2010 PMID:23074495
Simoes, Thiago A; Bryant, Michael G; Brown, Andy P; Milne, Steven J; Ryan, Mary; Neville, Anne; Brydson, Rik
2016-11-01
We have characterized CoCrMo, Metal-on-Metal (MoM) implant, wear debris particles and their dissolution following cycling in a hip simulator, and have related the results to the tribocorrosion of synthetic wear debris produced by milling CoCrMo powders in solutions representative of environments in the human body. Importantly, we have employed a modified ICP-MS sample preparation procedure to measure the release of ions from CoCrMo alloys during wear simulation in different media; this involved use of nano-porous ultrafilters which allowed complete separation of particles from free ions and complexes in solution. As a result, we present a new perspective on the release of metal ions and formation of metal complexes from CoCrMo implants. The new methodology enables the mass balance of ions relative to complexes and particles during tribocorrosion in hip simulators to be determined. A much higher release of molybdenum ions relative to cobalt and chromium has been measured. The molybdenum dissolution was enhanced by the presence of bovine serum albumin (BSA), possibly due to the formation of metal-protein complexes. Overall, we believe that the results could have significant implications for the analysis and interpretation of metal ion levels in fluids extracted from hip arthroplasty patients; we suggest that metal levels, including molybdenum, be analysed in these fluids using the protocol described here. We have developed an important new protocol for the analysis of metal ion levels in fluids extracted from hip implant patients and also hip simulators. Using this procedure, we present a new perspective on the release of metal ions from CoCrMo alloy implants, revealing significantly lower levels of metal ion release during tribocorrosion in hip simulators than previously thought, combined with the release of much higher percentages of molybdenum ions relative to cobalt and chromium. This work is of relevance, both from the perspective of the fundamental science and study of metal-protein interactions, enabling understanding of the ongoing problem associated with the biotribocorrosion and the link to inflammation associated with Metal-on-Metal (MoM) hip implants made from CoCrMo alloys. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
2014-01-01
Background The purpose of the study was twofold: first, to determine whether there is a statistically significant difference in the metal ion levels among three different large-head metal-on-metal (MOM) total hip systems. The second objective was to assess whether position of the implanted prostheses, patient demographics or factors such as activity levels influence overall blood metal ion levels and whether there is a difference in the functional outcomes between the systems. Methods In a cross-sectional cohort study, three different metal-on-metal total hip systems were assessed: two monoblock heads, the Durom socket (Zimmer, Warsaw, IN, USA) and the Birmingham socket (Smith and Nephew, Memphis, TN, USA), and one modular metal-on-metal total hip system (Pinnacle, Depuy Orthopedics, Warsaw, IN, USA). Fifty-four patients were recruited, with a mean age of 59.7 years and a mean follow-up time of 41 months (12 to 60). Patients were evaluated clinically, radiologically and biochemically. Statistical analysis was performed on all collected data to assess any differences between the three groups in terms of overall blood metal ion levels and also to identify whether there was any other factor within the group demographics and outcomes that could influence the mean levels of Co and Cr. Results Although the functional outcome scores were similar in all three groups, the blood metal ion levels in the larger monoblock large heads (Durom, Birmingham sockets) were significantly raised compared with those of the Pinnacle group. In addition, the metal ion levels were not found to have a statistically significant relationship to the anteversion or abduction angles as measured on the radiographs. Conclusions When considering a MOM THR, the use of a monoblock large-head system leads to higher elevations in whole blood metal ions and offers no advantage over a smaller head modular system. PMID:24472283
Harrington, Chris F; McKibbin, Craig; Rahanu, Monika; Langton, David; Taylor, Andrew
2017-05-01
Background Patients with metal-on-metal hip replacements require testing for cobalt and chromium. There may also be a need to test for titanium, which is used in the construction of the femoral stem in total hip replacements. It is not possible to use quadrupole inductively coupled plasma mass spectrometry due to interferences. Methods Titanium was measured using inductively coupled plasma optical emission spectroscopy using the emission line at 336.1 nm and Y (internal standard) at 371.0 nm. Internal quality control materials were prepared for blood and serum and concentrations assigned using a sector field-inductively coupled plasma mass spectrometer. A candidate whole blood certified reference material was also evaluated. Results The method had detection and quantitation limits of 0.6 and 1.9 µg/L, respectively. The respective bias (%) and measurement uncertainty ( U) (k = 2) were 3.3% and 2.0 µg/L (serum) and - 1.0% and 1.4 µg/L (whole blood). The respective repeatability and intermediate precision (%) were 5.1% and 10.9% (serum) and 2.4% and 8.6% (whole blood). The concentration of titanium was determined in patients' samples, serum (median = 2.4 µg/L, n = 897) and whole blood (median = 2.4 µg/L, n = 189). Serum is recommended for monitoring titanium in patients, since the concentration is higher than in whole blood and the matrix less problematic. In hip fluid samples, the concentrations were much higher (mean 58.5 µg/L, median 5.1 µg/L, n = 83). Conclusions A method based on inductively coupled plasma optical emission spectroscopy was developed and validated for measuring titanium in clinical samples.
Ancelin, D; Reina, N; Cavaignac, E; Delclaux, S; Chiron, P
2016-12-01
Total hip arthroplasty is the most widely used procedure to treat avascular necrosis (AVN) of the femoral head. Few studies have compared the outcomes of THA in femoral head AVN and primary hip osteoarthritis. Therefore we performed a case-control study to compare THA for femoral head AVN vs. primary hip osteoarthritis in terms of: (1) prosthesis survival, (2) complication rates, (3) functional outcomes and radiographic outcomes, (4) and to determine whether specific risk factors for THA failure exist in femoral head AVN. THA survival is similar in femoral head AVN and primary hip osteoarthritis. We compared two prospective cohorts of patients who underwent THA before 65 years of age, one composed of cases with femoral head AVN and the other of controls with primary hip osteoarthritis. In both cohorts, a cementless metal-on-metal prosthesis with a 28-mm cup and an anatomical stem was used. Exclusion criteria were THA with other types of prosthesis, posttraumatic AVN, and secondary osteoarthritis. With α set at 5%, to obtain 80% power, 246 patients were required in all. Prosthesis survival was assessed based on time to major revision (defined as replacement of at least one implant fixed to bone) and time to aseptic loosening. The other evaluation criteria were complications, Postel-Merle d'Aubigné (PMA) score, and the Engh and Agora Radiographic Assessment (ARA) scores for implant osseointegration. The study included 282 patients, 149 with AVN and 133 with osteoarthritis. Mean age was 47.8±10.2 years (range, 18.5-65) and mean follow-up was 11.4±2.8 years (range, 4.5-18.3 years). The 10-year survival rates were similar in the two groups: for major revision, AVN group, 92.5% (95% confidence interval [95% CI], 90.2-94.8) and osteoarthritis group, 95.3% (95% CI, 92.9-97.7); for aseptic loosening, AVN group, 98.6% (95% CI, 97.6-98.6) and osteoarthritis, 99.2% (95% CI, 98.4-100). The AVN group had higher numbers of revision for any reason (19 vs. 6, P=0.018) and for dislocation (8 vs. 1, P=0.031). Mean PMA scores at last follow-up were comparable in the AVN group (17.65±1.27 [range, 10-18]) and osteoarthritis group (17.59±1.32 [range, 14-18]) (P=0.139). Osseointegration was also similar in the two groups: global Engh score, 26.51±1.81 (range, 14-27) for AVN and 26.84±0.91 (range, 19.5-27) for osteoarthritis (P=0.065); femoral ARA score, 5.83±0.46 (range, 3-6) for AVN and 5.90±0.42 (range, 3-6) for osteoarthritis (P=0.064); and cup ARA score, 5.74±0.67 (range, 3-6) for AVN and 5.78±0.66 (range, 3-6) for osteoarthritis (P=0.344). Survival in this study was good and consistent with recent data on AVN, with no difference between AVN and osteoarthritis. Revisions for any cause or for dislocation were more common after THA for AVN. Functional outcomes were similar in the AVN and osteoarthritis groups. An anatomical cementless prosthesis combined with metal-on-metal 28-mm bearing provides durable good outcomes. III, non-randomized comparison of two prospective cohorts. Published by Elsevier Masson SAS.
Hard-on-hard lubrication in the artificial hip under dynamic loading conditions.
Sonntag, Robert; Reinders, Jörn; Rieger, Johannes S; Heitzmann, Daniel W W; Kretzer, J Philippe
2013-01-01
The tribological performance of an artificial hip joint has a particularly strong influence on its success. The principle causes for failure are adverse short- and long-term reactions to wear debris and high frictional torque in the case of poor lubrication that may cause loosening of the implant. Therefore, using experimental and theoretical approaches models have been developed to evaluate lubrication under standardized conditions. A steady-state numerical model has been extended with dynamic experimental data for hard-on-hard bearings used in total hip replacements to verify the tribological relevance of the ISO 14242-1 gait cycle in comparison to experimental data from the Orthoload database and instrumented gait analysis for three additional loading conditions: normal walking, climbing stairs and descending stairs. Ceramic-on-ceramic bearing partners show superior lubrication potential compared to hard-on-hard bearings that work with at least one articulating metal component. Lubrication regimes during the investigated activities are shown to strongly depend on the kinematics and loading conditions. The outcome from the ISO gait is not fully confirmed by the normal walking data and more challenging conditions show evidence of inferior lubrication. These findings may help to explain the differences between the in vitro predictions using the ISO gait cycle and the clinical outcome of some hard-on-hard bearings, e.g., using metal-on-metal.
Hard-on-Hard Lubrication in the Artificial Hip under Dynamic Loading Conditions
Sonntag, Robert; Reinders, Jörn; Rieger, Johannes S.; Heitzmann, Daniel W. W.; Kretzer, J. Philippe
2013-01-01
The tribological performance of an artificial hip joint has a particularly strong influence on its success. The principle causes for failure are adverse short- and long-term reactions to wear debris and high frictional torque in the case of poor lubrication that may cause loosening of the implant. Therefore, using experimental and theoretical approaches models have been developed to evaluate lubrication under standardized conditions. A steady-state numerical model has been extended with dynamic experimental data for hard-on-hard bearings used in total hip replacements to verify the tribological relevance of the ISO 14242-1 gait cycle in comparison to experimental data from the Orthoload database and instrumented gait analysis for three additional loading conditions: normal walking, climbing stairs and descending stairs. Ceramic-on-ceramic bearing partners show superior lubrication potential compared to hard-on-hard bearings that work with at least one articulating metal component. Lubrication regimes during the investigated activities are shown to strongly depend on the kinematics and loading conditions. The outcome from the ISO gait is not fully confirmed by the normal walking data and more challenging conditions show evidence of inferior lubrication. These findings may help to explain the differences between the in vitro predictions using the ISO gait cycle and the clinical outcome of some hard-on-hard bearings, e.g., using metal-on-metal. PMID:23940772
The epidemiology of bearing surface usage in total hip arthroplasty in the United States.
Bozic, Kevin J; Kurtz, Steven; Lau, Edmund; Ong, Kevin; Chiu, Vanessa; Vail, Thomas P; Rubash, Harry E; Berry, Daniel J
2009-07-01
Hard-on-hard bearings offer the potential to improve the survivorship of total hip arthroplasty implants. However, the specific indications for the use of these advanced technologies remain controversial. The purpose of this study was to characterize the epidemiology of bearing surface utilization in total hip arthroplasty in the United States with respect to patient, hospital, geographic, and payer characteristics. The Nationwide Inpatient Sample database was used to analyze bearing type and demographic characteristics associated with 112,095 primary total hip arthroplasties performed in the United States between October 1, 2005, and December 31, 2006. The prevalence of each type of total hip arthroplasty bearing was calculated for population subgroups as a function of age, sex, census region, payer class, and hospital type. The most commonly reported bearing was metal-on-polyethylene (51%) followed by metal-on-metal (35%) and ceramic-on-ceramic (14%). Metal-on-polyethylene bearings were most commonly reported in female Medicare patients who were sixty-five to seventy-four years old, while metal-on-metal and ceramic-on-ceramic bearings were most commonly reported in privately insured male patients who were less than sixty-five years old. Thirty-three percent of patients over sixty-five years old had a hard-on-hard bearing reported. There was substantial regional variation in bearing usage; the highest prevalence of metal-on-polyethylene bearings was reported in the Northeast and at nonteaching hospitals, and the highest prevalence of metal-on-metal bearings was reported in the South and at teaching hospitals. The usage of total hip arthroplasty bearings varies considerably by patient characteristics, hospital type, and geographic location throughout the United States. Despite uncertain advantages in older patients, hard-on-hard bearings are commonly used in patients over the age of sixty-five years. Further study is necessary to define the appropriate indications for these advanced technologies in total hip arthroplasty.
Ceretti, M; Fanelli, M; Pappalardo, S
2014-01-01
The acetabular shell mobilization is the main long-term complication in total hip replacement. Metal-back fracture has also to be considered among the possible causes of shell mobilization. A case is presented of bilateral acetabular shell mobilization due to the trabecular covering de-soldering from the metal-back in a 43 year-old patient, 13-14 years after the first surgery. Copyright © 2013 SECOT. Published by Elsevier Espana. All rights reserved.
Cip, Johannes; Bach, Christian; Widemschek, Mark; Luegmair, Matthias; Martin, Arno
2015-09-01
The articular surface replacement (ASR) total hip arthroplasty (THA) showed accelerated failure rates due to adverse-reaction to metal debris (ARMD). Literature correlating preoperative with intraoperative revision findings respectively post-revision outcome results are rare. 30 of 99 available ASR THA were revised due to ARMD. Mean post-revision follow-up term was 2.3 years. In part, preoperative data did not correlate with intraoperative revision findings. ARMD was even found in asymptomatic patients with non-elevated ion levels. Postoperative pain and metal ions decreased significantly (P ≤ 0.016). Cobalt decreased faster than chrome. Patients with intraoperative pseudotumors, osteolysis or bilateral THA did not have higher pre- or postoperative ion values (P ≥ 0.053). Females showed higher postoperative chrome levels (P=0.031). One major post-revision complication (femoral nerve palsy) and one re-revision (late onset infection) occurred. Copyright © 2015 Elsevier Inc. All rights reserved.
Sedrakyan, Art; Normand, Sharon-Lise T; Dabic, Stefan; Jacobs, Samantha; Graves, Stephen; Marinac-Dabic, Danica
2011-11-29
To determine comparative safety and effectiveness of combinations of bearing surfaces of hip implants. Systematic review of clinical trials, observational studies, and registries. Medline, Embase, Cochrane Controlled Trials Register, reference lists of articles, annual reports of major registries, summaries of safety and effectiveness for pre-market application and mandated post-market studies at the United States Food and Drug Administration. Criteria for inclusion were comparative studies in adults reporting information for various combinations of bearings (such as metal on metal and ceramic on ceramic). Data search, abstraction, and analyses were independently performed and confirmed by at least two authors. Qualitative data syntheses were performed. There were 3139 patients and 3404 hips enrolled in 18 comparative studies and over 830 000 operations in national registries. The mean age range in the trials was 42-71, and 26-88% were women. Disease specific functional outcomes and general quality of life scores were no different or they favoured patients receiving metal on polyethylene rather than metal on metal in the trials. While one clinical study reported fewer dislocations associated with metal on metal implants, in the three largest national registries there was evidence of higher rates of implant revision associated with metal on metal implants compared with metal on polyethylene. One trial reported fewer revisions with ceramic on ceramic compared with metal on polyethylene implants, but data from national registries did not support this finding. There is limited evidence regarding comparative effectiveness of various hip implant bearings. Results do not indicate any advantage for metal on metal or ceramic on ceramic implants compared with traditional metal on polyethylene or ceramic on polyethylene bearings.
Kleeman, Lindsay T; Goltz, Daniel; Seyler, Thorsten M; Mammarappallil, Joseph G; Attarian, David E; Wellman, Samuel S; Bolognesi, Michael P
2018-07-01
Pseudotumor formation from metal-on-metal (MoM) hip implants is associated with implant revision. The relationship between pseudotumor type and patient outcomes is unknown. We retrospectively reviewed patients with a MoM total hip arthroplasty and metal artifact reduction sequence magnetic resonance imaging. Pseudotumors were graded using a validated classification system by a fellowship-trained radiologist. Patient demographics, metal ion levels, and implant survival were analyzed. Pseudotumors were present in 49 hips (53%). Thirty-two (65%) pseudotumors were cystic thin walled, 8 (16%) were cystic thick walled, and 9 (18%) were solid masses. Patients with pseudotumors had high offset stems (P = .030) but not higher metal ion levels. Patients with thick-walled cystic or solid masses were more likely to be symptomatic (P = .025) and were at increased risk for revision (P = .004) compared to patients with cystic lesions. Pseudotumor formation is present in 53% of patients with a MoM total hip arthroplasty, of which 40% were asymptomatic. Patients with thick-walled cystic and solid lesions were more likely to be symptomatic and undergo revision. Copyright © 2018 Elsevier Inc. All rights reserved.
Management of metal-on-metal hip implant patients: Who, when and how to revise?
Berber, Reshid; Skinner, John A; Hart, Alister J
2016-05-18
The debate on how best to manage patients with metal-on-metal (MOM) hip implants continues. With over 1 million patients affected worldwide, the impact is far reaching. The majority of the aggressive failures of MOM hip implants have been dealt with by revision hip surgery, leaving patients with a much more indolent pattern of failure of devices that have been in situ for more than 10 years. The longer-term outcome for such patients remains unknown, and much debate exists on how best to manage these patients. Regulatory guidance is available but remains open to interpretation due to the lack of current evidence and long-term studies. Metal ion thresholds for concern have been suggested at 7 ppb for hip resurfacing arthroplasty and below this level for large diameter total hip arthroplasties. Soft tissue changes including pseudotumours and muscle atrophy have been shown to progress, but this is not consistent. New advanced imaging techniques are helping to diagnose complications with metal hips and the reasons for failure, however these are not widely available. This has led to some centres to tackle difficult cases through multidisciplinary collaboration, for both surgical management decisions and also follow-up decisions. We summarise current evidence and consider who is at risk, when revision should be undertaken and how patients should be managed.
Management of metal-on-metal hip implant patients: Who, when and how to revise?
Berber, Reshid; Skinner, John A; Hart, Alister J
2016-01-01
The debate on how best to manage patients with metal-on-metal (MOM) hip implants continues. With over 1 million patients affected worldwide, the impact is far reaching. The majority of the aggressive failures of MOM hip implants have been dealt with by revision hip surgery, leaving patients with a much more indolent pattern of failure of devices that have been in situ for more than 10 years. The longer-term outcome for such patients remains unknown, and much debate exists on how best to manage these patients. Regulatory guidance is available but remains open to interpretation due to the lack of current evidence and long-term studies. Metal ion thresholds for concern have been suggested at 7 ppb for hip resurfacing arthroplasty and below this level for large diameter total hip arthroplasties. Soft tissue changes including pseudotumours and muscle atrophy have been shown to progress, but this is not consistent. New advanced imaging techniques are helping to diagnose complications with metal hips and the reasons for failure, however these are not widely available. This has led to some centres to tackle difficult cases through multidisciplinary collaboration, for both surgical management decisions and also follow-up decisions. We summarise current evidence and consider who is at risk, when revision should be undertaken and how patients should be managed. PMID:27190754
Reduction of metallosis in hip implant using thin film coating
NASA Astrophysics Data System (ADS)
Rajeshshyam, R.; Chockalingam, K.; Gayathri, V.; Prakash, T.
2018-04-01
Hip implant finds its emerging attraction due to it continuous demand over the years. The hip implants (femoral head) and acetabulum cup) mainly fabricated by metals such as stainless steel, cobalt chrome and titanium alloys, other than that ceramics and polyethylene have been used. The metal-on-metal hip implant was found to be best implant material for most of the surgeons due to its high surface finish, low wear rate and low chance of dislocation from its position after implanting. Where in metal based hip implant shows less wear rate of 0.01mm3/year. Metal-on-metal implant finds its advantage over other materials both in its mechanical and physical stability against human load. In M-O-M Cobalt- chromium alloys induce metal allergy. The metal allergy (particulate debris) that is generated by wear, fretting, fragmentation and which is unavoidable when a prosthesis is implanted, can induce an inflammatory reaction in some circumstances. The objectives of this research to evaluate thin film coating with Nano particle additives to reduce the wear leads to regarding metal ion release. Experimental results reveals that thin film Sol-Gel coating with 4wt. % of specimen reduced the cobalt and chromium ion release and reduces the wear rate. Wear rate reduced by 98% for 4wt. % graphene in 20N and 95% for 4wt. % graphene in 10N.
21 CFR 888.3350 - Hip joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hip joint metal/polymer semi-constrained cemented prosthesis. 888.3350 Section 888.3350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... metal/polymer semi-constrained cemented prosthesis. (a) Identification. A hip joint metal/polymer semi...
21 CFR 888.3350 - Hip joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/polymer semi-constrained cemented prosthesis. 888.3350 Section 888.3350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... metal/polymer semi-constrained cemented prosthesis. (a) Identification. A hip joint metal/polymer semi...
21 CFR 888.3350 - Hip joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hip joint metal/polymer semi-constrained cemented prosthesis. 888.3350 Section 888.3350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... metal/polymer semi-constrained cemented prosthesis. (a) Identification. A hip joint metal/polymer semi...
21 CFR 888.3350 - Hip joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hip joint metal/polymer semi-constrained cemented prosthesis. 888.3350 Section 888.3350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... metal/polymer semi-constrained cemented prosthesis. (a) Identification. A hip joint metal/polymer semi...
21 CFR 888.3350 - Hip joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hip joint metal/polymer semi-constrained cemented prosthesis. 888.3350 Section 888.3350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... metal/polymer semi-constrained cemented prosthesis. (a) Identification. A hip joint metal/polymer semi...
Cemented total hip replacement cable debris and acetabular construct durability.
Altenburg, Aaron J; Callaghan, John J; Yehyawi, Tameem M; Pedersen, Douglas R; Liu, Steve S; Leinen, Jessica A; Dahl, Kevin A; Goetz, Devon D; Brown, Thomas D; Johnston, Richard C
2009-07-01
Third-body wear can adversely affect the outcome of total hip arthroplasty by causing increased polyethylene wear, osteolysis, and component loosening. We hypothesized that there would be greater generation and migration of metal debris to the bearing surfaces in hips in which cobalt-chromium cables were used to reattach the osteotomized greater trochanter when compared with hips in which stainless steel wires were used. Between June 1981 and December 1983, 196 consecutive total hip arthroplasties were performed with use of an Iowa stem and a titanium-backed cemented acetabular component, with cobalt-chromium cable trochanteric reattachment. After nineteen to twenty years of follow-up, the patients were evaluated with regard to the depth of head penetration into the polyethylene (as a surrogate for wear), osteolysis, loosening, and the need for revision. The results were compared with those for a series of 304 total hip arthroplasties that were performed by the same surgeon from January 1984 to December 1985 with use of the same components and the same surgical technique, but with stainless steel wire trochanteric reattachment. The two groups had a comparable nineteen to twenty-year follow-up. All living patients (fifty-nine hips in the cable group and ninety-two hips in the wire group) had minimum ten-year follow-up radiographs. The polyethylene wear rate was 0.101 mm/yr for the cable group and 0.082 mm/yr for the wire group (p = 0.039). For the living patients, the rate of revision of the acetabular component because of aseptic loosening was 37.3% (twenty-two hips) for the cable group and 20.7% (nineteen hips) for the wire group (p = 0.025). The rate of acetabular osteolysis was 44% (twenty-six hips) for the cable group and 26% (twenty-four hips) for the wire group (p = 0.022). Kaplan-Meier analysis with revision of the acetabular component because of aseptic loosening as the end point demonstrated survival rates of 73.7% +/- 9% and 83% +/- 7% for the cable and wire groups, respectively, at twenty years (p = 0.03). Because cable trochanteric attachment led to significantly greater polyethylene wear, osteolysis, acetabular loosening, and acetabular revision, presumably due to third-body metallic debris generation in this cemented total hip replacement construct, surgeons should be aware of the deleterious effects of third-body debris and avoid the use of potential debris generators in the total hip arthroplasty construct. If cable is used and fretting is recognized, especially with intra-articular migration of metallic material or nonunion of the greater trochanter, consideration should be given to cable removal.
Berber, Reshid; Pappas, Yannis; Khoo, Michael; Miles, Jonathan; Carrington, Richard; Skinner, John; Hart, Alister
2015-02-18
Over one million patients worldwide are estimated to have a metal-on-metal hip arthroplasty. To improve the management of these patients and reduce surgeon uncertainty regarding decision-making, we designed an Internet-enhanced multidisciplinary team (iMDT) working approach. From August 2012 to April 2014, the iMDT discussed 215 patients with 266 metal-on-metal hip arthroplasties. Of these, 236 primary arthroplasties (132 hip resurfacing and 104 total hip) were analyzed. The remaining thirty cases involved problematic revised hips and were therefore excluded. The possible recommendations of the iMDT were monitoring, further investigation, or surgery. The concordance between the recommendation and the actual management was used to assess the usefulness of this approach in reducing uncertainty in surgeon-level decision-making. The median Oxford Hip Score was 35 (range, 4 to 48), and median cobalt and chromium levels in whole blood were 3.54 ppb (range, 0.18 to 161.46 ppb) and 3.17 ppb (range, 0.20 to 100.67 ppb), respectively. Magnetic resonance imaging revealed abductor muscle atrophy in ninety-two (39%) of the hips and a pseudotumor in eighty (34%). The iMDT recommended monitoring of 146 (61.9%) of the hips, further investigation of thirty (12.7%), and surgery in sixty (25.4%). The actual outcome was concordant with the recommendation in 211 (91.7%) of the hips. Our iMDT approach to the metal-on-metal hip burden combines the tacit knowledge of an expert panel, regulatory guidance, and up-to-date evidence to improve decision-making among surgeons. The high level of concordance between the recommendation and the actual outcome, combined with the feasibility of the methods used, suggest that this method effectively reduces uncertainty among surgeons and may lead to improved patient outcomes. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.
Hjorth, M H; Egund, N; Mechlenburg, I; Gelineck, J; Jakobsen, S S; Soballe, K; Stilling, M
2016-12-01
Little is known about pseudotumor frequency and risk factors for pseudotumor formation among different types of metal-on-metal (MoM) hip arthroplasties. A lower release of chromium and cobalt have been reported in MoM hip arthroplasties with a titanium sleeve compared to MoM designs without a titanium sleeve, but yet it is unknown whether a titanium sleeve reduces the pseudotumor frequency. We conducted a cross-sectional study to investigate: 1) pseudotumor frequency, 2) risk factors of pseudotumor formation 3) and correlations between pseudotumors, serum metal-ions, implant position, and clinical symptoms. We expected a lower pseudotumor frequency in MoM hip articulation with a titanium sleeve than reported in MoM hip articulation designs using chromium-cobalt sleeve. A consecutive series of 41 patients/49 hips (31 males), mean age 52 (28-68) years, participated in a 5.5±0.5 (4-6.5) year follow-up study of their M2a_Magnum hip articulation (Biomet Inc., Warsaw, Indiana, USA). Patients were evaluated with magnetic resonance imaging (MRI), measurements of serum metal-ions, plain radiographs, and clinical outcome measures of Harris Hip Score (HHS) and Oxford Hip Score (OHS). Eighteen of 47 hips (38%) had MRI-verified pseudotumors, all cystic, with a mean dimension of 10.6×25.6×41mm. Digital measurements on plain radiographs revealed a higher cup anteversion in patients with a pseudotumor of mean 28.4°±5.05° compared to mean 23.5°±6.5° in patients without a pseudotumor (P=0.009). Serum metal-ion concentrations, acetabular cup inclination and measures of HHS and OHS were similar between patients with and without a pseudotumor (P>0.46). At 5.5±0.5years after surgery, MRI-verified cystic pseudotumors were frequently observed in M2a_Magnum hip articulations despite the use of titanium sleeves. The pseudotumors were related to high cup anteversion angles but not related to high serum metal-ions or clinical symptoms. IV: cross-sectional study. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Sprecher, Christoph M; Wimmer, Markus A; Milz, Stefan; Taeger, Georg
2009-01-01
Background and purpose Particles originating from the articulating surfaces of hip endoprostheses often induce an inflammatory response, which can be related to implant failure. We therefore analyzed the metal content in capsular tissue from 44 McKee-Farrar metal-on-metal hip prostheses (with 3 different head sizes) and we also analyzed the morphological structure of layers located on articulating surfaces. Methods Atomic absorption spectrometry (AAS) was used to analyze the metal content in capsular tissue. Visually detectable carbon layers located on the articulating surfaces were evaluated using scanning electron microscopy (SEM), energy-dispersive Xray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). Results Metallic debris was detected in all capsular tissue samples but no statistically significant differences in metal content were found in relation to implant head size. The morphological characteristics of the different layer zones allowed an exact analysis of contact and non-contact areas. Furthermore, surface layers appear to have a protective function because they can prevent sharp-edged particles from damaging the prostheses surface. Interpretation The implant head size does not appear to influence the amount of metallic debris. The layers obviously act like a lubricating agent because the protection function does not occur in regions without layers where the metal surface often shows numerous scratches. As layers are not generated immediately after the implantation of hip prostheses, these findings may at least partially explain the high amount of wear early after implantation. PMID:19421914
The Role of Hip Arthroscopy in Investigating and Managing the Painful Hip Resurfacing Arthroplasty.
Mei-Dan, Omer; Pascual-Garrido, Cecilia; Moreira, Brett; McConkey, Mark O; Young, David A
2016-03-01
To determine the safety and efficacy of hip arthroscopy performed in the peripheral compartment as a diagnostic and therapeutic treatment option for patients with hip pain after hip resurfacing surgery. Indications for hip arthroscopy after hip resurfacing included patients with a symptomatic hip-resurfaced arthroplasties who did not respond to nonoperative treatment. Patients who underwent a hip arthroscopy after a painful hip resurfacing were included with a minimum of 1 year follow-up. Subgroup analysis was performed according to whether an established diagnosis was made before arthroscopic intervention or not. Subjective measures were based on Western Ontario and McMaster Universities Arthritis Index (WOMAC) scores, and results were calculated and analyzed. We included 68 patients (26 male [38%] and 42 female [62%]) who underwent subsequent hip arthroscopy from a population of 978 consecutive hip-resurfaced arthroplasties performed between 1999 and 2010. The average age was 58 (range, 37 to 78 years). The mean follow-up after hip arthroscopy was 3.4 years (range, 12 months to 5.8 years). Patients who had an established diagnosis (n = 41) before hip arthroscopy showed statistical improvement in their WOMAC scores (7 to 2, P < .001). Only 3 (7%) of these 41 patients failed and were converted to a total hip replacement (THR); however, patients who did not have an established diagnosis (n = 27) before undergoing hip arthroscopy showed statistical worsening of the WOMAC (15 to 21, P = .002). Ten (37%) of these 27 patients without a diagnosis failed and needed to be converted to a THR. A significant correlation was found between the collections found on ultrasound (psoas bursa and/or in the hip joint) and the need for synovectomy (P = .01). The overall revision rate to THR after hip resurfacing in our group of patients was 1.3% (n = 13). Female patients were more likely to require postresurfacing hip arthroscopy with 42 (60%) female to only 26 (40%) male patients undergoing this procedure. In our study population, 70% (14/21, P < .05) of patients with hip pain caused by severe metal synovial reaction or metal-on-metal reaction were women. A total of 5 (7%) patients had minor-to-mild complications after hip arthroscopy. Hip arthroscopy is a safe surgical treatment option for those patients with a painful hip resurfacing arthroplasty. Having an accurate diagnosis before hip arthroscopy improves the likelihood a good outcome. Level IV - therapeutic case series. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Li, Chaodi; Kotha, Shiva; Mason, James
2003-01-01
The exothermic polymerization of bone cement may induce thermal necrosis of bone in cemented hip arthroplasty. A finite element formulation was developed to predict the evolution of the temperature with time in the cemented hip replacement system. The developed method is capable of taking into account both the chemical reaction that generates heat during bone cement polymerization (through a kinetic model) and the physical process of heat conduction (with an energy balance equation). The possibility of thermal necrosis of bone was then evaluated based on the temperature history in the bone and an appropriate damage criterion. Specifically, we evaluate the role of implant materials and designs on the thermal response of the system. Results indicated that the peak temperature at the bone/cement interface with a metal prosthesis was lower than that with a polymer or a composite prosthesis in hip replacement systems. Necrosis of bone was predicted to occur with a polymer or a composite prosthesis while no necrosis was predicted with a metal prosthesis in the simulated conditions. When reinforcing osteoporotic hips with injected bone cement in the cancellous core of the femur, the volume of bone cement implanted is increased which may increase the risk of thermal necrosis of bone. We evaluate whether this risk can be decreased through the use of an insulator to contain the bone cement. No thermal necrosis of bone was predicted with a 3 mm thick polyurethane insulator while more damage is predicted for the use of bone cement without the insulator. This method provides a numerical tool for the quantitative simulation of the thermal behavior of bone-cement-prosthesis designs and for examining and refining new designs computationally.
Donaldson, Finn E; Nyman, Edward; Coburn, James C
2015-07-16
Manufacturers and investigators of Total Hip Replacement (THR) bearings require tools to predict the contact mechanics resulting from diverse design and loading parameters. This study provides contact mechanics solutions for metal-on-metal (MoM) bearings that encompass the current design space and could aid pre-clinical design optimization and evaluation. Stochastic finite element (FE) simulation was used to calculate the head-on-cup contact mechanics for five thousand combinations of design and loading parameters. FE results were used to train a Random Forest (RF) surrogate model to rapidly predict the contact patch dimensions, contact area, pressures and plastic deformations for arbitrary designs and loading. In addition to widely observed polar and edge contact, FE results included ring-polar, asymmetric-polar, and transitional categories which have previously received limited attention. Combinations of design and load parameters associated with each contact category were identified. Polar contact pressures were predicted in the range of 0-200 MPa with no permanent deformation. Edge loading (with subluxation) was associated with pressures greater than 500 MPa and induced permanent deformation in 83% of cases. Transitional-edge contact (with little subluxation) was associated with intermediate pressures and permanent deformation in most cases, indicating that, even with ideal anatomical alignment, bearings may face extreme wear challenges. Surrogate models were able to accurately predict contact mechanics 18,000 times faster than FE analyses. The developed surrogate models enable rapid prediction of MoM bearing contact mechanics across the most comprehensive range of loading and designs to date, and may be useful to those performing bearing design optimization or evaluation. Published by Elsevier Ltd.
Sedrakyan, Art; Graves, Stephen; Bordini, Barbara; Pons, Miquel; Havelin, Leif; Mehle, Susan; Paxton, Elizabeth; Barber, Thomas; Cafri, Guy
2014-12-17
The rapid decline in use of conventional total hip replacement with a large femoral head size and a metal-on-metal bearing surface might lead to increased popularity of ceramic-on-ceramic bearings as another hard-on-hard alternative that allows implantation of a larger head. We sought to address comparative effectiveness of ceramic-on-ceramic and metal-on-HXLPE (highly cross-linked polyethylene) implants by utilizing the distributed health data network of the ICOR (International Consortium of Orthopaedic Registries), an unprecedented collaboration of national and regional registries and the U.S. FDA (Food and Drug Administration). A distributed health data network was developed by the ICOR and used in this study. The data from each registry are standardized and provided at a level of aggregation most suitable for the detailed analysis of interest. The data are combined across registries for comprehensive assessments. The ICOR coordinating center and study steering committee defined the inclusion criteria for this study as total hip arthroplasty performed without cement from 2001 to 2010 in patients forty-five to sixty-four years of age with osteoarthritis. Six national and regional registries (Kaiser Permanente and HealthEast in the U.S., Emilia-Romagna region in Italy, Catalan region in Spain, Norway, and Australia) participated in this study. Multivariate meta-analysis was performed with use of linear mixed models, with survival probability as the unit of analysis. We present the results of the fixed-effects model and include the results of the random-effects model in an appendix. SAS version 9.2 was used for all analyses. We first compared femoral head sizes of >28 mm and ≤28 mm within ceramic-on-ceramic implants and then compared ceramic-on-ceramic with metal-on-HXLPE. A total of 34,985 patients were included; 52% were female. We found a lower risk of revision associated with use of ceramic-on-ceramic implants when a larger head size was used (HR [hazard ratio] = 0.73, 95% CI [confidence interval] = 0.60 to 0.88, p = 0.001). Use of smaller-head-size ceramic-on-ceramic bearings was associated with a higher risk of failure compared with metal-on-HXLPE bearings (HR = 1.36, 95% CI = 1.09 to 1.68, p = 0.006). Use of large-head-size ceramic-on-ceramic bearings was associated with a small protective effect relative to metal-on-HXLPE bearings (not subdivided by head size) in years zero to two, but this difference dissipated over the longer term. Our multinational study based on a harmonized, distributed network showed that use of ceramic-on-ceramic implants with a smaller head size in total hip arthroplasty without cement was associated with a higher risk of revision compared with metal-on-HXLPE and >28-mm ceramic-on-ceramic implants. These findings warrant careful reflection by regulatory and clinical communities and wide dissemination to patients for informed decision-making regarding such surgery. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.
Novel chitosan/diclofenac coatings on medical grade stainless steel for hip replacement applications
NASA Astrophysics Data System (ADS)
Finšgar, Matjaž; Uzunalić, Amra Perva; Stergar, Janja; Gradišnik, Lidija; Maver, Uroš
2016-05-01
Corrosion resistance, biocompatibility, improved osteointegration, as well the prevention of inflammation and pain are the most desired characteristics of hip replacement implants. In this study we introduce a novel multi-layered coating on AISI 316LVM stainless steel that shows promise with regard to all mentioned characteristics. The coating is prepared from alternating layers of the biocompatible polysaccharide chitosan and the non-steroid anti-inflammatory drug (NSAID), diclofenac. Electrochemical methods were employed to characterize the corrosion behavior of coated and uncoated samples in physiological solution. It is shown that these coatings improve corrosion resistance. It was also found that these coatings release the incorporated drug in controlled, multi-mechanism manner. Adding additional layers on top of the as-prepared samples, has potential for further tailoring of the release profile and increasing the drug dose. Biocompatibility was proven on human-derived osteoblasts in several experiments. Only viable cells were found on the sample surface after incubation of the samples with the same cell line. This novel coating could prove important for prolongation of the application potential of steel-based hip replacements, which are these days often replaced by more expensive ceramic or other metal alloys.
Novel chitosan/diclofenac coatings on medical grade stainless steel for hip replacement applications
Finšgar, Matjaž; Uzunalić, Amra Perva; Stergar, Janja; Gradišnik, Lidija; Maver, Uroš
2016-01-01
Corrosion resistance, biocompatibility, improved osteointegration, as well the prevention of inflammation and pain are the most desired characteristics of hip replacement implants. In this study we introduce a novel multi-layered coating on AISI 316LVM stainless steel that shows promise with regard to all mentioned characteristics. The coating is prepared from alternating layers of the biocompatible polysaccharide chitosan and the non-steroid anti-inflammatory drug (NSAID), diclofenac. Electrochemical methods were employed to characterize the corrosion behavior of coated and uncoated samples in physiological solution. It is shown that these coatings improve corrosion resistance. It was also found that these coatings release the incorporated drug in controlled, multi-mechanism manner. Adding additional layers on top of the as-prepared samples, has potential for further tailoring of the release profile and increasing the drug dose. Biocompatibility was proven on human-derived osteoblasts in several experiments. Only viable cells were found on the sample surface after incubation of the samples with the same cell line. This novel coating could prove important for prolongation of the application potential of steel-based hip replacements, which are these days often replaced by more expensive ceramic or other metal alloys. PMID:27215333
Effect of ion implantation on the tribology of metal-on-metal hip prostheses.
Bowsher, John G; Hussain, Azad; Williams, Paul; Nevelos, Jim; Shelton, Julia C
2004-12-01
Nitrogen ion implantation (which considerably hardens the surface of the bearing) may represent one possible method of reducing the wear of metal-on-metal (MOM) hip bearings. Currently there are no ion-implanted MOM bearings used clinically. Therefore a physiological hip simulator test was undertaken using standard test conditions, and the results compared to previous studies using the same methods. N2-ion implantation of high carbon cast Co-Cr-Mo-on-Co-Cr-Mo hip prostheses increased wear by 2-fold during the aggressive running-in phase compared to untreated bearing surfaces, plus showing no wear reductions during steady-state conditions. Although 2 specimens were considered in the current study, it would appear that ion implantation has no clinical benefit for MOM.
Properties of open-cell porous metals and alloys for orthopaedic applications.
Lewis, Gladius
2013-10-01
One shortcoming of metals and alloys used to fabricate various components of orthopaedic systems, such as the femoral stem of a total hip joint replacement and the tibial plate of a total knee joint replacement, is well-recognized. This is that the material modulus of elasticity (E') is substantially larger than that of the contiguous cancellous bone, a consequence of which is stress shielding which, in turn, has been postulated to be implicated in a cascade of events that culminates in the principal life-limiting phenomenon of these systems, namely, aseptic loosening. Thus, over the years, a host of research programs have focused on the synthesis of metallic biomaterials whose E' can be tailored to match that of cancellous bone. The present work is a review of the extant large volume of literature on these materials, which are called open-cell porous metals/alloys (or, sometimes, metal foams or cellular materials). As such, its range is wide, covering myriad aspects such as production methods, characterization studies, in vitro evaluations, and in vivo performance. The review also includes discussion of seven areas for future research, such as parametric studies of the influence of an assortment of process variables (such as the space holder material and the laser power in the space holder method and the laser-engineered net-shaping process, respectively) on various properties (notably, permeability, fatigue strength, and corrosion resistance) of a given porous metal/alloy, innovative methods of determining fatigue strength, and modeling of corrosion behavior.
Rieker, Claude B; Schön, Rolf; Konrad, Reto; Liebentritt, Gernot; Gnepf, Patric; Shen, Ming; Roberts, Paul; Grigoris, Peter
2005-04-01
Large-diameter metal-on-metal articulations may provide an opportunity for wear reduction in total hip implants because earlier studies have shown that the formation of a fluid film that completely separates the bearing surfaces is theoretically possible. In such a lubrication mode and under ideal conditions, there is theoretically no amount of wear. Studies have suggested that the two primary parameters controlling the lubrication mode are the diameter and the clearance of the articulation. The goal of the present study was to experimentally investigate the influence of these two parameters on the wear behavior of large-diameter metal-on-metal articulations pertaining to resurfacing hip implants. The results of this in vitro investigation showed that longer running-in periods and higher amounts of running-in wear were associated with larger clearances.
Lass, Richard; Grübl, Alexander; Kolb, Alexander; Stelzeneder, David; Pilger, Alexander; Kubista, Bernd; Giurea, Alexander; Windhager, Reinhard
2014-09-01
Diagnosis of adverse reactions to metal debris in metal-on-metal hip arthroplasty is a multifactorial process. Systemic ion levels are just one factor in the evaluation and should not be relied upon solely to determine the need for revision surgery. Furthermore, the correlation between cobalt or chromium serum, urine, or synovial fluid levels and adverse local tissue reactions is still incompletely understood. The hypothesis was that elevated serum and urine metal-ion concentrations are associated with elevated local metal-ion concentrations in primary total hip arthroplasties (THA) and with failure of metal-on-metal articulations in the long-term. In our present study, we evaluated these concentrations in 105 cementless THA with metal-on-metal articulating surfaces with small head diameter at a minimum of 18 years postoperatively. Spearman correlation showed a high correlation between the joint fluid aspirate concentration of cobalt and chromium with the serum cobalt (r = 0.81) and chromium level (r = 0.77) in patients with the THA as the only source of metal-ions. In these patients serum metal-ion analysis is a valuable method for screening. In patients with more than one source of metal or renal insufficiency additional investigations, like joint aspirations are an important tool for evaluation of wear and adverse tissue reactions in metal-on-metal THA. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
The impact of surface and geometry on coefficient of friction of artificial hip joints.
Choudhury, Dipankar; Vrbka, Martin; Mamat, Azuddin Bin; Stavness, Ian; Roy, Chanchal K; Mootanah, Rajshree; Krupka, Ivan
2017-08-01
Coefficient of friction (COF) tests were conducted on 28-mm and 36-mm-diameter hip joint prostheses for four different material combinations, with or without the presence of Ultra High Molecular Weight Polyethylene (UHMWPE) particles using a novel pendulum hip simulator. The effects of three micro dimpled arrays on femoral head against a polyethylene and a metallic cup were also investigated. Clearance played a vital role in the COF of ceramic on polyethylene and ceramic on ceramic artificial hip joints. Micro dimpled metallic femoral heads yielded higher COF against a polyethylene cup; however, with metal on metal prostheses the dimpled arrays significantly reduced the COF. In situ images revealed evidence that the dimple arrays enhanced film formation, which was the main mechanism that contributed to reduced friction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ali, Murat; Al-Hajjar, Mazen; Partridge, Susan; Williams, Sophie; Fisher, John; Jennings, Louise M
2016-01-01
Hip joint simulators are used extensively for preclinical testing of hip replacements. The variation in simulator design and test conditions used worldwide can affect the tribological performance of polyethylene. The aim of this study was to assess the effects of simulator mechanics and design on the wear and creep of ultra-high-molecular-weight polyethylene. In the first part of this study, an electromechanical simulator and pneumatic simulator were used to compare the wear and creep of metal-on-polyethylene components under the same standard gait conditions. In the second part of the study, the same electromechanical hip joint simulator was used to investigate the influence of kinematics on wear. Higher wear rates and penetration depths were observed from the electromechanical simulator compared with the pneumatic simulator. When adduction/abduction was introduced to the gait cycle, there was no significant difference in wear with that obtained under the gait cycle condition without adduction/abduction. This study confirmed the influence of hip simulator design and loading conditions on the wear of polyethylene, and therefore direct comparisons of absolute wear rates between different hip joint simulators should be avoided. This study also confirmed that the resulting wear path was the governing factor in obtaining clinically relevant wear rates, and this can be achieved with either two axes or three axes of rotations. However, three axes of rotation (with the inclusion of adduction/abduction) more closely replicate clinical conditions and should therefore be the design approach for newly developed hip joint simulators used for preclinical testing. PMID:27160559
Ali, Murat; Al-Hajjar, Mazen; Partridge, Susan; Williams, Sophie; Fisher, John; Jennings, Louise M
2016-05-01
Hip joint simulators are used extensively for preclinical testing of hip replacements. The variation in simulator design and test conditions used worldwide can affect the tribological performance of polyethylene. The aim of this study was to assess the effects of simulator mechanics and design on the wear and creep of ultra-high-molecular-weight polyethylene. In the first part of this study, an electromechanical simulator and pneumatic simulator were used to compare the wear and creep of metal-on-polyethylene components under the same standard gait conditions. In the second part of the study, the same electromechanical hip joint simulator was used to investigate the influence of kinematics on wear. Higher wear rates and penetration depths were observed from the electromechanical simulator compared with the pneumatic simulator. When adduction/abduction was introduced to the gait cycle, there was no significant difference in wear with that obtained under the gait cycle condition without adduction/abduction. This study confirmed the influence of hip simulator design and loading conditions on the wear of polyethylene, and therefore direct comparisons of absolute wear rates between different hip joint simulators should be avoided. This study also confirmed that the resulting wear path was the governing factor in obtaining clinically relevant wear rates, and this can be achieved with either two axes or three axes of rotations. However, three axes of rotation (with the inclusion of adduction/abduction) more closely replicate clinical conditions and should therefore be the design approach for newly developed hip joint simulators used for preclinical testing. © IMechE 2016.
Hallab, NJ; Caicedo, M; McAllister, K; Skipor, A; Amstutz, H; Jacobs, JJ
2012-01-01
Some tissues from metal-on-metal (MoM) hip arthroplasty revisions have shown evidence of adaptive-immune reactivity (i.e., excessive peri-implant lymphocyte infiltration/activation). We hypothesized that, prior to symptoms, some people with MoM hip arthroplasty will develop quantifiable metal-induced lymphocyte reactivity responses related to peripheral metal ion levels. We tested 3 cohorts (Group-1: n=21 prospective longitudinal MoM hip arthroplasty; Group-2: n=17 retrospective MoM hip arthroplasty; and Group-3: n=20 controls without implants). We compared implant position, metal-ion release, and immuno-reactivity. MoM cohorts had elevated (p<0.01) amounts of serum Co and Cr compared to controls as early as 3 mos post-op (Group-1:1.2ppb-Co, 1.5ppb-Cr; Group-2: 3.4ppb-Co,, 5.4ppb-Cr; Group-3: 0.01ppb-Co, 0.1ppb-Cr). However, only after 1 to 4 yrs post-op did 56% of Group-1 develop metal-reactivity (vs. 5%pre-op, metal-LTT, SI>2), compared with 76% of Group-2 and 15% of Group-3 controls (patch testing was a poor diagnostic indicator with only 1/21 Group-1 positive). Higher cup-abduction angles (50° vs. 40°) in Group-1 were associated with higher serum Cr (p<0.07). However, sub-optimal cup-anteversion angles (9° vs. 20°) had higher serum Co (p<0.08). Serum Cr and Co were significantly elevated in reactive vs. non-reactive Group-1 participants (p<0.04). CD4+CD69+ T-helper lymphocytes (but not CD8+) and IL-1β, IL-12 and IL-6 cytokines were all significantly elevated in metal-reactive vs. non-reactive Group-1 participants. Our results showed that lymphocyte reactivity to metals can develop within the first 1 to 4 years after MoM arthroplasty in asymptomatic patients and lags increases in metal ion levels. This increased metal reactivity was more prevalent in those individuals with extreme cup angles and higher amounts of circulating metal. PMID:22941579
Kwon, Young-Min; Khormaee, Sariah; Liow, Ming Han Lincoln; Tsai, Tsung-Yuan; Freiberg, Andrew A; Rubash, Harry E
2016-10-19
Modularity in total hip arthroplasty facilitates intraoperative restoration of patient anatomy. Although dual-taper modular total hip arthroplasty offers potential advantages for optimizing the hip center of rotation, it has been associated with modular taper corrosion. This corrosion has led to adverse local tissue reactions (pseudotumors) at the neck-stem junction and elevated metal-ion levels. However, the occurrence of taper-corrosion-related pseudotumors in patients who remain asymptomatic following total hip arthroplasty with a dual-taper modular femoral stem remains largely unknown. The aims of this study were (1) to determine the prevalence of asymptomatic pseudotumors by utilizing metal artifact reduction sequence magnetic resonance imaging (MARS-MRI) and (2) compare serum metal-ion levels between symptomatic and asymptomatic patients with a dual-taper modular stem total hip replacement. We performed a retrospective cross-sectional study of 97 consecutive patients who had been treated with a dual-taper modular femoral stem total hip arthroplasty. Eighty-three patients were stratified into symptomatic and asymptomatic groups and evaluated with MARS-MRI, measurement of serum metal-ion levels, and the University of California at Los Angeles (UCLA) functional hip score. The prevalence of pseudotumors as determined with MARS-MRI was 15% in our asymptomatic patients and 36% in the overall cohort. The median serum cobalt level and cobalt/chromium ratio were significantly higher in patients with a pseudotumor than in those without a pseudotumor (8.0 versus 2.0 μg/L [p = 0.004] and 10.3 versus 2.4 μg/L [p = 0.012], respectively). However, there was no significant difference in the serum cobalt level or cobalt/chromium ratio between symptomatic patients with a pseudotumor and asymptomatic patients with a pseudotumor (7.6 versus 6.2 μg/L [p = 0.37] and 8.3 versus 10.6 μg/L [p = 0.46], respectively). The UCLA scores of asymptomatic patients with a pseudotumor were similar to those of patients without a pseudotumor (6.7 versus 6.6). The prevalence of asymptomatic taper-corrosion-related pseudotumors on MARS-MRI in this study demonstrated that the absence of symptoms does not exclude the presence of adverse local tissue reactions. Elevated cobalt levels and cobalt/chromium ratios were associated with the presence of pseudotumors in asymptomatic and symptomatic patients. Cross-sectional imaging such as MARS-MRI is indicated for patients with elevated metal-ion levels. A longitudinal study is required to determine whether asymptomatic patients with taper-corrosion-related pseudotumors will develop symptoms with time. Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.
Will New Metal Heads Restore Mechanical Integrity of Corroded Trunnions?
Derasari, Aditya; Gold, Jonathan E; Ismaily, Sabir; Noble, Philip C; Incavo, Stephen J
2017-04-01
Metal wear and corrosion from modular junctions in total hip arthroplasty can lead to further unwanted surgery. Trunnion tribocorrosion is recognized as an important contributor to failure. This study was performed to determine if new metal heads restore mechanical integrity of the original modular junction after impaction on corroded trunnions, and assess which variables affect stability of the new interface created at revision total hip arthroplasty. Twenty-two trunnions, cobalt-chromium (CoCr) and titanium alloy (TiAIV), (CoCr, n = 12; TiAIV, n = 10) and new metal heads were used, 10 trunnions in pristine condition and 12 with corrosion damage. Test states were performed using an MTS Machine and included the following: 1, Assembly; 2, Disassembly; 3, Assembly; 4, Toggling; and 5, Disassembly. During loading, three-dimensional motion of the head-trunnion junction was measured using a custom jig. There were no statistical differences in the tested mechanical properties between corroded and pristine trunnions implanted with a new metal femoral head. Average micromotion of the head versus trunnion interface was greatest at the start of loading, stabilizing after approximately 50 loading cycles at an average of 30.6 ± 3.2 μm. Corrosion at the trunnion does not disrupt mechanical integrity of the junction when a CoCr head is replaced with a CoCr trunnion. However, increased interface motion of a new metal head on a corroded titanium trunnion requires additional study. The evaluation of ball head size on mechanical integrity of trunnions would also be a potential subject of future investigation, as increasing the ball head size at the time of revision is not uncommon in revisions today. Copyright © 2016 Elsevier Inc. All rights reserved.
Friesenbichler, Joerg; Maurer-Ertl, Werner; Sadoghi, Patrick; Lovse, Thomas; Windhager, Reinhard; Leithner, Andreas
2012-03-01
The effects of systemic metal ion exposure in patients with implants made of common prosthetic alloys continue to be a matter of concern. The aim of the study was to determine the measurement values of cobalt (Co), chromium (Cr) and molybdenum (Mo) in serum following rotating-hinge knee arthroplasty. Blood was taken from 25 patients [mean follow-up 35 (range nine to 67) months] treated with megaprostheses (n=17) or standard rotating-hinge devices (n=8) and analysed using electrothermal graphite furnace atomic absorption spectrometry (ET-ASS). Determining the concentrations of metal ions following rotating-hinge knee arthroplasty revealed increments for Co and Cr but not Mo. Metal ion release was significantly higher in patients with megaprostheses compared to a standard rotating-hinge knee device (Co p=0,024; Cr p=0.025). The authors believe there might be an additional metal ion release from the surface of the prosthesis and not only from the articulating surfaces because, in cases of rotating-hinge knee prosthesis, there is a metal-on-polyethylene articulation and not a direct metal-on-metal junction. Nevertheless, long-term studies are required to determine adverse effects of Co, Cr and Mo following total hip replacement and total knee arthroplasty.
