Sample records for metal-organic framework material

  1. Metal-organic framework materials with ultrahigh surface areas

    DOEpatents

    Farha, Omar K.; Hupp, Joseph T.; Wilmer, Christopher E.; Eryazici, Ibrahim; Snurr, Randall Q.; Gomez-Gualdron, Diego A.; Borah, Bhaskarjyoti

    2015-12-22

    A metal organic framework (MOF) material including a Brunauer-Emmett-Teller (BET) surface area greater than 7,010 m.sup.2/g. Also a metal organic framework (MOF) material including hexa-carboxylated linkers including alkyne bond. Also a metal organic framework (MOF) material including three types of cuboctahedron cages fused to provide continuous channels. Also a method of making a metal organic framework (MOF) material including saponifying hexaester precursors having alkyne bonds to form a plurality of hexa-carboxylated linkers including alkyne bonds and performing a solvothermal reaction with the plurality of hexa-carboxylated linkers and one or more metal containing compounds to form the MOF material.

  2. Emerging Multifunctional Metal-Organic Framework Materials.

    PubMed

    Li, Bin; Wen, Hui-Min; Cui, Yuanjing; Zhou, Wei; Qian, Guodong; Chen, Banglin

    2016-10-01

    Metal-organic frameworks (MOFs), also known as coordination polymers, represent an interesting type of solid crystalline materials that can be straightforwardly self-assembled through the coordination of metal ions/clusters with organic linkers. Owing to the modular nature and mild conditions of MOF synthesis, the porosities of MOF materials can be systematically tuned by judicious selection of molecular building blocks, and a variety of functional sites/groups can be introduced into metal ions/clusters, organic linkers, or pore spaces through pre-designing or post-synthetic approaches. These unique advantages enable MOFs to be used as a highly versatile and tunable platform for exploring multifunctional MOF materials. Here, the bright potential of MOF materials as emerging multifunctional materials is highlighted in some of the most important applications for gas storage and separation, optical, electric and magnetic materials, chemical sensing, catalysis, and biomedicine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Purification of metal-organic framework materials

    DOEpatents

    Farha, Omar K.; Hupp, Joseph T.

    2012-12-04

    A method of purification of a solid mixture of a metal-organic framework (MOF) material and an unwanted second material by disposing the solid mixture in a liquid separation medium having a density that lies between those of the wanted MOF material and the unwanted material, whereby the solid mixture separates by density differences into a fraction of wanted MOF material and another fraction of unwanted material.

  4. Purification of metal-organic framework materials

    DOEpatents

    Farha, Omar K.; Hupp, Joseph T.

    2015-06-30

    A method of purification of a solid mixture of a metal-organic framework (MOF) material and an unwanted second material by disposing the solid mixture in a liquid separation medium having a density that lies between those of the wanted MOF material and the unwanted material, whereby the solid mixture separates by density differences into a fraction of wanted MOF material and another fraction of unwanted material.

  5. Methods for associating or dissociating guest materials with a metal organic framework, systems for associating or dissociating guest materials within a series of metal organic frameworks, thermal energy transfer assemblies, and methods for transferring thermal energy

    DOEpatents

    McGrail, B. Peter; Brown, Daryl R.; Thallapally, Praveen K.

    2016-08-02

    Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Thermal energy transfer assemblies are provided. Methods for transferring thermal energy are also provided.

  6. Methods for associating or dissociating guest materials with a metal organic framework, systems for associating or dissociating guest materials within a series of metal organic frameworks, thermal energy transfer assemblies, and methods for transferring thermal energy

    DOEpatents

    McGrail, B. Peter; Brown, Daryl R.; Thallapally, Praveen K.

    2014-08-05

    Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Thermal energy transfer assemblies are provided. Methods for transferring thermal energy are also provided.

  7. Metal-organic framework materials based on icosahedral boranes and carboranes

    DOEpatents

    Mirkin, Chad A.; Hupp, Joseph T.; Farha, Omar K.; Spokoyny, Alexander M.; Mulfort, Karen L.

    2010-11-02

    Disclosed herein are metal-organic frameworks of metals and boron rich ligands, such as carboranes and icosahedral boranes. Methods of synthesizing and using these materials in gas uptake are disclosed.

  8. Semiconductor Metal-Organic Frameworks: Future Low-Bandgap Materials.

    PubMed

    Usman, Muhammad; Mendiratta, Shruti; Lu, Kuang-Lieh

    2017-02-01

    Metal-organic frameworks (MOFs) with low density, high porosity, and easy tunability of functionality and structural properties, represent potential candidates for use as semiconductor materials. The rapid development of the semiconductor industry and the continuous miniaturization of feature sizes of integrated circuits toward the nanometer (nm) scale require novel semiconductor materials instead of traditional materials like silicon, germanium, and gallium arsenide etc. MOFs with advantageous properties of both the inorganic and the organic components promise to serve as the next generation of semiconductor materials for the microelectronics industry with the potential to be extremely stable, cheap, and mechanically flexible. Here, a perspective of recent research is provided, regarding the semiconducting properties of MOFs, bandgap studies, and their potential in microelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Metal-Organic Framework-Derived Materials for Sodium Energy Storage.

    PubMed

    Zou, Guoqiang; Hou, Hongshuai; Ge, Peng; Huang, Zhaodong; Zhao, Ganggang; Yin, Dulin; Ji, Xiaobo

    2018-01-01

    Recently, sodium-ion batteries (SIBs) are extensively explored and are regarded as one of the most promising alternatives to lithium-ion batteries for electrochemical energy conversion and storage, owing to the abundant raw material resources, low cost, and similar electrochemical behavior of elemental sodium compared to lithium. Metal-organic frameworks (MOFs) have attracted enormous attention due to their high surface areas, tunable structures, and diverse applications in drug delivery, gas storage, and catalysis. Recently, there has been an escalating interest in exploiting MOF-derived materials as anodes for sodium energy storage due to their fast mass transport resulting from their highly porous structures and relatively simple preparation methods originating from in situ thermal treatment processes. In this Review, the recent progress of the sodium-ion storage performances of MOF-derived materials, including MOF-derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), as SIB anodes is systematically and completely presented and discussed. Moreover, the current challenges and perspectives of MOF-derived materials in electrochemical energy storage are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Chromium metal organic frameworks and synthesis of metal organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hong-Cai; Liu, Tian-Fu; Lian, Xizhen

    The present invention relates to monocrystalline metal organic frameworks comprising chromium ions and carboxylate ligands and the use of the same, for example their use for storing a gas. The invention also relates to methods for preparing metal organic frameworks comprising chromium, titanium or iron ions and carboxylate ligands. The methods of the invention allow such metal organic frameworks to be prepared in monocrystalline or polycrystalline forms.

  11. Minerals with metal-organic framework structures

    PubMed Central

    Huskić, Igor; Pekov, Igor V.; Krivovichev, Sergey V.; Friščić, Tomislav

    2016-01-01

    Metal-organic frameworks (MOFs) are an increasingly important family of advanced materials based on open, nanometer-scale metal-organic architectures, whose design and synthesis are based on the directed assembly of carefully designed subunits. We now demonstrate an unexpected link between mineralogy and MOF chemistry by discovering that the rare organic minerals stepanovite and zhemchuzhnikovite exhibit structures found in well-established magnetic and proton-conducting metal oxalate MOFs. Structures of stepanovite and zhemchuzhnikovite, exhibiting almost nanometer-wide and guest-filled apertures and channels, respectively, change the perspective of MOFs as exclusively artificial materials and represent, so far, unique examples of open framework architectures in organic minerals. PMID:27532051

  12. Minerals with metal-organic framework structures.

    PubMed

    Huskić, Igor; Pekov, Igor V; Krivovichev, Sergey V; Friščić, Tomislav

    2016-08-01

    Metal-organic frameworks (MOFs) are an increasingly important family of advanced materials based on open, nanometer-scale metal-organic architectures, whose design and synthesis are based on the directed assembly of carefully designed subunits. We now demonstrate an unexpected link between mineralogy and MOF chemistry by discovering that the rare organic minerals stepanovite and zhemchuzhnikovite exhibit structures found in well-established magnetic and proton-conducting metal oxalate MOFs. Structures of stepanovite and zhemchuzhnikovite, exhibiting almost nanometer-wide and guest-filled apertures and channels, respectively, change the perspective of MOFs as exclusively artificial materials and represent, so far, unique examples of open framework architectures in organic minerals.

  13. Biomimetic mineralization of metal-organic frameworks around polysaccharides.

    PubMed

    Liang, Kang; Wang, Ru; Boutter, Manon; Doherty, Cara M; Mulet, Xavier; Richardson, Joseph J

    2017-01-19

    Biomimetic mineralization exploits natural biomineralization processes for the design and fabrication of synthetic functional materials. Here, we report for the first time the use of carbohydrates (polysaccharides) for the biomimetic crystallization of metal-organic frameworks. This discovery greatly expands the potential and diversity of biomimetic approaches for the design, synthesis, and functionalization of new bio-metal-organic framework composite materials.

  14. Methane storage in metal-organic frameworks.

    PubMed

    He, Yabing; Zhou, Wei; Qian, Guodong; Chen, Banglin

    2014-08-21

    Natural gas (NG), whose main component is methane, is an attractive fuel for vehicular applications. Realization of safe, cheap and convenient means and materials for high-capacity methane storage can significantly facilitate the implementation of natural gas fuelled vehicles. The physisorption based process involving porous materials offers an efficient storage methodology and the emerging porous metal-organic frameworks have been explored as potential candidates because of their extraordinarily high porosities, tunable pore/cage sizes and easily immobilized functional sites. In this view, we provide an overview of the current status of metal-organic frameworks for methane storage.

  15. Metallated metal-organic frameworks

    DOEpatents

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-02-07

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  16. Metallated metal-organic frameworks

    DOEpatents

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-08-22

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  17. Dynamical Effects in Metal-Organic Frameworks: The Microporous Materials as Shock Absorbers

    NASA Astrophysics Data System (ADS)

    Banlusan, Kiettipong; Strachan, Alejandro

    2017-06-01

    Metal-organic frameworks (MOFs) are a class of nano-porous crystalline solids consisting of inorganic units coordinated to organic linkers. The unique molecular structures and outstanding properties with ultra-high porosity and tunable chemical functionality by various choices of metal clusters and organic ligands make this class of materials attractive for many applications. The complex and quite unique responses of these materials to mechanical loading including void collapse make them attractive for applications in energy absorption and storage. We will present using large-scale molecular dynamics simulations to investigate shock propagation in zeolitic imidazolate framework ZIF-8 and MOF-5. We find that for shock strengths above a threshold a two-wave structure develops with a leading elastic precursor followed by a second wave of structural collapse to relax the stress. Structural transition of MOFs in response to shock waves corresponds to the transition between two Hugoniot curves, and results in abrupt change in temperature. The pore-collapse wave propagates at slower velocity than the leading wave and weakens it, resulting in shock attenuation. Increasing piston speed results in faster propagation of pore-collapse wave, but the leading elastic wave remains unchanged below the overdriven regime. We discuss how the molecular structure of the MOFs and shock propagation direction affect the response of the materials and their ability to weaken shocks. Office of Naval Research, MURI 2012 02341 01.

  18. Metal-organic frameworks as functional, porous materials

    NASA Astrophysics Data System (ADS)

    Rood, Jeffrey A.

    The research presented in this thesis investigates the use of metal carboxylates as permanently porous materials called metal-organic frameworks (MOFs). The project has focused on three broad areas of study, each which strives to develop a further understanding of this class of materials. The first topic is concerned with the synthesis and structural characterization of MOFs. Our group and others have found that the reaction of metal salts with carboxylic acids in polar solvents at elevated temperatures often leads the formation of crystalline MOF materials that can be examined by single crystal X-ray diffraction. Specifically, Chapter 2 reports on some of the first examples of magnesium MOFs, constructed from formate or aryldicarboxylate ligands. The magnesium formate MOF, [Mg3(O2CH) 6] was found to be a permanently porous 3-D material capable of selective uptake and exchange of small molecules. Once the synthesis and structures of some of these materials was known, their physical properties were studied. The magnesium formate MOF, [Mg 3(O2CH)6], was found to be permanently porous and able to reversibly adsorb both N2 and H2 gas. Furthermore, the material was also capable of taking up a variety of organic molecules to form new inclusion compounds that were characterized by XRD studies. Size exclusion was shown for cyclohexane and larger molecules. Chapters 3, 5, and 6 attempt to build off of the synthetic findings reported in Chapter 2. Specifically, the ability of these materials to take up guest molecules is expanded by the attempted synthesis of porous, homochiral MOFs using enantiopure carboxylic acids in the synthesis. It was found that under the appropriate synthetic conditions, both L-tartaric acid and (+)-camphoric acid were robust linkers for the formation of homochiral MOFs. Of the compounds synthesized, the most interesting were the set of compounds, [Zn2(Cam) 2(bipy)⊃3DMF] and [Zn2(Cam)2(apyr)⊃2DMF]. These compounds formed isoreticular cubic

  19. Industrial applications of metal-organic frameworks.

    PubMed

    Czaja, Alexander U; Trukhan, Natalia; Müller, Ulrich

    2009-05-01

    New materials are prerequisite for major breakthrough applications influencing our daily life, and therefore are pivotal for the chemical industry. Metal-organic frameworks (MOFs) constitute an emerging class of materials useful in gas storage, gas purification and separation applications as well as heterogeneous catalysis. They not only offer higher surface areas and the potential for enhanced activity than currently used materials like base metal oxides, but also provide shape/size selectivity which is important both for separations and catalysis. In this critical review an overview of the potential applications of MOFs in the chemical industry is presented. Furthermore, the synthesis and characterization of the materials are briefly discussed from the industrial perspective (88 references).

  20. Barcoded materials based on photoluminescent hybrid system of lanthanide ions-doped metal organic framework and silica via ion exchange.

    PubMed

    Shen, Xiang; Yan, Bing

    2016-04-15

    A multicolored photoluminescent hybrid system based on lanthanide ions-doped metal organic frameworks/silica composite host has potential in display and barcode applications. By controlling the stoichiometry of the lanthanides via cation exchange, proportional various lanthanide ions are successfully introduced into metal organic frameworks, whose emission intensity is correspondingly proportional to its amount. The resulting luminescent barcodes depend on the lanthanide ions ratios and compositions. Subsequently, the lanthanide ions located in the channels of metal organic frameworks are protected from any interaction with the environment after the modification of silica on the surface. The optical and thermal stability of the hybrid materials are improved for technological application. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Water Adsorption in Porous Metal-Organic Frameworks and Related Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furukawa, H; Gandara, F; Zhang, YB

    2014-03-19

    Water adsorption in porous materials is important for many applications such as dehumidification, thermal batteries, and delivery of drinking water in remote areas. In this study, we have identified three criteria for achieving high performing porous materials for water adsorption. These criteria deal with condensation pressure of water in the pores, uptake capacity, and recyclability and water stability of the material. In search of an excellently performing porous material, we have studied and compared the water adsorption properties of 23 materials, 20 of which are metal organic frameworks (MOFs). Among the MOFs are 10 zirconium(IV) MOFs with a subset ofmore » these, MOF-801-SC (single crystal form), -802, -805, -806, -808, -812, and -841 reported for the first time. MOF-801-P (microcrystalline powder form) was reported earlier and studied here for its water adsorption properties. MOF-812 was only made and structurally characterized but not examined for water adsorption because it is a byproduct of MOF-841 synthesis. All the new zirconium MOFs are made from the Zr6O4(OH)(4)(-CO2)(n) secondary building units (n = 6, 8, 10, or 12) and variously shaped carboxyl organic linkers to make extended porous frameworks. The permanent porosity of all 23 materials was confirmed and their water adsorption measured to reveal that MOF-801-P and MOF-841 are the highest performers based on the three criteria stated above; they are water stable, do not lose capacity after five adsorption/desorption cycles, and are easily regenerated at room temperature. An X-ray single-crystal study and a powder neutron diffraction study reveal the position of the water adsorption sites in MOF-801 and highlight the importance of the intermolecular interaction between adsorbed water molecules within the pores.« less

  2. Water adsorption in porous metal-organic frameworks and related materials.

    PubMed

    Furukawa, Hiroyasu; Gándara, Felipe; Zhang, Yue-Biao; Jiang, Juncong; Queen, Wendy L; Hudson, Matthew R; Yaghi, Omar M

    2014-03-19

    Water adsorption in porous materials is important for many applications such as dehumidification, thermal batteries, and delivery of drinking water in remote areas. In this study, we have identified three criteria for achieving high performing porous materials for water adsorption. These criteria deal with condensation pressure of water in the pores, uptake capacity, and recyclability and water stability of the material. In search of an excellently performing porous material, we have studied and compared the water adsorption properties of 23 materials, 20 of which are metal-organic frameworks (MOFs). Among the MOFs are 10 zirconium(IV) MOFs with a subset of these, MOF-801-SC (single crystal form), -802, -805, -806, -808, -812, and -841 reported for the first time. MOF-801-P (microcrystalline powder form) was reported earlier and studied here for its water adsorption properties. MOF-812 was only made and structurally characterized but not examined for water adsorption because it is a byproduct of MOF-841 synthesis. All the new zirconium MOFs are made from the Zr6O4(OH)4(-CO2)n secondary building units (n = 6, 8, 10, or 12) and variously shaped carboxyl organic linkers to make extended porous frameworks. The permanent porosity of all 23 materials was confirmed and their water adsorption measured to reveal that MOF-801-P and MOF-841 are the highest performers based on the three criteria stated above; they are water stable, do not lose capacity after five adsorption/desorption cycles, and are easily regenerated at room temperature. An X-ray single-crystal study and a powder neutron diffraction study reveal the position of the water adsorption sites in MOF-801 and highlight the importance of the intermolecular interaction between adsorbed water molecules within the pores.

  3. Nanomaterials derived from metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Dang, Song; Zhu, Qi-Long; Xu, Qiang

    2018-01-01

    The thermal transformation of metal-organic frameworks (MOFs) generates a variety of nanostructured materials, including carbon-based materials, metal oxides, metal chalcogenides, metal phosphides and metal carbides. These derivatives of MOFs have characteristics such as high surface areas, permanent porosities and controllable functionalities that enable their good performance in sensing, gas storage, catalysis and energy-related applications. Although progress has been made to tune the morphologies of MOF-derived structures at the nanometre scale, it remains crucial to further our knowledge of the relationship between morphology and performance. In this Review, we summarize the synthetic strategies and optimized methods that enable control over the size, morphology, composition and structure of the derived nanomaterials. In addition, we compare the performance of materials prepared by the MOF-templated strategy and other synthetic methods. Our aim is to reveal the relationship between the morphology and the physico-chemical properties of MOF-derived nanostructures to optimize their performance for applications such as sensing, catalysis, and energy storage and conversion.

  4. Chemical principles underpinning the performance of the metal-organic framework HKUST-1.

    PubMed

    Hendon, Christopher H; Walsh, Aron

    2015-07-15

    A common feature of multi-functional metal-organic frameworks is a metal dimer in the form of a paddlewheel, as found in the structure of Cu 3 ( btc ) 2 (HKUST-1). The HKUST-1 framework demonstrates exceptional gas storage, sensing and separation, catalytic activity and, in recent studies, unprecedented ionic and electrical conductivity. These results are a promising step towards the real-world application of metal-organic materials. In this perspective, we discuss progress in the understanding of the electronic, magnetic and physical properties of HKUST-1, representative of the larger family of Cu···Cu containing metal-organic frameworks. We highlight the chemical interactions that give rise to its favourable properties, and which make this material well suited to a range of technological applications. From this analysis, we postulate key design principles for tailoring novel high-performance hybrid frameworks.

  5. Liquid metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Gaillac, Romain; Pullumbi, Pluton; Beyer, Kevin A.; Chapman, Karena W.; Keen, David A.; Bennett, Thomas D.; Coudert, François-Xavier

    2017-11-01

    Metal-organic frameworks (MOFs) are a family of chemically diverse materials, with applications in a wide range of fields, covering engineering, physics, chemistry, biology and medicine. Until recently, research has focused almost entirely on crystalline structures, yet now a clear trend is emerging, shifting the emphasis onto disordered states, including `defective by design’ crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF liquid, obtained by melting a zeolitic imidazolate framework. We combine in situ variable temperature X-ray, ex situ neutron pair distribution function experiments, and first-principles molecular dynamics simulations to study the melting phenomenon and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the MOF liquid.

  6. Liquid metal-organic frameworks.

    PubMed

    Gaillac, Romain; Pullumbi, Pluton; Beyer, Kevin A; Chapman, Karena W; Keen, David A; Bennett, Thomas D; Coudert, François-Xavier

    2017-11-01

    Metal-organic frameworks (MOFs) are a family of chemically diverse materials, with applications in a wide range of fields, covering engineering, physics, chemistry, biology and medicine. Until recently, research has focused almost entirely on crystalline structures, yet now a clear trend is emerging, shifting the emphasis onto disordered states, including 'defective by design' crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF liquid, obtained by melting a zeolitic imidazolate framework. We combine in situ variable temperature X-ray, ex situ neutron pair distribution function experiments, and first-principles molecular dynamics simulations to study the melting phenomenon and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the MOF liquid.

  7. Transition metal complexes supported on metal-organic frameworks for heterogeneous catalysts

    DOEpatents

    Farha, Omar K.; Hupp, Joseph T.; Delferro, Massimiliano; Klet, Rachel C.

    2017-02-07

    A robust mesoporous metal-organic framework comprising a hafnium-based metal-organic framework and a single-site zirconium-benzyl species is provided. The hafnium, zirconium-benzyl metal-organic framework is useful as a catalyst for the polymerization of an alkene.

  8. Three-dimensional metal-intercalated covalent organic frameworks for near-ambient energy storage

    PubMed Central

    Gao, Fei; Ding, Zijing; Meng, Sheng

    2013-01-01

    A new form of nanoporous material, metal intercalated covalent organic framework (MCOF) is proposed and its energy storage property revealed. Employing density functional and thermodynamical analysis, we find that stable, chemically active, porous materials could form by stacking covalent organic framework (COF) layers with metals as a gluing agent. Metal acts as active sites, while its aggregation is suppressed by a binding energy significantly larger than the corresponding cohesive energy of bulk metals. Two important parameters, metal binding and metal-metal separation, are tuned by selecting suitable building blocks and linkers when constructing COF layers. Systematic searches among a variety of elements and organic molecules identify Ca-intercalated COF with diphenylethyne units as optimal material for H2 storage, reaching a striking gravimetric density ~ 5 wt% at near-ambient conditions (300 K, 20 bar), in comparison to < 0.1 wt% for bare COF-1 under the same condition. PMID:23698018

  9. Increasing the Stability of Metal-Organic Frameworks

    DOE PAGES

    Bosch, Mathieu; Zhang, Muwei; Zhou, Hong-Cai

    2014-01-01

    Metal-organic frameworks (MOFs) are a new category of advanced porous materials undergoing study by many researchers for their vast variety of both novel structures and potentially useful properties arising from them. Their high porosities, tunable structures, and convenient process of introducing both customizable functional groups and unsaturated metal centers have afforded excellent gas sorption and separation ability, catalytic activity, luminescent properties, and more. However, the robustness and reactivity of a given framework are largely dependent on its metal-ligand interactions, where the metal-containing clusters are often vulnerable to ligand substitution by water or other nucleophiles, meaning that the frameworks may collapsemore » upon exposure even to moist air. Other frameworks may collapse upon thermal or vacuum treatment or simply over time. This instability limits the practical uses of many MOFs. In order to further enhance the stability of the framework, many different approaches, such as the utilization of high-valence metal ions or nitrogen-donor ligands, were recently investigated. This review details the efforts of both our research group and others to synthesize MOFs possessing drastically increased chemical and thermal stability, in addition to exemplary performance for catalysis, gas sorption, and separation.« less

  10. Thermodynamics of metal-organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Di; Navrotsky, Alexandra, E-mail: anavrotsky@ucdavis.edu

    Although there have been extensive studies over the past decade in the synthesis and application of metal-organic frameworks (MOFs), investigation of their thermodynamic stability and of the energetics of guest–host interactions has been much more limited. This review summarizes recent progress in experimental (calorimetric) determination of the thermodynamics of MOF materials. The enthalpies of MOFs relative to dense phase assemblages suggest only modest metastability, with a general increase of enthalpy with increasing molar volume, which becomes less pronounced at higher porosity. The energy landscape of nanoporous materials (inorganic and hybrid) consists of a pair of parallel patterns within a fairlymore » narrow range of metastability of 5–30 kJ per mole of tetrahedra in zeolites and mesoporous silicas or per mole of metal in MOFs. Thus strong thermodynamic instability does not seem to limit framework formation. There are strong interactions within the chemisorption range for small molecule–MOF interactions with defined chemical binding at the metal centers or other specific locations. Coexistence of surface binding and confinement can lead to much stronger guest–host interactions. - Graphical abstract: Energy landscape of inorganic and hybrid porous materials. - Highlights: • Thermochemical data on various MOF structures were experimentally determined. • MOFs are moderately unstable relative to their dense phase assemblage. • Overall energetic landscape of porous materials was revealed. • Guest–host interactions in MOFs were evaluated directly using calorimetry. • Confinement effect and defined chemical binding lead to strong interactions.« less

  11. Nano-architecture of metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Milichko, Valentin A.; Zalogina, Anastasiia; Mingabudinova, Leila R.; Vinogradov, Alexander V.; Ubyivovk, Evgeniy; Krasilin, Andrei A.; Mukhin, Ivan; Zuev, Dmitry A.; Makarov, Sergey V.; Pidko, Evgeny A.

    2017-09-01

    Change the shape and size of materials supports new functionalities never found in the sources. This strategy has been recently applied for porous crystalline materials - metal-organic frameworks (MOFs) to create hollow nanoscale structures or mesostructures with improved functional properties. However, such structures are characterized by amorphous state or polycrystallinity which limits their applicability. Here we follow this strategy to create such nano- and mesostructures with perfect crystallinity and new photonics functionalities by laser or focused ion beam fabrication.

  12. Transformation of metal-organic framework to polymer gel by cross-linking the organic ligands preorganized in metal-organic framework.

    PubMed

    Ishiwata, Takumi; Furukawa, Yuki; Sugikawa, Kouta; Kokado, Kenta; Sada, Kazuki

    2013-04-10

    Until now, seamless fusion of metal-organic frameworks (MOFs) and covalently cross-linked polymer gels (PG) at molecular level has been extremely rare, since these two matters have been regarded as opposite, that is, hard versus soft. In this report, we demonstrate transformation of cubic MOF crystals to PG via inner cross-linking of the organic linkers in the void space of MOF, followed by decomposition of the metal coordination. The obtained PG behaved as a polyelectrolyte gel, indicating the high content of ionic groups inside. Metal ions were well adsorbed in the PG due to its densely packed carboxylate groups. A chimera-type hybrid material consisting of MOF and PG was obtained by partial hydrolysis of resulting cross-linked MOF. The shape of resulting PG network well reflected the crystal structure of MOF employed as a template. Our results will connect the two different network materials that have been ever studied in the two different fields to provide new soft and hard hybrid materials, and the unique copolymerization in the large void space of the MOF will open a new horizon toward "ideal network polymers" never prepared before now.

  13. Metal-organic frameworks with dynamic interlocked components

    NASA Astrophysics Data System (ADS)

    Vukotic, V. Nicholas; Harris, Kristopher J.; Zhu, Kelong; Schurko, Robert W.; Loeb, Stephen J.

    2012-06-01

    The dynamics of mechanically interlocked molecules such as rotaxanes and catenanes have been studied in solution as examples of rudimentary molecular switches and machines, but in this medium, the molecules are randomly dispersed and their motion incoherent. As a strategy for achieving a higher level of molecular organization, we have constructed a metal-organic framework material using a [2]rotaxane as the organic linker and binuclear Cu(II) units as the nodes. Activation of the as-synthesized material creates a void space inside the rigid framework that allows the soft macrocyclic ring of the [2]rotaxane to rotate rapidly, unimpeded by neighbouring molecular components. Variable-temperature 13C and 2H solid-state NMR experiments are used to characterize the nature and rate of the dynamic processes occurring inside this unique material. These results provide a blueprint for the future creation of solid-state molecular switches and molecular machines based on mechanically interlocked molecules.

  14. Manipulating Light with Transition Metal Clusters, Organic Dyes, and Metal Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogut, Serdar

    The primary goals of our research program is to develop and apply state-of-the-art first-principles methods to predict electronic and optical properties of three systems of significant scientific and technological interest: transition metal clusters, organic dyes, and metal-organic frameworks. These systems offer great opportunities to manipulate light for a wide ranging list of energy-related scientific problems and applications. During this grant period, we focused our investigations on the development, implementation, and benchmarking of many-body Green’s function methods (GW approximation and the Bethe-Salpeter equation) to examine excited-state properties of transition metal/transition-metal-oxide clusters and organic molecules that comprise the building blocks of dyesmore » and metal-organic frameworks.« less

  15. Metal-organic frameworks in chromatography.

    PubMed

    Yusuf, Kareem; Aqel, Ahmad; ALOthman, Zeid

    2014-06-27

    Metal-organic frameworks (MOFs) emerged approximately two decades ago and are the youngest class of porous materials. Despite their short existence, MOFs are finding applications in a variety of fields because of their outstanding chemical and physical properties. This review article focuses on the applications of MOFs in chromatography, including high-performance liquid chromatography (HPLC), gas chromatography (GC), and other chromatographic techniques. The use of MOFs in chromatography has already had a significant impact; however, the utilisation of MOFs in chromatography is still less common than other applications, and the number of MOF materials explored in chromatography applications is limited. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Gas adsorption on metal-organic frameworks

    DOEpatents

    Willis, Richard R [Cary, IL; Low, John J. , Faheem, Syed A.; Benin, Annabelle I [Oak Forest, IL; Snurr, Randall Q [Evanston, IL; Yazaydin, Ahmet Ozgur [Evanston, IL

    2012-07-24

    The present invention involves the use of certain metal organic frameworks that have been treated with water or another metal titrant in the storage of carbon dioxide. The capacity of these frameworks is significantly increased through this treatment.

  17. Multiaxis sensing using metal organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talin, Albert Alec; Allendorf, Mark D.; Leonard, Francois

    2017-01-17

    A sensor device including a sensor substrate; and a thin film comprising a porous metal organic framework (MOF) on the substrate that presents more than one transduction mechanism when exposed to an analyte. A method including exposing a porous metal organic framework (MOF) on a substrate to an analyte; and identifying more than one transduction mechanism in response to the exposure to the analyte.

  18. Metal-Organic Nanosheets Formed via Defect-Mediated Transformation of a Hafnium Metal-Organic Framework.

    PubMed

    Cliffe, Matthew J; Castillo-Martínez, Elizabeth; Wu, Yue; Lee, Jeongjae; Forse, Alexander C; Firth, Francesca C N; Moghadam, Peyman Z; Fairen-Jimenez, David; Gaultois, Michael W; Hill, Joshua A; Magdysyuk, Oxana V; Slater, Ben; Goodwin, Andrew L; Grey, Clare P

    2017-04-19

    We report a hafnium-containing MOF, hcp UiO-67(Hf), which is a ligand-deficient layered analogue of the face-centered cubic fcu UiO-67(Hf). hcp UiO-67 accommodates its lower ligand:metal ratio compared to fcu UiO-67 through a new structural mechanism: the formation of a condensed "double cluster" (Hf 12 O 8 (OH) 14 ), analogous to the condensation of coordination polyhedra in oxide frameworks. In oxide frameworks, variable stoichiometry can lead to more complex defect structures, e.g., crystallographic shear planes or modules with differing compositions, which can be the source of further chemical reactivity; likewise, the layered hcp UiO-67 can react further to reversibly form a two-dimensional metal-organic framework, hxl UiO-67. Both three-dimensional hcp UiO-67 and two-dimensional hxl UiO-67 can be delaminated to form metal-organic nanosheets. Delamination of hcp UiO-67 occurs through the cleavage of strong hafnium-carboxylate bonds and is effected under mild conditions, suggesting that defect-ordered MOFs could be a productive route to porous two-dimensional materials.