Investigation of Wear and Corrosion of a High-Carbon Stellite Alloy for Hip Implants
NASA Astrophysics Data System (ADS)
Hu, P. S.; Liu, R.; Liu, J.; McRae, G.
2014-04-01
Low-carbon Stellite 21 has been used as hip implant material for a number of decades; however, its limited metal-on-metal bearing has resulted in loosening between the femoral head and the acetabular cup of hip implants. In order to improve the metal-on-metal bearing, it is proposed that a high-carbon alloy, Stellite 720, surface coating be applied on Stellite 21 hip implants to improve mechanical and tribological performance. For this coating to be practical, it must also meet the requirements of corrosion resistance for orthopedic implant materials. In this research, Stellite 720 is investigated with pin-on-disk wear tests, and electrochemical and immersion corrosion tests in simulated human body fluid (Hank's solution; pH 7.4 at temperature of 37°C). The experimental results demonstrate that Stellite 720 exhibits much better wear resistance than Stellite 21, and has the potential for better corrosion resistance as well. The applicability of coating Stellite 21 hip implants with Stellite 720 is discussed.
Cemented Total Hip Replacement Cable Debris and Acetabular Construct Durability
Altenburg, Aaron J.; Callaghan, John J.; Yehyawi, Tameem M.; Pedersen, Douglas R.; Liu, Steve S.; Leinen, Jessica A.; Dahl, Kevin A.; Goetz, Devon D.; Brown, Thomas D.; Johnston, Richard C.
2009-01-01
Background: Third-body wear can adversely affect the outcome of total hip arthroplasty by causing increased polyethylene wear, osteolysis, and component loosening. We hypothesized that there would be greater generation and migration of metal debris to the bearing surfaces in hips in which cobalt-chromium cables were used to reattach the osteotomized greater trochanter when compared with hips in which stainless steel wires were used. Methods: Between June 1981 and December 1983, 196 consecutive total hip arthroplasties were performed with use of an Iowa stem and a titanium-backed cemented acetabular component, with cobalt-chromium cable trochanteric reattachment. After nineteen to twenty years of follow-up, the patients were evaluated with regard to the depth of head penetration into the polyethylene (as a surrogate for wear), osteolysis, loosening, and the need for revision. The results were compared with those for a series of 304 total hip arthroplasties that were performed by the same surgeon from January 1984 to December 1985 with use of the same components and the same surgical technique, but with stainless steel wire trochanteric reattachment. The two groups had a comparable nineteen to twenty-year follow-up. All living patients (fifty-nine hips in the cable group and ninety-two hips in the wire group) had minimum ten-year follow-up radiographs. Results: The polyethylene wear rate was 0.101 mm/yr for the cable group and 0.082 mm/yr for the wire group (p = 0.039). For the living patients, the rate of revision of the acetabular component because of aseptic loosening was 37.3% (twenty-two hips) for the cable group and 20.7% (nineteen hips) for the wire group (p = 0.025). The rate of acetabular osteolysis was 44% (twenty-six hips) for the cable group and 26% (twenty-four hips) for the wire group (p = 0.022). Kaplan-Meier analysis with revision of the acetabular component because of aseptic loosening as the end point demonstrated survival rates of 73.7% ± 9% and 83% ± 7% for the cable and wire groups, respectively, at twenty years (p = 0.03). Conclusions: Because cable trochanteric attachment led to significantly greater polyethylene wear, osteolysis, acetabular loosening, and acetabular revision, presumably due to third-body metallic debris generation in this cemented total hip replacement construct, surgeons should be aware of the deleterious effects of third-body debris and avoid the use of potential debris generators in the total hip arthroplasty construct. If cable is used and fretting is recognized, especially with intra-articular migration of metallic material or nonunion of the greater trochanter, consideration should be given to cable removal. Level of Evidence: Therapeutic Level III. See Instructions to Authors for a complete description of levels of evidence. PMID:19571089
Component Position and Metal Ion Levels in Computer-Navigated Hip Resurfacing Arthroplasty.
Mann, Stephen M; Kunz, Manuela; Ellis, Randy E; Rudan, John F
2017-01-01
Metal ion levels are used as a surrogate marker for wear in hip resurfacing arthroplasties. Improper component position, particularly on the acetabular side, plays an important role in problems with the bearing surfaces, such as edge loading, impingement on the acetabular component rim, lack of fluid-film lubrication, and acetabular component deformation. There are little data regarding femoral component position and its possible implications on wear and failure rates. The purpose of this investigation was to determine both femoral and acetabular component positions in our cohort of mechanically stable hip resurfacing arthroplasties and to determine if these were related to metal ion levels. One hundred fourteen patients who had undergone a computer-assisted metal-on-metal hip resurfacing were prospectively followed. Cobalt and chromium levels, Harris Hip, and UCLA activity scores in addition to measures of the acetabular and femoral component position and angles of the femur and acetabulum were recorded. Significant changes included increases in the position of the acetabular component compared to the native acetabulum; increase in femoral vertical offset; and decreases in global offset, gluteus medius activation angle, and abductor arm angle (P < .05). Multiple regression analysis found no significant predictors of cobalt and chromium metal ion levels. Femoral and acetabular components placed in acceptable position failed to predict increased metal ion levels, and increased levels did not adversely impact patient function or satisfaction. Further research is necessary to clarify factors contributing to prosthesis wear. Copyright © 2016 Elsevier Inc. All rights reserved.
M Takamura, K; Maher, P; Nath, T; Su, E P
2014-05-01
Metal-on-metal hip resurfacing (MOMHR) is available as an alternative option for younger, more active patients. There are failure modes that are unique to MOMHR, which include loosening of the femoral head and fractures of the femoral neck. Previous studies have speculated that changes in the vascularity of the femoral head may contribute to these failure modes. This study compares the survivorship between the standard posterior approach (SPA) and modified posterior approach (MPA) in MOMHR. A retrospective clinical outcomes study was performed examining 351 hips (279 male, 72 female) replaced with Birmingham Hip Resurfacing (BHR, Smith and Nephew, Memphis, Tennessee) in 313 patients with a pre-operative diagnosis of osteoarthritis. The mean follow-up period for the SPA group was 2.8 years (0.1 to 6.1) and for the MPA, 2.2 years (0.03 to 5.2); this difference in follow-up period was statistically significant (p < 0.01). Survival analysis was completed using the Kaplan-Meier method. At four years, the Kaplan-Meier survival curve for the SPA was 97.2% and 99.4% for the MPA; this was statistically significant (log-rank; p = 0.036). There were eight failures in the SPA and two in the MPA. There was a 3.5% incidence of femoral head collapse or loosening in the SPA and 0.4% in the MPA, which represented a significant difference (p = 0.041). There was a 1.7% incidence of fractures of the femoral neck in the SPA and none in the MPA (p = 0.108). This study found a significant difference in survivorship at four years between the SPA and the MPA (p = 0.036). The clinical outcomes of this study suggest that preserving the vascularity of the femoral neck by using the MPA results in fewer vascular-related failures in MOMHRs. Cite this article: Bone Joint Res 2014;3:150-4. ©2014 The British Editorial Society of Bone & Joint Surgery.
M. Takamura, K.; Maher, P.; Nath, T.; Su, E. P.
2014-01-01
Objectives Metal-on-metal hip resurfacing (MOMHR) is available as an alternative option for younger, more active patients. There are failure modes that are unique to MOMHR, which include loosening of the femoral head and fractures of the femoral neck. Previous studies have speculated that changes in the vascularity of the femoral head may contribute to these failure modes. This study compares the survivorship between the standard posterior approach (SPA) and modified posterior approach (MPA) in MOMHR. Methods A retrospective clinical outcomes study was performed examining 351 hips (279 male, 72 female) replaced with Birmingham Hip Resurfacing (BHR, Smith and Nephew, Memphis, Tennessee) in 313 patients with a pre-operative diagnosis of osteoarthritis. The mean follow-up period for the SPA group was 2.8 years (0.1 to 6.1) and for the MPA, 2.2 years (0.03 to 5.2); this difference in follow-up period was statistically significant (p < 0.01). Survival analysis was completed using the Kaplan–Meier method. Results At four years, the Kaplan–Meier survival curve for the SPA was 97.2% and 99.4% for the MPA; this was statistically significant (log-rank; p = 0.036). There were eight failures in the SPA and two in the MPA. There was a 3.5% incidence of femoral head collapse or loosening in the SPA and 0.4% in the MPA, which represented a significant difference (p = 0.041). There was a 1.7% incidence of fractures of the femoral neck in the SPA and none in the MPA (p = 0.108). Conclusion This study found a significant difference in survivorship at four years between the SPA and the MPA (p = 0.036). The clinical outcomes of this study suggest that preserving the vascularity of the femoral neck by using the MPA results in fewer vascular-related failures in MOMHRs. Cite this article: Bone Joint Res 2014;3:150–4 PMID:24842931
Craig, P; Bancroft, G; Burton, A; Collier, S; Shaylor, P; Sinha, A
2014-01-01
The issues surrounding raised levels of metal ions in the blood following large head metal-on-metal total hip replacement (THR), such as cobalt and chromium, have been well documented. Despite the national popularity of uncemented metal-on-polyethylene (MoP) THR using a large-diameter femoral head, few papers have reported the levels of metal ions in the blood following this combination. Following an isolated failure of a 44 mm Trident-Accolade uncemented THR associated with severe wear between the femoral head and the trunnion in the presence of markedly elevated levels of cobalt ions in the blood, we investigated the relationship between modular femoral head diameter and the levels of cobalt and chromium ions in the blood following this THR. A total of 69 patients received an uncemented Trident-Accolade MoP THR in 2009. Of these, 43 patients (23 men and 20 women, mean age 67.0 years) were recruited and had levels of cobalt and chromium ions in the blood measured between May and June 2012. The patients were then divided into three groups according to the diameter of the femoral head used: 12 patients in the 28 mm group (controls), 18 patients in the 36 mm group and 13 patients in the 40 mm group. A total of four patients had identical bilateral prostheses in situ at phlebotomy: one each in the 28 mm and 36 mm groups and two in the 40 mm group. There was a significant increase in the mean levels of cobalt ions in the blood in those with a 36 mm diameter femoral head compared with those with a 28 mm diameter head (p = 0.013). The levels of cobalt ions in the blood were raised in those with a 40 mm diameter head but there was no statistically significant difference between this group and the control group (p = 0.152). The levels of chromium ions in the blood were normal in all patients. The clinical significance of this finding is unclear, but we have stopped using femoral heads with a diameter of ≤ 36 mm, and await further larger studies to clarify whether, for instance, this issue particularly affects this combination of components.
Lal, S; Hall, R M; Tipper, J L
2016-09-15
Ceramics have been used to deliver significant improvements in the wear properties of orthopaedic bearing materials, which has made it challenging to isolate wear debris from simulator lubricants. Ceramics such as silicon nitride, as well as ceramic-like surface coatings on metal substrates have been explored as potential alternatives to conventional implant materials. Current isolation methods were designed for isolating conventional metal, UHMWPE and ceramic wear debris. In this paper, we describe a methodology for isolation and recovery of ceramic or ceramic-like coating particles and metal wear particles from serum lubricants under ultra-low and low wear performance. Enzymatic digestion was used to digest the serum proteins and sodium polytungstate was used as a novel density gradient medium to isolate particles from proteins and other contaminants by ultracentrifugation. This method demonstrated over 80% recovery of particles and did not alter the size or morphology of ceramic and metal particles during the isolation process. Improvements in resistance to wear and mechanical damage of the articulating surfaces have a large influence on longevity and reliability of joint replacement devices. Modern ceramics have demonstrated ultra-low wear rates for hard-on-hard total hip replacements. Generation of very low concentrations of wear debris in simulator lubricants has made it challenging to isolate the particles for characterisation and further analysis. We have introduced a novel method to isolate ceramic and metal particles from serum-based lubricants using enzymatic digestion and novel sodium polytungstate gradients. This is the first study to demonstrate the recovery of ceramic and metal particles from serum lubricants at lowest detectable in vitro wear rates reported in literature. Copyright © 2016. Published by Elsevier Ltd.
Savarino, Lucia; Cadossi, Matteo; Chiarello, Eugenio; Baldini, Nicola; Giannini, Sandro
2013-09-01
Metal-on-metal hip resurfacing arthroplasty (MOM HR) has become an established alternative to traditional metal-on-metal total hip arthroplasty (MOM THA) for younger, more active patients. Nevertheless, concerns remain regarding wear and corrosion of the bearing surfaces and the resulting systemic metal ion distribution. We therefore asked whether (1) serum ion concentrations in patients with MOM HR at the time of long-term followup were higher than concentrations in a control population with no hip implants; (2) the ion concentrations in patients with MOM HR were different from those in patients with MOM THA; and (3) sex would influence ion levels with regard to implant type. The MOM HR and MOM THA groups consisted of 25 patients (evaluated at a minimum of 96 months) and 16 patients (evaluated at a minimum of 106 months), respectively. Forty-eight healthy donors were recruited for reference values. Cobalt, chromium, nickel, and molybdenum were measured by furnace graphite atomic absorption spectrophotometry. Ion concentrations of cobalt, chromium, and molybdenum in MOM HR were higher than in controls. Chromium and cobalt release were higher in MOM HR than in MOM THA. The sex-based analysis showed the difference was because women had higher concentrations in the MOM HR group than in the MOM THA group, whereas there was no difference between the men in the two groups. In MOM HR, high metal ion release persists for the long term. Consequently, it is important to implement strict biomonitoring for patients who have received these implants. The sustained high levels of chromium in females within the MOM HR group are concerning and merits strong consideration when choosing implants in this patient group.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, X; Yang, X; Rosenfield, J
Purpose: Metal implants such as orthopedic hardware and dental fillings cause severe bright and dark streaking in reconstructed CT images. These artifacts decrease image contrast and degrade HU accuracy, leading to inaccuracies in target delineation and dose calculation. Additionally, such artifacts negatively impact patient set-up in image guided radiation therapy (IGRT). In this work, we propose a novel method for metal artifact reduction which utilizes the anatomical similarity between neighboring CT slices. Methods: Neighboring CT slices show similar anatomy. Based on this anatomical similarity, the proposed method replaces corrupted CT pixels with pixels from adjacent, artifact-free slices. A gamma map,more » which is the weighted summation of relative HU error and distance error, is calculated for each pixel in the artifact-corrupted CT image. The minimum value in each pixel’s gamma map is used to identify a pixel from the adjacent CT slice to replace the corresponding artifact-corrupted pixel. This replacement only occurs if the minimum value in a particular pixel’s gamma map is larger than a threshold. The proposed method was evaluated with clinical images. Results: Highly attenuating dental fillings and hip implants cause severe streaking artifacts on CT images. The proposed method eliminates the dark and bright streaking and improves the implant delineation and visibility. In particular, the image non-uniformity in the central region of interest was reduced from 1.88 and 1.01 to 0.28 and 0.35, respectively. Further, the mean CT HU error was reduced from 328 HU and 460 HU to 60 HU and 36 HU, respectively. Conclusions: The proposed metal artifact reduction method replaces corrupted image pixels with pixels from neighboring slices that are free of metal artifacts. This method proved capable of suppressing streaking artifacts, improving HU accuracy and image detectability.« less
21 CFR 888.3400 - Hip joint femoral (hemi-hip) metallic resurfacing prosthesis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hip joint femoral (hemi-hip) metallic resurfacing prosthesis. 888.3400 Section 888.3400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3400 Hip joint...
21 CFR 888.3370 - Hip joint (hemi-hip) acetabular metal cemented prosthesis.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hip joint (hemi-hip) acetabular metal cemented prosthesis. 888.3370 Section 888.3370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3370 Hip joint...
21 CFR 888.3400 - Hip joint femoral (hemi-hip) metallic resurfacing prosthesis.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hip joint femoral (hemi-hip) metallic resurfacing prosthesis. 888.3400 Section 888.3400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3400 Hip joint...
21 CFR 888.3370 - Hip joint (hemi-hip) acetabular metal cemented prosthesis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hip joint (hemi-hip) acetabular metal cemented prosthesis. 888.3370 Section 888.3370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3370 Hip joint...
21 CFR 888.3370 - Hip joint (hemi-hip) acetabular metal cemented prosthesis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hip joint (hemi-hip) acetabular metal cemented prosthesis. 888.3370 Section 888.3370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3370 Hip joint...
21 CFR 888.3400 - Hip joint femoral (hemi-hip) metallic resurfacing prosthesis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hip joint femoral (hemi-hip) metallic resurfacing prosthesis. 888.3400 Section 888.3400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3400 Hip joint...
21 CFR 888.3400 - Hip joint femoral (hemi-hip) metallic resurfacing prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hip joint femoral (hemi-hip) metallic resurfacing prosthesis. 888.3400 Section 888.3400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3400 Hip joint...
Zhu, Wenliang; Pezzotti, Giuseppe; Boffelli, Marco; Chotanaphuti, Thanainit; Khuangsirikul, Saradej; Sugano, Nobuhiko
2017-08-01
Ceramic-on-metal (CoM) hip implants were reported to experience lower wear rates in vitro as compared to metal-on-metal (MoM) bearings, thus hinting metal-ion release at lower levels in vivo. In this article, we show a spectroscopic study of two short-term retrieval cases of zirconia-toughened alumina (ZTA) femoral heads belonging to CoM hip prostheses, which instead showed poor wear performances in vivo. Metal contamination and abnormally high fractions of tetragonal-to-monoclinic (t→m) polymorphic transformation of the zirconia phase could be found on both ZTA heads, which contrasted with the optimistic predictions of in vitro experiments. At the molecular scale, incorporation of metal ions into the ceramic lattices could be recognized as due to frictionally assisted phenomena occurring at the ceramic surface. Driven by abnormal friction, diffusion of metal ions induced lattice shrinkage in the zirconia phases, while residual stress fields became stored at the surface of the femoral head. Diffusional alterations destabilized the chemistry of the ceramic surface and resulted in an abnormal increase in t→m phase transformation in vivo. Frictionally driven metal transfer to the ceramic lattice thus hinders the in vivo performance of CoM prostheses. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1469-1480, 2017. © 2016 Wiley Periodicals, Inc.
Liu, Feng; Williams, Sophie; Jin, Zhongmin; Fisher, John
2013-11-01
Head contact on the rim of the cup causes stress concentration and consequently increased wear. The head contact on the rim of the cup may in addition cause an offset load and torque on the cup. The head-rim contact resulting from microseparation or subluxation has been investigated. An analytical model has been developed to calculate the offset loading and resultant torque on the cup as a function of the translational displacement of the head under simplified loading condition of the hip joint at heel strike during a walking cycle. The magnitude of the torque on the cup was found to increase with the increasing translational displacement, larger diameter heads, eccentric cups, and the coefficient of friction of the contact. The effects of cup inclination, cup rim radius, and cup coverage angle on the magnitude of the torque were found to be relatively small with a maximum variation in the torque magnitude being lower than 20%. This study has shown an increased torque due to the head loading on the rim of the cup, and this may contribute to the incidence of cup loosening. Particularly, metal-on-metal hip joints with larger head diameters may produce the highest offset loading torque.
Barlow, Brian T; Ortiz, Philippe A; Boles, John W; Lee, Yuo-Yu; Padgett, Douglas E; Westrich, Geoffrey H
2017-05-01
The recent experiences with adverse local tissue reactions have highlighted the need to establish what are normal serum levels of cobalt (Co), chromium (Cr), and titanium (Ti) after hip arthroplasty. Serum Co, Cr, and Ti levels were measured in 80 nonconsecutive patients with well-functioning unilateral total hip arthroplasty and compared among 4 bearing surfaces: ceramic-on-ceramic (CoC); ceramic-on-polyethylene (CoP); metal-on-polyethylene (MoP), and dual mobility (DM). The preoperative and most recent University of California, Los Angeles (UCLA) and Western Ontario and McMaster Universities Arthritis Index (WOMAC) scores were compared among the different bearing surfaces. No significant difference was found among serum Co and Cr levels between the 4 bearing surface groups (P = .0609 and P = .1577). Secondary analysis comparing metal and ceramic femoral heads demonstrated that the metal group (MoP, modular dual mobility (Stryker Orthopedics, Mahwah, NJ) [metal]) had significant higher serum Co levels compared with the ceramic group (CoC, CoP, MDM [ceramic]) (1.05 mg/L ± 1.25 vs 0.59 mg/L ± 0.24; P = .0411). Spearman coefficient identified no correlation between metal ion levels and patient-reported outcome scores. No serum metal ion level differences were found among well-functioning total hip arthroplasty with modern bearing couples. Significantly higher serum Co levels were seen when comparing metal vs ceramic femoral heads in this study and warrants further investigation. Metal ion levels did not correlate with patient-reported outcome measures. Copyright © 2016 Elsevier Inc. All rights reserved.
Short-term clinical experience with hip resurfacing arthroplasty.
Cieliński, Łukasz; Kusz, Damian; Wojciechowski, Piotr; Dziuba, Anna
2007-01-01
This paper discusses the authors' experience with hip resurfacing arthroplasty. Although introduced many years ago, the method did not gain wide popularity because of poor long-term outcomes. At present, owing to the introduction of metal-on-metal bearings and hybrid fixation techniques, short- and mid-term results are very good and encourage wider use of this technique, especially in the younger and more active patients whose results with standard total hip replacements would be unsatisfactory. We performed 13 hip resurfacing arthroplasties at our institution between August 1, 2005, and May 1, 2006. Twelve patients reported for the scheduled follow-up and were included in the study. Treatment outcomes were assessed according to the Harris Hip Score. The short-term outcomes of hip resurfacing arthroplasties are encouraging. In the study group there were no intraoperative complications, infections, peripheral nerve palsy, hip dislocations or clinically overt vein thrombosis. All of the patients reported complete or major pain relief. Clinical assessment according to the Harris Hip Score revealed improvement from an average of 57.7 (20.1) points preoperatively to an average of 87.7 (12) points after the surgery. Crutches were used for a maximum of 6 weeks postoperatively. All of the patients are currently able to walk without crutches with full weight-bearing. 1) Hip resurfacing arthroplasty seems to be an advisable method of operative management of younger, active patients, in whom standard THR would be associated with a high risk of failure; it allows THR to be postponed and carried out as a revision surgery with the acetabular component already in place. 2) Despite the good short- and mid-term results, the utility of this method should be evaluated with caution due to the lack of adequate long-term follow-up data.
Revision surgery of metal-on-metal hip arthroplasties for adverse reactions to metal debris.
Matharu, Gulraj S; Eskelinen, Antti; Judge, Andrew; Pandit, Hemant G; Murray, David W
2018-06-01
Background and purpose - The initial outcomes following metal-on-metal hip arthroplasty (MoMHA) revision surgery performed for adverse reactions to metal debris (ARMD) were poor. Furthermore, robust thresholds for performing ARMD revision are lacking. This article is the second of 2. The first article considered the various investigative modalities used during MoMHA patient surveillance (Matharu et al. 2018a ). The present article aims to provide a clinical update regarding ARMD revision surgery in MoMHA patients (hip resurfacing and large-diameter MoM total hip arthroplasty), with specific focus on the threshold for performing ARMD revision, the surgical strategy, and the outcomes following revision. Results and interpretation - The outcomes following ARMD revision surgery appear to have improved with time for several reasons, among them the introduction of regular patient surveillance and lowering of the threshold for performing revision. Furthermore, registry data suggest that outcomes following ARMD revision are influenced by modifiable factors (type of revision procedure and bearing surface implanted), meaning surgeons could potentially reduce failure rates. However, additional large multi-center studies are needed to develop robust thresholds for performing ARMD revision surgery, which will guide surgeons' treatment of MoMHA patients. The long-term systemic effects of metal ion exposure in patients with these implants must also be investigated, which will help establish whether there are any systemic reasons to recommend revision of MoMHAs.
Tins, Bernhard
2011-07-01
Metal on metal resurfacing hip implants are known to have complications unique to this type of implant. The case presented adds a further previously not described complication, the dislocation and spontaneous reduction of the pin of the femoral component against the femoral neck. The radiographic and CT findings are demonstrated. The dislocation was aided by bone loss due to an infection with a large periarticular collection. Periarticular collections in hip resurfacings are often due to a hypersensitivity type reaction to metal debris. However in the case presented it was due to infection. MRI was not able to discern the infection from a sterile collection. CT demonstrated bone loss and periosteal reaction suggestive of infection. In addition calcification of the pseudocapsule was seen, this is not a recognized feature of sterile collections. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Scaglione, M; Fabbri, L; Bianchi, N; Dell'Omo, D; Guido, G
2015-04-01
We report the clinical, radiological and wear analysis of 52 consecutive MoM hip resurfacings (performed on 49 younger patients) to a mean follow-up of 9.2 years. Every patient underwent X-ray and clinical evaluation (HHS). Ultrasonography of the hip was performed in all patients in order to identify possible cystic or solid mass in periprosthetic tissue. In case of mass >20 mm, further MRI was performed to better analyse the characteristics of lesion. Five patients (five hips) had a revision. The overall survival rate was 90.38 %. The average HHS at follow-up examination was 95.5 points. No progressive radiolucent areas and no sclerosis or osteolysis around the implants were found. The US and RMI imaging showed a pseudotumour formation in two patients (correlated with high metal ion levels in blood and urine), both asymptomatic. A significant positive correlation between inclination of the acetabular component and serum metal ion levels was found (r = 0.64 and r = 0.62 for cobalt and chromium, respectively).
Indications for MARS-MRI in Patients Treated With Metal-on-Metal Hip Resurfacing Arthroplasty.
Connelly, James W; Galea, Vincent P; Matuszak, Sean J; Madanat, Rami; Muratoglu, Orhun; Malchau, Henrik
2018-06-01
Currently, there are no universally accepted guidelines on when to obtain metal artifact reduction sequence magnetic resonance imaging (MARS-MRI) in metal-on-metal (MoM) hip resurfacing arthroplasty (HRA) patients. Our primary aims were to identify which patient and clinical factors are predictive of adverse local tissue reaction (ALTR) and create an algorithm for indicating MARS-MRI in patients with Articular Surface Replacement (ASR) HRA. The secondary aim was to compare our algorithm to existing guidelines on when to perform MARS-MRI in MoM HRA patients. The study cohort consisted of 182 patients with unilateral ASR HRA from a prospective, multicenter study. Subjects received MARS-MRI at a mean of 7.8 years from surgery, regardless of symptoms. We determined which variables were predictive of ALTR and generated cutoffs for each variable. Finally, we created an algorithm to predict ALTR and indicate MARS-MRI in ASR HRA patients using these cutoffs and compared it to existing guidelines. We found high blood cobalt (Co) (odds ratio = 1.070; P = .011) and high blood chromium (Cr) (odds ratio = 1.162; P = .002) to be significant predictors of ALTR presence. Our algorithm using a blood Co cutoff of 1.15 ppb and a Cr cutoff of 1.09 ppb achieved 96.6% sensitivity and 35.3% specificity in predicting ALTR, which outperformed the existing guidelines. Blood Co and Cr levels are predictive of ALTR in ASR HRA patients. Our algorithm considering blood Co and Cr levels predicts ALTR in ASR HRA patients with higher sensitivity than previously established guidelines. Copyright © 2018 Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hip joint metal/metal semi-constrained, with a cemented acetabular component, prosthesis. 888.3320 Section 888.3320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hip joint metal/metal semi-constrained, with a cemented acetabular component, prosthesis. 888.3320 Section 888.3320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hip joint metal/metal semi-constrained, with a cemented acetabular component, prosthesis. 888.3320 Section 888.3320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Posada, Olga M., E-mail: O.M.PosadaEstefan@leeds.ac.uk; Gilmour, Denise; Tate, Rothwelle J., E-mail: r.j.tate@strath.ac.uk
Cobalt-chromium (CoCr) particles in the nanometre size range and their concomitant release of Co and Cr ions into the patients' circulation are produced by wear at the articulating surfaces of metal-on-metal (MoM) implants. This process is associated with inflammation, bone loss and implant loosening and led to the withdrawal from the market of the DePuy ASR™ MoM hip replacements in 2010. Ions released from CoCr particles derived from a resurfacing implant in vitro and their subsequent cellular up-take were measured by ICP-MS. Moreover, the ability of such metal debris and Co ions to induce both apoptosis was evaluated with bothmore » FACS and immunoblotting. qRT-PCR was used to assess the effects on the expression of lymphotoxin alpha (LTA), BCL2-associated athanogene (BAG1), nitric oxide synthase 2 inducible (NOS2), FBJ murine osteosarcoma viral oncogene homolog (FOS), growth arrest and DNA-damage-inducible alpha (GADD45A). ICP-MS showed that the wear debris released significant (p < 0.05) amounts of Co and Cr ions into the culture medium, and significant (p < 0.05) cellular uptake of both ions. There was also an increase (p < 0.05) in apoptosis after a 48 h exposure to wear debris. Analysis of qRT-PCR results found significant up-regulation (p < 0.05) particularly of NOS2 and BAG1 in Co pre-treated cells which were subsequently exposed to Co ions + debris. Metal debris was more effective as an inducer of apoptosis and gene expression when cells had been pre-treated with Co ions. This suggests that if a patient receives sequential bilateral CoCr implants, the second implant may be more likely to produce adverse effects than the first one. - Highlights: • Effects of CoCr nanoparticles and Co ions on U937 cells were investigated. • Ions released from wear debris play an important role in cellular response, • Toxicity of Co ions could be related to NO metabolic processes and apoptosis. • CoCr particles were a more effective inducer of apoptosis after cell priming. • CoCr particles were a more effective inducer of gene expression after cell priming.« less
Tribology and wear of metal-on-metal hip prostheses: influence of cup angle and head position.
Williams, Sophie; Leslie, Ian; Isaac, Graham; Jin, Zhongmin; Ingham, Eileen; Fisher, John
2008-08-01
Clinical studies have indicated that the angular position of the acetabular cup may influence wear in metal-on-metal total hip bearings. A high cup angle in comparison to the anatomical position may lead to the head being constrained by the superior lateral surface and rim of the cup, thus potentially changing the location of the contact zone between the head and the cup. The aim of this study was to test the hypothesis that both a steep cup angle and a lateralized position of the head can increase head contact on the superior rim of the cup, with the consequence of increased wear. Hip-joint simulator studies of metal-on-metal bearings were undertaken with cup angles of 45 degrees and 55 degrees . The femoral head was either aligned to the center of the cup or placed in a position of microlateralization. Wear was measured gravimetrically over 5 million cycles. A steep cup angle of 55 degrees showed significantly higher long-term steady-state wear than a standard cup angle of 45 degrees (p < 0.01). The difference was fivefold. Microlateralization of the head resulted in a fivefold increase in steady-state wear compared with a centralized head. The combination of a steep cup angle and a microlateralized head increased the steady-state wear rate by tenfold compared with a standard cup angle with a centralized head. These studies support the hypothesis that both an increased cup angle and a lateral head position increase wear in metal-on-metal hip prostheses.
Wellenberg, R H H; Boomsma, M F; van Osch, J A C; Vlassenbroek, A; Milles, J; Edens, M A; Streekstra, G J; Slump, C H; Maas, M
2017-03-01
To quantify the impact of prosthesis material and design on the reduction of metal artefacts in total hip arthroplasties using virtual monochromatic dual-layer detector Spectral CT imaging. The water-filled total hip arthroplasty phantom was scanned on a novel 128-slice Philips IQon dual-layer detector Spectral CT scanner at 120-kVp and 140-kVp at a standard computed tomography dose index of 20.0mGy. Several unilateral and bilateral hip prostheses consisting of different metal alloys were inserted and combined which were surrounded by 18 hydroxyapatite calcium carbonate pellets representing bone. Images were reconstructed with iterative reconstruction and analysed at monochromatic energies ranging from 40 to 200keV. CT numbers in Hounsfield Units (HU), noise measured as the standard deviation in HU, signal-to-noise-ratios (SNRs) and contrast-to-noise-ratios (CNRs) were analysed within fixed regions-of-interests placed in and around the pellets. In 70 and 74keV virtual monochromatic images the CT numbers of the pellets were similar to 120-kVp and 140-kVp polychromatic results, therefore serving as reference. A separation into three categories of metal artefacts was made (no, mild/moderate and severe) where pellets were categorized based on HU deviations. At high keV values overall image contrast was reduced. For mild/moderate artefacts, the highest average CNRs were attained with virtual monochromatic 130keV images, acquired at 140-kVp. Severe metal artefacts were not reduced. In 130keV images, only mild/moderate metal artefacts were significantly reduced compared to 70 and 74keV images. Deviations in CT numbers, noise, SNRs and CNRs due to metal artefacts were decreased with respectively 64%, 57%, 62% and 63% (p<0.001) compared to unaffected pellets. Optimal keVs, based on CNRs, for different unilateral and bilateral metal hip prostheses consisting of different metal alloys varied from 74 to 150keV. The Titanium alloy resulted in less severe artefacts and were reduced more effectively compared to the Cobalt alloy. Virtual monochromatic dual-layer Spectral CT imaging results in a significant reduction of streak artefacts produced by beam-hardening in mild and moderate artefacts by improving CT number accuracy, SNRs and CNRs, while decreasing noise values in a total hip arthroplasty phantom. An optimal monochromatic energy of 130keV was found ranging from 74keV to 150keV for different unilateral and bilateral hip prostheses consisting of different metal alloys. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Bills, Paul; Racasan, Radu; Bhattacharya, Saugatta; Blunt, Liam; Isaac, Graham
2017-08-01
There have been a number of reports on the occurrence of taper corrosion and/or fretting and some have speculated on a link to the occurrence of adverse local tissue reaction specifically in relation to total hip replacement which have a metal-on-metal bearing. As such a study was carried out to compare the magnitude of material loss at the taper in a series of retrieved femoral heads used in metal-on-polyethylene bearings with that in a series of retrieved heads used in metal-on-metal bearings. A total of 36 metal-on-polyethylene and 21 metal-on-metal femoral components were included in the study all of which were received from a customer complaint database. Furthermore, a total of nine as-manufactured femoral components were included to provide a baseline for characterisation. All taper surfaces were assessed using an established corrosion scoring method and measurements were taken of the female taper surface using a contact profilometry. In the case of metal-on-metal components, the bearing wear was also assessed using coordinate metrology to determine whether or not there was a relationship between bearing and taper material loss in these cases. The study found that in this cohort the median value of metal-on-polyethylene taper loss was 1.25 mm 3 with the consequent median value for metal-on-metal taper loss being 1.75 mm 3 . This study also suggests that manufacturing form can result in an apparent loss of material from the taper surface determined to have a median value of 0.59 mm 3 . Therefore, it is clear that form variability is a significant confounding factor in the measurement of material loss from the tapers of femoral heads retrieved following revision surgery.
Thomas, P; Schuh, A; Ring, J; Thomsen, M
2008-03-01
Materials used in osteosynthesis or artificial joint replacement are usually well tolerated. Complaints after such operations are mostly related to infection or mechanical problems but may also be caused by allergic reactions. The latter encompass skin changes, e.g., eczema, delayed wound/bone healing, recurrent effusion, pain, or implant loosening. In contrast to the high incidence of cutaneous metal contact allergy, allergies associated with implants are a rare condition. However, epidemiological data on the incidence of implant-related allergic reactions are still missing. Typical elicitors are nickel, chromium, cobalt, and constituents of bone cement (acrylates und additives such as gentamicin or benzoyl peroxide). After exclusion of the most common differential diagnoses, allergy diagnostic procedures are primarily based on patch tests including a metal and bone cement component series. Additional analysis of periimplant tissue is recommended. However, further studies are necessary to show the significance of the histologic findings and the role of the lymphocyte transformation test (LTT). Which combinations of factors will induce allergic sensitization to implants or trigger periimplant allergic reactions in the case of preexisting cutaneous metal allergy is still unknown. Titanium-based osteosynthesis materials are recommended for metal allergic patients. In elective hip replacements, a ceramic/polyethylene (PE) articulation should be used, and in knee replacements "alternative materials". If a regular, potentially applicable CoCr/PE articulation is preferred, the patient must be well informed and must give his/her written consent.
21 CFR 888.3390 - Hip joint femoral (hemi-hip) metal/polymer cemented or uncemented prosthesis.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hip joint femoral (hemi-hip) metal/polymer cemented or uncemented prosthesis. 888.3390 Section 888.3390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices...
NASA Astrophysics Data System (ADS)
Klemt, Christian; Modat, Marc; Pichat, Jonas; Cardoso, M. J.; Henckel, Joahnn; Hart, Alister; Ourselin, Sebastien
2015-03-01
Metal-on-metal (MoM) hip arthroplasties have been utilised over the last 15 years to restore hip function for 1.5 million patients worldwide. Althoug widely used, this hip arthroplasty releases metal wear debris which lead to muscle atrophy. The degree of muscle wastage differs across patients ranging from mild to severe. The longterm outcomes for patients with MoM hip arthroplasty are reduced for increasing degrees of muscle atrophy, highlighting the need to automatically segment pathological muscles. The automated segmentation of pathological soft tissues is challenging as these lack distinct boundaries and morphologically differ across subjects. As a result, there is no method reported in the literature which has been successfully applied to automatically segment pathological muscles. We propose the first automated framework to delineate severely atrophied muscles by applying a novel automated segmentation propagation framework to patients with MoM hip arthroplasty. The proposed algorithm was used to automatically quantify muscle wastage in these patients.
NASA Astrophysics Data System (ADS)
Dong, Xue; Yang, Xiaofeng; Rosenfield, Jonathan; Elder, Eric; Dhabaan, Anees
2017-03-01
X-ray computed tomography (CT) is widely used in radiation therapy treatment planning in recent years. However, metal implants such as dental fillings and hip prostheses can cause severe bright and dark streaking artifacts in reconstructed CT images. These artifacts decrease image contrast and degrade HU accuracy, leading to inaccuracies in target delineation and dose calculation. In this work, a metal artifact reduction method is proposed based on the intrinsic anatomical similarity between neighboring CT slices. Neighboring CT slices from the same patient exhibit similar anatomical features. Exploiting this anatomical similarity, a gamma map is calculated as a weighted summation of relative HU error and distance error for each pixel in an artifact-corrupted CT image relative to a neighboring, artifactfree image. The minimum value in the gamma map for each pixel is used to identify an appropriate pixel from the artifact-free CT slice to replace the corresponding artifact-corrupted pixel. With the proposed method, the mean CT HU error was reduced from 360 HU and 460 HU to 24 HU and 34 HU on head and pelvis CT images, respectively. Dose calculation accuracy also improved, as the dose difference was reduced from greater than 20% to less than 4%. Using 3%/3mm criteria, the gamma analysis failure rate was reduced from 23.25% to 0.02%. An image-based metal artifact reduction method is proposed that replaces corrupted image pixels with pixels from neighboring CT slices free of metal artifacts. This method is shown to be capable of suppressing streaking artifacts, thereby improving HU and dose calculation accuracy.
Giantsoudi, Drosoula; De Man, Bruno; Verburg, Joost; Trofimov, Alexei; Jin, Yannan; Wang, Ge; Gjesteby, Lars; Paganetti, Harald
2017-04-21
A significant and increasing number of patients receiving radiation therapy present with metal objects close to, or even within, the treatment area, resulting in artifacts in computed tomography (CT) imaging, which is the most commonly used imaging method for treatment planning in radiation therapy. In the presence of metal implants, such as dental fillings in treatment of head-and-neck tumors, spinal stabilization implants in spinal or paraspinal treatment or hip replacements in prostate cancer treatments, the extreme photon absorption by the metal object leads to prominent image artifacts. Although current CT scanners include a series of correction steps for beam hardening, scattered radiation and noisy measurements, when metal implants exist within or close to the treatment area, these corrections do not suffice. CT metal artifacts affect negatively the treatment planning of radiation therapy either by causing difficulties to delineate the target volume or by reducing the dose calculation accuracy. Various metal artifact reduction (MAR) methods have been explored in terms of improvement of organ delineation and dose calculation in radiation therapy treatment planning, depending on the type of radiation treatment and location of the metal implant and treatment site. Including a brief description of the available CT MAR methods that have been applied in radiation therapy, this article attempts to provide a comprehensive review on the dosimetric effect of the presence of CT metal artifacts in treatment planning, as reported in the literature, and the potential improvement suggested by different MAR approaches. The impact of artifacts on the treatment planning and delivery accuracy is discussed in the context of different modalities, such as photon external beam, brachytherapy and particle therapy, as well as by type and location of metal implants.
NASA Astrophysics Data System (ADS)
Giantsoudi, Drosoula; De Man, Bruno; Verburg, Joost; Trofimov, Alexei; Jin, Yannan; Wang, Ge; Gjesteby, Lars; Paganetti, Harald
2017-04-01
A significant and increasing number of patients receiving radiation therapy present with metal objects close to, or even within, the treatment area, resulting in artifacts in computed tomography (CT) imaging, which is the most commonly used imaging method for treatment planning in radiation therapy. In the presence of metal implants, such as dental fillings in treatment of head-and-neck tumors, spinal stabilization implants in spinal or paraspinal treatment or hip replacements in prostate cancer treatments, the extreme photon absorption by the metal object leads to prominent image artifacts. Although current CT scanners include a series of correction steps for beam hardening, scattered radiation and noisy measurements, when metal implants exist within or close to the treatment area, these corrections do not suffice. CT metal artifacts affect negatively the treatment planning of radiation therapy either by causing difficulties to delineate the target volume or by reducing the dose calculation accuracy. Various metal artifact reduction (MAR) methods have been explored in terms of improvement of organ delineation and dose calculation in radiation therapy treatment planning, depending on the type of radiation treatment and location of the metal implant and treatment site. Including a brief description of the available CT MAR methods that have been applied in radiation therapy, this article attempts to provide a comprehensive review on the dosimetric effect of the presence of CT metal artifacts in treatment planning, as reported in the literature, and the potential improvement suggested by different MAR approaches. The impact of artifacts on the treatment planning and delivery accuracy is discussed in the context of different modalities, such as photon external beam, brachytherapy and particle therapy, as well as by type and location of metal implants.
Gross, Thomas P; Liu, Fei; Webb, Lee A
2012-04-01
This report extends the follow-up for the largest center of the first multicenter US Food and Drug Administration investigational device exemption study on metal-on-metal hip resurfacing arthroplasty up to 11 years. A single surgeon performed 373 hip resurfacing arthroplasties using the hybrid Corin Cormet 2000 system. The Kaplan-Meier survivorship at 11 years was 93% when revision for any reason was used as an end point and 91% if radiographic failures were included. The clinical results demonstrate an acceptable failure rate with use of this system. Loosening of the cemented femoral components was the most common source of failure and occurred at all follow-up intervals. A learning curve that persisted for at least 200 cases was confirmed. All femoral neck fractures occurred before 6 months postoperatively. Copyright © 2012 Elsevier Inc. All rights reserved.
Smith, Matthew R.; Artz, Nathan S.; Koch, Kevin M.; Samsonov, Alexey; Reeder, Scott B.
2014-01-01
Purpose To demonstrate feasibility of exploiting the spatial distribution of off-resonance surrounding metallic implants for accelerating multispectral imaging techniques. Theory Multispectral imaging (MSI) techniques perform time-consuming independent 3D acquisitions with varying RF frequency offsets to address the extreme off-resonance from metallic implants. Each off-resonance bin provides a unique spatial sensitivity that is analogous to the sensitivity of a receiver coil, and therefore provides a unique opportunity for acceleration. Methods Fully sampled MSI was performed to demonstrate retrospective acceleration. A uniform sampling pattern across off-resonance bins was compared to several adaptive sampling strategies using a total hip replacement phantom. Monte Carlo simulations were performed to compare noise propagation of two of these strategies. With a total knee replacement phantom, positive and negative off-resonance bins were strategically sampled with respect to the B0 field to minimize aliasing. Reconstructions were performed with a parallel imaging framework to demonstrate retrospective acceleration. Results An adaptive sampling scheme dramatically improved reconstruction quality, which was supported by the noise propagation analysis. Independent acceleration of negative and positive off-resonance bins demonstrated reduced overlapping of aliased signal to improve the reconstruction. Conclusion This work presents the feasibility of acceleration in the presence of metal by exploiting the spatial sensitivities of off-resonance bins. PMID:24431210
Feasibility of using ultrasonic emission for clinical evaluation of prosthetic hips.
Kummer, Frederick; Jaffe, William L
2010-01-01
Previous acoustic emission (AE) studies of the hip have proposed using AE for the diagnosis of musculoskeletal conditions and assessing the clinical status (loosening, wear, etc.) of prostheses. However, these investigations have had problems with spurious signal noises or complicated measurement techniques, or both. We performed a study on 98 patients to evaluate the feasibility of employing ultrasonic emission (UE) to determine total hip arthroplasty (THA) status, using a simple, hand-held measurement system that has addressed some of the prior problems with hip AE studies. UE was recorded from both hips of study patients during walking and sitting activities. The patients had 79 metal-on-polyethylene implants, and at least 15 each with ceramic-on-polyethylene, ceramic-on-ceramic and metal-on-metal articulations; 10 young subjects without THA were similarly recorded as controls. Data were obtained from waveform analysis and standard UE signal parameters. Patient radiographs were evaluated for THA status, and wear measurements were made for metal-on-polyethylene articulations. There were distinct types of UE waveforms produced; one was typical of the control subjects as well as some patients. We did not find an apparent relationship among these waveform types and type of THA bearing, length of implantation or wear measurements in the metal on polyethylene bearings. Our results suggest that it may be possible to assess the status of THA by UE signals, but further studies are necessary to quantify this finding. The clinical relevance of this investigation is that a simple, in-office screening means for THA patients could indicate those patients who require closer follow-up and monitoring.
Conti, Malcolm Caligari; Karl, Andreas; Wismayer, Pierre Schembri; Buhagiar, Joseph
2014-01-01
High failure rates of cobalt-chromium-molybdenum (Co-Cr-Mo) metal-on-metal hip prosthesis were reported by various authors, probably due to the alloy's limited hardness and tribological properties. This thus caused the popularity of the alloy in metal-on-metal hip replacements to decrease due to its poor wear properties when compared with other systems such as ceramic-on-ceramic. S-phase surface engineering has become an industry standard when citing surface hardening of austenitic stainless steels. This hardening process allows the austenitic stainless steel to retain its corrosion resistance, while at the same time also improving its hardness and wear resistance. By coupling S-phase surface engineering, using the proprietary Kolsterising® treatment from Bodycote Hardiff GmbH, that is currently being used mainly on stainless steel, with Co-Cr-Mo alloys, an improvement in hardness and tribological characteristics is predicted. The objective of this paper is to analyze the biocompatibility of a Kolsterised® Co-Cr-Mo alloy, and to characterize the material surface in order to show the advantages gained by using the Kolsterised® material relative to the original untreated alloy, and other materials. This work has been performed on 3 fronts including; Material characterization, “In-vitro” corrosion testing, and Biological testing conforming to BS EN ISO 10993–18:2009 - Biological evaluation of medical devices. Using these techniques, the Kolsterised® cobalt-chromium-molybdenum alloys were found to have good biocompatibility and an augmented corrosion resistance when compared with the untreated alloy. The Kolsterised® samples also showed a 150% increase in surface hardness over the untreated material thus predicting better wear properties. PMID:24451266
Conti, Malcolm Caligari; Karl, Andreas; Wismayer, Pierre Schembri; Buhagiar, Joseph
2014-01-01
High failure rates of cobalt-chromium-molybdenum (Co-Cr-Mo) metal-on-metal hip prosthesis were reported by various authors, probably due to the alloy's limited hardness and tribological properties. This thus caused the popularity of the alloy in metal-on-metal hip replacements to decrease due to its poor wear properties when compared with other systems such as ceramic-on-ceramic. S-phase surface engineering has become an industry standard when citing surface hardening of austenitic stainless steels. This hardening process allows the austenitic stainless steel to retain its corrosion resistance, while at the same time also improving its hardness and wear resistance. By coupling S-phase surface engineering, using the proprietary Kolsterising(®) treatment from Bodycote Hardiff GmbH, that is currently being used mainly on stainless steel, with Co-Cr-Mo alloys, an improvement in hardness and tribological characteristics is predicted. The objective of this paper is to analyze the biocompatibility of a Kolsterised(®) Co-Cr-Mo alloy, and to characterize the material surface in order to show the advantages gained by using the Kolsterised(®) material relative to the original untreated alloy, and other materials. This work has been performed on 3 fronts including; Material characterization, "In-vitro" corrosion testing, and Biological testing conforming to BS EN ISO 10993-18:2009 - Biological evaluation of medical devices. Using these techniques, the Kolsterised(®) cobalt-chromium-molybdenum alloys were found to have good biocompatibility and an augmented corrosion resistance when compared with the untreated alloy. The Kolsterised(®) samples also showed a 150% increase in surface hardness over the untreated material thus predicting better wear properties.
Jeong, Jewon; Kim, Hyun-Joo; Oh, Eunsun; Cha, Jang Gyu; Hwang, Jiyoung; Hong, Seong Sook; Chang, Yun Woo
2018-05-23
The development of dual-energy CT and metal artefact reduction software provides a further chance of reducing metal-related artefacts. However, there have been only a few studies regarding whether MARs practically affect visibility of structures around a metallic hip prosthesis on post-operative CT evaluation. Twenty-seven patients with 42 metallic hip prostheses underwent DECT. The datasets were reconstructed with 70, 90 and 110 keV with and without MARs. The areas were classified into 10 zones according to the reference zone. All the images were reviewed in terms of the severity of the beam-hardening artefacts, differentiation of the bony cortex and trabeculae and visualization of trabecular patterns with a three-point scale. The metallic screw diameter was measured in the acetabulum with 110 keV images. The scores were the worst on 70 keV images without MARs [mean scores:1.84-4.22 (p < 0.001-1.000)]. The structures in zone II were best visualized on 110 keV (p < 0.001-0.011, mean scores: 2.86-5.22). In other zones, there is general similarity in mean scores whether applying MARs or not (p < 0.001-0.920). The mean diameter of the screw was 5.85 mm without MARs and 3.44 mm with MARs (mean reference diameter: 6.48 mm). The 110 keV images without MARs are best for evaluating acetabular zone II. The visibility of the bony structures around the hip prosthesis is similar in the other zones with or without MARs regardless of keV. MARS may not be needed for the evaluation of the metallic hip prosthesis itself at sufficient high-energy levels; however, MARS still has a role in the evaluation of other soft tissues around the prosthesis. © 2018 The Royal Australian and New Zealand College of Radiologists.
21 CFR 888.3300 - Hip joint metal constrained cemented or uncemented prosthesis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hip joint metal constrained cemented or uncemented prosthesis. 888.3300 Section 888.3300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3300 Hip joint...
21 CFR 888.3300 - Hip joint metal constrained cemented or uncemented prosthesis.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hip joint metal constrained cemented or uncemented prosthesis. 888.3300 Section 888.3300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3300 Hip joint...
21 CFR 888.3300 - Hip joint metal constrained cemented or uncemented prosthesis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hip joint metal constrained cemented or uncemented prosthesis. 888.3300 Section 888.3300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3300 Hip joint...
NASA Technical Reports Server (NTRS)
Shimanuki, Y.; Nishino, Y.; Masui, M.; Doi, H.
1980-01-01
The effects of heat-treatments on the microstructure of P/M Rene 95 (a nickel-based powder metal), consolidated by the hot-isostatic pressing (HIP), were examined. The microstructure of as-HIP'd specimen was characterized by highly serrated grain boundaries. Mechanical tests and microstructural observations reveal that the serrated grain boundaries improved ductility at both room and elevated temperatures by retarding crack propagation along grain boundaries.
Cost Analysis of Ceramic Heads in Primary Total Hip Arthroplasty.
Carnes, Keith J; Odum, Susan M; Troyer, Jennifer L; Fehring, Thomas K
2016-11-02
The advent of adverse local tissue reactions seen in metal-on-metal bearings, and the recent recognition of trunnionosis, have led many surgeons to recommend ceramic-on-polyethylene articulations for primary total hip arthroplasty. However, to our knowledge, there has been little research that has considered whether the increased cost of ceramic provides enough benefit over cobalt-chromium to justify its use. The primary purpose of this study was to compare the cost-effectiveness of ceramic-on-polyethylene implants and metal-on-polyethylene implants in patients undergoing total hip arthroplasty. Markov decision modeling was used to determine the ceramic-on-polyethylene implant revision rate necessary to be cost-effective compared with the revision rate of metal-on-polyethylene implants across a range of patient ages and implant costs. A different set of Markov models was used to estimate the national cost burden of choosing ceramic-on-polyethylene implants over metal-on-polyethylene implants for primary total hip arthroplasties. The Premier Research Database was used to identify 20,398 patients who in 2012 were ≥45 years of age and underwent a total hip arthroplasty with either a ceramic-on-polyethylene implant or a metal-on-polyethylene implant. The cost-effectiveness of ceramic heads is highly dependent on the cost differential between ceramic and metal femoral heads and the age of the patient. At a cost differential of $325, ceramic-on-polyethylene bearings are cost-effective for patients <85 years of age. At a cost differential of $600, it is cost-effective to utilize ceramic-on-polyethylene bearings in patients <65 years of age, and, at a differential of $1,003, ceramic-on-polyethylene bearings are not cost-effective at any age. The ability to recoup the initial increased expenditure of ceramic heads through a diminished lifetime revision cost is dependent on the price premium for ceramic and the age of the patient. A wholesale switch to ceramic bearings regardless of age or cost differential may result in an economic burden to the health system. Economic and decision analysis, Level III. See Instructions for Authors for a complete description of levels of evidence. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.
Lee, Soong Joon; Kwak, Hong Suk; Yoo, Jeong Joon; Kim, Hee Joong
2016-01-01
We evaluated the short-term to midterm results of reoperation with bearing change to metal-on-polyethylene (MoP) after ceramic bearing fracture in ceramic-on-ceramic total hip arthroplasty. Nine third-generation ceramic bearing fractures (6 heads and 3 liners) were treated with bearing change to MoP. Mean age at reoperation was 52.7 years. Mean follow-up was 4.3 years. During follow-up, 2 of 3 liner-fractured hips and 1 of 6 head-fractured hips showed radiologic signs of metallosis and elevated serum chromium levels. Re-reoperation with bearing rechange to a ceramic head was performed for the hips with metallosis. One liner-fractured hip had periprosthetic joint infection. Dislocation occurred in 3 hips. From our experience, bearing change to MoP is not a recommended treatment option for ceramic bearing fracture in total hip arthroplasty. Copyright © 2016 Elsevier Inc. All rights reserved.