  19. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules

    NASA Astrophysics Data System (ADS)

    Liang, Kang; Ricco, Raffaele; Doherty, Cara M.; Styles, Mark J.; Bell, Stephen; Kirby, Nigel; Mudie, Stephen; Haylock, David; Hill, Anita J.; Doonan, Christian J.; Falcaro, Paolo

    2015-06-01

    Enhancing the robustness of functional biomacromolecules is a critical challenge in biotechnology, which if addressed would enhance their use in pharmaceuticals, chemical processing and biostorage. Here we report a novel method, inspired by natural biomineralization processes, which provides unprecedented protection of biomacromolecules by encapsulating them within a class of porous materials termed metal-organic frameworks. We show that proteins, enzymes and DNA rapidly induce the formation of protective metal-organic framework coatings under physiological conditions by concentrating the framework building blocks and facilitating crystallization around the biomacromolecules. The resulting biocomposite is stable under conditions that would normally decompose many biological macromolecules. For example, urease and horseradish peroxidase protected within a metal-organic framework shell are found to retain bioactivity after being treated at 80 °C and boiled in dimethylformamide (153 °C), respectively. This rapid, low-cost biomimetic mineralization process gives rise to new possibilities for the exploitation of biomacromolecules.

  20. Supercapacitors of nanocrystalline metal-organic frameworks.

    PubMed

    Choi, Kyung Min; Jeong, Hyung Mo; Park, Jung Hyo; Zhang, Yue-Biao; Kang, Jeung Ku; Yaghi, Omar M

    2014-07-22

    The high porosity of metal-organic frameworks (MOFs) has been used to achieve exceptional gas adsorptive properties but as yet remains largely unexplored for electrochemical energy storage devices. This study shows that MOFs made as nanocrystals (nMOFs) can be doped with graphene and successfully incorporated into devices to function as supercapacitors. A series of 23 different nMOFs with multiple organic functionalities and metal ions, differing pore sizes and shapes, discrete and infinite metal oxide backbones, large and small nanocrystals, and a variety of structure types have been prepared and examined. Several members of this series give high capacitance; in particular, a zirconium MOF exhibits exceptionally high capacitance. It has the stack and areal capacitance of 0.64 and 5.09 mF cm(-2), about 6 times that of the supercapacitors made from the benchmark commercial activated carbon materials and a performance that is preserved over at least 10000 charge/discharge cycles.

  1. Patterning techniques for metal organic frameworks.

    PubMed

    Falcaro, Paolo; Buso, Dario; Hill, Anita J; Doherty, Cara M

    2012-06-26

    The tuneable pore size and architecture, chemical properties and functionalization make metal organic frameworks (MOFs) attractive versatile stimuli-responsive materials. In this context, MOFs hold promise for industrial applications and a fervent research field is currently investigating MOF properties for device fabrication. Although the material properties have a crucial role, the ability to precisely locate the functional material is fundamental for device fabrication. In this progress report, advancements in the control of MOF positioning and precise localization of functional materials within MOF crystals are presented. Advantages and limitations of each reviewed technique are critically investigated, and several important gaps in the technological development for device fabrication are highlighted. Finally, promising patterning techniques are presented which are inspired by previous studies in organic and inorganic crystal patterning for the future of MOF lithography. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Tetratopic phenyl compounds, related metal-organic framework materials and post-assembly elaboration

    DOEpatents

    Farha, Omar K.; Hupp, Joseph T.

    2012-09-11

    Disclosed are tetratopic carboxylic acid phenyl for use in metal-organic framework compounds. These compounds are useful in catalysis, gas storage, sensing, biological imaging, drug delivery and gas adsorption separation.

  3. Tetratopic phenyl compounds, related metal-organic framework materials and post-assembly elaboration

    DOEpatents

    Farha, Omar K; Hupp, Joseph T

    2013-06-25

    Disclosed are tetratopic carboxylic acid phenyl for use in metal-organic framework compounds. These compounds are useful in catalysis, gas storage, sensing, biological imaging, drug delivery and gas adsorption separation.

  4. A designed metal-organic framework based on a metal-organic polyhedron.

    PubMed

    Zou, Yang; Park, Mira; Hong, Seunghee; Lah, Myoung Soo

    2008-05-28

    A C(3) symmetric ligand with three 1,3-benzenedicarboxylate units has been used to construct a metal-organic framework with a (3,24)-connected network topology, where the nanometre-sized metal-organic cuboctahedra (MOCs) have been incorporated solely into a cubic close packing (CCP) arrangement, which led to superoctahedral and supertetrahedral cavities.

  5. Interplay between defects, disorder and flexibility in metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Bennett, Thomas D.; Cheetham, Anthony K.; Fuchs, Alain H.; Coudert, François-Xavier

    2017-01-01

    Metal-organic frameworks are a novel family of chemically diverse materials, which are of interest across engineering, physics, chemistry, biology and medicine-based disciplines. Since the development of the field in its current form more than two decades ago, priority has been placed on the synthesis of new structures. However, more recently, a clear trend has emerged in shifting the emphasis from material design to exploring the chemical and physical properties of structures already known. In particular, although such nanoporous materials were traditionally seen as rigid crystalline structures, there is growing evidence that large-scale flexibility, the presence of defects and long-range disorder are not the exception in metal-organic frameworks, but the rule. Here we offer some perspective into how these concepts are perhaps inescapably intertwined, highlight recent advances in our understanding and discuss how a consideration of the interfaces between them may lead to enhancements of the materials' functionalities.

  6. Hydrogen storage studies on palladium-doped carbon materials (AC, CB, CNMs) @ metal-organic framework-5.

    PubMed

    Viditha, V; Srilatha, K; Himabindu, V

    2016-05-01

    Metal organic frameworks (MOFs) are a rapidly growing class of porous materials and are considered as best adsorbents for their high surface area and extraordinary porosity. The MOFs are synthesized by using various chemicals like triethylamine, terepthalic acid, zinc acetate dihydrate, chloroform, and dimethylformamide (DMF). Synthesized MOFs are intercalated with palladium/activated carbon, carbon black, and carbon nanomaterials by chemical reduction method for the purpose of enhancing the hydrogen adsorption capacities. We have observed that the palladium doped activated carbon on MOF-5 showed high hydrogen storage capacity. This may be due to the affinity of the palladium toward hydrogen molecule. The samples are characterized by X-ray diffraction, scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area analysis. We have observed a clear decrease in the BET surface area and pore volume. The obtained results show a better performance for the synthesized sample. To our best knowledge, no one has reported the work on palladium-doped carbon materials (activated carbon, carbon black, carbon nanomaterials) impregnated to the metal-organic framework-5. We have attempted to synthesize carbon nanomaterials using indigenously fabricated chemical vapor deposition (CVD) unit as a support. We have observed an increase in the hydrogen storage capacities.

  7. Metal-organic frameworks for Xe/Kr separation

    DOEpatents

    Ryan, Patrick J.; Farha, Omar K.; Broadbelt, Linda J.; Snurr, Randall Q.; Bae, Youn-Sang

    2014-07-22

    Metal-organic framework (MOF) materials are provided and are selectively adsorbent to xenon (Xe) over another noble gas such as krypton (Kr) and/or argon (Ar) as a result of having framework voids (pores) sized to this end. MOF materials having pores that are capable of accommodating a Xe atom but have a small enough pore size to receive no more than one Xe atom are desired to preferentially adsorb Xe over Kr in a multi-component (Xe--Kr mixture) adsorption method. The MOF material has 20% or more, preferably 40% or more, of the total pore volume in a pore size range of 0.45-0.75 nm which can selectively adsorb Xe over Kr in a multi-component Xe--Kr mixture over a pressure range of 0.01 to 1.0 MPa.

  8. Metal-organic frameworks for Xe/Kr separation

    DOEpatents

    Ryan, Patrick J.; Farha, Omar K.; Broadbelt, Linda J.; Snurr, Randall Q.; Bae, Youn-Sang

    2013-08-27

    Metal-organic framework (MOF) materials are provided and are selectively adsorbent to xenon (Xe) over another noble gas such as krypton (Kr) and/or argon (Ar) as a result of having framework voids (pores) sized to this end. MOF materials having pores that are capable of accommodating a Xe atom but have a small enough pore size to receive no more than one Xe atom are desired to preferentially adsorb Xe over Kr in a multi-component (Xe--Kr mixture) adsorption method. The MOF material has 20% or more, preferably 40% or more, of the total pore volume in a pore size range of 0.45-0.75 nm which can selectively adsorb Xe over Kr in a multi-component Xe--Kr mixture over a pressure range of 0.01 to 1.0 MPa.

  9. Novel Metal-Organic Framework (MOF) Based Composite Material for the Sequestration of U(VI) and Th(IV) Metal Ions from Aqueous Environment.

    PubMed

    Alqadami, Ayoub Abdullah; Naushad, Mu; Alothman, Zeid Abdullah; Ghfar, Ayman A

    2017-10-18

    The combination of magnetic nanoparticles and metal-organic frameworks (MOFs) has demonstrated their prospective for pollutant sequestration. In this work, a magnetic metal-organic framework nanocomposite (Fe 3 O 4 @AMCA-MIL53(Al) was prepared and used for the removal of U(VI) and Th(IV) metal ions from aqueous environment. Fe 3 O 4 @AMCA-MIL53(Al) nanocomposite was characterized by TGA, FTIR, SEM-EDX, XRD, HRTEM, BET, VSM (vibrating sample magnetometry), and XPS analyses. A batch technique was applied for the removal of the aforesaid metal ions using Fe 3 O 4 @AMCA-MIL53(Al) at different operating parameters. The isotherm and kinetic data were accurately described by the Langmuir and pseudo-second-order models. The adsorption capacity was calculated to be 227.3 and 285.7 mg/g for U(VI) and Th(IV), respectively, by fitting the equilibrium data to the Langmuir model. The kinetic studies demonstrated that the equilibrium time was 90 min for each metal ion. Various thermodynamic parameters were evaluated which indicated the endothermic and spontaneous nature of adsorption. The collected outcomes showed that Fe 3 O 4 @AMCA-MIL53(Al) was a good material for the exclusion of these metal ions from aqueous medium. The adsorbed metals were easily recovered by desorption in 0.01 M HCl. The excellent adsorption capacity and the response to the magnetic field made this novel material an auspicious candidate for environmental remediation technologies.

  10. Alkylamine functionalized metal-organic frameworks for composite gas separations

    DOEpatents

    Long, Jeffrey R.; McDonald, Thomas M.; D'Alessandro, Deanna M.

    2018-01-09

    Functionalized metal-organic framework adsorbents with ligands containing basic nitrogen groups such as alkylamines and alkyldiamines appended to the metal centers and method of isolating carbon dioxide from a stream of combined gases and carbon dioxide partial pressures below approximately 1 and 1000 mbar. The adsorption material has an isosteric heat of carbon dioxide adsorption of greater than -60 kJ/mol at zero coverage using a dual-site Langmuir model.

  11. Protecting group and switchable pore-discriminating adsorption properties of a hydrophilic-hydrophobic metal-organic framework.

    PubMed

    Mohideen, M Infas H; Xiao, Bo; Wheatley, Paul S; McKinlay, Alistair C; Li, Yang; Slawin, Alexandra M Z; Aldous, David W; Cessford, Naomi F; Düren, Tina; Zhao, Xuebo; Gill, Rachel; Thomas, K Mark; Griffin, John M; Ashbrook, Sharon E; Morris, Russell E

    2011-04-01

    Formed by linking metals or metal clusters through organic linkers, metal-organic frameworks are a class of solids with structural and chemical properties that mark them out as candidates for many emerging gas storage, separation, catalysis and biomedical applications. Important features of these materials include their high porosity and their flexibility in response to chemical or physical stimuli. Here, a copper-based metal-organic framework has been prepared in which the starting linker (benzene-1,3,5-tricarboxylic acid) undergoes selective monoesterification during synthesis to produce a solid with two different channel systems, lined by hydrophilic and hydrophobic surfaces, respectively. The material reacts differently to gases or vapours of dissimilar chemistry, some stimulating subtle framework flexibility or showing kinetic adsorption effects. Adsorption can be switched between the two channels by judicious choice of the conditions. The monoesterified linker is recoverable in quantitative yield, demonstrating possible uses of metal-organic frameworks in molecular synthetic chemistry as 'protecting groups' to accomplish selective transformations that are difficult using standard chemistry techniques.

  12. Metal-organic framework templated synthesis of porous inorganic materials as novel sorbents

    DOEpatents

    Taylor-Pashow, Kathryn M. L.; Lin, Wenbin; Abney, Carter W.

    2017-03-21

    A novel metal-organic framework (MOF) templated process for the synthesis of highly porous inorganic sorbents for removing radionuclides, actinides, and heavy metals is disclosed. The highly porous nature of the MOFs leads to highly porous inorganic sorbents (such as oxides, phosphates, sulfides, etc) with accessible surface binding sites that are suitable for removing radionuclides from high level nuclear wastes, extracting uranium from acid mine drainage and seawater, and sequestering heavy metals from waste streams. In some cases, MOFs can be directly used for removing these metal ions as MOFs are converted to highly porous inorganic sorbents in situ.

  13. Gas adsorption and structural diversity in a family of Cu(II) pyridyl-isophthalate metal-organic framework materials

    NASA Astrophysics Data System (ADS)

    Gould, Jamie A.; Athwal, Harprit Singh; Blake, Alexander J.; Lewis, William; Hubberstey, Peter; Champness, Neil R.; Schröder, Martin

    2017-01-01

    A family of Cu(II)-based metal-organic frameworks (MOFs) has been synthesized using three pyridyl-isophthalate ligands, H2L1 (4'-(pyridin-4-yl)biphenyl-3,5-dicarboxylic acid), H2L2 (4''-(pyridin-4-yl)-1,1':4',1''-terphenyl-3,5-dicarboxylic acid) and H2L3 (5-[4-(pyridin-4-yl)naphthalen-1-yl]benzene-1,3-dicarboxylic acid). Although in each case the pyridyl-isophthalate ligands adopt the same pseudo-octahedral [Cu2(O2CR)4N2] paddlewheel coordination modes, the resulting frameworks are structurally diverse, particularly in the case of the complex of Cu(II) with H2L3, which leads to three distinct supramolecular isomers, each derived from Kagomé and square nets. In contrast to [Cu(L2)] and the isomers of [Cu(L3)], [Cu(L1)] exhibits permanent porosity. Thus, the gas adsorption properties of [Cu(L1)] were investigated with N2, CO2 and H2, and the material exhibits an isosteric heat of adsorption competitive with leading MOF sorbents for CO2. [Cu(L1)] displays high H2 adsorption, with the density in the pores approaching that of liquid H2. This article is part of the themed issue 'Coordination polymers and metal-organic frameworks: materials by design'.

  14. Bimetallic Metal-Organic Frameworks for Controlled Catalytic Graphitization of Nanoporous Carbons

    PubMed Central

    Tang, Jing; Salunkhe, Rahul R.; Zhang, Huabin; Malgras, Victor; Ahamad, Tansir; Alshehri, Saad M.; Kobayashi, Naoya; Tominaka, Satoshi; Ide, Yusuke; Kim, Jung Ho; Yamauchi, Yusuke

    2016-01-01

    Single metal-organic frameworks (MOFs), constructed from the coordination between one-fold metal ions and organic linkers, show limited functionalities when used as precursors for nanoporous carbon materials. Herein, we propose to merge the advantages of zinc and cobalt metals ions into one single MOF crystal (i.e., bimetallic MOFs). The organic linkers that coordinate with cobalt ions tend to yield graphitic carbons after carbonization, unlike those bridging with zinc ions, due to the controlled catalytic graphitization by the cobalt nanoparticles. In this work, we demonstrate a feasible method to achieve nanoporous carbon materials with tailored properties, including specific surface area, pore size distribution, degree of graphitization, and content of heteroatoms. The bimetallic-MOF-derived nanoporous carbon are systematically characterized, highlighting the importance of precisely controlling the properties of the carbon materials. This can be done by finely tuning the components in the bimetallic MOF precursors, and thus designing optimal carbon materials for specific applications. PMID:27471193

  15. A p-Type Zinc-Based Metal-Organic Framework.

    PubMed

    Shang, Congcong; Gautier, Romain; Jiang, Tengfei; Faulques, Eric; Latouche, Camille; Paris, Michael; Cario, Laurent; Bujoli-Doeuff, Martine; Jobic, Stéphane

    2017-06-05

    An original concept for the property tuning of semiconductors is demonstrated by the synthesis of a p-type zinc oxide (ZnO)-like metal-organic framework (MOF), (ZnC 2 O 3 H 2 ) n , which can be regarded as a possible alternative for ZnO, a natural n-type semiconductor. When small oxygen-rich organic linkers are introduced to the Zn-O system, oxygen vacancies and a deep valence-band maximum, the two obstacles for generating p-type behavior in ZnO, are restrained and raised, respectively. Further studies of this material on the doping and photoluminescence behaviors confirm its resemblance to metal oxides (MOs). This result answers the challenges of generating p-type behavior in an n-type-like system. This concept reveals that a new category of hybrid materials, with an embedded continuous metal-oxygen network, lies between the MOs and MOFs. It provides concrete support for the development of p-type hybrid semiconductors in the near future and, more importantly, the enrichment of tuning possibilities in inorganic semiconductors.

  16. Design and synthesis of an exceptionally stable and highly porous metal-organic framework

    NASA Astrophysics Data System (ADS)

    Li, Hailian; Eddaoudi, Mohamed; O'Keeffe, M.; Yaghi, O. M.

    1999-11-01

    Open metal-organic frameworks are widely regarded as promising materials for applications in catalysis, separation, gas storage and molecular recognition. Compared to conventionally used microporous inorganic materials such as zeolites, these organic structures have the potential for more flexible rational design, through control of the architecture and functionalization of the pores. So far, the inability of these open frameworks to support permanent porosity and to avoid collapsing in the absence of guest molecules, such as solvents, has hindered further progress in the field. Here we report the synthesis of a metal-organic framework which remains crystalline, as evidenced by X-ray single-crystal analyses, and stable when fully desolvated and when heated up to 300°C. This synthesis is achieved by borrowing ideas from metal carboxylate cluster chemistry, where an organic dicarboxylate linker is used in a reaction that gives supertetrahedron clusters when capped with monocarboxylates. The rigid and divergent character of the added linker allows the articulation of the clusters into a three-dimensional framework resulting in a structure with higher apparent surface area and pore volume than most porous crystalline zeolites. This simple and potentially universal design strategy is currently being pursued in the synthesis of new phases and composites, and for gas-storage applications.

  17. Ordered macro-microporous metal-organic framework single crystals

    NASA Astrophysics Data System (ADS)

    Shen, Kui; Zhang, Lei; Chen, Xiaodong; Liu, Lingmei; Zhang, Daliang; Han, Yu; Chen, Junying; Long, Jilan; Luque, Rafael; Li, Yingwei; Chen, Banglin

    2018-01-01

    We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional–ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent–induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

  18. Reconfigurable electronics using conducting metal-organic frameworks

    DOEpatents

    Allendorf, Mark D.; Talin, Albert Alec; Leonard, Francois; Stavila, Vitalie

    2017-07-18

    A device including a porous metal organic framework (MOF) disposed between two terminals, the device including a first state wherein the MOF is infiltrated by a guest species to form an electrical path between the terminals and a second state wherein the electrical conductivity of the MOF is less than the electrical conductivity in the first state. A method including switching a porous metal organic framework (MOF) between two terminals from a first state wherein a metal site in the MOF is infiltrated by a guest species that is capable of charge transfer to a second state wherein the MOF is less electrically conductive than in the first state.

  19. Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations.

    PubMed

    Chughtai, Adeel H; Ahmad, Nazir; Younus, Hussein A; Laypkov, A; Verpoort, Francis

    2015-10-07

    Novel catalytic materials are highly demanded to perform a variety of catalytic organic reactions. MOFs combine the benefits of heterogeneous catalysis like easy post reaction separation, catalyst reusability, high stability and homogeneous catalysis such as high efficiency, selectivity, controllability and mild reaction conditions. The possible organization of active centers like metallic nodes, organic linkers, and their chemical synthetic functionalization on the nanoscale shows potential to build up MOFs particularly modified for catalytic challenges. In this review, we have summarized the recent research progress in heterogeneous catalysis by MOFs and their catalytic behavior in various organic reactions, highlighting the key features of MOFs as catalysts based on the active sites in the framework. Examples of their post functionalization, inclusion of active guest species and metal nanoparticles have been discussed. Finally, the use of MOFs as catalysts for asymmetric heterogeneous catalysis and stability of MOFs has been presented as separate sections.

  20. Spectroscopic and electrochemical properties of organic framework of macrocylic OONNOO-donor ligand with its metal organic framework: host/guest stability measurements.

    PubMed

    Kumar, Rajiv; Singh, R P; Singh, R P

    2008-11-15

    In this study, we synthesized 1,2-di(o-aminophenoxy)ethane, as the starting material, used in the preparation of a novel hexadentate OONNOO-donor macrocyclic ligand-1,4,11,14-tetraoxo-7,8-diaza-5,6:9,10;15,16:19,20-terabezocyclododeca-8,17-iene. It has twenty membered organic framework (OF), which has been designed, synthesized and characterized. Our main findings of this paper are related to the organic framework of ligand, its capacity to digest the metal ions and the stability of metal organic framework (MOFs) with cobalt(II), nickel(II) and manganese(II). The authenticity of the used organic framework and its metal complexes have been detected and observed in solid state as well as in aqueous solutions. The main observations were made on the basis of physiochemical measurements viz.: elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, 1H NMR, 13C NMR, mass spectroscopy, electronic, ESR spectroscopy. In addition, the magnetic susceptibility and electrochemistry measurements have been made. The 1H NMR spectra suggest stereochemistry and proton movement interaction. Considering the used organic framework there are a lot of carbon atoms in the molecule reflected by the 13C NMR spectrum. All these observations gave a clear view to confirming the encapsulation; arrive at the composition, structure and geometry of encapsulated complexes. In simple words, it confirms the host/guest coordination and its stability. Electrochemical properties of the complexes have been investigated to confirm the various changes in oxidation state of metals with change in potentials with respect to current at different scan rate.

  1. Imparting biomolecules to a metal-organic framework material by controlled DNA tetrahedron encapsulation

    PubMed Central

    Jia, Yongmei; Wei, Benmei; Duan, Ruixue; Zhang, Ying; Wang, Boya; Hakeem, Abdul; Liu, Nannan; Ou, Xiaowen; Xu, Shaofang; Chen, Zhifei; Lou, Xiaoding; Xia, Fan

    2014-01-01

    Recently, the incorporation of biomolecules in Metal-organic frameworks (MOFs) attracts many attentions because of controlling the functions, properties and stability of trapped molecules. Although there are few reports on protein/MOFs composites and their applications, none of DNA/MOFs composite is reported, as far as we know. Here, we report a new composite material which is self-assembled from 3D DNA (guest) and pre-synthesized MOFs (host) by electrostatic interactions and hydrophilic interactions in a well-dispersed fashion. Its biophysical characterization is well analyzed by fluorescence spectroscopy, quartz crystal microbalance (QCM) and transmission electron microscopy (TEM). This new composite material keeps 3D DNA nanostructure more stable than only 3D DNA nanostructure in DI water at room temperature, and stores amounts of genetic information. It will make DNA as a guest for MOFs and MOFs become a new platform for the development of DNA nanotechnology. PMID:25090047

  2. Visible Light Induced Organic Transformations Using Metal-Organic-Frameworks (MOFs).

    PubMed

    Deng, Xiaoyu; Li, Zhaohui; García, Hermenegildo

    2017-08-22

    With the aim of developing renewable energy based processes, researchers are paying increasing interest to light induced organic transformations. Metal-organic frameworks (MOFs), a class of micro-/mesoporous hybrid materials, are recently emerging as a new type of photoactive materials for organic syntheses due to their unique structural characteristics. In this Review, we summarized the recent applications of MOFs as photocatalysts for light induced organic transformations, including (1) oxidation of alcohols, amines, alkene, alkanes and sulfides; (2) hydroxylation of aromatic compounds like benzene; (3) activation of the C-H bonds to construct new C-C or C-X bonds; (4) atom-transfer radical polymerization (ATRP). This Review starts with general background information of using MOFs in photocatalysis, followed by a description of light induced organic transformations promoted by photoactive inorganic nodes and photocatalytic active ligands in MOFs, respectively. Thereafter, the use of MOFs as multifunctional catalysts for light induced organic transformations via an efficient merge of the metal/ligand/guest based catalysis where the photocatalytic activity of MOFs plays a key role are discussed. Finally, the limitations, challenges and the future perspective of the application of MOFs for light induced organic transformations were addressed. The objective of this Review is to serve as a starting point for other researchers to get into this largely unexplored field. It is also our goal to stimulate intensive research in this field for rational designing of MOF materials to overcome their current limitations in photocatalysis, which can lead to more creative visible-light-induced organic transformations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Metal-organic frameworks for adsorption and separation of noble gases

    DOEpatents

    Allendorf, Mark D.; Greathouse, Jeffery A.; Staiger, Chad

    2017-05-30

    A method including exposing a gas mixture comprising a noble gas to a metal organic framework (MOF), including an organic electron donor and an adsorbent bed operable to adsorb a noble gas from a mixture of gases, the adsorbent bed including a metal organic framework (MOF) including an organic electron donor.

  4. Luminescent metal-organic frameworks for chemical sensing and explosive detection.

    PubMed

    Hu, Zhichao; Deibert, Benjamin J; Li, Jing

    2014-08-21

    Metal-organic frameworks (MOFs) are a unique class of crystalline solids comprised of metal cations (or metal clusters) and organic ligands that have shown promise for a wide variety of applications. Over the past 15 years, research and development of these materials have become one of the most intensely and extensively pursued areas. A very interesting and well-investigated topic is their optical emission properties and related applications. Several reviews have provided a comprehensive overview covering many aspects of the subject up to 2011. This review intends to provide an update of work published since then and focuses on the photoluminescence (PL) properties of MOFs and their possible utility in chemical and biological sensing and detection. The spectrum of this review includes the origin of luminescence in MOFs, the advantages of luminescent MOF (LMOF) based sensors, general strategies in designing sensory materials, and examples of various applications in sensing and detection.

  5. Catalysis by metal-organic frameworks: fundamentals and opportunities.

    PubMed

    Ranocchiari, Marco; van Bokhoven, Jeroen Anton

    2011-04-14

    Crystalline porous materials are extremely important for developing catalytic systems with high scientific and industrial impact. Metal-organic frameworks (MOFs) show unique potential that still has to be fully exploited. This perspective summarizes the properties of MOFs with the aim to understand what are possible approaches to catalysis with these materials. We categorize three classes of MOF catalysts: (1) those with active site on the framework, (2) those with encapsulated active species, and (3) those with active sites attached through post-synthetic modification. We identify the tunable porosity, the ability to fine tune the structure of the active site and its environment, the presence of multiple active sites, and the opportunity to synthesize structures in which key-lock bonding of substrates occurs as the characteristics that distinguish MOFs from other materials. We experience a unique opportunity to imagine and design heterogeneous catalysts, which might catalyze reactions previously thought impossible.

  6. Water Adsorption on Various Metal Organic Framework

    NASA Astrophysics Data System (ADS)

    Teo, H. W. B.; Chakraborty, A.

    2017-12-01

    In this paper, Metal Organic Framework (MOF) undergoes N2 and water adsorption experiment to observe how the material properties affects the water sorption performance. The achieved N2 isotherms is used to estimate the BET surface area, pore volume and, most importantly, the pore size distribution of the adsorbent material. It is noted that Aluminium Fumarate and CAU-10 has pore distribution of about 6Å while MIL-101(Cr) has 16 Å. The water adsorption isotherms at 25°C shows MIL-101(Cr) has a long hydrophobic length from relative pressure of 0 ≤ P/Ps ≤ 0.4 with a maximum water uptake of 1kg/kg sorbent. Alkali metal ions doped MIL-101(Cr) reduced the hydrophobic length and maximum water uptake of original MIL-101(Cr). Aluminium Fumarate and CAU-10 has lower water uptake, but the hydrophobic length of both materials is within relative pressure of P/Ps ≤ 0.2. The kinetic behaviour of doped MIL-101(Cr), Aluminium Fumarate and CAU-10 are faster than MIL-101(Cr).

  7. A Sr2+-metal-organic framework with high chemical stability: synthesis, crystal structure and photoluminescence property.

    PubMed

    Jia, Yan-Yuan; Liu, Xiao-Ting; Wang, Wen-He; Zhang, Li-Zhu; Zhang, Ying-Hui; Bu, Xian-He

    2017-01-13

    Metal-organic frameworks (MOFs) are typically built by assembly of metal centres and organic linkers, and have emerged as promising crystalline materials in a variety of fields. However, the stability of MOFs is a key limitation for their practical applications. Herein, we report a novel Sr 2+: -MOF [Sr 4 (Tdada) 2 (H 2 O) 3 (DMF) 2 ] (denoted as NKU- 105: , NKU = Nankai University; H 4 Tdada = 5,5'-((thiophene-2,5-dicar bonyl)bis(azanediyl))diisophthalic acid; DMF = N,N-dimethylformamide) featuring an open square channel of about 6 Å along the c-axis. Notably, NKU- 105: exhibits much outstanding chemical stability against common organic solvents, boiling water, acids and bases, relative to most MOF materials. Furthermore, NKU- 105: is an environment-friendly luminescent material with a bright cyan emission.This article is part of the themed issue 'Coordination polymers and metal-organic frameworks: materials by design'. © 2016 The Author(s).

  8. Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents.

    PubMed

    Bobbitt, N Scott; Mendonca, Matthew L; Howarth, Ashlee J; Islamoglu, Timur; Hupp, Joseph T; Farha, Omar K; Snurr, Randall Q

    2017-06-06

    Owing to the vast diversity of linkers, nodes, and topologies, metal-organic frameworks can be tailored for specific tasks, such as chemical separations or catalysis. Accordingly, these materials have attracted significant interest for capture and/or detoxification of toxic industrial chemicals and chemical warfare agents. In this paper, we review recent experimental and computational work pertaining to the capture of several industrially-relevant toxic chemicals, including NH 3 , SO 2 , NO 2 , H 2 S, and some volatile organic compounds, with particular emphasis on the challenging issue of designing materials that selectively adsorb these chemicals in the presence of water. We also examine recent research on the capture and catalytic degradation of chemical warfare agents such as sarin and sulfur mustard using metal-organic frameworks.

  9. Synthesis and gas adsorption study of porous metal-organic framework materials

    NASA Astrophysics Data System (ADS)

    Mu, Bin

    Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) have become the focus of intense study over the past decade due to their potential for advancing a variety of applications including air purification, gas storage, adsorption separations, catalysis, gas sensing, drug delivery, and so on. These materials have some distinct advantages over traditional porous materials such as the well-defined structures, uniform pore sizes, chemically functionalized sorption sites, and potential for postsynthetic modification, etc. Thus, synthesis and adsorption studies of porous MOFs have increased substantially in recent years. Among various prospective applications, air purification is one of the most immediate concerns, which has urgent requirements to improve current nuclear, biological, and chemical (NBC) filters involving commercial and military purposes. Thus, the major goal of this funded project is to search, synthesize, and test these novel hybrid porous materials for adsorptive removal of toxic industrial chemicals (TICs) and chemical warfare agents (CWAs), and to install the benchmark for new-generation NBC filters. The objective of this study is three-fold: (i) Advance our understanding of coordination chemistry by synthesizing novel MOFs and characterizing these porous coordination polymers; (ii) Evaluate porous MOF materials for gasadsorption applications including CO2 capture, CH4 storage, other light gas adsorption and separations, and examine the chemical and physical properties of these solid adsorbents including thermal stability and heat capacity of MOFs; (iii) Evaluate porous MOF materials for next-generation NBC filter media by adsorption breakthrough measurements of TICs on MOFs, and advance our understanding about structureproperty relationships of these novel adsorbents.

  10. Homochiral metal-organic frameworks and their application in chromatography enantioseparations.

    PubMed

    Peluso, Paola; Mamane, Victor; Cossu, Sergio

    2014-10-10

    The last frontier in the chiral stationary phases (CSPs) field for chromatography enantioseparations is represented by homochiral metal-organic frameworks (MOFs), a class of organic-inorganic hybrid materials built from metal-connecting nodes and organic-bridging ligands. The modular nature of these materials allows to design focused structures by combining properly metal, organic ligands and rigid polytopic spacers. Intriguingly, chiral ligands introduce molecular chirality in the MOF-network as well as homochirality in the secondary structure of materials (such as homohelicity) producing homochiral nets in a manner mimicking biopolymers (proteins, polysaccharides) which are characterized by a definite helical sense associated with the chirality of their building blocks (amino acids or sugars). Nowadays, robust and flexible materials characterized by high porosity and surface area became available by using preparative procedures typical of the so-called reticular synthesis. This review focuses on recent developments in the synthesis and applications of homochiral MOFs as supports for chromatography enantioseparations. Indeed, despite this field is in its infancy, interesting results have been produced and a critical overview of the 12 reported applications for gas chromatography (GC) and high-performance liquid chromatography (HPLC) can orient the reader approaching the field. Mechanistic aspects are shortly discussed and a view regarding future trends in this field is provided. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Density functional theory meta-GGA + U study of water incorporation in the metal-organic framework material Cu-BTC.

    PubMed

    Cockayne, Eric; Nelson, Eric B

    2015-07-14

    Water absorption in the metal-organic framework (MOF) material Cu-BTC, up to a concentration of 3.5 H2O per Cu ion, is studied via density functional theory at the meta-GGA + U level. The stable arrangements of water molecules show chains of hydrogen-bonded water molecules and a tendency to form closed cages at high concentration. Water clusters are stabilized primarily by a combination of water-water hydrogen bonding and Cu-water oxygen interactions. Stability is further enhanced by van der Waals interactions, electric field enhancement of water-water bonding, and hydrogen bonding of water to framework oxygens. We hypothesize that the tendency to form such stable clusters explains the particularly strong affinity of water to Cu-BTC and related MOFs with exposed metal sites.

  12. Hydrolytic conversion of a metal-organic polyhedron into a metal-organic framework.

    PubMed

    Mallick, Arijit; Garai, Bikash; Díaz, David Díaz; Banerjee, Rahul

    2013-12-16

    Twist and release: The metal-organic polyhedron 1 synthesized from 5-(prop-2-ynyloxy)isophthalic acid and Cu(NO3 )2 ⋅ 3 H2 O has a hydrophobic outer surface and a hydrophilic inner core. In an aqueous medium, the resulting polarity gradient led to the transformation of 1 into the 2D metal-organic framework 2. This unique phenomenon enabled the gradual release of entrapped drug molecules. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A spin transition mechanism for cooperative adsorption in metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Reed, Douglas A.; Keitz, Benjamin K.; Oktawiec, Julia; Mason, Jarad A.; Runčevski, Tomče; Xiao, Dianne J.; Darago, Lucy E.; Crocellà, Valentina; Bordiga, Silvia; Long, Jeffrey R.

    2017-10-01

    Cooperative binding, whereby an initial binding event facilitates the uptake of additional substrate molecules, is common in biological systems such as haemoglobin. It was recently shown that porous solids that exhibit cooperative binding have substantial energetic benefits over traditional adsorbents, but few guidelines currently exist for the design of such materials. In principle, metal-organic frameworks that contain coordinatively unsaturated metal centres could act as both selective and cooperative adsorbents if guest binding at one site were to trigger an electronic transformation that subsequently altered the binding properties at neighbouring metal sites. Here we illustrate this concept through the selective adsorption of carbon monoxide (CO) in a series of metal-organic frameworks featuring coordinatively unsaturated iron(II) sites. Functioning via a mechanism by which neighbouring iron(II) sites undergo a spin-state transition above a threshold CO pressure, these materials exhibit large CO separation capacities with only small changes in temperature. The very low regeneration energies that result may enable more efficient Fischer-Tropsch conversions and extraction of CO from industrial waste feeds, which currently underutilize this versatile carbon synthon. The electronic basis for the cooperative adsorption demonstrated here could provide a general strategy for designing efficient and selective adsorbents suitable for various separations.

  14. Nanoporous metal organic frameworks as hybrid polymer-metal composites for drug delivery and biomedical applications.

    PubMed

    Beg, Sarwar; Rahman, Mahfoozur; Jain, Atul; Saini, Sumant; Midoux, Patrick; Pichon, Chantal; Ahmad, Farhan Jalees; Akhter, Sohail

    2017-04-01

    Metal organic frameworks (MOFs), porous hybrid polymer-metal composites at the nanoscale, are recent innovations in the field of chemistry; they are novel polymeric materials with diverse biomedical applications. MOFs are nanoporous materials, consisting of metal ions linked together by organic bridging ligands. The unique physical and chemical characteristics of MOFs have attracted wider attention from the scientific community, exploring their utility in the field of material science, biology, nanotechnology and drug delivery. The practical feasibility of MOFs is possible owing to their abilities for biodegradability, excellent porosity, high loading capacity, ease of surface modification, among others. In this regard, this review provides an account of various types of MOFs, their physiochemical characteristics and use in diverse disciplines of biomedical sciences - with special emphasis on drug delivery and theranostics. Moreover, this review also highlights the stability and toxicity issues of MOFs, along with their market potential for biomedical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Tunable electrical conductivity in metal-organic framework thin film devices

    DOEpatents

    Talin, Albert Alec; Allendorf, Mark D.; Stavila, Vitalie; Leonard, Francois

    2016-08-30

    A composition including a porous metal organic framework (MOF) including an open metal site and a guest species capable of charge transfer that can coordinate with the open metal site, wherein the composition is electrically conductive. A method including infiltrating a porous metal organic framework (MOF) including an open metal site with a guest species that is capable of charge transfer; and coordinating the guest species to the open metal site to form a composition including an electrical conductivity greater than an electrical conductivity of the MOF.

  16. Tunable electrical conductivity in metal-organic framework thin film devices

    DOEpatents

    Talin, Albert Alec; Allendorf, Mark D.; Stavila, Vitalie; Leonard, Francois

    2016-05-24

    A composition including a porous metal organic framework (MOF) including an open metal site and a guest species capable of charge transfer that can coordinate with the open metal site, wherein the composition is electrically conductive. A method including infiltrating a porous metal organic framework (MOF) including an open metal site with a guest species that is capable of charge transfer; and coordinating the guest species to the open metal site to form a composition including an electrical conductivity greater than an electrical conductivity of the MOF.

  17. Supercritical processing as a route to high internal surface areas and permanent microporosity in metal-organic framework materials.

    PubMed

    Nelson, Andrew P; Farha, Omar K; Mulfort, Karen L; Hupp, Joseph T

    2009-01-21

    Careful processing of four representative metal-organic framework (MOF) materials with liquid and supercritical carbon dioxide (ScD) leads to substantial, or in some cases spectacular (up to 1200%), increases in gas-accessible surface area. Maximization of surface area is key to the optimization of MOFs for many potential applications. Preliminary evidence points to inhibition of mesopore collapse, and therefore micropore accessibility, as the basis for the extraordinarily efficacious outcome of ScD-based activation.

  18. Novel electrorheological properties of a metal-organic framework Cu3(BTC)2.

    PubMed

    Liu, Ying Dan; Kim, Jun; Ahn, Wha-Seung; Choi, Hyoung Jin

    2012-06-07

    A metal-organic framework, Cu(3)(BTC)(2), was synthesized and applied as an electro-responsive electrorheological material dispersed in insulating oil. Powder of crystalline Cu(3)(BTC)(2) exhibited excellent chain-like structures and controllable rheological properties in an applied electric field.

  19. Dilute NiO/carbon nanofiber composites derived from metal organic framework fibers as electrode materials for supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ying; Yang, Feng; Hu, Hongru

    A new type of carbon nanofiber (CNF) dominated electrode materials decorated with dilute NiO particles (NiO/CNF) has been in situ fabricated by direct pyrolysis of Ni, Zn-containing metal organic framework fibers, which are skillfully constructed by assembling different proportional NiCl2·6H2O and Zn(Ac)2·2H2O with trimesic acid in the presence of N,N-dimethylformamide. With elegant combination of advantages of CNF and evenly dispersed NiO particles, as well as successful modulation of conductivity and porosity of final composites, our NiO/CNF composites display well-defined capacitive features. A high capacitance of 14926 F g–1 was obtained in 6 M KOH electrolyte when the contribution from 0.43more » wt% NiO was considered alone, contributing to over 35% of the total capacitance (234 F g–1 ). This significantly exceeds its theoretical specific capacitance of 2584 F g–1. It has been established from the Ragone plot that a largest energy density of 33.4 Wh kg–1 was obtained at the current density of 0.25 A g–1. Furthermore, such composite electrode materials show good rate capability and outstanding cycling stability up to 5000 times (only 10% loss). The present study provides a brand-new approach to design a high capacitance and stable supercapacitor electrode and the concept is extendable to other composite materials. Keywords: Metal organic framework; Nickel oxide; Carbon nanofiber; In situ synthesis; Capacitance« less

  20. Multiferroic homochiral metal-organic framework.

    PubMed

    Ye, Qiong; Fu, Da-Wei; Tian, Hang; Xiong, Ren-Gen; Chan, Philip Wai Hong; Huang, Songping D

    2008-02-04

    The hydrothermal reaction of (L)-ethyl lactate (Lig-Et) with Tb(ClO(4))(3).6H(2)O gives colorless block (Lig)(2)Tb(H(2)O)(2)(ClO(4)) (1), in which 1 displays a laminar 2D framework. Ferroelectric and magnetic property measurements reveal that 1 probably is the first example of two "ferroic" metal-organic frameworks. Ferroelectricity of its analogue, (Lig)(2)Tb(D(2)O)(2)(ClO(4)) (2), further confirms the presence of the ferroelectric deuterium effect.

  1. Pore Space Partition in Metal-Organic Frameworks.

    PubMed

    Zhai, Quan-Guo; Bu, Xianhui; Zhao, Xiang; Li, Dong-Sheng; Feng, Pingyun

    2017-02-21

    Metal-organic framework (MOF) materials have emerged as one of the favorite crystalline porous materials (CPM) because of their compositional and geometric tunability and many possible applications. In efforts to develop better MOFs for gas storage and separation, a number of strategies including creation of open metal sites and implantation of Lewis base sites have been used to tune host-guest interactions. In addition to these chemical factors, the geometric features such as pore size and shape, surface area, and pore volume also play important roles in sorption energetics and uptake capacity. For efficient capture of small gas molecules such as carbon dioxide under ambient conditions, large surface area or high pore volume are often not needed. Instead, maximizing host-guest interactions or the density of binding sites by encaging gas molecules in snug pockets of pore space can be a fruitful approach. To put this concept into practice, the pore space partition (PSP) concept has been proposed and has achieved a great experimental success. In this account, we will highlight many efforts to implement PSP in MOFs and impact of PSP on gas uptake performance. In the synthetic design of PSP, it is helpful to distinguish between factors that contribute to the framework formation and factors that serve the purpose of PSP. Because of the need for complementary structural roles, the synthesis of MOFs with PSP often involves multicomponent systems including mixed ligands, mixed inorganic nodes, or both. It is possible to accomplish both framework formation and PSP with a single type of polyfunctional ligands that use some functional groups (called framework-forming group) for framework formation and the remaining functional groups (called pore-partition group) for PSP. Alternatively, framework formation and PSP can be shouldered by different chemical species. For example, in a mixed-ligand system, one ligand (called framework-forming agent) can play the role of the

  2. Predictive framework for shape-selective separations in three-dimensional zeolites and metal-organic frameworks.

    PubMed

    First, Eric L; Gounaris, Chrysanthos E; Floudas, Christodoulos A

    2013-05-07

    With the growing number of zeolites and metal-organic frameworks (MOFs) available, computational methods are needed to screen databases of structures to identify those most suitable for applications of interest. We have developed novel methods based on mathematical optimization to predict the shape selectivity of zeolites and MOFs in three dimensions by considering the energy costs of transport through possible pathways. Our approach is applied to databases of over 1800 microporous materials including zeolites, MOFs, zeolitic imidazolate frameworks, and hypothetical MOFs. New materials are identified for applications in gas separations (CO2/N2, CO2/CH4, and CO2/H2), air separation (O2/N2), and chemicals (propane/propylene, ethane/ethylene, styrene/ethylbenzene, and xylenes).

  3. Metal-Organic Frameworks for Separation.

    PubMed

    Zhao, Xiang; Wang, Yanxiang; Li, Dong-Sheng; Bu, Xianhui; Feng, Pingyun

    2018-03-27

    Separation is an important industrial step with critical roles in the chemical, petrochemical, pharmaceutical, and nuclear industries, as well as in many other fields. Although much progress has been made, the development of better separation technologies, especially through the discovery of high-performance separation materials, continues to attract increasing interest due to concerns over factors such as efficiency, health and environmental impacts, and the cost of existing methods. Metal-organic frameworks (MOFs), a rapidly expanding family of crystalline porous materials, have shown great promise to address various separation challenges due to their well-defined pore size and unprecedented tunability in both composition and pore geometry. In the past decade, extensive research is performed on applications of MOF materials, including separation and capture of many gases and vapors, and liquid-phase separation involving both liquid mixtures and solutions. MOFs also bring new opportunities in enantioselective separation and are amenable to morphological control such as fabrication of membranes for enhanced separation outcomes. Here, some of the latest progress in the applications of MOFs for several key separation issues, with emphasis on newly synthesized MOF materials and the impact of their compositional and structural features on separation properties, are reviewed and highlighted. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Metal-organic framework for the separation of alkane isomers

    DOEpatents

    Long, Jeffrey R.; Herm, Zoey R.; Wiers, Brian M.; Krishna, Rajamani

    2017-01-10

    A metal organic framework Fe.sub.2(bdp).sub.3 (BDP.sup.2-=1,4-benzenedipyrazolate) with triangular channels is particularly suited for C5-C7 separations of alkanes according to the number of branches in the molecule rather than by carbon number. The metal-organic framework can offer pore geometries that is unavailable in zeolites or other porous media, facilitating distinct types of shape-based molecular separations.

  5. Metal organic frameworks for the catalytic detoxification of chemical warfare nerve agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hupp, Joseph T.; Farha, Omar K.; Katz, Michael J.

    A method of using a metal organic framework (MOF) comprising a metal ion and an at least bidendate organic ligand to catalytically detoxify chemical warfare nerve agents including exposing the metal-organic-framework (MOF) to the chemical warfare nerve agent and catalytically decomposing the nerve agent with the MOF.

  6. On the performance of Cu-BTC metal organic framework for carbon tetrachloride gas removal.

    PubMed

    Calero, Sofía; Martín-Calvo, Ana; Hamad, Said; García-Pérez, Elena

    2011-01-07

    The performance of Cu-BTC metal organic framework for carbon tetrachloride removal from air has been studied using molecular simulations. According to our results, this material shows extremely high adsorption selectivity in favour of carbon tetrachloride. We demonstrate that this selectivity can be further enhanced by selective blockage of the framework.

  7. Synthesis and characterization of boric acid mediated metal-organic frameworks based on trimesic acid and terephthalic acid

    NASA Astrophysics Data System (ADS)

    Ozer, Demet; Köse, Dursun A.; Şahin, Onur; Oztas, Nursen Altuntas

    2017-08-01

    The new metal-organic framework materials based on boric acid reported herein. Sodium and boron containing metal-organic frameworks were synthesized by one-pot self-assembly reaction in the presence of trimesic acid and terephthalic acid in water/ethanol solution. Boric acid is a relatively cheap boron source and boric acid mediated metal-organic framework prepared mild conditions compared to the other boron source based metal-organic framework. The synthesized compounds were characterized by FT-IR, p-XRD, TGA/DTA, elemental analysis, 13C-MAS NMR, 11B-NMR and single crystal measurements. The molecular formulas of compounds were estimated as C18H33B2Na5O28 and C8H24B2Na2O17 according to the structural analysis. The obtained complexes were thermally stable. Surface properties of inorganic polymer complexes were investigated by BET analyses and hydrogen storage properties of compound were also calculated.

  8. Metal-organic frameworks for thermoelectric energy-conversion applications

    DOE PAGES

    Talin, Albert Alec; Jones, Reese E.; Hopkins, Patrick E.

    2016-11-07

    Motivated by low cost, low toxicity, mechanical flexibility, and conformability over complex shapes, organic semiconductors are currently being actively investigated as thermoelectric (TE) materials to replace the costly, brittle, and non-eco-friendly inorganic TEs for near-ambient-temperature applications. Metal–organic frameworks (MOFs) share many of the attractive features of organic polymers, including solution processability and low thermal conductivity. A potential advantage of MOFs and MOFs with guest molecules (Guest@MOFs) is their synthetic and structural versatility, which allows both the electronic and geometric structure to be tuned through the choice of metal, ligand, and guest molecules. This could solve the long-standing challenge of findingmore » stable, high-TE-performance n-type organic semiconductors, as well as promote high charge mobility via the long-range crystalline order inherent in these materials. In this paper, we review recent advances in the synthesis of MOF and Guest@MOF TEs and discuss how the Seebeck coefficient, electrical conductivity, and thermal conductivity could be tuned to further optimize TE performance.« less

  9. Building Nanoporous Metal-Organic Frameworks "Armor" on Fibers for High-Performance Composite Materials.

    PubMed

    Yang, Xiaobin; Jiang, Xu; Huang, Yudong; Guo, Zhanhu; Shao, Lu

    2017-02-15

    The nanoporous metal-organic frameworks (MOFs) "armor" is in situ intergrown onto the surfaces of carbon fibers (CFs) by nitric acid oxidization to supply nucleation sites and serves as a novel interfacial linker between the fiber and polymer matrix and a smart cushion to release interior and exterior applied forces. Simultaneous enhancements of the interfacial and interlaminar shear strength as well as the tensile strength of CFs were achieved. With the aid of an ultrasonic "cleaning" process, the optimized surface energy and tensile strength of CFs with a MOF "armor" are 83.79 mN m -1 and 5.09 GPa, for an increase of 102% and 11.6%, respectively. Our work finds that the template-induced nucleation of 3D MOF onto 1D fibers is a general and promising approach toward advanced composite materials for diverse applications to meet scientific and technical demands.

  10. Sensing and capture of toxic and hazardous gases and vapors by metal-organic frameworks.

    PubMed

    Wang, Hao; Lustig, William P; Li, Jing

    2018-03-13

    Toxic and hazardous chemical species are ubiquitous, predominantly emitted by anthropogenic activities, and pose serious risks to human health and the environment. Thus, the sensing and subsequent capture of these chemicals, especially in the gas or vapor phase, are of extreme importance. To this end, metal-organic frameworks have attracted significant interest, as their high porosity and wide tunability make them ideal for both applications. These tailorable framework materials are particularly promising for the specific sensing and capture of targeted chemicals, as they can be designed to fit a diverse range of required conditions. This review will discuss the advantages of metal-organic frameworks in the sensing and capture of harmful gases and vapors, as well as principles and strategies guiding the design of these materials. Recent progress in the luminescent detection of aromatic and aliphatic volatile organic compounds, toxic gases, and chemical warfare agents will be summarized, and the adsorptive removal of fluorocarbons/chlorofluorocarbons, volatile radioactive species, toxic industrial gases and chemical warfare agents will be discussed.

  11. Two-dimensional metal-organic frameworks with high thermoelectric efficiency through metal ion selection.

    PubMed

    He, Yuping; Spataru, Catalin D; Léonard, Francois; Jones, Reese E; Foster, Michael E; Allendorf, Mark D; Alec Talin, A

    2017-07-26

    Two-dimensional (2D) materials have attracted much attention due to their novel properties. An exciting new class of 2D materials based on metal-organic frameworks (MOFs) has recently emerged, displaying high electrical conductivity, a rarity among organic nanoporous materials. The emergence of these materials raises intriguing questions about their fundamental electronic, optical, and thermal properties, but few studies exist in this regard. Here we present an atomistic study of the thermoelectric properties of crystalline 2D MOFs X 3 (HITP) 2 with X = Ni, Pd or Pt, and HITP = 2,3,6,7,10,11-hexaiminotriphenylene, using both ab initio transport models and classical molecular dynamics simulations. We find that these materials have a high Seebeck coefficient and low thermal conductivity, making them promising for thermoelectric applications. Furthermore, we explore the dependence of thermoelectric transport properties on the atomic structure by comparing the calculated band structure, band alignment, and electronic density of states of the three 2D MOFs, and find that the thermoelectric transport properties strongly depend on both the interaction between the ligands and the metal ions, and the d orbital splitting of the metal ions induced by the ligands. This demonstrates that selection of the metal ion is a powerful approach to control and enhance the thermoelectric properties. Interestingly we reveal an unexpected effect where, unlike for electrons, the thermal and electrical current may not be equally carried by the holes, leading to a significant deviation from the Wiedemann-Franz law. The results of this work provide fundamental guidance to optimize the existing 2D MOFs, and to design and discover new families of MOF-like materials for thermoelectric applications.

  12. Liquid phase blending of metal-organic frameworks.

    PubMed

    Longley, Louis; Collins, Sean M; Zhou, Chao; Smales, Glen J; Norman, Sarah E; Brownbill, Nick J; Ashling, Christopher W; Chater, Philip A; Tovey, Robert; Schönlieb, Carola-Bibiane; Headen, Thomas F; Terrill, Nicholas J; Yue, Yuanzheng; Smith, Andrew J; Blanc, Frédéric; Keen, David A; Midgley, Paul A; Bennett, Thomas D

    2018-06-15

    The liquid and glass states of metal-organic frameworks (MOFs) have recently become of interest due to the potential for liquid-phase separations and ion transport, alongside the fundamental nature of the latter as a new, fourth category of melt-quenched glass. Here we show that the MOF liquid state can be blended with another MOF component, resulting in a domain structured MOF glass with a single, tailorable glass transition. Intra-domain connectivity and short range order is confirmed by nuclear magnetic resonance spectroscopy and pair distribution function measurements. The interfacial binding between MOF domains in the glass state is evidenced by electron tomography, and the relationship between domain size and T g investigated. Nanoindentation experiments are also performed to place this new class of MOF materials into context with organic blends and inorganic alloys.

  13. Preparation, Characterization, and Postsynthetic Modification of Metal-Organic Frameworks: Synthetic Experiments for an Undergraduate Laboratory Course in Inorganic Chemistry

    ERIC Educational Resources Information Center

    Sumida, Kenji; Arnold, John

    2011-01-01

    Metal-organic frameworks (MOFs) are crystalline materials that are composed of an infinite array of metal nodes (single ions or clusters) linked to one another by polyfunctional organic compounds. Because of their extraordinary surface areas and high degree of control over the physical and chemical properties, these materials have received much…

  14. Selective adsorption of sulfur dioxide in a robust metal-organic framework material

    DOE PAGES

    Savage, Mathew; Cheng, Yongqiang; Easun, Timothy L.; ...

    2016-08-16

    Here, selective adsorption of SO 2 is realized in a porous metal–organic framework material, and in-depth structural and spectroscopic investigations using X-rays, infrared, and neutrons define the underlying interactions that cause SO 2 to bind more strongly than CO 2 and N 2.

  15. Immobilization of Bacillus subtilis lipase on a Cu-BTC based hierarchically porous metal-organic framework material: a biocatalyst for esterification.

    PubMed

    Cao, Yu; Wu, Zhuofu; Wang, Tao; Xiao, Yu; Huo, Qisheng; Liu, Yunling

    2016-04-28

    Bacillus subtilis lipase (BSL2) has been successfully immobilized into a Cu-BTC based hierarchically porous metal-organic framework material for the first time. The Cu-BTC hierarchically porous MOF material with large mesopore apertures is prepared conveniently by using a template-free strategy under mild conditions. The immobilized BSL2 presents high enzymatic activity and perfect reusability during the esterification reaction. After 10 cycles, the immobilized BSL2 still exhibits 90.7% of its initial enzymatic activity and 99.6% of its initial conversion.

  16. Multitopic ligand directed assembly of low-dimensional metal-chalcogenide organic frameworks.

    PubMed

    Liu, Yi; Ye, Kaiqi; Wang, Yue; Zhang, Qichun; Bu, Xianhui; Feng, Pingyun

    2017-01-31

    Despite tremendous progress in metal-organic frameworks, only limited success has been achieved with metal-chalcogenide organic frameworks. Metal-chalcogenide organic frameworks are desirable because they offer a promising route towards tunable semiconducting porous frameworks. Here, four novel semiconducting chalcogenide-organic hybrid compounds have been synthesized through a solvothermal method. Multitopic organic molecules, i.e., 1,2-di-(4-pyridyl)ethylene (L 1 ), 1,3,5-tris(4-pyridyl-trans-ethenyl)benzene (L 2 ) and tetrakis(4-pyridyloxymethylene)methane (L 3 ), have been used as linkers to assemble Zn(SAr) 2 or Zn 2 (SAr) 4 units to generate different patterns of spatial organizations. Single-crystal structural analyses indicate that compounds NTU-2, NTU-3 and NTU-4 possess two-dimensional layer structures, while compound NTU-1 adopts a one-dimensional coordination framework (NTU-n, where n is the number related to a specific structure). The diffuse-reflectance spectra demonstrate that these four compounds possess indirect bandgaps and their tunable bandgaps are correlated with their compositions and crystal structures.

  17. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges.

    PubMed

    Wu, Hao Bin; Lou, Xiong Wen David

    2017-12-01

    In addition to their conventional uses, metal-organic frameworks (MOFs) have recently emerged as an interesting class of functional materials and precursors of inorganic materials for electrochemical energy storage and conversion technologies. This class of MOF-related materials can be broadly categorized into two groups: pristine MOF-based materials and MOF-derived functional materials. Although the diversity in composition and structure leads to diverse and tunable functionalities of MOF-based materials, it appears that much more effort in this emerging field is devoted to synthesizing MOF-derived materials for electrochemical applications. This is in view of two main drawbacks of MOF-based materials: the low conductivity nature and the stability issue. On the contrary, MOF-derived synthesis strategies have substantial advantages in controlling the composition and structure of MOF-derived materials. From this perspective, we review some emerging applications of both groups of MOF-related materials as electrode materials for rechargeable batteries and electrochemical capacitors, efficient electrocatalysts, and even electrolytes for electrochemical devices. By highlighting the advantages and challenges of each class of materials for different applications, we hope to shed some light on the future development of this highly exciting area.

  18. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges

    PubMed Central

    Wu, Hao Bin; Lou, Xiong Wen (David)

    2017-01-01

    In addition to their conventional uses, metal-organic frameworks (MOFs) have recently emerged as an interesting class of functional materials and precursors of inorganic materials for electrochemical energy storage and conversion technologies. This class of MOF-related materials can be broadly categorized into two groups: pristine MOF-based materials and MOF-derived functional materials. Although the diversity in composition and structure leads to diverse and tunable functionalities of MOF-based materials, it appears that much more effort in this emerging field is devoted to synthesizing MOF-derived materials for electrochemical applications. This is in view of two main drawbacks of MOF-based materials: the low conductivity nature and the stability issue. On the contrary, MOF-derived synthesis strategies have substantial advantages in controlling the composition and structure of MOF-derived materials. From this perspective, we review some emerging applications of both groups of MOF-related materials as electrode materials for rechargeable batteries and electrochemical capacitors, efficient electrocatalysts, and even electrolytes for electrochemical devices. By highlighting the advantages and challenges of each class of materials for different applications, we hope to shed some light on the future development of this highly exciting area. PMID:29214220

  19. A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution

    PubMed Central

    Hod, Idan; Deria, Pravas; Bury, Wojciech; Mondloch, Joseph E.; Kung, Chung-Wei; So, Monica; Sampson, Matthew D.; Peters, Aaron W.; Kubiak, Cliff P.; Farha, Omar K.; Hupp, Joseph T.

    2015-01-01

    The availability of efficient hydrogen evolution reaction (HER) catalysts is of high importance for solar fuel technologies aimed at reducing future carbon emissions. Even though Pt electrodes are excellent HER electrocatalysts, commercialization of large-scale hydrogen production technology requires finding an equally efficient, low-cost, earth-abundant alternative. Here, high porosity, metal-organic framework (MOF) films have been used as scaffolds for the deposition of a Ni-S electrocatalyst. Compared with an MOF-free Ni-S, the resulting hybrid materials exhibit significantly enhanced performance for HER from aqueous acid, decreasing the kinetic overpotential by more than 200 mV at a benchmark current density of 10 mA cm−2. Although the initial aim was to improve electrocatalytic activity by greatly boosting the active area of the Ni-S catalyst, the performance enhancements instead were found to arise primarily from the ability of the proton-conductive MOF to favourably modify the immediate chemical environment of the sulfide-based catalyst. PMID:26365764

  20. Metal-organic framework derived hollow polyhedron metal oxide posited graphene oxide for energy storage applications.

    PubMed

    Ramaraju, Bendi; Li, Cheng-Hung; Prakash, Sengodu; Chen, Chia-Chun

    2016-01-18

    A composite made from hollow polyhedron copper oxide and graphene oxide was synthesized by sintering a Cu-based metal-organic framework (Cu-MOF) embedded with exfoliated graphene oxide. As a proof-of-concept application, the obtained Cu(ox)-rGO materials were used in a lithium-ion battery and a sodium-ion battery as anode materials. Overall, the Cu(ox)-rGO composite delivers excellent electrochemical properties with stable cycling when compared to pure CuO-rGO and Cu-MOF.

  1. Single crystalline hollow metal-organic frameworks: a metal-organic polyhedron single crystal as a sacrificial template.

    PubMed

    Kim, Hyehyun; Oh, Minhak; Kim, Dongwook; Park, Jeongin; Seong, Junmo; Kwak, Sang Kyu; Lah, Myoung Soo

    2015-02-28

    Single crystalline hollow metal-organic frameworks (MOFs) with cavity dimensions on the order of several micrometers and hundreds of micrometers were prepared using a metal-organic polyhedron single crystal as a sacrificial hard template. The hollow nature of the MOF crystal was confirmed by scanning electron microscopy of the crystal sliced using a focused ion beam.

  2. Electrocatalytic Metal-Organic Frameworks for Energy Applications.

    PubMed

    Downes, Courtney A; Marinescu, Smaranda C

    2017-11-23

    With the global energy demand expected to increase drastically over the next several decades, the development of a sustainable energy system to meet this increase is paramount. Renewable energy sources can be coupled with electrochemical conversion processes to store energy in chemical bonds. To promote these difficult transformations, electrocatalysts that operate at high conversion rates and efficiency are required. Metal-organic frameworks (MOFs) have emerged as a promising class of materials; however, the insulating nature of MOFs has limited their application as electrocatalysts. The recent development of conductive MOFs has led to several electrocatalytic MOFs that display activity comparable to that of the best-performing heterogeneous catalysts. Although many electrocatalytic MOFs exhibit low activity and stability, the few successful examples highlight the possibility of MOF electrocatalysts as replacements for noble-metal-based catalysts in commercial energy-converting devices. We review herein the use of pristine MOFs as electrocatalysts to facilitate important energy-related reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Multirate delivery of multiple therapeutic agents from metal-organic frameworks

    DOE PAGES

    McKinlay, Alistair C.; Allan, Phoebe K.; Renouf, Catherine L.; ...

    2014-12-01

    The highly porous nature of metal-organic frameworks (MOFs) offers great potential for the delivery of therapeutic agents. Here, we show that highly porous metal-organic frameworks can be used to deliver multiple therapeutic agents—a biologically active gas, an antibiotic drug molecule, and an active metal ion—simultaneously but at different rates. The possibilities offered by delivery of multiple agents with different mechanisms of action and, in particular, variable timescales may allow new therapy approaches. Here, we show that the loaded MOFs are highly active against various strains of bacteria.

  4. Nanostructured Electrode Materials Derived from Metal-Organic Framework Xerogels for High-Energy-Density Asymmetric Supercapacitor.