Predicting high blood metal ion concentrations following hip resurfacing.
Matharu, Gulraj S; Berryman, Fiona; Brash, Lesley; Pynsent, Paul B; Treacy, Ronan B C; Dunlop, David J
2015-01-01
To determine whether gender, femoral head size, acetabular inclination, and time since surgery predicted high blood metal ion concentrations following Birmingham Hip Resurfacing (BHR). BHR patients with unilateral bearings at one specialist centre with blood cobalt and chromium concentrations measured up to May 2013 were included. This comprised a mixed (at-risk) group including symptomatic patients and asymptomatic individuals with specific clinical and/or radiological findings. Blood sampling was at a mean of 7.5 years (range 1-15.4 years) postoperatively. Of 319 patients (mean age 49.3 years; 53% male), blood metal ions greater than 7 µg/l were observed in 9% (n = 28). Blood metal ions were significantly higher in females (p<0.001), femoral head sizes ≤48 mm (p<0.01), and cup inclinations >55° (p<0.001). Linear regression demonstrated femoral head size was responsible for the highest proportion of variance in blood metal ions (cobalt p<0.001, R2 = 8%; chromium p<0.001, R2 = 11%). Analysis of femoral head size and inclination together demonstrated 36% of BHRs with head sizes of 38-44 mm and inclination >55° had blood metal ions >7 µg/l. BHR 10-year survival for this at-risk group was 91% (95% confidence intervals 86.0%-95.0%) with 30 hips revised. If blood metal ions are used to screen hip resurfacing patients for adverse reactions to metal debris it is recommended those with small femoral head sizes (38-44 mm) and high acetabular inclinations (>55°) are targeted. These findings require validation in other cohorts as they may not be applicable to all hip resurfacing devices given the differences in radial clearance, coverage arc, and metallurgy.
Germain, M A; Hatton, A; Williams, S; Matthews, J B; Stone, M H; Fisher, J; Ingham, E
2003-02-01
Concern over polyethylene wear particle induced aseptic loosening of metal-on-polyethylene hip prostheses has led to renewed interest in alternative materials such as metal-on-metal and alumina ceramic-on-alumina ceramic for total hip replacement. This study compared the effects of clinically relevant cobalt-chromium and alumina ceramic wear particles on the viability of U937 histiocytes and L929 fibroblasts in vitro. Clinically relevant cobalt-chromium wear particles were generated using a flat pin-on-plate tribometer. The mean size of the clinically relevant metal particles was 29.5+/-6.3 nm (range 5-200 nm). Clinically relevant alumina ceramic particles were generated in the Leeds MkII anatomical hip simulator from a Mittelmieier prosthesis using micro-separation motion. This produced particles with a bimodal size distribution. The majority (98%) of the clinically relevant alumina ceramic wear debris was 5-20 nm in size. The cytotoxicity of the clinically relevant wear particles was compared to commercially available cobalt-chromium (9.87 microm+/-5.67) and alumina ceramic (0.503+/-0.19 microm) particles. The effects of the particles on the cells over a 5 day period at different particle volume (microm(3)) to cell number ratios were tested and viability determined using ATP-Lite(TM). Clinically relevant cobalt-chromium particles 50 and 5 microm(3) per cell reduced the viability of U937 cells by 97% and 42% and reduced the viability of L929 cells by 95% and 73%, respectively. At 50 microm(3) per cell, the clinically relevant ceramic particles reduced U937 cell viability by 18%. None of the other concentrations of the clinically relevant particles were toxic. The commercial cobalt-chromium and alumina particles did not affect the viability of either the U937 histiocytes or the L929 fibroblasts.Thus at equivalent particle volumes the clinically relevant cobalt-chromium particles were more toxic then the alumina ceramic particles. This study has emphasised the fact that the nature, size and volume of particles are important in assessing biological effects of wear debris on cells in vitro.
Boda-Heggemann, Judit; Haneder, Stefan; Ehmann, Michael; Sihono, Dwi Seno Kuncoro; Wertz, Hansjörg; Mai, Sabine; Kegel, Stefan; Heitmann, Sigrun; von Swietochowski, Sandra; Lohr, Frank; Wenz, Frederik
2015-01-01
Target-volume definition for prostate cancer in patients with bilateral metal total hip replacements (THRs) is a challenge because of metal artifacts in the planning computed tomography (CT) scans. Magnetic resonance imaging (MRI) can be used for matching and prostate delineation; however, at a spatial and temporal distance from the planning CT, identical rectal and vesical filling is difficult to achieve. In addition, MRI may also be impaired by metal artifacts, even resulting in spatial image distortion. Here, we present a method to define prostate target volumes based on ultrasound images acquired during CT simulation and online-matched to the CT data set directly at the planning CT. A 78-year-old patient with cT2cNxM0 prostate cancer with bilateral metal THRs was referred to external beam radiation therapy. T2-weighted MRI was performed on the day of the planning CT with preparation according to a protocol for reproducible bladder and rectal filling. The planning CT was obtained with the immediate acquisition of a 3-dimensional ultrasound data set with a dedicated stereotactic ultrasound system for online intermodality image matching referenced to the isocenter by ceiling-mounted infrared cameras. MRI (offline) and ultrasound images (online) were thus both matched to the CT images for planning. Daily image guided radiation therapy (IGRT) was performed with transabdominal ultrasound and compared with cone beam CT. Because of variations in bladder and rectal filling and metal-induced image distortion in MRI, soft-tissue-based matching of the MRI to CT was not sufficient for unequivocal prostate target definition. Ultrasound-based images could be matched, and prostate, seminal vesicles, and target volumes were reliably defined. Daily IGRT could be successfully completed with transabdominal ultrasound with good accordance between cone beam CT and ultrasound. For prostate cancer patients with bilateral THRs causing artifacts in planning CTs, ultrasound referenced to the isocenter of the CT simulator and acquired with intermodal online coregistration directly at the planning CT is a fast and easy method to reliably delineate the prostate and target volumes and for daily IGRT. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Hard Chrome-Coated and Fullerene-Doped Metal Surfaces in Orthopedic Bearings.
Sonntag, Robert; Feige, Katja; Dos Santos, Claudia Beatriz; Kretzer, Jan Philippe
2017-12-20
Metal-on-metal bearings for total hip replacements have been introduced as an alternative to polyethylene in young and more active patients. These have, however, been shown to be prone to implant malpositioning and have been limited by some specific design features. In that context, coatings present an option to increase wear resistance by keeping the high fracture strength of the metal substrate. A custom-made electroplating setup was designed for the coating of CoCr substrates using (a) an industrial standard chromium electrolyte; (b) a custom-made hexavalent chromium (Cr 6+ ) electrolyte with a reduced chromium trioxide (CrO₃) content, both without solid additives and (c) with the addition of fullerene (C 60 ) nanoparticles; and (d) a trivalent chromium (Cr 3+ ) electrolyte with C 60 addition. All coatings showed an increase in microhardness compared with the metal substrate. Trivalent coatings were thinner (10 µm) than the hexavalent coatings (23-40 µm) and resulted in increased roughness and crack density. Wear was found to be reduced for the hexavalent chromium coatings by 70-84% compared with the CoCr-CoCr reference bearing while the trivalent chromium coating even increased wear by more than 300%. The addition of fullerenes to the electrolyte did not show any further tribological effect.
Hard Chrome-Coated and Fullerene-Doped Metal Surfaces in Orthopedic Bearings
Feige, Katja; dos Santos, Claudia Beatriz; Kretzer, Jan Philippe
2017-01-01
Metal-on-metal bearings for total hip replacements have been introduced as an alternative to polyethylene in young and more active patients. These have, however, been shown to be prone to implant malpositioning and have been limited by some specific design features. In that context, coatings present an option to increase wear resistance by keeping the high fracture strength of the metal substrate. A custom-made electroplating setup was designed for the coating of CoCr substrates using (a) an industrial standard chromium electrolyte; (b) a custom-made hexavalent chromium (Cr6+) electrolyte with a reduced chromium trioxide (CrO3) content, both without solid additives and (c) with the addition of fullerene (C60) nanoparticles; and (d) a trivalent chromium (Cr3+) electrolyte with C60 addition. All coatings showed an increase in microhardness compared with the metal substrate. Trivalent coatings were thinner (10 µm) than the hexavalent coatings (23–40 µm) and resulted in increased roughness and crack density. Wear was found to be reduced for the hexavalent chromium coatings by 70–84% compared with the CoCr–CoCr reference bearing while the trivalent chromium coating even increased wear by more than 300%. The addition of fullerenes to the electrolyte did not show any further tribological effect. PMID:29261128
Poor short term outcome with a metal-on-metal total hip arthroplasty.
Levy, Yadin D; Ezzet, Kace A
2013-08-01
Metal-on-metal (MoM) bearings for total hip arthroplasty (THA) have come under scrutiny with reports of high failure rates. Clinical outcome studies with several commercially available MoM THA bearings remain unreported. We evaluated 78 consecutive MoM THAs from a single manufacturer in 68 patients. Sixty-six received cobalt-chrome (CoCr) monoblock and 12 received modular titanium acetabular cups with internal CoCr liners. Femoral components were titanium with modular necks. At average 2.1 years postoperatively, 12 THAs (15.4%) demonstrated aseptic failure (10 revisions, 2 revision recommended). All revised hips demonstrated capsular necrosis with positive histology reaction for aseptic lymphocytic vasculitis-associated lesions/adverse local tissue reactions. Prosthetic instability following revision surgery was relatively common. Female gender was a strong risk factor for failure, though smaller cups were not. Both monoblock and modular components fared poorly. Corrosion was frequently observed around the proximal and distal end of the modular femoral necks. Copyright © 2013 Elsevier Inc. All rights reserved.
On the matter of synovial fluid lubrication: implications for Metal-on-Metal hip tribology.
Myant, Connor; Cann, Philippa
2014-06-01
Artificial articular joints present an interesting, and difficult, tribological problem. These bearing contacts undergo complex transient loading and multi axes kinematic cycles, over extremely long periods of time (>10 years). Despite extensive research, wear of the bearing surfaces, particularly metal-metal hips, remains a major problem. Comparatively little is known about the prevailing lubrication mechanism in artificial joints which is a serious gap in our knowledge as this determines film formation and hence wear. In this paper we review the accepted lubrication models for artificial hips and present a new concept to explain film formation with synovial fluid. This model, recently proposed by the authors, suggests that interfacial film formation is determined by rheological changes local to the contact and is driven by aggregation of synovial fluid proteins. The implications of this new mechanism for the tribological performance of new implant designs and the effect of patient synovial fluid properties are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-04-01
... device includes prostheses that consist of a metallic stem made of alloys, such as cobalt-chromium-molybdenum, with an integrated cylindrical trunnion bearing at the upper end of the stem that fits into a... head of the device to rotate on its stem. The prosthesis is intended for use with bone cement (§ 888...
Code of Federal Regulations, 2014 CFR
2014-04-01
... device includes prostheses that consist of a metallic stem made of alloys, such as cobalt-chromium-molybdenum, with an integrated cylindrical trunnion bearing at the upper end of the stem that fits into a... head of the device to rotate on its stem. The prosthesis is intended for use with bone cement (§ 888...
Code of Federal Regulations, 2011 CFR
2011-04-01
... device includes prostheses that consist of a metallic stem made of alloys, such as cobalt-chromium-molybdenum, with an integrated cylindrical trunnion bearing at the upper end of the stem that fits into a... head of the device to rotate on its stem. The prosthesis is intended for use with bone cement (§ 888...
Code of Federal Regulations, 2012 CFR
2012-04-01
... device includes prostheses that consist of a metallic stem made of alloys, such as cobalt-chromium-molybdenum, with an integrated cylindrical trunnion bearing at the upper end of the stem that fits into a... head of the device to rotate on its stem. The prosthesis is intended for use with bone cement (§ 888...
Code of Federal Regulations, 2013 CFR
2013-04-01
... device includes prostheses that consist of a metallic stem made of alloys, such as cobalt-chromium-molybdenum, with an integrated cylindrical trunnion bearing at the upper end of the stem that fits into a... head of the device to rotate on its stem. The prosthesis is intended for use with bone cement (§ 888...
Park, Sang-Hyun; Lu, Zhen; Hastings, Robert S; Campbell, Patricia A; Ebramzadeh, Edward
2018-02-01
In 2010, a widely used metal-on-metal hip implant design was voluntarily recalled by the manufacturer because of higher than anticipated failure rates at 5 years. Although there was a large published range of revision rates, numerous studies had reported a higher risk of revision for excessive wear and associated adverse tissue reactions when compared with other metal-on-metal total hips. The reasons for this were suggested by some to be related to cup design features. From retrievals of ASR metal-on-metal implants and tissue samples obtained at revision surgery, we asked the following questions: (1) What were the common and uncommon surface features? (2) What were the common and uncommon linear and volumetric wear characteristics? (3) Were there common taper corrosion characteristics? (4) What aseptic lymphocytic vasculitis-associated lesion (ALVAL) features were present in the tissues? Five hundred fifty-five ASRs, including 23 resurfacings, were studied at one academic research center. Features of wear (eg, light and moderate scratching), damage (eg, deposits, gouges), and bone attachment on the porous coating were semiquantitatively ranked from 0 (none) to 3 (> 75%) based on the amount of a feature in each region of interest by the same experienced observer throughout the study. Visible features of head taper corrosion were ranked (Goldberg score) from 1 (none) to 4 (severe) by the same observer using a previously published scoring method. An experienced tribologist measured component wear depth using a coordinate measuring machine and quantified wear volume using previously validated methods. All available tissues were sampled and examined for features of ALVAL and scored from 0 to 10 by a single observer using a method they previously developed and published. A score from 0 to 4 is considered low, 5 to 8 is considered moderate, and 9 or 10 is considered high with regard to the risk of metal hypersensitivity features in the tissues. The most common bearing surface features were light and moderate scratches and removal or postremoval damage. Discoloration and deposits were commonly observed on femoral heads (55% [305 of 553]) and less commonly on cups (30% [165 of 546]). There was no evidence of impingement or dislocation damage. There was typically a small amount of bone attachment in at least one of eight designated regions of interest (84% [460 of 546]); extensive or no bone attachment was uncommon. Edge wear was highly prevalent. The maximum wear of 469 cups (88%) occurred near the edge, whereas the maximum wear of 508 femoral heads (94%) occurred between the pole and 45° from the pole. The median combined head-cup wear volume was 14 mm (range, 1-636 mm). One hundred sixty-nine pairs (32%) had a combined wear volume of < 10 mm, 42 pairs (8%) had volumetric wear of > 100 mm, and 319 pairs (60%) had wear volume between 10 and 100 mm³. Seventy-four percent of tapers (390 of 530) received a Goldberg score of 4, 22% (116 of 530) a score of 3, < 5% (24 of 530) a score of 2, and none received a score of 1. The most frequent ALVAL score was 5 out of 10 (35 of 144 hips [24%]) and ranged from 2 (one hip) to 10 (nine hips); 92 of 144 (64%) had a moderate score, 17 of 144 (12%) had a high score, and 35 (24%) had a low score. Although edge wear was prevalent, in most cases, this was not associated with high wear. The increased diameter and decreased coverage angle of the ASR design may have resulted in the observed high incidence of edge wear while perhaps decreasing the risk for impingement and dislocation. The role of bearing wear in the revisions of metal-on-metal implants is controversial, because it is known that there is a large range of in vivo wear rates even within the same implant type and that patient variability affects local tissue responses to wear debris. The observations from our study of 555 retrieved ASR implant sets indicate that there was a wide range of wear including a subset with very high wear. The results suggested that the failure of the ASR and ASR XL was multifactorial, and the failure of different subgroups such as those with low wear may be the result of mechanisms other than reaction to wear debris.
A Comparison of Blood Metal Ions in Total Hip Arthroplasty Using Metal and Ceramic Heads.
White, Peter B; Meftah, Morteza; Ranawat, Amar S; Ranawat, Chitranjan S
2016-10-01
In recent time, metal ion debris and adverse local tissue reaction have reemerged as an area of clinical concern with the use of large femoral heads after total hip arthroplasty (THA). Between June 2014 and January 2015, 60 patients with a noncemented THA using a titanium (titanium, molybdenum, zirconium, and iron alloy) femoral stem and a V40 trunnion were identified with a minimum 5-year follow-up. All THAs had a 32- or 36-mm metal (n = 30) or ceramic (n = 30) femoral head coupled with highly cross-linked polyethylene. Cobalt, chromium, and nickel ions were measured. Patients with metal heads had detectable cobalt and chromium levels. Cobalt levels were detectable in 17 (56.7%) patients with a mean of 2.0 μg/L (range: <1.0-10.8 μg/L). Chromium levels were detectable in 5 (16.7%) patients with a mean of 0.3 μg/L (range: <1.0-2.2 μg/L). All patients with a ceramic head had nondetectable cobalt and chromium levels. Cobalt and chromium levels were significantly higher with metal heads compared to ceramic heads (P < .01). Cobalt levels were significantly higher with 36-mm metal heads compared with 32-mm heads (P < .01). Seven patients with metal femoral heads had mild hip symptoms, 4 of whom had positive findings of early adverse local tissue reaction on magnetic resonance imaging. All ceramic THA was asymptomatic. The incidence and magnitude of cobalt and chromium levels is higher in metal heads compared to ceramic heads with this implant system (P < .01). Thirty-six millimeter metal femoral heads result in larger levels of cobalt compared with 32-mm metal heads. Copyright © 2016 Elsevier Inc. All rights reserved.
Muscle atrophy and metal-on-metal hip implants: a serial MRI study of 74 hips.
Berber, Reshid; Khoo, Michael; Cook, Erica; Guppy, Andrew; Hua, Jia; Miles, Jonathan; Carrington, Richard; Skinner, John; Hart, Alister
2015-06-01
Muscle atrophy is seen in patients with metal-on-metal (MOM) hip implants, probably because of inflammatory destruction of the musculo-tendon junction. However, like pseudotumors, it is unclear when atrophy occurs and whether it progresses with time. Our objective was to determine whether muscle atrophy associated with MOM hip implants progresses with time. We retrospectively reviewed 74 hips in 56 patients (32 of them women) using serial MRI. Median age was 59 (23-83) years. The median time post-implantation was 83 (35-142) months, and the median interval between scans was 11 months. Hip muscles were scored using the Pfirrmann system. The mean scores for muscle atrophy were compared between the first and second MRI scans. Blood cobalt and chromium concentrations were determined. The median blood cobalt was 6.84 (0.24-90) ppb and median chromium level was 4.42 (0.20-45) ppb. The median Oxford hip score was 34 (5-48). The change in the gluteus minimus mean atrophy score between first and second MRI was 0.12 (p = 0.002). Mean change in the gluteus medius posterior portion (unaffected by surgical approach) was 0.08 (p = 0.01) and mean change in the inferior portion was 0.10 (p = 0.05). Mean pseudotumor grade increased by 0.18 (p = 0.02). Worsening muscle atrophy and worsening pseudotumor grade occur over a 1-year period in a substantial proportion of patients with MOM hip implants. Serial MRI helps to identify those patients who are at risk of developing worsening soft-tissue pathology. These patients should be considered for revision surgery before irreversible muscle destruction occurs.
Adventure sports and sexual freedom hip replacement: the tripolar hip.
Pritchett, James W
2018-01-01
Certain athletic activities and lifestyles require a completely stable and very mobile hip. Total hip replacement with a natural femoral head size and two mobile-bearing surfaces (i.e., a "tripolar" prosthesis) is the most stable prosthesis. Elegant design and wear-resistant bearing surfaces are the keys to long-term implant survivorship. The hypothesis is that a ceramic-coated tripolar prosthesis using highly cross-linked polyethylene can provide full function and complete stability with low wear. This study sought to determine: (1) patient-reported outcomes, (2) functional outcomes, (3) implant survivorship and complications, and (4) postoperative sexual limitations. Between 1998 and 2011, the author performed 160 primary total hip replacements using tripolar prostheses in patients participating in adventure sports and other physically demanding activities. The institutional review board approved this study. The inclusion criteria were patients who needed unrestricted activity and who were not candidates for or did not choose hip resurfacing. Patients were followed every second year and assessed with radiographs, Harris Hip Score, WOMAC, SF-12, and UCLA functional outcome scores. Patients were asked about symptoms of instability and satisfaction with their hip replacement. Patients were asked both preoperatively and 2 years postoperatively four questions about their sexual activity. Mean follow-up was 11 years. At 2 years' postoperatively, 98% of patients reported their satisfaction as excellent or good and 99% were not limited for sexual activity following surgery. Seventy-four percent of patients reported they were recovered within 6 weeks of surgery. There were no dislocations. There were three revision procedures for implant loosening, infection, and periprosthetic fracture, but there were no failures of the tripolar articulation. The mean postoperative UCLA score was the highly athletic score of 8. There were no signs of osteolysis, wear, or metal sensitivity reactions. The range of motion achieved, sexual, and functional outcomes were higher than with other types of total hip replacement. This ceramic-coated tripolar prosthesis using highly cross-linked polyethylene provides full function, complete stability, and low wear to younger, active patients, thus confirming the hypothesis and clinical relevance.
Risk factors for total hip arthroplasty aseptic revision.
Khatod, Monti; Cafri, Guy; Namba, Robert S; Inacio, Maria C S; Paxton, Elizabeth W
2014-07-01
The purpose of this study was to evaluate patient, operative, implant, surgeon, and hospital factors associated with aseptic revision after primary THA in patients registered in a large US Total Joint Replacement Registry. A total of 35,960 THAs registered from 4/2001-12/2010 were evaluated. The 8-year survival rate was 96.7% (95% CI 96.4%-97.0%). Females had a higher risk of aseptic revision than males. Hispanic and Asian patients had a lower risk of revision than white patients. Ceramic-on-ceramic, ceramic-on-conventional polyethylene, and metal-on-conventional polyethylene bearing surfaces had a higher risk of revision than metal-on-highly cross-linked polyethylene. Body mass index, health status, diabetes, diagnosis, fixation, approach, bilateral procedures, head size, surgeon fellowship training, surgeon and hospital volume were not revision risk factors. Copyright © 2014 Elsevier Inc. All rights reserved.
Liow, Ming Han Lincoln; Dimitriou, Dimitris; Tsai, Tsung-Yuan; Kwon, Young-Min
2016-12-01
Revision surgery of failed metal-on-metal (MoM) total hip arthroplasty (THA) for adverse tissue reaction (pseudotumor) can be challenging as a consequence of soft tissue and muscle necrosis. The aims of this study were to (1) report the revision outcomes of patients who underwent revision surgery for failed MoM hip arthroplasty due to symptomatic pseudotumor and (2) identify preoperative risk factors associated with revision outcomes. Between January 2011 and January 2013, a total of 102 consecutive large head MoM hip arthroplasties in 97 patients (male: 62, female: 35), who underwent revision surgery were identified from the database of a multidisciplinary referral center. At minimum follow-up of 2 years (range: 26-52 months), at least one complication had occurred in 14 of 102 revisions (14%). Prerevision radiographic loosening (P = .01), magnetic resonance imaging (MRI) findings of solid lesions with abductor deficiency on MRI (P < .001), and intraoperative grading of adverse tissue reactions (P = .05) were correlated with post-revision complications. The reoperation rate of revised MoM THA was 7% (7 of 102 hips). Implant survivorship was 88% at 3 years. Metal ion levels declined in most patients after removal of MoM articulation. Revision outcomes of revision surgery for failed MoM THA due to symptomatic pseudotumor demonstrated 14% complication rate and 7% re-revision rate at 30-month follow-up. Our study identified prerevision radiographic loosening, solid lesions/abductor deficiency on MRI, and high grade intraoperative tissue damage as risk factors associated with poorer revision outcomes. This provides clinically useful information for preoperative planning and perioperative counseling of MoM THA patients undergoing revision surgery. Copyright © 2016 Elsevier Inc. All rights reserved.
Gender is a significant factor for failure of metal-on-metal total hip arthroplasty.
Latteier, Michael J; Berend, Keith R; Lombardi, Adolph V; Ajluni, Andrew F; Seng, Brian E; Adams, Joanne B
2011-09-01
Metal-on-metal (MoM) articulations offers low wear, larger head size, and increased stability. Reports of early failure are troubling and include failure of ingrowth and metal articulation problems such as metallosis, hypersensitivity, pseudotumor, and unexplained pain. This study investigates the survivorship of modern MoM articulations by gender. We reviewed 1589 primary MoM THA in 1363 patients, with minimum 2-year follow-up for 1212 hips. Follow-up averaged 60 months. There were 643 female patients and 719 male patients. The incidence of cup revision was significantly higher in women than in men (8.2% vs 2.7%; P = .0000), as was incidence of aseptic loosening (4.3% vs 1.1%; P = .0006), and failure for metal-bearing complications (2.2% vs 0.6%; P = .0126). There appear to be gender factors influencing the success of MoM THA, which may include hormonal, anatomic, or functional differences. Copyright © 2011 Elsevier Inc. All rights reserved.
Is metal-on-metal squeaking related to acetabular angle of inclination?
Bernasek, Thomas; Fisher, David; Dalury, David; Levering, Melissa; Dimitris, Kirk
2011-09-01
Postoperative audible squeaking has been well documented in ceramic-on-ceramic hip prostheses, and several metal-on-metal (MOM) THA designs, specifically those used for large-head resurfacing and MOM polyethylene sandwich designs, and are attributed to different implant- and patient-specific factors. Current literature does not identify the incidence of squeaking in modular MOM THA or possible etiologic factors. Our purposes were to (1) identify the incidence of squeaking in modular MOM prostheses in THA; (2) determine whether males or females were more likely to have squeaking; and (3) determine whether the incidence of squeaking relates to acetabular inclination angle. We retrospectively reviewed the patient records and radiographs of 539 patients (542 hips) from three independent centers who underwent a MOM THA between February 2001 and December 2005. Demographic and implant factors were evaluated, including measurement of cup inclination angles. The minimum followup was 36 months (mean, 76 months; range, 36-119 months). We identified squeaking in eight of the 542 hips (1.5%); five were in women and two were in men (one patient had bilateral squeaking). The time to onset of patient-reported audible squeaking averaged 23 months (range, 6-84 months). Squeaking was more likely to occur in women (six of eight hips). No hips with 45º or less acetabular inclination squeaked (291 hips); eight of 251 hips (3.2%) with inclination angles greater than 45º squeaked. Patients who reported squeaking had higher inclination angles than those who did not report squeaking. Our observations suggest an increased frequency of squeaking in female patients and in patients with greater inclination angles with this MOM implant design.
Judge, A.; Murray, D. W.; Pandit, H. G.
2017-01-01
Objectives Few studies have assessed outcomes following non-metal-on-metal hip arthroplasty (non-MoMHA) revision surgery performed for adverse reactions to metal debris (ARMD). We assessed outcomes following non-MoMHA revision surgery performed for ARMD, and identified predictors of re-revision. Methods We performed a retrospective observational study using data from the National Joint Registry for England and Wales. All non-MoMHAs undergoing revision surgery for ARMD between 2008 and 2014 were included (185 hips in 185 patients). Outcome measures following ARMD revision were intra-operative complications, mortality and re-revision surgery. Predictors of re-revision were identified using Cox regression. Results Intra-operative complications occurred in 6.0% (n = 11) of the 185 cases. The cumulative four-year patient survival rate was 98.2% (95% CI 92.9 to 99.5). Re-revision surgery was performed in 13.5% (n = 25) of hips at a mean time of 1.2 years (0.1 to 3.1 years) following ARMD revision. Infection (32%; n = 8), dislocation/subluxation (24%; n = 6), and aseptic loosening (24%; n = 6) were the most common re-revision indications. The cumulative four-year implant survival rate was 83.8% (95% CI 76.7 to 88.9). Multivariable analysis identified three predictors of re-revision: multiple revision indications (hazard ratio (HR) = 2.78; 95% CI 1.03 to 7.49; p = 0.043); selective component revisions (HR = 5.76; 95% CI 1.28 to 25.9; p = 0.022); and ceramic-on-polyethylene revision bearings (HR = 3.08; 95% CI 1.01 to 9.36; p = 0.047). Conclusions Non-MoMHAs revised for ARMD have a high short-term risk of re-revision, with important predictors of future re-revision including selective component revision, multiple revision indications, and ceramic-on-polyethylene revision bearings. Our findings may help counsel patients about the risks of ARMD revision, and guide reconstructive decisions. Future studies attempting to validate the predictors identified should also assess the effects of implant design (metallurgy and modularity), given that this was an important study limitation potentially influencing the reported prognostic factors. Cite this article: G. S. Matharu, A. Judge, D. W. Murray, H. G. Pandit. Outcomes following revision surgery performed for adverse reactions to metal debris in non-metal-on-metal hip arthroplasty patients: Analysis of 185 revisions from the National Joint Registry for England and Wales. Bone Joint Res 2017;6:405–413. DOI: 10.1302/2046-3758.67.BJR-2017-0017.R2. PMID:28710154
NASA Technical Reports Server (NTRS)
Swikert, M. A.; Johnson, R. L.
1976-01-01
Experiments were conducted on a newly designed total hip joint simulator. The apparatus closely simulates the complex motions and loads of the human hip in normal walking. The wear and friction of presently used appliance configurations and materials were determined. A surface treatment of the metal femoral ball specimens was applied to influence wear. The results of the investigation indicate that wear can be reduced by mechanical treatment of metal femoral ball surfaces. A metallographic examination and surface roughness measurements were made.
Mellon, Stephen J; Grammatopoulos, George; Andersen, Michael S; Pandit, Hemant G; Gill, Harinderjit S; Murray, David W
2015-01-21
Edge-loading in patients with metal-on-metal resurfaced hips can cause high serum metal ion levels, the development of soft-tissue reactions local to the joint called pseudotumours and ultimately, failure of the implant. Primary edge-loading is where contact between the femoral and acetabular components occurs at the edge/rim of the acetabular component whereas impingement of the femoral neck on the acetabular component's edge causes secondary or contrecoup edge-loading. Although the relationship between the orientation of the acetabular component and primary edge-loading has been identified, the contribution of acetabular component orientation to impingement and secondary edge-loading is less clear. Our aim was to estimate the optimal acetabular component orientation for 16 metal-on-metal hip resurfacing arthroplasty (MoMHRA) subjects with known serum metal ion levels. Data from motion analysis, subject-specific musculoskeletal modelling and Computed Tomography (CT) measurements were used to calculate the dynamic contact patch to rim (CPR) distance and impingement risk for 3416 different acetabular component orientations during gait, sit-to-stand, stair descent and static standing. For each subject, safe zones free from impingement and edge-loading (CPR <10%) were defined and, consequently, an optimal acetabular component orientation was determined (mean inclination 39.7° (SD 6.6°) mean anteversion 14.9° (SD 9.0°)). The results of this study suggest that the optimal acetabular component orientation can be determined from a patient's motion and anatomy. However, 'safe' zones of acetabular component orientation associated with reduced risk of dislocation and pseudotumour are also associated with a reduced risk of edge-loading and impingement. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bayley, Nick; Khan, Habeeb; Grosso, Paul; Hupel, Thomas; Stevens, David; Snider, Matthew; Schemitsch, Emil; Kuzyk, Paul
2015-02-01
Soft tissue masses, or "pseudotumors," around metal-on-metal total hip arthroplasty (MoM THA) have been reported frequently; however, their prevalence remains unknown. Several risk factors, including elevated metal ion levels, have been associated with the presence of pseudotumor, although this remains controversial. The goals of this study were to (1) determine the prevalence of pseudotumors after large-diameter head MoM THA; (2) identify risk factors associated with pseudotumor formation and elevated metal ion levels; and (3) determine the early failure rate of large-diameter MoM THA. Between December 2005 and November 2012, 258 hips (215 patients) underwent large-diameter head primary MoM THA at our institution. Clinical followup was obtained in 235 hips (91%). Using an inclusion criteria of a minimum followup of 1 year, a subset of 191 hips (mean followup, 4 years; range, 1-7 years) was recruited for high-resolution ultrasound screening for the presence of pseudotumor. Whole blood cobalt and chromium ion levels, UCLA activity level, WOMAC score, patient demographics as well as surgical, implant, and radiographic data were collected. Bivariate correlations and multivariate log-linear regression models were used to compare the presence of pseudotumor and elevated metal ions with all other factors. Ultrasound detected a solid, cystic, or mixed mass in 20% hips (38 of 191). No correlation was found between the presence of pseudotumor and any risk factor that we examined. After controlling for confounding variables, elevated cobalt ions were correlated (p<0.001, R=0.50, R2=0.25) with smaller femoral head size, the presence of bilateral MoM THA, and female sex. Elevated chromium ions were correlated (p<0.001, R=0.59, R2=0.34) with smaller femoral head size, presence of bilateral MoM THA, and lower body mass index. The overall survival of MoM THA was 96% at a mean followup of 4.5 years (range, 2-8 years). With the numbers available, we found no associations between the presence of pseudotumor and the potential risk factors we analyzed, including elevated metal ion levels. Further work is needed to explain why larger femoral head sizes resulted in lower metal ion levels despite being associated with higher early failure rates in joint registry data. Level III, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.
The economics of new age arthroplasty: can we afford it?
Sculco, Thomas P
2010-09-07
New technology in joint replacement design and materials adds cost that must be documented by improved outcomes. This is not always the case as the recent metal/metal data has shown. The current economics of arthroplasty have put increasing financial pressure on hospitals and will progress under new health care legislation. New technology must be cost-effective and this will be increasingly difficult in an era of outstanding long-term results with current designs. Cost may necessitate less expensive alternatives, eg, generic implants, in arthroplasty patients. Joint replacement surgery has evolved over the past 4 decades into a highly successful surgical procedure. Earlier designs and materials that demonstrated inferior functional and long-term results have disappeared in a Darwinian fashion. Through this evolutionary process many of the current designs have proven efficacy and durability. Current outcome data indicates that hip and knee designs demonstrate 90% to 95% success rates at 15-year follow-up. Technologic advances are necessary to improve implant design and materials, however, only in an environment of reduced reimbursement to hospitals can the increase cost be justified. Copyright 2010, SLACK Incorporated.
37 CFR 202.16 - Preregistration of copyrights.
Code of Federal Regulations, 2012 CFR
2012-07-01
... comedy, soft rock, heavy metal, gospel, rap, hip-hop, blues, jazz), the titles of the musical... lyrics, if any, the genre of the work (for example, classical, pop, musical comedy, soft rock, heavy metal, gospel, rap, hip-hop, blues, jazz), the performer, principal recording location, record label...
37 CFR 202.16 - Preregistration of copyrights.
Code of Federal Regulations, 2014 CFR
2014-07-01
... comedy, soft rock, heavy metal, gospel, rap, hip-hop, blues, jazz), the titles of the musical... lyrics, if any, the genre of the work (for example, classical, pop, musical comedy, soft rock, heavy metal, gospel, rap, hip-hop, blues, jazz), the performer, principal recording location, record label...
37 CFR 202.16 - Preregistration of copyrights.
Code of Federal Regulations, 2013 CFR
2013-07-01
... comedy, soft rock, heavy metal, gospel, rap, hip-hop, blues, jazz), the titles of the musical... lyrics, if any, the genre of the work (for example, classical, pop, musical comedy, soft rock, heavy metal, gospel, rap, hip-hop, blues, jazz), the performer, principal recording location, record label...
Do ion levels in hip resurfacing differ from metal-on-metal THA at midterm?
Moroni, A; Savarino, L; Hoque, M; Cadossi, M; Baldini, N
2011-01-01
Metal-on-metal Birmingham hip resurfacing (MOM-BHR) is an alternative to metal-on-metal total hip arthroplasty (MOM-THA), especially for young and/or active patients. However, wear resulting in increased serum ion levels is a concern. We asked whether (1) serum chromium (Cr), cobalt (Co), and molybdenum (Mo) concentrations would differ between patients with either MOM-BHR or MOM-THA at 5 years, (2) confounding factors such as gender would influence ion levels; and (3) ion levels would differ at 2 and 5 years for each implant type. Ions were measured in two groups with either MOM-BHR (n = 20) or MOM-THA (n = 35) and a mean 5-year followup, and two groups with either MOM-BHR (n = 15) or MOM-THA (n = 25) and a mean 2-year followup. Forty-eight healthy blood donors were recruited for reference values. At 5 years, there were no differences in ion levels between patients with MOM-BHR or MOM-THA. Gender was a confounding factor, and in the MOM-BHR group at 5 years, Cr concentrations were greater in females compared with those of males. Mean ion levels were similar in patients with 2 and 5 years of followup for each implant type. Ion levels in patients were sevenfold to 10-fold higher than in controls. As the metal ion concentrations in the serum at 5 years were in the range reported in the literature, we do not believe concerns regarding excessive metal ion levels after MOM-BHR are justified. Level III, therapeutic study. See the Guidelines for Authors for a complete description of level of evidence.
Development of a ceramic surface replacement for the hip. An experimental Sialon model.
Clarke, I C; Phillips, W; McKellop, H; Coster, I R; Hedley, A; Amstutz, H C
1979-01-01
The objective of this study was to investigate the design and fixation advantages of Sialon ceramic surface replacements implanted without acrylic bone cement. The biocompatibility and friction and wear properties of Sialon ceramic were compared with more conventional prosthetic materials such as stainless steel and alumina. A functional load-bearing canine hip surface replacement model was established to test Sialon femoral cups designed for fixation by bone ingrowth. The results of the polyethylene wear tests on highly polished ceramic and stainless steel counterfaces were essentially similar. These laboratory data indicated that the in-vivo polyethylene wear performance on metal or ceramic prosthetic surfaces could be expected to be indistinguishable, i.e. the ceramic/polyethylene combination would not offer any improved wear resistance in-vivo. It was found possible to get bone ingrowth into the macrokeying areas of the ceramic femoral cups but not into the microporous surfaces due to the presence of a fibrous membrane lining their internal surfaces. The biocompatability specimens also appeared to be invested with a fibrous membrane. Further studies are under way to determine the relationship between reaming procedures, micro motion at the interfaces and Sialon biocompatibility.
A patterned microtexture to reduce friction and increase longevity of prosthetic hip joints
Chyr, Anthony; Qiu, Mingfeng; Speltz, Jared; Jacobsen, Ronald L.; Sanders, Anthony P.; Raeymaekers, Bart
2014-01-01
More than 285,000 total hip replacement surgeries are performed in the US each year. Most prosthetic hip joints consist of a cobalt-chromium (CoCr) femoral head that articulates with a polyethylene acetabular component, lubricated with synovial fluid. The statistical survivorship of these metal-on-polyethylene prosthetic hip joints declines significantly after 10 to 15 years of use, primarily as a result of polyethylene wear and wear debris incited disease. The current engineering paradigm to increase the longevity of prosthetic hip joints is to improve the mechanical properties of the polyethylene component, and to manufacture ultra-smooth articulating surfaces. In contrast, we show that adding a patterned microtexture to the ultra-smooth CoCr femoral head reduces friction when articulating with the polyethylene acetabular liner. The microtexture increases the load-carrying capacity and the thickness of the joint lubricant film, which reduces contact between the articulating surfaces. As a result, friction and wear is reduced. We have used a lubrication model to design the geometry of the patterned microtexture, and experimentally demonstrate reduced friction for the microtextured compared to conventional smooth surrogate prosthetic hip joints. PMID:25013240
... of metal and the socket is made of plastic (polyethylene) or has a plastic lining. Ceramic-on-Polyethylene: The ball is made of ceramic and the socket is made of plastic (polyethylene) or has a plastic lining. Metal-on- ...
Amstutz, Harlan C; Takamura, Karren M; Le Duff, Michel J
2011-04-01
The results of metal-on-metal hip Conserve® Plus resurfacings with up to 14 years of follow-up with and without risk factors of small component size and/or large femoral defects were compared as performed with either first- or second-generation surgical techniques. There was a 99.7% survivorship at ten years for ideal hips (large components and small defects) and a 95.3% survivorship for hips with risk factors optimized technique has measurably improved durability in patients with risk factors at the 8-year mark. The lessons learned can help offset the observed learning curve of resurfacing. Copyright © 2011 Elsevier Inc. All rights reserved.
Georgiou, CS; Evangelou, KG; Theodorou, EG; Provatidis, CG; Megas, PD
2012-01-01
Due to their theoretical advantages, hip systems combining modular necks and large diameter femoral heads have gradually gained popularity. However, among others, concerns regarding changes in the load transfer patterns were raised. Recent stress analyses have indeed shown that the use of modular necks and big femoral heads causes significant changes in the strain distribution along the femur. Our original hypothesis was that these changes may affect early distal migration of a modular stem. We examined the effect of head diameter and neck geometry on migration at two years of follow-up in a case series of 116 patients (125 hips), who have undergone primary Metal-on-Metal total hip arthroplasty with the modular grit-blasted Profemur®E stem combined with large-diameter heads (>36 mm). We found that choice of neck geometry and head diameter has no effect on stem migration. A multivariate regression analysis including the potential confounding variables of the body mass index, bone quality, canal fill and stem positioning revealed only a negative correlation between subsidence and canal fill in midstem area. Statistical analysis, despite its limitations, did not confirm our hypothesis that choice of neck geometry and/or head diameter affects early distal migration of a modular stem. However, the importance of correct stem sizing was revealed. PMID:23284597
Georgiou, Cs; Evangelou, Kg; Theodorou, Eg; Provatidis, Cg; Megas, Pd
2012-01-01
Due to their theoretical advantages, hip systems combining modular necks and large diameter femoral heads have gradually gained popularity. However, among others, concerns regarding changes in the load transfer patterns were raised. Recent stress analyses have indeed shown that the use of modular necks and big femoral heads causes significant changes in the strain distribution along the femur. Our original hypothesis was that these changes may affect early distal migration of a modular stem. We examined the effect of head diameter and neck geometry on migration at two years of follow-up in a case series of 116 patients (125 hips), who have undergone primary Metal-on-Metal total hip arthroplasty with the modular grit-blasted Profemur®E stem combined with large-diameter heads (>36 mm). We found that choice of neck geometry and head diameter has no effect on stem migration. A multivariate regression analysis including the potential confounding variables of the body mass index, bone quality, canal fill and stem positioning revealed only a negative correlation between subsidence and canal fill in midstem area. Statistical analysis, despite its limitations, did not confirm our hypothesis that choice of neck geometry and/or head diameter affects early distal migration of a modular stem. However, the importance of correct stem sizing was revealed.
"Tripolar" hip arthroplasty for failed hip resurfacing: nineteen years follow-up.
Scheerlinck, T; Casteleyn, P P
2001-10-01
The authors describe the case of a 37-year-old patient who sustained a subcapital femoral neck fracture six months after ICLH double-cup hip resurfacing. As the polyethylene acetabular resurfacing component was undamaged and well fixed, a standard femoral stem with a bipolar head was inserted. The outer diameter of the bipolar head was chosen to fit the resurfacing socket. The "tripolar" hip arthroplasty has functioned well for 19 years and was revised for aseptic cup loosening. The cemented femoral stem was still well fixed and was not revised. Although the "tripolar" hip has functioned well in our case, we believe it is not indicated for metal on metal bearings. In this case the use of an appropriate modular head with a correct head-socket clearance is preferred.
Wellenberg, Ruud H H; Boomsma, Martijn F; van Osch, Jochen A C; Vlassenbroek, Alain; Milles, Julien; Edens, Mireille A; Streekstra, Geert J; Slump, Cornelis H; Maas, Mario
To quantify the combined use of iterative model-based reconstruction (IMR) and orthopaedic metal artefact reduction (O-MAR) in reducing metal artefacts and improving image quality in a total hip arthroplasty phantom. Scans acquired at several dose levels and kVps were reconstructed with filtered back-projection (FBP), iterative reconstruction (iDose) and IMR, with and without O-MAR. Computed tomography (CT) numbers, noise levels, signal-to-noise-ratios and contrast-to-noise-ratios were analysed. Iterative model-based reconstruction results in overall improved image quality compared to iDose and FBP (P < 0.001). Orthopaedic metal artefact reduction is most effective in reducing severe metal artefacts improving CT number accuracy by 50%, 60%, and 63% (P < 0.05) and reducing noise by 1%, 62%, and 85% (P < 0.001) whereas improving signal-to-noise-ratios by 27%, 47%, and 46% (P < 0.001) and contrast-to-noise-ratios by 16%, 25%, and 19% (P < 0.001) with FBP, iDose, and IMR, respectively. The combined use of IMR and O-MAR strongly improves overall image quality and strongly reduces metal artefacts in the CT imaging of a total hip arthroplasty phantom.
Matharu, G S; Judge, A; Murray, D W; Pandit, H G
2017-07-01
Few studies have assessed outcomes following non-metal-on-metal hip arthroplasty (non-MoMHA) revision surgery performed for adverse reactions to metal debris (ARMD). We assessed outcomes following non-MoMHA revision surgery performed for ARMD, and identified predictors of re-revision. We performed a retrospective observational study using data from the National Joint Registry for England and Wales. All non-MoMHAs undergoing revision surgery for ARMD between 2008 and 2014 were included (185 hips in 185 patients). Outcome measures following ARMD revision were intra-operative complications, mortality and re-revision surgery. Predictors of re-revision were identified using Cox regression. Intra-operative complications occurred in 6.0% (n = 11) of the 185 cases. The cumulative four-year patient survival rate was 98.2% (95% CI 92.9 to 99.5). Re-revision surgery was performed in 13.5% (n = 25) of hips at a mean time of 1.2 years (0.1 to 3.1 years) following ARMD revision. Infection (32%; n = 8), dislocation/subluxation (24%; n = 6), and aseptic loosening (24%; n = 6) were the most common re-revision indications. The cumulative four-year implant survival rate was 83.8% (95% CI 76.7 to 88.9). Multivariable analysis identified three predictors of re-revision: multiple revision indications (hazard ratio (HR) = 2.78; 95% CI 1.03 to 7.49; p = 0.043); selective component revisions (HR = 5.76; 95% CI 1.28 to 25.9; p = 0.022); and ceramic-on-polyethylene revision bearings (HR = 3.08; 95% CI 1.01 to 9.36; p = 0.047). Non-MoMHAs revised for ARMD have a high short-term risk of re-revision, with important predictors of future re-revision including selective component revision, multiple revision indications, and ceramic-on-polyethylene revision bearings. Our findings may help counsel patients about the risks of ARMD revision, and guide reconstructive decisions. Future studies attempting to validate the predictors identified should also assess the effects of implant design (metallurgy and modularity), given that this was an important study limitation potentially influencing the reported prognostic factors. Cite this article: G. S. Matharu, A. Judge, D. W. Murray, H. G. Pandit. Outcomes following revision surgery performed for adverse reactions to metal debris in non-metal-on-metal hip arthroplasty patients: Analysis of 185 revisions from the National Joint Registry for England and Wales. Bone Joint Res 2017;6:405-413. DOI: 10.1302/2046-3758.67.BJR-2017-0017.R2. © 2017 Matharu et al.
21 CFR 888.3340 - Hip joint metal/composite semi-constrained cemented prosthesis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hip joint metal/composite semi-constrained cemented prosthesis. 888.3340 Section 888.3340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3340...
21 CFR 888.3340 - Hip joint metal/composite semi-constrained cemented prosthesis.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hip joint metal/composite semi-constrained cemented prosthesis. 888.3340 Section 888.3340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3340...
21 CFR 888.3340 - Hip joint metal/composite semi-constrained cemented prosthesis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hip joint metal/composite semi-constrained cemented prosthesis. 888.3340 Section 888.3340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3340...
Comparative study of fat-suppression techniques for hip arthroplasty MR imaging.
Molière, Sébastien; Dillenseger, Jean-Philippe; Ehlinger, Matthieu; Kremer, Stéphane; Bierry, Guillaume
2017-09-01
The goal of this study was to evaluate different fat-suppressed fluid-sensitive sequences in association with different metal artifacts reduction techniques (MARS) to determine which combination allows better fat suppression around metallic hip implants. An experimental study using an MRI fat-water phantom quantitatively evaluated contrast shift induced by metallic hip implant for different fat-suppression techniques and MARS. Then a clinical study with patients addressed to MRI unit for painful hip prosthesis compared these techniques in terms of fat suppression quality and diagnosis confidence. Among sequences without MARS, both T2 Dixon and short tau inversion recuperation (STIR) had significantly lower contrast shift (p < 0.05), Dixon offering the best fat suppression. Adding MARS (view-angle tilting or slice-encoding for metal artifact correction (SEMAC)) to STIR gave better results than Dixon alone, and also better than SPAIR and fat saturation with MARS (p < 0.05). There were no statistically significant differences between STIR with view-angle tilting and STIR with SEMAC in terms of fat suppression quality. STIR sequence is the preferred fluid-sensitive MR sequence in patients with metal implant. In combination with MARS (view-angle tilting or SEMAC), STIR appears to be the best option for high-quality fat suppression.
Amstutz, Harlan C; Le Duff, Michel J
2008-09-01
Hip resurfacing is currently the fastest growing hip procedure worldwide. We reviewed 1000 hips in 838 patients who received a Conserve Plus (Wright Medical Technology, Inc., Arlington, Tenn) resurfacing at a single institution. The mean age of the patients was 50.0 years with 74.7% male. The hips were resurfaced irrespective of femoral defect size or etiology. The mean follow-up was 5.6 years (range, 1.1-11.0 years). All clinical scores improved significantly (P < .05). There was no acetabular component loosening. Ten were converted to total hip arthroplasty for femoral neck fracture, 20 for femoral loosening, 2 for sepsis, and 1 for recurrent subluxations. The 5-year survivorship was 95.2% with no failures in hips implanted since 2002. Short-term failures can be prevented. First-generation surgical technique and a low body mass index were the most important risk factors for the procedure. Improvements in bone preparation significantly increased prosthetic survival in hips with risk factors for failure.
Albumin as marker for susceptibility to metal ions in metal-on-metal hip prosthesis patients.
Facchin, F; Catalani, S; Bianconi, E; Pasquale, D De; Stea, S; Toni, A; Canaider, S; Beraudi, A
2017-04-01
Metal-on-metal (MoM) hip prostheses are known to release chromium and cobalt (Co), which negatively affect the health status, leading to prosthesis explant. Albumin (ALB) is the main serum protein-binding divalent transition metals. Its binding capacity can be affected by gene mutations or modification of the protein N-terminal region, giving the ischaemia-modified albumin (IMA). This study evaluated ALB, at gene and protein level, as marker of individual susceptibility to Co in MoM patients, to understand whether it could be responsible for the different management of this ion. Co was measured in whole blood, serum and urine of 40 MoM patients. A mutational screening of ALB was performed to detect links between mutations and metal binding. Finally, serum concentration of total ALB and IMA were measured. Serum total ALB concentration was in the normal range for all patients. None of the subjects presented mutations in the investigated gene. Whole blood, serum and urine Co did not correlate with serum total ALB or IMA, although IMA was above the normal limit in most subjects. The individual susceptibility is very important for patients' health status. Despite the limited results of this study, we provide indications on possible future investigations on the toxicological response to Co.
Key Parameters Evaluation for Hip Prosthesis with Finite Element Analysis
NASA Astrophysics Data System (ADS)
Guo, Hongqiang; Li, Dichen; Lian, Qin; Li, Xiang; Jin, Zhongmin
2007-09-01
Stem length and cross section are two key parameters that influence the stability and longevity of metallic hip prosthesis in the total hip arthroplasty (THA). In order to assess their influence to the stress and fatigue behavior of hip prosthesis, a series model of hip prosthesis with round-shaped or drum-shaped cross section, and with different stem lengths were created. These models were analyzed under both static and dynamic loading conditions with finite element analysis, and dynamic loading represents normal walking was used in the dynamic analysis. The stress on the metallic stem, cement, and adjacent bone were got, micromotion on the cement-metal interface were got too. Safety factors for fatigue life of the hip prothesis were calculated based on data obtained from dynamic analysis. Static analysis shows that drum-shaped cross section can decrease the displacement of the stem, that stress on drum-shaped stem focus on the corner of the femoral neck and the distal part of hip prosthesis, whereas the stress on the round-shaped stem distributes evenly over most part of the stem, and maximum stress on stem prosthesis fluctuates with stem length bottoming out at stem length range from 80 mm to 110 mm, that drum-shaped stems with drum height 8 mm generate more stress at the distal part of stem than drum-shaped stems with drum height 10 mm and round stems do. Dynamic and fatigue analysis shows that drum-shaped stem with drum height 10 mm and stem length 90 mm has the greatest safety factor therefore long fatigue life.
Barlow, Brian T; Ortiz, Philippe A; Fields, Kara G; Burge, Alissa J; Potter, Hollis G; Westrich, Geoffrey H
2016-10-01
The association between advanced imaging, serum metal ion levels, and histologic adverse local tissue reaction (ALTR) severity has not been previously reported for Rejuvenate modular neck femoral stems. A cohort of 90 patients with 98 Rejuvenate modular neck femoral stems was revised by a single surgeon from July 2011 to December 2014. Before revision, patients underwent multiacquisition variable resonance image combination sequence magnetic resonance imaging (MRI), and serum cobalt and chromium ion levels were measured. Histologic samples from the revision surgery were scored for synovial lining, inflammatory infiltrate, and tissue organization as proposed by Campbell. Regression based on the generalized estimating equations approach was used to assess the univariate association between each MRI, demographic, and metal ion measure and ALTR severity while accounting for the correlation between bilateral hips. Random forest analysis was then used to determine the relative importance of MRI characteristics, demographics, and metal ion levels in predicting ALTR severity. Synovial thickness as measured on MRI was found to be the strongest predictor of ALTR histologic severity in a recalled modular neck femoral stem. MRI can accurately describe ALTR in modular femoral neck total hip arthroplasty. MRI characteristics, particularly maximal synovial thickness and synovitis volume, predicted histologic severity. Serum metal ion levels do not correlate with histologic severity in Rejuvenate modular neck total hip arthroplasty. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Selfhout, Maarten H. W.; Delsing, Marc J. M. H.; ter Bogt, Tom F. M.; Meeus, Wim H. J.