    PubMed

    Mahmood, Asif; Zou, Ruqiang; Wang, Qingfei; Xia, Wei; Tabassum, Hassina; Qiu, Bin; Zhao, Ruo

    2016-01-27

    This work successfully demonstrates metal-organic framework (MOF) derived strategy to prepare nanoporous carbon (NPC) with or without Fe3O4/Fe nanoparticles by the optimization of calcination temperature as highly active electrode materials for asymmetric supercapacitors (ASC). The nanostructured Fe3O4/Fe/C hybrid shows high specific capacitance of 600 F/g at a current density of 1 A/g and excellent capacitance retention up to 500 F/g at 8 A/g. Furthermore, hierarchically NPC with high surface area also obtained from MOF gels displays excellent electrochemical performance of 272 F/g at 2 mV/s. Considering practical applications, aqueous ASC (aASC) was also assembled, which shows high energy density of 17.496 Wh/kg at the power density of 388.8 W/kg. The high energy density and excellent capacity retention of the developed materials show great promise for the practical utilization of these energy storage devices.

  5. Computational modeling of Metal-Organic Frameworks

    NASA Astrophysics Data System (ADS)

    Sung, Jeffrey Chuen-Fai

    In this work, the metal-organic frameworks MIL-53(Cr), DMOF-2,3-NH 2Cl, DMOF-2,5-NH2Cl, and HKUST-1 were modeled using molecular mechanics and electronic structure. The effect of electronic polarization on the adsorption of water in MIL-53(Cr) was studied using molecular dynamics simulations of water-loaded MIL-53 systems with both polarizable and non-polarizable force fields. Molecular dynamics simulations of the full systems and DFT calculations on representative framework clusters were utilized to study the difference in nitrogen adsorption between DMOF-2,3-NH2Cl and DMOF-2,5-NH 2Cl. Finally, the control of proton conduction in HKUST-1 by complexation of molecules to the Cu open metal site was investigated using the MS-EVB methodology.

  6. Stability of metal organic frameworks and interaction of small gas molecules in these materials

    NASA Astrophysics Data System (ADS)

    Tan, Kui

    The work in this dissertation combines spectroscopy ( in-situ infrared absorption and Raman), powder X-ray diffraction and DFT calculations to study the stability of metal organic frameworks materials (MOFs) in the presence of water vapor and other corrosive gases (e.g., SO 2, NO2 NO), and the interaction and competitive co-adsorption of several gases within MOFs by considering two types of prototypical MOFs: 1) a MOF with saturated metal centers based on paddlewheel secondary building units: M(bdc)(ted)0.5 [M=Cu, Zn, Ni, Co, bdc = 1,4-benzenedicarboxylate, ted = triethylenediamine], and 2) a MOF with unsaturated metal centers: M2(dobdc) [M=Mg2+, Zn2+, Ni2+, Co2+ and dobdc = 2,5-dihydroxybenzenedicarboxylate]. We find that the stability of MOFs to water vapor critically depends on their structure and the specific metal cation in the building units. For M(bdc)(ted)0.5, the metal-bdc bond is the most vulnerable for Cu(bdc)(ted)0.5, while the metal-ted bond is first attacked for the Zn and Co analogs. In contrast, Ni(bdc)(ted)0.5 remains stable under the same conditions. For M2(dobdc), or MOF-74, the weak link is the dobdc-metal bond. The water molecule is dissociatively adsorbed at the metal-oxygen group with OH adsorption directly on the metal center and H adsorption on the bridging O of the phenolate group in the dobdc linker. Other technologically important molecules besides water, such as NO, NO2, SO2, tend to poison M2(dobdc) through dissociative or molecular adsorption onto the open metal sites. A high uptake SO2 capacity was measured in M(bdc)(ted)0.5, attributed to multipoint interactions between the guest SO2 molecule and the MOF host. In the case of competitive co-adsorption between CO2 and other small molecules, we find that binding energy alone is not a good indicator of molecular site occupation within the MOF (i.e., it cannot successfully predict and evaluate the displacement of CO2 by other molecules). Instead, we show that the kinetic barrier for the

  7. Metal-Organic Frameworks-Derived Hierarchical Co3O4 Structures as Efficient Sensing Materials for Acetone Detection.

    PubMed

    Zhang, Rui; Zhou, Tingting; Wang, Lili; Zhang, Tong

    2018-03-21

    Highly sensitive and stable gas sensors have attracted much attention because they are the key to innovations in the fields of environment, health, energy savings and security, etc. Sensing materials, which influence the practical sensing performance, are the crucial parts for gas sensors. Metal-organic frameworks (MOFs) are considered as alluring sensing materials for gas sensors because of the possession of high specific surface area, unique morphology, abundant metal sites, and functional linkers. Herein, four kinds of porous hierarchical Co 3 O 4 structures have been selectively controlled by optimizing the thermal decomposition (temperature, rate, and atmosphere) using ZIF-67 as precursor that was obtained from coprecipitation method with the co-assistance of cobalt salt and 2-methylimidazole in the solution of methanol. These hierarchical Co 3 O 4 structures, with controllable cross-linked channels, meso-/micropores, and adjustable surface area, are efficient catalytic materials for gas sensing. Benefits from structural advantages, core-shell, and porous core-shell Co 3 O 4 exhibit enhanced sensing performance compared to those of porous popcorn and nanoparticle Co 3 O 4 to acetone gas. These novel MOF-templated Co 3 O 4 hierarchical structures are so fantastic that they can be expected to be efficient sensing materials for development of low-temperature operating gas sensors.

  8. Metal-Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production.

    PubMed

    Dhakshinamoorthy, Amarajothi; Asiri, Abdullah M; García, Hermenegildo

    2016-04-25

    Metal-organic frameworks (MOFs) are crystalline porous materials formed from bi- or multipodal organic linkers and transition-metal nodes. Some MOFs have high structural stability, combined with large flexibility in design and post-synthetic modification. MOFs can be photoresponsive through light absorption by the organic linker or the metal oxide nodes. Photoexcitation of the light absorbing units in MOFs often generates a ligand-to-metal charge-separation state that can result in photocatalytic activity. In this Review we discuss the advantages and uniqueness that MOFs offer in photocatalysis. We present the best practices to determine photocatalytic activity in MOFs and for the deposition of co-catalysts. In particular we give examples showing the photocatalytic activity of MOFs in H2 evolution, CO2 reduction, photooxygenation, and photoreduction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Thermal conversion of an Fe₃O₄@metal-organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material.

    PubMed

    Zhang, Xingmiao; Ji, Guangbin; Liu, Wei; Quan, Bin; Liang, Xiaohui; Shang, Chaomei; Cheng, Yan; Du, Youwei

    2015-08-14

    A novel FeCo nanoparticle embedded nanoporous carbon composite (Fe-Co/NPC) was synthesized via in situ carbonization of dehydro-ascorbic acid (DHAA) coated Fe3O4 nanoparticles encapsulated in a metal-organic framework (zeolitic imidazolate framework-67, ZIF-67). The molar ratio of Fe/Co significantly depends on the encapsulated content of Fe3O4 in ZIF-67. The composites filled with 50 wt% of the Fe-Co/NPC-2.0 samples in paraffin show a maximum reflection loss (RL) of -21.7 dB at a thickness of 1.2 mm; in addition, a broad absorption bandwidth for RL < -10 dB which covers from 12.2 to 18 GHz can be obtained, and its minimum reflection loss and bandwidth (RL values exceeding -10 dB) are far greater than those of commercial carbonyl iron powder under a very low thickness (1-1.5 mm). This study not only provides a good reference for future preparation of carbon-based lightweight microwave absorbing materials but also broadens the application of such kinds of metal-organic frameworks.

  10. Macroscopically Oriented Porous Materials with Periodic Ordered Structures: From Zeolites and Metal-Organic Frameworks to Liquid-Crystal-Templated Mesoporous Materials.

    PubMed

    Cho, Joonil; Ishida, Yasuhiro

    2017-07-01

    Porous materials with molecular-sized periodic structures, as exemplified by zeolites, metal-organic frameworks, or mesoporous silica, have attracted increasing attention due to their range of applications in storage, sensing, separation, and transformation of small molecules. Although the components of such porous materials have a tendency to pack in unidirectionally oriented periodic structures, such ideal types of packing cannot continue indefinitely, generally ceasing when they reach a micrometer scale. Consequently, most porous materials are composed of multiple randomly oriented domains, and overall behave as isotropic materials from a macroscopic viewpoint. However, if their channels could be unidirectionally oriented over a macroscopic scale, the resultant porous materials might serve as powerful tools for manipulating molecules. Guest molecules captured in macroscopically oriented channels would have their positions and directions well-defined, so that molecular events in the channels would proceed in a highly controlled manner. To realize such an ideal situation, numerous efforts have been made to develop various porous materials with macroscopically oriented channels. An overview of recent studies on the synthesis, properties, and applications of macroscopically oriented porous materials is presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Proton conduction in metal-organic frameworks and related modularly built porous solids.

    PubMed

    Yoon, Minyoung; Suh, Kyungwon; Natarajan, Srinivasan; Kim, Kimoon

    2013-03-04

    Proton-conducting materials are an important component of fuel cells. Development of new types of proton-conducting materials is one of the most important issues in fuel-cell technology. Herein, we present newly developed proton-conducting materials, modularly built porous solids, including coordination polymers (CPs) or metal-organic frameworks (MOFs). The designable and tunable nature of the porous materials allows for fast development in this research field. Design and synthesis of the new types of proton-conducting materials and their unique proton-conduction properties are discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. An Electrically Switchable Metal-Organic Framework

    NASA Astrophysics Data System (ADS)

    Fernandez, Carlos A.; Martin, Paul C.; Schaef, Todd; Bowden, Mark E.; Thallapally, Praveen K.; Dang, Liem; Xu, Wu; Chen, Xilin; McGrail, B. Peter

    2014-08-01

    Crystalline metal organic framework (MOF) materials containing interconnected porosity can be chemically modified to promote stimulus-driven (light, magnetic or electric fields) structural transformations that can be used in a number of devices. Innovative research strategies are now focused on understanding the role of chemical bond manipulation to reversibly alter the free volume in such structures of critical importance for electro-catalysis, molecular electronics, energy storage technologies, sensor devices and smart membranes. In this letter, we study the mechanism for which an electrically switchable MOF composed of Cu(TCNQ) (TCNQ = 7,7,8,8-tetracyanoquinodimethane) transitions from a high-resistance state to a conducting state in a reversible fashion by an applied potential. The actual mechanism for this reversible electrical switching is still not understood even though a number of reports are available describing the application of electric-field-induced switching of Cu(TCNQ) in device fabrication.

  13. Molecular simulations for energy, environmental and pharmaceutical applications of nanoporous materials: from zeolites, metal-organic frameworks to protein crystals.

    PubMed

    Jiang, Jianwen; Babarao, Ravichandar; Hu, Zhongqiao

    2011-07-01

    Nanoporous materials have widespread applications in chemical industry, but the pathway from laboratory synthesis and testing to practical utilization of nanoporous materials is substantially challenging and requires fundamental understanding from the bottom up. With ever-growing computational resources, molecular simulations have become an indispensable tool for material characterization, screening and design. This tutorial review summarizes the recent simulation studies in zeolites, metal-organic frameworks and protein crystals, and provides a molecular overview for energy, environmental and pharmaceutical applications of nanoporous materials with increasing degree of complexity in building blocks. It is demonstrated that molecular-level studies can bridge the gap between physical and engineering sciences, unravel microscopic insights that are otherwise experimentally inaccessible, and assist in the rational design of new materials. The review is concluded with major challenges in future simulation exploration of novel nanoporous materials for emerging applications.

  14. A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution

    DOE PAGES

    Hod, Idan; Deria, Pravas; Bury, Wojciech; ...

    2015-09-14

    The availability of efficient hydrogen evolution reaction (HER) catalysts is of high importance for solar fuel technologies aimed at reducing future carbon emissions. Even though Pt electrodes are excellent HER electrocatalysts, commercialization of large-scale hydrogen production technology requires finding an equally efficient, low-cost, earth-abundant alternative. Here, high porosity, metal-organic framework (MOF) films have been used as scaffolds for the deposition of a Ni-S electrocatalyst. Compared with an MOF-free Ni-S, the resulting hybrid materials exhibit significantly enhanced performance for HER from aqueous acid, decreasing the kinetic overpotential by more than 200 mV at a benchmark current density of 10 mA cm −2. In conclusion,more » although the initial aim was to improve electrocatalytic activity by greatly boosting the active area of the Ni-S catalyst, the performance enhancements instead were found to arise primarily from the ability of the proton-conductive MOF to favourably modify the immediate chemical environment of the sulfide-based catalyst.« less

  15. Trapping gases in metal-organic frameworks with a selective surface molecular barrier layer

    DOE PAGES

    Tan, Kui; Zuluaga, Sebastian; Fuentes, Erika; ...

    2016-12-13

    The main challenge for gas storage and separation in nanoporous materials is that many molecules of interest adsorb too weakly to be effectively retained. Instead of synthetically modifying the internal surface structure of the entire bulk—as is typically done to enhance adsorption—here we show that post exposure of a prototypical porous metal-organic framework to ethylenediamine can effectively retain a variety of weakly adsorbing molecules (for example, CO, CO 2, SO 2, C 2H 4, NO) inside the materials by forming a monolayer-thick cap at the external surface of microcrystals. Furthermore, this capping mechanism, based on hydrogen bonding as explained bymore » ab initio modelling, opens the door for potential selectivity. For example, water molecules are shown to disrupt the hydrogen-bonded amine network and diffuse through the cap without hindrance and fully displace/release the retained small molecules out of the metal-organic framework at room temperature. Lastly, these findings may provide alternative strategies for gas storage, delivery and separation.« less

  16. Metal organic frameworks-derived sensing material of SnO2/NiO composites for detection of triethylamine

    NASA Astrophysics Data System (ADS)

    Bai, Shouli; Liu, Chengyao; Luo, Ruixian; Chen, Aifan

    2018-04-01

    The SnO2/NiO composites were synthesized by hydrothermal followed by calcination using metal-organic framework (MOF) consisting of the ligand of p-benzene-dicarboxylic acid (PTA) and the Sn and Ni center ions as sacrificial templates. The structure and morphology of Sn/Ni-based MOF and SnO2/NiO composites were characterized by XRD, SEM, TEM, FT-IR, TG, XPS and Brunauer-Emmett-Teller analysis. Sensing experiments reveal that the SnO2/NiO composite with the molar ratio of 9:1 not only exhibits the highest response of 14.03 that is 3 times higher than pristine SnO2 to triethylamine at 70 °C, but also shows good selectivity. Such excellent performance is attributed to the MOF-driven strategy and the formation of p-n heterojunctions, because the metal ions can be highly dispersed and separated in the MOFs and can prevent the metal ions aggregation during the MOF decomposition process. The work is a novel route for synthesis of gas sensing material.

  17. Water depollution using metal-organic frameworks-catalyzed advanced oxidation processes: A review.

    PubMed

    Sharma, Virender K; Feng, Mingbao

    2017-09-28

    This paper presents a review on the environmental applications of metal-organic frameworks (MOFs), which are inorganic-organic hybrid highly porous crystalline materials, prepared from metal ion/clusters and multidentate organic ligands. The emphases are made on the enhancement of the performance of advanced oxidation processes (AOPs) (photocatalysis, Fenton reaction methods, and sulfate radical (SO 4 - )-mediated oxidations) using MOFs materials. MOFs act as adsorption and light absorbers, leading to superior performance of photocatalytic processes. More recent examples of photocatalytic degradation of dyes are presented. Additionally, it is commonly shown that Fe-based MOFs exhibited excellent catalytic performance on the Fenton-based and SO 4 •- -mediated oxidations of organic pollutants (e.g., dyes, phenol and pharmaceuticals). The significantly enhanced generation of reactive species such as OH and/or SO 4 - by both homogeneous and heterogeneous catalysis was proposed as the possible mechanism for water depollution. Based on the existing literature, the challenge and future perspectives in MOF-based AOPs are addressed. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Carbon with hierarchical pores from carbonized metal-organic frameworks for lithium sulphur batteries.

    PubMed

    Xi, Kai; Cao, Shuai; Peng, Xiaoyu; Ducati, Caterina; Kumar, R Vasant; Cheetham, Anthony K

    2013-03-18

    This paper presents a novel method and rationale for utilizing carbonized MOFs for sulphur loading to fabricate cathode structures for lithium-sulphur batteries. Unique carbon materials with differing hierarchical pore structures were synthesized from four types of zinc-containing metal-organic frameworks (MOFs). It is found that cathode materials made from MOFs-derived carbons with higher mesopore (2-50 nm) volumes exhibit increased initial discharge capacities, whereas carbons with higher micropore (<2 nm) volumes lead to cathode materials with better cycle stability.

  19. Design and synthesis of polyoxometalate-framework materials from cluster precursors

    NASA Astrophysics Data System (ADS)

    Vilà-Nadal, Laia; Cronin, Leroy

    2017-10-01

    Inorganic oxide materials are used in semiconductor electronics, ion exchange, catalysis, coatings, gas sensors and as separation materials. Although their synthesis is well understood, the scope for new materials is reduced because of the stability limits imposed by high-temperature processing and top-down synthetic approaches. In this Review, we describe the derivatization of polyoxometalate (POM) clusters, which enables their assembly into a range of frameworks by use of organic or inorganic linkers. Additionally, bottom-up synthetic approaches can be used to make metal oxide framework materials, and the features of the molecular POM precursors are retained in these structures. Highly robust all-inorganic frameworks can be made using metal-ion linkers, which combine molecular synthetic control without the need for organic components. The resulting frameworks have high stability, and high catalytic, photochemical and electrochemical activity. Conceptually, these inorganic oxide materials bridge the gap between zeolites and metal-organic frameworks (MOFs) and establish a new class of all-inorganic POM frameworks that can be designed using topological and reactivity principles similar to MOFs.

  20. Optimizing Toxic Chemical Removal through Defect-Induced UiO-66-NH2 Metal-Organic Framework.

    PubMed

    Peterson, Gregory W; Destefano, Matthew R; Garibay, Sergio J; Ploskonka, Ann; McEntee, Monica; Hall, Morgan; Karwacki, Christopher J; Hupp, Joseph T; Farha, Omar K

    2017-11-13

    For the first time, an increasing number of defects were introduced to the metal-organic framework UiO-66-NH 2 in an attempt to understand the structure-activity trade-offs associated with toxic chemical removal. It was found that an optimum exists with moderate defects for toxic chemicals that react with the linker, whereas those that require hydrolysis at the secondary building unit performed better when more defects were introduced. The insights obtained through this work highlight the ability to dial-in appropriate material formulations, even within the same parent metal-organic framework, allowing for trade-offs between reaction efficiency and mass transfer. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Coordination-chemistry control of proton conductivity in the iconic metal-organic framework material HKUST-1.

    PubMed

    Jeong, Nak Cheon; Samanta, Bappaditya; Lee, Chang Yeon; Farha, Omar K; Hupp, Joseph T

    2012-01-11

    HKUST-1, a metal-organic framework (MOF) material containing Cu(II)-paddlewheel-type nodes and 1,3,5-benzenetricarboxylate struts, features accessible Cu(II) sites to which solvent or other desired molecules can be intentionally coordinated. As part of a broader investigation of ionic conductivity in MOFs, we unexpectedly observed substantial proton conductivity with the "as synthesized" version of this material following sorption of methanol. Although HKUST-1 is neutral, coordinated water molecules are rendered sufficiently acidic by Cu(II) to contribute protons to pore-filling methanol molecules and thereby enhance the alternating-current conductivity. At ambient temperature, the chemical identities of the node-coordinated and pore-filling molecules can be independently varied, thus enabling the proton conductivity to be reversibly modulated. The proton conductivity of HKUST-1 was observed to increase by ~75-fold, for example, when node-coordinated acetonitrile molecules were replaced by water molecules. In contrast, the conductivity became almost immeasurably small when methanol was replaced by hexane as the pore-filling solvent. © 2011 American Chemical Society

  2. Ultrahigh porosity in metal-organic frameworks.

    PubMed

    Furukawa, Hiroyasu; Ko, Nakeun; Go, Yong Bok; Aratani, Naoki; Choi, Sang Beom; Choi, Eunwoo; Yazaydin, A Ozgür; Snurr, Randall Q; O'Keeffe, Michael; Kim, Jaheon; Yaghi, Omar M

    2010-07-23

    Crystalline solids with extended non-interpenetrating three-dimensional crystal structures were synthesized that support well-defined pores with internal diameters of up to 48 angstroms. The Zn4O(CO2)6 unit was joined with either one or two kinds of organic link, 4,4',4''-[benzene-1,3,5-triyl-tris(ethyne-2,1-diyl)]tribenzoate (BTE), 4,4',44''-[benzene-1,3,5-triyl-tris(benzene-4,1-diyl)]tribenzoate (BBC), 4,4',44''-benzene-1,3,5-triyl-tribenzoate (BTB)/2,6-naphthalenedicarboxylate (NDC), and BTE/biphenyl-4,4'-dicarboxylate (BPDC), to give four metal-organic frameworks (MOFs), MOF-180, -200, -205, and -210, respectively. Members of this series of MOFs show exceptional porosities and gas (hydrogen, methane, and carbon dioxide) uptake capacities. For example, MOF-210 has Brunauer-Emmett-Teller and Langmuir surface areas of 6240 and 10,400 square meters per gram, respectively, and a total carbon dioxide storage capacity of 2870 milligrams per gram. The volume-specific internal surface area of MOF-210 (2060 square meters per cubic centimeter) is equivalent to the outer surface of nanoparticles (3-nanometer cubes) and near the ultimate adsorption limit for solid materials.

  3. Double-Sided Electrochromic Device Based on Metal-Organic Frameworks.

    PubMed

    Mjejri, Issam; Doherty, Cara M; Rubio-Martinez, Marta; Drisko, Glenna L; Rougier, Aline

    2017-11-22

    Devices displaying controllably tunable optical properties through an applied voltage are attractive for smart glass, mirrors, and displays. Electrochromic material development aims to decrease power consumption while increasing the variety of attainable colors, their brilliance, and their longevity. We report the first electrochromic device constructed from metal organic frameworks (MOFs). Two MOF films, HKUST-1 and ZnMOF-74, are assembled so that the oxidation of one corresponds to the reduction of the other, allowing the two sides of the device to simultaneously change color. These MOF films exhibit cycling stability unrivaled by other MOFs and a significant optical contrast in a lithium-based electrolyte. HKUST-1 reversibly changed from bright blue to light blue and ZnMOF-74 from yellow to brown. The electrochromic device associates the two MOF films via a PMMA-lithium based electrolyte membrane. The color-switching of these MOFs does not arise from an organic-linker redox reaction, signaling unexplored possibilities for electrochromic MOF-based materials.

  4. An Electrically Switchable Metal-Organic Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, CA; Martin, PC; Schaef, T

    2014-08-19

    Crystalline metal organic framework (MOF) materials containing interconnected porosity can be chemically modified to promote stimulus-driven (light, magnetic or electric fields) structural transformations that can be used in a number of devices. Innovative research strategies are now focused on understanding the role of chemical bond manipulation to reversibly alter the free volume in such structures of critical importance for electro-catalysis, molecular electronics, energy storage technologies, sensor devices and smart membranes. In this letter, we study the mechanism for which an electrically switchable MOF composed of Cu(TCNQ) (TCNQ = 7,7,8,8-tetracyanoquinodimethane) transitions from a high-resistance state to a conducting state in amore » reversible fashion by an applied potential. The actual mechanism for this reversible electrical switching is still not understood even though a number of reports are available describing the application of electric-field-induced switching of Cu(TCNQ) in device fabrication.« less

  5. An Electrically Switchable Metal-Organic Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Carlos A.; Martin, Paul F.; Schaef, Herbert T.

    2014-08-19

    Crystalline metal organic framework (MOF) materials containing interconnected porosity can be chemically modified to promote stimulus-driven (light, magnetic or electric fields) structural transformations that can be used in a number of devices. Innovative research strategies are now focused on understanding the role of chemical bond manipulation to reversibly alter the free volume in such structures of critical importance for electro-catalysis, molecular electronics, energy storage technologies, sensor devices and smart membranes. In this letter, we study the mechanism for which an electrically switchable MOF composed of Cu(TCNQ) (TCNQ 5 7,7,8,8-tetracyanoquinodimethane) transitions from a high-resistance state to a conducting state in amore » reversible fashion by an applied potential. The actual mechanism for this reversible electrical switching is still not understood even though a number of reports are available describing the application of electric-field-induced switching of Cu(TCNQ) in device fabrication.« less

  6. Electron delocalization and charge mobility as a function of reduction in a metal-organic framework.

    PubMed

    Aubrey, Michael L; Wiers, Brian M; Andrews, Sean C; Sakurai, Tsuneaki; Reyes-Lillo, Sebastian E; Hamed, Samia M; Yu, Chung-Jui; Darago, Lucy E; Mason, Jarad A; Baeg, Jin-Ook; Grandjean, Fernande; Long, Gary J; Seki, Shu; Neaton, Jeffrey B; Yang, Peidong; Long, Jeffrey R

    2018-06-04

    Conductive metal-organic frameworks are an emerging class of three-dimensional architectures with degrees of modularity, synthetic flexibility and structural predictability that are unprecedented in other porous materials. However, engendering long-range charge delocalization and establishing synthetic strategies that are broadly applicable to the diverse range of structures encountered for this class of materials remain challenging. Here, we report the synthesis of K x Fe 2 (BDP) 3 (0 ≤ x ≤ 2; BDP 2-  = 1,4-benzenedipyrazolate), which exhibits full charge delocalization within the parent framework and charge mobilities comparable to technologically relevant polymers and ceramics. Through a battery of spectroscopic methods, computational techniques and single-microcrystal field-effect transistor measurements, we demonstrate that fractional reduction of Fe 2 (BDP) 3 results in a metal-organic framework that displays a nearly 10,000-fold enhancement in conductivity along a single crystallographic axis. The attainment of such properties in a K x Fe 2 (BDP) 3 field-effect transistor represents the realization of a general synthetic strategy for the creation of new porous conductor-based devices.

  7. Destruction of chemical warfare agents using metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Mondloch, Joseph E.; Katz, Michael J.; Isley, William C., III; Ghosh, Pritha; Liao, Peilin; Bury, Wojciech; Wagner, George W.; Hall, Morgan G.; Decoste, Jared B.; Peterson, Gregory W.; Snurr, Randall Q.; Cramer, Christopher J.; Hupp, Joseph T.; Farha, Omar K.

    2015-05-01

    Chemical warfare agents containing phosphonate ester bonds are among the most toxic chemicals known to mankind. Recent global military events, such as the conflict and disarmament in Syria, have brought into focus the need to find effective strategies for the rapid destruction of these banned chemicals. Solutions are needed for immediate personal protection (for example, the filtration and catalytic destruction of airborne versions of agents), bulk destruction of chemical weapon stockpiles, protection (via coating) of clothing, equipment and buildings, and containment of agent spills. Solid heterogeneous materials such as modified activated carbon or metal oxides exhibit many desirable characteristics for the destruction of chemical warfare agents. However, low sorptive capacities, low effective active site loadings, deactivation of the active site, slow degradation kinetics, and/or a lack of tailorability offer significant room for improvement in these materials. Here, we report a carefully chosen metal-organic framework (MOF) material featuring high porosity and exceptional chemical stability that is extraordinarily effective for the degradation of nerve agents and their simulants. Experimental and computational evidence points to Lewis-acidic ZrIV ions as the active sites and to their superb accessibility as a defining element of their efficacy.

  8. Destruction of chemical warfare agents using metal-organic frameworks.

    PubMed

    Mondloch, Joseph E; Katz, Michael J; Isley, William C; Ghosh, Pritha; Liao, Peilin; Bury, Wojciech; Wagner, George W; Hall, Morgan G; DeCoste, Jared B; Peterson, Gregory W; Snurr, Randall Q; Cramer, Christopher J; Hupp, Joseph T; Farha, Omar K

    2015-05-01

    Chemical warfare agents containing phosphonate ester bonds are among the most toxic chemicals known to mankind. Recent global military events, such as the conflict and disarmament in Syria, have brought into focus the need to find effective strategies for the rapid destruction of these banned chemicals. Solutions are needed for immediate personal protection (for example, the filtration and catalytic destruction of airborne versions of agents), bulk destruction of chemical weapon stockpiles, protection (via coating) of clothing, equipment and buildings, and containment of agent spills. Solid heterogeneous materials such as modified activated carbon or metal oxides exhibit many desirable characteristics for the destruction of chemical warfare agents. However, low sorptive capacities, low effective active site loadings, deactivation of the active site, slow degradation kinetics, and/or a lack of tailorability offer significant room for improvement in these materials. Here, we report a carefully chosen metal-organic framework (MOF) material featuring high porosity and exceptional chemical stability that is extraordinarily effective for the degradation of nerve agents and their simulants. Experimental and computational evidence points to Lewis-acidic Zr(IV) ions as the active sites and to their superb accessibility as a defining element of their efficacy.

  9. Metal Organic Framework-Metal Oxide Composites for Toxic Gas Adsorption and Sensing

    DTIC Science & Technology

    2014-05-01

    zeolitic imidazolate framework Zn(NO3)2 zinc nitrate ZrCl4 zirconium chloride 21 SUMMARY Metal organic frameworks (MOFs) and metal oxide-MOF...performed better for the other gases and conditions. Compared to the standard adsorbents BPL carbon and zeolite 13X, the cobalt and magnesium MOF...g)24 and zeolite 5A (1.25 mmol/g),25 compared to 3.5 mmol/g for Ni-MOF-74, 4 mmol/g for Mg-MOF-74, and 6 mmol/g for Co-MOF-74. Mg-MOF-74 shows the

  10. Highly selective luminescent sensing of picric acid based on a water-stable europium metal-organic framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Tifeng; Zhu, Fengliang; Cui, Yuanjing, E-mail: cuiyj@zju.edu.cn

    A water-stable metal-organic framework (MOF) EuNDC has been synthesized for selective detection of the well-known contaminant and toxicant picric acid (PA) in aqueous solution. Due to the photo-induced electron transfer and self-absorption mechanism, EuNDC displayed rapid, selective and sensitive detection of PA with a detection limit of 37.6 ppb. Recyclability experiments revealed that EuNDC retains its initial luminescent intensity and same quenching efficiency in each cycle, suggesting high photostability and reusability for long-term sensing applications. The excellent detection performance of EuNDC makes it a promising PA sensing material for practical applications. - Graphical abstract: A water-stable europium-based metal-organic framework hasmore » been reported for highly selective sensing of picric acid (PA) with a detection limit of 37.6 ppb in aqueous solution. - Highlights: • A water-stable metal-organic framework (MOF) EuNDC was synthesized. • The highly selective detection of picric acid with a detection limit of 37.6 ppb was realized. • The detection mechanism were also presented and discussed.« less

  11. Fabrication of composite membranes using copper metal organic framework for energy application

    NASA Astrophysics Data System (ADS)

    Gahlot, Swati; Rajput, Abhishek; Kulshrestha, Vaibhav

    2018-04-01

    Present manuscript deals with the synthesis of nanocomposite polymer electrolyte membrane (PEM) based on copper based metal organic framework (Cu-MOF) and sulfonated poly ether sulfone (SPES) for fuel cell application. Prepared material and composite membrane has been analyzed through various techniques. Structural and thermal characterization of prepared material has been carried out through XRD, FTIR and TGA technique. Measurement shows the successful synthesis of MOF and also confirms the thermal stability. Prepared membranes shows good physicochemical properties and good ionic conductivity which can be utilized as PEM for fuel cell application.

  12. Biomolecule-embedded metal-organic frameworks as an innovative sensing platform.

    PubMed

    Kempahanumakkagari, Sureshkumar; Kumar, Vanish; Samaddar, Pallabi; Kumar, Pawan; Ramakrishnappa, Thippeswamy; Kim, Ki-Hyun

    Technological advancements combined with materials research have led to the generation of enormous types of novel substrates and materials for use in various biological/medical, energy, and environmental applications. Lately, the embedding of biomolecules in novel and/or advanced materials (e.g., metal-organic frameworks (MOFs), nanoparticles, hydrogels, graphene, and their hybrid composites) has become a vital research area in the construction of an innovative platform for various applications including sensors (or biosensors), biofuel cells, and bioelectronic devices. Due to the intriguing properties of MOFs (e.g., framework architecture, topology, and optical properties), they have contributed considerably to recent progresses in enzymatic catalysis, antibody-antigen interactions, or many other related approaches. Here, we aim to describe the different strategies for the design and synthesis of diverse biomolecule-embedded MOFs for various sensing (e.g., optical, electrochemical, biological, and miscellaneous) techniques. Additionally, the benefits and future prospective of MOFs-based biomolecular immobilization as an innovative sensing platform are discussed along with the evaluation on their performance to seek for further development in this emerging research area. Copyright © 2018. Published by Elsevier Inc.

  13. Metal-Organic Framework-Derived Nanoporous Metal Oxides toward Supercapacitor Applications: Progress and Prospects.

    PubMed

    Salunkhe, Rahul R; Kaneti, Yusuf V; Yamauchi, Yusuke

    2017-06-27

    Transition metal oxides (TMOs) have attracted significant attention for energy storage applications such as supercapacitors due to their good electrical conductivity, high electrochemical response (by providing Faradaic reactions), low manufacturing costs, and easy processability. Despite exhibiting these attractive characteristics, the practical applications of TMOs for supercapacitors are still relatively limited. This is largely due to their continuous Faradaic reactions, which can lead to major changes or destruction of their structure as well phase changes (in some cases) during cycling, leading to the degradation in their capacitive performance over time. Hence, there is an immediate need to develop new synthesis methods, which will readily provide stable porous architectures, controlled phase, as well as useful control over dimensions (1-D, 2-D, and 3-D) of the metal oxides for improving their performance in supercapacitor applications. Since its discovery in late 1990s, metal-organic frameworks (MOFs) have influenced many fields of material science. In recent years, they have gained significant attention as precursors or templates for the derivation of porous metal oxide nanostructures and nanocomposites for next-generation supercapacitor applications. Even though these materials have widespread applications and have been widely studied in terms of their structural features and synthesis, it is still not clear how these materials will play an important role in the development of the supercapacitor field. In this review, we will summarize the recent developments in the field of MOF-derived porous metal oxide nanostructures and nanocomposites for supercapacitor applications. Furthermore, the current challenges along with the future trends and prospects in the application of these materials for supercapacitors will also be discussed.

  14. Synthesis of novel cellulose- based antibacterial composites of Ag nanoparticles@ metal-organic frameworks@ carboxymethylated fibers.

    PubMed

    Duan, Chao; Meng, Jingru; Wang, Xinqi; Meng, Xin; Sun, Xiaole; Xu, Yongjian; Zhao, Wei; Ni, Yonghao

    2018-08-01

    A novel cellulose-based antibacterial material, namely silver nanoparticles@ metal-organic frameworks@ carboxymethylated fibers composites (Ag NPs@ HKUST-1@ CFs), was synthesized. The results showed that the metal-organic frameworks (HKUST-1) were uniformly anchored on the fiber's surfaces by virtue of complexation between copper ions in HKUST-1 and carboxyl groups on the carboxymethylated fibers (CFs). The silver nanoparticles (Ag NPs) were immobilized and well-dispersed into the pores and/or onto the surfaces of HKUST-1 via in situ microwave reduction, resulting in the formation of novel Ag NPs@ HKUST-1@ CFs composites. The antibacterial assays showed that the as-prepared composites exhibited a much higher antibacterial activity than Ag NPs@ CFs or HKUST-1@ CFs samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Designing Kitaev Spin Liquids in Metal-Organic Frameworks

    NASA Astrophysics Data System (ADS)

    Yamada, Masahiko G.; Fujita, Hiroyuki; Oshikawa, Masaki

    2017-08-01

    Kitaev's honeycomb lattice spin model is a remarkable exactly solvable model, which has a particular type of spin liquid (Kitaev spin liquid) as the ground state. Although its possible realization in iridates and α -RuCl3 has been vigorously discussed recently, these materials have substantial non-Kitaev direct exchange interactions and do not have a spin liquid ground state. We propose metal-organic frameworks (MOFs) with Ru3 + (or Os3 + ), forming the honeycomb lattice as promising candidates for a more ideal realization of Kitaev-type spin models, where the direct exchange interaction is strongly suppressed. The great flexibility of MOFs allows generalization to other three-dimensional lattices for the potential realization of a variety of spin liquids, such as a Weyl spin liquid.

  16. Study of Adsorption and Desorption Performances of Zr-Based Metal-Organic Frameworks Using Paper Spray Mass Spectrometry.

    PubMed

    Wang, Xiaoting; Chen, Ying; Zheng, Yajun; Zhang, Zhiping

    2017-07-08

    The dynamic pore systems and high surface areas of flexible metal-organic framework materials make them excellent candidates to be used in different kinds of adsorption processes. However, the adsorption and desorption behaviors of therapeutic drugs on metal-organic frameworks in solution are not fully developed. Here, we systematically investigated the adsorption and desorption behaviors of a typical therapeutic drug, verapamil, over several Zr-based metal-organic frameworks [e.g., Zr-FUM, UiO-66(Zr), UiO-66(Zr)-NH₂ and UiO-66(Zr)-2COOH] as well as ZrO₂ in an acetonitrile solution by using paper spray mass spectrometry. In contrast to other materials, UiO-66(Zr)-2COOH demonstrated a superior adsorption performance to verapamil due to their strong acid-base and/or hydrogen-bond interactions, and the adsorption process fitted well with the pseudo-second-order kinetic model. As verapamil-adsorbed materials were used for desorption experiments, ZrO₂ demonstrated the most favorable desorption performance, whereas UiO-66(Zr)-2COOH yielded the poorest desorption capability. These Zr-based materials had also been coated at the surface with filter papers for the analysis of various drugs and proteins in the process of paper spray mass spectrometry. The results demonstrated that among the studied materials, ZrO₂-coated paper gave the most favorable desorption performance as a pure drug solution, whereas the paper from UiO-66(Zr) demonstrated the optimal capability in the analyses of therapeutic drugs in a complex matrix (e.g., blood) and a protein (e.g., myoglobin).

  17. Highly Fluorescent Metal-Organic-Framework Nanocomposites for Photonic Applications.

    PubMed

    Monguzzi, A; Ballabio, M; Yanai, N; Kimizuka, N; Fazzi, D; Campione, M; Meinardi, F

    2018-01-10

    Metal-organic frameworks (MOFs) are porous hybrid materials built up from organic ligands coordinated to metal ions or clusters by means of self-assembly strategies. The peculiarity of these materials is the possibility, according to specific synthetic routes, to manipulate both the composition and ligands arrangement in order to control their optical and energy-transport properties. Therefore, optimized MOFs nanocrystals (nano-MOFs) can potentially represent the next generation of luminescent materials with features similar to those of their inorganic predecessors, that is, the colloidal semiconductor quantum dots. The luminescence of fluorescent nano-MOFs is generated through the radiative recombination of ligand molecular excitons. The uniqueness of these nanocrystals is the possibility to pack the ligand chromophores close enough to allow a fast exciton diffusion but sufficiently far from each other preventing the aggregation-induced effects of the organic crystals. In particular, the formation of strongly coupled dimers or excimers is avoided, thus preserving the optical features of the isolated molecule. However, nano-MOFs have a very small fluorescence quantum yield (QY). In order to overcome this limitation and achieve highly emitting systems, we analyzed the fluorescence process in blue emitting nano-MOFs and modeled the diffusion and quenching mechanism of photogenerated singlet excitons. Our results demonstrate that the excitons quenching in nano-MOFs is mainly due to the presence of surface-located, nonradiative recombination centers. In analogy with their inorganic counterparts, we found that the passivation of the nano-MOF surfaces is a straightforward method to enhance the emission efficiency. By embedding the nanocrystals in an inert polymeric host, we observed a +200% increment of the fluorescence QY, thus recovering the emission properties of the isolated ligand in solution.

  18. A charge-polarized porous metal-organic framework for gas chromatographic separation of alcohols from water.

    PubMed

    Sun, Jian-Ke; Ji, Min; Chen, Cheng; Wang, Wu-Gen; Wang, Peng; Chen, Rui-Ping; Zhang, Jie

    2013-02-25

    A bipyridinium ligand with a charge separated skeleton has been introduced into a metal-organic framework to yield a porous material with charge-polarized pore space, which exhibits selective adsorption for polar guest molecules and can be further used in gas chromatography for the separation of alcohol-water mixtures.

  19. Synthesis, Characterization, and Photoelectrochemical Catalytic Studies of a Water-Stable Zinc-Based Metal-Organic Framework.

    PubMed

    Altaf, Muhammad; Sohail, Manzar; Mansha, Muhammad; Iqbal, Naseer; Sher, Muhammad; Fazal, Atif; Ullah, Nisar; Isab, Anvarhusein A

    2018-02-09

    Metal-organic frameworks (MOFs) are class of porous materials that can be assembled in a modular manner by using different metal ions and organic linkers. Owing to their tunable structural properties, these materials are found to be useful for gas storage and separation technologies, as well as for catalytic applications. A cost-effective zinc-based MOF ([Zn(bpcda)(bdc)] n ) is prepared by using N,N'-bis(pyridin-4-ylmethylene)cyclohexane-1,4-diamine [N,N'-bis(pyridin-4-ylmethylene)cyclohexane-1,4-diamine] and benzenedicarboxylic acid (bdc) linkers. This new material exhibits remarkable photoelectrochemical (PEC) catalytic activity in water splitting for the evolution of oxygen. Notably, this non-noble metal-based MOF, without requiring immobilization on other supports or containing metal particles, produced a highest photocurrent density of 31 μA cm -2 at 0.9 V, with appreciable stability and negligible photocorrosion. Advantageously for the oxygen evolution process, no external reagents or sacrificial agents are required in the aqueous electrolyte solution. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. CFA-7: an interpenetrated metal-organic framework of the MFU-4 family.

    PubMed

    Schmieder, Phillip; Grzywa, Maciej; Denysenko, Dmytro; Hambach, Manuel; Volkmer, Dirk

    2015-08-07

    The novel interpenetrated metal-organic framework CFA-7 (Coordination Framework Augsburg University-7), [Zn5Cl4(tqpt)3], has been synthesized containing the organic linker {H2-tqpt = 6,6,14,14-tetramethyl-6,14-dihydroquinoxalino[2,3-b]phenazinebistriazole}. Reaction of H2-tqpt and anhydrous ZnCl2 in N,N-dimethylformamide (DMF) yields CFA-7 as pseudo-cubic crystals. CFA-7 serves as precursor for the synthesis of isostructural frameworks with redox-active metal centers, which is demonstrated by postsynthetic metal exchange of Zn(2+) by different M(2+) (M = Co, Ni, Cu) ions. The novel framework is robust upon solvent removal and has been structurally characterized by single-crystal X-ray diffraction, TGA and IR spectroscopy, as well as gas sorption (Ar, CO2 and H2).

  1. Nanoscale Fluorescent Metal-Organic Framework@Microporous Organic Polymer Composites for Enhanced Intracellular Uptake and Bioimaging.

    PubMed

    Wang, Lei; Wang, Weiqi; Zheng, Xiaohua; Li, Zhensheng; Xie, Zhigang

    2017-01-26

    Polymer-modified metal-organic frameworks combine the advantages of both soft polymers and crystalline metal-organic frameworks (MOFs). It is a big challenge to develop simple methods for surface modification of MOFs. In this work, MOF@microporous organic polymer (MOP) hybrid nanoparticles (UNP) have been synthesized by epitaxial growth of luminescent boron-dipyrromethene (BODIPYs)-imine MOPs on the surface of UiO-MOF seeds, which exhibit low cytotoxicity, smaller size distribution, well-retained pore integrity, and available functional sites. After folic acid grafting, the enhanced intracellular uptake and bioimaging was validated. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Pristine Metal-Organic Frameworks and their Composites for Energy Storage and Conversion.

    PubMed

    Liang, Zibin; Qu, Chong; Guo, Wenhan; Zou, Ruqiang; Xu, Qiang

    2017-11-22

    Metal-organic frameworks (MOFs), a new class of crystalline porous organic-inorganic hybrid materials, have recently attracted increasing interest in the field of energy storage and conversion. Herein, recent progress of MOFs and MOF composites for energy storage and conversion applications, including photochemical and electrochemical fuel production (hydrogen production and CO 2 reduction), water oxidation, supercapacitors, and Li-based batteries (Li-ion, Li-S, and Li-O 2 batteries), is summarized. Typical development strategies (e.g., incorporation of active components, design of smart morphologies, and judicious selection of organic linkers and metal nodes) of MOFs and MOF composites for particular energy storage and conversion applications are highlighted. A broad overview of recent progress is provided, which will hopefully promote the future development of MOFs and MOF composites for advanced energy storage and conversion applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Investigating the potential of metal-organic framework material as an adsorbent for matrix solid-phase dispersion extraction of pesticides during analysis of dehydrated Hyptis pectinata medicinal plant by GC/MS.

    PubMed

    Aquino, Adriano; Ferreira, Jordana Alves; Navickiene, Sandro; Wanderley, Kaline A; de Sá, Gilberto F; Júnior, Severino A

    2012-01-01

    Metal-organic frameworks aluminum terephthalate MIL-53 and Cu-benzene-1,3,5-tricarboxylate (BTC) were tested for extraction of pyrimethanil, ametryn, dichlofluanid, tetraconazole, flumetralin, kresoximmethyl, and tebuconazole from the medicinal plant Hyptis pectinata, with analysis using GC/MS in the selected ion monitoring mode. Experiments carried out at different fortification levels (0.1, 0.5, and 1.0 microg/g) resulted in recoveries in the range 61 to 107% with RSD values between 3 and 12% for the metal-organic framework materials. Detection and quantification limits ranged from 0.02 to 0.07 and 0.05 to 0.1 microg/g, respectively, for the different pesticides studied. The method developed was linear over the range tested (0.04-20.0 microg/g), with correlation coefficients ranging from 0.9987 to 0.9998. Comparison of MIL-53 and Cu-BTC with C18-bonded silica showed good performance of the MIL-53 metal-organic framework as a sorbent for the pesticides tested.

  4. Interfacial growth of large-area single-layer metal-organic framework nanosheets

    PubMed Central

    Makiura, Rie; Konovalov, Oleg

    2013-01-01

    The air/liquid interface is an excellent platform to assemble two-dimensional (2D) sheets of materials by enhancing spontaneous organizational features of the building components and encouraging large length scale in-plane growth. We have grown 2D molecularly-thin crystalline metal-organic-framework (MOF) nanosheets composed of porphyrin building units and metal-ion joints (NAFS-13) under operationally simple ambient conditions at the air/liquid interface. In-situ synchrotron X-ray diffraction studies of the formation process performed directly at the interface were employed to optimize the NAFS-13 growth protocol leading to the development of a post-injection method –post-injection of the metal connectors into the water subphase on whose surface the molecular building blocks are pre-oriented– which allowed us to achieve the formation of large-surface area morphologically-uniform preferentially-oriented single-layer nanosheets. The growth of such large-size high-quality sheets is of interest for the understanding of the fundamental physical/chemical properties associated with ultra-thin sheet-shaped materials and the realization of their use in applications. PMID:23974345

  5. Rapid, Selective Heavy Metal Removal from Water by a Metal-Organic Framework/Polydopamine Composite.

    PubMed

    Sun, Daniel T; Peng, Li; Reeder, Washington S; Moosavi, Seyed Mohamad; Tiana, Davide; Britt, David K; Oveisi, Emad; Queen, Wendy L

    2018-03-28

    Drinking water contamination with heavy metals, particularly lead, is a persistent problem worldwide with grave public health consequences. Existing purification methods often cannot address this problem quickly and economically. Here we report a cheap, water stable metal-organic framework/polymer composite, Fe-BTC/PDA, that exhibits rapid, selective removal of large quantities of heavy metals, such as Pb 2+ and Hg 2+ , from real world water samples. In this work, Fe-BTC is treated with dopamine, which undergoes a spontaneous polymerization to polydopamine (PDA) within its pores via the Fe 3+ open metal sites. The PDA, pinned on the internal MOF surface, gains extrinsic porosity, resulting in a composite that binds up to 1634 mg of Hg 2+ and 394 mg of Pb 2+ per gram of composite and removes more than 99.8% of these ions from a 1 ppm solution, yielding drinkable levels in seconds. Further, the composite properties are well-maintained in river and seawater samples spiked with only trace amounts of lead, illustrating unprecedented selectivity. Remarkably, no significant uptake of competing metal ions is observed even when interferents, such as Na + , are present at concentrations up to 14 000 times that of Pb 2+ . The material is further shown to be resistant to fouling when tested in high concentrations of common organic interferents, like humic acid, and is fully regenerable over many cycles.

  6. Omar Yaghi on Chemistry and Metal Organic Frameworks

    ScienceCinema

    Omar Yaghi

    2017-12-09

    In this edited version of the hour long talk, Omar Yaghi, director of the Molecular Foundry, sat down in conversation with Jeff Miller, head of Public Affairs, on July 11th, 2012 to discuss his fascination with the hidden world of chemistry and his work on Metal Organic Frameworks.

  7. Selective sulfur dioxide adsorption on crystal defect sites on an isoreticular metal organic framework series

    PubMed Central

    Rodríguez-Albelo, L. Marleny; López-Maya, Elena; Hamad, Said; Ruiz-Salvador, A. Rabdel; Calero, Sofia; Navarro, Jorge A.R.

    2017-01-01

    The widespread emissions of toxic gases from fossil fuel combustion represent major welfare risks. Here we report the improvement of the selective sulfur dioxide capture from flue gas emissions of isoreticular nickel pyrazolate metal organic frameworks through the sequential introduction of missing-linker defects and extra-framework barium cations. The results and feasibility of the defect pore engineering carried out are quantified through a combination of dynamic adsorption experiments, X-ray diffraction, electron microscopy and density functional theory calculations. The increased sulfur dioxide adsorption capacities and energies as well as the sulfur dioxide/carbon dioxide partition coefficients values of defective materials compared to original non-defective ones are related to the missing linkers enhanced pore accessibility and to the specificity of sulfur dioxide interactions with crystal defect sites. The selective sulfur dioxide adsorption on defects indicates the potential of fine-tuning the functional properties of metal organic frameworks through the deliberate creation of defects. PMID:28198376

  8. Metal-Organic Frameworks Derived Okra-like SnO2 Encapsulated in Nitrogen-Doped Graphene for Lithium Ion Battery.

    PubMed

    Zhou, Xiangyang; Chen, Sanmei; Yang, Juan; Bai, Tao; Ren, Yongpeng; Tian, Hangyu

    2017-04-26

    A facile process is developed to prepare SnO 2 -based composites through using metal-organic frameworks (MOFs) as precursors. The nitrogen-doped graphene wrapped okra-like SnO 2 composites (SnO 2 @N-RGO) are successfully synthesized for the first time by using Sn-based metal-organic frameworks (Sn-MOF) as precursors. When utilized as an anode material for lithium-ion batteries, the SnO 2 @N-RGO composites possess a remarkably superior reversible capacity of 1041 mA h g -1 at a constant current of 200 mA g -1 after 180 charge-discharge processes and excellent rate capability. The excellent performance can be primarily ascribed to the unique structure of 1D okra-like SnO 2 in SnO 2 @N-RGO which are actually composed of a great number of SnO 2 primary crystallites and numerous well-defined internal voids, can effectively alleviate the huge volume change of SnO 2 , and facilitate the transport and storage of lithium ions. Besides, the structural stability acquires further improvement when the okra-like SnO 2 are wrapped by N-doped graphene. Similarly, this synthetic strategy can be employed to synthesize other high-capacity metal-oxide-based composites starting from various metal-organic frameworks, exhibiting promising application in novel electrode material field of lithium-ion batteries.

  9. Surfactant-thermal method to prepare two new cobalt metal-organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xianglin; Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430074; Toh, Yong Siang

    2015-12-15

    Employing surfactants as reaction media, two new metal-organic frameworks (MOFs):(HTEA){sub 3}[Co{sub 3}(BTC){sub 3}] (NTU-Z33) and (HTEA)[Co{sub 3}(HBTC){sub 2}(BTC)] (NTU-Z34) (H{sub 3}BTC=1,3,5-benzenetricarboxylic acid, TEA=trimethylamine, and NTU=Nanyang Technological University), have been successfully synthesized and fully characterized. Note that NTU-Z33 has an unusual trimeric [Co{sub 3}(COO){sub 9}] secondary building unit (SBU). Magnetic characterization suggests that both compounds have weak antiferromagnetic behaviors. Our success in preparing new crystalline Co-BTC based MOFs under different surfactant media could provide a new road to prepare new diverse MOFs through various combinations of surfactants. - Graphical abstract: Employing surfactants as reaction media, two new metal-organic frame-works (MOFs) havemore » been successfully synthesized and magnetic study suggests that both compounds have weak antiferromagnetic behaviors. - Highlights: • Two novel metal-organic frame-works (MOFs). • Synthesis through surfactant-thermal condition. • weak antiferromagnetic behaviors for both compounds.« less

  10. Metal-Organic Framework-Derived Metal Oxide Embedded in Nitrogen-Doped Graphene Network for High-Performance Lithium-Ion Batteries.

    PubMed

    Sui, Zhu-Yin; Zhang, Pei-Ying; Xu, Meng-Ying; Liu, Yu-Wen; Wei, Zhi-Xiang; Han, Bao-Hang

    2017-12-13

    Metal-organic frameworks (MOFs) are hybrid inorganic-organic materials that can be used as effective precursors to prepare various functional nanomaterials for energy-related applications. Nevertheless, most MOF-derived metal oxides exhibit low electrical conductivity and mechanical strain. These characteristics limit their electrochemical performance and hamper their practical application. Herein, we report a rational strategy for enhancing the lithium storage performance of MOF-derived metal oxide. The hierarchically porous Co 3 O 4 @NGN is successfully prepared by embedding ZIF-67-derived Co 3 O 4 particles in a nitrogen-doped graphene network (NGN). The high electrical conductivity and porous structure of the NGN accelerates the diffusion of electrolyte ions and buffers stress resulting from the volume changes of Co 3 O 4 . As an anode material, the Co 3 O 4 @NGN shows high capacity (1030 mA h g -1 at 100 mA g -1 ), outstanding rate performance (681 mA h g -1 at 1000 mA g -1 ), and good cycling stability (676 mA h g -1 at 1000 mA g -1 after 400 cycles).

  11. Giant ferrimagnetism and polarization in a mixed metal perovskite metal-organic framework

    NASA Astrophysics Data System (ADS)

    Rout, Paresh C.; Srinivasan, Varadharajan

    2018-01-01

    Perovskite metal-organic frameworks (MOFs) have recently emerged as potential candidates for multiferroicity. However, the compounds synthesized so far possess only weak ferromagnetism and low polarization. Additionally, the very low magnetic transition temperatures (Tc) also pose a challenge to the application of the materials. We have computationally designed a mixed metal perovskite MOF—[C(NH2)3] [(Cu0.5Mn0.5) (HCOO) 3] —that is predicted to have magnetization two orders of magnitude larger than its parent ([C (NH2)3] [Cu (HCOO) 3] ), a significantly larger polarization (9.9 μ C /cm2), and an enhanced Tc of up to 56 K, unprecedented in perovskite MOFs. A detailed study of the magnetic interactions revealed a mechanism leading to the large moments as well as the increase in the Tc. Mixing a non-Jahn-Teller ion (Mn2 +) into a Jahn-Teller host (Cu2 +) leads to competing lattice distortions which are directly responsible for the enhanced polarization. The MOF is thermodynamically stable as evidenced by the computed enthalpy of formation and can likely be synthesized. Our work represents a first step towards rational design of multiferroic perovskite MOFs through the largely unexplored mixed metal approach.

  12. Coated/Sandwiched rGO/CoSx Composites Derived from Metal-Organic Frameworks/GO as Advanced Anode Materials for Lithium-Ion Batteries.

    PubMed

    Yin, Dongming; Huang, Gang; Zhang, Feifei; Qin, Yuling; Na, Zhaolin; Wu, Yaoming; Wang, Limin

    2016-01-22

    Rational composite materials made from transition metal sulfides and reduced graphene oxide (rGO) are highly desirable for designing high-performance lithium-ion batteries (LIBs). Here, rGO-coated or sandwiched CoSx composites are fabricated through facile thermal sulfurization of metal-organic framework/GO precursors. By scrupulously changing the proportion of Co(2+) and organic ligands and the solvent of the reaction system, we can tune the forms of GO as either a coating or a supporting layer. Upon testing as anode materials for LIBs, the as-prepared CoSx -rGO-CoSx and rGO@CoSx composites demonstrate brilliant electrochemical performances such as high initial specific capacities of 1248 and 1320 mA h g(-1) , respectively, at a current density of 100 mA g(-1) , and stable cycling abilities of 670 and 613 mA h g(-1) , respectively, after 100 charge/discharge cycles, as well as superior rate capabilities. The excellent electrical conductivity and porous structure of the CoSx /rGO composites can promote Li(+) transfer and mitigate internal stress during the charge/discharge process, thus significantly improving the electrochemical performance of electrode materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration

    NASA Astrophysics Data System (ADS)

    Cadiau, Amandine; Belmabkhout, Youssef; Adil, Karim; Bhatt, Prashant M.; Pillai, Renjith S.; Shkurenko, Aleksander; Martineau-Corcos, Charlotte; Maurin, Guillaume; Eddaoudi, Mohamed

    2017-05-01

    Natural gas must be dehydrated before it can be transported and used, but conventional drying agents such as activated alumina or inorganic molecular sieves require an energy-intensive desiccant-regeneration step. We report a hydrolytically stable fluorinated metal-organic framework, AlFFIVE-1-Ni (KAUST-8), with a periodic array of open metal coordination sites and fluorine moieties within the contracted square-shaped one-dimensional channel. This material selectively removed water vapor from gas streams containing CO2, N2, CH4, and higher hydrocarbons typical of natural gas, as well as selectively removed both H2O and CO2 in N2-containing streams. The complete desorption of the adsorbed water molecules contained by the AlFFIVE-1-Ni sorbent requires relatively moderate temperature (~105°C) and about half the energy input for commonly used desiccants.

  14. Selective Metal Cation Capture by Soft Anionic Metal-Organic Frameworks via Drastic Single-Crystal-to-Single-Crystal Transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Jian; Saraf, Laxmikant V.; Schwenzer, Birgit

    2012-05-25

    Flexible anionic metal-organic frameworks transform to neutral heterobimetallic systems via single-crystal-to-single-crystal processes invoked by cation insertion. These transformations are directed by cooperative bond breakage and formation, resulting in expansion or contraction of the 3D framework by up to 33% due to the flexible nature of the organic linker. These MOFs displays highly selective uptake of divalent transition metal cations (Co2+ and Ni2+ for example) over alkali metal cations (Li+ and Na+).

  15. The modulator driven polymorphism of Zr(IV) based metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Drache, Franziska; Bon, Volodymyr; Senkovska, Irena; Getzschmann, Jürgen; Kaskel, Stefan

    2017-01-01

    The reaction of ZrCl4 and 2,5-thiophenedicarboxylic acid (H2tdc) in the presence of trifluoroacetic acid (Htfa) as modulator results in the formation of the new metal-organic framework (MOF) named DUT-126 (DUT = Dresden University of Technology). The nature and concentration of modulators are found to be decisive synthetic parameters affecting the topology of the formed product. DUT-126 (hbr) extends the series of polymorphs differing in topology, namely DUT-67 (reo), DUT-68 (bon) and DUT-69 (bct) to four, where DUT-67 and DUT-68 show the same eight-connected secondary building units as in DUT-126. In DUT-126, linker molecules have a peculiar orientation, resulting in hbr topology, which is described for the first time in this work for MOFs. DUT-126 contains three pore types, including two micropores surrounding mesoporous channels. DUT-126 is stable against hydrolysis and features permanent porosity with a specific surface area of 1297 m2 g-1 and a total pore volume of 0.48 cm3 g-1, calculated from the nitrogen physisorption isotherm measured at 77 K. This article is part of the themed issue 'Coordination polymers and metal-organic frameworks: materials by design'.

  16. Tunable photoluminescent metal-organic-frameworks and method of making the same

    DOEpatents

    Nenoff, Tina M.; Sava Gallis, Dorina Florentina; Rohwer, Lauren E.S.

    2017-08-22

    The present disclosure is directed to new photoluminescent metal-organic frameworks (MOFs). The newly developed MOFs include either non rare earth element (REE) transition metal atoms or limited concentrations of REE atoms, including: Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Ru, Ag, Cd, Sn, Sb, Ir, Pb, Bi, that are located in the MOF framework in site isolated locations, and have emission colors ranging from white to red, depending on the metal concentration levels and/or choice of ligand.

  17. Chemical Engineering of Photoactivity in Heterometallic Titanium-Organic Frameworks by Metal Doping.

    PubMed

    Castells-Gil, Javier; Padial, Natalia M; Almora-Barrios, Neyvis; Albero, Josep; Ruiz-Salvador, A Rabdel; González-Platas, Javier; García, Hermenegildo; Martí-Gastaldo, Carlos

    2018-06-06

    We report a new family of titanium-organic frameworks that enlarges the limited number of crystalline, porous materials available for this metal. They are chemically robust and can be prepared as single crystals at multi-gram scale from multiple precursors. Their heterometallic structure enables engineering of their photoactivity by metal doping rather than by linker functionalization. Compared to other methodologies based on the post-synthetic metallation of MOFs, our approach is well-fitted for controlling the positioning of dopants at an atomic level to gain more precise control over the band-gap and electronic properties of the porous solid. Changes in the band-gap are also rationalized with computational modelling and experimentally confirmed by photocatalytic H 2 production. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Mao, Yiyin; Li, Gaoran; Guo, Yi; Li, Zhoupeng; Liang, Chengdu; Peng, Xinsheng; Lin, Zhan

    2017-03-01

    Lithium-sulfur batteries are promising technologies for powering flexible devices due to their high energy density, low cost and environmental friendliness, when the insulating nature, shuttle effect and volume expansion of sulfur electrodes are well addressed. Here, we report a strategy of using foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for binder-free advanced lithium-sulfur batteries through a facile confinement conversion. The carbon nanotubes interpenetrate through the metal-organic frameworks crystal and interweave the electrode into a stratified structure to provide both conductivity and structural integrity, while the highly porous metal-organic frameworks endow the electrode with strong sulfur confinement to achieve good cyclability. These hierarchical porous interpenetrated three-dimensional conductive networks with well confined S8 lead to high sulfur loading and utilization, as well as high volumetric energy density.

  19. A self-supported metal-organic framework derived Co3O4 film prepared by an in-situ electrochemically assistant process as Li ion battery anodes

    NASA Astrophysics Data System (ADS)

    Zhao, Guangyu; Sun, Xin; Zhang, Li; Chen, Xuan; Mao, Yachun; Sun, Kening

    2018-06-01

    Derivates of metal-organic frameworks are promising materials of self-supported Li ion battery anodes due to the good dispersion of active materials, conductive scaffold, and mass transport channels in them. However, the discontinuous growth and poor adherence of metal-organic framework films on substrates hamper their development in self-supported electrodes. In the present study, cobalt-based metal-organic frameworks are anchored on Ti nanowire arrays through an electrochemically assistant method, and then the metal-organic framework films are pyrolyzed to carbon-containing, porous, self-supported anodes of Li ion battery anodes. Scanning electron microscope images indicate that, a layer cobaltosic oxide polyhedrons inserted by the nanowires are obtained with the controllable in-situ synthesis. Thanks to the good dispersion and adherence of cobaltosic oxide polyhedrons on Ti substrates, the self-supported anodes exhibit remarkable rate capability and durability. They possess a capacity of 300 mAh g-1 at a rate current of 20 A g-1, and maintain 2000 charge/discharge cycles without obvious decay.