2008-01-01
This study examines (a) the stability of Dutch adolescents' preferences for heavy metal and hip-hop youth culture styles, (b) longitudinal associations between their preferences and externalizing problem behavior, and (c) the moderating role of gender in these associations. Questionnaire data were gathered from 931 adolescents between the ages of…
Okroj, Kamil T; Calkins, Tyler E; Kayupov, Erdan; Kheir, Michael M; Bingham, Joshua S; Beauchamp, Christopher P; Parvizi, Javad; Della Valle, Craig J
2018-06-01
In patients with adverse local tissue reaction (ALTR) secondary to a failed metal-on-metal (MoM) bearing or corrosion at the head-neck junction in a metal-on-polyethylene bearing, ruling in or out periprosthetic joint infection (PJI) can be challenging. Alpha-defensin has emerged as an accurate test for PJI. The purpose of this multicenter, retrospective study was to evaluate the accuracy of the alpha-defensin synovial fluid test in detecting PJI in patients with ALTR. We reviewed medical records of 26 patients from 3 centers with ALTR that had an alpha-defensin test performed. Patients were assessed for PJI using the Musculoskeletal Infection Society criteria. Thirteen of these subjects had MoM total hip arthroplasty, 9 had ALTR secondary to head-neck corrosion, and 4 had MoM hip resurfacing. Only 1 of the 26 patients met Musculoskeletal Infection Society criteria for infection. However, 9 hips were alpha-defensin positive, including 1 true positive and 8 that were falsely positive (31%). All 8 of the false positives were also Synovasure positive, although 5 of 8 had an accompanying warning stating the results may be falsely positive due to a low synovial C-reactive protein value. Similar to synovial fluid white blood cell count, alpha-defensin testing is prone to false-positive results in the setting of ALTR. Therefore, we recommend an aggressive approach to ruling out PJI including routine aspiration of all hips with ALTR before revision surgery to integrate the synovial fluid blood cell count, differential, cultures and adjunctive tests like alpha-defensin to allow for accurate diagnosis preoperatively. Copyright © 2018 Elsevier Inc. All rights reserved.
Analysis of Femoral Components of Cemented Total Hip Arthroplasty
NASA Astrophysics Data System (ADS)
Singh, Shantanu; Harsha, A. P.
2016-10-01
There have been continuous on-going revisions in design of prosthesis in Total Hip Arthroplasty (THA) to improve the endurance of hip replacement. In the present work, Finite Element Analysis was performed on cemented THA with CoCrMo trapezoidal, CoCrMo circular, Ti6Al4V trapezoidal and Ti6Al4V circular stem. It was observed that cross section and material of femoral stem proved to be critical parameters for stress distribution in femoral components, distribution of interfacial stress and micro movements. In the first part of analysis, designs were investigated for micro movements and stress developed, for different stem materials. Later part of the analysis focused on investigations with respect to different stem cross sections. Femoral stem made of Titanium alloy (Ti6Al4V) resulted in larger debonding of stem at cement-stem interface and increased stress within the cement mantle in contrast to chromium alloy (CoCrMo) stem. Thus, CoCrMo proved to be a better choice for cemented THA. Comparison between CoCrMo femoral stem of trapezium and circular cross section showed that trapezoidal stem experiences lesser sliding and debonding at interfaces than circular cross section stem. Also, trapezium cross section generated lower peak stress in femoral stem and cortical femur. In present study, femur head with diameter of 36 mm was considered for the analysis in order to avoid dislocation of the stem. Also, metallic femur head was coupled with cross linked polyethylene liner as it experiences negligible wear compared to conventional polyethylene liner and unlike metallic liner it is non carcinogenic.
Tribology of total hip arthroplasty prostheses
Rieker, Claude B.
2016-01-01
Articulating components should minimise the generation of wear particles in order to optimize long-term survival of the prosthesis. A good understanding of tribological properties helps the orthopaedic surgeon to choose the most suitable bearing for each individual patient. Conventional and highly cross-linked polyethylene articulating either with metal or ceramic, ceramic-on-ceramic and metal-on-metal are the most commonly used bearing combinations. All combinations of bearing surface have their advantages and disadvantages. An appraisal of the individual patient’s objectives should be part of the assessment of the best bearing surface. Cite this article: Rieker CB. Tribology of total hip arthroplasty prostheses: what an orthopaedic surgeon should know. EFORT Open Rev 2016;1:52-57. DOI: 10.1302/2058-5241.1.000004. PMID:28461928
Brewster, D H; Stockton, D L; Reekie, A; Ashcroft, G P; Howie, C R; Porter, D E; Black, R J
2013-05-14
Release and dispersion of particles arising from corrosion and wear of total hip arthroplasty (THA) components has raised concerns about a possible increased risk of cancer. Concerns have been heightened by a recent revival in the use of metal-on-metal (MoM) hip prostheses. From a linked database of hospital discharge, cancer registration, and mortality records, we selected a cohort of patients who underwent primary THA (1990-2009) or primary resurfacing arthroplasty (mainly 2000-2009) in Scotland, with follow-up to the end of 2010. Available operation codes did not enable us to distinguish MoM THAs. Indirectly standardised incidence ratios (SIRs) were calculated for selected cancers with standardisation for age, sex, deprivation, and calendar period. The study cohort included 71 990 patients yielding 547 001 person-years at risk (PYAR) and 13 946 cancers diagnosed during follow-up. For the total period of observation combined, the risks of all cancers (SIR: 1.05; 95% CI: confidence interval 1.04-1.07), prostate cancer (SIR: 1.07; 95% CI: 1.01-1.14), and multiple myeloma (SIR: 1.22; 95% CI: 1.06-1.41) were increased. These modest increases in risk emerged in the context of effectively multiple tests of statistical significance, and may reflect inadequate adjustment for confounding factors. For 1317 patients undergoing primary resurfacing arthroplasty between 2000 and 2009 (PYAR=5698), the SIR for all cancers (n=39) was 1.23 (95% CI: 0.87-1.68). In the context of previous research, these results do not suggest a major cause for concern. However, the duration of follow-up of patients receiving recently introduced, new-generation MoM prostheses is too short to rule out a genuinely increased risk of cancer entirely.
One step HIP canning of powder metallurgy composites
NASA Technical Reports Server (NTRS)
Juhas, John J. (Inventor)
1990-01-01
A single step is relied on in the canning process for hot isostatic pressing (HIP) powder metallurgy composites. The binders are totally removed while the HIP can of compatible refractory metal is sealed at high vacuum and temperature. This eliminates outgassing during hot isostatic pressing.
Failure of a novel ceramic-on-ceramic hip resurfacing prosthesis.
Matharu, Gulraj S; Daniel, Joseph; Ziaee, Hena; McMinn, Derek J W
2015-03-01
We report the early failure of five ceramic-on-ceramic hip resurfacings (CoCHRs). The ceramic used for the acetabular liner was a novel ceramic-composite (two thirds polyurethane and one third alumina ceramic). All cases were revised for increasing metal ion levels (blood cobalt 3.93-208.0 μg/l and chromium 1.57-17.5 μg/l) due to ceramic liner fracture and/or accelerated wear of the ceramic femoral head coating. Patients underwent bearing exchange and revision using primary hip arthroplasty implants at a mean of 3.0 years following CoCHR. Intraoperatively all patients had metallosis. At 1 to 2 years of follow-up blood metal ions normalized with no complications. We do not recommend this particular type of ceramic-on-ceramic bearing for hip resurfacing. Copyright © 2014 Elsevier Inc. All rights reserved.
Reduction of metal artifacts from alloy hip prostheses in computer tomography.
Wang, Fengdan; Xue, Huadan; Yang, Xianda; Han, Wei; Qi, Bing; Fan, Yu; Qian, Wenwei; Wu, Zhihong; Zhang, Yan; Jin, Zhengyu
2014-01-01
The objective of this study was to evaluate the feasibility of reducing artifacts from large metal implants with gemstone spectral imaging (GSI) and metal artifact reduction software (MARS). Twenty-three in-vivo cobalt-chromium-molybdenum alloy total hip prostheses were prospectively scanned by fast kV-switching GSI between 80 and 140 kVp. The computed tomography images were reconstructed with monochromatic energy and with/without MARS. Both subjective and objective measurements were performed to assess the severity of metal artifacts. Increasing photon energy was associated with reduced metal artifacts in GSI images (P < 0.001). Combination of GSI with MARS further diminished the metal artifacts (P < 0.001). Artifact reduction at 3 anatomical levels (femoral head, neck, and shaft) were evaluated, with data showing that GSI and MARS could reduce metal artifacts at all 3 levels (P = 0.011, P < 0.001, and P = 0.003, respectively). Nevertheless, in certain cases, GSI without MARS produced more realistic images for the clinical situation. Proper usage of GSI with/without MARS could reduce the computed tomography artifacts of large metal parts and improve the radiological evaluation of postarthroplasty patients.
Surface replacement conversion: results depend upon reason for revision.
Su, E P; Su, S L
2013-11-01
Surface hip replacement (SHR) is generally used in younger, active patients as an alternative conventional total hip replacement in part because of the ability to preserve femoral bone. This major benefit of surface replacement will only hold true if revision procedures of SHRs are found to provide good clinical results. A retrospective review of SHR revisions between 2007 and 2012 was presented, and the type of revision and aetiologies were recorded. There were 55 SHR revisions, of which 27 were in women. At a mean follow-up of 2.3 years (0.72 to 6.4), the mean post-operative Harris hip score (HHS) was 94.8 (66 to 100). Overall 23 were revised for mechanical reasons, nine for impingement, 13 for metallosis, nine for unexplained pain and one for sepsis. Of the type of revision surgery performed, 14 were femoral-only revisions; four were acetabular-only revisions, and 37 were complete revisions. We did not find that clinical scores were significantly different between gender or different types of revisions. However, the mean post-operative HHS was significantly lower in patients revised for unexplained pain compared with patients revised for mechanical reasons (86.9 (66 to 100) versus 99 (96 to 100); p = 0.029). There were two re-revisions for infection in the entire cohort. Based on the overall clinical results, we believe that revision of SHR can have good or excellent results and warrants a continued use of the procedure in selected patients. Close monitoring of these patients facilitates early intervention, as we believe that tissue damage may be related to the duration of an ongoing problem. There should be a low threshold to revise a surface replacement if there is component malposition, rising metal ion levels, or evidence of soft-tissue abnormalities.
Berber, Reshid; Abdel-Gadir, Amna; Rosmini, Stefania; Captur, Gabriella; Nordin, Sabrina; Culotta, Veronica; Palla, Luigi; Kellman, Peter; Lloyd, Guy W; Skinner, John A; Moon, James C; Manisty, Charlotte; Hart, Alister J
2017-11-01
High failure rates of metal-on-metal (MoM) hip implants prompted regulatory authorities to issue worldwide safety alerts. Circulating cobalt from these implants causes rare but fatal autopsy-diagnosed cardiotoxicity. There is concern that milder cardiotoxicity may be common and underrecognized. Although blood metal ion levels are easily measured and can be used to track local toxicity, there are no noninvasive tests for organ deposition. We sought to detect correlation between blood metal ions and a comprehensive panel of established markers of early cardiotoxicity. Ninety patients were recruited into this prospective single-center blinded study. Patients were divided into 3 age and sex-matched groups according to implant type and whole-blood metal ion levels. Group-A patients had a ceramic-on-ceramic [CoC] bearing; Group B, an MoM bearing and low blood metal ion levels; and Group C, an MoM bearing and high blood metal-ion levels. All patients underwent detailed cardiovascular phenotyping using cardiac magnetic resonance imaging (CMR) with T2*, T1, and extracellular volume mapping; echocardiography; and cardiac blood biomarker sampling. T2* is a novel CMR biomarker of tissue metal loading. Blood cobalt levels differed significantly among groups A, B, and C (mean and standard deviation [SD], 0.17 ± 0.08, 2.47 ± 1.81, and 30.0 ± 29.1 ppb, respectively) and between group A and groups B and C combined. No significant between-group differences were found in the left atrial or ventricle size, ejection fraction (on CMR or echocardiography), T1 or T2* values, extracellular volume, B-type natriuretic peptide level, or troponin level, and all values were within normal ranges. There was no relationship between cobalt levels and ejection fraction (R = 0.022, 95% confidence interval [CI] = -0.185 to 0.229) or T2* values (R = 0.108, 95% CI = -0.105 to 0.312). Using the best available technologies, we did not find that high (but not extreme) blood cobalt and chromium levels had any significant cardiotoxic effect on patients with an MoM hip implant. There were negligible-to-weak correlations between elevated blood metal ion levels and ejection fraction even at the extremes of the 95% CI, which excludes any clinically important association. Therapeutic Level II. See Instructions for Authors for a complete description of levels of evidence.
Siddiqui, Imran A; Sabah, Shiraz A; Satchithananda, Keshthra; Lim, Adrian K; Cro, Suzie; Henckel, Johann; Skinner, John A; Hart, Alister J
2014-08-01
Metal artifact reduction sequence (MARS) MRI and ultrasound scanning (USS) can both be used to detect pseudotumors, abductor muscle atrophy, and tendinous pathology in patients with painful metal-on-metal (MOM) hip arthroplasty. We wanted to determine the diagnostic test characteristics of USS using MARS MRI as a reference for detection of pseudotumors and muscle atrophy. PatienTS AND METHODS: We performed a prospective cohort study to compare MARS MRI and USS findings in 19 consecutive patients with unilateral MOM hips. Protocolized USS was performed by consultant musculoskeletal radiologists who were blinded regarding clinical details. Reports were independently compared with MARS MRI, the imaging gold standard, to calculate predictive values. The prevalence of pseudotumors on MARS MRI was 68% (95% CI: 43-87) and on USS it was 53% (CI: 29-76). The sensitivity of USS in detecting pseudotumors was 69% (CI 39-91) and the specificity was 83% (CI: 36-97). The sensitivity of detection of abductor muscle atrophy was 47% (CI: 24-71). In addition, joint effusion was detected in 10 cases by USS and none were seen by MARS MRI. We found a poor agreement between USS and MARS MRI. USS was inferior to MARS MRI for detection of pseudotumors and muscle atrophy, but it was superior for detection of joint effusion and tendinous pathologies. MARS MRI is more advantageous than USS for practical reasons, including preoperative planning and longitudinal comparison.
Monte Carlo calculations of the impact of a hip prosthesis on the dose distribution
NASA Astrophysics Data System (ADS)
Buffard, Edwige; Gschwind, Régine; Makovicka, Libor; David, Céline
2006-09-01
Because of the ageing of the population, an increasing number of patients with hip prostheses are undergoing pelvic irradiation. Treatment planning systems (TPS) currently available are not always able to accurately predict the dose distribution around such implants. In fact, only Monte Carlo simulation has the ability to precisely calculate the impact of a hip prosthesis during radiotherapeutic treatment. Monte Carlo phantoms were developed to evaluate the dose perturbations during pelvic irradiation. A first model, constructed with the DOSXYZnrc usercode, was elaborated to determine the dose increase at the tissue-metal interface as well as the impact of the material coating the prosthesis. Next, CT-based phantoms were prepared, using the usercode CTCreate, to estimate the influence of the geometry and the composition of such implants on the beam attenuation. Thanks to a program that we developed, the study was carried out with CT-based phantoms containing a hip prosthesis without metal artefacts. Therefore, anthropomorphic phantoms allowed better definition of both patient anatomy and the hip prosthesis in order to better reproduce the clinical conditions of pelvic irradiation. The Monte Carlo results revealed the impact of certain coatings such as PMMA on dose enhancement at the tissue-metal interface. Monte Carlo calculations in CT-based phantoms highlighted the marked influence of the implant's composition, its geometry as well as its position within the beam on dose distribution.
Do cobalt and chromium levels predict osteolysis in metal-on-metal total hip arthroplasty?
Renner, Lisa; Schmidt-Braekling, Tom; Faschingbauer, Martin; Boettner, Friedrich
2016-12-01
Serum metal ions are part of the regular follow-up routine of patients with metal-on-metal total hip arthroplasties (MoM-THA). Increased cobalt levels have been suggested to indicate implant failure and corrosion. (1) Is there a correlation between the size of the osteolysis measured on a CT scan and metal ion levels? (2) Can metal ion levels predict the presence of osteolysis in MoM-THA? (3) Are cobalt and chromium serum levels or the cobalt-chromium-ratio diagnostic for osteolysis? CT scans of patients (n = 75) with a unilateral MoM-THA (Birmingham Hip System, Smith & Nephew, TN, USA) implanted by a single surgeon were reviewed to determine the presence of osteolysis. Statistical analysis was performed to detect its association with metal ion levels at the time of the imaging exam. The incidence of osteolysis was the same in men and women (35.6 vs 35.7 %). The cobalt-chromium-ratio correlates with the size of the osteolysis on the CT scan and the femoral component size in the overall study population (p = 0.050, p = 0.001) and in men (p = 0.002, p = 0.001) but not in women (p = 0.312, p = 0.344). The AUC for the cobalt-chromium-ratio to detect osteolysis was 0.613 (p = 0.112) for the overall population, 0.710 for men (p = 0.021) and 0.453 (p = 0.684) for women. The data suggest that a cut off level of 1.71 for the cobalt-chromium-ratio has a sensitivity of 62.5 % and specificity of 72.4 % to identify male patients with osteolysis. The disproportional increase of cobalt over chromium, especially in male patients with large component sizes can not be explained by wear alone and suggests that other processes (corrosion) might contribute to metal ion levels and might be more pronounced in patients with larger component sizes.
Spin-Hall Switching of In-plane Exchange Biased Heterostructures
NASA Astrophysics Data System (ADS)
Mann, Maxwell; Beach, Geoffrey
The spin Hall effect (SHE) in heavy-metal/ferromagnet bilayers generates a pure transverse spin current from in-plane charge current, allowing for efficient switching of spintronic devices with perpendicular magnetic anisotropy. Here, we demonstrate that an AFM deposited adjacent to the FM establishes a large in-plane exchange bias field, allowing operation at zero HIP. We sputtered Pt(3nm)/Co(0.9nm)/Ni80Co20O(tAF) stacks at room-temperature in an in-plane magnetic field of 3 kOe. The current-induced effective field was estimated in Hall cross devices by measuring the variation of the out-of-plane switching field as a function of JIP and HIP. The spin torque efficiency, dHSL/dJIP, is measured versus HIP for a sample with tAF =30 nm, and for a control in which NiCoO is replaced by TaOx. In the latter, dHSL/dJIP varied linearly with HIP. In the former, dHSL/dJIP varied nonlinearly with HIP and exhibited an offset indicating nonzero spin torque efficiency with zero HIP. The magnitude of HEB was 600 Oe in-plane.
Pitto, Rocco P; Sedel, Laurent
2016-10-01
Preliminary studies have raised the question of whether certain prosthetic biomaterials used in total hip arthroplasty (THA) bearings are associated with increased risk of periprosthetic joint infection (PJI). For example, some observational data suggest the risk of PJI is higher with metal-on-metal bearings. However, it is not known whether other bearings-including ceramic bearings or metal-on-polyethylene bearings-may be associated with a higher or lower risk of PJI. The objective of this study was to use a national arthroplasty registry to assess whether the choice of bearings-metal-on-polyethylene (MoP), ceramic-on-polyethylene (CoP), ceramic-on-ceramic (CoC), or metal-on-metal (MoM)-is associated with differences in the risk of revision for deep infection, either (1) within 6 months or (2) over the entire period of observation, which spanned 15 years. Data from primary THAs were extracted from the New Zealand Joint Registry over a 15-year period. A total of 97,889 hips were available for analysis. Inclusion criterion was degenerative joint disease; exclusion criteria were previous surgery, trauma, and any other diagnosis (12,566 hips). We also excluded a small group of ceramic-on-metal THAs (429) with short followup. The median observation period of the selected group of hips (84,894) was 9 years (range, 1-15 years). The mean age of patients was 68 years (SD ± 11 years), and 52% were women. There were 54,409 (64%) MoP, 16,503 (19%) CoP, 9051 (11%) CoC, and 4931 (6%) MoM hip arthroplasties. Four hundred one hips were revised for deep infection. A multivariate assessment was carried out including the following risks factors available for analysis: age, sex, operating room type, use of body exhaust suits, THA fixation mode, and surgeon volume. Because of late introduction of data collection in the Registry, we were unable to include body mass index (BMI, recording started 2010) and medical comorbidities according to the American Society of Anesthesiologists class (ASA, recording started 2005) in the multivariate analysis. The rate of early PJI (< 6 months) did not differ by bearing surface. In contrast, we observed a difference over the total observation period. Within the first 6 months after the index surgery, CoC THAs were not associated with a lower risk of revision for PJI (p = 0.118) when compared with CoP (hazard ratio [HR], 1.31; 95% confidence interval [CI], 0.50-3.41), MoP (HR, 2.10; CI, 0.91-4.82), and MoM (HR, 2.04; CI, 0.69-6.09). When the whole observation period was considered, CoC hips were associated with a lower risk of revision for deep infection when compared with CoP (HR, 1.30; CI, 0.78-2.18; p = 0.01), MoP (HR, 1.75; CI, 1.07-2.86; p = 0.02), and MoM (HR, 2.12; CI, 1.23-3.65; p = 0.008). Our finding associating CoC THA bearings with a lower risk of infection after THA must be considered very preliminary, and we caution readers against attributing all of the observed difference to the bearing surface. It is possible that some or all of the observed difference associated with bearing type may have been driven by other factors such as ASA and BMI, which could not be included in our multivariate analysis, and so future registry studies on this topic must assess those variables carefully. Level III, therapeutic study.
Davies, J P; Tse, M K; Harris, W H
1996-08-01
Debonding of the cement-metal interface of cemented femoral components of total hip arthroplasty has been shown from clinical and autopsy material to be a common occurrence. Experimentally, debonding has been shown to increase markedly the strains in the adjacent cement mantle. Studies of autopsy-retrieved specimens demonstrate that debonding of the cement-metal interface is a key initiating event in loosening of cemented femoral components of total hip arthroplasty. However, both the radiographic and autopsy evidence of cement-metal interfacial debonding exist after the fact, that is, after debonding has occurred. The lack of prospective data showing that debonding does indeed occur under physiologic loading and occurs prior to other forms of failure of fixation leaves uncertain the issue of debonding and its role in initiating loosening of cemented femoral components. Knowing when, where, and to what extent the cement-metal interface debonds is critical information in understanding the process of loosening of cemented femoral components. Such information would contribute to improving the durability of stems and improving cementing techniques. In this study, the two nondestructive techniques of acoustic emission and ultrasonic evaluation of the cement-metal interface of cemented femoral stems of total hip arthroplasty were combined to investigate when, where, and to what extent cement-metal debonding occurred in vitro in simulated femurs loaded physiologically in fatigue in simulated single-leg stance. Debonding of the cement-metal interface of a cemented femoral component in this model was both an initiating event and a major mechanism of compromise of the cement-metal interface. Additional acoustic emission signals arose from cracks that developed in the cement.
Process for HIP canning of composites
NASA Technical Reports Server (NTRS)
Juhas, John J. (Inventor)
1990-01-01
A single step is relied on in the canning process for hot isostatic pressing (HIP) metallurgy composites. The composites are made from arc sprayed and plasma sprayed monotape. The HIP can is of compatible refractory metal and is sealed at high vacuum and temperature. This eliminates outgassing during hot isostatic pressing.
Mayor, David; Patel, Savan; Perry, Clayton; Walter, Norman; Burton, Stephen; Atkinson, Theresa
2014-01-01
Introduction Early ceramic bearing systems in total hip arthoplasty (THA) sought to provide long term wear improvement over traditional metal on polyethylene systems. However, previous designs exhibited fractures of the ceramic acetabular liner, leading to the development of the Implex Hedrocel ceramic bearing THA system where the ceramic liner was supported on a layer of polyethylene intended to transition liner loads to the metal shell, a so-called “sandwich” design. Unfortunately, the device trial was stopped to further enrollment when liner fractures were reported. The current study examines nearly 10-year follow-up on 28 devices implanted by two surgeons at one institution in order to document ceramic bearing system performance over a longer time period. Methods Radiographic and patient reported outcomes, in the form of Harris Hip Scores (HHS) and 12-Item Short Form Health Survey (sF-12), were collected. Results During the study period two cups were replaced, one at three years and a second at seven years. At the five year follow-up HHS were similar to those reported in the literature for devices with traditional metal-on-polyethylene bearing surfaces and for other sandwich ceramic bearing designs. At the nine year follow-up, the HHS had not changed significantly and SF-12 scores measuring overall physical and mental health were higher than age matched national norms (p<0.001). There were no signs of cup migration, stem subsidence, osteolysis or cup loosening at any time up to the last follow-up in this patient cohort. The 89% survivorship rate and device revisions due to delamination of the liner observed in this group were similar to those reported earlier for this device and for other “sandwich design” ceramic bearing systems. Discussion This cohort did not exhibit new failure modes and HHS and SF-12 scores indicated high functionality for the majority of patients. These data suggest that a focus on preventing ceramic liner fracture through design and/or materials improvements may result in a device with long-term functionality. PMID:25328464
Birmingham Mid-Head Resection hip arthroplasty in a young man with gigantism.
Murphy, Michael T; Shillington, Mark P; Mogridge, Damon R; Journeaux, Simon F
2012-02-01
The Birmingham Mid-Head Resection (Smith & Nephew Ltd, Warwick, United Kingdom) arthroplasty is a new bone-conserving procedure that, like hip resurfacing, is used in younger, active patients. We present the case of a young man with Sotos syndrome (cerebral gigantism) with associated extraordinary stature (height, 2.16 m; weight, 157 kg) who underwent Birmingham Mid-Head Resection arthroplasty. The large stature of this patient required a custom manufactured prosthesis (a femoral head 68 mm in diameter with an acetabular cup 76 mm in diameter). We believe this to be the largest metal-on-metal resurfacing articulation and hip arthroplasty reported to date. Copyright © 2012 Elsevier Inc. All rights reserved.
Tribology of total hip arthroplasty prostheses: What an orthopaedic surgeon should know.
Rieker, Claude B
2016-02-01
Articulating components should minimise the generation of wear particles in order to optimize long-term survival of the prosthesis.A good understanding of tribological properties helps the orthopaedic surgeon to choose the most suitable bearing for each individual patient.Conventional and highly cross-linked polyethylene articulating either with metal or ceramic, ceramic-on-ceramic and metal-on-metal are the most commonly used bearing combinations.All combinations of bearing surface have their advantages and disadvantages. An appraisal of the individual patient's objectives should be part of the assessment of the best bearing surface. Cite this article: Rieker CB. Tribology of total hip arthroplasty prostheses: what an orthopaedic surgeon should know. EFORT Open Rev 2016;1:52-57. DOI: 10.1302/2058-5241.1.000004.
Dahlstrand, Henrik; Stark, André; Wick, Marius C; Anissian, Lucas; Hailer, Nils P; Weiss, Rüdiger J
2017-01-01
Background and purpose Large metal-on-metal (MoM) articulations are associated with metal wear and corrosion, leading to increased metal ion concentrations and unacceptable revision rates. There are few comparative studies of 28-mm MoM articulations with conventional metal-on-polyethylene (MoP) couplings. We present a long-term follow-up of a randomized controlled trial comparing MoM versus MoP 28-mm articulations, focused on metal ions and implant survival. Patients and methods 85 patients with a mean age of 65 years at surgery were randomized to a MoM (Metasul) or a MoP (Protasul) bearing. After 16 years, 38 patients had died and 4 had undergone revision surgery. 13 patients were unavailable for clinical follow-up, leaving 30 patients (n = 14 MoM and n = 16 MoP) for analysis of metal ion concentrations and clinical outcome. Results 15-year implant survival was similar in both groups (MoM 96% [95% CI 88–100] versus MoP 97% [95% CI 91–100]). The mean serum cobalt concentration was 4-fold higher in the MoM (1.5 μg/L) compared with the MoP cohort (0.4 μg/L, p < 0.001) and the mean chromium concentration was double in the MoM (2.2 μg/L) compared with the MoP cohort (1.0 μg/L, p = 0.05). Mean creatinine levels were similar in both groups (MoM 93 μmol/L versus MoP 92 μmol/L). Harris hip scores differed only marginally between the MoM and MoP cohorts. Interpretation This is the longest follow-up of a randomized trial on 28-mm MoM articulations, and although implant survival in the 2 groups was similar, metal ion concentrations remained elevated in the MoM cohort even in the long term. PMID:28699417
Hothi, Harry S; Berber, Reshid; Panagiotopoulos, Andreas C; Whittaker, Robert K; Rhead, Camilla; Skinner, John A; Hart, Alister J
2016-11-01
The clinical significance of corrosion of cemented femoral stems is unclear. The purpose of this retrieval study was to: (1) report on corrosion at the stem-cement interface and (2) correlate these findings with clinical data. We analysed cemented stems (n = 36) composed of cobalt-chromium (CoCr) and stainless steel (SS) in a series of revised metal-on-metal hips. We performed detailed inspection of each stem to assess the severity of corrosion at the stem-cement interface using a scale of 1 (low) to 5 (severe). We assessed the severity of corrosion at each stem trunnion and measured wear rates at the head taper and bearing surfaces. We used non-parametric tests to determine the significance of differences between the CoCr and SS stems in relation to: (1) pre-revision whole blood Co and Cr metal ion levels, (2) trunnion corrosion, (3) bearing surface wear and (4) taper material loss. The corrosion scores of CoCr stems were significantly greater than SS stems (p < 0.01). Virtually all stem trunnions in both alloy groups had minimal evidence of corrosion. The median pre-revision Co levels of implants with CoCr stems were significantly greater than the SS stems (p < 0.01). There was no significant difference in relation to pre-revision Cr levels (p = 0.521). There was no significant difference between the two stem types in relation to bearing wear (p = 0.926) or taper wear (p = 0.148). Severe corrosion of cemented femoral stems is a common finding at our retrieval centre; surgeons should consider corrosion of CoCr stems as a potential source of metal ions when revising a hip.
Grammatopoulos, George; Munemoto, Mitsuru; Pollalis, Athanasios; Athanasou, Nicholas A
2017-08-01
Metal-on-metal-hip-resurfacing arthroplasties (MoMHRAs) have been associated with an increased failure rates due to an adverse-response-to-metal-debris (ARMD) associated with a spectrum of pathological features. Serum levels of cobalt (Co) and chromium (Cr) are used to assess MoMHRAs, with regard to ARMD, but it is not certain whether ion levels correlate with pathological changes in periprosthetic tissues. Serum Co and Cr levels were correlated with histological findings in 38 revised MoMHRAs (29 pseudotumour cases and 9 non-pseudotumour cases revised for pain). The extent of necrosis and macrophage infiltrate as well as the aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL) response was assessed semi-quantitatively; the prosthesis linear wear rate (PLWR) was also determined in ten cases. Cr levels were elevated in 82% and Co levels elevated in 53% of cases; the PLWR correlated with Cr level (rho = 0.8, p = 0.006). Tissue necrosis and macrophage infiltration were noted in all, most of which also exhibited significant ALVAL. Although a discrete correlation was not seen between Co and/or Cr ion levels and the extent of necrosis, degree of macrophage infiltration, or ALVAL score, it was noted that cases with acceptable metal ions levels had high ALVAL score. Histological features of both innate and adaptive immune response to metal wear are seen in periprosthetic tissues in cases with both elevated and non-elevated metal ion levels. MoMHRA failures with acceptable ion levels exhibited a pronounced ALVAL response. Although metal ion levels are elevated in most cases of MoMHRA failure due to ARMD, the finding of a normal metal ion level does not exclude this diagnosis.
Metal Artifact Reduction With MAVRIC SL at 3-T MRI in Patients With Hip Arthroplasty
Choi, Soo-Jung; Koch, Kevin M.; Hargreaves, Brian A.; Stevens, Kathryn J.; Gold, Garry E.
2015-01-01
OBJECTIVE The objective of our study was to compare the multiacquisition variable-resonance image combination selective (MAVRIC SL) sequence with the 2D fast spin-echo (FSE) sequence for metal artifact reduction on 3-T MRI in patients with hip arthroplasty (HA). MATERIALS AND METHODS Matched 2D FSE and MAVRIC SL images of 21 hips (19 patients with HA) were included in the study group. Paired image sets, composed of 13 coronal and 12 axial slices (total, 25 image sets), of the 21 hips were evaluated. For quantitative analysis, the artifact area was measured at the level of the hip and femur. For qualitative analysis, two musculoskeletal radiologists independently compared paired 2D FSE and MAVRIC SL sets in terms of artifacts, depiction of anatomic detail, level of diagnostic confidence, and detection of abnormal findings. RESULTS The measured artifact area was significantly smaller (p < 0.05) on MAVRIC SL than 2D FSE at both the level of hip (59.9% reduction with MAVRIC SL) and femur (31.3% reduction with MAVRIC SL). The artifact score was also significantly decreased (p < 0.0001) with MAVRIC SL compared with 2D FSE for both reviewers. The hip joint capsule and the tendon attachment sites of the obturator externus and iliopsoas muscles were better depicted with MAVRIC SL than 2D FSE (p < 0.0125). Abnormal findings were significantly better shown on MAVRIC SL imaging compared with 2D FSE imaging (p < 0.0001). CONCLUSION The MAVRIC SL sequence can significantly reduce metal artifact on 3-T MRI compared with the 2D FSE sequence and can increase diagnostic confidence of 3-T MRI in patients with total HA. PMID:25539249
Tian, Jia-Liang; Sun, Li; Hu, Rui-Yin; Han, Wei; Tian, Xiao-Bin
2017-05-01
The relationship between cup inclination angle and liner wear is controversial. Most authors in the published literature agree that the ideal cup inclination is associated with lower inner wear; however, some disagree. All previous studies did not control for femoral head diameter and inclination, so it is difficult to assess the relative or synergistic effects of cup angle on outcomes. We retrospectively reviewed 154 patients (171 hips) with primary total hip arthroplasties performed from 2001 to 2004. All surgeries had been performed by the same physician team. A posterior approach was applied in all patients. All prostheses were non-cemented cups with a 28-mm metal head. Inclusion criteria included that the radiographic material was not completed or lost for primary or last follow up. Patients were divided into four groups according to different cup inclination angle. There were 108 hips with inclination angles below 50°; 35 hips with angles between 50° and 55°; 17 hips with angles between 55° and 60°; and 11 hips with angles greater than 60°. An immediate postoperative radiograph was compared with a follow-up radiograph. Clinical and radiographic data were collected on standardized hip evaluation forms preoperatively, 6 months after surgery and at yearly follow-up visits. Radiographs were digitized and enlarged 100%. After the radiographs were digitized, polyethylene wear rates and acetabular cup abduction were measured on all patients with Cavas 15.0 software. The results were analyzed using Student's two-tailed paired t-test with SPSS 11.5. The preoperative mean Harris hip score improved from 45.36 to 93.5 points 10 years after surgery. No acetabular component was revised for aseptic loosening. Three patients (three hips) had to undergo bone grafting and a lined arthroplasty for severe osteolysis around the acetabular component. The rate of implant survival at 10 years with respect to loosening was 100%. The mean liner wear rate was 0.135 mm/year in cups with inclination angles below 50°, 0.144 mm/year between 50° and 55°, 0.260 mm/year between 55° and 60°, and 0.403 mm/year when the angle was greater than 60°. Liner wear increased when the cup angle was larger than 55° (P < 0.05). For metal-on-polyethylene prostheses, liner wear correlates with cup inclination angle larger than 55°. The ideal abduction angle for metal-on-polyethylene prostheses is less than 55°. © 2017 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.
Aulakh, Tajeshwar S; Jayasekera, Narlaka; Singh, Rohit; Patel, Amit; Roulahamin, Nick; Kuiper, Jan H; Richardson, James B
2015-06-01
Metal-on-metal hip resurfacing is undertaken worldwide. This procedure helps preserve femoral bone stock and allows patients to return to high activity sports. Most outcome studies are individual surgeon case series from single centers where the results and outcomes are evaluated by the same surgeon. One method of increasing the external validity of a follow-up study is to have a multi-centre study design with independent assessment of the outcomes. We present an independent assessment of eleven year follow-up of hip resurfacing outcomes from an international hip resurfacing register. The purpose of this study was to assess: Implant survival at maximum follow-up for revision due to any reason, implant survival at maximum follow-up for revision due to major causes of failure, hip function following hip resurfacing and factors affecting hip function, effect of gender and age on hip function and implant survival, effect of femoral component size on hip function and implant survival. 4535 patients (5000 hips) entered into the registry during 1997-2002 were studied. In summary, at a maximum follow-up of 11 years hip resurfacing has a good implant survival of 96.2% and excellent post-operative function. This is excellent given the international and multisurgeon nature of this cohort where majority of the surgeons were in their learning curve.
NASA Astrophysics Data System (ADS)
Wei, Jikun; Sandison, George A.; Hsi, Wen-Chien; Ringor, Michael; Lu, Xiaoyi
2006-10-01
Accurate dose calculation is essential to precision radiation treatment planning and this accuracy depends upon anatomic and tissue electron density information. Modern treatment planning inhomogeneity corrections use x-ray CT images and calibrated scales of tissue CT number to electron density to provide this information. The presence of metal in the volume scanned by an x-ray CT scanner causes metal induced image artefacts that influence CT numbers and thereby introduce errors in the radiation dose distribution calculated. This paper investigates the dosimetric improvement achieved by a previously proposed x-ray CT metal artefact suppression technique when the suppressed images of a patient with bilateral hip prostheses are used in commercial treatment planning systems for proton, electron or photon therapies. For all these beam types, this clinical image and treatment planning study reveals that the target may be severely underdosed if a metal artefact-contaminated image is used for dose calculations instead of the artefact suppressed one. Of the three beam types studied, the metal artefact suppression is most important for proton therapy dose calculations, intermediate for electron therapy and least important for x-ray therapy but still significant. The study of a water phantom having a metal rod simulating a hip prosthesis indicates that CT numbers generated after image processing for metal artefact suppression are accurate and thus dose calculations based on the metal artefact suppressed images will be of high fidelity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, W; Merrick, G; Kurko, B
Purpose: To quantify the effect of metal hip prosthesis on the ability to track and localize electromagnetic transponders. Methods: Three Calypso transponders were implanted into two prostate phantoms. The geometric center of the transponders were identified on computed tomography and set as the isocenter. With the phantom stationary on the treatment table and the tracking array 14-cm above the isocenter, data was acquired by the Calypso system at 10 Hz to establish the uncertainty in measurements. Transponder positional data was acquired with unilateral hip prostheses of different metallic compositions and then with bilateral hips placed at variable separation from themore » phantom. Results: Regardless of hip prosthesis composition, the average vector displacement in the presence of a unilateral prosthesis was < 0.5 mm. The greatest contribution to overall vector displacement occurred in the lateral dimension. With bilateral hip prosthesis, the average vector displacement was 0.3 mm. The displacement in the lateral dimension was markedly reduced compared with a unilateral hip, suggesting that there was a countervailing effect with bilateral hip prosthesis. The greatest average vector displacement was 0.6 mm and occurred when bilateral hip prostheses were placed within 4 cm of the detector array. Conclusion: Unilateral and bilateral hip prostheses did not have any meaningful effect on the ability to accurately track electromagnetic transponders implanted in a prostate phantom. At clinically realistic distances between the hip and detection array, the average tracking error is negligible.« less
Adverse Reactions to Metal on Metal Are Not Exclusive to Large Heads in Total Hip Arthroplasty.
Lombardi, Adolph V; Berend, Keith R; Adams, Joanne B; Satterwhite, Keri L
2016-02-01
There is some suggestion that smaller diameter heads in metal-on-metal total hip arthroplasty (MoM THA) may be less prone to the adverse reactions to metal debris (ARMD) seen with large-diameter heads. We reviewed our population of patients with small head (≤ 32 mm) MoM THA to determine (1) the frequency of ARMD; (2) potential risk factors for ARMD in this population; and (3) the etiology of revision and Kaplan-Meier survivorship with revision for all causes. Small-diameter head MoM devices were used in 9% (347 of 3753) of primary THAs during the study period (January 1996 to March 2005). We generally used these implants in younger, more active, higher-demand patients. Three hundred hips (258 patients) had MoM THA using a titanium modular acetabular component with a cobalt-chromium tapered insert and were available for review with minimum 2-year followup (mean, 10 years; range, 2-19 years). Complete followup was available in 86% of hips (300 of 347). Clinical records and radiographs were reviewed to determine the frequency and etiology of revision. Kaplan-Meier survivorship analysis was performed. ARMD frequency was 5% (14 of 300 hips) and represented 70% (14 of 20) of revisions performed. Using multivariate analysis, no variable tested, including height, weight, body mass index, age, cup diameter, cup angle, use of screws, stem diameter, stem type, head diameter, preoperative clinical score, diagnosis, activity level, or sex, was significant as a risk factor for revision. Twenty hips have been revised: two for infection, four for aseptic loosening, and 14 for ARMD. Kaplan-Meier analysis revealed survival free of component revision for all causes was 95% at 10 years (95% confidence interval [CI], 91%-97%), 92% at 15 years (95% CI, 87%-95%), and 72% at 19 years (95% CI, 43%-90%), and survival free of component revision for aseptic causes was 96% at 10 years (95% CI, 92%-98%), 92% at 15 years (95% CI, 88%-95%), and 73% at 19 years (95% CI, 43%-90%). The late onset and devastating nature of metal-related failures is concerning with this small-diameter MoM device. Although the liner is modular, it cannot be exchanged and full acetabular revision is required. Patients with all MoM THA devices should be encouraged to return for clinical and radiographic followup, and clinicians should maintain a low threshold to perform a systematic evaluation. Symptomatic patients should undergo thorough investigation and vigilant observation for ARMD. Level IV, therapeutic study.
Becker, B S; Bolton, J D
1997-12-01
Artificial hip joints have an average lifetime of 10 years due to aseptic loosening of the femoral stem attributed to polymeric wear debris; however, there is a steadily increasing demand from younger osteoarthritis patients aged between 15 and 40 year for a longer lasting joint of 25 years or more. Compliant layers incorporated into the acetabular cup generate elastohydrodynamic lubrication conditions between the bearing surfaces, reduce joint friction coefficients and wear debris production and could increase the average life of total hip replacements, and other human load-bearing joint replacements, i.e. total knee replacements. Poor adhesion between a fully dense substrate and the compliant layer has so far prevented any further exploitation. This work investigated the possibility of producing porous metallic, functionally gradient type acetabular cups using powder metallurgy techniques - where a porous surface was supported by a denser core - into which the compliant layers could be incorporated. The corrosion behaviour and mechanical properties of three biomedically approved alloys containing two levels of total porosity (>30% and <10%) were established, resulting in Ti-6Al-4V being identified as the most promising biocompatible functionally graded material, not only for this application but for other hard-tissue implants.
The Measurement Of Total Joint Loosening By X-Ray Photogrammetry
NASA Astrophysics Data System (ADS)
Lippert, Frederick G.; Veress, Sandor A.; Tiwari, Rama S.; Harrington, Richard M.
1980-07-01
Failure of total joint replacement due to loosening of the composents either between the implant and cement or between the cement and bone is emerging as a late complication with an incidence as high as 20 percent. Loosening may not only cause pain but progressive loss of support for the prosthesis with eventual structural failure. Early diagnosis is important so that revision may be carried when deterioration or pain occurs. No method is currently available which clearly establishes loosening at an early stage except surgical exploration. We have devised a method based on our in vivo photogrammetry studies of patellar tracking patterns using metallic markers placed in bone near both components of the total joint. Stereo x-rays taken with the joint loaded and unloaded are measured for relative motion between the implant and the metallic markers. Laboratory studies using prosthetic hip components mounted in plastic bone have revealed the ability of this method to detect pistoning movements as small as 80 microns. These findings were confirmed by physical measurements.
A Planetary Companion around a Metal-Poor Star with Extragalactic Origin
NASA Astrophysics Data System (ADS)
Setiawan, Johny; Klement, Rainer; Henning, Thomas; Rix, Hans-Walter; Rochau, Boyke; Schulze-Hartung, Tim; Rodmann, Jens
2011-03-01
We report the detection of a planetary companion around HIP 13044, a metal-poor star on the red Horizontal Branch. The detection is based on radial velocity observations with FEROS, a high-resolution spectrograph at the 2.2-m MPG/ESO telescope, located at ESO La Silla observatory in Chile. The periodic radial velocity variation of P = 16.2 days can be distinguished from the periods of the stellar activity indicators. We computed a minimum planetary mass of 1.25 MJup and an orbital semi-major axis of 0.116 AU for the planet. This discovery is unique in three aspects: First, it is the first planet detection around a star with a metallicity much lower than few percent of the solar value; second, the planet host star resides in a stellar evolutionary stage that is still unexplored in the exoplanet surveys; third, the star HIP 13044 belongs to one of the most significant stellar halo streams in the solar neighborhood, implying an extragalactic origin of the planetary system HIP 13044 in a disrupted former satellite of the Milky Way.
Mihalko, William M.; Grupp, Thomas M.; Manning, Blaine T.; Dennis, Douglas A.; Goodman, Stuart B.; Saleh, Khaled J.
2015-01-01
The prospect of biomaterial hypersensitivity developing in response to joint implant materials was first presented more than 30 years ago. Many studies have established probable causation between first-generation metal-on-metal hip implants and hypersensitivity reactions. In a limited patient population, implant failure may ultimately be related to metal hypersensitivity. The examination of hypersensitivity reactions in current-generation metal-on-metal knee implants is comparatively limited. The purpose of this study is to summarize all available literature regarding biomaterial hypersensitivity after total knee arthroplasty, elucidate overall trends about this topic in the current literature, and provide a foundation for clinical approach considerations when biomaterial hypersensitivity is suspected. PMID:25883940
Immunological Responses to Total Hip Arthroplasty.
Man, Kenny; Jiang, Lin-Hua; Foster, Richard; Yang, Xuebin B
2017-08-01
The use of total hip arthroplasties (THA) has been continuously rising to meet the demands of the increasingly ageing population. To date, this procedure has been highly successful in relieving pain and restoring the functionality of patients' joints, and has significantly improved their quality of life. However, these implants are expected to eventually fail after 15-25 years in situ due to slow progressive inflammatory responses at the bone-implant interface. Such inflammatory responses are primarily mediated by immune cells such as macrophages, triggered by implant wear particles. As a result, aseptic loosening is the main cause for revision surgery over the mid and long-term and is responsible for more than 70% of hip revisions. In some patients with a metal-on-metal (MoM) implant, metallic implant wear particles can give rise to metal sensitivity. Therefore, engineering biomaterials, which are immunologically inert or support the healing process, require an in-depth understanding of the host inflammatory and wound-healing response to implanted materials. This review discusses the immunological response initiated by biomaterials extensively used in THA, ultra-high-molecular-weight polyethylene (UHMWPE), cobalt chromium (CoCr), and alumina ceramics. The biological responses of these biomaterials in bulk and particulate forms are also discussed. In conclusion, the immunological responses to bulk and particulate biomaterials vary greatly depending on the implant material types, the size of particulate and its volume, and where the response to bulk forms of differing biomaterials are relatively acute and similar, while wear particles can initiate a variety of responses such as osteolysis, metal sensitivity, and so on.
An opposite view data replacement approach for reducing artifacts due to metallic dental objects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yazdi, Mehran; Lari, Meghdad Asadi; Bernier, Gaston
Purpose: To present a conceptually new method for metal artifact reduction (MAR) that can be used on patients with multiple objects within the scan plane that are also of small sized along the longitudinal (scanning) direction, such as dental fillings. Methods: The proposed algorithm, named opposite view replacement, achieves MAR by first detecting the projection data affected by metal objects and then replacing the affected projections by the corresponding opposite view projections, which are not affected by metal objects. The authors also applied a fading process to avoid producing any discontinuities in the boundary of the affected projection areas inmore » the sinogram. A skull phantom with and without a variety of dental metal inserts was made to extract the performance metric of the algorithm. A head and neck case, typical of IMRT planning, was also tested. Results: The reconstructed CT images based on this new replacement scheme show a significant improvement in image quality for patients with metallic dental objects compared to the MAR algorithms based on the interpolation scheme. For the phantom, the authors showed that the artifact reduction algorithm can efficiently recover the CT numbers in the area next to the metallic objects. Conclusions: The authors presented a new and efficient method for artifact reduction due to multiple small metallic objects. The obtained results from phantoms and clinical cases fully validate the proposed approach.« less
Martin, John R; Camp, Christopher L; Wyles, Cody C; Taunton, Michael J; Trousdale, Robert T; Lewallen, David G
2016-12-01
Predisposing factors for trunnionosis and elevated metal ion levels in metal-on-polyethylene (MOP) total hip arthroplasty (THA) are currently unknown. This retrospective cohort study enrolled 80 consecutive patients (43 males) with an asymptomatic MOP THA at 2- to 5-year follow-up and no other metal implants. Serum cobalt (Co) and chromium (Cr) levels were collected at the time of enrollment, and retrospective review was performed regarding demographic, implant, and surgical characteristics. Mean age at the time of surgery was 65.7 years (range 35.6-85.9 years), and mean postoperative follow-up was 28.7 months (range 24.4-58.9 months). Femoral head offset was the only evaluated factor shown to increase serum Co ion levels above baseline within the cohort. Mean difference in Co level for high and low offset implants was 0.58 ppb (95% confidence interval [CI] = 0.05-1.11 ppb; P = .03). Mean difference in Cr level for high and low offset implants was 0.19 ppb (95% CI = -0.23 to 0.60 ppb; P = .37). Mean difference in Co level for small and large femoral heads was 0.20 ppb (95% CI = -0.41 to 0.81 ppb; P = .59). Mean difference in Cr level for small and large femoral heads was 0.28 ppb (95% CI = -0.18 to 0.74 ppb; P = .06). Age, gender, Harris Hip Score, and implant duration were not associated with changes in metal ion levels. Femoral head offset appears to be an important source of elevated metal ion levels in MOP THA. Further studies will be needed to understand if increasing femoral head offset is associated with subsequent adverse local tissue reactions. Copyright © 2016 Elsevier Inc. All rights reserved.
Bozic, Kevin J; Pui, Christine M; Ludeman, Matthew J; Vail, Thomas P; Silverstein, Marc D
2010-09-01
Metal-on-metal hip resurfacing arthroplasty (MoM HRA) may offer potential advantages over total hip arthroplasty (THA) for certain patients with advanced osteoarthritis of the hip. However, the cost effectiveness of MoM HRA compared with THA is unclear. The purpose of this study was to compare the clinical effectiveness and cost-effectiveness of MoM HRA to THA. A Markov decision model was constructed to compare the quality-adjusted life-years (QALYs) and costs associated with HRA versus THA from the healthcare system perspective over a 30-year time horizon. We performed sensitivity analyses to evaluate the impact of patient characteristics, clinical outcome probabilities, quality of life and costs on the discounted incremental costs, incremental clinical effectiveness, and the incremental cost-effectiveness ratio (ICER) of HRA compared to THA. MoM HRA was associated with modest improvements in QALYs at a small incremental cost, and had an ICER less than $50,000 per QALY gained for men younger than 65 and for women younger than 55. MoM HRA and THA failure rates, device costs, and the difference in quality of life after conversion from HRA to THA compared to primary THA had the largest impact on costs and quality of life. MoM HRA could be clinically advantageous and cost-effective in younger men and women. Further research on the comparative effectiveness of MoM HRA versus THA should include assessments of the quality of life and resource use in addition to the clinical outcomes associated with both procedures. Level I, economic and decision analysis. See Guidelines for Authors for a complete description of levels of evidence.
Berber, Reshid; Henckel, Johann; Khoo, Michael; Wan, Simon; Hua, Jia; Skinner, John; Hart, Alister
2015-04-01
SPECT-CT is increasingly used to assess painful knee arthroplasties. The aim of this study was to evaluate the clinical usefulness of SPECT-CT in unexplained painful MOM hip arthroplasty. We compared the diagnosis and management plan for 19 prosthetic MOM hips in 15 subjects with unexplained pain before and after SPECT-CT. SPECT-CT changed the management decision in 13 (68%) subjects, Chi-Square=5.49, P=0.24. In 6 subjects (32%) pain remained unexplained however the result reassured the surgeon to continue with non-operative management. SPECT-CT should be reserved as a specialist test to help identify possible causes of pain where conventional investigations have failed. It can help reassure surgeons making management decisions for patients with unexplained pain following MOM hip arthroplasty. Copyright © 2014 Elsevier Inc. All rights reserved.
[The use of polymer gel dosimetry to measure dose distribution around metallic implants].
Nagahata, Tomomasa; Yamaguchi, Hajime; Monzen, Hajime; Nishimura, Yasumasa
2014-10-01
A semi-solid polymer dosimetry system using agar was developed to measure the dose distribution close to metallic implants. Dosimetry of heterogeneous fields where electron density markedly varies is often problematic. This prompted us to develop a polymer gel dosimetry technique using agar to measure the dose distribution near substance boundaries. Varying the concentration of an oxygen scavenger (tetra-hydroxymethyl phosphonium chloride) showed the absorbed dose and transverse relaxation rate of the magnetic resonance signal to be linear between 3 and 12 Gy. Although a change in the dosimeter due to oxidization was observed in room air after 24 hours, no such effects were observed in the first 4 hours. The dose distribution around the metal implants was measured using agar dosimetry. The metals tested were a lead rod, a titanium hip joint, and a metallic stent. A maximum 30% dose increase was observed near the lead rod, but only a 3% increase in the absorbed dose was noted near the surface of the titanium hip joint and metallic stent. Semi-solid polymer dosimetry using agar thus appears to be a useful method for dosimetry around metallic substances.
Potential of Silanes for Chromate Replacement in Metal Finishing Industries
2002-09-16
POTENTIAL OF SILANES FOR CHROMATE REPLACEMENT IN METAL FINISHING INDUSTRIES Wim J. van Ooij*, Danqing Zhu, Vignesh Palanivel, J. Anna Lamar...18 2 POTENTIAL OF SILANES FOR CHROMATE REPLACEMENT IN METAL FINISHING INDUSTRIES Wim J. van Ooij, Danqing Zhu, Vignesh Palanivel, J. Anna Lamar
Sabah, S A; Henckel, J; Koutsouris, S; Rajani, R; Hothi, H; Skinner, J A; Hart, A J
2016-01-01
The National Joint Registry for England, Wales and Northern Ireland (NJR) has extended its scope to report on hospital, surgeon and implant performance. Data linkage of the NJR to the London Implant Retrieval Centre (LIRC) has previously evaluated data quality for hip primary procedures, but did not assess revision records. We analysed metal-on-metal hip revision procedures performed between 2003 and 2013. A total of 69 929 revision procedures from the NJR and 929 revised pairs of components from the LIRC were included. We were able to link 716 (77.1%) revision procedures on the NJR to the LIRC. This meant that 213 (22.9%) revision procedures at the LIRC could not be identified on the NJR. We found that 349 (37.6%) explants at the LIRC completed the full linkage process to both NJR primary and revision databases. Data completion was excellent (> 99.9%) for revision procedures reported to the NJR. This study has shown that only approximately one third of retrieved components at the LIRC, contributed to survival curves on the NJR. We recommend prospective registry-retrieval linkage as a tool to feedback missing and erroneous data to the NJR and improve data quality. Prospective Registry - retrieval linkage is a simple tool to evaluate and improve data quality on the NJR. ©2016 Sabah et al.