  20. Engineering chiral porous metal-organic frameworks for enantioselective adsorption and separation

    NASA Astrophysics Data System (ADS)

    Peng, Yongwu; Gong, Tengfei; Zhang, Kang; Lin, Xiaochao; Liu, Yan; Jiang, Jianwen; Cui, Yong

    2014-07-01

    The separation of racemic molecules is of substantial significance not only for basic science but also for technical applications, such as fine chemicals and drug development. Here we report two isostructural chiral metal-organic frameworks decorated with chiral dihydroxy or -methoxy auxiliares from enantiopure tetracarboxylate-bridging ligands of 1,1‧-biphenol and a manganese carboxylate chain. The framework bearing dihydroxy groups functions as a solid-state host capable of adsorbing and separating mixtures of a range of chiral aromatic and aliphatic amines, with high enantioselectivity. The host material can be readily recycled and reused without any apparent loss of performance. The utility of the present adsorption separation is demonstrated in the large-scale resolution of racemic 1-phenylethylamine. Control experiments and molecular simulations suggest that the chiral recognition and separation are attributed to the different orientations and specific binding energies of the enantiomers in the microenvironment of the framework.

  1. Metal-organic framework nanosheets in polymer composite materials for gas separation

    PubMed Central

    Seoane, Beatriz; Miro, Hozanna; Corma, Avelino; Kapteijn, Freek; Llabrés i Xamena, Francesc X.; Gascon, Jorge

    2014-01-01

    Composites incorporating two-dimensional nanostructures within polymeric matrices hold potential as functional components for several technologies, including gas separation. Prospectively, employing metal-organic-frameworks (MOFs) as versatile nanofillers would notably broaden the scope of functionalities. However, synthesizing MOFs in the form of free standing nanosheets has proven challenging. We present a bottom-up synthesis strategy for dispersible copper 1,4-benzenedicarboxylate MOF lamellae of micrometer lateral dimensions and nanometer thickness. Incorporating MOF nanosheets into polymer matrices endows the resultant composites with outstanding CO2 separation performance from CO2/CH4 gas mixtures, together with an unusual and highly desired increment in the separation selectivity with pressure. As revealed by tomographic focused-ion-beam scanning-electron-microscopy, the unique separation behaviour stems from a superior occupation of the membrane cross-section by the MOF nanosheets as compared to isotropic crystals, which improves the efficiency of molecular discrimination and eliminates unselective permeation pathways. This approach opens the door to ultrathin MOF-polymer composites for various applications. PMID:25362353

  2. Olsalazine-Based Metal-Organic Frameworks as Biocompatible Platforms for H2 Adsorption and Drug Delivery.

    PubMed

    Levine, Dana J; Runčevski, Tomče; Kapelewski, Matthew T; Keitz, Benjamin K; Oktawiec, Julia; Reed, Douglas A; Mason, Jarad A; Jiang, Henry Z H; Colwell, Kristen A; Legendre, Christina M; FitzGerald, Stephen A; Long, Jeffrey R

    2016-08-17

    The drug olsalazine (H4olz) was employed as a ligand to synthesize a new series of mesoporous metal-organic frameworks that are expanded analogues of the well-known M2(dobdc) materials (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate; M-MOF-74). The M2(olz) frameworks (M = Mg, Fe, Co, Ni, and Zn) exhibit high surface areas with large hexagonal pore apertures that are approximately 27 Å in diameter. Variable temperature H2 adsorption isotherms revealed strong adsorption at the open metal sites, and in situ infrared spectroscopy experiments on Mg2(olz) and Ni2(olz) were used to determine site-specific H2 binding enthalpies. In addition to its capabilities for gas sorption, the highly biocompatible Mg2(olz) framework was also evaluated as a platform for the delivery of olsalazine and other encapsulated therapeutics. The Mg2(olz) material (86 wt % olsalazine) was shown to release the therapeutic linker through dissolution of the framework under simulated physiological conditions. Furthermore, Mg2(olz) was used to encapsulate phenethylamine (PEA), a model drug for a broad class of bioactive compounds. Under simulated physiological conditions, Mg2(olz)(PEA)2 disassembled to release PEA from the pores and olsalazine from the framework itself, demonstrating that multiple therapeutic components can be delivered together at different rates. The low toxicity, high surface areas, and coordinatively unsaturated metal sites make these M2(olz) materials promising for a range of potential applications, including drug delivery in the treatment of gastrointestinal diseases.

  3. Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, JA; Sumida, K; Herm, ZR

    Two representative metal-organic frameworks, Zn4O(BTB)(2)(BTB3- = 1,3,5-benzenetribenzoate; MOF-177) and Mg-2(dobdc) (dobdc(4-) = 1,4-dioxido-2,5-benzenedicarboxylate; Mg-MOF-74, CPO-27-Mg), are evaluated in detail for their potential use in post-combustion CO2 capture via temperature swing adsorption (TSA). Low-pressure single-component CO2 and N-2 adsorption isotherms were measured every 10 degrees C from 20 to 200 degrees C, allowing the performance of each material to be analyzed precisely. In order to gain a more complete understanding of the separation phenomena and the thermodynamics of CO2 adsorption, the isotherms were analyzed using a variety of methods. With regard to the isosteric heat of CO2 adsorption, Mg-2(dobdc) exhibits anmore » abrupt drop at loadings approaching the saturation of the Mg2+ sites, which has significant implications for regeneration in different industrial applications. The CO2/N-2 selectivities were calculated using ideal adsorbed solution theory (IAST) for MOF-177, Mg-2(dobdc), and zeolite NaX, and working capacities were estimated using a simplified TSA model. Significantly, MOF-177 fails to exhibit a positive working capacity even at regeneration temperatures as high as 200 degrees C, while Mg-2(dobdc) reaches a working capacity of 17.6 wt% at this temperature. Breakthrough simulations were also performed for the three materials, demonstrating the superior performance of Mg-2(dobdc) over MOF-177 and zeolite NaX. These results show that the presence of strong CO2 adsorption sites is essential for a metal-organic framework to be of utility in post-combustion CO2 capture via a TSA process, and present a methodology for the evaluation of new metal-organic frameworks via analysis of single-component gas adsorption isotherms.« less

  4. Facile Synthesis of Mixed Metal Organic Frameworks: Electrode Materials for Supercapacitor with Excellent Areal Capacitance and Operational Stability.

    PubMed

    Kazemi, Sayed Habib; Hosseinzadeh, Batoul; Kazemi, Hojjat; Kiani, Mohammad Ali; Hajati, Shaaker

    2018-06-08

    Electrode materials with high surface area, tailored pore size and efficient capability for ion insertion and enhanced transport of electrons and ions are needed for advanced supercapacitors. In the present study, a mixed metal organic framework (cobalt and manganese based MOF) was synthesized through a simple one pot solvothermal method and employed as the electrode material for supercapacitor. Notably, Co-Mn MOF electrode displayed a large surface area and excellent cycling stability (over 95% capacitance retention after 1500 cycles). Also, superior pseudocapacitive behavior was observed for Co-Mn MOF electrode in KOH electrolyte with an exceptional areal capacitance of 1.318 F cm-2. Moreover, an asymmetric supercapacitor was assembled using Co-Mn MOF and activated carbon electrode as positive and negative electrodes, respectively. The fabricated supercapacitor showed specific capacitances of 106.7 F g-1 at a scan rate of 10 mV s-1 and delivered maximum energy density of 30 Wh kg-1 at 2285.7 W kg-1. Our studies suggest the Co-Mn MOF as promising electrode materials for supercapacitor applications.

  5. The concept of mixed organic ligands in metal-organic frameworks: design, tuning and functions.

    PubMed

    Yin, Zheng; Zhou, Yan-Ling; Zeng, Ming-Hua; Kurmoo, Mohamedally

    2015-03-28

    The research on metal-organic frameworks (MOFs) has been developing at an extraordinary pace in its two decades of existence, as judged by the exponential growth of novel structures and the constant expansion of its applicability and research scope. A major part of the research and its success are due to the vital role of the concept of mixed organic ligands in the design, tuning and functions. This perspective, therefore, reviews the recent advances in MOFs based on this concept, which is generally based on employing a small polydentate ligand (here labelled as "nodal ligand") to form either clusters, rods or layers, which are then connected by a second ditopic linker ligand to form the framework. The structures of the materials can be grouped into the following three categories: layer-spacer (usually known as pillared-layer), rod-spacer, and cluster-spacer based MOFs. Depending on the size and geometry of the spacer ligands, interpenetrations of frameworks are occasionally found. These MOFs show a wide range of properties such as (a) crystal-to-crystal transformations upon solvent modifications, post-synthetic metal exchange or ligand reactions, (b) gas sorption, solvent selectivity and purification, (c) specific catalysis, (d) optical properties including colour change, luminescence, non-linear optic, (e) short- and long range magnetic ordering, metamagnetism and reversible ground-state modifications and (f) drug and iodine carriers with controlled release. In the following, we will highlight the importance of the above concept in the design, tuning, and functions of a selection of existing MOFs having mixed organic ligands and their associated structures and properties. The results obtained so far using this concept look very promising for fine-tuning the pore size and shape for selective adsorption and specificity in catalytic reactions, which appears to be one way to propel the advances in the application and commercialization of MOFs.

  6. Complex Nanostructures from Materials based on Metal-Organic Frameworks for Electrochemical Energy Storage and Conversion.

    PubMed

    Guan, Bu Yuan; Yu, Xin Yao; Wu, Hao Bin; Lou, Xiong Wen David

    2017-12-01

    Metal-organic frameworks (MOFs) have drawn tremendous attention because of their abundant diversity in structure and composition. Recently, there has been growing research interest in deriving advanced nanomaterials with complex architectures and tailored chemical compositions from MOF-based precursors for electrochemical energy storage and conversion. Here, a comprehensive overview of the synthesis and energy-related applications of complex nanostructures derived from MOF-based precursors is provided. After a brief summary of synthetic methods of MOF-based templates and their conversion to desirable nanostructures, delicate designs and preparation of complex architectures from MOFs or their composites are described in detail, including porous structures, single-shelled hollow structures, and multishelled hollow structures, as well as other unusual complex structures. Afterward, their applications are discussed as electrode materials or catalysts for lithium-ion batteries, hybrid supercapacitors, water-splitting devices, and fuel cells. Lastly, the research challenges and possible development directions of complex nanostructures derived from MOF-based-templates for electrochemical energy storage and conversion applications are outlined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Metal-organic frameworks at interfaces of hybrid perovskite solar cells for enhanced photovoltaic properties.

    PubMed

    Shen, Deli; Pang, Aiying; Li, Yafeng; Dou, Jie; Wei, Mingdeng

    2018-01-31

    In this study, metal-organic frameworks, as an interfacial layer, were introduced into perovskite solar cells (PSCs) for the first time. An interface modified with the metal-organic framework ZIF-8 efficiently enhanced perovskite crystallinity and grain sizes, and the photovoltaic performance of the PSCs was significantly improved, resulting in a maximum PCE of 16.99%.

  8. Construction of hierarchically porous metal-organic frameworks through linker labilization

    NASA Astrophysics Data System (ADS)

    Yuan, Shuai; Zou, Lanfang; Qin, Jun-Sheng; Li, Jialuo; Huang, Lan; Feng, Liang; Wang, Xuan; Bosch, Mathieu; Alsalme, Ali; Cagin, Tahir; Zhou, Hong-Cai

    2017-05-01

    A major goal of metal-organic framework (MOF) research is the expansion of pore size and volume. Although many approaches have been attempted to increase the pore size of MOF materials, it is still a challenge to construct MOFs with precisely customized pore apertures for specific applications. Herein, we present a new method, namely linker labilization, to increase the MOF porosity and pore size, giving rise to hierarchical-pore architectures. Microporous MOFs with robust metal nodes and pro-labile linkers were initially synthesized. The mesopores were subsequently created as crystal defects through the splitting of a pro-labile-linker and the removal of the linker fragments by acid treatment. We demonstrate that linker labilization method can create controllable hierarchical porous structures in stable MOFs, which facilitates the diffusion and adsorption process of guest molecules to improve the performances of MOFs in adsorption and catalysis.

  9. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium–sulfur batteries

    PubMed Central

    Mao, Yiyin; Li, Gaoran; Guo, Yi; Li, Zhoupeng; Liang, Chengdu; Peng, Xinsheng; Lin, Zhan

    2017-01-01

    Lithium–sulfur batteries are promising technologies for powering flexible devices due to their high energy density, low cost and environmental friendliness, when the insulating nature, shuttle effect and volume expansion of sulfur electrodes are well addressed. Here, we report a strategy of using foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for binder-free advanced lithium–sulfur batteries through a facile confinement conversion. The carbon nanotubes interpenetrate through the metal-organic frameworks crystal and interweave the electrode into a stratified structure to provide both conductivity and structural integrity, while the highly porous metal-organic frameworks endow the electrode with strong sulfur confinement to achieve good cyclability. These hierarchical porous interpenetrated three-dimensional conductive networks with well confined S8 lead to high sulfur loading and utilization, as well as high volumetric energy density. PMID:28262801

  10. Metal-organic framework-based separator for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Bai, Songyan; Liu, Xizheng; Zhu, Kai; Wu, Shichao; Zhou, Haoshen

    2016-07-01

    Lithium-sulfur batteries are a promising energy-storage technology due to their relatively low cost and high theoretical energy density. However, one of their major technical problems is the shuttling of soluble polysulfides between electrodes, resulting in rapid capacity fading. Here, we present a metal-organic framework (MOF)-based battery separator to mitigate the shuttling problem. We show that the MOF-based separator acts as an ionic sieve in lithium-sulfur batteries, which selectively sieves Li+ ions while efficiently suppressing undesired polysulfides migrating to the anode side. When a sulfur-containing mesoporous carbon material (approximately 70 wt% sulfur content) is used as a cathode composite without elaborate synthesis or surface modification, a lithium-sulfur battery with a MOF-based separator exhibits a low capacity decay rate (0.019% per cycle over 1,500 cycles). Moreover, there is almost no capacity fading after the initial 100 cycles. Our approach demonstrates the potential for MOF-based materials as separators for energy-storage applications.

  11. Mechanical tunability via hydrogen bonding in metal-organic frameworks with the perovskite architecture.

    PubMed

    Li, Wei; Thirumurugan, A; Barton, Phillip T; Lin, Zheshuai; Henke, Sebastian; Yeung, Hamish H-M; Wharmby, Michael T; Bithell, Erica G; Howard, Christopher J; Cheetham, Anthony K

    2014-06-04

    Two analogous metal-organic frameworks (MOFs) with the perovskite architecture, [C(NH2)3][Mn(HCOO)3] (1) and [(CH2)3NH2][Mn(HCOO)3] (2), exhibit significantly different mechanical properties. The marked difference is attributed to their distinct modes of hydrogen bonding between the A-site amine cation and the anionic framework. The stronger cross-linking hydrogen bonding in 1 gives rise to Young's moduli and hardnesses that are up to twice those in 2, while the thermal expansion is substantially smaller. This study presents clear evidence that the mechanical properties of MOF materials can be substantially tuned via hydrogen-bonding interactions.

  12. Surface Termination of the Metal-Organic Framework HKUST-1: A Theoretical Investigation.

    PubMed

    Amirjalayer, Saeed; Tafipolsky, Maxim; Schmid, Rochus

    2014-09-18

    The surface morphology and termination of metal-organic frameworks (MOF) is of critical importance in many applications, but the surface properties of these soft materials are conceptually different from those of other materials like metal or oxide surfaces. Up to now, experimental investigations are scarce and theoretical simulations have focused on the bulk properties. The possible surface structure of the archetypal MOF HKUST-1 is investigated by a first-principles derived force field in combination with DFT calculations of model systems. The computed surface energies correctly predict the [111] surface to be most stable and allow us to obtain an unprecedented atomistic picture of the surface termination. Entropic factors are identified to determine the preferred surface termination and to be the driving force for the MOF growth. On the basis of this, reported strategies like employing "modulators" during the synthesis to tailor the crystal morphology are discussed.

  13. Computational studies of adsorption in metal organic frameworks and interaction of nanoparticles in condensed phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annapureddy, Harsha V.; Motkuri, Radha K.; Nguyen, Phuong T.

    In this review, we describe recent efforts in which computer simulations were used to systematically study nano-structured metal organic frameworks, with particular emphasis on their application in heating and cooling processes. These materials also are known as metal organic heat carriers. We used both molecular dynamics and Grand Canonical Monte Carlo simulation techniques to gain a molecular-level understanding of the adsorption mechanism of gases in these porous materials. We investigated the uptake of various gases such as refrigerants R12 and R143a and also the elemental gases Xe and Rn by the metal organic framework (i.e., Ni2(dhtp)). We also evaluated themore » effects of temperature and pressure on the uptake mechanism. Our computed results compared reasonably well with available experimental measurements, thus validating our potential models and approaches. In addition, we also investigated the structural, diffusive, and adsorption properties of different hydrocarbons in Ni2(dhtp). To elucidate the mechanism of nanoparticle dispersion in condensed phases, we also studied the interactions among nanoparticles in various liquids, such as n-hexane, water and methanol. This work was performed at Pacific Northwest National Laboratory (PNNL) and was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy (DOE). PNNL is operated by Battelle for the DOE. The authors also gratefully acknowledge support received from the National Energy Technology Laboratory of DOE's Office of Fossil Energy.« less

  14. Pore Breathing of Metal-Organic Frameworks by Environmental Transmission Electron Microscopy.

    PubMed

    Parent, Lucas R; Pham, C Huy; Patterson, Joseph P; Denny, Michael S; Cohen, Seth M; Gianneschi, Nathan C; Paesani, Francesco

    2017-10-11

    Metal-organic frameworks (MOFs) have emerged as a versatile platform for the rational design of multifunctional materials, combining large specific surface areas with flexible, periodic frameworks that can undergo reversible structural transitions, or "breathing", upon temperature and pressure changes, and through gas adsorption/desorption processes. Although MOF breathing can be inferred from the analysis of adsorption isotherms, direct observation of the structural transitions has been lacking, and the underlying processes of framework reorganization in individual MOF nanocrystals is largely unknown. In this study, we describe the characterization and elucidation of these processes through the combination of in situ environmental transmission electron microscopy (ETEM) and computer simulations. This combined approach enables the direct monitoring of the breathing behavior of individual MIL-53(Cr) nanocrystals upon reversible water adsorption and temperature changes. The ability to characterize structural changes in single nanocrystals and extract lattice level information through in silico correlation provides fundamental insights into the relationship between pore size/shape and host-guest interactions.

  15. Synthesis and Characterization of Functionalized Metal-organic Frameworks

    PubMed Central

    Karagiaridi, Olga; Bury, Wojciech; Sarjeant, Amy A.; Hupp, Joseph T.; Farha, Omar K.

    2014-01-01

    Metal-organic frameworks have attracted extraordinary amounts of research attention, as they are attractive candidates for numerous industrial and technological applications. Their signature property is their ultrahigh porosity, which however imparts a series of challenges when it comes to both constructing them and working with them. Securing desired MOF chemical and physical functionality by linker/node assembly into a highly porous framework of choice can pose difficulties, as less porous and more thermodynamically stable congeners (e.g., other crystalline polymorphs, catenated analogues) are often preferentially obtained by conventional synthesis methods. Once the desired product is obtained, its characterization often requires specialized techniques that address complications potentially arising from, for example, guest-molecule loss or preferential orientation of microcrystallites. Finally, accessing the large voids inside the MOFs for use in applications that involve gases can be problematic, as frameworks may be subject to collapse during removal of solvent molecules (remnants of solvothermal synthesis). In this paper, we describe synthesis and characterization methods routinely utilized in our lab either to solve or circumvent these issues. The methods include solvent-assisted linker exchange, powder X-ray diffraction in capillaries, and materials activation (cavity evacuation) by supercritical CO2 drying. Finally, we provide a protocol for determining a suitable pressure region for applying the Brunauer-Emmett-Teller analysis to nitrogen isotherms, so as to estimate surface area of MOFs with good accuracy. PMID:25225784

  16. Antifungal activity of water-stable copper-containing metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Bouson, Supaporn; Krittayavathananon, Atiweena; Phattharasupakun, Nutthaphon; Siwayaprahm, Patcharaporn; Sawangphruk, Montree

    2017-10-01

    Although metal-organic frameworks (MOFs) or porous coordination polymers have been widely studied, their antimicrobial activities have not yet been fully investigated. In this work, antifungal activity of copper-based benzene-tricarboxylate MOF (Cu-BTC MOF), which is water stable and industrially interesting, is investigated against Candida albicans, Aspergillus niger, Aspergillus oryzae and Fusarium oxysporum. The Cu-BTC MOF can effectively inhibit the growth rate of C. albicans and remarkably inhibit the spore growth of A. niger, A. oryzae and F. oxysporum. This finding shows the potential of using Cu-BTC MOF as a strong biocidal material against representative yeasts and moulds that are commonly found in the food and agricultural industries.

  17. Antifungal activity of water-stable copper-containing metal-organic frameworks

    PubMed Central

    Bouson, Supaporn; Krittayavathananon, Atiweena; Phattharasupakun, Nutthaphon; Siwayaprahm, Patcharaporn

    2017-01-01

    Although metal-organic frameworks (MOFs) or porous coordination polymers have been widely studied, their antimicrobial activities have not yet been fully investigated. In this work, antifungal activity of copper-based benzene-tricarboxylate MOF (Cu-BTC MOF), which is water stable and industrially interesting, is investigated against Candida albicans, Aspergillus niger, Aspergillus oryzae and Fusarium oxysporum. The Cu-BTC MOF can effectively inhibit the growth rate of C. albicans and remarkably inhibit the spore growth of A. niger, A. oryzae and F. oxysporum. This finding shows the potential of using Cu-BTC MOF as a strong biocidal material against representative yeasts and moulds that are commonly found in the food and agricultural industries. PMID:29134075

  18. Alternative synthetic approaches for metal-organic frameworks: transformation from solid matters.

    PubMed

    Zhan, Guowu; Zeng, Hua Chun

    2016-12-20

    Developing economic and sustainable synthetic strategies for metal-organic frameworks (MOFs) is imperative for promoting MOF materials into large scale industrial use. Very recently, an alternative strategy for MOF synthesis by using solvent-insoluble "solid matters" as cation reservoirs and/or templates has been developed to accomplish this goal, in which the solid matters often refer to metals, metal oxides, hydroxides, carbonates, and so forth, but excluding the soluble metal salts which have been prevailingly used in MOF synthesis. Although most of the pioneering activities in this field have just started in the past 5 years, remarkable achievements have been made covering the synthesis, functionalization, positioning, and applications. A great number of MOFs in powder form, thin-films, or membranes, have been prepared through such solid-to-MOF transformations. This field is rapidly developing and expanding, and the number of related scientific publications has strikingly increased over the last few years. The aim of this review is to summarise the latest developments, highlight the present state-of-the-art, and also provide an overview for future research directions.

  19. Impact of metal and anion substitutions on the hydrogen storage properties of M-BTT metal-organic frameworks.

    PubMed

    Sumida, Kenji; Stück, David; Mino, Lorenzo; Chai, Jeng-Da; Bloch, Eric D; Zavorotynska, Olena; Murray, Leslie J; Dincă, Mircea; Chavan, Sachin; Bordiga, Silvia; Head-Gordon, Martin; Long, Jeffrey R

    2013-01-23

    Microporous metal-organic frameworks are a class of materials being vigorously investigated for mobile hydrogen storage applications. For high-pressure storage at ambient temperatures, the M(3)[(M(4)Cl)(3)(BTT)(8)](2) (M-BTT; BTT(3-) = 1,3,5-benzenetristetrazolate) series of frameworks are of particular interest due to the high density of exposed metal cation sites on the pore surface. These sites give enhanced zero-coverage isosteric heats of adsorption (Q(st)) approaching the optimal value for ambient storage applications. However, the Q(st) parameter provides only a limited insight into the thermodynamics of the individual adsorption sites, the tuning of which is paramount for optimizing the storage performance. Here, we begin by performing variable-temperature infrared spectroscopy studies of Mn-, Fe-, and Cu-BTT, allowing the thermodynamics of H(2) adsorption to be probed experimentally. This is complemented by a detailed DFT study, in which molecular fragments representing the metal clusters within the extended solid are simulated to obtain a more thorough description of the structural and thermodynamic aspects of H(2) adsorption at the strongest binding sites. Then, the effect of substitutions at the metal cluster (metal ion and anion within the tetranuclear cluster) is discussed, showing that the configuration of this unit indeed plays an important role in determining the affinity of the framework toward H(2). Interestingly, the theoretical study has identified that the Zn-based analogs would be expected to facilitate enhanced adsorption profiles over the compounds synthesized experimentally, highlighting the importance of a combined experimental and theoretical approach to the design and synthesis of new frameworks for H(2) storage applications.

  20. Metal oxide charge transport material doped with organic molecules

    DOEpatents

    Forrest, Stephen R.; Lassiter, Brian E.

    2016-08-30

    Doping metal oxide charge transport material with an organic molecule lowers electrical resistance while maintaining transparency and thus is optimal for use as charge transport materials in various organic optoelectronic devices such as organic photovoltaic devices and organic light emitting devices.

  1. Metal-organometallic polymers and frameworks derived from facially metalated arylcarboxylates

    NASA Astrophysics Data System (ADS)

    Kumalah Robinson, Sayon A.

    The interest in coordination polymers, also known as metal-organic frameworks, has risen drastically over the past 2 decades. In this time, the field has matured and given rise to a diverse range of crystalline structures possessing various functionalities. Coordination polymers are typically formed from the self assembly of metal ions which serve as nodes and organic ligands which act as bridges. By the careful selection of the organic ligand and the metal ion, the overall physical properties of the material may be tuned. In this work, the use of organometallic bridging ligands are explored using facially metalated aryl carboxylates ligands to synthesize metal-organometallic frameworks (MOMFs). Therefore, with the aim of synthesizing [CpM]+-functionalized (M = FeII, RuII; Cp = cyclopentadienyl) coordination polymers and metal organic frameworks, various [CpFe]+and [CpRu] + functionalized aryl carboxylates were synthesized and characterized. In particular, the [CpFe]+-functionalized benzoic, terephthalic and trimesic acids as well as the [CpRu]+-functionalized terephthalic acid were made. Using the [CpFe]+ complexes of the benzoic and terephthalic acid as bridging ligands, a number of 1D and 2D coordination polymers were synthesized. For instance, the reaction of [CpFe]+-functionalized benzoic acid with CdCl2 yielded the 1D chain of [Cd(benzoate)Cl 2]˙H2O whilst the reaction of [CpFe]+-functionalized terephthalic acid with Cu(NO3)2˙6H2O yielded a 2D square grid sheet. Using the [CpFe]+-functionalized terephthalic acid, a series of polymorphic, 3D metal-organometallic frameworks of the general formula [M3(terephthalate)4(mu-H2O)2(H 2O)2][NO3]2˙xsolvent (M = Co II, NiII ; solvent = EtOH, DMF, H2O) were synthesized and fully characterized. The polymorphic nature of these frameworks may be attributed to the different orientations that the [CpFe]+ moiety may adapt within the cavities in the 3D frameworks. The selectivity of the desolvated forms of the polymorphs for

  2. Research Update: Mechanical properties of metal-organic frameworks - Influence of structure and chemical bonding

    NASA Astrophysics Data System (ADS)

    Li, Wei; Henke, Sebastian; Cheetham, Anthony K.

    2014-12-01

    Metal-organic frameworks (MOFs), a young family of functional materials, have been attracting considerable attention from the chemistry, materials science, and physics communities. In the light of their potential applications in industry and technology, the fundamental mechanical properties of MOFs, which are of critical importance for manufacturing, processing, and performance, need to be addressed and understood. It has been widely accepted that the framework topology, which describes the overall connectivity pattern of the MOF building units, is of vital importance for the mechanical properties. However, recent advances in the area of MOF mechanics reveal that chemistry plays a major role as well. From the viewpoint of materials science, a deep understanding of the influence of chemical effects on MOF mechanics is not only highly desirable for the development of novel functional materials with targeted mechanical response, but also for a better understanding of important properties such as structural flexibility and framework breathing. The present work discusses the intrinsic connection between chemical effects and the mechanical behavior of MOFs through a number of prototypical examples.

  3. Electrodeposition of WO3 nanoparticles into surface mounted metal-organic framework HKUST-1 thin films

    NASA Astrophysics Data System (ADS)

    Yoo, Hyeonseok; Welle, Alexander; Guo, Wei; Choi, Jinsub; Redel, Engelbert

    2017-03-01

    We describe a novel procedure to fabricate WO3@surface-mounted metal-organic framework (SURMOF) hybrid materials by electrodeposition of WO3 nanoparticles into HKUST-1, also termed Cu3(BTC)2 SURMOFs. These materials have been characterized using x-ray diffraction, time-of-flight secondary ion mass spectrometry, scanning electron microscopy, x-ray photoelectron spectroscopy as well as linear sweep voltammetry. The WO3 semiconductor/SURMOF heterostructures were further tested as hybrid electrodes in their performance for hydrogen evolution reaction from water.

  4. System and method for generating and/or screening potential metal-organic frameworks

    DOEpatents

    Wilmer, Christopher E; Leaf, Michael; Snurr, Randall Q; Farha, Omar K; Hupp, Joseph T

    2015-04-21

    A system and method for systematically generating potential metal-organic framework (MOFs) structures given an input library of building blocks is provided herein. One or more material properties of the potential MOFs are evaluated using computational simulations. A range of material properties (surface area, pore volume, pore size distribution, powder x-ray diffraction pattern, methane adsorption capability, and the like) can be estimated, and in doing so, illuminate unidentified structure-property relationships that may only have been recognized by taking a global view of MOF structures. In addition to identifying structure-property relationships, this systematic approach to identify the MOFs of interest is used to identify one or more MOFs that may be useful for high pressure methane storage.

  5. System and method for generating and/or screening potential metal-organic frameworks

    DOEpatents

    Wilmer, Christopher E; Leaf, Michael; Snurr, Randall Q; Farha, Omar K; Hupp, Joseph T

    2014-12-02

    A system and method for systematically generating potential metal-organic framework (MOFs) structures given an input library of building blocks is provided herein. One or more material properties of the potential MOFs are evaluated using computational simulations. A range of material properties (surface area, pore volume, pore size distribution, powder x-ray diffraction pattern, methane adsorption capability, and the like) can be estimated, and in doing so, illuminate unidentified structure-property relationships that may only have been recognized by taking a global view of MOF structures. In addition to identifying structure-property relationships, this systematic approach to identify the MOFs of interest is used to identify one or more MOFs that may be useful for high pressure methane storage.

  6. Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal-Organic Frameworks.

    PubMed

    Feng, Liang; Yuan, Shuai; Zhang, Liang-Liang; Tan, Kui; Li, Jia-Luo; Kirchon, Angelo; Liu, Ling-Mei; Zhang, Peng; Han, Yu; Chabal, Yves J; Zhou, Hong-Cai

    2018-02-14

    Sufficient pore size, appropriate stability, and hierarchical porosity are three prerequisites for open frameworks designed for drug delivery, enzyme immobilization, and catalysis involving large molecules. Herein, we report a powerful and general strategy, linker thermolysis, to construct ultrastable hierarchically porous metal-organic frameworks (HP-MOFs) with tunable pore size distribution. Linker instability, usually an undesirable trait of MOFs, was exploited to create mesopores by generating crystal defects throughout a microporous MOF crystal via thermolysis. The crystallinity and stability of HP-MOFs remain after thermolabile linkers are selectively removed from multivariate metal-organic frameworks (MTV-MOFs) through a decarboxylation process. A domain-based linker spatial distribution was found to be critical for creating hierarchical pores inside MTV-MOFs. Furthermore, linker thermolysis promotes the formation of ultrasmall metal oxide nanoparticles immobilized in an open framework that exhibits high catalytic activity for Lewis acid-catalyzed reactions. Most importantly, this work provides fresh insights into the connection between linker apportionment and vacancy distribution, which may shed light on probing the disordered linker apportionment in multivariate systems, a long-standing challenge in the study of MTV-MOFs.