Biomaterials and their applications
NASA Astrophysics Data System (ADS)
Sharma, Anu; Sharma, Gayatri
2018-05-01
There is a growing demand for novel biomaterials for the replacement and repairing of soft and hard tissues such as bones, cartilage and blood vessels, decaying teeth, arthritic hips, injured tissues or even entire organs. The main aim of biomaterial research is to find the appropriate combination of chemical and physical properties matched with tissues replaced in the host. It improves the quality of life. On increasing number of people each year with increasing demands on these materials with higher expectations related to quality of life arising from an aging population. Now a day there is an ever-increasing search for novel biomaterials as the material requirements for complex biomedical devices increases with time. Many materials such as metals, ceramics, polymers, and glasses are being investigated as biomaterials. They are very useful in various fields due to their excellent bioactivity and biocompatibility. This paper includes various eco-friendly biomaterials and their application in various fields.
Veldkamp, Wouter J H; Joemai, Raoul M S; van der Molen, Aart J; Geleijns, Jacob
2010-02-01
Metal prostheses cause artifacts in computed tomography (CT) images. The purpose of this work was to design an efficient and accurate metal segmentation in raw data to achieve artifact suppression and to improve CT image quality for patients with metal hip or shoulder prostheses. The artifact suppression technique incorporates two steps: metal object segmentation in raw data and replacement of the segmented region by new values using an interpolation scheme, followed by addition of the scaled metal signal intensity. Segmentation of metal is performed directly in sinograms, making it efficient and different from current methods that perform segmentation in reconstructed images in combination with Radon transformations. Metal signal segmentation is achieved by using a Markov random field model (MRF). Three interpolation methods are applied and investigated. To provide a proof of concept, CT data of five patients with metal implants were included in the study, as well as CT data of a PMMA phantom with Teflon, PVC, and titanium inserts. Accuracy was determined quantitatively by comparing mean Hounsfield (HU) values and standard deviation (SD) as a measure of distortion in phantom images with titanium (original and suppressed) and without titanium insert. Qualitative improvement was assessed by comparing uncorrected clinical images with artifact suppressed images. Artifacts in CT data of a phantom and five patients were automatically suppressed. The general visibility of structures clearly improved. In phantom images, the technique showed reduced SD close to the SD for the case where titanium was not inserted, indicating improved image quality. HU values in corrected images were different from expected values for all interpolation methods. Subtle differences between interpolation methods were found. The new artifact suppression design is efficient, for instance, in terms of preserving spatial resolution, as it is applied directly to original raw data. It successfully reduced artifacts in CT images of five patients and in phantom images. Sophisticated interpolation methods are needed to obtain reliable HU values close to the prosthesis.
Bougherara, Habiba; Zdero, Rad; Dubov, Anton; Shah, Suraj; Khurshid, Shaheen; Schemitsch, Emil H
2011-01-01
Total hip arthroplasty is a widespread surgical approach for treating severe osteoarthritis of the human hip. Aseptic loosening of standard metallic hip implants due to stress shielding and bone loss has motivated the development of new materials for hip prostheses. Numerically, a three-dimensional finite element (FE) model that mimicked hip implants was used to compare a new hip stem to two commercially available implants. The hip implants simulated were a novel CF/PA12 carbon-fibre polyamide-based composite hip stem, the Exeter hip stem (Stryker, Mahwah, NJ, USA), and the Omnifit Eon (Stryker, Mahwah, NJ, USA). A virtual axial load of 3 kN was applied to the FE model. Strain and stress distributions were computed. Experimentally, the three hip stems had their distal portions rigidly mounted and had strain gauges placed along the surface at 3 medial and 3 lateral locations. Axial loads of 3 kN were applied. Measurements of axial stiffness and strain were taken and compared to FE analysis. The overall linear correlation between FE model versus experimental strains showed reasonable results for the lines-of-best-fit for the Composite (Pearson R(2)=0.69, slope=0.82), Exeter (Pearson R(2)=0.78, slope=0.59), and Omnifit (Pearson R(2)=0.66, slope=0.45), with some divergence for the most distal strain locations. From FE analysis, the von Mises stress range for the Composite stem was much lower than that in the Omnifit and Exeter implants by 200% and 45%, respectively. The preliminary experiments showed that the Composite stem stiffness (1982 N/mm) was lower than the metallic hip stem stiffnesses (Exeter, 2460 N/mm; Omnifit, 2543 N/mm). This is the first assessment of stress, strain, and stiffness of the CF/PA12 carbon-fibre hip stem compared to standard commercially-available devices. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.
Yue, Dong; Fan Rong, Cheng; Ning, Cai; Liang, Hu; Ai Lian, Liu; Ru Xin, Wang; Ya Hong, Luo
2018-07-01
Background The evaluation of hip arthroplasty is a challenge in computed tomography (CT). The virtual monochromatic spectral (VMS) images with metal artifact reduction software (MARs) in spectral CT can reduce the artifacts and improve the image quality. Purpose To evaluate the effects of VMS images and MARs for metal artifact reduction in patients with unilateral hip arthroplasty. Material and Methods Thirty-five patients underwent dual-energy CT. Four sets of VMS images without MARs and four sets of VMS images with MARs were obtained. Artifact index (AI), CT number, and SD value were assessed at the periprosthetic region and the pelvic organs. The scores of two observers for different images and the inter-observer agreement were evaluated. Results The AIs in 120 and 140 keV images were significantly lower than those in 80 and 100 keV images. The AIs of the periprosthetic region in VMS images with MARs were significantly lower than those in VMS images without MARs, while the AIs of pelvic organs were not significantly different. VMS images with MARs improved the accuracy of CT numbers for the periprosthetic region. The inter-observer agreements were good for all the images. VMS images with MARs at 120 and 140 keV had higher subjective scores and could improve the image quality, leading to reliable diagnosis of prosthesis-related problems. Conclusion VMS images with MARs at 120 and 140 keV could significantly reduce the artifacts from hip arthroplasty and improve the image quality at the periprosthetic region but had no obvious advantage for pelvic organs.
Yamazaki, Masaru; Ideta, Takahiro; Kudo, Sadahiro; Nakazawa, Masami
2016-06-01
In magnetic resonance imaging (MRI), when radiofrequency (RF) is irradiated to a subject with metallic implant, it can generate heat by RF irradiation. Recently 3 T MRI scanner has spread widely and imaging for any regions of whole body has been conducted. However specific absorption rate (SAR) of 3 T MRI becomes approximately four times as much as the 1.5 T, which can significantly affect the heat generation of metallic implants. So, we evaluated RF heating of artificial hip joints in different shapes and materials in 1.5 T and 3 T MRI. Three types of artificial hip joints made of stainless alloy, titanium alloy and cobalt chrome alloy were embedded in the human body-equivalent phantom respectively and their temperature change were measured for twenty minutes by 1.5 T and 3 T MRI. The maximum temperature rise was observed at the bottom head in all of three types of artificial hip joints, the rise being 12°C for stainless alloy, 11.9°C for titanium alloy and 6.1°C for cobalt chrome alloy in 1.5 T. The temperature rise depended on SAR and the increase of SAR had a good linear relationship with the temperature rise. It was found from the result that the RF heating of metallic implants can take place in various kinds of material and the increase of SAR has a good linear relationship with the temperature rise. This experience shows that reduction of SAR can decrease temperature of metallic implants.
Jameson, S S; Baker, P N; Mason, J; Rymaszewska, M; Gregg, P J; Deehan, D J; Reed, M R
2013-06-01
The popularity of cementless total hip replacement (THR) has surpassed cemented THR in England and Wales. This retrospective cohort study records survival time to revision following primary cementless THR with the most common combination (accounting for almost a third of all cementless THRs), and explores risk factors independently associated with failure, using data from the National Joint Registry for England and Wales. Patients with osteoarthritis who had a DePuy Corail/Pinnacle THR implanted between the establishment of the registry in 2003 and 31 December 2010 were included within analyses. There were 35 386 procedures. Cox proportional hazard models were used to analyse the extent to which the risk of revision was related to patient, surgeon and implant covariates. The overall rate of revision at five years was 2.4% (99% confidence interval 2.02 to 2.79). In the final adjusted model, we found that the risk of revision was significantly higher in patients receiving metal-on-metal (MoM: hazard ratio (HR) 1.93, p < 0.001) and ceramic-on-ceramic bearings (CoC: HR 1.55, p = 0.003) compared with the best performing bearing (metal-on-polyethylene). The risk of revision was also greater for smaller femoral stems (sizes 8 to 10: HR 1.82, p < 0.001) compared with mid-range sizes. In a secondary analysis of only patients where body mass index (BMI) data were available (n = 17 166), BMI ≥ 30 kg/m(2) significantly increased the risk of revision (HR 1.55, p = 0.002). The influence of the bearing on the risk of revision remained significant (MoM: HR 2.19, p < 0.001; CoC: HR 2.09, p = 0.001). The risk of revision was independent of age, gender, head size and offset, shell, liner and stem type, and surgeon characteristics. We found significant differences in failure between bearing surfaces and femoral stem size after adjustment for a range of covariates in a large cohort of single-brand cementless THRs. In this study of procedures performed since 2003, hard bearings had significantly higher rates of revision, but we found no evidence that head size had an effect. Patient characteristics, such as BMI and American Society of Anesthesiologists grade, also influence the survival of cementless components.
Gait alterations can reduce the risk of edge loading.
Wesseling, Mariska; Meyer, Christophe; De Groote, Friedl; Corten, Kristoff; Simon, Jean-Pierre; Desloovere, Kaat; Jonkers, Ilse
2016-06-01
Following metal-on-metal hip arthroplasty, edge loading (i.e., loading near the edge of a prosthesis cup) can increase wear and lead to early revision. The position and coverage angle of the prosthesis cup influence the risk of edge loading. This study investigates the effect of altered gait patterns, more specific hip, and pelvis kinematics, on the orientation of hip contact force and the consequent risk of antero-superior edge loading using muscle driven simulations of gait. With a cup orientation of 25° anteversion and 50° inclination and a coverage angle of 168°, many gait patterns presented risk of edge loading. Specifically at terminal double support, 189 out of 405 gait patterns indicated a risk of edge loading. At this time instant, the high hip contact forces and the proximity of the hip contact force to the edge of the cup indicated the likelihood of the occurrence of edge loading. Although the cup position contributed most to edge loading, altering kinematics considerably influenced the risk of edge loading. Increased hip abduction, resulting in decreasing hip contact force magnitude, and decreased hip extension, resulting in decreased risk on edge loading, are gait strategies that could prevent edge loading. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1069-1076, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Finite element analysis of 2-Station hip himulator
NASA Astrophysics Data System (ADS)
Fazli, M. I. M.; Yahya, A.; Shahrom, A.; Nawawi, S. W.; Zainudin, M. R.; Nazarudin, M. S.
2017-10-01
This paper presented the analysis of materials and design architecture of 2-station hip simulator. Hip simulator is a machine used to conduct the joint and wear test of hip prosthetic. In earlier work, the hip simulator was modified and some improvement were made by using SolidWorks software. The simulator consists of 3DOF which controlled by separate stepper motor and a static load that set up by manual method in each station. In this work, finite element analysis (FEA) of hip simulator was implemented to analyse the structure of the design and selected materials used for simulator component. The analysis is completed based on two categories which are safety factor and stress tests. Both design drawing and FEA was done using SolidWorks software. The study of the two categories is performed by applying the peak load up to 4000N on the main frame that is embedded with metal-on-metal hip prosthesis. From FEA, the value of safety factor and degree of stress formation are successfully obtained. All the components exceed the value of 2 for safety factor analysis while the degree of stress formation shows higher value compare to the yield strength of the material. With this results, it provides information regarding part of simulator which are susceptible to destruct. Besides, the results could be used for design improvement and certify the stability of the hip simulator in real application.
Ricciardi, Benjamin F; Nocon, Allina A; Jerabek, Seth A; Wilner, Gabrielle; Kaplowitz, Elianna; Goldring, Steven R; Purdue, P Edward; Perino, Giorgio
2016-01-01
Adverse local tissue reaction (ALTR), characterized by a heterogeneous cellular inflammatory infiltrate and the presence of corrosion products in the periprosthetic soft tissues, has been recognized as a mechanism of failure in total hip replacement (THA). Different histological subtypes may have unique needs for longitudinal clinical follow-up and complication rates after revision arthroplasty. The purpose of this study was to describe the histological patterns observed in the periprosthetic tissue of failed THA in three different implant classes due to ALTR and their association with clinical features of implant failure. Consecutive patients presenting with ALTR from three major hip implant classes (N = 285 cases) were identified from our prospective Osteolysis Tissue Database and Repository. Clinical characteristics including age, sex, BMI, length of implantation, and serum metal ion levels were recorded. Retrieved synovial tissue morphology was graded using light microscopy. Clinical characteristics and features of synovial tissue analysis were compared between the three implant classes. Histological patterns of ALTR identified from our observations and the literature were used to classify each case. The association between implant class and histological patterns was compared. Our histological analysis demonstrates that ALTR encompasses three main histological patterns: 1) macrophage predominant, 2) mixed lymphocytic and macrophagic with or without features of associated with hypersensitivity/allergy or response to particle toxicity (eosinophils/mast cells and/or lymphocytic germinal centers), and 3) predominant sarcoid-like granulomas. Implant classification was associated with histological pattern of failure, and the macrophagic predominant pattern was more common in implants with metal-on-metal bearing surfaces (MoM HRA and MoM LHTHA groups). Duration of implantation and composition of periprosthetic cellular infiltrates was significantly different amongst the three implant types examined suggesting that histopathological features of ALTR may explain the variability of clinical implant performance in these cases. ALTR encompasses a diverse range of histological patterns, which are reflective of both the implant configuration independent of manufacturer and clinical features such as duration of implantation. The macrophagic predominant pattern and its mechanism of implant failure represent an important subgroup of ALTR which could become more prominent with increased length of implantation.
Catelas, Isabelle; Lehoux, Eric A; Hurda, Ian; Baskey, Stephen J; Gala, Luca; Foster, Ryan; Kim, Paul R; Beaulé, Paul E
2015-12-01
Early adverse tissue reactions around metal-on-metal (MoM) hip replacements, especially pseudotumors, are a major concern. Because the causes and pathomechanisms of these pseudotumors remain largely unknown, clinical monitoring of patients with MoM bearings is challenging. The purpose of this study was to compare the lymphocyte subpopulations in peripheral blood from patients with a failed MoM hip implant with and without a pseudotumor and patients with a well-functioning MoM hip implant without a pseudotumor. Potential differences in the systemic immune response are expected to reflect local differences in the periprosthetic tissues. Consenting patients who underwent a revision of a failed MoM hip implant at The Ottawa Hospital (TOH) from 2011 to 2014, or presented with a well-functioning MoM hip implant for a postoperative clinical followup at TOH from 2012 to 2013, were recruited for this study, unless they met any of the exclusion criteria (including diagnosed conditions that can affect peripheral blood lymphocyte subpopulations). Patients with a failed implant were divided into two groups: those with a pseudotumor (two hip resurfacings and five total hip arthroplasties [THAs]) and those without a pseudotumor (10 hip resurfacings and two THAs). Patients with a well-functioning MoM hip implant (nine resurfacings and three THAs) at 5 or more years postimplantation and who did not have a pseudotumor as demonstrated sonographically served as the control group. Peripheral blood subpopulations of T cells (specifically T helper [Th] and cytotoxic T [Tc]), B cells, natural killer (NK) cells, memory T and B cells as well as type 1 (expressing interferon-γ) and type 2 (expressing interleukin-4) Th and Tc cells were analyzed by flow cytometry after immunostaining. Serum concentrations of cobalt and chromium were measured by inductively coupled plasma-mass spectrometry. The mean percentages of total memory T cells and, specifically, memory Th and memory Tc cells were lower in patients with a failed MoM hip implant with a pseudotumor than in both patients with a failed implant without a pseudotumor and patients with a well-functioning implant without a pseudotumor (memory Th cells: 29% ± 5% [means ± SD] versus 55% ± 17%, d = 1.8, 95% confidence interval [CI] [1.2, 2.5] and versus 48% ± 14%, d = 1.6, 95% CI [1.0, 2.2], respectively; memory Tc cells: 18% ± 5% versus 45% ± 14%, d = 2.3, 95% CI [1.5, 3.1] and versus 41% ± 12%, d = 2.3, 95% CI [1.5, 3.1], respectively; p < 0.001 in all cases). The mean percentage of memory B cells was also lower in patients with a failed MoM hip implant with a pseudotumor than in patients with a well-functioning implant without a pseudotumor (12% ± 8% versus 29% ± 16%, d = 1.3, 95% CI [0.7, 1.8], p = 0.025). In addition, patients with a failed MoM hip implant with a pseudotumor had overall lower percentages of type 1 Th cells than both patients with a failed implant without a pseudotumor and patients with a well-functioning implant without a pseudotumor (5.5% [4.9%-5.8%] [median with interquartile range] versus 8.7% [6.5%-10.2%], d = 1.4, 95% CI [0.8, 2.0] and versus 9.6% [6.4%-11.1%], d = 1.6, 95% CI [1.0, 2.2], respectively; p ≤ 0.010 in both cases). Finally, serum cobalt concentrations in patients with a failed MoM hip implant with a pseudotumor were overall higher than those in patients with a well-functioning implant without a pseudotumor (5.8 µg/L [2.9-17.0 µg/L] versus 0.9 µg/L [0.6-1.3 µg/L], d = 2.2, 95% CI [1.4, 2.9], p < 0.001). Overall, results suggest the presence of a type IV hypersensitivity reaction, with a predominance of type 1 Th cells, in patients with a failed MoM hip implant with a pseudotumor. The lower percentages of memory T cells (specifically Th and Tc) as well as type 1 Th cells in peripheral blood of patients with a failed MoM hip implant with a pseudotumor could potentially become diagnostic biomarkers for the detection of pseudotumors. Although implant design (hip resurfacing or THA) did not seem to affect the results, as suggested by the scatter of the data with respect to this parameter, future studies with additional patients could include the analysis of implant design in addition to correlations with histological analyses of specific Th subsets in periprosthetic tissues.
... This type of implant is an artificial hip socket that is created by fitting a metal ball ... particles (ions) can get released into the hip socket and sometimes the bloodstream, causing cobalt toxicity. This ...
NASA Astrophysics Data System (ADS)
Palleri, Francesca; Baruffaldi, Fabio; Angelini, Anna Lisa; Ferri, Andrea; Spezi, Emiliano
2008-12-01
In external beam radiotherapy the calculation of dose distribution for patients with hip prostheses is critical. Metallic implants not only degrade the image quality but also perturb the dose distribution. Conventional treatment planning systems do not accurately account for high-Z prosthetic implants heterogeneities, especially at interfaces. The materials studied in this work have been chosen on the basis of a statistical investigation on the hip prostheses implanted in 70 medical centres. The first aim of this study is a systematic characterization of materials used for hip prostheses, and it has been provided by BEAMnrc Monte Carlo code. The second aim is to evaluate the capabilities of a specific treatment planning system, Pinnacle 3, when dealing with dose calculations in presence of metals, also close to the regions of high-Z gradients. In both cases it has been carried out an accurate comparison versus experimental measurements for two clinical photon beam energies (6 MV and 18 MV) and for two experimental sets-up: metallic cylinders inserted in a water phantom and in a specifically built PMMA slab. Our results show an agreement within 2% between experiments and MC simulations. TPS calculations agree with experiments within 3%.
Midterm results of Magnum large head metal-on-metal total hip arthroplasty.
Aguado-Maestro, I; Cebrián Rodríguez, E; Paredes Herrero, E; Brunie Vegas, F; Oñate Miranda, M; Fernández García, N; García Alonso, M
2018-06-11
We present the results of the prospective follow up of a sample of large head metal-metal total hip arthroplasty obtained after the safety alert regarding a higher incidence of revision of these implants. All patients implanted with the Recap-M2a-Magnum cup between 2008 and 2011 were included. They were prospectively reviewed recording Harris Hip Score, clinical symptoms of chromium or cobalt intoxication. Serum levels of these ions were requested as well as X-Rays and ultrasonography. An MRI was performed in the cases of positive ultrasonography. Twenty-six males with a mean age of 48.54 years [32-62, SD: 7.18] were included. An anterolateral approach and Bi-Metric (7) and F-40 (19) stems were used. Cephalic diameters ranged 42-52 (mode: 46) and the mean cup inclination was 39.35° [21-59°, SD: 9.78]. During follow-up (7.3 years [5.9-9.4; SD: .78]), 3 patients (11.5%) underwent revision (2 cases aseptic loosening, 1 pseudotumour). Mean time until revision was 5.4 years [3.1-8.0; SD: 2.48]. The accumulated survival probability was 88.5% (95% CI 76.3-100%). Harris Hip Score was 94.47 [66.5-100; SD: 8.94] and the patients showed no metallic intoxication symptoms. The levels of chromium were 1.88 mcg/dl [0.6-3.9] and cobalt 1,74 mcg/dl [0.5-5,6]. One pseudotumour was found in an asymptomatic patient, and small amounts of periarticular liquid were found in 5 patients (19.2%) DISCUSSION AND CONCLUSIONS: High revision rates are still found when follow up is extended due to aseptic loosening and pseudotumour formation. MRI might not be the most adequate test to study the complications of these prostheses. Copyright © 2018 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, J; Kerns, J; Nute, J
Purpose: To evaluate three commercial metal artifact reduction methods (MAR) in the context of radiation therapy treatment planning. Methods: Three MAR strategies were evaluated: Philips O-MAR, monochromatic imaging using Gemstone Spectral Imaging (GSI) dual energy CT, and monochromatic imaging with metal artifact reduction software (GSIMARs). The Gammex RMI 467 tissue characterization phantom with several metal rods and two anthropomorphic phantoms (pelvic phantom with hip prosthesis and head phantom with dental fillings), were scanned with and without (baseline) metals. Each MAR method was evaluated based on CT number accuracy, metal size accuracy, and reduction in the severity of streak artifacts. CTmore » number difference maps between the baseline and metal scan images were calculated, and the severity of streak artifacts was quantified using the percentage of pixels with >40 HU error (“bad pixels”). Results: Philips O-MAR generally reduced HU errors in the RMI phantom. However, increased errors and induced artifacts were observed for lung materials. GSI monochromatic 70keV images generally showed similar HU errors as 120kVp imaging, while 140keV images reduced errors. GSI-MARs systematically reduced errors compared to GSI monochromatic imaging. All imaging techniques preserved the diameter of a stainless steel rod to within ±1.6mm (2 pixels). For the hip prosthesis, O-MAR reduced the average % bad pixels from 47% to 32%. For GSI 140keV imaging, the percent of bad pixels was reduced from 37% to 29% compared to 120kVp imaging, while GSI-MARs further reduced it to 12%. For the head phantom, none of the MAR methods were particularly successful. Conclusion: The three MAR methods all improve CT images for treatment planning to some degree, but none of them are globally effective for all conditions. The MAR methods were successful for large metal implants in a homogeneous environment (hip prosthesis) but were not successful for the more complicated case of dental artifacts.« less
Cross-sectional imaging of metal-on-metal hip arthroplasties. Can we substitute MARS MRI with CT?
Robinson, Elizabeth; Henckel, Johann; Sabah, Shiraz; Satchithananda, Keshthra; Skinner, John; Hart, Alister
2014-12-01
Metal artifact reduction sequence (MARS) MRI is widely advocated for surveillance of metal-on-metal hip arthroplasties (MOM-HAs). However, its use is limited by susceptibility artifact at the prosthesis-bone interface, local availability, patient compliance, and cost (Hayter et al. 2011a). We wanted to determine whether CT is a suitable substitute for MARS MRI in evaluation of the painful MOM-HA. 50 MOM-HA patients (30 female) with unexplained painful prostheses underwent MARS MRI and CT imaging. 2 observers who were blind regarding the clinical data objectively reported the following outcomes: soft tissue lesions (pseudotumors), muscle atrophy, and acetabular and femoral osteolysis. Diagnostic test characteristics were calculated. Pseudotumor was diagnosed in 25 of 50 hips by MARS MRI and in 11 of 50 by CT. Pseudotumors were classified as type 1 (n=2), type 2A (n=17), type 2B (n=4), and type 3 (n=2) by MARS MRI. CT did not permit pseudotumor classification. The sensitivity of CT for diagnosis of pseudotumor was 44% (95% CI: 25-65). CT had "slight" agreement with MARS MRI for quantification of muscle atrophy (κ=0.23, CI: 0.16-0.29; p<0.01). Osteolysis was identified in 15 of 50 patients by CT. 4 of these lesions were identified by MARS MRI. CT was found to be superior to MRI for detection of osteolysis adjacent to MOM-HA, and should be incorporated into diagnostic algorithms. CT was unable to classify and failed to detect many pseudotumors, and it was unreliable for assessment of muscle atrophy. Where MARS MRI is contraindicated or unavailable, CT would be an unsuitable substitute and other modalities such as ultrasound should be considered.
Ilo, Kevin C; Derby, Emma J; Whittaker, Robert K; Blunn, Gordon W; Skinner, John A; Hart, Alister J
2017-05-01
The R3 acetabular system used with its metal liner has higher revision rates when compared to its ceramic and polyethylene liner. In June 2012, the medical and healthcare products regulatory agency issued an alert regarding the metal liner of the R3 acetabular system. Six retrieved R3 acetabular systems with metal liners underwent detailed visual analysis using macroscopic and microscopic techniques. Visual analysis discovered corrosion on the backside of the metal liners. There was a distinct border to the areas of corrosion that conformed to antirotation tab insertions on the inner surface of the acetabular shell, which are for the polyethylene liner. Scanning electron microscopy indicated evidence of crevice corrosion, and energy-dispersive X-ray analysis confirmed corrosion debris rich in titanium. The high failure rate of the metal liner option of the R3 acetabular system may be attributed to corrosion on the backside of the liner which appear to result from geometry and design characteristics of the acetabular shell. Copyright © 2016 Elsevier Inc. All rights reserved.
Tribo-electrochemical characterization of metallic biomaterials for total joint replacement.
Diomidis, N; Mischler, S; More, N S; Roy, Manish
2012-02-01
Knee and hip joint replacement implants involve a sliding contact between the femoral component and the tibial or acetabular component immersed in body fluids, thus making the metallic parts susceptible to tribocorrosion. Micro-motions occur at points of fixation leading to debris and ion release by fretting corrosion. β-Titanium alloys are potential biomaterials for joint prostheses due to their biocompatibility and compatibility with the mechanical properties of bone. The biotribocorrosion behavior of Ti-29Nb-13Ta-4.6Zr was studied in Hank's balanced salt solution at open circuit potential and at an applied potential in the passive region. Reciprocating sliding tribocorrosion tests were carried out against technical grade ultra high molecular weight polyethylene, while fretting corrosion tests were carried out against alumina. The wear of the alloy is insignificant when sliding against polyethylene. However, depassivation does take place, but the tested alloy showed an ability to recover its passive state during sliding. The abrasivity of the alloy depends on the electrochemical conditions of the contact, while the wear of polyethylene proceeds through third body formation and material transfer. Under fretting corrosion conditions recovery of the passive state was also achieved. In a fretting contact wear of the alloy proceeds through plastic deformation of the bulk material and wear resistance depends on the electrochemical conditions. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Heavy metals accumulation affects bone microarchitecture in osteoporotic patients.
Scimeca, Manuel; Feola, Maurizio; Romano, Lorenzo; Rao, Cecilia; Gasbarra, Elena; Bonanno, Elena; Brandi, Maria Luisa; Tarantino, Umberto
2017-04-01
Bone metabolism is affected by mechanical, genetic, and environmental factors and plays a major role in osteoporosis. Nevertheless, the influence of environmental pollution on the occurrence of osteoporosis is still unclear and controversial. In this context, heavy metals are the most important pollutants capable to affect bone mass. The aim of this study was to investigate whether heavy metals accumulation in bone tissues could be related to the altered bone metabolism and architecture of osteoporotic patients. To this end, we analyzed 25 bone head biopsies osteoporotic patients and 25 bone head biopsies of osteoarthritic patients. Moreover we enrolled 15 patients underwent hip arthroplasty for high-energy hip fracture or osteonecrosis of the femoral head as a control group. Bone head biopsies were studied by BioQuant-osteo software, scanning electron microscopy and Energy Dispersive X-ray microanalysis. We found a prevalence of lead, cadmium and chromium accumulation in osteoporotic patients. Noteworthy, high levels of sclerostin, detected by immunohistochemistry, correlate with the accumulation of heavy metal found in the bone of osteoporotic patients, suggesting a molecular link between heavy metal accumulation and bone metabolism impairment. In conclusion, the presence of heavy metals into bone shed new light on the comprehension of the pathogenesis of osteoporosis since these elements could play a non redundant role in the development of osteoporosis at cellular/molecular and epigenetic level. Nevertheless, in vivo and in vitro studies need to better elucidate the molecular mechanism in which heavy metals can participate to osteoporosis. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1333-1342, 2017. © 2016 Wiley Periodicals, Inc.
Krantz, Nicolas; Miletic, Bruno; Migaud, Henri; Girard, Julien
2012-09-01
Metal-on-metal hip resurfacing is offered as an alternative to traditional hip arthroplasty for young, active adults with advanced osteoarthritis. The concept of hip resurfacing is considered very attractive for this specific population (hard-on-hard bearing component with a large femoral head limiting the risk of dislocation, and allowing femoral bone stock preservation). A prospective clinical trial was designed to investigate the outcome of hip resurfacing in young patients (under 30 years old). We studied 24 hips in 22 patients. Mean age at operation was 24.9 years (range 17.1-29.9). No patient was lost to follow-up. There was no revision at average follow-up of 50.6 months (44-59). Mean UCLA activity score improved from 5.5 (1-9) pre-operatively to 7.6 (1-10) postoperatively (p < 0.001). Mean Harris hip score increased from 43.9 (19-67) to 89.3 (55-100) (p < 0.001). Radiological analysis discerned no osteolysis and no implant migration. The absence of short-term complications, such as mechanical failure or dislocation, is encouraging and leads us to think that mid-term results will be satisfactory. Moreover, the specific advantages of hip resurfacing (bone stock preservation, excellent stability, low risk of dislocation, large-diameter head) make the procedure a very attractive option for young subjects.
NASA Astrophysics Data System (ADS)
Kariem, Mukaddus; Yawer, Mohd; Sheikh, Haq Nawaz
2015-11-01
Three new coordination polymers [Mn(hip)(phen) (H2O)]n (1), [Co(hip)(phen) (H2O)]n (2), and [Cd(hip) (phen) (H2O)]n (3) (H2hip=5-hydroxyisophthalic acid; phen=1,10-phenanthroline) have been synthesized by solvo-hydrothermal method using diethyl formamide-water (DEF-H2O) as solvent system. Single-crystal X-ray diffraction analysis reveals that all three coordination polymers 1, 2 and 3 crystallize in monoclinic space group P2/n. Metal ions are inter-connected by hydroxyisophthalate anions forming zig-zag 1D chain. 1D chains are further inter-connected by hydrogen bonding and π-π stacking interactions leading to 3D supramolecular architecture. Hydrogen-bonding and π-π stacking provide thermal stability to polymers. Compounds 1 and 2 are paramagnetic at room temperature and variable temperature magnetic moment measurements revealed weak ferromagnetic interactions between metal ions at low temperature. Compound 3 exhibits excellent photoluminescence with large Stokes shift.
Metal clad aramid fibers for aerospace wire and cable
NASA Technical Reports Server (NTRS)
Tokarsky, Edward W.; Dunham, Michael G.; Hunt, James E.; Santoleri, E. David; Allen, David B.
1995-01-01
High strength light weight metal clad aramid fibers can provide significant weight savings when used to replace conventional metal wire in aerospace cable. An overview of metal clad aramid fiber materials and information on performance and use in braided electrical shielding and signal conductors is provided.
Development of Replacements for Phoscoating Used in Forging, Extrusion and Metal Forming Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerry Barnett
2003-03-01
Many forging, extrusion, heading and other metal forming processes use graphite-based lubricants, phosphate coatings, and other potentially hazardous or harmful substances to improve the tribology of the metal forming process. The application of phosphate-based coatings has long been studied to determine if other synthetic ''clean'' lubricants could provide the same degree of protection afforded by phoscoatings and its formulations. So far, none meets the cost and performance objectives provided by phoscoatings as a general aid to the metal forming industry. In as much as phoscoatings and graphite have replaced lead-based lubricants, the metal forming industry has had previous experience withmore » a legislated requirement to change processes. However, without a proactive approach to phoscoating replacement, many metal forming processes could find themselves without a cost effective tribology material necessary for the metal forming process« less
Clustered atom-replaced structure in single-crystal-like metal oxide
NASA Astrophysics Data System (ADS)
Araki, Takeshi; Hayashi, Mariko; Ishii, Hirotaka; Yokoe, Daisaku; Yoshida, Ryuji; Kato, Takeharu; Nishijima, Gen; Matsumoto, Akiyoshi
2018-06-01
By means of metal organic deposition using trifluoroacetates (TFA-MOD), we replaced and localized two or more atoms in a single-crystalline structure having almost perfect orientation. Thus, we created a new functional structure, namely, clustered atom-replaced structure (CARS), having single-crystal-like metal oxide. We replaced metals in the oxide with Sm and Lu and localized them. Energy dispersive x-ray spectroscopy results, where the Sm signal increases with the Lu signal in the single-crystalline structure, confirm evidence of CARS. We also form other CARS with three additional metals, including Pr. The valence number of Pr might change from 3+ to approximately 4+, thereby reducing the Pr–Ba distance. We directly observed the structure by a high-angle annular dark-field image, which provided further evidence of CARS. The key to establishing CARS is an equilibrium chemical reaction and a combination of additional larger and smaller unit cells to matrix cells. We made a new functional metal oxide with CARS and expect to realize CARS in other metal oxide structures in the future by using the above-mentioned process.
Spin-on metal oxide materials with high etch selectivity and wet strippability
NASA Astrophysics Data System (ADS)
Yao, Huirong; Mullen, Salem; Wolfer, Elizabeth; McKenzie, Douglas; Rahman, Dalil; Cho, JoonYeon; Padmanaban, Munirathna; Petermann, Claire; Hong, SungEun; Her, YoungJun
2016-03-01
Metal oxide or metal nitride films are used as hard mask materials in semiconductor industry for patterning purposes due to their excellent etch resistances against the plasma etches. Chemical vapor deposition (CVD) or atomic layer deposition (ALD) techniques are usually used to deposit the metal containing materials on substrates or underlying films, which uses specialized equipment and can lead to high cost-of-ownership and low throughput. We have reported novel spin-on coatings that provide simple and cost effective method to generate metal oxide films possessing good etch selectivity and can be removed by chemical agents. In this paper, new spin-on Al oxide and Zr oxide hard mask formulations are reported. The new metal oxide formulations provide higher metal content compared to previously reported material of specific metal oxides under similar processing conditions. These metal oxide films demonstrate ultra-high etch selectivity and good pattern transfer capability. The cured films can be removed by various chemical agents such as developer, solvents or wet etchants/strippers commonly used in the fab environment. With high metal MHM material as an underlayer, the pattern transfer process is simplified by reducing the number of layers in the stack and the size of the nano structure is minimized by replacement of a thicker film ACL. Therefore, these novel AZ® spinon metal oxide hard mask materials can potentially be used to replace any CVD or ALD metal, metal oxide, metal nitride or spin-on silicon-containing hard mask films in 193 nm or EUV process.
Kwon, Young-Min; Dimitriou, Dimitris; Liow, Ming Han Lincoln; Tsai, Tsung-Yuan; Li, Guoan
2016-08-01
Current guidelines recommend longitudinal monitoring of at-risk metal-on-metal (MoM) arthroplasty patients with cross-sectional imaging such as metal artifact reduction sequence (MARS) magnetic resonance imaging (MRI) or ultrasound. During follow-up evaluations, the clinical focus is on the relative interval changes in symptoms, radiographs, laboratory tests, and cross-sectional imaging modalities. Although MRI has the capacity for the detection of adverse local soft tissue reactions (ALTRs), the potential disadvantages of MARS MRI include the obscuration of periprosthetic tissues by metal artifacts and the cost. The aim of this study was to evaluate the diagnostic accuracy of ultrasound in comparison with MARS MRI in detecting ALTR in MoM patients during consecutive follow-up. Thirty-five MoM patients (42 hips) were recruited prospectively to evaluate the sensitivity and specificity of the ultrasound for detecting ALTR in relation to MARS MRI during 2 longitudinal follow-up scans. The agreement between ultrasound and MARS MRI in ALTR grade, size, and size change was calculated. At the initial evaluation and at the subsequent follow-up, ultrasound had a sensitivity of 81% and 86% and a specificity of 92% and 88%, respectively. At the follow-up evaluations, ultrasound was able to detect the "change" in the lesions size with -0.3 cm(2) average bias from the MARS MRI with higher agreement (k = 0.85) with MARS MRI compared to the initial evaluation in detecting any "change" in ALTR size or grade. Ultrasound detected the interval change in the ALTR size and grade with higher accuracy and higher agreement with MARS MRI compared with the initial evaluation, suggesting ultrasound is a valid and useful. Copyright © 2016 Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-04-01
... fixed in the intramedullary canal of the femur by impaction with or without use of bone cement. The... nonporous metal alloys, and used with or without bone cement. (b) Classification. Class II. [54 FR 48239...
Code of Federal Regulations, 2013 CFR
2013-04-01
... fixed in the intramedullary canal of the femur by impaction with or without use of bone cement. The... nonporous metal alloys, and used with or without bone cement. (b) Classification. Class II. [54 FR 48239...
Code of Federal Regulations, 2014 CFR
2014-04-01
... fixed in the intramedullary canal of the femur by impaction with or without use of bone cement. The... nonporous metal alloys, and used with or without bone cement. (b) Classification. Class II. [54 FR 48239...
Code of Federal Regulations, 2012 CFR
2012-04-01
... fixed in the intramedullary canal of the femur by impaction with or without use of bone cement. The... nonporous metal alloys, and used with or without bone cement. (b) Classification. Class II. [54 FR 48239...
Code of Federal Regulations, 2010 CFR
2010-04-01
... fixed in the intramedullary canal of the femur by impaction with or without use of bone cement. The... nonporous metal alloys, and used with or without bone cement. (b) Classification. Class II. [54 FR 48239...
The John Charnley Award Paper. The role of joint fluid in the tribology of total joint arthroplasty.
Mazzucco, Daniel; Spector, Myron
2004-12-01
The effect of joint fluid on the tribology (ie, lubrication, friction, and wear) of total hip arthroplasty has not yet been investigated adequately. In the current study, a friction assay was used to assess four hypotheses relating to the effect of human joint fluid and its principal components on the articulation of metal-on-polyethylene. First, joint fluid was found to produce a widely varying amount of friction between cobalt-chromium and polyethylene; this range exceeded the range produced when the articulation was lubricated by water or bovine serum. Second, it was shown that hyaluronic acid, phospholipid, albumin, and gamma-globulin were not acting as boundary lubricants, but that one or more other proteins (as yet unidentified) were responsible for reducing friction in this couple. Third, lower friction was found when oxidized zirconium alloy replaced cobalt-chromium as a bearing surface on polyethylene. Finally, a pilot study suggested that lubricin, which contributes to cartilage-on-cartilage lubrication, is not a protein responsible for the tribological variabiation found among joint fluid samples. The current study showed that joint fluid is a patient factor that influences the tribology of metal-on-polyethylene arthroplasty.
Archer, M.; Carvalho, A. L.; Teixeira, S.; Moura, I.; Moura, J. J.; Rusnak, F.; Romão, M. J.
1999-01-01
Desulforedoxin (Dx), isolated from the sulfate reducing bacterium Desulfovibrio gigas, is a small homodimeric (2 x 36 amino acids) protein. Each subunit contains a high-spin iron atom tetrahedrally bound to four cysteinyl sulfur atoms, a metal center similar to that found in rubredoxin (Rd) type proteins. The simplicity of the active center in Dx and the possibility of replacing the iron by other metals make this protein an attractive case for the crystallographic analysis of metal-substituted derivatives. This study extends the relevance of Dx to the bioinorganic chemistry field and is important to obtain model compounds that can mimic the four sulfur coordination of metals in biology. Metal replacement experiments were carried out by reconstituting the apoprotein with In3+, Ga3+, Cd2+, Hg2+, and Ni2+ salts. The In3+ and Ga3+ derivatives are isomorphous with the iron native protein; whereas Cd2+, Hg2+, and Ni2+ substituted Dx crystallized under different experimental conditions, yielding two additional crystal morphologies; their structures were determined by the molecular replacement method. A comparison of the three-dimensional structures for all metal derivatives shows that the overall secondary and tertiary structures are maintained, while some differences in metal coordination geometry occur, namely, bond lengths and angles of the metal with the sulfur ligands. These data are discussed in terms of the entatic state theory. PMID:10422844
Varnum, Claus; Pedersen, Alma B; Kjærsgaard-Andersen, Per; Overgaard, Søren
2016-01-01
Background and purpose — Patient-reported outcome (PRO) is recognized as an important tool for evaluating the outcome and satisfaction after total hip arthroplasty (THA). We wanted to compare patient-reported outcome measure (PROM) scores from patients with ceramic-on-ceramic (CoC) THAs and those with metal-on-metal (MoM) THAs to scores from patients with metal-on-polyethylene (MoP) THAs, and to determine the influence of THA-related noise on PROM scores. Patients and methods — We conducted a nationwide cross-sectional questionnaire survey in a cohort of patients identified from the Danish Hip Arthroplasty Registry. The PROMs included were: hip dysfunction and osteoarthritis and outcome score (HOOS), EQ-5D-3L, EQ VAS, UCLA activity score, and questions about noise from the THA. The response rate was 85% and the number of responders was 3,089. Of these, 45% had CoC THAs, 17% had MoM THAs, and 38% had MoP THAs, with a mean length of follow-up of 7, 5, and 7 years, respectively. Results — Compared to MoP THAs, the mean PROM scores for CoC and MoM THAs were similar, except that CoC THAs had a lower mean score for HOOS Symptoms than did MoP THA. 27% of patients with CoC THAs, 29% with MoM THAs, and 12% with MoP THAs reported noise from their hip. For the 3 types of bearings, PROM scores from patients with a noisy THA were statistically significantly worse than those from patients with a silent MoP THA. The exception was noisy CoC and MoM THAs, which had the same mean UCLA activity score as silent MoP THAs. Interpretation — A high proportion of patients reported noise from the THA, and these patients had worse PROM scores than patients with silent MoP THAs. PMID:27615443
THA Using Metal-on-Metal Articulation in Active Patients Younger Than 50 Years
Bonnomet, François; Clavert, Philippe; Laffargue, Philippe; Migaud, Henri
2008-01-01
The main concern of patients with longer life expectancies and of patients who are younger and more active is the longevity of their total hip arthroplasty. We retrospectively reviewed 83 cementless total hip arthroplasties in 73 patients implanted with metal-on-metal articulation. All patients were younger than 50 years old (average age, 41 years) at the time of the index procedure, and 80% of the patients had an activity level graded 4 or 5 when measured with the system of Devane et al. A 28-mm Metasul articulation was used with three different cementless titanium acetabular components. At the most recent followup (average, 7.3 years), the average Merle d’Aubigné-Postel score improved from a preoperative 11.1 points to 17.4 points. We observed no radiographic evidence of component loosening. Ten acetabular components had lucency limited to one zone. The 10-year survivorship with the end point of revision (ie, exchange of at least one prosthetic or bearing component) was 100% (95% confidence interval, 90%–100%). Metasul bearings with cementless acetabular components remain promising in this high-risk younger patient population. However, additional followup strategies are recommended to determine any possible long-term deleterious effects associated with the dissemination of metallic ions. Level of Evidence: Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18196415
Das, Dirk H; van der Weegen, Walter; Wullems, Jorgen A; Brakel, Koen; Sijbesma, Thea; Nelissen, Rob G
2016-05-16
Recent studies of metal-on-metal (MoM) total hip arthroplasty (THA) using metal-artefact-reducing-sequence software for magnetic resonance Imaging (MARS-MRI) have revealed remarkable soft tissue pathology around the hip, usually referred to as pseudotumours. Case reports describe identical pathology in non-MoM THA, but descriptive overviews of MRI abnormalities in patients with non-MoM prosthesis are scarce. A clinical study in a cohort of 50 ceramic-on-polyethylene (CoP) THA selected for high risk of peri-prosthetic pathology including 2 subgroups: (i) 40 patients with a high polyethylene (PE) wear rate (>0.2 mm per year) and 5-12 years follow-up; (ii) 10 patients with a 2 to 5 years follow-up and a documented history of persistent complaints. All patients were clinically evaluated, MARS-MRIs were completed and chrome and cobalt serum samples were taken. 17 scans were normal (34%). Periprosthetic fluid collections were seen as a bursae iliopsoas (n = 12, 24%), in the trochanter bursae (n = 4, 8%) and in the surgical tract (n = 9, 18%). 1 case demonstrated a cyst on MARS-MRI resembling a pseudotumour as seen with MoM THA (2%). Intraosseous acetabular cysts were seen in 12 cases (24%), intraosseous trochanteric cysts in 10 cases (20%). Soft tissue abnormalities after non-MoM THA are common in selected patients and can be clearly visualised with MARS-MRI. Pseudotumours as seen on MARS-MRI do occur in non-MoM hip arthroplasty but with low prevalence.
Code of Federal Regulations, 2010 CFR
2010-04-01
... component is intended to be fixed with bone cement. The acetabular component is intended for use without bone cement (§ 888.3027). (b) Classification. Class III. (c) Date PMA or notice of completion of a PDP...
Code of Federal Regulations, 2011 CFR
2011-04-01
... component is intended to be fixed with bone cement. The acetabular component is intended for use without bone cement (§ 888.3027). (b) Classification. Class III. (c) Date PMA or notice of completion of a PDP...
Code of Federal Regulations, 2012 CFR
2012-04-01
... component is intended to be fixed with bone cement. The acetabular component is intended for use without bone cement (§ 888.3027). (b) Classification. Class III. (c) Date PMA or notice of completion of a PDP...
Code of Federal Regulations, 2013 CFR
2013-04-01
... component is intended to be fixed with bone cement. The acetabular component is intended for use without bone cement (§ 888.3027). (b) Classification. Class III. (c) Date PMA or notice of completion of a PDP...
Code of Federal Regulations, 2014 CFR
2014-04-01
... component is intended to be fixed with bone cement. The acetabular component is intended for use without bone cement (§ 888.3027). (b) Classification. Class III. (c) Date PMA or notice of completion of a PDP...
Zhang, Hong-Yu; Zhou, Ming
2014-01-01
The stem-cement interface in total hip replacement experiences fretting wear following debonding under cyclical physiological loading. However, the influence of protein concentration on the biotribological properties of this interface has not been well taken into consideration. In the present study, a series of fretting frictional tests were performed using polished Ti6Al4V and bone cement, lubricated by bovine serum albumin solutions of different concentrations (5%, 30%, and 75%). Surface characterizations of Ti6Al4V pins were conducted by optical interferometer, scanning electron microscope, and Raman spectroscopy. The results show that the friction coefficient decreases with the increase of protein concentration, although the difference is not significant. In addition, bovine serum albumin is adsorbed onto Ti6Al4V surface, forming a protective film to prevent the metal substrate from wear. The elemental and spectroscopic analyses of the film confirm the presence of protein molecules adsorbed on Ti6Al4V surface, with a thickness of 2.5 μm. It is indicated from this study that fretting wear at the stem-cement interface can be postponed by promotion of protein adsorption on the metal surface.
Barker, Karen L; Newman, Meredith A; Hughes, Tamsin; Sackley, Cath; Pandit, Hemant; Kiran, Amit; Murray, David W
2013-09-01
To identify if a tailored rehabilitation programme is more effective than standard practice at improving function in patients undergoing metal-on-metal hip resurfacing arthroplasty. Randomized controlled trial. Specialist orthopaedic hospital. 80 men with a median age of 56 years. Tailored post-operative physiotherapy programme compared with standard physiotherapy. Primary outcome - Oxford Hip Score (OHS), Secondary outcomes: Hip disability and Osteoarthritis Outcome Score (HOOS), EuroQol (EQ-5D-3L) and UCLA activity score. Hip range of motion, hip muscle strength and patient selected goals were also assessed. At one year the mean (SD) Oxford Hip Score of the intervention group was higher, 45.1 (5.3), than the control group, 39.6 (8.8). This was supported by a linear regression model, which detected a 5.8 unit change in Oxford Hip Score (p < 0.001), effect size 0.76. There was a statistically significant increase in Hip disability and Osteoarthritis Outcome Score of 12.4% (p < 0.0005), effect size 0.76; UCLA activity score differed by 0.66 points (p < 0.019), effect size 0.43; EQ 5D showed an improvement of 0.85 (p < 0.0005), effect size 0.76. A total of 80% (32 of 40) of the intervention group fully met their self-selected goal compared with 55% (22 of 40) of the control group. Hip range of motion increased significantly; hip flexion by a mean difference 17.9 degrees (p < 0.0005), hip extension by 5.7 degrees (p < 0.004) and abduction by 4 degrees (p < 0.05). Muscle strength improved more in the intervention group but was not statistically significant. A tailored physiotherapy programme improved self-reported functional outcomes and hip range of motion in patients undergoing hip resurfacing.
Saragaglia, D; Belvisi, B; Rubens-Duval, B; Pailhé, R; Rouchy, R C; Mader, R
2015-06-01
Large-diameter metal-on-metal hip prostheses are no longer used, but their outcomes after more than 5 years are unknown. We conducted a retrospective study with a 6.8-year mean follow-up to assess clinical outcomes after Durom™ cup implantation, including the dislocation rate, comparatively to the reference metal-on-polyethylene bearing. We determined the rate of failure ascribable to Durom™ cup use. We also looked for a sharp drop in the implant survival curve during the follow-up period and for factors associated with adverse reactions to metal debris (ARMDs). We hypothesised that clinical outcomes after Durom™ cup implantation were similar to those seen with a metal-on-polyethylene bearing, except for a lower rate of dislocation. We included 177 consecutive THA procedures that were performed between 2005 and 2008 in 165 patients with a mean age of 57.6 ± 9.4 years (range, 31-76 years) and involved the implantation of a Durom™ cup, a femoral head greater than 36mm in diameter, and a PF(®) femoral stem (Zimmer, Etupes, France). The mini-posterior approach was used, with 2mm of acetabular overreaming in 82% of cases, a short femoral neck in 75% of cases, and a mean cup inclination of 34 ± 5° (range, 21-50°). Outcomes were assessed for 156 THA procedures in 146 patients after a mean follow-up of 6 years 8 months. The mean Postel-Merle d'Aubigné score improved from 9.7 ± 2.7 (range, 4-14) to 17.4 ± 1.7 (range, 15-18) and the mean Harris hip score from 45.2 ± 15.3 (range, 9-83) to 96.3 ± 7 (75-100). No episodes of dislocation were recorded. We identified 7 failures ascribable to the Durom™ cup including 6 due to ARMD and 1 to aseptic loosening. Implant survival after a mean of 80months was 95.5% (95% CI, 93.1-99.2), with no sharp drop in the survival curve. The Durom™ cup eliminates the risk of hip dislocation and produces similar functional outcomes to those seen with metal-on-polyethylene bearings after a mean follow-up of 80 months. Nevertheless, given the difficulty in predicting ARMD and hypersensitivity reactions, the Durom™ cup has been discarded and patients carrying it are monitored closely. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Large-diameter metal-on-metal total hip arthroplasty: dislocation infrequent but survivorship poor.
Lombardi, Adolph V; Berend, Keith R; Morris, Michael J; Adams, Joanne B; Sneller, Michael A
2015-02-01
Use of large-diameter metal-on-metal (MoM) articulations in THA increased, at least in part, because of the possibility of achieving improved joint stability and excellent wear characteristics in vitro. However, there have been subsequent concerning reports with adverse reactions to metal debris (ARMD), pseudotumors, and systemic complications related to metal ions. The purpose of this study was to determine at a minimum of 2 years' followup (1) the proportion of patients who experienced a dislocation; (2) the short-term survivorship obtained with these implants; (3) the causes of failure and the proportion of patients who developed ARMD; and (4) whether there were any identifiable risk factors for revision. We reviewed the results of 1235 patients who underwent 1440 large-diameter MoM primary THAs at our institution using two acetabular devices from a single manufacturer with minimum 2-year followup. Large-diameter MoM devices were used in 48% (1695 of 3567) of primary THAs during the study period. We generally used these implants in younger, more active, higher-demand patients, in patients considered at higher risk of instability, and in patients with adequate bone stock to achieve stable fixation without use of screws. Clinical records and radiographs were reviewed to determine the incidence and etiology of revision. Patients whose hips were revised were compared with those not revised to identify risk factors; Kaplan-Meier survivorship analysis was performed as was multivariate analysis to account for potential confounding variables when evaluating risk factors. Minimum followup was 2 years (average, 7 years; range, 2-12 years); complete followup was available in 85% of hips (1440 of 1695). Dislocation occurred in one hip overall (<1%; one of 1440). Kaplan-Meier analysis revealed survival free of component revision was 87% at 12 years (95% confidence interval, 84%-90%). The two most common indications for revision were ARMD (48%; 47 of 108 hips revised) and loosening or failure of ingrowth (31%; 34 of 108). Risk factors for component revision were younger age at surgery (relative risk [RR] 0.98 per each increased year; p=0.02), higher cup angle of inclination (RR 1.03 per each increased degree; p=0.04), and female sex (RR 1.67; p=0.03). Large-diameter MoM THAs are associated with a very low dislocation rate, but failure secondary to ARMD and loosening or lack of ingrowth occur frequently. Patients with MoM THA should be encouraged to return for clinical and radiographic followup, and clinicians should maintain a low threshold to perform a systematic evaluation. Early diagnosis and appropriate treatment are recommended to prevent the damaging effects of advanced ARMD. Level IV, Therapeutic study.
Schmalzried, T P; Jasty, M; Harris, W H
1992-07-01
Thirty-four hips in which there had been prosthetic replacement were selected for study because of the presence of linear (diffuse) or lytic (localized) areas of periprosthetic bone loss. In all hips, there was careful documentation of the anatomical location of the material that had been obtained for histological analysis, and the specific purpose of the removal of the tissue was for examination to determine the cause of the resorption of bone. Specimens from twenty-three hips were retrieved during an operation and from eleven hips, at autopsy. The area of bone loss was linear only in sixteen hips, lytic only in thirteen, and both linear and lytic in five. In all thirty-four hips, intracellular particulate debris was found in the macrophages that were present in the area of bone resorption. All thirty-four had intracellular particles of polyethylene, many of which were less than one micrometer in size. Thirty-one hips had extracellular particles of polyethylene as well. Twenty-two of the thirty-four hips had intracellular metallic debris; in ten, metallic debris was found extracellularly as well. Ten of the sixteen cemented specimens had intracellular and extracellular polymethylmethacrylate debris. In the mechanically stable prostheses--cemented and uncemented--polyethylene wear debris was identified in areas of bone resorption far from the articular surfaces. The number of macrophages in a microscopic field was directly related to the amount of particulate polyethylene debris that was visible by light microscopy. Although the gross radiographic appearances of linear bone loss and lytic bone loss were different, the histological appearance of the regions in which there was active bone resorption was similar. Regardless of the radiographic appearance and anatomical origin of the specimen, bone resorption was found to occur in association with macrophages that were laden with polyethylene debris. In general, the number of macrophages present had a direct relationship to the degree of bone resorption that was seen. We believe that these findings indicate that joint fluid penetrates far more extensively than previously thought, even in a well fixed component, along the interface between the prosthesis and bone and in the periprosthetic tissues; it is often more extensive than is shown by arthrography. We therefore suggest the concept of the effective joint space to include all periprosthetic regions that are accessible to joint fluid and thus accessible to particulate debris.(ABSTRACT TRUNCATED AT 400 WORDS)
Net-Shape HIP Powder Metallurgy Components for Rocket Engines
NASA Technical Reports Server (NTRS)
Bampton, Cliff; Goodin, Wes; VanDaam, Tom; Creeger, Gordon; James, Steve
2005-01-01
True net shape consolidation of powder metal (PM) by hot isostatic pressing (HIP) provides opportunities for many cost, performance and life benefits over conventional fabrication processes for large rocket engine structures. Various forms of selectively net-shape PM have been around for thirty years or so. However, it is only recently that major applications have been pursued for rocket engine hardware fabricated in the United States. The method employs sacrificial metallic tooling (HIP capsule and shaped inserts), which is removed from the part after HIP consolidation of the powder, by selective acid dissolution. Full exploitation of net-shape PM requires innovative approaches in both component design and materials and processing details. The benefits include: uniform and homogeneous microstructure with no porosity, irrespective of component shape and size; elimination of welds and the associated quality and life limitations; removal of traditional producibility constraints on design freedom, such as forgeability and machinability, and scale-up to very large, monolithic parts, limited only by the size of existing HIP furnaces. Net-shape PM HIP also enables fabrication of complex configurations providing additional, unique functionalities. The progress made in these areas will be described. Then critical aspects of the technology that still require significant further development and maturation will be discussed from the perspective of an engine systems builder and end-user of the technology.
Johnson, Aaron J; Naziri, Qais; Hooper, Hasan A; Mont, Michael A
2012-04-04
The sensitivity of airport security screening measures has increased substantially during the past decade, but few reports have examined how this affects patients who have undergone hip arthroplasty. The purpose of this study was to determine the experiences of patients who had hip prostheses and who passed through airport security screenings. A consecutive series of 250 patients who presented to the office of a high-volume surgeon were asked whether they had had a hip prosthesis for at least one year and, if so, whether they had flown on a commercial airline within the past year. Patients who responded affirmatively to both questions were asked to complete a written survey that included questions about which joint(s) had been replaced, the number of encounters with airport security, the frequency and location of metal detector activation, any additional screening procedures that were utilized, whether security officials requested documentation regarding the prosthesis, the degree of inconvenience, and other relevant information. Of the 143 patients with hip replacements who traveled by air, 120 (84%) reported triggering the alarm and required wanding with a handheld detector. Twenty-five of these patients reported subsequently having to undergo further inspection, including additional wanding, being patted down, and in two cases having to undress in a private room to show the incision. Ninety-nine (69%) of the 143 patients reported that the prosthetic joint caused an inconvenience while traveling. This study provides interesting and critical information that allows physicians to understand the real-world implications of implanted orthopaedic devices for patients who are traveling where there has been heightened security since September 11, 2001. Patients should be counseled that they should expect delays and be prepared for such inconveniences, but that these are often only momentary. This information could relieve some anxiety and concerns that patients may have prior to traveling.
Survey of patient-oriented total hip replacement information on the World Wide Web.
Mabrey, J D
2000-12-01
The author conducted an informal survey of materials relating to diseases of the hip and total hip replacement as they appeared on the World Wide Web. The results varied depending on the key words used: hip and replacement yielded 1,818 matches; total hip replacement yielded 1,740 matches; hip replacement yielded 4,565 sites; and hip surgery yielded 1,073 sites. The number of sites for total hip replacement was observed to increase with time, having found an additional 30 sites from an identical search performed only 6 weeks earlier. The nature and quality of these sites varied from well-organized and informative, to personal testaments, to obvious commercial endeavors. Overall, this survey found an abundance of material regarding the hip and hip replacements on the World Wide Web, but orthopaedic societies need to take a more active role in constructing, maintaining, and monitoring these sites to best serve the needs of their patients and their members.
Design of Composite Hip Prostheses Considering the Long-Term Behavior of the Femur
NASA Astrophysics Data System (ADS)
Lim, Jong Wan; Jeong, Jae Youn; Ha, Sung Kyu
A design method for the hip prosthesis is proposed which can alleviate problems associated with stress shielding, proximal loosening and the high stress of bone-implant interfaces after total hip replacement. The stress shielding which may lead to bone resorption, can cause a loosening of the stem and a fracture of femoral bone. Generally the composites were more suitable for hip prosthesis material in the long-term stability than metallic alloy because design cases of composite materials produced less stress shielding than titanium alloy. A bone remodeling algorithm was implemented in a nonlinear finite element program to predict the long-term performance of the hip prosthesis. The three neck shapes and three cross sections of composite hip were examined. It was found that the stress concentration in the distal region of the titanium stem which may cause the patient's thigh pains was reduced using composite material. The head neck shape was closely related with the cortical bone resorption and the cancellous bone apposition at proximal region whereas the cross-section was closely related with the relative micromotion between interfaces. The convex head neck type with the quadrangle cross-section produced less subsidence at proximal region on the medial side than the others. For all composite material cases, the cancellous bone apposition occurred at partial interfaces, which may result in a stable bio-fixation. The design performances of the convex neck head type with the hexagonal cross-section designed to insure the long-term stability were found to be more suitable than the others.
Zioła-Frankowska, Anetta; Kubaszewski, Łukasz; Dąbrowski, Mikołaj; Kowalski, Artur; Rogala, Piotr; Strzyżewski, Wojciech; Łabędź, Wojciech; Kanicky, Viktor
2015-01-01
The aim of the study was to determine the content of particular elements Ca, Mg, P, Na, K, Zn, Cu, Fe, Mo, Cr, Ni, Ba, Sr, and Pb in the proximal femur bone tissue (cancellous and cortical bone) of 96 patients undergoing total hip replacement for osteoarthritis using ICP-AES and FAAS analytical techniques. The interdependencies among these elements and their correlations depended on factors including age, gender, place of residence, tobacco consumption, alcohol consumption, exposure to environmental pollution, physical activity, and type of degenerative change which were examined by statistical and chemometric methods. The factors that exerted the greatest influence on the elements in the femoral head and neck were tobacco smoking (higher Cr and Ni content in smokers), alcohol consumption (higher concentrations of Ni, Cu in people who consume alcohol), and gender (higher Cu, Zn, and Ni concentrations in men). The factors influencing Pb accumulation in bone tissue were tobacco, alcohol, gender, and age. In primary and secondary osteoarthritis of the hip, the content and interactions of elements are different (mainly those of Fe and Pb). There were no significant differences in the concentrations of elements in the femoral head and neck that could be attributed to residence or physical activity. PMID:26357659
Farhoudi, Hamidreza; Oskouei, Reza H; Pasha Zanoosi, Ali A; Jones, Claire F; Taylor, Mark
2016-12-05
This study predicts the frictional moments at the head-cup interface and frictional torques and bending moments acting on the head-neck interface of a modular total hip replacement across a range of activities of daily living. The predicted moment and torque profiles are based on the kinematics of four patients and the implant characteristics of a metal-on-metal implant. Depending on the body weight and type of activity, the moments and torques had significant variations in both magnitude and direction over the activity cycles. For the nine investigated activities, the maximum magnitude of the frictional moment ranged from 2.6 to 7.1 Nm. The maximum magnitude of the torque acting on the head-neck interface ranged from 2.3 to 5.7 Nm. The bending moment acting on the head-neck interface varied from 7 to 21.6 Nm. One-leg-standing had the widest range of frictional torque on the head-neck interface (11 Nm) while normal walking had the smallest range (6.1 Nm). The widest range, together with the maximum magnitude of torque, bending moment, and frictional moment, occurred during one-leg-standing of the lightest patient. Most of the simulated activities resulted in frictional torques that were near the previously reported oxide layer depassivation threshold torque. The predicted bending moments were also found at a level believed to contribute to the oxide layer depassivation. The calculated magnitudes and directions of the moments, applied directly to the head-neck taper junction, provide realistic mechanical loading data for in vitro and computational studies on the mechanical behaviour and multi-axial fretting at the head-neck interface.
Farhoudi, Hamidreza; Oskouei, Reza H.; Pasha Zanoosi, Ali A.; Jones, Claire F.; Taylor, Mark
2016-01-01
This study predicts the frictional moments at the head-cup interface and frictional torques and bending moments acting on the head-neck interface of a modular total hip replacement across a range of activities of daily living. The predicted moment and torque profiles are based on the kinematics of four patients and the implant characteristics of a metal-on-metal implant. Depending on the body weight and type of activity, the moments and torques had significant variations in both magnitude and direction over the activity cycles. For the nine investigated activities, the maximum magnitude of the frictional moment ranged from 2.6 to 7.1 Nm. The maximum magnitude of the torque acting on the head-neck interface ranged from 2.3 to 5.7 Nm. The bending moment acting on the head-neck interface varied from 7 to 21.6 Nm. One-leg-standing had the widest range of frictional torque on the head-neck interface (11 Nm) while normal walking had the smallest range (6.1 Nm). The widest range, together with the maximum magnitude of torque, bending moment, and frictional moment, occurred during one-leg-standing of the lightest patient. Most of the simulated activities resulted in frictional torques that were near the previously reported oxide layer depassivation threshold torque. The predicted bending moments were also found at a level believed to contribute to the oxide layer depassivation. The calculated magnitudes and directions of the moments, applied directly to the head-neck taper junction, provide realistic mechanical loading data for in vitro and computational studies on the mechanical behaviour and multi-axial fretting at the head-neck interface. PMID:28774104
Boomsma, Martijn F; Slouwerhof, Inge; van Dalen, Jorn A; Edens, Mireille A; Mueller, Dirk; Milles, Julien; Maas, Mario
2015-11-01
The purpose of this research is to study the use of an internal reference standard for fat- and muscle as a replacement for an external reference standard with a phantom. By using a phantomless internal reference standard, Hounsfield unit (HU) measurements of various tissues can potentially be assessed in patients with a CT scan of the pelvis without an added phantom at time of CT acquisition. This paves the way for development of a tool for quantification of the change in tissue density in one patient over time and between patients. This could make every CT scan made without contrast available for research purposes. Fifty patients with unilateral metal-on-metal total hip replacements, scanned together with a calibration reference phantom used in bone mineral density measurements, were included in this study. On computed tomography scans of the pelvis without the use of intravenous iodine contrast, reference values for fat and muscle were measured in the phantom as well as within the patient's body. The conformity between the references was examined with the intra-class correlation coefficient. The mean HU (± SD) of reference values for fat for the internal- and phantom references were -91.5 (±7.0) and -90.9 (±7.8), respectively. For muscle, the mean HU (± SD) for the internal- and phantom references were 59.2 (±6.2) and 60.0 (±7.2), respectively. The intra-class correlation coefficients for fat and muscle were 0.90 and 0.84 respectively and show excellent agreement between the phantom and internal references. Internal references can be used with similar accuracy as references from an external phantom. There is no need to use an external phantom to asses CT density measurements of body tissue.
21 CFR 888.3390 - Hip joint femoral (hemi-hip) metal/polymer cemented or uncemented prosthesis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... includes prostheses that have a femoral component made of alloys, such as cobalt-chromium-molybdenum, and a snap-fit acetabular component made of an alloy, such as cobalt-chromium-molybdenum, and ultra-high...
21 CFR 888.3390 - Hip joint femoral (hemi-hip) metal/polymer cemented or uncemented prosthesis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... includes prostheses that have a femoral component made of alloys, such as cobalt-chromium-molybdenum, and a snap-fit acetabular component made of an alloy, such as cobalt-chromium-molybdenum, and ultra-high...
21 CFR 888.3390 - Hip joint femoral (hemi-hip) metal/polymer cemented or uncemented prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... includes prostheses that have a femoral component made of alloys, such as cobalt-chromium-molybdenum, and a snap-fit acetabular component made of an alloy, such as cobalt-chromium-molybdenum, and ultra-high...
... Total hip replacement; Hip hemiarthroplasty; Arthritis - hip replacement; Osteoarthritis - hip replacement ... total hip replacement surgery in patients with hip osteoarthritis: a long-term follow-up of a randomised ...
Chen, C Q; Scott, W; Barker, T M
1999-01-01
Bonding and loosening mechanisms between bone cement and joint prostheses have not been well identified. In this study, the effects of simulated hip stem surface topography on the interfacial shear strength were examined. Six different surface topographies were used. They were described by several surface characterization parameters that may directly relate to the interfacial bonding strength: average surface roughness R(a), root mean square slope R(Deltaq), correlation length beta, and fluid retention index R(ri). The shear strengths between Palacos E bone cement and stainless steel rods were measured using an Instron materials testing machine. We found that cement can "flow" into the surface microtopography and establish good contact with the metal surface. The results show that the interfacial strength increases monotonically with the increase of R(Deltaq) instead of with R(a). The relationship between interfacial strength and surface parameters shows that a metal stem with an isotropic surface texture, higher R(Deltaq), and greater R(ri) gives a higher interfacial strength. Copyright 1999 John Wiley & Sons, Inc.
Kovochich, Michael; Fung, Ernest S; Donovan, Ellen; Unice, Kenneth M; Paustenbach, Dennis J; Finley, Brent L
2018-04-01
Advantages of second-generation metal-on-metal (MoM) hip implants include low volumetric wear rates and the release of nanosized wear particles that are chemically inert and readily cleared from local tissue. In some patients, edge loading conditions occur, which result in higher volumetric wear. The objective of this study was to characterize the size, morphology, and chemistry of wear particles released from MoM hip implants during normal (40° angle) and edge-loading (65° angle with microseparation) conditions. The mean primary particle size by volume under normal wear was 35 nm (range: 9-152 nm) compared with 95 nm (range: 6-573 nm) under edge-loading conditions. Hydrodynamic diameter analysis by volume showed that particles from normal wear were in the nano- (<100 nm) to submicron (<1000 nm) size range, whereas edge-loading conditions generated particles that ranged from <100 nm up to 3000-6000 nm in size. Particles isolated from normal wear were primarily chromium (98.5%) and round to oval in shape. Edge-loading conditions generated more elongated particles (4.5%) (aspect ratio ≥ 2.5) and more CoCr alloy particles (9.3%) compared with normal wear conditions (1.3% CoCr particles). By total mass, edge-loading particles contained approximately 640-fold more cobalt than normal wear particles. Our findings suggest that high wear conditions are a potential risk factor for adverse local tissue effects in MoM patients who experience edge loading. This study is the first to characterize both the physical and chemical characteristics of MoM wear particles collected under normal and edge-loading conditions. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 986-996, 2018. © 2017 Wiley Periodicals, Inc.
Clarke, Aileen; Pulikottil-Jacob, Ruth; Grove, Amy; Freeman, Karoline; Mistry, Hema; Tsertsvadze, Alexander; Connock, Martin; Court, Rachel; Kandala, Ngianga-Bakwin; Costa, Matthew; Suri, Gaurav; Metcalfe, David; Crowther, Michael; Morrow, Sarah; Johnson, Samantha; Sutcliffe, Paul
2015-01-01
Total hip replacement (THR) involves the replacement of a damaged hip joint with an artificial hip prosthesis. Resurfacing arthroplasty (RS) involves replacement of the joint surface of the femoral head with a metal surface covering. To undertake clinical effectiveness and cost-effectiveness analysis of different types of THR and RS for the treatment of pain and disability in people with end-stage arthritis of the hip, in particular to compare the clinical effectiveness and cost-effectiveness of (1) different types of primary THR and RS for people in whom both procedures are suitable and (2) different types of primary THR for people who are not suitable for hip RS. Electronic databases including MEDLINE, EMBASE, The Cochrane Library, Current Controlled Trials and UK Clinical Research Network (UKCRN) Portfolio Database were searched in December 2012, with searches limited to publications from 2008 and sample sizes of ≥ 100 participants. Reference lists and websites of manufacturers and professional organisations were also screened. Systematic reviews of the literature were undertaken to appraise the clinical effectiveness and cost-effectiveness of different types of THR and RS for people with end-stage arthritis of the hip. Included randomised controlled trials (RCTs) and systematic reviews were data extracted and risk of bias and methodological quality were independently assessed by two reviewers using the Cochrane Collaboration risk of bias tool and the Assessment of Multiple Systematic Reviews (AMSTAR) tool. A Markov multistate model was developed for the economic evaluation of the technologies. Sensitivity analyses stratified by sex and controlled for age were carried out to assess the robustness of the results. A total of 2469 records were screened of which 37 were included, representing 16 RCTs and eight systematic reviews. The mean post-THR Harris Hip Score measured at different follow-up times (from 6 months to 10 years) did not differ between THR groups, including between cross-linked polyethylene and traditional polyethylene cup liners (pooled mean difference 2.29, 95% confidence interval -0.88 to 5.45). Five systematic reviews reported evidence on different types of THR (cemented vs. cementless cup fixation and implant articulation materials) but these reviews were inconclusive. Eleven cost-effectiveness studies were included; four provided relevant cost and utility data for the model. Thirty registry studies were included, with no studies reporting better implant survival for RS than for all types of THR. For all analyses, mean costs for RS were higher than those for THR and mean quality-adjusted life-years (QALYs) were lower. The incremental cost-effectiveness ratio for RS was dominated by THR, that is, THR was cheaper and more effective than RS (for a lifetime horizon in the base-case analysis, the incremental cost of RS was £11,284 and the incremental QALYs were -0.0879). For all age and sex groups RS remained clearly dominated by THR. Cost-effectiveness acceptability curves showed that, for all patients, THR was almost 100% cost-effective at any willingness-to-pay level. There were age and sex differences in the populations with different types of THR and variations in revision rates (from 1.6% to 3.5% at 9 years). For the base-case analysis, for all age and sex groups and a lifetime horizon, mean costs for category E (cemented components with a polyethylene-on-ceramic articulation) were slightly lower and mean QALYs for category E were slightly higher than those for all other THR categories in both deterministic and probabilistic analyses. Hence, category E dominated the other four categories. Sensitivity analysis using an age- and sex-adjusted log-normal model demonstrated that, over a lifetime horizon and at a willingness-to-pay threshold of £20,000 per QALY, categories A and E were equally likely (50%) to be cost-effective. A large proportion of the included studies were inconclusive because of poor reporting, missing data, inconsistent results and/or great uncertainty in the treatment effect estimates. This warrants cautious interpretation of the findings. The evidence on complications was scarce, which may be because of the absence or rarity of these events or because of under-reporting. The poor reporting meant that it was not possible to explore contextual factors that might have influenced study results and also reduced the applicability of the findings to routine clinical practice in the UK. The scope of the review was limited to evidence published in English in 2008 or later, which could be interpreted as a weakness; however, systematic reviews would provide summary evidence for studies published before 2008. Compared with THR, revision rates for RS were higher, mean costs for RS were higher and mean QALYs gained were lower; RS was dominated by THR. Similar results were obtained in the deterministic and probabilistic analyses and for all age and sex groups THR was almost 100% cost-effective at any willingness-to-pay level. Revision rates for all types of THR were low. Category A THR (cemented components with a polyethylene-on-metal articulation) was more cost-effective for older age groups. However, across all age-sex groups combined, the mean cost for category E THR (cemented components with a polyethylene-on-ceramic articulation) was slightly lower and the mean QALYs gained were slightly higher. Category E therefore dominated the other four categories. Certain types of THR appeared to confer some benefit, including larger femoral head sizes, use of a cemented cup, use of a cross-linked polyethylene cup liner and a ceramic-on-ceramic as opposed to a metal-on-polyethylene articulation. Further RCTs with long-term follow-up are needed. This study is registered as PROSPERO CRD42013003924. The National Institute for Health Research Health Technology Assessment programme.
Dahl, Cecilie; Søgaard, Anne Johanne; Tell, Grethe S; Flaten, Trond Peder; Hongve, Dag; Omsland, Tone Kristin; Holvik, Kristin; Meyer, Haakon E; Aamodt, Geir
2014-01-01
The aim of this study was to investigate relations between cadmium, lead, and aluminum in municipality drinking water and the incidence of hip fractures in the Norwegian population. A trace metals survey in 566 waterworks was linked geographically to hip fractures from hospitals throughout the country (1994-2000). In all those supplied from these waterworks, 5,438 men and 13,629 women aged 50-85 years suffered a hip fracture. Poisson regression models were fitted, adjusting for age, region of residence, urbanization, and type of water source as well as other possibly bone-related water quality factors. Effect modification by background variables and interactions between water quality factors were examined (correcting for false discovery rate). Men exposed to a relatively high concentration of cadmium (IRR = 1.10; 95 % CI 1.01, 1.20) had an increased risk of fracture. The association between relatively high lead and hip fracture risk was significant in the oldest age group (66-85 years) for both men (IRR = 1.11; 95 % CI 1.02, 1.21) and women (IRR = 1.10; 95 % CI 1.04, 1.16). Effect modification by degree of urbanization on hip fracture risk in men was also found for all three metals: cadmium, lead, and aluminum. In summary, a relatively high concentration of cadmium, lead, and aluminum measured in drinking water increased the risk of hip fractures, but the associations depended on gender, age, and urbanization degree. This study could help in elucidating the complex effects on bone health by risk factors found in the environment.
Nečas, D; Vrbka, M; Urban, F; Gallo, J; Křupka, I; Hartl, M
2017-05-01
The aim of the present study is to provide an analysis of protein film formation in hip joint replacements considering real conformity based on in situ observation of the contact zone. The main attention is focused on the effect of implant nominal diameter, diametric clearance and material. For this purpose, a pendulum hip joint simulator equipped with electromagnetic motors enabling to apply continuous swinging flexion-extension motion was employed. The experimental configuration consists of femoral component (CoCrMo, BIOLOX®forte, BIOLOX®delta) and acetabular cup from optical glass fabricated according to the dimensions of real cups. Two nominal diameters were studied, 28 and 36mm, respectively, while different diametric clearances were considered. Initially, a static test focused on the protein adsorption onto rubbing surfaces was performed with 36mm implants. It was found that the development of adsorbed layer is much more stable in the case of metal head, indicating that the adsorption forces are stronger compared to ceramic. A consequential swinging test revealed that the fundamental parameter influencing the protein film formation is diametric clearance. Independently of implant diameter, film was much thicker when a smaller clearance was considered. An increase of implant size from 28mm to 36mm did not cause a substantial difference in film formation; however, the total film thickness was higher for smaller implant. In terms of material, metal heads formed a thicker film, while this fact can be, among others, also attributed to clearance, which is more than two times higher in the case of ceramic implant. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cooper, H. John; Urban, Robert M.; Wixson, Richard L.; Meneghini, R. Michael; Jacobs, Joshua J.
2013-01-01
Background: Femoral stems with dual-taper modularity were introduced to allow additional options for hip-center restoration independent of femoral fixation in total hip arthroplasty. Despite the increasing availability and use of these femoral stems, concerns exist about potential complications arising from the modular neck-body junction. Methods: This was a multicenter retrospective case series of twelve hips (eleven patients) with adverse local tissue reactions secondary to corrosion at the modular neck-body junction. The cohort included eight women and three men who together had an average age of 60.1 years (range, forty-three to seventy-seven years); all hips were implanted with a titanium-alloy stem and cobalt-chromium-alloy neck. Patients presented with new-onset and increasing pain at a mean of 7.9 months (range, five to thirteen months) following total hip arthroplasty. After serum metal-ion studies and metal artifact reduction sequence (MARS) magnetic resonance imaging (MRI) revealed abnormal results, the patients underwent hip revision at a mean of 15.2 months (range, ten to twenty-three months). Tissue specimens were examined by a single histopathologist, and the retrieved implants were studied with use of light and scanning electron microscopy. Results: Serum metal levels demonstrated greater elevation of cobalt (mean, 6.0 ng/mL) than chromium (mean, 0.6 ng/mL) or titanium (mean, 3.4 ng/mL). MRI with use of MARS demonstrated adverse tissue reactions in eight of nine patients in which it was performed. All hips showed large soft-tissue masses and surrounding tissue damage with visible corrosion at the modular femoral neck-body junction. Available histology demonstrated large areas of tissue necrosis in seven of ten cases, while remaining viable capsular tissue showed a dense lymphocytic infiltrate. Microscopic analysis was consistent with fretting and crevice corrosion at the modular neck-body interface. Conclusions: Corrosion at the modular neck-body junction in dual-tapered stems with a modular cobalt-chromium-alloy femoral neck can lead to release of metal ions and debris resulting in local soft-tissue destruction. Adverse local tissue reaction should be considered as a potential cause for new-onset pain in patients with these components, and early revision should be considered given the potentially destructive nature of these reactions. A workup including serologic studies (erythrocyte sedimentation rate and C-reactive protein), serum metal levels, and MARS MRI can be helpful in establishing this diagnosis. Level of Evidence: Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence. PMID:23677352
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paudel, Moti Raj, E-mail: mpaudel@ualberta.ca; Mackenzie, Marc; Fallone, B. Gino
Purpose: To evaluate the metal artifacts in diagnostic kilovoltage computed tomography (kVCT) images of patients that are corrected by use of a normalized metal artifact reduction (NMAR) method with megavoltage CT (MVCT) prior images: MVCT-NMAR. Methods and Materials: MVCT-NMAR was applied to images from 5 patients: 3 with dual hip prostheses, 1 with a single hip prosthesis, and 1 with dental fillings. The corrected images were evaluated for visualization of tissue structures and their interfaces and for radiation therapy dose calculations. They were compared against the corresponding images corrected by the commercial orthopedic metal artifact reduction algorithm in a Phillipsmore » CT scanner. Results: The use of MVCT images for correcting kVCT images in the MVCT-NMAR technique greatly reduces metal artifacts, avoids secondary artifacts, and makes patient images more useful for correct dose calculation in radiation therapy. These improvements are significant, provided the MVCT and kVCT images are correctly registered. The remaining and the secondary artifacts (soft tissue blurring, eroded bones, false bones or air pockets, CT number cupping within the metal) present in orthopedic metal artifact reduction corrected images are removed in the MVCT-NMAR corrected images. A large dose reduction was possible outside the planning target volume (eg, 59.2 Gy to 52.5 Gy in pubic bone) when these MVCT-NMAR corrected images were used in TomoTherapy treatment plans without directional blocks for a prostate cancer patient. Conclusions: The use of MVCT-NMAR corrected images in radiation therapy treatment planning could improve the treatment plan quality for patients with metallic implants.« less
Damage Patterns at the Head-Stem Taper Junction Helps Understand the Mechanisms of Material Loss.
Hothi, Harry S; Panagiotopoulos, Andreas C; Whittaker, Robert K; Bills, Paul J; McMillan, Rebecca A; Skinner, John A; Hart, Alister J
2017-01-01
Material loss at the taper junction of metal-on-metal total hip arthroplasties has been implicated in their early failure. The mechanisms of material loss are not fully understood; analysis of the patterns of damage at the taper can help us better understand why material loss occurs at this junction. We mapped the patterns of material loss in a series of 155 metal-on-metal total hip arthroplasties received at our center by scanning the taper surface using a roundness-measuring machine. We examined these material loss maps to develop a 5-tier classification system based on visual differences between different patterns. We correlated these patterns to surgical, implant, and patient factors known to be important for head-stem taper damage. We found that 63 implants had "minimal damage" at the taper (material loss <1 mm 3 ), and the remaining 92 implants could be categorized by 4 distinct patterns of taper material loss. We found that (1) head diameter and (2) time to revision were key significant variables separating the groups. These material loss maps allow us to suggest different mechanisms that dominate the cause of the material loss in each pattern: (1) corrosion, (2) mechanically assisted corrosion, or (3) intraoperative damage or poor size tolerances leading to toggling of trunnion in taper. Copyright © 2016 Elsevier Inc. All rights reserved.
Hip resurfacing: a large, US single-surgeon series.
Brooks, P J
2016-01-01
Hip resurfacing has been proposed as an alternative to traditional total hip arthroplasty in young, active patients. Much has been learned following the introduction of metal-on-metal resurfacing devices in the 1990s. The triad of a well-designed device, implanted accurately, in the correct patient has never been more critical than with these implants. Following Food and Drug Administration approval in 2006, we studied the safety and effectiveness of one hip resurfacing device (Birmingham Hip Resurfacing) at our hospital in a large, single-surgeon series. We report our early to mid-term results in 1333 cases followed for a mean of 4.3 years (2 to 5.7) using a prospective, observational registry. The mean patient age was 53.1 years (12 to 84); 70% were male and 91% had osteoarthritis. Complications were few, including no dislocations, no femoral component loosening, two femoral neck fractures (0.15%), one socket loosening (0.08%), three deep infections (0.23%), and three cases of metallosis (0.23%). There were no destructive pseudotumours. Overall survivorship at up to 5.7 years was 99.2%. Aseptic survivorship in males under the age of 50 was 100%. We believe this is the largest United States series of a single surgeon using a single resurfacing system. ©2016 The British Editorial Society of Bone & Joint Surgery.
Dettmer, Marius; Pourmoghaddam, Amir; Kreuzer, Stefan W.
2015-01-01
Hip resurfacing has been considered a good treatment option for younger, active osteoarthritis patients. However, there are several identified issues concerning risk for neck fractures and issues related to current metal-on-metal implant designs. Neck-preserving short-stem implants have been discussed as a potential alternative, but it is yet unclear which method is better suited for younger adults. We compared hip disability and osteoarthritis outcome scores (HOOS) from a young group of patients (n = 52, age 48.9 ± 6.1 years) who had received hip resurfacing (HR) with a cohort of patients (n = 73, age 48.2 ± 6.6 years) who had received neck-preserving, short-stem implant total hip arthroplasty (THA). Additionally, durations for both types of surgery were compared. HOOS improved significantly preoperatively to last followup (>1 year) in both groups (p < 0.0001, η 2 = 0.69); there were no group effects or interactions. Surgery duration was significantly longer for resurfacing (104.4 min ± 17.8) than MiniHip surgery (62.5 min ± 14.8), U = 85.0, p < 0.0001, η 2 = 0.56. The neck-preserving short-stem approach may be preferable to resurfacing due to the less challenging surgery, similar outcome, and controversy regarding resurfacing implant designs. PMID:26101669
Canadian academic experience with metal-on-metal hip resurfacing.
O'Neill, Michelle; Beaule, Paul E; Bin Nasser, Ahmad; Garbuz, Donald; Lavigne, Martin; Duncan, Clive; Kim, Paul R; Schemitsch, Emil
2009-01-01
The current depth and breadth of experience in hip resurfacing in Canadian academic centers is not well known. This study endeavors to increase awareness of the prevalence of programs and current experience in a select number of representative teaching centers by examining the learning curve of high-volume surgeons. A questionnaire was sent to all academic centers in Canada to identify the volume of hip resurfacing, surgical approach, and type of prosthesis. In addition, five surgeons, not fellowship-trained in hip resurfacing, were selected for a detailed review of their first 50 cases, including survey of patient demographics, surgical approach, radiographic evaluation, complications, and revision. Eleven of 14 academic centers are currently performing hip resurfacing. All of these centers had performed more than 50 cases, with 10 of 11 of them having more than one surgeon performing the procedure. The posterior approach was found to be the most commonly utilized in surgeries. The overall revision rate was 3.2% at a mean time of 2 years, with femoral neck fracture (1.6%) being the most common cause for failure. The failure rate was comparable to other centers of expertise and lower than previously published multicenter trials. All surgeons reviewed were in specialized arthroplasty practices, which may contribute to the relatively low complication rates reported.
Pseudotumor Caused by Titanium Particles From a Total Hip Prosthesis.
Sakamoto, Masaaki; Watanabe, Hitoshi; Higashi, Hidetaka; Kubosawa, Hitoshi
2016-01-01
A 77-year-old woman underwent metal-on-polyethylene total hip arthroplasty for osteoarthritis of the right hip at another institution. During surgery, the greater trochanter was broken and internal fixation was performed with a trochanteric cable grip reattachment. Although postoperative recovery was uneventful, approximately 6 years later, the patient had severe right hip pain with apparent swelling, and she was referred to the authors' institution. Plain radiographs showed evidence of severe osteolysis in the proximal femur and cable breakage; however, preoperative aspiration culture findings were negative for bacterial growth. Magnetic resonance imaging showed a well-circumscribed mass, presumed to be a pseudotumor. Serum cobalt and chromium levels were within normal limits, and the serum titanium level was high. During surgery, the mass was excised and removal of the cable system revealed a sharp deficit in the bare femoral stem. Gross surgical findings showed no obvious evidence of infection and no corrosion at the head-neck junction; therefore, all components were retained besides the cable system, which resulted in clinical recovery. All of the cultures from specimens were negative for bacterial growth, and histologic findings were compatible with a pseudotumor, such as histiocytes containing metal particles, abundant plasma cells, and CD8-positive cells. Quantitative analysis by inductively coupled plasma atomic emission spectrometry showed that the main source of metal debris in the pseudotumor was the femoral stem, which was made of titanium alloy, not the broken cable, which was made of cobalt-chromium alloy. The findings suggest that titanium particles can form symptomatic solid pseudotumors. Copyright 2016, SLACK Incorporated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tvermoes, Brooke E., E-mail: brooke.tvermoes@cardn
The objective of this preliminary study was to evaluate the threshold for immune stimulation in mice following local exposure to metal particles and ions representative of normal-functioning cobalt-chromium (CoCr) metal-on-metal (MoM) hip implants. The popliteal lymph node assay (PLNA) was used in this study to assess immune responses in BALB/c mice following treatment with chromium-oxide (Cr{sub 2}O{sub 3}) particles, metal salts (CoCl{sub 2}, CrCl{sub 3} and NiCl{sub 2}), or Cr{sub 2}O{sub 3} particles together with metal salts using single-dose exposures representing approximately 10 days (0.000114 mg), 19 years (0.0800 mg), and 40 years (0.171 mg) of normal implant wear. Themore » immune response elicited following treatment with Cr{sub 2}O{sub 3} particles together with metal salts was also assessed at four additional doses equivalent to approximately 1.5 months (0.0005 mg), 0.6 years (0.0025 mg), 2.3 years (0.01 mg), and 9.3 years (0.04 mg) of normal implant wear. Mice were injected subcutaneously (50 μL) into the right hind foot with the test article, or with the relevant vehicle control. The proliferative response of the draining lymph node cells (LNC) was measured four days after treatment, and stimulation indices (SI) were derived relative to vehicle controls. The PLNA was negative (SI < 3) for all Cr{sub 2}O{sub 3} particle doses, and was also negative at the lowest dose of the metal salt mixture, and the lowest four doses of the Cr{sub 2}O{sub 3} particles with metal salt mixture. The PLNA was positive (SI > 3) at the highest two doses of the metal salt mixture and the highest three doses of the Cr{sub 2}O{sub 3} particles with the metal salt mixture. The provisional NOAEL and LOAEL values identified in this study for immune activation corresponds to Co and Cr concentrations in the synovial fluid approximately 500 and 2000 times higher than that reported for normal-functioning MoM hip implants, respectively. Overall, these results indicate that normal wear conditions are unlikely to result in immune stimulation in individuals not previously sensitized to metals. - Highlights: • Immune responses in mice were assessed following treatment with Cr2O3 particles with metal salts. • The PLNA was negative (SI < 3) for all Cr2O3 particle doses. • A LOAEL for immune activation was identified at 0.04 mg of metal particles with metal salts. • A NOAEL for immune activation was identified at 0.01 mg of metal particles with metal salts.« less
[The spectrum of histomorphological findings related to joint endoprosthetics].
Morawietz, L; Krenn, V
2014-11-01
Approximately 230,000 total hip and 170,000 knee joint endoprostheses are implanted in Germany annually of which approximately 10% (i.e. 40,000 interventions per year) are cases of revision surgery. These interventions involve removal of a previously implanted prosthesis which has resulted in complaints and replacement with a new prosthesis. There are manifold reasons for revision surgery, the most common indication being so-called endoprosthesis loosening, which is subdivided into septic and aseptic loosening. Histomorphological studies revealed that periprosthetic tissue from endoprosthesis loosening can be classified into four types (I) wear-particle induced type, (II) infectious type, (III) combined type and (IV) fibrous type. Types I and IV represent aseptic loosening and types II and III septic loosening. Recently, the topic of implant allergy has emerged. The detection of cellular, mostly perivascular lymphocytic infiltrates is discussed as being a sign of an allergic tissue reaction. It has most frequently been observed in type I periprosthetic membranes with a dense load of metal wear, which occurs with metal-on-metal bearings. Apart from endoprosthesis loosening, arthrofibrosis is another complication of joint endoprosthetics and can cause pain and impaired function. Histopathologically, arthrofibrosis can be evaluated by a three-tiered grading system. Furthermore, bone pathologies, such as ossification, osteopenia or osteomyelitis can occur as complications of joint endoprosthetics. This review gives an overview of the whole spectrum of pathological findings in joint endoprosthetics and offers a comprehensive and standardized classification system for routine histopathological diagnostics.
Clarke, S G; Phillips, A T M; Bull, A M J; Cobb, J P
2012-06-01
The impact of anatomical variation and surgical error on excessive wear and loosening of the acetabular component of large diameter metal-on-metal hip arthroplasties was measured using a multi-factorial analysis through 112 different simulations. Each surgical scenario was subject to eight different daily loading activities using finite element analysis. Excessive wear appears to be predominantly dependent on cup orientation, with inclination error having a higher influence than version error, according to the study findings. Acetabular cup loosening, as inferred from initial implant stability, appears to depend predominantly on factors concerning the area of cup-bone contact, specifically the level of cup seating achieved and the individual patient's anatomy. The extent of press fit obtained at time of surgery did not appear to influence either mechanism of failure in this study. Copyright © 2012 Elsevier Ltd. All rights reserved.
Schmitt, Clemens N. Z.; Winter, Alette; Bertinetti, Luca; Masic, Admir; Strauch, Peter; Harrington, Matthew J.
2015-01-01
Protein–metal coordination interactions were recently found to function as crucial mechanical cross-links in certain biological materials. Mussels, for example, use Fe ions from the local environment coordinated to DOPA-rich proteins to stiffen the protective cuticle of their anchoring byssal attachment threads. Bioavailability of metal ions in ocean habitats varies significantly owing to natural and anthropogenic inputs on both short and geological spatio-temporal scales leading to large variations in byssal thread metal composition; however, it is not clear how or if this affects thread performance. Here, we demonstrate that in natural environments mussels can opportunistically replace Fe ions in the DOPA coordination complex with V and Al. In vitro removal of the native DOPA–metal complexes with ethylenediaminetetraacetic acid and replacement with either Fe or V does not lead to statistically significant changes in cuticle performance, indicating that each metal ion is equally sufficient as a DOPA cross-linking agent, able to account for nearly 85% of the stiffness and hardness of the material. Notably, replacement with Al ions also leads to full recovery of stiffness, but only 82% recovery of hardness. These findings have important implications for the adaptability of this biological material in a dynamically changing and unpredictable habitat. PMID:26311314
A giant planet around a metal-poor star of extragalactic origin.
Setiawan, Johny; Klement, Rainer J; Henning, Thomas; Rix, Hans-Walter; Rochau, Boyke; Rodmann, Jens; Schulze-Hartung, Tim
2010-12-17
Stars in their late stage of evolution, such as horizontal branch stars, are still largely unexplored for planets. We detected a planetary companion around HIP 13044, a very metal-poor star on the red horizontal branch, on the basis of radial velocity observations with a high-resolution spectrograph at the 2.2-meter Max-Planck Gesellschaft-European Southern Observatory telescope. The star's periodic radial velocity variation of P = 16.2 days caused by the planet can be distinguished from the periods of the stellar activity indicators. The minimum mass of the planet is 1.25 times the mass of Jupiter and its orbital semimajor axis is 0.116 astronomical units. Because HIP 13044 belongs to a group of stars that have been accreted from a disrupted satellite galaxy of the Milky Way, the planet most likely has an extragalactic origin.
Morsbach, Fabian; Bickelhaupt, Sebastian; Wanner, Guido A; Krauss, Andreas; Schmidt, Bernhard; Alkadhi, Hatem
2013-07-01
To assess the value of iterative frequency split-normalized (IFS) metal artifact reduction (MAR) for computed tomography (CT) of hip prostheses. This study had institutional review board and local ethics committee approval. First, a hip phantom with steel and titanium prostheses that had inlays of water, fat, and contrast media in the pelvis was used to optimize the IFS algorithm. Second, 41 consecutive patients with hip prostheses who were undergoing CT were included. Data sets were reconstructed with filtered back projection, the IFS algorithm, and a linear interpolation MAR algorithm. Two blinded, independent readers evaluated axial, coronal, and sagittal CT reformations for overall image quality, image quality of pelvic organs, and assessment of pelvic abnormalities. CT attenuation and image noise were measured. Statistical analysis included the Friedman test, Wilcoxon signed-rank test, and Levene test. Ex vivo experiments demonstrated an optimized IFS algorithm by using a threshold of 2200 HU with four iterations for both steel and titanium prostheses. Measurements of CT attenuation of the inlays were significantly (P < .001) more accurate for IFS when compared with filtered back projection. In patients, best overall and pelvic organ image quality was found in all reformations with IFS (P < .001). Pelvic abnormalities in 11 of 41 patients (27%) were diagnosed with significantly (P = .002) higher confidence on the basis of IFS images. CT attenuation of bladder (P < .001) and muscle (P = .043) was significantly less variable with IFS compared with filtered back projection and linear interpolation MAR. In comparison with that of FBP and linear interpolation MAR, noise with IFS was similar close to and far from the prosthesis (P = .295). The IFS algorithm for CT image reconstruction significantly reduces metal artifacts from hip prostheses, improves the reliability of CT number measurements, and improves the confidence for depicting pelvic abnormalities.
Diagnosis Taper Corrosion: When Is It the Taper and When Is It Something Else?
Della Valle, Craig J; Calkins, Tyler E; Jacobs, Joshua J
2018-03-01
There has been an increasing use of modularity at the head-neck junction in total hip arthroplasty to more closely mimic the native anatomy, allowing for optimal leg length and stability. Corrosion at this junction in metal-on-polyethylene bearings can lead to an adverse local tissue reaction (ALTR). This increasingly prevalent condition should be considered in the differential diagnosis of hip pain and difficulty ambulating. A recent symposium by the American Academy of Hip and Knee Surgeons described the diagnosis, etiology, management, and prevention of taper corrosion. This article describes the history, physical, plain and advanced imaging findings, laboratory tests, and other diagnoses that should be taken into consideration when diagnosing taper corrosion. The presence of ALTR due to taper corrosion can mimic other diagnoses such as periprosthetic joint infection, instability, or aseptic loosening. Serum metal levels have been found to be the most effective screening tool for identifying corrosion, but other common causes of hip pain and difficulty ambulating should always be ruled out with the use of radiographs and common laboratory techniques before diagnosing ALTR due to corrosion. Copyright © 2018 Elsevier Inc. All rights reserved.
The Tribology of Explanted Hip Resurfacings Following Early Fracture of the Femur.
Lord, James K; Langton, David J; Nargol, Antoni V F; Meek, R M Dominic; Joyce, Thomas J
2015-10-15
A recognized issue related to metal-on-metal hip resurfacings is early fracture of the femur. Most theories regarding the cause of fracture relate to clinical factors but an engineering analysis of failed hip resurfacings has not previously been reported. The objective of this work was to determine the wear volumes and surface roughness values of a cohort of retrieved hip resurfacings which were removed due to early femoral fracture, infection and avascular necrosis (AVN). Nine resurfacing femoral heads were obtained following early fracture of the femur, a further five were retrieved due to infection and AVN. All fourteen were measured for volumetric wear using a co-ordinate measuring machine. Wear rates were then calculated and regions of the articulating surface were divided into "worn" and "unworn". Roughness values in these regions were measured using a non-contacting profilometer. The mean time to fracture was 3.7 months compared with 44.4 months for retrieval due to infection and AVN. Average wear rates in the early fracture heads were 64 times greater than those in the infection and AVN retrievals. Given the high wear rates of the early fracture components, such wear may be linked to an increased risk of femoral neck fracture.
Subhas, Naveen; Polster, Joshua M; Obuchowski, Nancy A; Primak, Andrew N; Dong, Frank F; Herts, Brian R; Iannotti, Joseph P
2016-08-01
The purpose of this study was to compare iterative metal artifact reduction (iMAR), a new single-energy metal artifact reduction technique, with filtered back projection (FBP) in terms of attenuation values, qualitative image quality, and streak artifacts near shoulder and hip arthroplasties and observer ability with these techniques to detect pathologic lesions near an arthroplasty in a phantom model. Preoperative and postoperative CT scans of 40 shoulder and 21 hip arthroplasties were reviewed. All postoperative scans were obtained using the same technique (140 kVp, 300 quality reference mAs, 128 × 0.6 mm detector collimation) on one of three CT scanners and reconstructed with FBP and iMAR. The attenuation differences in bones and soft tissues between preoperative and postoperative scans at the same location were compared; image quality and streak artifact for both reconstructions were qualitatively graded by two blinded readers. Observer ability and confidence to detect lesions near an arthroplasty in a phantom model were graded. For both readers, iMAR had more accurate attenuation values (p < 0.001), qualitatively better image quality (p < 0.001), and less streak artifact (p < 0.001) in all locations near arthroplasties compared with FBP. Both readers detected more lesions (p ≤ 0.04) with higher confidence (p ≤ 0.01) with iMAR than with FBP in the phantom model. The iMAR technique provided more accurate attenuation values, better image quality, and less streak artifact near hip and shoulder arthroplasties than FBP; iMAR also increased observer ability and confidence to detect pathologic lesions near arthroplasties in a phantom model.
Cadosch, Dieter; Chan, Erwin; Gautschi, Oliver P; Filgueira, Luis
2009-12-15
Metal implants are essential therapeutic tools for the treatment of bone fractures and joint replacements. The metals and metal alloys used in contemporary orthopedic and trauma surgery are well tolerated by the majority of patients. However, complications resulting from inflammatory and immune reactions to metal implants have been well documented. This review briefly discusses the different mechanisms of metal implant corrosion in the human body, which lead to the release of significant levels of metal ions into the peri-implant tissues and the systemic blood circulation. Additionally, this article reviews the effects of the released ions on bone metabolism and the immune system and discusses their involvement in the pathophysiological mechanisms of aseptic loosening and metal hypersensitivity in patients with metal implants.
On metal contacts of terahertz quantum cascade lasers with a metal-metal waveguide
NASA Astrophysics Data System (ADS)
Fathololoumi, Saeed; Dupont, Emmanuel; Ghasem Razavipour, S.; Laframboise, Sylvain R.; Parent, Guy; Wasilewski, Zbigniew; Liu, H. C.; Ban, Dayan
2011-10-01
This paper reports an experimental study of the effects of different metal claddings on the performance of terahertz quantum cascade lasers. The experimental results show that by using a metal cladding made of Ta/Cu/Au to replace that of Pd/Ge/Ti/Pt/Au, the maximum lasing temperature of the devices is increased from 132 to 172 K, and the threshold current density of the devices at 10 K can be reduced from 0.74 to 0.68 kA cm-2. The improvement of the device performance is attributed to lower optical losses associated with the metal cladding layers. The different effects of the metal contacts on device optical properties and electrical properties are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paudel, M; currently at University of Toronto, Sunnybrook Health Sciences Center, Toronto, ON; MacKenzie, M
Purpose: To evaluate the metal artifacts in diagnostic kVCT images of patients that are corrected using a normalized metal artifact reduction method with MVCT prior images, MVCT-NMAR. Methods: An MVCTNMAR algorithm was developed and applied to five patients: three with bilateral hip prostheses, one with unilateral hip prosthesis and one with dental fillings. The corrected images were evaluated for visualization of tissue structures and their interfaces, and for radiotherapy dose calculations. They were also compared against the corresponding images corrected by a commercial metal artifact reduction technique, O-MAR, on a Phillips™ CT scanner. Results: The use of MVCT images formore » correcting kVCT images in the MVCT-NMAR technique greatly reduces metal artifacts, avoids secondary artifacts, and makes patient images more useful for correct dose calculation in radiotherapy. These improvements are significant over the commercial correction method, provided the MVCT and kVCT images are correctly registered. The remaining and the secondary artifacts (soft tissue blurring, eroded bones, false bones or air pockets, CT number cupping within the metal) present in O-MAR corrected images are removed in the MVCT-NMAR corrected images. Large dose reduction is possible outside the planning target volume (e.g., 59.2 Gy in comparison to 52.5 Gy in pubic bone) when these MVCT-NMAR corrected images are used in TomoTherapy™ treatment plans, as the corrected images no longer require directional blocks for prostate plans in order to avoid the image artifact regions. Conclusion: The use of MVCT-NMAR corrected images in radiotherapy treatment planning could improve the treatment plan quality for cancer patients with metallic implants. Moti Raj Paudel is supported by the Vanier Canada Graduate Scholarship, the Endowed Graduate Scholarship in Oncology and the Dissertation Fellowship at the University of Alberta. The authors acknowledge the CIHR operating grant number MOP 53254.« less
Manufacturing and Application of Metalized Ore-Coal Pellets in Synthetic Pig Iron Smelting
NASA Astrophysics Data System (ADS)
Nokhrina, O. I.; Rozhikhina, I. D.; Khodosov, I. E.
2016-08-01
The article presents research data on manufacturing and application of metalized ore-coal pellets in synthetic pig iron smelting. A technology of pellets metallization by means of solid-phase reduction of iron from oxides using hematite-magnetite iron ore and low-caking coal as raw materials is described. Industrial testing of replacing 10, 15, and 20% of waste metal by the metalized ore-coal pellets in the coreless induction furnace IST-1 is described. Optimal temperature and time conditions of feeding the metalized pellets into the furnace in smelting pig iron of SCh-40-60 grade are determined.
Wang, Ling; Yang, Wenjian; Peng, Xifeng; Li, Dichen; Dong, Shuangpeng; Zhang, Shu; Zhu, Jinyu; Jin, Zhongmin
2015-04-13
The contact mechanics of artificial metal-on-polyethylene hip joints are believed to affect the lubrication, wear and friction of the articulating surfaces and may lead to the joint loosening. Finite element analysis has been widely used for contact mechanics studies and good agreements have been achieved with current experimental data; however, most studies were carried out with idealist spherical geometries of the hip prostheses rather than the realistic worn surfaces, either for simplification reason or lacking of worn surface profile. In this study, the worn surfaces of the samples from various stages of hip simulator testing (0 to 5 million cycles) were reconstructed as solid models and were applied in the contact mechanics study. The simulator testing results suggested that the center of the head has various departure value from that of the cup and the value of the departure varies with progressively increased wear. This finding was adopted into the finite element study for better evaluation accuracy. Results indicated that the realistic model provided different evaluation from that of the ideal spherical model. Moreover, with the progressively increased wear, large increase of the contact pressure (from 12 to 31 MPa) was predicted on the articulating surface, and the predicted maximum von Mises stress was increased from 7.47 to 13.26 MPa, indicating the marked effect of the worn surface profiles on the contact mechanics of the joint. This study seeks to emphasize the importance of realistic worn surface profile of the acetabular cup especially following large wear volume. Copyright © 2015 Elsevier Ltd. All rights reserved.
Migaud, Henri; Putman, Sophie; Kern, Grégory; Isida, Ronald; Girard, Julien; Ramdane, Nassima; Delaunay, Christian P; Hamadouche, Moussa
2016-10-01
Despite widespread use of ceramic-on-ceramic (CoC) in total hip arthroplasty (THA) during the past 10 years, little is known about why revisions are performed in hips with this bearing or the time elapsed before revision. The purposes of this study were: (1) Do the reasons for first revision differ between CoC bearings and other bearing couples? (2) Does the time to revision differ between CoC and other bearing couples? (3) Are there unique reasons for revisions of CoC bearings? All members of the Société Française de Chirurgie Orthopédique et Traumatologique (SoFCOT) who performed ≥ 30 revisions per year were invited to participate in this multicenter, prospective, observational study. Our data represent 12% of the revision procedures performed in France. A total of 2107 first revisions of THA (from January 2010 to December 2011) were done in 2107 patients (1201 females [57%] and 906 males [43%]; median age, 73 years; age range, 17-104 years) at the time of surgery after a median of 11 years (range, 0 day-42 years) after the primary THA. There were 238 of 2107 (11%) CoC, 148 of 2107 (7%) metal-on-metal (MoM), and 1721 of 2017 (82%) metal-on-polyethylene (MoP) bearings. The reasons for reoperation differed according to the bearing component: (1) for the MoP reference bearing (odds ratio [OR]; 95% confidence interval), cup loosening occurred in 698 of 1721 hips (41%), periprosthetic fracture in 220 of 1721 hips (13%), and osteolysis in 213 of 1721 hips (12%); (2) for CoC, cup loosening occurred in 41 of 238 hips (17%) (OR, 0.31 [0.22-0.43; p < 0.001), infection in 39 of 238 hips (16%) (OR, 1.63 [1.12-2.37]; p = 0.01), and dislocation in 23 of 238 hips (10%) (OR, 0.9 [0.57-1.42]; p = 0.9); (3) for MoM, cup loosening occurred in 28 of 148 hips (19%) (OR, 0.34 [0.22-0.52]; p < 0.001), adverse reaction to metallic debris in 26 of 148 hips (18%) (OR, 18.12 [9.84-33.4]; p < 0.001), and infection in 16 of 148 hips (11%) (OR, 1 [0.59-1.73]; p = 0.9). In comparison with MoP, osteolysis was rarely the reason for revision in CoC (four of 238 hips [2%]; OR, 0.12 [0.05-0.33]; p < 0.001), but this bearing was frequently revised because of iliopsoas irritation (18 of 238 hips [8%]; OR, 4.9 [2.7-9]; p < 0.001). The time elapsed before revision differed between bearings: median of 3 years (range, 3 days to 28 years) for CoC and 4 years (range, 14 days to 37 years) for MoM versus a median 13 years (range, 0 day to 42 years) for MoP (p < 0.001). Thirty-seven of the 238 revisions (16%) were directly related to ceramic use (ceramic breakage [n = 23], squeaking [n = 6], impingement [n = 7], incorrect ceramic insert insertion [n = 1]). No factors were identified that contributed to breakage of the 12 bulk ceramic components (eight heads, four inserts, four of 12 Delta ceramic). No factors were associated with squeaking, iliopsoas irritation, or impingement, but component orientation was not assessed. The reasons and time to first revision differed between CoC and other bearings. CoC THAs are revised earlier and are sensitive to mechanical problems such as impingement, squeaking, and ceramic rupture that did not disappear with introduction of Delta ceramics and large-diameter (≥ 36 mm) bearings. CoC was rarely revised for osteolysis, but a high rate of iliopsoas irritation requires further investigation. Level III, therapeutic study.