  7. Scalable synthesis and post-modification of a mesoporous metal-organic framework called NU-1000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Timothy C.; Vermeulen, Nicolaas A.; Kim, In Soo

    The synthesis of NU-1000, a highly robust mesoporous (containing pores >2 nm) metal-organic framework (MOF), can be conducted efficiently on a multigram scale from inexpensive starting materials. Tetrabromopyrene and (4-(ethoxycarbonyl)phenyl)boronic acid can easily be coupled to prepare the requisite organic strut with four metal-binding sites in the form of four carboxylic acids, while zirconyl chloride octahydrate is used as a precursor for the well-defined metal oxide clusters. NU-1000 has been reported as an excellent candidate for the separation of gases, and it is a versatile scaffold for heterogeneous catalysis. In particular, it is ideal for the catalytic deactivation of nervemore » agents, and it shows great promise as a new generic platform for a wide range of applications. Multiple post-synthetic modification protocols have been developed using NU-1000 as the parent material, making it a potentially useful scaffold for several catalytic applications. The procedure for the preparation of NU-1000 can be scaled up reliably, and it is suitable for the production of 50 g of the tetracarboxylic acid containing organic linker and 200 mg–2.5 g of NU-1000. The entire synthesis is performed without purification by column chromatography and can be completed within 10 d.« less

  8. Scalable synthesis and post-modification of a mesoporous metal-organic framework called NU-1000.

    PubMed

    Wang, Timothy C; Vermeulen, Nicolaas A; Kim, In Soo; Martinson, Alex B F; Stoddart, J Fraser; Hupp, Joseph T; Farha, Omar K

    2016-01-01

    The synthesis of NU-1000, a highly robust mesoporous (containing pores >2 nm) metal-organic framework (MOF), can be conducted efficiently on a multigram scale from inexpensive starting materials. Tetrabromopyrene and (4-(ethoxycarbonyl)phenyl)boronic acid can easily be coupled to prepare the requisite organic strut with four metal-binding sites in the form of four carboxylic acids, while zirconyl chloride octahydrate is used as a precursor for the well-defined metal oxide clusters. NU-1000 has been reported as an excellent candidate for the separation of gases, and it is a versatile scaffold for heterogeneous catalysis. In particular, it is ideal for the catalytic deactivation of nerve agents, and it shows great promise as a new generic platform for a wide range of applications. Multiple post-synthetic modification protocols have been developed using NU-1000 as the parent material, making it a potentially useful scaffold for several catalytic applications. The procedure for the preparation of NU-1000 can be scaled up reliably, and it is suitable for the production of 50 g of the tetracarboxylic acid containing organic linker and 200 mg-2.5 g of NU-1000. The entire synthesis is performed without purification by column chromatography and can be completed within 10 d.

  9. Lipase-supported metal-organic framework bioreactor catalyzes warfarin synthesis.

    PubMed

    Liu, Wan-Ling; Yang, Ni-Shin; Chen, Ya-Ting; Lirio, Stephen; Wu, Cheng-You; Lin, Chia-Her; Huang, Hsi-Ya

    2015-01-02

    A green and sustainable strategy synthesizes clinical medicine warfarin anticoagulant by using lipase-supported metal-organic framework (MOF) bioreactors (see scheme). These findings may be beneficial for future studies in the industrial production of chemical, pharmaceutical, and agrochemical precursors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Enzyme-MOF (metal-organic framework) composites.

    PubMed

    Lian, Xizhen; Fang, Yu; Joseph, Elizabeth; Wang, Qi; Li, Jialuo; Banerjee, Sayan; Lollar, Christina; Wang, Xuan; Zhou, Hong-Cai

    2017-06-06

    The ex vivo application of enzymes in various processes, especially via enzyme immobilization techniques, has been extensively studied in recent years in order to enhance the recyclability of enzymes, to minimize enzyme contamination in the product, and to explore novel horizons for enzymes in biomedical applications. Possessing remarkable amenability in structural design of the frameworks as well as almost unparalelled surface tunability, Metal-Organic Frameworks (MOFs) have been gaining popularity as candidates for enzyme immobilization platforms. Many MOF-enzyme composites have achieved unprecedented results, far outperforming free enzymes in many aspects. This review summarizes recent developments of MOF-enzyme composites with special emphasis on preparative techniques and the synergistic effects of enzymes and MOFs. The applications of MOF-enzyme composites, primarily in transferation, catalysis and sensing, are presented as well. The enhancement of enzymatic activity of the composites over free enzymes in biologically incompatible conditions is emphasized in many cases.

  11. Breaking Down Chemical Weapons by Metal-Organic Frameworks.

    PubMed

    Mondal, Suvendu Sekhar; Holdt, Hans-Jürgen

    2016-01-04

    Seek and destroy: Filtration schemes and self-detoxifying protective fabrics based on the Zr(IV)-containing metal-organic frameworks (MOFs) MOF-808 and UiO-66 doped with LiOtBu have been developed that capture and hydrolytically detoxify simulants of nerve agents and mustard gas. Both MOFs function as highly catalytic elements in these applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal-organic frameworks.

    PubMed

    Guillerm, Vincent; Weseliński, Łukasz J; Belmabkhout, Youssef; Cairns, Amy J; D'Elia, Valerio; Wojtas, Łukasz; Adil, Karim; Eddaoudi, Mohamed

    2014-08-01

    Metal-organic frameworks (MOFs) are a promising class of porous materials because it is possible to mutually control their porous structure, composition and functionality. However, it is still a challenge to predict the network topology of such framework materials prior to their synthesis. Here we use a new rare earth (RE) nonanuclear carboxylate-based cluster as an 18-connected molecular building block to form a gea-MOF (gea-MOF-1) based on a (3,18)-connected net. We then utilized this gea net as a blueprint to design and assemble another MOF (gea-MOF-2). In gea-MOF-2, the 18-connected RE clusters are replaced by metal-organic polyhedra, peripherally functionalized so as to have the same connectivity as the RE clusters. These metal-organic polyhedra act as supermolecular building blocks when they form gea-MOF-2. The discovery of a (3,18)-connected MOF followed by deliberate transposition of its topology to a predesigned second MOF with a different chemical system validates the prospective rational design of MOFs.

  13. Multifaceted Modularity: A Key for Stepwise Building of Hierarchical Complexity in Actinide Metal-Organic Frameworks.

    PubMed

    Dolgopolova, Ekaterina A; Ejegbavwo, Otega A; Martin, Corey R; Smith, Mark D; Setyawan, Wahyu; Karakalos, Stavros G; Henager, Charles H; Zur Loye, Hans-Conrad; Shustova, Natalia B

    2017-11-22

    Growing necessity for efficient nuclear waste management is a driving force for development of alternative architectures toward fundamental understanding of mechanisms involved in actinide (An) integration inside extended structures. In this manuscript, metal-organic frameworks (MOFs) were investigated as a model system for engineering radionuclide containing materials through utilization of unprecedented MOF modularity, which cannot be replicated in any other type of materials. Through the implementation of recent synthetic advances in the MOF field, hierarchical complexity of An-materials was built stepwise, which was only feasible due to preparation of the first examples of actinide-based frameworks with "unsaturated" metal nodes. The first successful attempts of solid-state metathesis and metal node extension in An-MOFs are reported, and the results of the former approach revealed drastic differences in chemical behavior of extended structures versus molecular species. Successful utilization of MOF modularity also allowed us to structurally characterize the first example of bimetallic An-An nodes. To the best of our knowledge, through combination of solid-state metathesis, guest incorporation, and capping linker installation, we were able to achieve the highest Th wt % in mono- and biactinide frameworks with minimal structural density. Overall, the combination of a multistep synthetic approach with homogeneous actinide distribution and moderate solvothermal conditions could make MOFs an exceptionally powerful tool to address fundamental questions responsible for chemical behavior of An-based extended structures and, therefore, shed light on possible optimization of nuclear waste administration.

  14. The Influence of Chemical Modification on Linker Rotational Dynamics in Metal-Organic Frameworks.

    PubMed

    Damron, Joshua T; Ma, Jialiu; Kurz, Ricardo; Saalwächter, Kay; Matzger, Adam J; Ramamoorthy, Ayyalusamy

    2018-05-21

    The robust synthetic flexibility of metal-organic frameworks (MOFs) offers a promising class of tailorable materials, for which the ability to tune specific physicochemical properties is highly desired. This is achievable only through a thorough description of the consequences for chemical manipulations both in structure and dynamics. Magic angle spinning solid-state NMR spectroscopy offers many modalities in this pursuit, particularly for dynamic studies. Herein, we employ a separated-local-field NMR approach to show how specific intraframework chemical modifications to MOF UiO-66 heavily modulate the dynamic evolution of the organic ring moiety over several orders of magnitude. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Light-enhanced acid catalysis over a metal-organic framework.

    PubMed

    Xu, Caiyun; Sun, Keju; Zhou, Yu-Xiao; Ma, Xiao; Jiang, Hai-Long

    2018-03-06

    A Brønsted acid-functionalized metal-organic framework (MOF), MIL-101-SO 3 H, was prepared for acid-engaged esterification reactions. Strikingly, for the first time, the MOF exhibits significantly light-enhanced activity and possesses excellent activity and recyclability, with even higher activity than H 2 SO 4 under light irradiation.

  16. Electrodeposition of WO3 nanoparticles into surface mounted metal-organic framework HKUST-1 thin films.

    PubMed

    Yoo, Hyeonseok; Welle, Alexander; Guo, Wei; Choi, Jinsub; Redel, Engelbert

    2017-03-17

    We describe a novel procedure to fabricate WO 3 @surface-mounted metal-organic framework (SURMOF) hybrid materials by electrodeposition of WO 3 nanoparticles into HKUST-1, also termed Cu 3 (BTC) 2 SURMOFs. These materials have been characterized using x-ray diffraction, time-of-flight secondary ion mass spectrometry, scanning electron microscopy, x-ray photoelectron spectroscopy as well as linear sweep voltammetry. The WO 3 semiconductor/SURMOF heterostructures were further tested as hybrid electrodes in their performance for hydrogen evolution reaction from water.

  17. The molecular transport and intercalation of guest molecules into hydrogen-bonded metal-organic frameworks (HMOFs)

    NASA Astrophysics Data System (ADS)

    Hogan, Greg Anthony

    The process of molecular transport and intercalation has been widely studied for many years, resulting in the discovery of molecular frameworks that are capable of hosting guest molecules or ions. Layered and porous metal-organic frameworks (MOFs) have been found to have applications in the field of catalysis, storage, separations, and ion-exchange. More recently, molecular components with peripheral hydrogen-bonding moieties have been used to affect the synthesis of hydrogen-bonded metal-organic frameworks (HMOFs) as an alternative to MOFs, which are interconnected via coordinate-covalent bonds. While MOFs are perhaps stronger materials, HMOFs have the advantage of being easily modifiable and more flexible. Because HMOFs have not been extensively studied for their ability to host molecules, and because their ability to withstand guest loss and guest exchange is essentially unknown, here we report the synthesis and molecular transport properties of both close-packed and porous HMOFs. Layered materials can mimic the behavior of naturally occurring clays, where guest molecules are absorbed and the layer will expand to accommodate the entering guest molecule. We have created a clay mimic composed of a metal pyridine-dicarboxylates and ammonium counterions (a layered HMOF), which is suitable for studying the ability of such materials to absorb guest molecules. We can control the distance of the interlayer region, as well as the chemical nature (hydrophobic or hydrophilic) by varying the organic amine. The metal complex contains axial water ligands that are replaceable, and such ligand exchange has precedence in coordination polymer (MOF) systems, and has been termed "coordinative intercalation". Using the synthesized layered material we examined the process of intercalation, having chosen a variety of guest molecules ranging from alkyl to aryl molecules, each of which have substituents varying in size, shape and electronics. The first set of guest molecules are non

  18. Tailoring porosity and rotational dynamics in a series of octacarboxylate metal-organic frameworks

    PubMed Central

    Moreau, Florian; Kolokolov, Daniil I.; Stepanov, Alexander G.; Easun, Timothy L.; Dailly, Anne; Blake, Alexander J.; Nowell, Harriott; Lennox, Matthew J.; Yang, Sihai; Schröder, Martin

    2017-01-01

    Modulation and precise control of porosity of metal-organic frameworks (MOFs) is of critical importance to their materials function. Here we report modulation of porosity for a series of isoreticular octacarboxylate MOFs, denoted MFM-180 to MFM-185, via a strategy of selective elongation of metal-organic cages. Owing to the high ligand connectivity, these MOFs do not show interpenetration, and are robust structures that have permanent porosity. Interestingly, activated MFM-185a shows a high Brunauer–Emmett–Teller (BET) surface area of 4,734 m2 g−1 for an octacarboxylate MOF. These MOFs show remarkable CH4 and CO2 adsorption properties, notably with simultaneously high gravimetric and volumetric deliverable CH4 capacities of 0.24 g g−1 and 163 vol/vol (298 K, 5–65 bar) recorded for MFM-185a due to selective elongation of tubular cages. The dynamics of molecular rotors in deuterated MFM-180a-d16 and MFM-181a-d16 were investigated by variable-temperature 2H solid-state NMR spectroscopy to reveal the reorientation mechanisms within these materials. Analysis of the flipping modes of the mobile phenyl groups, their rotational rates, and transition temperatures paves the way to controlling and understanding the role of molecular rotors through design of organic linkers within porous MOF materials. PMID:28280097

  19. Metal Oxide Assisted Preparation of Core-Shell Beads with Dense Metal-Organic Framework Coatings for the Enhanced Extraction of Organic Pollutants.

    PubMed

    Del Rio, Mateo; Palomino Cabello, Carlos; Gonzalez, Veronica; Maya, Fernando; Parra, Jose B; Cerdà, Victor; Turnes Palomino, Gemma

    2016-08-08

    Dense and homogeneous metal-organic framework (MOF) coatings on functional bead surfaces are easily prepared by using intermediate sacrificial metal oxide coatings containing the metal precursor of the MOF. Polystyrene (PS) beads are coated with a ZnO layer to give ZnO@PS core-shell beads. The ZnO@PS beads are reactive in the presence of 2-methylimidazole to transform part of the ZnO coating into a porous zeolitic imidazolate framework-8 (ZIF-8) external shell positioned above the internal ZnO precursor shell. The obtained ZIF-8@ZnO@PS beads can be easily packed in column format for flow-through applications, such as the solid-phase extraction of trace priority-listed environmental pollutants. The prepared material shows an excellent permeance to flow when packed as a column to give high enrichment factors, facile regeneration, and excellent reusability for the extraction of the pollutant bisphenol A. It also shows an outstanding performance for the simultaneous enrichment of mixtures of endocrine disrupting chemicals (bisphenol A, 4-tert-octylphenol and 4-n-nonylphenol), facilitating their analysis when present at very low levels (<1 μg L(-1) ) in drinking waters. For the extraction of the pollutant bisphenol A, the prepared ZIF-8@ZnO@PS beads also show a superior extraction and preconcentration capacity to that of the PS beads used as precursors and the composite materials obtained by the direct growth of ZIF-8 on the surface of the PS beads in the absence of metal oxide intermediate coatings. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Surface nano-architecture of a metal-organic framework.

    PubMed

    Makiura, Rie; Motoyama, Soichiro; Umemura, Yasushi; Yamanaka, Hiroaki; Sakata, Osami; Kitagawa, Hiroshi

    2010-07-01

    The rational assembly of ultrathin films of metal-organic frameworks (MOFs)--highly ordered microporous materials--with well-controlled growth direction and film thickness is a critical and as yet unrealized issue for enabling the use of MOFs in nanotechnological devices, such as sensors, catalysts and electrodes for fuel cells. Here we report the facile bottom-up fabrication at ambient temperature of such a perfect preferentially oriented MOF nanofilm on a solid surface (NAFS-1), consisting of metalloporphyrin building units. The construction of NAFS-1 was achieved by the unconventional integration in a modular fashion of a layer-by-layer growth technique coupled with the Langmuir-Blodgett method. NAFS-1 is endowed with highly crystalline order both in the out-of-plane and in-plane orientations to the substrate, as demonstrated by synchrotron X-ray surface crystallography. The proposed structural model incorporates metal-coordinated pyridine molecules projected from the two-dimensional sheets that allow each further layer to dock in a highly ordered interdigitated manner in the growth of NAFS-1. We expect that the versatility of the solution-based growth strategy presented here will allow the fabrication of various well-ordered MOF nanofilms, opening the way for their use in a range of important applications.

  1. Encapsulation of an interpenetrated diamondoid inorganic building block in a metal-organic framework.

    PubMed

    Zhang, Huabin; Lin, Ping; Chen, Erxia; Tan, Yanxi; Wen, Tian; Aldalbahi, Ali; Alshehri, Saad M; Yamauchi, Yusuke; Du, Shaowu; Zhang, Jian

    2015-03-23

    The first example of an inorganic-organic composite framework with an interpenetrated diamondoid inorganic building block, featuring unique {InNa}n helices and {In12 Na16 } nano-rings, has been constructed and structurally characterized. This framework also represents a unique example of encapsulation of an interpenetrated diamondoid inorganic building block in a metal-organic framework. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Positronium emission spectra from self-assembled metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Crivelli, P.; Cooke, D.; Barbiellini, B.; Brown, B. L.; Feldblyum, J. I.; Guo, P.; Gidley, D. W.; Gerchow, L.; Matzger, A. J.

    2014-06-01

    Results of positronium (Ps) emission into vacuum from self-assembled metal-organic frameworks (MOFs) are presented and discussed in detail. Four different MOF crystals are considered, namely, MOF-5, IRMOF-8, ZnO4(FMA)3, and IRMOF-20. The measurements reveal that a fraction of the Ps is emitted into vacuum with a distinctly smaller energy than what one would expect for Ps localized in the MOFs' cells. Only calculations considering the Ps delocalized in a Bloch state can reproduce the measured Ps emission energy providing a robust demonstration of wave function delocalization in quantum mechanics. We show how the Bloch state population can be controlled by tuning the initial positron beam energy. Therefore, Ps in MOFs can be used both to simulate the dynamics of delocalized excitations in materials and to probe the MOFs for their advanced characterization.

  3. Rapid, sensitive, and selective fluorescent DNA detection using iron-based metal-organic framework nanorods: Synergies of the metal center and organic linker.

    PubMed

    Tian, Jingqi; Liu, Qian; Shi, Jinle; Hu, Jianming; Asiri, Abdullah M; Sun, Xuping; He, Yuquan

    2015-09-15

    Considerable recent attention has been paid to homogeneous fluorescent DNA detection with the use of nanostructures as a universal "quencher", but it still remains a great challenge to develop such nanosensor with the benefits of low cost, high speed, sensitivity, and selectivity. In this work, we report the use of iron-based metal-organic framework nanorods as a high-efficient sensing platform for fluorescent DNA detection. It only takes about 4 min to complete the whole "mix-and-detect" process with a low detection limit of 10 pM and a strong discrimination of single point mutation. Control experiments reveal the remarkable sensing behavior is a consequence of the synergies of the metal center and organic linker. This work elucidates how composition control of nanostructures can significantly impact their sensing properties, enabling new opportunities for the rational design of functional materials for analytical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Computer-aided discovery of a metal-organic framework with superior oxygen uptake.

    PubMed

    Moghadam, Peyman Z; Islamoglu, Timur; Goswami, Subhadip; Exley, Jason; Fantham, Marcus; Kaminski, Clemens F; Snurr, Randall Q; Farha, Omar K; Fairen-Jimenez, David

    2018-04-11

    Current advances in materials science have resulted in the rapid emergence of thousands of functional adsorbent materials in recent years. This clearly creates multiple opportunities for their potential application, but it also creates the following challenge: how does one identify the most promising structures, among the thousands of possibilities, for a particular application? Here, we present a case of computer-aided material discovery, in which we complete the full cycle from computational screening of metal-organic framework materials for oxygen storage, to identification, synthesis and measurement of oxygen adsorption in the top-ranked structure. We introduce an interactive visualization concept to analyze over 1000 unique structure-property plots in five dimensions and delimit the relationships between structural properties and oxygen adsorption performance at different pressures for 2932 already-synthesized structures. We also report a world-record holding material for oxygen storage, UMCM-152, which delivers 22.5% more oxygen than the best known material to date, to the best of our knowledge.

  5. Ab initio investigation on hydrogen adsorption capability in Zn and Cu-based metal organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanuwijaya, V. V., E-mail: viny.veronika@gmail.com; Hidayat, N. N., E-mail: avantgarde.vee@gmail.com; Agusta, M. K., E-mail: kemal@fti.itb.ac.id

    2015-09-30

    One of the biggest challenge in material technology for hydrogen storage application is to increase hydrogen uptake in room temperature and pressure. As a class of highly porous material, Metal-Organic Frameworks (MOF) holds great potential with its tunable structure. However, little is known about the effect of metal cluster to its hydrogen storage capability. Investigation on this matter has been carried out carefully on small cluster of Zn and Cu-based MOF using first principles method. The calculation of two distinct building units of MOFs, namely octahedral and paddle-wheel models, have been done with B3LYP density functional method using 6-31G(d,p) andmore » LANL2DZ basis sets. From geometry optimization of Zn-based MOF linked by benzene-dicarboxylate (MOF-5), it is found that hydrogen tends to keep distance from metal cluster group and stays above benzene ring. In the other hand, hydrogen molecule prefers to stay atop of the exposed Cu atom in Cu-based MOF system linked by the same linker group (Cu-bdc). Calculated hydrogen binding enthalpies for Zn and Cu octahedral cages at ZnO{sub 3} sites are 1.64kJ/mol and 2.73kJ/mol respectively, while hydrogen binding enthalpies for Zn and Cu paddle-wheel cages calculated on top of metal atoms are found to be at 6.05kJ/mol and 6.10kJ/mol respectively. Major difference between Zn-MOF-5 and Cu-bdc hydrogen uptake performance might be caused by unsaturated metal sites present in Cu-bdc system and the influence of their geometric structures, although a small difference on binding energy in the type of transition metal used is also observed. The comparison between Zn and Cu-based MOF may contribute to a comprehensive understanding of metal clusters and the importance of selecting best transition metal for design and synthesis of metal-organic frameworks.« less

  6. Postsynthesis Modification of a Metallosalen-Containing Metal-Organic Framework for Selective Th(IV)/Ln(III) Separation.

    PubMed

    Guo, Xiang-Guang; Qiu, Sen; Chen, Xiuting; Gong, Yu; Sun, Xiaoqi

    2017-10-16

    An uncoordinated salen-containing metal-organic framework (MOF) obtained through postsynthesis removal of Mn(III) ions from a metallosalen-containing MOF material has been used for selective separation of Th(IV) ion from Ln(III) ions in methanol solutions for the first time. This material exhibited an adsorption capacity of 46.345 mg of Th/g. The separation factors (β) of Th(IV)/La(III), Th(IV)/Eu(III), and Th(IV)/Lu(III) were 10.7, 16.4, and 10.3, respectively.

  7. Introduction of Molecular Building Blocks to Improve the Stability of Metal-Organic Frameworks for Efficient Mercury Removal.

    PubMed

    Jiang, Shu-Yi; He, Wen-Wen; Li, Shun-Li; Su, Zhong-Min; Lan, Ya-Qian

    2018-05-21

    With expanding human needs, many heavy metals were mined, smelted, processed, and manufactured for commercialization, which caused serious environmental pollutions. Currently, many adsorption materials are applied in the field of adsorption of heavy metals. Among them, the principle of many mercury adsorbents is based on the interaction between mercury and sulfur. Here, a S-containing metal-organic framework NENU-400 was synthesized for effective mercury extraction. Unfortunately, the skeleton of NENU-400 collapsed easily when exposed to the mercury liquid solution. To improve the stability, a synthetic strategy installing molecular building blocks (MBBs) into the channels was used. Modified by the MBBs, a more stable nanoporous framework was synthesized, which not only exhibits a high capacity of saturation mercury uptake but also shows high selectivity and efficient recyclability.

  8. Unraveling the multi-functional behavior in a series of Metal Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanda, Suresh; Biswas, Soumava; Parshamoni, Srinivasulu

    2015-09-15

    Three new 2D/3D Metal-Organic Frameworks (MOFs), ([Zn(2,6-ndc)(aldrithiol)]·3(H{sub 2}O)){sub n} (1), ([Co(2,6-ndc)(aldrithiol)(H{sub 2}O){sub 2}]·2(H{sub 2}O)){sub n} (2), ([Cd{sub 2}(2,6-ndc){sub 2}(aldrithiol){sub 2}(H{sub 2}O){sub 2}]·(aldrithiol)·(EtOH)·3(H{sub 2}O)){sub n} (3), (2,6-ndc = 2,6-naphthalene dicarboxylic acid; aldrithiol = 4,4'-dipyridyl disulphide) have been synthesized and structurally characterized. Compounds 1 and 2 have 2D layered architectures with similar framework topology whereas 3 is a 2-fold interwoven three dimensional framework. Sorption studies reveal that compounds 1-3 selectively adsorbs CO{sub 2} over other gases and H{sub 2}O over other solvents. Proton conductivity study of compounds 1 and 2 show highest values of 6.73 x 10{sup -7} S.cm{sup -1}, 1.96 xmore » 10{sup -5} S.cm{sup -1} at 318 K and 95% RH and these values are humidity dependent. Photoluminescent properties of compounds 1 and 3 show metal perturbed (π*–π and π*-n) intra ligand charge transfer transitions. Additionally, Compound 3 also displays reversible adsorption of molecular iodine. - Graphical abstarct: Three new 2D/3D interpenetrated MOFs are synthesized and their multifunctional material properties such as adsorption, proton conduction, iodine adsorption as well as luminscence have been explored. - Highlights: • We report multifunctional material properties in a series MOFs (Compounds 1-3) • All the compounds show selective adsorption of CO{sub 2} over other gases and H{sub 2}O over other solvents. • The proton conduction property studies of all the compounds reveal the humidity dependent conductivity. • Compound 2 shows reversible adsorption of molecular iodine in the framework. • Photoluminescent properties of compounds 1 and 2 show metal perturbed intra ligand charge transfer transitions.« less

  9. Sulfur-containing bimetallic metal organic frameworks with multi-fold helix as anode of lithium ion batteries.

    PubMed

    Li, Meng-Ting; Kong, Ning; Lan, Ya-Qian; Su, Zhong-Min

    2018-04-03

    We utilise the dual synthesis strategy in terms of bimetallic inorganic building blocks and sulfur containing organic ligand. A novel sulfur-containing bimetallic metal organic framework (Fe2Co-TPDC) with two types of 4-fold meso-helical structures has been successfully synthesized. Benefitting from the uniform distribution of active sulfur sites and the structural stability of the mixed-metallic method, Fe2Co-TPDC can efficiently prevent a shuttle behavior of sulfur and endow a commendable specific capacity. As far as we know, this is the first time that a sulfur-containing bimetallic crystalline MOF with helical structure and prominent specific capacity and remarkable cycling stability has served as an electrode material for LIBs.

  10. New organic-inorganic hybrid molecular systems and highly organized materials in catalysis

    NASA Astrophysics Data System (ADS)

    Kustov, L. M.

    2015-11-01

    Definitions of hybrid materials are suggested, and applications of these materials are considered. Particular attention is focused on the application of hybrid materials in hydrogenation, partial oxidation, plant biomass conversion, and natural gas reforming, primarily on the use of core-shell nanoparticles and decorated metal nanoparticles in these reactions. Application prospects of various hybrid materials, particularly those of metal-organic frameworks, are discussed.

  11. A Review on Breathing Behaviors of Metal-Organic-Frameworks (MOFs) for Gas Adsorption

    PubMed Central

    Alhamami, Mays; Doan, Huu; Cheng, Chil-Hung

    2014-01-01

    Metal-organic frameworks (MOFs) are a new class of microporous materials that possess framework flexibility, large surface areas, “tailor-made” framework functionalities, and tunable pore sizes. These features empower MOFs superior performances and broader application spectra than those of zeolites and phosphine-based molecular sieves. In parallel with designing new structures and new chemistry of MOFs, the observation of unique breathing behaviors upon adsorption of gases or solvents stimulates their potential applications as host materials in gas storage for renewable energy. This has attracted intense research energy to understand the causes at the atomic level, using in situ X-ray diffraction, calorimetry, Fourier transform infrared spectroscopy, and molecular dynamics simulations. This article is developed in the following order: first to introduce the definition of MOFs and the observation of their framework flexibility. Second, synthesis routes of MOFs are summarized with the emphasis on the hydrothermal synthesis, owing to the environmental-benign and economically availability of water. Third, MOFs exhibiting breathing behaviors are summarized, followed by rationales from thermodynamic viewpoint. Subsequently, effects of various functionalities on breathing behaviors are appraised, including using post-synthetic modification routes. Finally, possible framework spatial requirements of MOFs for yielding breathing behaviors are highlighted as the design strategies for new syntheses. PMID:28788614

  12. Chromophore-Based Luminescent Metal–Organic Frameworks as Lighting Phosphors

    DOE PAGES

    Lustig, William P.; Wang, Fangming; Teat, Simon J.; ...

    2016-05-31

    Here, energy-efficient solid-state-lighting (SSL) technologies are rapidly developing, but the lack of stable, high-performance rare-earth free phosphors may impede the growth of the SSL market. One possible alternative is organic phosphor materials, but these can suffer from lower quantum yields and thermal instability compared to rare-earth phosphors. However, if luminescent organic chromophores can be built into a rigid metal-organic framework, their quantum yields and thermal stability can be greatly improved. This Forum Article discusses the design of a group of such chromophore-based luminescent metal-organic frameworks with exceptionally high performance and rational control of the important parameters that influence their emissionmore » properties, including electronic structures of chromophore, coligands, metal ions, and guest molecule s.« less

  13. Improving Olefin Purification Using Metal Organic Frameworks with Open Metal Sites.

    PubMed

    Luna-Triguero, A; Vicent-Luna, J M; Poursaeidesfahani, A; Vlugt, T J H; Sánchez-de-Armas, R; Gómez-Álvarez, P; Calero, S

    2018-05-16

    The separation and purification of light hydrocarbons is challenging in the industry. Recently, a ZJNU-30 metal-organic framework (MOF) has been found to have the potential for adsorption-based separation of olefins and diolefins with four carbon atoms [H. M. Liu et al. Chem.-Eur. J. 2016, 22, 14988-14997]. Our study corroborates this finding but reveals Fe-MOF-74 as a more efficient candidate for the separation because of the open metal sites. We performed adsorption-based separation, transient breakthrough curves, and density functional theory calculations. This combination of techniques provides an extensive understanding of the studied system. Using this MOF, we propose a separation scheme to obtain a high-purity product.

  14. Metal Nanoparticles Covered with a Metal-Organic Framework: From One-Pot Synthetic Methods to Synergistic Energy Storage and Conversion Functions.

    PubMed

    Kobayashi, Hirokazu; Mitsuka, Yuko; Kitagawa, Hiroshi

    2016-08-01

    Hybrid materials composed of metal nanoparticles and metal-organic frameworks (MOFs) have attracted much attention in many applications, such as enhanced gas storage and catalytic, magnetic, and optical properties, because of the synergetic effects between the metal nanoparticles and MOFs. In this Forum Article, we describe our recent progress on novel synthetic methods to produce metal nanoparticles covered with a MOF (metal@MOF). We first present Pd@copper(II) 1,3,5-benzenetricarboxylate (HKUST-1) as a novel hydrogen-storage material. The HKUST-1 coating on Pd nanocrystals results in a remarkably enhanced hydrogen-storage capacity and speed in the Pd nanocrystals, originating from charge transfer from Pd nanocrystals to HKUST-1. Another material, Pd-Au@Zn(MeIM)2 (ZIF-8, where HMeIM = 2-methylimidazole), exhibits much different catalytic activity for alcohol oxidation compared with Pd-Au nanoparticles, indicating a design guideline for the development of composite catalysts with high selectivity. A composite material composed of Cu nanoparticles and Cr3F(H2O)2O{C6H3(CO2)3}2 (MIL-100-Cr) demonstrates higher catalytic activity for CO2 reduction into methanol than Cu/γ-Al2O3. We also present novel one-pot synthetic methods to produce composite materials including Pd/ZIF-8 and Ni@Ni2(dhtp) (MOF-74, where H4dhtp = 2,5-dihydroxyterephthalic acid).