Electronically conductive ceramics for high temperature oxidizing environments
Kucera, Gene H.; Smith, James L.; Sim, James W.
1986-01-01
A high temperature, ceramic composition having electronic conductivity as measured by resistivity below about 500 ohm-cm, chemical stability particularly with respect to cathode conditions in a molten carbonate fuel cell, and composed of an alkali metal, transition metal oxide containing a dopant metal in the crystalline structure to replace a portion of the alkali metal or transition metal.
Computer Assisted Surgery and Current Trends in Orthopaedics Research and Total Joint Replacements
NASA Astrophysics Data System (ADS)
Amirouche, Farid
2008-06-01
Musculoskeletal research has brought about revolutionary changes in our ability to perform high precision surgery in joint replacement procedures. Recent advances in computer assisted surgery as well better materials have lead to reduced wear and greatly enhanced the quality of life of patients. The new surgical techniques to reduce the size of the incision and damage to underlying structures have been the primary advance toward this goal. These new techniques are known as MIS or Minimally Invasive Surgery. Total hip and knee Arthoplasties are at all time high reaching 1.2 million surgeries per year in the USA. Primary joint failures are usually due to osteoarthristis, rheumatoid arthritis, osteocronis and other inflammatory arthritis conditions. The methods for THR and TKA are critical to initial stability and longevity of the prostheses. This research aims at understanding the fundamental mechanics of the joint Arthoplasty and providing an insight into current challenges in patient specific fitting, fixing, and stability. Both experimental and analytical work will be presented. We will examine Cementless total hip arthroplasty success in the last 10 years and how computer assisted navigation is playing in the follow up studies. Cementless total hip arthroplasty attains permanent fixation by the ingrowth of bone into a porous coated surface. Loosening of an ingrown total hip arthroplasty occurs as a result of osteolysis of the periprosthetic bone and degradation of the bone prosthetic interface. The osteolytic process occurs as a result of polyethylene wear particles produced by the metal polyethylene articulation of the prosthesis. The total hip arthroplasty is a congruent joint and the submicron wear particles produced are phagocytized by macrophages initiating an inflammatory cascade. This cascade produces cytokines ultimately implicated in osteolysis. Resulting bone loss both on the acetabular and femoral sides eventually leads to component instability. As patients are living longer and total hip arthroplasty is performed in younger patients the risks of osteolysis associated with cumulative wear is increased. Computer-assisted surgery is based on sensing feedback; vision and imaging that help surgeons align the patient's joints during total knee or hip replacement with a degree of accuracy not possible with the naked eye. For the first time, the computer feedback is essential for ligament balancing and longevity of the implants. The computers navigation systems also help surgeons to use smaller incisions instead of the traditional larger openings. Small-incision surgery offers the potential for faster recovery, less bleeding and less pain for patients. The development of SESCAN imaging technique to create a patient based model of a 3D joint will be presented to show the effective solution of complex geometry of joints.
NASA Astrophysics Data System (ADS)
Joyce, M.; Chaboyer, B.
2018-03-01
Theoretical stellar evolution models are constructed and tailored to the best known, observationally derived characteristics of metal-poor ([Fe/H] ∼ ‑2.3) stars representing a range of evolutionary phases: subgiant HD 140283, globular cluster M92, and four single, main sequence stars with well-determined parallaxes: HIP 46120, HIP 54639, HIP 106924, and WOLF 1137. It is found that the use of a solar-calibrated value of the mixing length parameter α MLT in models of these objects is ineffective at reproducing their observed properties. Empirically calibrated values of α MLT are presented for each object, accounting for uncertainties in the input physics employed in the models. It is advocated that the implementation of an adaptive mixing length is necessary in order for stellar evolution models to maintain fidelity in the era of high-precision observations.
NASA Astrophysics Data System (ADS)
Jin, Zhang; Yuling, Liu; Chenqi, Yan; Yangang, He; Baohong, Gao
2016-04-01
The replacement metal gate (RMG) defectivity performance control is very challenging in high-k metal gate (HKMG) chemical mechanical polishing (CMP). In this study, three major defect types, including fall-on particles, micro-scratch and corrosion have been investigated. The research studied the effects of polishing pad, pressure, rotating speed, flow rate and post-CMP cleaning on the three kinds of defect, which finally eliminated the defects and achieved good surface morphology. This study will provide an important reference value for the future research of aluminum metal gate CMP. Project supported by the Major National Science and Technology Special Projects (No. 2009ZX02308), the Natural Science Foundation for the Youth of Hebei Province (Nos. F2012202094, F2015202267), and the Outstanding Youth Science and Technology Innovation Fund of Hebei University of Technology (No. 2013010).
Fluorocarbon seal replaces metal piston ring in low density gas environment
NASA Technical Reports Server (NTRS)
Morath, W. D.; Morgan, N. E.
1967-01-01
Reinforced fluorocarbon cupseal, which provides an integral lip-type seal, replaces the metal piston rings in piston-cylinder configurations used in the compression of low density gases. The fluorocarbon seal may be used as cryogenic compressor piston seals.
Dose uncertainties associated with a set density override of unknown hip prosthetic composition.
Rijken, James D; Colyer, Christopher J
2017-09-01
The dosimetric uncertainties associated with radiotherapy through hip prostheses while overriding the implant to a set density within the TPS has not yet been reported. In this study, the uncertainty in dose within a PTV resulting from this planning choice was investigated. A set of metallic hip prosthetics (stainless steel, titanium, and two different Co-Cr-Mo alloys) were CT scanned in a water bath. Within the TPS, the prosthetic pieces were overridden to densities between 3 and 10 g/cm 3 and irradiated on a linear accelerator. Measured dose maps were compared to the TPS to determine which density was most appropriate to override each metal. This was shown to be in disagreement with the reported literature values of density which was attributed to the TPS dose calculation algorithm and total mass attenuation coefficient differences in water and metal. The dose difference was then calculated for a set density override of 6 g/cm 3 in the TPS and used to estimate the dose uncertainty beyond the prosthesis. For beams passing through an implant, the dosimetric uncertainty in regions of the PTV may be as high as 10% if the implant composition remains unknown and a set density override is used. These results highlight limitations of such assumptions and the need for careful consideration by radiation oncologist, therapist, and physics staff. © 2017 Adelaide Radiotherapy Centre. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Li, Junyan; Redmond, Anthony C; Jin, Zhongmin; Fisher, John; Stone, Martin H; Stewart, Todd D
2014-08-01
Preclinical durability testing of hip replacement implants is standardised by ISO-14242-1 (2002) which is based on historical inverse dynamics analysis using data obtained from a small sample of normal healthy individuals. It has not been established whether loading cycles derived from normal healthy individuals are representative of loading cycles occurring in patients following total hip replacement. Hip joint kinematics and hip contact forces derived from multibody modelling of forces during normal walking were obtained for 15 asymptomatic total hip replacement patients and compared to 38 normal healthy individuals and to the ISO standard for pre-clinical testing. Hip kinematics in the total hip replacement patients were comparable to the ISO data and the hip contact force in the normal healthy group was also comparable to the ISO cycles. Hip contact forces derived from the asymptomatic total hip replacement patients were comparable for the first part of the stance period but exhibited 30% lower peak loads at toe-off. Although the ISO standard provides a representative kinematic cycle, the findings call into question whether the hip joint contact forces in the ISO standard are representative of those occurring in the joint following total hip replacement. Copyright © 2014. Published by Elsevier Ltd.
Electronically conductive ceramics for high temperature oxidizing environments
Kucera, G.H.; Smith, J.L.; Sim, J.W.
1983-11-10
This invention pertains to a high temperature, ceramic composition having electronic conductivity as measured by resistivity below about 500 ohm-cm, chemical stability particularly with respect to cathode conditions in a molten carbonate fuel cell, and composed of an alkali metal, transition metal oxide containing a dopant metal in the crystalline structure to replace a portion of the alkali metal or transition metal.
21 CFR 888.3100 - Ankle joint metal/composite semi-constrained cemented prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ankle joint metal/composite semi-constrained... Ankle joint metal/composite semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/composite semi-constrained cemented prosthesis is a device intended to be implanted to replace an...
21 CFR 888.3510 - Knee joint femorotibial metal/polymer constrained cemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/polymer constrained... Knee joint femorotibial metal/polymer constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/polymer constrained cemented prosthesis is a device intended to be implanted to replace part...
21 CFR 888.3660 - Shoulder joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Shoulder joint metal/polymer semi-constrained... Shoulder joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A shoulder joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a...
21 CFR 888.3650 - Shoulder joint metal/polymer non-constrained cemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Shoulder joint metal/polymer non-constrained... Shoulder joint metal/polymer non-constrained cemented prosthesis. (a) Identification. A shoulder joint metal/polymer non-constrained cemented prosthesis is a device intended to be implanted to replace a...
21 CFR 888.3100 - Ankle joint metal/composite semi-constrained cemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/composite semi-constrained... Ankle joint metal/composite semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/composite semi-constrained cemented prosthesis is a device intended to be implanted to replace an...
Zeh, Alexander; Becker, Claudia; Planert, Michael; Lattke, Peter; Wohlrab, David
2009-06-01
In total hip endoprosthetics and consequently for TDA, metal-on-metal combinations are used with the aim of reducing wear debris. In metal-on-metal TDA the release of metal ions has until now been secondary to the main discussion. In order to investigate the ion release following the implantation of the metal-on-metal Maverick type artificial lumbar disc we measured the serum cobalt and chromium concentration following implantation of 15 Maverick TDAs (monosegmental L5/S1, n = 5; bisegmental L4/5 and L5/S1, n = 5; average age 36.5 years). Five healthy subjects (no metal implants) acted as a control group. The two measurements of the metals were carried out using the absorption spectrometry after an average of 14.8 and 36.7 months. In summary, the concentrations of cobalt and chromium ions in the serum at both follow-ups amounted on average to 3.3 microg/l (SD 2.6) for cobalt and 2.2 microg/l (SD 1.5) for chromium. These figures are similar to the figures shown in the literature following the implantation of metal-on-metal THA. After a comparison to the control group, both the chromium and cobalt levels in the serum showed visible increases regarding the first and the second follow-up. As there is still a significant release of cobalt and chromium into the serum after an average follow-up of 36.7 months a persistent release of these ions must be taken into consideration. Despite the evaluation of the systemic and local effects of the release of Cr/Co from orthopaedic implants has not yet been concluded, one should take into consideration an explanation given to patients scheduled for the implantation of a metal-on-metal TDA about these results and the benefits/risks of alternative combinations of gliding contact surfaces.
Role of metal oxides in the thermal degradation of poly(vinyl chloride)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, M.C.; Viswanath, S.G.
Thermal degradation of poly(vinyl chloride) has been studied in the presence of metal oxides by a thermogravimetric method. It follows a two-step mechanism. In the first step chlorine free radical is formed as in the case of pure PVC, and in the second step chlorine free radical replaces oxygen from metal oxide to form metal chloride and oxygen free radical. Subsequently, the oxygen free radical abstracts hydrogen from PVC. Formation of metal chloride is the rate-controlling step. The metal chlorides formed during the thermal degradation either volatilize or decompose simultaneously to lower metallic chlorides depending on the boiling point ormore » the volatilization temperature.« less
30 CFR 57.4203 - Extinguisher recharging or replacement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 57.4203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Firefighting Equipment § 57.4203 Extinguisher recharging or replacement. Fire...
30 CFR 56.4203 - Extinguisher recharging or replacement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 56.4203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and Control Firefighting Equipment § 56.4203 Extinguisher recharging or replacement. Fire...
Kurien, Thomas; Kerslake, Robert; Haywood, Brett; Pearson, Richard G; Scammell, Brigitte E
2016-01-01
We present our case report using a novel metal artefact reduction magnetic resonance imaging (MRI) sequence to observe resolution of subchondral bone marrow lesions (BMLs), which are strongly associated with pain, in a patient after total knee replacement surgery. Large BMLs were seen preoperatively on the 3-Tesla MRI scans in a patient with severe end stage OA awaiting total knee replacement surgery. Twelve months after surgery, using a novel metal artefact reduction MRI sequence, we were able to visualize the bone-prosthesis interface and found complete resection and resolution of these BMLs. This is the first reported study in the UK to use this metal artefact reduction MRI sequence at 3-Tesla showing that resection and resolution of BMLs in this patient were associated with an improvement of pain and function after total knee replacement surgery. In this case it was associated with a clinically significant improvement of pain and function after surgery. Failure to eradicate these lesions may be a cause of persistent postoperative pain that is seen in up to 20% of patients following TKR surgery.
Cui, Zhiwei; Tian, Yi-Xing; Yue, Wen; Yang, Lei; Li, Qunyang
2016-01-01
Artificial total hip arthroplasty (THA) is one of the most effective orthopaedic surgeries that has been used for decades. However, wear of the articulating surfaces is one of the key failure causes limiting the lifetime of total hip implant. In this paper, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were employed to explore the composition and formation mechanism of the tribo-layer on the articulating surfaces of metal-on-polyethylene (MoPE) implants retrieved from patients. Results showed that, in contrast to conventional understanding, the attached tribo-layer contained not only denatured proteins but also a fraction of polymer particles. The formation of the tribo-layer was believed to relate to lubrication regime, which was supposed to be largely affected by the nature of the ultra-high-molecule-weight-polyethylene (UHMWPE). Wear and formation of tribo-layer could be minimized in elasto-hydrodynamic lubrication (EHL) regime when the UHMWPE was less stiff and have a morphology containing micro-pits; whereas the wear was more severe and tribo-layer formed in boundary lubrication. Our results and analyses suggest that enhancing interface lubrication may be more effective on reducing wear than increasing the hardness of material. This finding may shed light on the design strategy of artificial hip joints. PMID:27345704
NASA Astrophysics Data System (ADS)
Cui, Zhiwei; Tian, Yi-Xing; Yue, Wen; Yang, Lei; Li, Qunyang
2016-06-01
Artificial total hip arthroplasty (THA) is one of the most effective orthopaedic surgeries that has been used for decades. However, wear of the articulating surfaces is one of the key failure causes limiting the lifetime of total hip implant. In this paper, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were employed to explore the composition and formation mechanism of the tribo-layer on the articulating surfaces of metal-on-polyethylene (MoPE) implants retrieved from patients. Results showed that, in contrast to conventional understanding, the attached tribo-layer contained not only denatured proteins but also a fraction of polymer particles. The formation of the tribo-layer was believed to relate to lubrication regime, which was supposed to be largely affected by the nature of the ultra-high-molecule-weight-polyethylene (UHMWPE). Wear and formation of tribo-layer could be minimized in elasto-hydrodynamic lubrication (EHL) regime when the UHMWPE was less stiff and have a morphology containing micro-pits; whereas the wear was more severe and tribo-layer formed in boundary lubrication. Our results and analyses suggest that enhancing interface lubrication may be more effective on reducing wear than increasing the hardness of material. This finding may shed light on the design strategy of artificial hip joints.
Gajski, Goran; Jelčić, Zelimir; Oreščanin, Višnja; Gerić, Marko; Kollar, Robert; Garaj-Vrhovac, Vera
2014-01-01
The main objective of the present study was to investigate chemical composition and possible cyto/genotoxic potential of several medical implant materials commonly used in total hip joint replacement. Medical implant metal alloy (Ti6Al4V and CoCrMo) and high density polyethylene particles were analyzed by energy dispersive X-ray spectrometry while toxicological characterization was done on human lymphocytes using multi-biomarker approach. Energy dispersive X-ray spectrometry showed that none of the elements identified deviate from the chemical composition defined by appropriate ISO standard. Toxicological characterization showed that the tested materials were non-cyto/genotoxic as determined by the comet and cytokinesis-block micronucleus (CBMN) assay. Particle morphology was found (by using scanning electron and optical microscope) as flat, sharp-edged, irregularly shaped fiber-like grains with the mean particle size less than 10µm; this corresponds to the so-called "submicron wear". The very large surface area per wear volume enables high reactivity with surrounding media and cellular elements. Although orthopedic implants proved to be non-cyto/genotoxic, in tested concentration (10μg/ml) there is a constant need for monitoring of patients that have implanted artificial hips or other joints, to minimize the risks of any unwanted health effects. The fractal and multifractal analyses, performed in order to evaluate the degree of particle shape effect, showed that the fractal and multifractal terms are related to the "remnant" level of the particles' toxicity especially with the cell viability (trypan blue method) and total number of nucleoplasmic bridges and nuclear buds as CBMN assay parameters. © 2013.
[On the history of cementless implants in extremity surgery].
Dufek, Pavel
2017-05-01
The aim of implantation of cementless hip prostheses is vital ingrowth of bone into the structured metal surface of the implant. Since the 1960s several implants with surfaces made of cobalt-based alloys have been produced for this purpose. In the 1980s a novel hip endoprosthesis with a spongiosa-metal surface was introduced. The three-dimensional ingrowth of bone tissue into the structured surface of the implant could be demonstrated both histologically and using scanning electron microscopy (SEM). These implants made of cobalt-based alloys can also be used in endo-exo prostheses. Titanium implants with a microstructured surface have also been used and very good osseintegration of the surface was also demonstrated by histomorphology. The optimization of the surface and design of the prostheses plays an increasingly more important role in the field of revision endoprostheses.
Lu, Zhen; McKellop, Harry A
2014-03-01
This study compared the accuracy and sensitivity of several numerical methods employing spherical or plane triangles for calculating the volumetric wear of retrieved metal-on-metal hip joint implants from coordinate measuring machine measurements. Five methods, one using spherical triangles and four using plane triangles to represent the bearing and the best-fit surfaces, were assessed and compared on a perfect hemisphere model and a hemi-ellipsoid model (i.e. unworn models), computer-generated wear models and wear-tested femoral balls, with point spacings of 0.5, 1, 2 and 3 mm. The results showed that the algorithm (Method 1) employing spherical triangles to represent the bearing surface and to scale the mesh to the best-fit surfaces produced adequate accuracy for the wear volume with point spacings of 0.5, 1, 2 and 3 mm. The algorithms (Methods 2-4) using plane triangles to represent the bearing surface and to scale the mesh to the best-fit surface also produced accuracies that were comparable to that with spherical triangles. In contrast, if the bearing surface was represented with a mesh of plane triangles and the best-fit surface was taken as a smooth surface without discretization (Method 5), the algorithm produced much lower accuracy with a point spacing of 0.5 mm than Methods 1-4 with a point spacing of 3 mm.
Haughom, Bryan D; Erickson, Brandon J; Hellman, Michael D; Jacobs, Joshua J
2015-08-01
Although metal-on-metal (MoM) bearing surfaces provide low rates of volumetric wear and increased stability, evidence suggests that certain MoM hip arthroplasties have high rates of complication and failure. Some evidence indicates that women have higher rates of failure compared with men; however, the orthopaedic literature as a whole has poorly reported such complications stratified by gender. This systematic review aimed to: (1) compare the rate of adverse local tissue reaction (ALTR); (2) dislocation; (3) aseptic loosening; and (4) revision between men and women undergoing primary MoM hip resurfacing arthroplasty (HRA). Systematic MEDLINE and EMBASE searches identified all level I to III articles published in peer-reviewed journals, reporting on the outcomes of interest, for MoM HRA. Articles were limited to those with 2-year followup that reported outcomes by gender. Ten articles met inclusion criteria. Study quality was evaluated using the Modified Coleman Methodology Score; the overall quality was poor. Heterogeneity and bias were analyzed using a Mantel-Haenszel statistical method. Women demonstrated an increased odds of developing ALTR (odds ratio [OR], 5.70 [2.71-11.98]; p<0.001), dislocation (OR, 3.04 [1.2-7.5], p=0.02), aseptic loosening (OR, 3.18 [2.21-4.58], p<0.001), and revision (OR, 2.50 [2.25-2.78], p<0.001) after primary MoM HRA. A systematic review of the currently available literature reveals a higher rate of complications (ALTR, dislocation, aseptic loosening, and revision) after MoM HRA in women compared with men. Although femoral head size has been frequently implicated as a prime factor in the higher rate of complication in women, further research is necessary to specifically probe this relationship. Retrospective studies of data available (eg, registry data) should be undertaken, and moving forward studies should report outcomes by gender (particularly complications). Level III, therapeutic study.
A Giant Planet Around a Metal-Poor Star of Extragalactic Origin
NASA Astrophysics Data System (ADS)
Setiawan, Johny; Klement, Rainer J.; Henning, Thomas; Rix, Hans-Walter; Rochau, Boyke; Rodmann, Jens; Schulze-Hartung, Tim
2010-12-01
Stars in their late stage of evolution, such as horizontal branch stars, are still largely unexplored for planets. We detected a planetary companion around HIP 13044, a very metal-poor star on the red horizontal branch, on the basis of radial velocity observations with a high-resolution spectrograph at the 2.2-meter Max-Planck Gesellschaft-European Southern Observatory telescope. The star’s periodic radial velocity variation of P = 16.2 days caused by the planet can be distinguished from the periods of the stellar activity indicators. The minimum mass of the planet is 1.25 times the mass of Jupiter and its orbital semimajor axis is 0.116 astronomical units. Because HIP 13044 belongs to a group of stars that have been accreted from a disrupted satellite galaxy of the Milky Way, the planet most likely has an extragalactic origin.
40 CFR 63.1219 - What are the replacement standards for hazardous waste incinerators?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Combustors Replacement Emissions Standards and Operating Limits for Incinerators, Cement Kilns, and... significant figures to document compliance. (e) Alternative to the particulate matter standard—(1) General. In... the following alternative metal emission control requirement: (2) Alternative metal emission control...
40 CFR 63.1219 - What are the replacement standards for hazardous waste incinerators?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Combustors Replacement Emissions Standards and Operating Limits for Incinerators, Cement Kilns, and... significant figures to document compliance. (e) Alternative to the particulate matter standard.—(1) General... with the following alternative metal emission control requirement: (2) Alternative metal emission...
Aseptic loosening of cobalt chromium monoblock sockets after hip resurfacing.
Amstutz, Harlan C; Le Duff, Michel J
2015-01-01
Acetabular component loosening is a leading cause for revision after metal-on-metal hip resurfacing arthroplasty (MMHRA). We aimed to identify potential risk factors and determine radiographic signs associated with this mode of failure. From a series of 1375 hips treated with MMHRA, 21 (20 patients) underwent revision surgery secondary to aseptic loosening of the acetabular component and 6 patients had a radiographically loose acetabular component. A control group of 27 hips (26 patients) was selected among the patients that did not have a revision, and was matched for age, gender, component size and diagnosis. Mean time to revision in the loosening group was 103.0 months and the mean time of follow-up in the control group was 161.4 months. We found greater activity levels, range of motion scores, and cup abduction angles in the loosening group. The centre-edge (CE) angle of Wiberg was 10° lower in the loosening group compared with the control group. In addition, 11 of the hips from the study group presented a sclerotic halo superior to the cup on the last radiograph vs. none in the control group. There was no difference in the prevalence of postoperative reaming gaps or radiographic signs of neck-cup impingement between the 2 groups. Risk factors for acetabular loosening included hip dysplasia with low CE angle, and a large cup abduction angle. The patient's level of activity influences the appearance of symptoms and the time to revision. We recommend selecting patients with a sufficient CE angle and properly orienting the cup.
NOTE: Ranges of ions in metals for use in particle treatment planning
NASA Astrophysics Data System (ADS)
Jäkel, Oliver
2006-05-01
In proton and ion radiotherapy, the range of particles is calculated from x-ray computed tomography (CT) numbers. Due to the strong absorption of x-rays in a metal and a cut-off for large Hounsfield units (HU) in the software of most CT-scanners, a range calculation in metals cannot be based on the measured HU. This is of special importance when metal implants such as gold fillings or hip prostheses are close to the treatment volume. In order to overcome this problem in treatment planning for heavy charged particles, the correct ranges of ions in the metal relative to water have to be assigned in the CT data. Measurements and calculations of carbon ion ranges in various metals are presented that can be used in treatment planning to allow for a more accurate range calculation of carbon ion beams in titanium, steel, tungsten and gold. The suggested values for the relative water-equivalent range and their uncertainties are 3.13 (±3%) for titanium, 5.59 (±3%) for stainless steel and 10.25 (±4%) for gold.
Nijem, Nour; Fürsich, Katrin; Bluhm, Hendrik; ...
2015-10-09
Ammonia interactions and competition with water at the interface of nanoporous metal organic framework thin films of HKUST-1 (Cu 3Btc 2 , Btc = 1,3,5-benzenedicarboxylate) are investigated with ambient pressure X-ray photoelectron spectroscopy (APXPS). In the absence of water, ammonia adsorption at the Cu 2+ metal center weakens the metal-linker bond of the framework. In the presence of water, due to the higher binding energy (adsorption strength) of ammonia compared to water, ammonia replaces water at the unsaturated Cu 2+ metal centers. The water molecules remaining in the pores are stabilized by hydrogen bonding to ammonia. Hydrogen bonding between themore » water and ammonia strengthens the metal-ammonia interaction due to cooperative interactions. Cooperative interactions result in a reduction in the metal center oxidation state facilitating linker replacement by other species explaining the previously reported structure degradation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nijem, Nour; Fürsich, Katrin; Bluhm, Hendrik
Ammonia interactions and competition with water at the interface of nanoporous metal organic framework thin films of HKUST-1 (Cu 3Btc 2 , Btc = 1,3,5-benzenedicarboxylate) are investigated with ambient pressure X-ray photoelectron spectroscopy (APXPS). In the absence of water, ammonia adsorption at the Cu 2+ metal center weakens the metal-linker bond of the framework. In the presence of water, due to the higher binding energy (adsorption strength) of ammonia compared to water, ammonia replaces water at the unsaturated Cu 2+ metal centers. The water molecules remaining in the pores are stabilized by hydrogen bonding to ammonia. Hydrogen bonding between themore » water and ammonia strengthens the metal-ammonia interaction due to cooperative interactions. Cooperative interactions result in a reduction in the metal center oxidation state facilitating linker replacement by other species explaining the previously reported structure degradation.« less
Hip or knee replacement - after - what to ask your doctor
... chap 7. Read More Hip joint replacement Hip pain Knee joint replacement Knee pain Osteoarthritis Patient Instructions Getting your home ready - knee or hip surgery Hip or knee replacement - before - ...
Hip or knee replacement - before - what to ask your doctor
... chap 7. Read More Hip joint replacement Hip pain Knee joint replacement Knee pain Osteoarthritis Patient Instructions Getting your home ready - knee or hip surgery Hip or knee replacement - after - ...
21 CFR 888.3800 - Wrist joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wrist joint metal/polymer semi-constrained... Wrist joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A wrist joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a wrist joint...
21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...
21 CFR 888.3160 - Elbow joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Elbow joint metal/polymer semi-constrained... Elbow joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An elbow joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an elbow...
Process for fabrication of cermets
Landingham, Richard L [Livermore, CA
2011-02-01
Cermet comprising ceramic and metal components and a molten metal infiltration method and process for fabrication thereof. The light weight cermets having improved porosity, strength, durability, toughness, elasticity fabricated from presintered ceramic powder infiltrated with a molten metal or metal alloy. Alumina titanium cermets biocompatible with the human body suitable for bone and joint replacements.
21 CFR 888.3800 - Wrist joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Wrist joint metal/polymer semi-constrained... Wrist joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A wrist joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a wrist joint...
Arbuscular Mycorrhizal Fungi Can Benefit Heavy Metal Tolerance and Phytoremediation
ERIC Educational Resources Information Center
Forgy, David
2012-01-01
Sites contaminated by heavy metals, such as industrial waste sites, create unwelcoming environments for plant growth. Heavy metals can have a wide range of toxic effects such as replacing essential elements or disrupting enzyme function. While some heavy metals are essential to plant nutrition at low concentrations, high concentrations of any…
21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...
21 CFR 888.3160 - Elbow joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Elbow joint metal/polymer semi-constrained... Elbow joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An elbow joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an elbow...
21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...
21 CFR 888.3800 - Wrist joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Wrist joint metal/polymer semi-constrained... Wrist joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A wrist joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a wrist joint...
21 CFR 888.3800 - Wrist joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Wrist joint metal/polymer semi-constrained... Wrist joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A wrist joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a wrist joint...
21 CFR 888.3160 - Elbow joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Elbow joint metal/polymer semi-constrained... Elbow joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An elbow joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an elbow...
21 CFR 888.3160 - Elbow joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Elbow joint metal/polymer semi-constrained... Elbow joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An elbow joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an elbow...
21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...
21 CFR 888.3800 - Wrist joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Wrist joint metal/polymer semi-constrained... Wrist joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A wrist joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a wrist joint...
Supported molten-metal catalysts
Datta, Ravindra; Singh, Ajeet; Halasz, Istvan; Serban, Manuela
2001-01-01
An entirely new class of catalysts called supported molten-metal catalysts, SMMC, which can replace some of the existing precious metal catalysts used in the production of fuels, commodity chemicals, and fine chemicals, as well as in combating pollution. SMMC are based on supporting ultra-thin films or micro-droplets of the relatively low-melting (<600.degree. C.), inexpensive, and abundant metals and semimetals from groups 1, 12, 13, 14, 15 and 16, of the periodic table, or their alloys and intermetallic compounds, on porous refractory supports, much like supported microcrystallites of the traditional solid metal catalysts. It thus provides orders of magnitude higher surface area than is obtainable in conventional reactors containing molten metals in pool form and also avoids corrosion. These have so far been the chief stumbling blocks in the application of molten metal catalysts.
Predictors of participation in sports after hip and knee arthroplasty.
Williams, Daniel H; Greidanus, Nelson V; Masri, Bassam A; Duncan, Clive P; Garbuz, Donald S
2012-02-01
While the primary objective of joint arthroplasty is to improve patient quality of life, pain, and function, younger active patients often demand a return to higher function that includes sporting activity. Knowledge of rates and predictors of return to sports will help inform expectations in patients anticipating return to sports after joint arthroplasty. We measured the rate of sports participation at 1 year using the UCLA activity score and explored 11 variables, including choice of procedure/prosthesis, that might predict return to a high level of sporting activity, when controlling for potential confounding variables. We retrospectively evaluated 736 patients who underwent primary metal-on-polyethylene THA, metal-on-metal THA, hip resurfacing arthroplasty, revision THA, primary TKA, unicompartmental knee arthroplasty, and revision TKA between May 2005 and June 2007. We obtained UCLA activity scores on all patients; we defined high activity as a UCLA score of 7 or more. We evaluated patient demographics (age, sex, BMI, comorbidity), quality of life (WOMAC score, Oxford Hip Score, SF-12 score), and surgeon- and procedural/implant-specific variables to identify factors associated with postoperative activity score. Minimum followup was 11 months (mean, 12.1 months; range, 11-13 months). Preoperative UCLA activity score, age, male sex, and BMI predicted high activity scores. The type of operation and implant characteristics did not predict return to high activity sports. Our data suggest patient-specific factors predict postoperative activity rather than factors specific to type of surgery, implant, or surgeon factors. Level II, prognostic study. See the Guidelines for Authors for a complete description of levels of evidence.
NASA Technical Reports Server (NTRS)
1985-01-01
Thermionic energy conversion is the production of energy from a nuclear source. It is a technology advanced by SNSO, a joint research and development organization formed by NASA and the AEC. SNSO contracted with Thermo Electron Corporation to develop high temperature applications, i.e., metals with high melting points. Thermo Electron Corporation's expertise resulted in contracts for products made from exotic metals such as bone implants, artificial hips, and heart pacemakers.
30 CFR 56.12036 - Fuse removal or replacement.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fuse removal or replacement. 56.12036 Section 56.12036 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...
30 CFR 56.12036 - Fuse removal or replacement.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fuse removal or replacement. 56.12036 Section 56.12036 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...
30 CFR 56.12036 - Fuse removal or replacement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fuse removal or replacement. 56.12036 Section 56.12036 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...
30 CFR 56.12036 - Fuse removal or replacement.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fuse removal or replacement. 56.12036 Section 56.12036 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...
30 CFR 56.12036 - Fuse removal or replacement.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fuse removal or replacement. 56.12036 Section 56.12036 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...
Transition-metal prion protein attachment: Competition with copper
NASA Astrophysics Data System (ADS)
Hodak, Miroslav; Bernholc, Jerry
2012-02-01
Prion protein, PrP, is a protein capable of binding copper ions in multiple modes depending on their concentration. Misfolded PrP is implicated in a group of neurodegenerative diseases, which include ``mad cow disease'' and its human form, variant Creutzfeld-Jacob disease. An increasing amount of evidence suggests that attachment of non-copper metal ions to PrP triggers transformations to abnormal forms similar to those observed in prion diseases. In this work, we use hybrid Kohn-Sham/orbital-free density functional theory simulations to investigate copper replacement by other transition metals that bind to PrP, including zinc, iron and manganese. We consider all known copper binding modes in the N-terminal domain of PrP. Our calculations identify modes most susceptible to copper replacement and reveal metals that can successfully compete with copper for attachment to PrP.
Impact on global metal flows arising from the use of portable rechargeable batteries.
Rydh, Carl Johan; Svärd, Bo
2003-01-20
The use of portable rechargeable battery cells and their effects on global metal flows were assessed or the following three cases: (1) the base case, which reflects the situation in 1999 of the global production of batteries; (2) the global production of portable nickel-cadmium batteries in 1999, assumed to be replaced by other battery types; and (3) assessment of the projected battery market in 2009. The study included the following battery technologies: nickel-cadmium (NiCd); nickel-metal hydride (NiMH) (AB(5), AB(2)); and lithium-based batteries (Li-ion: Co, Ni, Mn; Li-polymer: V). Based on the lithospheric extraction indicator (LEI), which is the ratio of anthropogenic to natural metal flows, and the significance of battery production related to global metal mining, the potential environmental impact of metals used in different battery types was evaluated. The LEIs and average metal demand for the battery market in 1999, expressed as a percentage of global mining output in 1999, were estimated to be as follows: Ni 5.6 (2.0%); Cd 4.4 (37%); Li 0.65 (3.8%); V 0.33 (6.5%); Co 0.18 (15%); Nd 0.18 (8.4%); La 0.10 (9.5%); Ce 0.083 (4.4%); and Pr 0.073 (9.4%). The use of Ni and Cd is of the greatest environmental interest, due to their high LEIs. In the case of complete replacement of portable NiCd batteries by NiMH or Li-based batteries, the LEI for Ni (5.6) would change by -0.1-0.5% and the LEI for Cd would decrease from 4.4 to 3.0 (-31%). Meanwhile, the mobilization of metals considered less hazardous than Cd (LEI 0 < 5) would increase less than 7%. Based on this assessment, the replacement of NiCd batteries would result in decreased environmental impact. To decrease the impact on global metal flows arising from the use of portable batteries the following points should be considered: (1) development of battery technologies should aim at high energy density and long service life; (2) metals with high natural occurrence should be used; and (3) metals from disused batteries should be recovered and regulations implemented to decrease the need for mining of virgin metals. The method used enables an assessment early in the cause-effect chain, when few data about toxic effects are available. It can also be used to assess whether environmental problems are shifted from one to another. Copyright 2002 Elsevier Science B.V.
NASA Astrophysics Data System (ADS)
Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al
2016-06-01
Fly ash and bottom ash are some of the waste generated by coal-fired power plants, which contains large quantities of toxic and heavy metals. In recent years, many researchers have been interested in studying on the properties of self-compacting concrete incorporated with fly ash and bottom ash but there was very limited research from the combination of fly ash and bottom ash towards the environmental needs. Therefore, this research was focused on investigating the leachability of heavy metals of SCC incorporated with fly ash and bottom ash by using Toxicity Characteristic Leaching Procedure, Synthetic Precipitation Leaching Procedure and Static Leaching Test. The samples obtained from the coal-fired power plant located at Peninsula, Malaysia. In this study, the potential heavy metals leached out from SCC that is produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a substitute for sand with the ratios from 10% to 30% respectively were designated and cast. There are eight heavy metals of concern such as As, Cr, Pb, Zn, Cu, Ni, Mn and Fe. The results indicated that most of the heavy metals leached below the permissible limits from the United States Environmental Protection Agency and World Health Organization limit for drinking water. As a conclusion, the minimum leaching of the heavy metals from the incorporation of fly ash and bottom ash in self-compacting concrete was found in 20% of fly ash and 20% of bottom ash replacement. The results also indicate that this incorporation could minimize the potential of environmental problems.
NASA Astrophysics Data System (ADS)
Haghighipour, Nader; Vogt, Steven S.; Butler, R. Paul; Rivera, Eugenio J.; Laughlin, Greg; Meschiari, Stefano; Henry, Gregory W.
2010-05-01
Precision radial velocities (RV) from Keck/HIRES reveal a Saturn-mass planet orbiting the nearby M4V star HIP 57050. The planet has a minimum mass of Msin i ~ 0.3 M J, an orbital period of 41.4 days, and an orbital eccentricity of 0.31. V-band photometry reveals a clear stellar rotation signature of the host star with a period of 98 days, well separated from the period of the RV variations and reinforcing a Keplerian origin for the observed velocity variations. The orbital period of this planet corresponds to an orbit in the habitable zone of HIP 57050, with an expected planetary temperature of ~230 K. The star has a metallicity of [Fe/H] = 0.32 ± 0.06 dex, of order twice solar and among the highest metallicity stars in the immediate solar neighborhood. This newly discovered planet provides further support that the well-known planet-metallicity correlation for F, G, and K stars also extends down into the M-dwarf regime. The a priori geometric probability for transits of this planet is only about 1%. However, the expected eclipse depth is ~7%, considerably larger than that yet observed for any transiting planet. Though long on the odds, such a transit is worth pursuing as it would allow for high quality studies of the atmosphere via transmission spectroscopy with Hubble Space Telescope. At the expected planetary effective temperature, the atmosphere may contain water clouds.
Enhanced Antimicrobial Activity Of Antibiotics Mixed With Metal Nanoparticles
NASA Astrophysics Data System (ADS)
Kumar, Sandeep; Kumar, Neeraj; Bhanjana, Gaurav; Thakur, Rajesh; Dilbaghi, Neeraj
2011-12-01
Current producers of antimicrobial technology have a long lasting, environmentally safe, non-leaching, water soluble solution that will eventually replace all poisons and heavy metals. The transition metal ions inevitably exist as metal complexes in biological systems by interaction with the numerous molecules possessing groupings capable of complexation or chelation. Nanoparticles of metal oxides offer a wide variety of potential applications in medicine due to the unprecedented advances in nanobiotechnology research. the bacterial action of antibiotics like penicillin, erythryomycin, ampicillin, streptomycin, kanamycin etc. and that of a mixture of antibiotics and metal and metal oxide nanoparticles like zinc oxide, zirconium, silver and gold on microbes was examined by the agar-well-diffusion method, enumeration of colony-forming units (CFU) and turbidimetry.
Mohaddes, Maziar; Rolfson, Ola; Kärrholm, Johan
2015-02-01
The use of trabecular metal (TM) cups in revision surgery has increased worldwide during the last decade. Since the introduction of the TM cup in Sweden in 2006, this design has gradually replaced other uncemented designs used in Sweden. According to data from the Swedish Hip Arthroplasty Register (SHAR) in 2012, one-third of all uncemented first-time cup revisions were performed using a TM cup. We compared the risk of reoperation and re-revision for TM cups and the 2 other most frequently used cup designs in acetabular revisions reported to the SHAR. The hypothesis was that the performance of TM cups is as good as that of established designs in the short term. The study population consisted of 2,384 patients who underwent 2,460 revisions during the period 2006 through 2012. The most commonly used cup designs were the press-fit porous-coated cup (n = 870), the trabecular metal cup (n = 805), and the cemented all-polyethylene cup (n = 785). 54% of the patients were female, and the median age at index revision was 72 (19-95) years. Reoperation was defined as a second surgical intervention, and re-revision-meaning exchange or removal of the cup-was used as endpoint. The mean follow-up time was 3.3 (0-7) years. There were 215 reoperations, 132 of which were re-revisions. The unadjusted and adjusted risk of reoperation or re-revision was not significantly different for the TM cup and the other 2 cup designs. Our data support continued use of TM cups in acetabular revisions. Further follow-up is necessary to determine whether trabecular metal cups can reduce the re-revision rate in the long term, compared to the less costly porous press-fit and cemented designs.
Allegra, Sarah; De Francia, Silvia; Longo, Filomena; Massano, Davide; Cusato, Jessica; Arduino, Arianna; Pirro, Elisa; Piga, Antonio; D'Avolio, Antonio
2016-12-01
We present the deferasirox pharmacokinetics evaluation of a female patient on iron chelation, for the interesting findings from her genetic background (hereditary haemochromatosis and heterozygous β-thalassaemia) and clinical history (ileostomy; iron overload from transfusions). Drug plasma concentrations were measured by an HPLC-UV validated method, before and after ileum resection. Area under deferasirox concentration curve over 24h (AUC) values were determined by the mixed log-linear rule, using Kinetica software. AUC was low also with high deferasirox dose as well as tolerability. Non invasive tissue iron quantification by magnetic resonance imaging or superconducting quantum interference device were prevented by a metal hip replacement. Good efficacy and normalisation of iron markers was obtained on long term. Therapeutic drug monitoring in patient in critical conditions may help to understand reasons for non response and set individualised treatment. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Gloria, Antonio; Ronca, Dante; Russo, Teresa; D'Amora, Ugo; Chierchia, Marianna; De Santis, Roberto; Nicolais, Luigi; Ambrosio, Luigi
2011-01-01
Polymer-based composite materials are ideal for applications where high stiffness-to-weight and strength-to-weight ratios are required. From aerospace and aeronautical field to biomedical applications, fiber-reinforced polymers have replaced metals, thus emerging as an interesting alternative. As widely reported, the mechanical behavior of the composite materials involves investigation on micro- and macro-scale, taking into consideration micromechanics, macromechanics and lamination theory. Clinical situations often require repairing connective tissues and the use of composite materials may be suitable for these applications because of the possibility to design tissue substitutes or implants with the required mechanical properties. Accordingly, this review aims at stressing the importance of fiber-reinforced composite materials to make advanced and biomimetic prostheses with tailored mechanical properties, starting from the basic principle design, technologies, and a brief overview of composites applications in several fields. Fiber-reinforced composite materials for artificial tendons, ligaments, and intervertebral discs, as well as for hip stems and mandible models will be reviewed, highlighting the possibility to mimic the mechanical properties of the soft and hard tissues that they replace.
Mathew, M.T.; Runa, M.J.; Laurent, M.; Jacobs, J.J.; Rocha, L.A.; Wimmer, M.A.
2011-01-01
Metal-on-metal (MOM) hip prosthesis bearings have enjoyed renewed popularity, but concerns remain with wear debris and metal ion release causing a negative response in the surrounding tissues. Further understanding into the wear and corrosion mechanisms occurring in MOM hips is therefore essential. The purpose of this study was to evaluate the tribocorrosion behaviour, or interplay between corrosion and wear, of a low-carbon CoCrMo alloy as a function of loading. The tribocorrosion tests were performed using two tribometer configurations. In the first configuration, “System A”, a linearly reciprocating alumina ball slid against the flat metal immersed in a phosphate buffer solution (PBS). In the second configuration, “System B”, the flat end of a cylindrical metal pin was pressed against an alumina ball that oscillated rotationally, using bovine calf serum (BCS) as the lubricant and electrolyte. System B was custom-built to emulate in vivo conditions. The tribocorrosion tests were performed under potentiostatic conditions at -0.345V, with a sliding duration of 1800 seconds and a frequency of 1Hz. In System A the applied loads were 0.05, 0.5, and 1N (138, 296 and 373MPa, respectively) and in System B were 16, 32, and 64N (474, 597, and 752MPa, respectively). Electrochemical impedance spectroscopy (EIS) and polarization resistance were estimated. The total mass loss (Kwc) in the CoCrMo was determined. The mass loss due to wear (Kw) and that due to corrosion (Kc) were determined. The dominant wear regime for the CoCrMo alloy subjected to sliding changes from wear-corrosion to mechanical wear as the contact stress increases. An attempt was made to compare both system, in their tribochemical responses and formulate some insights in the total degradation processes. Our results also suggest that the proteins in the serum lubricant assist in the generation of a protective layer against corrosion during sliding. The study highlights the need of adequate methodology/guidelines to compare the results from different test systems and translating in solving the practical problems. PMID:21921971
Impact of biogenic nanoscale metals Fe, Cu, Zn and Se on reproductive LV chickens
NASA Astrophysics Data System (ADS)
Khiem Nguyen, Quy; Dieu Nguyen, Duy; Kien Nguyen, Van; Thinh Nguyen, Khac; Chau Nguyen, Hoai; Tin Tran, Xuan; Nguyen, Huu Cuong; Tien Phung, Duc
2015-09-01
Using biogenic nanoscale metals (Fe, Cu, ZnO, Se) to supplement into diet premix of reproductive LV (a Vietnamese Luong Phuong chicken breed) chickens resulted in certain improvement of poultry farming. The experimental data obtained showed that the farming indices depend mainly on the quantity of nanocrystalline metals which replaced the inorganic mineral component in the feed premix. All four experimental groups with different quantities of the replacement nano component grew and developed normally with livability reaching 91 to 94%, hen’s bodyweight at 38 weeks of age and egg weight ranged from 2.53-2.60 kg/hen and 50.86-51.55 g/egg, respectively. All these farming indices together with laying rate, egg productivity and chick hatchability peaked at group 5 with 25% of nanoscale metals compared to the standard inorganic mineral supplement, while feed consumption was lowest. The results also confirmed that nanocrystalline metals Fe, Cu, ZnO and Se supplemented to chicken feed were able to decrease inorganic minerals in the diet premixes at least four times, allowing animals to more effectively absorb feed minerals, consequently decreasing environmental pollution risks.
Evaluation of ultrasonic cavitation of metallic and non-metallic surfaces
NASA Technical Reports Server (NTRS)
Mehta, Narinder K.
1992-01-01
1,1,2 trichloro-1,2,2 trifluoro ethane (CFC-113) commercially known as Freon-113 is the primary test solvent used for validating the cleaned hardware at the Kennedy Space Center (KSC). Due to the ozone depletion problem, the current United States policy calls for the phase out of Freons by 1995. NASAs chlorofluorocarbon (CFC) replacement group at KSC has opted to use water as a replacement fluid for the validation process since water is non-toxic, inexpensive, and is environmentally friendly. The replacement validation method calls for the ultrasonification of the small parts with water at 52 C for a cycle or two of 10 min duration wash using commercial ultrasonic baths. In this project, experimental data was obtained to assess the applicability of the proposed validation method for any damage of the metallic and non-metallic surfaces resulting from ultrasonic cavitation.
Schunck, Antje; Kronz, Andreas; Fischer, Cornelius; Buchhorn, Gottfried Hans
2016-02-01
In a previous failure analysis performed on femoral components of cemented total hip replacements, we determined high volumes of abraded bone cement. Here, we describe the topography of the polished surface of polymethyl methacrylate (PMMA) bone cement containing zirconia radiopacifier, analyzed by scanning electron microscopy and vertical scanning interferometry. Zirconia spikes protruded about 300nm from the PMMA matrix, with pits of former crystal deposition measuring about 400nm in depth. We deduced that the characteristically mulberry-shaped agglomerates of zirconia crystals are ground and truncated into flat surfaces and finally torn out of the PMMA matrix. Additionally, evaluation of in vitro PMMA-on-PMMA articulation confirmed that crystal agglomerations of zirconia were exposed to grain pullout, fatigue, and abrasion. In great quantities, micron-sized PMMA wear and zirconia nanoparticles accumulate in the cement-bone interface and capsular tissues, thereby contributing to osteolysis. Dissemination of nanoparticles to distant lymph nodes and organs of storage has been reported. As sufficient information is lacking, foreign body reactions to accumulated nanosized zirconia in places of long-term storage should be investigated. The production of wear particles of PMMA bone cement in the interface to joint replacement devices, presents a local challenge. The presence of zirconia particles results in frustrated digestion attempts by macrophages, liberation of inflammatory mediators, and necrosis leading to aseptic inflammation and osteolyses. Attempts to minimize wear of articulating joints reduced the attention to the deterioration of cement cuffs. We therefore investigated polished surfaces of retrieved cuffs to demonstrate their morphology and to measure surface roughness. Industrially admixed agglomerates of the radiopacifier are abraded to micron and nano-meter sized particles. The dissemination of zirconia particles in the reticulo-endothelial system to storage organs is a possible burden. Research to replace the actual contrast media by non-particulate material deserves more attention. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Schappo, Henrique; Gindri, Izabelle M; Cubillos, Patrícia O; Maru, Marcia M; Salmoria, Gean V; Roesler, Carlos R M
2018-01-01
The use of scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS) was investigated to understand the wear mechanisms from a metal-on-polyethylene bearing couple. Morphological features of femoral head acetabular liner, and isolated particles resulting from hip wear testing were evaluated. EDS was proposed to investigate the polymeric nature of the particles isolated from the wear testing. In this work, 28-mm conventional ultra-high-molecular-weight polyethylene acetabular liners paired with metallic heads were tested in a hip wear simulator over 2 million cycles. SEM-EDS was employed to investigate wear mechanisms on hip implant components and associated wear debris. SEM showed worn surfaces for both hip components, and a significant volume of ultra-high-molecular-weight polyethylene wear particles resulting from hip wear testing. Particles were classified into 3 groups, which were then correlated to wear mechanisms. Group I had particles with smooth surfaces, group II consisted of particles with rough surfaces, and group III comprised aggregate-like particles. Group I EDS revealed that particles from groups I and II had a high C/O ratio raising a concern about the particle source. On the other hand, particles from group III had a low C/O ratio, supporting the hypothesis that they resulted from the wear of acetabular liner. Most of particles identified in group III were in the biologically active size range (0.3 to 20 μm). The use of optical and electron microscopy enabled the morphological characterization of worn surfaces and wear debris, while EDS was essential to elucidate the chemical composition of isolated debris. Copyright © 2017 Elsevier Inc. All rights reserved.
A novel tribological study on DLC-coated micro-dimpled orthopedics implant interface.
Choudhury, Dipankar; Urban, Filip; Vrbka, Martin; Hartl, Martin; Krupka, Ivan
2015-05-01
This study investigates a tribological performance of diamond like carbon (DLC) coated micro dimpled prosthesis heads against ceramic cups in a novel pendulum hip joint simulator. The simulator enables determining friction coefficient and viscous effects of a concave shaped specimen interface (conformal contact). Two types of DLC such as hydrogenated amorphous carbon (a-C:H) and tetrahedral amorphous carbon (Ta-C) and one set of micro dimple (diameter of 300µm, depth of 70µm, and pitch of 900µm) were fabricated on metallic prosthesis heads. The experiment results reveal a significant friction coefficient reduction to the 'dimpled a-C:H/ceramic' prosthesis compared to a 'Metal (CoCr)/ceramic' prosthesis because of their improved material and surface properties and viscous effect. The post-experiment surface analysis displays that the dimpled a-C:H yielded a minor change in the surface roughness, and generated a larger sizes of wear debris (40-200nm sized, equivalent diameter), a size which could be certainly stored in the dimple, thus likely to reducing their possible third body abrasive wear rate. Thus, dimpled a:C-H can be used as a 'metal on ceramic hip joint interface', whereas the simulator can be utilized as an advanced bio-tribometer. Copyright © 2015 Elsevier Ltd. All rights reserved.
Revision Rates after Primary Hip and Knee Replacement in England between 2003 and 2006
Sibanda, Nokuthaba; Copley, Lynn P; Lewsey, Jim D; Borroff, Mick; Gregg, Paul; MacGregor, Alex J; Pickford, Martin; Porter, Martyn; Tucker, Keith; van der Meulen, Jan H
2008-01-01
Background Hip and knee replacement are some of the most frequently performed surgical procedures in the world. Resurfacing of the hip and unicondylar knee replacement are increasingly being used. There is relatively little evidence on their performance. To study performance of joint replacement in England, we investigated revision rates in the first 3 y after hip or knee replacement according to prosthesis type. Methods and Findings We linked records of the National Joint Registry for England and Wales and the Hospital Episode Statistics for patients with a primary hip or knee replacement in the National Health Service in England between April 2003 and September 2006. Hospital Episode Statistics records of succeeding admissions were used to identify revisions for any reason. 76,576 patients with a primary hip replacement and 80,697 with a primary knee replacement were included (51% of all primary hip and knee replacements done in the English National Health Service). In hip patients, 3-y revision rates were 0.9% (95% confidence interval [CI] 0.8%–1.1%) with cemented, 2.0% (1.7%–2.3%) with cementless, 1.5% (1.1%–2.0% CI) with “hybrid” prostheses, and 2.6% (2.1%–3.1%) with hip resurfacing (p < 0.0001). Revision rates after hip resurfacing were increased especially in women. In knee patients, 3-y revision rates were 1.4% (1.2%–1.5% CI) with cemented, 1.5% (1.1%–2.1% CI) with cementless, and 2.8% (1.8%–4.5% CI) with unicondylar prostheses (p < 0.0001). Revision rates after knee replacement strongly decreased with age. Interpretation Overall, about one in 75 patients needed a revision of their prosthesis within 3 y. On the basis of our data, consideration should be given to using hip resurfacing only in male patients and unicondylar knee replacement only in elderly patients. PMID:18767900
Precision replenishable grinding tool and manufacturing process
Makowiecki, D.M.; Kerns, J.A.; Blaedel, K.L.; Colella, N.J.; Davis, P.J.; Juntz, R.S.
1998-06-09
A reusable grinding tool consisting of a replaceable single layer of abrasive particles intimately bonded to a precisely configured tool substrate, and a process for manufacturing the grinding tool are disclosed. The tool substrate may be ceramic or metal and the abrasive particles are preferably diamond, but may be cubic boron nitride. The manufacturing process involves: coating a configured tool substrate with layers of metals, such as titanium, copper and titanium, by physical vapor deposition (PVD); applying the abrasive particles to the coated surface by a slurry technique; and brazing the abrasive particles to the tool substrate by alloying the metal layers. The precision control of the composition and thickness of the metal layers enables the bonding of a single layer or several layers of micron size abrasive particles to the tool surface. By the incorporation of an easily dissolved metal layer in the composition such allows the removal and replacement of the abrasive particles, thereby providing a process for replenishing a precisely machined grinding tool with fine abrasive particles, thus greatly reducing costs as compared to replacing expensive grinding tools. 11 figs.
Precision replenishable grinding tool and manufacturing process
Makowiecki, Daniel M.; Kerns, John A.; Blaedel, Kenneth L.; Colella, Nicholas J.; Davis, Pete J.; Juntz, Robert S.
1998-01-01
A reusable grinding tool consisting of a replaceable single layer of abrasive particles intimately bonded to a precisely configured tool substrate, and a process for manufacturing the grinding tool. The tool substrate may be ceramic or metal and the abrasive particles are preferably diamond, but may be cubic boron nitride. The manufacturing process involves: coating a configured tool substrate with layers of metals, such as titanium, copper and titanium, by physical vapor deposition (PVD); applying the abrasive particles to the coated surface by a slurry technique; and brazing the abrasive particles to the tool substrate by alloying the metal layers. The precision control of the composition and thickness of the metal layers enables the bonding of a single layer or several layers of micron size abrasive particles to the tool surface. By the incorporation of an easily dissolved metal layer in the composition such allows the removal and replacement of the abrasive particles, thereby providing a process for replenishing a precisely machined grinding tool with fine abrasive particles, thus greatly reducing costs as compared to replacing expensive grinding tools.
18. METAL LIGHT STANDARD, AT NORTH END BLOCK OF EAST ...
18. METAL LIGHT STANDARD, AT NORTH END BLOCK OF EAST PARAPET, FROM NORTH, SHOWING ORIGINAL LIGHT STANDARD, WITH REPLACEMENT BRACKET AND COBRA-HEAD LAMP - Fifth Street Viaduct, Spanning Bacon's Quarter Branch Valley on Fifth Street, Richmond, Independent City, VA
Osman, K; Panagiotidou, A P; Khan, M; Blunn, G; Haddad, F S
2016-05-01
There is increasing global awareness of adverse reactions to metal debris and elevated serum metal ion concentrations following the use of second generation metal-on-metal total hip arthroplasties. The high incidence of these complications can be largely attributed to corrosion at the head-neck interface. Severe corrosion of the taper is identified most commonly in association with larger diameter femoral heads. However, there is emerging evidence of varying levels of corrosion observed in retrieved components with smaller diameter femoral heads. This same mechanism of galvanic and mechanically-assisted crevice corrosion has been observed in metal-on-polyethylene and ceramic components, suggesting an inherent biomechanical problem with current designs of the head-neck interface. We provide a review of the fundamental questions and answers clinicians and researchers must understand regarding corrosion of the taper, and its relevance to current orthopaedic practice. Cite this article: Bone Joint J 2016;98-B:579-84. ©2016 The British Editorial Society of Bone & Joint Surgery.
NASA Astrophysics Data System (ADS)
Wang, Lynn T.-N.; Schroeder, Uwe Paul; Madhavan, Sriram
2017-03-01
A pattern-based methodology for optimizing SADP-compliant layout designs is developed based on identifying cut mask patterns and replacing them with pre-characterized fixing solutions. A pattern-based library of difficult-tomanufacture cut patterns with pre-characterized fixing solutions is built. A pattern-based engine searches for matching patterns in the decomposed layouts. When a match is found, the engine opportunistically replaces the detected pattern with a pre-characterized fixing solution. The methodology was demonstrated on a 7nm routed metal2 block. A small library of 30 cut patterns increased the number of more manufacturable cuts by 38% and metal-via enclosure by 13% with a small parasitic capacitance impact of 0.3%.
Vassiliou, K; Elfick, A P D; Scholes, S C; Unsworth, A
2006-02-01
It is well documented that hard bearing combinations show a running-in phenomenon in vitro and there is also some evidence of this from retrieval studies. In order to investigate this phenomenon, five Birmingham hip resurfacing devices were tested in a hip wear simulator. One of these (joint 1) was also tested in a friction simulator before, during, and after the wear test and surface analysis was conducted throughout portions of the testing. The wear showed the classical running in with the wear rate falling from 1.84 mm3 per 10(6) cycles for the first 10(6) cycles of testing to 0.24 mm3 per 10(6) cycles over the final 2 x 10(6) cycles of testing. The friction tests suggested boundary lubrication initially, but at 1 x 10(6) cycles a mixed lubrication regime was evident. By 2 x 10(6) cycles the classical Stribeck curve had formed, indicating a considerable contribution from the fluid film at higher viscosities. This continued to be evident at both 3 x 10(6) and 5 x 10(6) cycles. The surface study complements these findings.
Spin-on metal oxide materials for N7 and beyond patterning applications
NASA Astrophysics Data System (ADS)
Mannaert, G.; Altamirano-Sanchez, E.; Hopf, T.; Sebaai, F.; Lorant, C.; Petermann, C.; Hong, S.-E.; Mullen, S.; Wolfer, E.; Mckenzie, D.; Yao, H.; Rahman, D.; Cho, J.-Y.; Padmanaban, M.; Piumi, D.
2017-04-01
There is a growing interest in new spin on metal oxide hard mask materials for advanced patterning solutions both in BEOL and FEOL processing. Understanding how these materials respond to plasma conditions may create a competitive advantage. In this study patterning development was done for two challenging FEOL applications where the traditional Si based films were replaced by EMD spin on metal oxides, which acted as highly selective hard masks. The biggest advantage of metal oxide hard masks for advanced patterning lays in the process window improvement at lower or similar cost compared to other existing solutions.
Effect of wear of bearing surfaces on elastohydrodynamic lubrication of metal-on-metal hip implants.
Liu, F; Jin, Z M; Hirt, F; Rieker, C; Roberts, P; Grigoris, P
2005-09-01
The effect of geometry change of the bearing surfaces owing to wear on the elastohydrodynamic lubrication (EHL) of metal-on-metal (MOM) hip bearings has been investigated theoretically in the present study. A particular MOM Metasul bearing (Zimmer GmbH) was considered, and was tested in a hip simulator using diluted bovine serum. The geometry of the worn bearing surface was measured using a coordinate measuring machine (CMM) and was modelled theoretically on the assumption of spherical geometries determined from the maximum linear wear depth and the angle of the worn region. Both the CMM measurement and the theoretical calculation were directly incorporated into the elastohydrodynamic lubrication analysis. It was found that the geometry of the original machined bearing surfaces, particularly of the femoral head with its out-of-roundness, could lead to a large reduction in the predicted lubricant film thickness and an increase in pressure. However, these non-spherical deviations can be expected to be smoothed out quickly during the initial running-in period. For a given worn bearing surface, the predicted lubricant film thickness and pressure distribution, based on CMM measurement, were found to be in good overall agreement with those obtained with the theoretical model based on the maximum linear wear depth and the angle of the worn region. The gradual increase in linear wear during the running-in period resulted in an improvement in the conformity and consequently an increase in the predicted lubricant film thickness and a decrease in the pressure. For the Metasul bearing tested in an AMTI hip simulator, a maximum total linear wear depth of approximately 13 microm was measured after 1 million cycles and remained unchanged up to 5 million cycles. This resulted in a threefold increase in the predicted average lubricant film thickness. Consequently, it was possible for the Metasul bearing to achieve a fluid film lubrication regime during this period, and this was consistent with the minimal wear observed between 1 and 5 million cycles. However, under adverse in vivo conditions associated with start-up and stopping and depleted lubrication, wear of the bearing surfaces can still occur. An increase in the wear depth beyond a certain limit was shown to lead to the constriction of the lubricant film around the edge of the contact conjunction and consequently to a decrease in the lubricant film thickness. Continuous cycles of a running-in wear period followed by a steady state wear period may be inevitable in MOM hip implants. This highlights the importance of minimizing the wear in these devices during the initial running-in period, particularly from design and manufacturing points of view.
Code of Federal Regulations, 2012 CFR
2012-04-01
... substrates, beads of the same alloy, and in the case of Ti-6Al-4V substrates, fibers of commercially pure titanium or Ti-6Al-4V alloy. The porous coating has a volume porosity between 30 and 70 percent, an average... titanium-aluminum-vanadium (Ti-6Al-4V) alloy and an acetabular component composed of an ultra-high...
Code of Federal Regulations, 2011 CFR
2011-04-01
... substrates, beads of the same alloy, and in the case of Ti-6Al-4V substrates, fibers of commercially pure titanium or Ti-6Al-4V alloy. The porous coating has a volume porosity between 30 and 70 percent, an average... titanium-aluminum-vanadium (Ti-6Al-4V) alloy and an acetabular component composed of an ultra-high...
Code of Federal Regulations, 2014 CFR
2014-04-01
... substrates, beads of the same alloy, and in the case of Ti-6Al-4V substrates, fibers of commercially pure titanium or Ti-6Al-4V alloy. The porous coating has a volume porosity between 30 and 70 percent, an average... titanium-aluminum-vanadium (Ti-6Al-4V) alloy and an acetabular component composed of an ultra-high...
Code of Federal Regulations, 2013 CFR
2013-04-01
... substrates, beads of the same alloy, and in the case of Ti-6Al-4V substrates, fibers of commercially pure titanium or Ti-6Al-4V alloy. The porous coating has a volume porosity between 30 and 70 percent, an average... titanium-aluminum-vanadium (Ti-6Al-4V) alloy and an acetabular component composed of an ultra-high...
Changes in the periodontal condition after replacement of swaged crowns by metal.
Plotniece-Baranovska, Anita; Soboleva, Una; Rogovska, Irena; Apse, Peteris
2006-01-01
Evidence based clinical studies have shown exact recommended design for artificial crown reconstruction with acceptable long-term results taking into an account the biological price. Previous histological and clinical studies proved that fixed prostheses might influence the periodontal condition of crowned teeth, if not all biological criteria have been considered. The aim of the present study was to assess the periodontal condition of the crowned teeth after stainless steel swaged crowns were replaced by cast metal ceramic crowns. Participants were selected at the Institute of Stomatology, Stradin's University. Selection criteria included need to replace existing swaged crowns by metal ceramic crowns for patients with absence of any systemic disease. Following symptoms of periodontal condition were examined - presence of inflammation (clinical signs, probing) and pocket depth. Assessments were carried out at four different points of time (first appointment after replacement existing swaged crowns by temporary crowns; two weeks after cementation of permanent metal ceramic restoration; after three month; after six month). Overall bleeding score "2" and "3" at the first measurement was observed in majority of study population. Bleeding scores between the 1st and the 4th measurement was significantly lower (p<0.01). The same trend was observed also in the reduction of pocket depth. Overall mean value of pocket depth gradually decreased from the 1st till the 4th measurement. Replacement of swaged crowns by metal ceramic improves gingival health and leads to better long-term prognosis for restored teeth. It is recommended that swaged crowns be replaced with more biologically friendly crowns.
Four new planets around giant stars and the mass-metallicity correlation of planet-hosting stars
NASA Astrophysics Data System (ADS)
Jones, M. I.; Jenkins, J. S.; Brahm, R.; Wittenmyer, R. A.; Olivares E., F.; Melo, C. H. F.; Rojo, P.; Jordán, A.; Drass, H.; Butler, R. P.; Wang, L.
2016-05-01
Context. Exoplanet searches have revealed interesting correlations between the stellar properties and the occurrence rate of planets. In particular, different independent surveys have demonstrated that giant planets are preferentially found around metal-rich stars and that their fraction increases with the stellar mass. Aims: During the past six years we have conducted a radial velocity follow-up program of 166 giant stars to detect substellar companions and to characterize their orbital properties. Using this information, we aim to study the role of the stellar evolution in the orbital parameters of the companions and to unveil possible correlations between the stellar properties and the occurrence rate of giant planets. Methods: We took multi-epoch spectra using FEROS and CHIRON for all of our targets, from which we computed precision radial velocities and derived atmospheric and physical parameters. Additionally, velocities computed from UCLES spectra are presented here. By studying the periodic radial velocity signals, we detected the presence of several substellar companions. Results: We present four new planetary systems around the giant stars HIP 8541, HIP 74890, HIP 84056, and HIP 95124. Additionally, we study the correlation between the occurrence rate of giant planets with the stellar mass and metallicity of our targets. We find that giant planets are more frequent around metal-rich stars, reaching a peak in the detection of f = 16.7+15.5-5.9% around stars with [Fe/H] ~ 0.35 dex. Similarly, we observe a positive correlation of the planet occurrence rate with the stellar mass, between M⋆ ~ 1.0 and 2.1 M⊙, with a maximum of f = 13.0+10.1-4.2% at M⋆ = 2.1 M⊙. Conclusions: We conclude that giant planets are preferentially formed around metal-rich stars. In addition, we conclude that they are more efficiently formed around more massive stars, in the stellar mass range of ~1.0-2.1 M⊙. These observational results confirm previous findings for solar-type and post-MS hosting stars, and provide further support to the core-accretion formation model. Based on observations collected at La Silla - Paranal Observatory under programs IDs 085.C-0557, 087.C.0476, 089.C-0524, 090.C-0345 and through the Chilean Telescope Time under programs IDs CN 12A-073, CN 12B-047, CN 13A-111, CN 13B-51, CN 14A-52, CN-15A-48, and CN-15B-25.
Wear Characteristics of Metallic Biomaterials: A Review
Hussein, Mohamed A.; Mohammed, Abdul Samad; Al-Aqeeli, Naser
2015-01-01
Metals are extensively used in a variety of applications in the medical field for internal support and biological tissue replacements, such as joint replacements, dental roots, orthopedic fixation, and stents. The metals and alloys that are primarily used in biomedical applications are stainless steels, Co alloys, and Ti alloys. The service period of a metallic biomaterial is determined by its abrasion and wear resistance. A reduction in the wear resistance of the implant results in the release of incompatible metal ions into the body that loosen the implant. In addition, several reactions may occur because of the deposition of wear debris in tissue. Therefore, developing biomaterials with high wear resistance is critical to ensuring a long life for the biomaterial. The aim of this work is to review the current state of knowledge of the wear of metallic biomaterials and how wear is affected by the material properties and conditions in terms of the type of alloys developed and fabrication processes. We also present a brief evaluation of various experimental test techniques and wear characterization techniques that are used to determine the tribological performance of metallic biomaterials.
Yin, Si; Zhang, Dangfeng; Du, Hui; Du, Heng; Yin, Zhanhai; Qiu, Yusheng
2015-01-01
Although many total hip bearing implants are widely used all over the world, simultaneous comparisons across the numerous available bearing surfaces are rare. The purpose of this study was to compare the survivorship of total hip arthroplasty (THA) with six available bearing implants. We conducted a systematic review of randomized controlled trials (RCTs) reporting survivorship or revision of ceramic-on-ceramic (CoC), ceramic-on-conventional polyethylene (CoPc), ceramic-on-highly-crosslinked polyethylene (CoPxl), metal-on-conventional polyethylene (MoPc), metal-on-highly-crosslinked polyethylene (MoPxl), or metal-on-metal (MoM) bearing implants. The synthesis of present evidence was performed by both the traditional direct-comparison meta-analysis and network meta-analysis. In total, 40 RCTs involving a total of 5321 THAs were identified. The pooled data of network meta-analysis showed no difference in relative risk (RR) of revision across CoC, CoPc, CoPxl and MoPxl bearings. However, the MoM bearing was demonstrated with a significant higher risk of revision compared with CoC (RR 5.10; 95% CI=1.62 to 16.81), CoPc (RR 4.80; 95% CI=1.29 to 17.09), or MoPxl (RR 3.85; 95% CI=1.16 to 14.29), and the MoPc bearing was indicated with a higher risk of revision compared with CoC (RR 2.83; 95% CI=1.20 to 6.63). The ranking probabilities of the effective interventions also revealed the inferiority of the MoM and MoPc implants in survivorship (both 0%, 95% CI=0% to 0%) compared with CoC (39%, 95% CI=0% to 100%), CoPc (33%, 95% CI=0% to 100%), CoPxl (7%, 95% CI=0% to 100%) or MoPxl (21%, 95% CI=0% to 100%). The present evidence indicated the similar performance in survivorship among CoC, CoPc, CoPxl and MoPxl bearing implants, and that all likely have superiority compared with the MoM and MoPc bearing implants in THA procedures. Long-term RCT data are required to confirm these conclusions and better inform clinical decisions.
High-κ/Metal Gate Science and Technology
NASA Astrophysics Data System (ADS)
Guha, Supratik; Narayanan, Vijay
2009-08-01
High-κ/metal gate technology is on the verge of replacing conventional oxynitride dielectrics in state-of-the-art transistors for both high-performance and low-power applications. In this review we discuss some of the key materials issues that complicated the introduction of high-κ dielectrics, including reduced electron mobility, oxygen-based thermal instabilities, and the absence of thermally stable dual-metal electrodes. We show that through a combination of materials innovations and engineering ingenuity these issues were successfully overcome, thereby paving the way for high-κ/metal gate implementation.
The effect of bearing type on the outcome of total hip arthroplasty.
Peters, Rinne M; Van Steenbergen, Liza N; Stevens, Martin; Rijk, Paul C; Bulstra, Sjoerd K; Zijlstra, Wierd P
2018-04-01
Background and purpose - Alternative bearing surfaces such as ceramics and highly crosslinked polyethylene (HXLPE) were developed in order to further improve implant performance of total hip arthroplasties (THAs). Whether these alternative bearing surfaces result in increased longevity is subject to debate. Patients and methods - Using the Dutch Arthroplasty Register (LROI), we identified all patients with a primary, non-metal-on-metal THA implanted in the Netherlands in the period 2007-2016 (n = 209,912). Cumulative incidence of revision was calculated to determine differences in survivorship of THAs according to bearing type: metal-on-polyethylene (MoPE), metal-on-HXLPE (MoHXLPE), ceramic-on-polyethylene (CoPE), ceramic-on-HXLPE (CoHXLPE), ceramic-on-ceramic (CoC), and oxidized-zirconium-on-(HXL)polyethylene (Ox(HXL)PE). Multivariable Cox proportional hazard regression ratios (HRs) were used for comparisons. Results - After adjustment for confounders, CoHXLPE, CoC, and Ox(HXL)PE resulted in a statistically significantly lower risk of revision compared with MoPE after 9 years follow-up (HR =0.8-0.9 respectively, compared with HR =1.0). For small (22-28 mm) femoral head THAs, lower revision rates were found for CoPE and CoHXLPE (HR =0.9). In the 36 mm femoral head subgroup, CoC-bearing THAs had a lower HR compared with MoHXLPE (HR =0.7 versus 1.0). Crude revision rates in young patients (< 60 years) for CoHXLPE, CoC, and Ox(HXL)PE (HR =0.7) were lower than MoPE (HR =1.0). However, after adjustment for case mix and confounders these differences were not statistically significant. Interpretation - We found a mid-term lower risk of revision for CoHXLPE, CoC, and Ox(HXL)PE bearings compared with traditional MoPE-bearing surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, V; Kohli, K
Purpose: Metal artifact reduction (MAR) software in computed tomography (CT) was previously evaluated with phantoms demonstrating the algorithm is capable of reducing metal artifacts without affecting the overall image quality. The goal of this study is to determine the dosimetric impact when calculating with CT datasets reconstructed with and without MAR software. Methods: Twelve head and neck cancer patients with dental fillings and four pelvic cancer patients with hip prosthesis were scanned with a GE Optima RT 580 CT scanner. Images were reconstructed with and without the MAR software. 6MV IMRT and VMAT plans were calculated with AAA on themore » MAR dataset until all constraints met our clinic’s guidelines. Contours from the MAR dataset were copied to the non-MAR dataset. Next, dose calculation on the non-MAR dataset was performed using the same field arrangements and fluence as the MAR plan. Conformality index, D99% and V100% to PTV were compared between MAR and non-MAR plans. Results: Differences between MAR and non-MAR plans were evaluated. For head and neck plans, the largest variations in conformality index, D99% and V100% were −3.8%, −0.9% and −2.1% respectively whereas for pelvic plans, the biggest discrepancies were −32.7%, −0.4% and -33.5% respectively. The dosimetric impact from hip prosthesis is greater because it produces more artifacts compared to dental fillings. Coverage to PTV can increase or decrease depending on the artifacts since dark streaks reduce the HU whereas bright streaks increase the HU. In the majority of the cases, PTV dose in the non-MAR plans is higher than MAR plans. Conclusion: With the presence of metals, MAR algorithm can allow more accurate delineation of targets and OARs. Dose difference between MAR and non-MAR plans depends on the proximity of the organ to the high density material, the streaking artifacts and the beam arrangements of the plan.« less
21 CFR 888.3360 - Hip joint femoral (hemi-hip) metallic cemented or uncemented prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... designs which are intended to be fixed to the bone with bone cement (§ 888.3027) as well as designs which have large window-like holes in the stem of the device and which are intended for use without bone cement. However, in these latter designs, fixation of the device is not achieved by means of bone...
21 CFR 888.3360 - Hip joint femoral (hemi-hip) metallic cemented or uncemented prosthesis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... designs which are intended to be fixed to the bone with bone cement (§ 888.3027) as well as designs which have large window-like holes in the stem of the device and which are intended for use without bone cement. However, in these latter designs, fixation of the device is not achieved by means of bone...
21 CFR 888.3360 - Hip joint femoral (hemi-hip) metallic cemented or uncemented prosthesis.
Code of Federal Regulations, 2012 CFR
2012-04-01
... designs which are intended to be fixed to the bone with bone cement (§ 888.3027) as well as designs which have large window-like holes in the stem of the device and which are intended for use without bone cement. However, in these latter designs, fixation of the device is not achieved by means of bone...
21 CFR 888.3360 - Hip joint femoral (hemi-hip) metallic cemented or uncemented prosthesis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... designs which are intended to be fixed to the bone with bone cement (§ 888.3027) as well as designs which have large window-like holes in the stem of the device and which are intended for use without bone cement. However, in these latter designs, fixation of the device is not achieved by means of bone...
21 CFR 888.3360 - Hip joint femoral (hemi-hip) metallic cemented or uncemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... designs which are intended to be fixed to the bone with bone cement (§ 888.3027) as well as designs which have large window-like holes in the stem of the device and which are intended for use without bone cement. However, in these latter designs, fixation of the device is not achieved by means of bone...
Electronic modules easily separated from heat sink
NASA Technical Reports Server (NTRS)
1965-01-01
Metal heat sink and electronic modules bonded to a thermal bridge can be easily cleaved for removal of the modules for replacement or repair. A thin film of grease between a fluorocarbon polymer film on the metal heat sink and an adhesive film on the modules acts as the cleavage plane.
NASA Technical Reports Server (NTRS)
2001-01-01
Howmet Research Corporation was the first to commercialize an innovative cast metal technology developed at Auburn University, Auburn, Alabama. With funding assistance from NASA's Marshall Space Flight Center, Auburn University's Solidification Design Center (a NASA Commercial Space Center), developed accurate nickel-based superalloy data for casting molten metals. Through a contract agreement, Howmet used the data to develop computer model predictions of molten metals and molding materials in cast metal manufacturing. Howmet Metal Mold (HMM), part of Howmet Corporation Specialty Products, of Whitehall, Michigan, utilizes metal molds to manufacture net shape castings in various alloys and amorphous metal (metallic glass). By implementing the thermophysical property data from by Auburn researchers, Howmet employs its newly developed computer model predictions to offer customers high-quality, low-cost, products with significantly improved mechanical properties. Components fabricated with this new process replace components originally made from forgings or billet. Compared with products manufactured through traditional casting methods, Howmet's computer-modeled castings come out on top.
Rinde, James A.
1982-01-01
Organic foams having a low density and very small cell size and method for producing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.
2012-01-01
Background Studies on leisure time physical activity as risk factor or protective factor for knee or hip osteoarthritis (OA) show divergent results. Longitudinal prospective studies are needed to clarify the association of physical activity with future OA. The aim was to explore in a prospective population-based cohort study the influence of leisure time physical activity on severe knee or hip OA, defined as knee or hip replacement due to OA. Methods Leisure time physical activity was reported by 28320 participants (mean age 58 years (SD 7.6), 60% women) at baseline. An overall leisure time physical activity score, taking both duration and intensity of physical activities into account, was created. The most commonly reported activities were also used for analysis. The incidence of knee or hip replacement due to OA over 11 years was monitored by linkage with the Swedish hospital discharge register. Cox’s proportional hazards model (crude and adjusted for potential confounding factors) was used to assess the incidence of total joint replacement, or osteotomy (knee), in separate analyses of leisure time physical activity. Results There was no significant overall association between leisure time physical activity and risk for knee or hip replacement due to OA over the 11-year observation time. For women only, the adjusted RR (95% CI) for hip replacement was 0.66 (0.48, 0.89) (fourth vs. first quartile), indicating a lower risk of hip replacement in those with the highest compared with the lowest physical activity. The most commonly reported activities were walking, bicycling, using stairs, and gardening. Walking was associated with a lower risk of hip replacement (adjusted RR 0.76 (95% CI 0.61, 0.94), specifically for women (adjusted RR 0.75 (95% CI 0.57, 0.98)). Conclusions In this population-based study of middle-aged men and women, leisure time physical activity showed no consistent overall relationship with incidence of severe knee or hip OA, defined as joint replacement due to OA, over 11 years. For women, higher leisure time physical activity may have a protective role for the incidence of hip replacement. Walking may have a protective role for hip replacement, specifically for women. PMID:22595023
Zeh, Alexander; Planert, Michael; Siegert, Gabriele; Lattke, Peter; Held, Andreas; Hein, Werner
2007-02-01
Cross-sectional study of 10 patients to measure the serum levels of cobalt and chromium after TDA. To investigate the release of cobalt and chromium ions into the serum following implantation of the metal-on-metal Maverick-type artificial lumbar disc. In total hip endoprosthetics and consequently for TDA (total disc arthroplasty), metal-on-metal combinations are used with the aim of reducing wear debris. In metal-on-metal TDA the release of metal ions has until now been secondary to the main discussion. We investigated the serum cobalt and chromium concentration following implantation of 15 Maverick TDAs (monosegmental L5-S1, n = 5; bisegmental L4-L5 and L5-S1, n = 5; average age, 36.5 years). Five healthy subjects (no metal implants) acted as a control group. The measurements of the metals were carried out using the HITACHI Z-8200 AAS polarized Zeeman atomic absorption spectrometer after an average of 14.8 months. The concentrations of cobalt and chromium ions in the serum amounted on average to 4.75 microg/L (SD, 2.71) for cobalt and 1.10 microg/L (SD, 1.24) for chromium. Compared with control group, both the chromium and cobalt levels in the serum showed significant increases (Mann-Whitney U test, P = 0.0120). At follow-up,the Oswestry Disability Score was on average significantly decreased by 24.4 points (L5-S1) (t test, P < 0.05) and by 26.8 points (L4-S1) (t test, P < 0.05). The improved clinical situation is also represented by a significant decrease of the Visual Analog Pain Scale of 42.2 points after the follow-up (t test, P < 0.05). Significant systemic release of Cr/Co was proven in the serum compared with the control group. The concentrations of Cr/Co measured in the serum are similar in terms of their level to the values measured in THA metal-on-metal combinations or exceed these values given in the literature. Long-term implication of this metal exposure is unknown and should be studied further.
Chitmongkolsuk, Somsak; Heydecke, Guido; Stappert, Christian; Strub, Joerg R
2002-03-01
The replacement of missing posterior teeth using all-ceramic bridges remains a challenge. This study compares the fracture resistance of all-ceramic 3-unit bridges for the replacement of first molars to conventional porcelain-fused-to-metal bridges. Human premolars and molars were used to create two test groups and one control group of 16 specimens each. To simulate clinical parameters, the specimens were exposed to cyclic fatigue loading in an artificial mouth with simultaneous thermocycling. All samples were thereafter exposed to fracture strength testing. Porcelain-fused-to-metal bridges showed significantly higher fracture strengths than all-ceramic bridges. However, the fracture strength of the all-ceramic bridges was higher than peak physiological chewing forces.
Kwon, Young-Min
2016-07-01
Although dual taper modular-neck total hip arthroplasty (THA) design with additional neck-stem modularity has the potential to optimize hip biomechanical parameters by facilitating adjustments of leg length, femoral neck version and offset, there is increasing concern regarding this stem design as a result of the growing numbers of adverse local tissue reactions due to fretting and corrosion at the neck-stem taper junction. Implant factors such as taper cone angle, taper surface roughness, taper contact area, modular neck taper metallurgy, and femoral head size play important roles in influencing extent of taper corrosion. There should be a low threshold to conduct a systematic clinical evaluation of patients with dual-taper modular-neck stem THA using systematic risk stratification algorithms as early recognition and diagnosis will ensure prompt and appropriate treatment. Although specialized tests such as metal ion analysis and cross-sectional imaging modalities such as metal artifact reduction sequence magnetic resonance imaging (MARS MRI) are useful in optimizing clinical decision-making, overreliance on any single investigative tool in the clinical decision-making process for revision surgery should be avoided. Copyright © 2016 Elsevier Inc. All rights reserved.
Gallium-bearing sphalerite in a metal-sulfide nodule of the Qingzhen (EH3) chondrite
NASA Technical Reports Server (NTRS)
Rambaldi, E. R.; Rajan, R. S.; Housley, R. M.; Wang, D.
1986-01-01
The composition and possible history of the Qingshen (EH3) chondrite is presented. The chondrite contains a population of spheroidal metal-sulfide nodules, which display textural evidence of reheating and melting. Evidence of metal sulfuration is also present, suggesting replacement of metal by sulfide during melting. This process has led to the nucleation of perryite along metal-sulfide interfaces. The Ga-bearing sphalerite that was found may have formed by injection of molten sulfide droplets into the metal followed by subsolidus diffusion of Ga from the metal into the sulfide. The latter may occur because of Ga supersaturation in the metal during progressive sulfuration and its decreased affinity for the metal phase during cooling below the taenite-kamacite transition point.
Recent Patents and Designs on Hip Replacement Prostheses
Derar, H; Shahinpoor, M
2015-01-01
Hip replacement surgery has gone through tremendous evolution since the first procedure in 1840. In the past five decades the advances that have been made in technology, advanced and smart materials innovations, surgical techniques, robotic surgery and methods of fixations and sterilization, facilitated hip implants that undergo multiple design revolutions seeking the least problematic implants and a longer survivorship. Hip surgery has become a solution for many in need of hip joint remedy and replacement across the globe. Nevertheless, there are still long-term problems that are essential to search and resolve to find the optimum implant. This paper reviews several recent patents on hip replacement surgery. The patents present various designs of prostheses, different materials as well as methods of fixation. Each of the patents presents a new design as a solution to different issues ranging from the longevity of the hip prostheses to discomfort and inconvenience experienced by patients in the long-term. PMID:25893020
... anything that contains metal into the scanner room. Considerations Tests that may be done instead of an ... Magnetic resonance imaging - ankle; MRI - femur; MRI - leg Patient Instructions Femur fracture repair - discharge Hip fracture - discharge ...
Protection against hip fractures by energy absorption.
Lauritzen, J B; Askegaard, V
1992-02-01
Impact lateral to the hip was noted in 37 of 60 patients with hip fracture. Women with hip fracture (n = 12) had an average 22 mm thick soft tissue cover of the hip as compared to 32 mm in healthy women (n = 27), even for the same body mass index. Experiments where a steel weight was dropped from various heights onto porcine soft tissue showed that a layer of 29 mm could absorb 60% more energy than a 20 mm thick layer before nearly metallic contact would occur, corresponding to a sharp rise in load. If the results are related to conditions in vivo, then the passive protection of soft tissue over the hip is important for the development of hip fractures, and may under certain assumptions explain the higher risk of hip fractures in thin persons. An external hip protection device might therefore prevent some hip fractures.
Goreham-Voss, Curtis M.; Hyde, Philip J.; Hall, Richard M.; Fisher, John; Brown, Thomas D.
2010-01-01
Computational simulations of wear of orthopaedic total joint replacement implants have proven to valuably complement laboratory physical simulators, for pre-clinical estimation of abrasive/adhesive wear propensity. This class of numerical formulations has primarily involved implementation of the Archard/Lancaster relationship, with local wear computed as the product of (finite element) contact stress, sliding speed, and a bearing-couple-dependent wear factor. The present study introduces an augmentation, whereby the influence of interface cross-shearing motion transverse to the prevailing molecular orientation of the polyethylene articular surface is taken into account in assigning the instantaneous local wear factor. The formulation augment is implemented within a widely-utilized commercial finite element software environment (ABAQUS). Using a contemporary metal-on-polyethylene total disc replacement (ProDisc-L) as an illustrative implant, physically validated computational results are presented to document the role of cross-shearing effects in alternative laboratory consensus testing protocols. Going forward, this formulation permits systematically accounting for cross-shear effects in parametric computational wear studies of metal-on-polyethylene joint replacements, heretofore a substantial limitation of such analyses. PMID:20399432
Functional Coatings or Films for Hard-Tissue Applications
Wang, Guocheng; Zreiqat, Hala
2010-01-01
Metallic biomaterials like stainless steel, Co-based alloy, Ti and its alloys are widely used as artificial hip joints, bone plates and dental implants due to their excellent mechanical properties and endurance. However, there are some surface-originated problems associated with the metallic implants: corrosion and wear in biological environments resulting in ions release and formation of wear debris; poor implant fixation resulting from lack of osteoconductivity and osteoinductivity; implant-associated infections due to the bacterial adhesion and colonization at the implantation site. For overcoming these surface-originated problems, a variety of surface modification techniques have been used on metallic implants, including chemical treatments, physical methods and biological methods. This review surveys coatings that serve to provide properties of anti-corrosion and anti-wear, biocompatibility and bioactivity, and antibacterial activity. PMID:28883319
High temperature thrust chamber for spacecraft
NASA Technical Reports Server (NTRS)
Chazen, Melvin L. (Inventor); Mueller, Thomas J. (Inventor); Kruse, William D. (Inventor)
1998-01-01
A high temperature thrust chamber for spacecraft (20) is provided herein. The high temperature thrust chamber comprises a hollow body member (12) having an outer surface and an internal surface (16) defining the high temperature chamber (10). The body member (12) is made substantially of rhenium. An alloy (18) consisting of iridium and at least alloying metal selected of the group consisting of rhodium, platinum and palladium is deposited on at least a portion of the internal surface (16) of the body member (12). The iridium and the alloying metal are electrodeposited onto the body member (12). A HIP cycle is performed upon the body member (12) to cause the coating of iridium and the alloying metal to form the alloy (18) which protects the body member (12) from oxidation.
Adzic, Radoslav; Vukmirovic, Miomir; Sasaki, Kotaro
2010-04-27
The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen. The invention also relates to methods of making the metal-metal oxide composites.
2011-01-01
Background There is emerging evidence for a beneficial effect of meat consumption on the musculoskeletal system. However, whether it affects the risk of knee and hip osteoarthritis is unknown. We performed a prospective cohort study to examine the relationship between meat consumption and risk of primary hip and knee replacement for osteoarthritis. Methods Eligible 35,331 participants were selected from the Melbourne Collaborative Cohort Study recruited during 1990-1994. Consumption of fresh red meat, processed meat, chicken, and fish was assessed using a food frequency questionnaire. Primary hip and knee replacement for osteoarthritis during 2001-2005 was determined by linking the cohort records to the Australian National Joint Replacement Registry. Results There was a negative dose-response relationship between fresh red meat consumption and the risk of hip replacement (hazard ratio (HR) 0.94 per increase in intake of one time/week, 95% confidence interval (CI) 0.89-0.98). In contrast, there was no association with knee replacement risk (HR 0.98, 95% CI 0.94-1.02). Consumption of processed meat, chicken and fish were not associated with risk of hip or knee replacement. Conclusion A high level consumption of fresh red meat was associated with a decreased risk of hip, but not knee, joint replacement for osteoarthritis. One possible mechanism to explain these differential associations may be via an effect of meat intake on bone strength and hip shape. Further confirmatory studies are warranted. PMID:21235820
Wang, Yuanyuan; Simpson, Julie Anne; Wluka, Anita E; English, Dallas R; Giles, Graham G; Graves, Stephen; Cicuttini, Flavia M
2011-01-16
There is emerging evidence for a beneficial effect of meat consumption on the musculoskeletal system. However, whether it affects the risk of knee and hip osteoarthritis is unknown. We performed a prospective cohort study to examine the relationship between meat consumption and risk of primary hip and knee replacement for osteoarthritis. Eligible 35,331 participants were selected from the Melbourne Collaborative Cohort Study recruited during 1990-1994. Consumption of fresh red meat, processed meat, chicken, and fish was assessed using a food frequency questionnaire. Primary hip and knee replacement for osteoarthritis during 2001-2005 was determined by linking the cohort records to the Australian National Joint Replacement Registry. There was a negative dose-response relationship between fresh red meat consumption and the risk of hip replacement (hazard ratio (HR) 0.94 per increase in intake of one time/week, 95% confidence interval (CI) 0.89-0.98). In contrast, there was no association with knee replacement risk (HR 0.98, 95% CI 0.94-1.02). Consumption of processed meat, chicken and fish were not associated with risk of hip or knee replacement. A high level consumption of fresh red meat was associated with a decreased risk of hip, but not knee, joint replacement for osteoarthritis. One possible mechanism to explain these differential associations may be via an effect of meat intake on bone strength and hip shape. Further confirmatory studies are warranted.
Metal ion levels and lymphocyte counts: ASR hip resurfacing prosthesis vs. standard THA
2013-01-01
Background and purpose Wear particles from metal–on–metal arthroplasties are under suspicion for adverse effects both locally and systemically, and the DePuy ASR Hip Resurfacing System (RHA) has above–average failure rates. We compared lymphocyte counts in RHA and total hip arthroplasty (THA) and investigated whether cobalt and chromium ions affected the lymphocyte counts. Method In a randomized controlled trial, we followed 19 RHA patients and 19 THA patients. Lymphocyte subsets and chromium and cobalt ion concentrations were measured at baseline, at 8 weeks, at 6 months, and at 1 and 2 years. Results The T–lymphocyte counts for both implant types declined over the 2–year period. This decline was statistically significant for CD3+CD8+ in the THA group, with a regression coefficient of –0.04 × 109cells/year (95% CI: –0.08 to –0.01). Regression analysis indicated a depressive effect of cobalt ions in particular on T–cells with 2–year whole–blood cobalt regression coefficients for CD3+ of –0.10 (95% CI: –0.16 to –0.04) × 109 cells/parts per billion (ppb), for CD3+CD4+ of –0.06 (–0.09 to –0.03) × 109 cells/ppb, and for CD3+CD8+ of –0.02 (–0.03 to –0.00) × 109 cells/ppb. Interpretation Circulating T–lymphocyte levels may decline after surgery, regardless of implant type. Metal ions—particularly cobalt—may have a general depressive effect on T– and B–lymphocyte levels. Registered with ClinicalTrials.gov under # NCT01113762 PMID:23597114
Van Susante, Job L C; Verdonschot, Nico; Bom, L Paul A; Tomaszewski, Pawel; Campbell, Pat; Ebramzadeh, Edward; Schreurs, B Wim
2018-01-01
Background and purpose Hip resurfacing (HR) is a treatment option promoted for hip arthritis in young and active patients. However, adverse reactions to metal are a concern and the search for non-metallic bearing options proceeds. We present the first clinical study performed in patients using a newly developed hydrophilic polymer-on-polymer hip resurfacing device. Patients and methods After performing extensive hip simulator tests, biocompatibility testing and animal tests (ISO 14242-1,3; 10993-3,4,5,10,11), approval was obtained from the IRB committee to enroll 15 patients in the first clinical study in humans using this experimental polymer-on-polymer hip resurfacing device. All surgeries were done by 2 experienced hip resurfacing surgeons. Clinical scores and standard radiographs as well as routine MRIs were obtained at regular intervals. Results The surgical technique proved feasible with successful implantation of the new device using PMMA cement fixation on both sides without complications. Postoperative imaging revealed a well-positioned and well-fixed polymer resurfacing hip arthroplasty in all 4 initial cases. All 4 patients were free of pain and had good function for the first 2 months. However, in all 4 cases early cup loosening occurred between 8 and 11 weeks after surgery, necessitating immediate closure of the study. All 4 patients had a reoperation and were revised to a conventional THA. Retrieval analyses confirmed early cup loosening at the implant–cement interface in all 4 cases. The femoral components remained well attached to the cement. The periprosthetic tissues showed only small amounts of polymeric wear debris and there was only a very mild inflammatory reaction to this. Interpretation Early cup loosening mandated a premature arrest of this study. After additional laboratory testing this failure mode was found to be the result of a small, yet measurable contraction in the cup size after exposing these implants to biological fluid divalent ion fluctuations in vivo. Currently used preclinical tests had failed to detect this failure mechanism. Modification of the polymer is essential to overcome these problems and before the potential of a polymer-on-polymer resurfacing arthroplasty may be further evaluated in patients. PMID:28931340
Van Susante, Job L C; Verdonschot, Nico; Bom, L Paul A; Tomaszewski, Pawel; Campbell, Pat; Ebramzadeh, Edward; Schreurs, B Wim
2018-02-01
Background and purpose - Hip resurfacing (HR) is a treatment option promoted for hip arthritis in young and active patients. However, adverse reactions to metal are a concern and the search for non-metallic bearing options proceeds. We present the first clinical study performed in patients using a newly developed hydrophilic polymer-on-polymer hip resurfacing device. Patients and methods - After performing extensive hip simulator tests, biocompatibility testing and animal tests (ISO 14242-1,3; 10993-3,4,5,10,11), approval was obtained from the IRB committee to enroll 15 patients in the first clinical study in humans using this experimental polymer-on-polymer hip resurfacing device. All surgeries were done by 2 experienced hip resurfacing surgeons. Clinical scores and standard radiographs as well as routine MRIs were obtained at regular intervals. Results - The surgical technique proved feasible with successful implantation of the new device using PMMA cement fixation on both sides without complications. Postoperative imaging revealed a well-positioned and well-fixed polymer resurfacing hip arthroplasty in all 4 initial cases. All 4 patients were free of pain and had good function for the first 2 months. However, in all 4 cases early cup loosening occurred between 8 and 11 weeks after surgery, necessitating immediate closure of the study. All 4 patients had a reoperation and were revised to a conventional THA. Retrieval analyses confirmed early cup loosening at the implant-cement interface in all 4 cases. The femoral components remained well attached to the cement. The periprosthetic tissues showed only small amounts of polymeric wear debris and there was only a very mild inflammatory reaction to this. Interpretation - Early cup loosening mandated a premature arrest of this study. After additional laboratory testing this failure mode was found to be the result of a small, yet measurable contraction in the cup size after exposing these implants to biological fluid divalent ion fluctuations in vivo. Currently used preclinical tests had failed to detect this failure mechanism. Modification of the polymer is essential to overcome these problems and before the potential of a polymer-on-polymer resurfacing arthroplasty may be further evaluated in patients.
Assessment of metal artifact reduction methods in pelvic CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdoli, Mehrsima; Mehranian, Abolfazl; Ailianou, Angeliki
2016-04-15
Purpose: Metal artifact reduction (MAR) produces images with improved quality potentially leading to confident and reliable clinical diagnosis and therapy planning. In this work, the authors evaluate the performance of five MAR techniques for the assessment of computed tomography images of patients with hip prostheses. Methods: Five MAR algorithms were evaluated using simulation and clinical studies. The algorithms included one-dimensional linear interpolation (LI) of the corrupted projection bins in the sinogram, two-dimensional interpolation (2D), a normalized metal artifact reduction (NMAR) technique, a metal deletion technique, and a maximum a posteriori completion (MAPC) approach. The algorithms were applied to ten simulatedmore » datasets as well as 30 clinical studies of patients with metallic hip implants. Qualitative evaluations were performed by two blinded experienced radiologists who ranked overall artifact severity and pelvic organ recognition for each algorithm by assigning scores from zero to five (zero indicating totally obscured organs with no structures identifiable and five indicating recognition with high confidence). Results: Simulation studies revealed that 2D, NMAR, and MAPC techniques performed almost equally well in all regions. LI falls behind the other approaches in terms of reducing dark streaking artifacts as well as preserving unaffected regions (p < 0.05). Visual assessment of clinical datasets revealed the superiority of NMAR and MAPC in the evaluated pelvic organs and in terms of overall image quality. Conclusions: Overall, all methods, except LI, performed equally well in artifact-free regions. Considering both clinical and simulation studies, 2D, NMAR, and MAPC seem to outperform the other techniques.« less
Metal artifact suppression in megavoltage computed tomography
NASA Astrophysics Data System (ADS)
Schreiner, L. John; Rogers, Myron; Salomons, Greg; Kerr, Andrew
2005-04-01
There has been considerable interest in megavoltage CT (MVCT) imaging associated with the development of image guided radiation therapy. It is clear that MVCT can provide good image quality for patient setup verification with soft tissue contrast much better than noted in conventional megavoltage portal imaging. In addition, it has been observed that MVCT images exhibit considerably reduced artifacts surrounding metal implants (e.g., surgical clips, hip implants, dental fillings) compared to conventional diagnostic CT images (kVCT). When encountered, these artifacts greatly limit the usefulness of kVCT images, and a variety of solutions have been proposed to remove the artifacts, but these have met with only partial success. In this paper, we investigate the potential for CT imaging in regions surrounding metal implants using high-energy photons from a Cobalt-60 source and from a 4 MV linear accelerator. MVCT and kVCT images of contrast phantoms and a phantom containing a hip prosthesis are compared and analysed. We show that MVCT scans provide good fidelity for CT number quantification in the high-density regions of the images, and in the regions immediately adjacent to the metal implants. They also provide structural details within the high-density inserts and implants. Calculations will show that practical clinical MVCT imaging, able to detect 3% contrast objects, should be achievable with doses of about 2.5cGy. This suggests that MVCT not only has a role in radiotherapy treatment planning and guidance, but may also be indicated for surgical guidance and follow-up in regions where metal implants cannot be avoided.
Stone, Emma Louise; Wakefield, Andrew; Harris, Stephen; Jones, Gareth
2015-01-01
Artificial light at night is a major feature of anthropogenic global change and is increasingly recognized as affecting biodiversity, often negatively. On a global scale, newer technology white lights are replacing orange sodium lights to reduce energy waste. In 2009, Cornwall County Council (UK) commenced replacement of existing low-pressure sodium (LPS) high intensity discharge (HID) street lights with new Phillips CosmoPolis white ceramic metal halide street lights to reduce energy wastage. This changeover provided a unique collaborative opportunity to implement a before-after-control-impact field experiment to investigate the ecological effects of newly installed broad spectrum light technologies. Activity of the bat species Pipistrellus pipistrellus, P. pygmaeus and Nyctalus/Eptesicus spp. was significantly higher at metal halide than LPS lights, as found in other studies of bat activity at old technology (i.e. mercury vapour) white light types. No significant difference was found in feeding attempts per bat pass between light types, though more passes overall were recorded at metal halide lights. Species-specific attraction of bats to the metal halide lights could have cascading effects at lower trophic levels. We highlight the need for further research on possible ecosystem-level effects of light technologies before they are installed on a wide scale. PMID:25780239
Socket position determines hip resurfacing 10-year survivorship.
Amstutz, Harlan C; Le Duff, Michel J; Johnson, Alicia J
2012-11-01
Modern metal-on-metal hip resurfacing arthroplasty designs have been used for over a decade. Risk factors for short-term failure include small component size, large femoral head defects, low body mass index, older age, high level of sporting activity, and component design, and it is established there is a surgeon learning curve. Owing to failures with early surgical techniques, we developed a second-generation technique to address those failures. However, it is unclear whether the techniques affected the long-term risk factors. We (1) determined survivorship for hips implanted with the second-generation cementing technique; (2) identified the risk factors for failure in these patients; and (3) determined the effect of the dominant risk factors on the observed modes of failure. We retrospectively reviewed the first 200 hips (178 patients) implanted using our second-generation surgical technique, which consisted of improvements in cleaning and drying the femoral head before and during cement application. There were 129 men and 49 women. Component orientation and contact patch to rim distance were measured. We recorded the following modes of failure: femoral neck fracture, femoral component loosening, acetabular component loosening, wear, dislocation, and sepsis. The minimum followup was 25 months (mean, 106.5 months; range, 25-138 months). Twelve hips were revised. Kaplan-Meier survivorship was 98.0% at 5 years and 94.3% at 10 years. The only variable associated with revision was acetabular component position. Contact patch to rim distance was lower in hips that dislocated, were revised for wear, or were revised for acetabular loosening. The dominant modes of failure were related to component wear or acetabular component loosening. Acetabular component orientation, a factor within the surgeon's control, determines the long-term success of our current hip resurfacing techniques. Current techniques have changed the modes of failure from aseptic femoral failure to wear or loosening of the acetabular component. Level III, prognostic study. See Guidelines for Authors for a complete description of levels of evidence.
Deegan, Brian J.; Bona, Anna M.; Bhat, Vikas; Mikles, David C.; McDonald, Caleb B.; Seldeen, Kenneth L.; Farooq, Amjad
2011-01-01
Estrogen receptor α (ERα) acts as a transcription factor by virtue of the ability of its DNA-binding (DB) domain, comprised of a tandem pair of zinc fingers, to recognize the estrogen response element (ERE) within the promoters of target genes. Herein, using an array of biophysical methods, we probe structural consequences of the replacement of zinc within the DB domain of ERα with various environmental metals and their effects on the thermodynamics of binding to DNA. Our data reveal that while the DB domain reconstituted with divalent ions of zinc, cadmium, mercury and cobalt binds to DNA with affinities in the nanomolar range, divalent ions of barium, copper, iron, lead, manganese, nickel and tin are unable to regenerate DB domain with DNA-binding potential though they can compete with zinc for coordinating the cysteine ligands within the zinc fingers. We also show that the metal-free DB domain is a homodimer in solution and that the binding of various metals only results in subtle secondary and tertiary structural changes, implying that metal-coordination may only be essential for DNA-binding. Collectively, our findings provide mechanistic insights into how environmental metals may modulate the physiological function of a key nuclear receptor involved in mediating a plethora of cellular functions central to human health and disease. PMID:22038807
Primary total hip replacement for displaced subcapital fractures of the femur.
Taine, W H; Armour, P C
1985-03-01
The management of displaced subcapital fracture of the hip is still controversial because of the high incidence of complications after internal fixation or hemiarthroplasty. To avoid some of these complications we have used primary total hip replacement for independently mobile patients over 65 years of age. A total of 163 cases, operated on over four years, have been reviewed. There were relatively more dislocations after operation for fracture than after total replacement for arthritis, and these were associated with a posterior approach to the hip. Only seven revision operations have been required. Of 57 patients who were interviewed an average of 42 months after replacement, 62% had excellent or good results as assessed by the Harris hip score. All the others had major systemic disease which affected their assessment. This inadequacy of current systems of hip assessment is discussed. It is concluded that total hip replacement is the best management for a selected group of patients with this injury, and that further prospective studies are indicated.
Bryant, M; Ward, M; Farrar, R; Freeman, R; Brummitt, K; Nolan, J; Neville, A
2014-04-01
This study presents the characterisation of the surface topography, tomography and chemistry of fretting corrosion product found on retrieved polished femoral stems. Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM) and Fourier Transform Infrared Spectroscopy (FI-IR) were utilised in order to assess the surface morphology of retrieved Metal-on-Metal Total Hip Replacements and surface chemistry of the films found on the surface. Gross slip, plastic deformation and directionality of the surface were extensively seen on the proximal surfaces of the retrievals. A more corrosive phenomenon was observed in the distal regions of the stem, demonstrating a seemingly intergranular attack. Tribochemical reactions were seen to occur within the stem-cement interfaces with tribofilms being observed on the femoral stem and counterpart PMMA bone cement. XPS, TEM-EDX and FT-IR analyses demonstrated that the films present in the stem surfaces were a complex mixture of chromium oxide and amorphous organic material. A comparison between current experimental and clinical literature has been conducted and findings from this study demonstrate that the formation and chemistry of films are drastically influenced by the type of wear or degradation mechanism. Films formed in the stem-cement interface are thought to further influence the biological environment outside the stem-cement interface due to the formation of Cr and O rich films within the interface whilst Co is free to migrate away. © 2013 Elsevier Ltd. All rights reserved.
Childhood Cancer: Osteosarcoma
... either a bone graft (usually from a bone bank) or more often a special metal prosthesis (artificial ... risk of infection and fracture is higher with bank bone replacement and therefore metal prostheses are more ...
Grosse, Susann; Haugland, Hans Kristian; Lilleng, Peer; Ellison, Peter; Hallan, Geir; Høl, Paul Johan
2015-01-01
Wear debris-induced inflammation is considered to be the main cause for periprosthetic osteolysis in total hip replacements (THR). The objective of this retrieval study was to examine the tissue reactions and exposure to metal ions and wear particles in periprosthetic tissues and blood samples from patients with titanium (Ti)-based hip prostheses that were revised due to wear, osteolysis, and/or aseptic loosening. Semiquantitative, histological tissue evaluations in 30 THR-patients revealed numerous wear debris-loaded macrophages, inflammatory cells, and necrosis in both groups. Particle load was highest in tissues adjacent to loosened cemented Ti stems that contained mainly submicron zirconium (Zr) dioxide particles. Particles containing pure Ti and Ti alloy elements were most abundant in tissues near retrieved uncemented cups. Polyethylene particles were also detected, but accounted only for a small portion of the total particle number. The blood concentrations of Ti and Zr were highly elevated in cases with high abrasive wear and osteolysis. Our findings indicate that wear particles of different chemical composition induced similar inflammatory responses, which suggests that particle size and load might be more important than the wear particle composition in periprosthetic inflammation and osteolysis. © 2014 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B:709–717, 2015. PMID:25051953