  15. Metal-organic frameworks as selectivity regulators for hydrogenation reactions

    NASA Astrophysics Data System (ADS)

    Zhao, Meiting; Yuan, Kuo; Wang, Yun; Li, Guodong; Guo, Jun; Gu, Lin; Hu, Wenping; Zhao, Huijun; Tang, Zhiyong

    2016-11-01

    Owing to the limited availability of natural sources, the widespread demand of the flavouring, perfume and pharmaceutical industries for unsaturated alcohols is met by producing them from α,β-unsaturated aldehydes, through the selective hydrogenation of the carbon-oxygen group (in preference to the carbon-carbon group). However, developing effective catalysts for this transformation is challenging, because hydrogenation of the carbon-carbon group is thermodynamically favoured. This difficulty is particularly relevant for one major category of heterogeneous catalyst: metal nanoparticles supported on metal oxides. These systems are generally incapable of significantly enhancing the selectivity towards thermodynamically unfavoured reactions, because only the edges of nanoparticles that are in direct contact with the metal-oxide support possess selective catalytic properties; most of the exposed nanoparticle surfaces do not. This has inspired the use of metal-organic frameworks (MOFs) to encapsulate metal nanoparticles within their layers or inside their channels, to influence the activity of the entire nanoparticle surface while maintaining efficient reactant and product transport owing to the porous nature of the material. Here we show that MOFs can also serve as effective selectivity regulators for the hydrogenation of α,β-unsaturated aldehydes. Sandwiching platinum nanoparticles between an inner core and an outer shell composed of an MOF with metal nodes of Fe3+, Cr3+ or both (known as MIL-101; refs 19, 20, 21) results in stable catalysts that convert a range of α,β-unsaturated aldehydes with high efficiency and with significantly enhanced selectivity towards unsaturated alcohols. Calculations reveal that preferential interaction of MOF metal sites with the carbon-oxygen rather than the carbon-carbon group renders hydrogenation of the former by the embedded platinum nanoparticles a thermodynamically favoured reaction. We anticipate that our basic design

  16. Metal-organic frameworks as selectivity regulators for hydrogenation reactions.

    PubMed

    Zhao, Meiting; Yuan, Kuo; Wang, Yun; Li, Guodong; Guo, Jun; Gu, Lin; Hu, Wenping; Zhao, Huijun; Tang, Zhiyong

    2016-11-03

    Owing to the limited availability of natural sources, the widespread demand of the flavouring, perfume and pharmaceutical industries for unsaturated alcohols is met by producing them from α,β-unsaturated aldehydes, through the selective hydrogenation of the carbon-oxygen group (in preference to the carbon-carbon group). However, developing effective catalysts for this transformation is challenging, because hydrogenation of the carbon-carbon group is thermodynamically favoured. This difficulty is particularly relevant for one major category of heterogeneous catalyst: metal nanoparticles supported on metal oxides. These systems are generally incapable of significantly enhancing the selectivity towards thermodynamically unfavoured reactions, because only the edges of nanoparticles that are in direct contact with the metal-oxide support possess selective catalytic properties; most of the exposed nanoparticle surfaces do not. This has inspired the use of metal-organic frameworks (MOFs) to encapsulate metal nanoparticles within their layers or inside their channels, to influence the activity of the entire nanoparticle surface while maintaining efficient reactant and product transport owing to the porous nature of the material. Here we show that MOFs can also serve as effective selectivity regulators for the hydrogenation of α,β-unsaturated aldehydes. Sandwiching platinum nanoparticles between an inner core and an outer shell composed of an MOF with metal nodes of Fe 3+ , Cr 3+ or both (known as MIL-101; refs 19, 20, 21) results in stable catalysts that convert a range of α,β-unsaturated aldehydes with high efficiency and with significantly enhanced selectivity towards unsaturated alcohols. Calculations reveal that preferential interaction of MOF metal sites with the carbon-oxygen rather than the carbon-carbon group renders hydrogenation of the former by the embedded platinum nanoparticles a thermodynamically favoured reaction. We anticipate that our basic design

  17. A flexible ligand-based wavy layered metal-organic framework for lithium-ion storage.

    PubMed

    An, Tiance; Wang, Yuhang; Tang, Jing; Wang, Yang; Zhang, Lijuan; Zheng, Gengfeng

    2015-05-01

    A substantial challenge for direct utilization of metal-organic frameworks (MOFs) as lithium-ion battery anodes is to maintain the rigid MOF structure during lithiation/delithiation cycles. In this work, we developed a flexible, wavy layered nickel-based MOF (C20H24Cl2N8Ni, designated as Ni-Me4bpz) by a solvothermal approach of 3,3',5,5'-tetramethyl-4,4'-bipyrazole (H2Me4bpz) with nickel(II) chloride hexahydrate. The obtained MOF materials (Ni-Me4bpz) with metal azolate coordination mode provide 2-dimensional layered structure for Li(+) intercalation/extraction, and the H2Me4bpz ligands allow for flexible rotation feature and structural stability. Lithium-ion battery anodes made of the Ni-Me4bpz material demonstrate excellent specific capacity and cycling performance, and the crystal structure is well preserved after the electrochemical tests, suggesting the potential of developing flexible layered MOFs for efficient and stable electrochemical storage. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. An in situ self-assembly template strategy for the preparation of hierarchical-pore metal-organic frameworks

    PubMed Central

    Huang, Hongliang; Li, Jian-Rong; Wang, Keke; Han, Tongtong; Tong, Minman; Li, Liangsha; Xie, Yabo; Yang, Qingyuan; Liu, Dahuan; Zhong, Chongli

    2015-01-01

    Metal-organic frameworks (MOFs) have recently emerged as a new type of nanoporous materials with tailorable structures and functions. Usually, MOFs have uniform pores smaller than 2 nm in size, limiting their practical applications in some cases. Although a few approaches have been adopted to prepare MOFs with larger pores, it is still challenging to synthesize hierarchical-pore MOFs (H-MOFs) with high structural controllability and good stability. Here we demonstrate a facile and versatile method, an in situ self-assembly template strategy for fabricating stable H-MOFs, in which multi-scale soluble and/or acid-sensitive metal-organic assembly (MOA) fragments form during the reactions between metal ions and organic ligands (to construct MOFs), and act as removable dynamic chemical templates. This general strategy was successfully used to prepare various H-MOFs that show rich porous properties and potential applications, such as in large molecule adsorption. Notably, the mesopore sizes of the H-MOFs can be tuned by varying the amount of templates. PMID:26548441

  19. A novel polyhedron-based metal-organic framework with high performance for gas uptake and light hydrocarbon separation.

    PubMed

    Sun, Qiushi; Yao, Shuo; Liu, Bing; Liu, Xinyao; Li, Guanghua; Liu, Xiaoyang; Liu, Yunling

    2018-04-03

    A novel polyhedron-based metal-organic framework [(CH3)2NH2]2[Zn3(TADIPA)2(DMF)2]·4DMF (JLU-Liu40), which possesses three types of cages with different shapes and sizes, has been successfully synthesized. The framework of JLU-Liu40 is constructed by two inorganic secondary building units (SBUs) of 4-connected square binuclear Zn-paddlewheel and 4-connected tetrahedron mononuclear Zn unit and one organic SBU, which has abundant Lewis basic sites (LBSs), and the framework can be simplified as a pair of 3-connected triangle geometries. Moreover, JLU-Liu40 shows a new (3, 4, 4)-connected topology with the Schläfli symbol {72, 9}2{74, 82}. With the benefit of its high density of open metal sites (OMSs) and LBSs, JLU-Liu40 shows good adsorption ability for some small gases such as N2, CO2, CH4, C2H6 and C3H8. In addition, the theoretical ideal adsorbed solution theory (IAST) calculation indicates that JLU-Liu40 should be a promising material for light gas separation.

  20. Materials and Techniques for Implantable Nutrient Sensing Using Flexible Sensors Integrated with Metal-Organic Frameworks.

    PubMed

    Ling, Wei; Liew, Guoguang; Li, Ya; Hao, Yafeng; Pan, Huizhuo; Wang, Hanjie; Ning, Baoan; Xu, Hang; Huang, Xian

    2018-06-01

    The combination of novel materials with flexible electronic technology may yield new concepts of flexible electronic devices that effectively detect various biological chemicals to facilitate understanding of biological processes and conduct health monitoring. This paper demonstrates single- or multichannel implantable flexible sensors that are surface modified with conductive metal-organic frameworks (MOFs) such as copper-MOF and cobalt-MOF with large surface area, high porosity, and tunable catalysis capability. The sensors can monitor important nutriments such as ascorbicacid, glycine, l-tryptophan (l-Trp), and glucose with detection resolutions of 14.97, 0.71, 4.14, and 54.60 × 10 -6 m, respectively. In addition, they offer sensing capability even under extreme deformation and complex surrounding environment with continuous monitoring capability for 20 d due to minimized use of biological active chemicals. Experiments using live cells and animals indicate that the MOF-modified sensors are biologically safe to cells, and can detect l-Trp in blood and interstitial fluid. This work represents the first effort in integrating MOFs with flexible sensors to achieve highly specific and sensitive implantable electrochemical detection and may inspire appearance of more flexible electronic devices with enhanced capability in sensing, energy storage, and catalysis using various properties of MOFs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Textile/metal-organic-framework composites as self-detoxifying filters for chemical-warfare agents.

    PubMed

    López-Maya, Elena; Montoro, Carmen; Rodríguez-Albelo, L Marleny; Aznar Cervantes, Salvador D; Lozano-Pérez, A Abel; Cenís, José Luis; Barea, Elisa; Navarro, Jorge A R

    2015-06-01

    The current technology of air-filtration materials for protection against highly toxic chemicals, that is, chemical-warfare agents, is mainly based on the broad and effective adsorptive properties of hydrophobic activated carbons. However, adsorption does not prevent these materials from behaving as secondary emitters once they are contaminated. Thus, the development of efficient self-cleaning filters is of high interest. Herein, we report how we can take advantage of the improved phosphotriesterase catalytic activity of lithium alkoxide doped zirconium(IV) metal-organic framework (MOF) materials to develop advanced self-detoxifying adsorbents of chemical-warfare agents containing hydrolysable P-F, P-O, and C-Cl bonds. Moreover, we also show that it is possible to integrate these materials onto textiles, thereby combining air-permeation properties of the textiles with the self-detoxifying properties of the MOF material. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High-internal-phase emulsions stabilized by metal-organic frameworks and derivation of ultralight metal-organic aerogels

    PubMed Central

    Zhang, Bingxing; Zhang, Jianling; Liu, Chengcheng; Peng, Li; Sang, Xinxin; Han, Buxing; Ma, Xue; Luo, Tian; Tan, Xiuniang; Yang, Guanying

    2016-01-01

    To design high-internal-phase emulsion (HIPE) systems is of great interest from the viewpoints of both fundamental researches and practical applications. Here we demonstrate for the first time the utilization of metal-organic framework (MOF) for HIPE formation. By stirring the mixture of water, oil and MOF at room temperature, the HIPE stabilized by the assembly of MOF nanocrystals at oil-water interface could be formed. The MOF-stabilized HIPE provides a novel route to produce highly porous metal-organic aerogel (MOA) monolith. After removing the liquids from the MOF-stabilized HIPE, the ultralight MOA with density as low as 0.01 g·cm−3 was obtained. The HIPE approach for MOA formation has unique advantages and is versatile in producing different kinds of ultralight MOAs with tunable porosities and structures. PMID:26892258

  3. Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes

    PubMed Central

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X.; Urban, Ania; Thacker, Nathan C.; Lin, Wenbin

    2016-01-01

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal–organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C–H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals. PMID:27574182

  4. Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai

    2016-08-30

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal–organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C–H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturatedmore » metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.« less

  5. Pore-Environment Engineering with Multiple Metal Sites in Rare-Earth Porphyrinic Metal-Organic Frameworks.

    PubMed

    Zhang, Liangliang; Yuan, Shuai; Feng, Liang; Guo, Bingbing; Qin, Jun-Sheng; Xu, Ben; Lollar, Christina; Sun, Daofeng; Zhou, Hong-Cai

    2018-04-23

    Multi-component metal-organic frameworks (MOFs) with precisely controlled pore environments are highly desired owing to their potential applications in gas adsorption, separation, cooperative catalysis, and biomimetics. A series of multi-component MOFs, namely PCN-900(RE), were constructed from a combination of tetratopic porphyrinic linkers, linear linkers, and rare-earth hexanuclear clusters (RE 6 ) under the guidance of thermodynamics. These MOFs exhibit high surface areas (up to 2523 cm 2  g -1 ) and unlimited tunability by modification of metal nodes and/or linker components. Post-synthetic exchange of linear linkers and metalation of two organic linkers were realized, allowing the incorporation of a wide range of functional moieties. Two different metal sites were sequentially placed on the linear linker and the tetratopic porphyrinic linker, respectively, giving rise to an ideal platform for heterogeneous catalysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Methane storage in flexible metal-organic frameworks with intrinsic thermal management

    NASA Astrophysics Data System (ADS)

    Mason, Jarad A.; Oktawiec, Julia; Taylor, Mercedes K.; Hudson, Matthew R.; Rodriguez, Julien; Bachman, Jonathan E.; Gonzalez, Miguel I.; Cervellino, Antonio; Guagliardi, Antonietta; Brown, Craig M.; Llewellyn, Philip L.; Masciocchi, Norberto; Long, Jeffrey R.

    2015-11-01

    As a cleaner, cheaper, and more globally evenly distributed fuel, natural gas has considerable environmental, economic, and political advantages over petroleum as a source of energy for the transportation sector. Despite these benefits, its low volumetric energy density at ambient temperature and pressure presents substantial challenges, particularly for light-duty vehicles with little space available for on-board fuel storage. Adsorbed natural gas systems have the potential to store high densities of methane (CH4, the principal component of natural gas) within a porous material at ambient temperature and moderate pressures. Although activated carbons, zeolites, and metal-organic frameworks have been investigated extensively for CH4 storage, there are practical challenges involved in designing systems with high capacities and in managing the thermal fluctuations associated with adsorbing and desorbing gas from the adsorbent. Here, we use a reversible phase transition in a metal-organic framework to maximize the deliverable capacity of CH4 while also providing internal heat management during adsorption and desorption. In particular, the flexible compounds Fe(bdp) and Co(bdp) (bdp2- = 1,4-benzenedipyrazolate) are shown to undergo a structural phase transition in response to specific CH4 pressures, resulting in adsorption and desorption isotherms that feature a sharp ‘step’. Such behaviour enables greater storage capacities than have been achieved for classical adsorbents, while also reducing the amount of heat released during adsorption and the impact of cooling during desorption. The pressure and energy associated with the phase transition can be tuned either chemically or by application of mechanical pressure.

  7. A polyhedron-based metal-organic framework with a reo-e net.

    PubMed

    Ren, Guojian; Liu, Shuxia; Wei, Feng; Ma, Fengji; Tang, Qun; Li, Shujun

    2012-10-14

    A polyhedron-based metal-organic framework has been designed and constructed with a reo-e net, which is constructed from trinuclear nickel clusters and mixed ligands (copolymerization pattern). It comprises three kinds of polyhedra, which are the hexahedron, cuboctahedron and rhombicuboctahedron.

  8. Monitoring the solid-state electrochemistry of Cu(2,7-AQDC) (AQDC = anthraquinone dicarboxylate) in a lithium battery: coexistence of metal and ligand redox activities in a metal-organic framework.

    PubMed

    Zhang, Zhongyue; Yoshikawa, Hirofumi; Awaga, Kunio

    2014-11-19

    By adopting a facile synthetic strategy, we obtained a microporous redox-active metal-organic framework (MOF), namely, Cu(2,7-AQDC) (2,7-H2AQDC = 2,7-anthraquinonedicarboxylic acid) (1), and utilized it as a cathode active material in lithium batteries. With a voltage window of 4.0-1.7 V, both metal clusters and anthraquinone groups in the ligands exhibited reversible redox activity. The valence change of copper cations was clearly evidenced by in situ XANES analysis. By controlling the voltage window of operation, extremely high recyclability of batteries was achieved, suggesting the framework was robust. This MOF is the first example of a porous material showing independent redox activity on both metal cluster nodes and ligand sites.

  9. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals.

    PubMed

    Bachman, Jonathan E; Smith, Zachary P; Li, Tao; Xu, Ting; Long, Jeffrey R

    2016-08-01

    The implementation of membrane-based separations in the petrochemical industry has the potential to reduce energy consumption significantly relative to conventional separation processes. Achieving this goal, however, requires the development of new membrane materials with greater selectivity, permeability and stability than available at present. Here, we report composite materials consisting of nanocrystals of metal-organic frameworks dispersed within a high-performance polyimide, which can exhibit enhanced selectivity for ethylene over ethane, greater ethylene permeability and improved membrane stability. Our results suggest that framework-polymer interactions reduce chain mobility of the polymer while simultaneously boosting membrane separation performance. The increased stability, or plasticization resistance, is expected to improve membrane utility under real process conditions for petrochemical separations and natural gas purification. Furthermore, this approach can be broadly applied to numerous polymers that encounter aggressive environments, potentially making gas separations possible that were previously inaccessible to membranes.

  10. A novel metal-organic framework for high storage and separation of acetylene at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Xing, E-mail: star1987@hdu.edu.cn; Wang, Huizhen; Ji, Zhenguo

    2016-09-15

    A novel 3D microporous metal-organic framework with NbO topology, [Cu{sub 2}(L)(H{sub 2}O){sub 2}]∙(DMF){sub 6}·(H{sub 2}O){sub 2} (ZJU-10, ZJU = Zhejiang University; H{sub 4}L =2′-hydroxy-[1,1′:4′,1″-terphenyl]-3,3″,5,5″-tetracarboxylic acid; DMF =N,N-dimethylformamide), has been synthesized and structurally characterized. With suitable pore sizes and open Cu{sup 2+} sites, ZJU-10a exhibits high BET surface area of 2392 m{sup 2}/g, as well as moderately high C{sub 2}H{sub 2} volumetric uptake capacity of 132 cm{sup 3}/cm{sup 3}. Meanwhile, ZJU-10a is a promising porous material for separation of acetylene from methane and carbon dioxide gas mixtures at room temperature. - Graphical abstract: A new NbO-type microporous metal-organic framework ZJU-10 withmore » suitable pore size and open Cu{sup 2+} sites was synthesized to realize the strong interaction with acetylene molecules, which can separate the acetylene from methane and carbon dioxane gas mixtures at room temperature. Display Omitted - Highlights: • A novel 3D NbO-type microporous metal-organic framework ZJU-10 was solvothermally synthesized and structurally characterized. • ZJU-10a exhibits high BET surface area of 2392 m{sup 2}/g. • ZJU-10a shows a moderately high C{sub 2}H{sub 2} gravimetric (volumetric) uptake capacity of 174 (132) cm{sup 3}/g at 298 K and 1 bar. • ZJU-10a can separate acetylene from methane and carbon dioxide gas mixtures at room temperature.« less

  11. Adsorptive desulfurization with metal-organic frameworks: A density functional theory investigation

    NASA Astrophysics Data System (ADS)

    Chen, Zhiping; Ling, Lixia; Wang, Baojun; Fan, Huiling; Shangguan, Ju; Mi, Jie

    2016-11-01

    The contribution of each fragment of metal-organic frameworks (MOFs) to the adsorption of sulfur compounds were investigated using density functional theory (DFT). The involved sulfur compounds are dimethyl sulfide (CH3SCH3), ethyl mercaptan (CH3CH2SH) and hydrogen sulfide (H2S). MOFs with different organic ligands (NH2-BDC, BDC and NDC), metal centers structures (M, M-M and M3O) and metal ions (Zn, Cu and Fe) were used to study their effects on sulfur species adsorption. The results revealed that, MOFs with coordinatively unsaturated sites (CUS) have the strongest binding strength with sulfur compounds, MOFs with NH2-BDC substituent group ligand comes second, followed by that with saturated metal center, and the organic ligands without substituent group has the weakest adsorption strength. Moreover, it was also found that, among different metal ions (Fe, Zn and Cu), MOFs with unsaturated Fe has the strongest adsorption strength for sulfur compounds. These results are consistent with our previous experimental observations, and therefore provide insights on the better design of MOFs for desulfurization application.

  12. Supramolecular metal-organic frameworks that display high homogeneous and heterogeneous photocatalytic activity for H2 production

    NASA Astrophysics Data System (ADS)

    Tian, Jia; Xu, Zi-Yue; Zhang, Dan-Wei; Wang, Hui; Xie, Song-Hai; Xu, Da-Wen; Ren, Yuan-Hang; Wang, Hao; Liu, Yi; Li, Zhan-Ting

    2016-05-01

    Self-assembly has a unique presence when it comes to creating complicated, ordered supramolecular architectures from simple components under mild conditions. Here, we describe a self-assembly strategy for the generation of the first homogeneous supramolecular metal-organic framework (SMOF-1) in water at room temperature from a hexaarmed [Ru(bpy)3]2+-based precursor and cucurbit[8]uril (CB[8]). The solution-phase periodicity of this cubic transition metal-cored supramolecular organic framework (MSOF) is confirmed by small-angle X-ray scattering and diffraction experiments, which, as supported by TEM imaging, is commensurate with the periodicity in the solid state. We further demonstrate that SMOF-1 adsorbs anionic Wells-Dawson-type polyoxometalates (WD-POMs) in a one-cage-one-guest manner to give WD-POM@SMOF-1 hybrid assemblies. Upon visible-light (500 nm) irradiation, such hybrids enable fast multi-electron injection from photosensitive [Ru(bpy)3]2+ units to redox-active WD-POM units, leading to efficient hydrogen production in aqueous media and in organic media. The demonstrated strategy opens the door for the development of new classes of liquid-phase and solid-phase ordered porous materials.

  13. Supramolecular metal-organic frameworks that display high homogeneous and heterogeneous photocatalytic activity for H 2 production

    DOE PAGES

    Tian, Jia; Xu, Zi-Yue; Zhang, Dan-Wei; ...

    2016-05-10

    Self-assembly has a unique presence when it comes to creating complicated, ordered supramolecular architectures from simple components under mild conditions. Here, we describe a self-assembly strategy for the generation of the first homogeneous supramolecular metal-organic framework (SMOF-1) in water at room temperature from a hexaarmed [Ru(bpy) 3 ] 2+ -based precursor and cucurbit[8] uril (CB[8]). The solution-phase periodicity of this cubic transition metal-cored supramolecular organic framework (MSOF) is confirmed by small-angle X-ray scattering and diffraction experiments, which, as supported by TEM imaging, is commensurate with the periodicity in the solid state. We further demonstrate that SMOF-1 adsorbs anionic Wells-'Dawson-type polyoxometalatesmore » (WD-POMs) in a one-cage-one-guest manner to give WD-POM@SMOF-1 hybrid assemblies. Upon visible-light (500 nm) irradiation, such hybrids enable fast multi-electron injection from photosensitive [Ru(bpy) 3 ] 2+ units to redox-active WD-POM units, leading to efficient hydrogen production in aqueous media and in organic media. The demonstrated strategy opens the door for the development of new classes of liquid-phase and solid-phase ordered porous materials.« less

  14. Recent Advances in Micro-/Nanostructured Metal-Organic Frameworks towards Photonic and Electronic Applications.

    PubMed

    Yang, Xiaogang; Lin, Xianqing; Zhao, Yong Sheng; Yan, Dongpeng

    2018-05-02

    Micro- and nanometer-sized metal-organic frameworks (MOFs) materials have attracted great attention due to their unique properties and various potential applications in photonics, electronics, high-density storage, chemo-, and biosensors. The study of these materials supplies insight into how the crystal structure, molecular components, and micro-/nanoscale effects can influence the performance of inorganic-organic hybrid materials. In this Minireview article, we introduce recent breakthroughs in the controlled synthesis of MOF micro-/nanomaterials with specific structures and compositions, the tunable photonic and electronic properties of which would provide a novel platform for multifunctional applications. Firstly, the design strategies for MOFs based on self-assembly and crystal engineering principles are introduced. Attention is then focused on the methods of fabrication of low-dimensional MOF micro-/nanostructures. Their new applications including two-photon excited fluorescence, multi-photon pumped lasing, optical waveguides, nonlinear optical (NLO), and field-effect transistors are also outlined. Finally, we briefly discuss perspectives on the further development of these hybrid crystalline micro-/nanomaterials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Liquid- and Gas-Phase Diffusion of Ferrocene in Thin Films of Metal-Organic Frameworks

    PubMed Central

    Zhou, Wencai; Wöll, Christof; Heinke, Lars

    2015-01-01

    The mass transfer of the guest molecules in nanoporous host materials, in particular in metal-organic frameworks (MOFs), is among the crucial features of their applications. By using thin surface-mounted MOF films in combination with a quartz crystal microbalance (QCM), the diffusion of ferrocene vapor and of ethanolic and hexanic ferrocene solution in HKUST-1 was investigated. For the first time, liquid- and gas-phase diffusion in MOFs was compared directly in the identical sample. The diffusion coefficients are in the same order of magnitude (~10−16 m2·s−1), whereas the diffusion coefficient of ferrocene in the empty framework is roughly 3-times smaller than in the MOF which is filled with ethanol or n-hexane.

  16. Smart Optical Composite Materials: Dispersions of Metal-Organic Framework@Superparamagnetic Microrods for Switchable Isotropic-Anisotropic Optical Properties.

    PubMed

    Mandel, Karl; Granath, Tim; Wehner, Tobias; Rey, Marcel; Stracke, Werner; Vogel, Nicolas; Sextl, Gerhard; Müller-Buschbaum, Klaus

    2017-01-24

    A smart optical composite material with dynamic isotropic and anisotropic optical properties by combination of luminescence and high reflectivity was developed. This combination enables switching between luminescence and angle-dependent reflectivity by changing the applied wavelength of light. The composite is formed as anisotropic core/shell particles by coating superparamagnetic iron oxide-silica microrods with a layer of the luminescent metal-organic framework (MOF) 3 ∞ [Eu 2 (BDC) 3 ]·2DMF·2H 2 O (BDC 2- = 1,4-benzenedicarboxylate). The composite particles can be rotated by an external magnet. Their anisotropic shape causes changes in the reflectivity and diffraction of light depending on the orientation of the composite particle. These rotation-dependent optical properties are complemented by an isotropic luminescence resulting from the MOF shell. If illuminated by UV light, the particles exhibit isotropic luminescence while the same sample shows anisotropic optical properties when illuminated with visible light. In addition to direct switching, the optical properties can be tailored continuously between isotropic red emission and anisotropic reflection of light if the illuminating light is tuned through fractions of both UV and visible light. The integration and control of light emission modes within a homogeneous particle dispersion marks a smart optical material, addressing fundamental directions for research on switchable multifunctional materials. The material can function as an optic compass or could be used as an optic shutter that can be switched by a magnetic field, e.g., for an intensity control for waveguides in the visible range.

  17. Tunable chiral metal organic frameworks toward visible light–driven asymmetric catalysis

    PubMed Central

    Zhang, Yin; Guo, Jun; Shi, Lin; Zhu, Yanfei; Hou, Ke; Zheng, Yonglong; Tang, Zhiyong

    2017-01-01

    A simple and effective strategy is developed to realize visible light–driven heterogeneous asymmetric catalysis. A chiral organic molecule, which only has very weak catalytic activity in asymmetric α-alkylation of aldehydes under visible light, is utilized as the ligand to coordinate with different types of metal ions, including Zn2+, Zr4+, and Ti4+, for construction of crystalline metal organic frameworks (MOFs). Impressively, when used as heterogeneous catalysts, all of the synthesized MOFs exhibit markedly enhanced activity. Furthermore, the asymmetric catalytic performance of these MOFs could be easily altered by selecting different metal ions, owing to the tunable electron transfer property between metal ions and chiral ligands. This work will provide a new approach for fabrication of heterogeneous catalysts and trigger more enthusiasm to conduct the asymmetric catalysis driven by visible light. PMID:28835929

  18. Recent Progress in Metal-Organic Frameworks and Their Derived Nanostructures for Energy and Environmental Applications.

    PubMed

    Xie, Zhiqiang; Xu, Wangwang; Cui, Xiaodan; Wang, Ying

    2017-04-22

    Metal-organic frameworks (MOFs), as a very promising category of porous materials, have attracted increasing interest from research communities due to their extremely high surface areas, diverse nanostructures, and unique properties. In recent years, there is a growing body of evidence to indicate that MOFs can function as ideal templates to prepare various nanostructured materials for energy and environmental cleaning applications. Recent progress in the design and synthesis of MOFs and MOF-derived nanomaterials for particular applications in lithium-ion batteries, sodium-ion batteries, supercapacitors, dye-sensitized solar cells, and heavy-metal-ion detection and removal is reviewed herein. In addition, the remaining major challenges in the above fields are discussed and some perspectives for future research efforts in the development of MOFs are also provided. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Flexible and Hierarchical Metal-Organic Framework Composites for High-Performance Catalysis.

    PubMed

    Huang, Ning; Drake, Hannah; Li, Jialuo; Pang, Jiangdong; Wang, Ying; Yuan, Shuai; Wang, Qi; Cai, Peiyu; Qin, Junsheng; Zhou, Hong-Cai

    2018-05-18

    The development of new types of porous composite materials is of great significance owing to their potentially improved performance over those of individual components and extensive applications in separation, energy storage, and heterogeneous catalysis. In this work, we integrated mesoporous metal-organic frameworks (MOFs) with macroporous melamine foam (MF) using a one-pot process, generating a series of MOF/MF composite materials with preserved crystallinity, hierarchical porosity, and increased stability over that of melamine foam. The MOF nanocrystals were threaded by the melamine foam networks, resembling a ball-and-stick model overall. As a proof-of-concept study, the resulting MOF/MF composite materials were employed as an effective heterogeneous catalyst for the epoxidation of cholesteryl esters. Combining the advantages of interpenetrative mesoporous and macroporous structures, the MOF/melamine foam composite provided higher dispersibility and more accessibility of catalytic sites, exhibiting excellent catalytic performance. This strategy constitutes an important step forward the development of other MOF composites and exploration of their high-performance catalysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy.

    PubMed

    Zhu, Yihan; Ciston, Jim; Zheng, Bin; Miao, Xiaohe; Czarnik, Cory; Pan, Yichang; Sougrat, Rachid; Lai, Zhiping; Hsiung, Chia-En; Yao, Kexin; Pinnau, Ingo; Pan, Ming; Han, Yu

    2017-05-01

    Metal-organic frameworks (MOFs) are crystalline porous materials with designable topology, porosity and functionality, having promising applications in gas storage and separation, ion conduction and catalysis. It is challenging to observe MOFs with transmission electron microscopy (TEM) due to the extreme instability of MOFs upon electron beam irradiation. Here, we use a direct-detection electron-counting camera to acquire TEM images of the MOF ZIF-8 with an ultralow dose of 4.1 electrons per square ångström to retain the structural integrity. The obtained image involves structural information transferred up to 2.1 Å, allowing the resolution of individual atomic columns of Zn and organic linkers in the framework. Furthermore, TEM reveals important local structural features of ZIF-8 crystals that cannot be identified by diffraction techniques, including armchair-type surface terminations and coherent interfaces between assembled crystals. These observations allow us to understand how ZIF-8 crystals self-assemble and the subsequent influence of interfacial cavities on mass transport of guest molecules.

  1. Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Yihan; Ciston, Jim; Zheng, Bin; Miao, Xiaohe; Czarnik, Cory; Pan, Yichang; Sougrat, Rachid; Lai, Zhiping; Hsiung, Chia-En; Yao, Kexin; Pinnau, Ingo; Pan, Ming; Han, Yu

    2017-05-01

    Metal-organic frameworks (MOFs) are crystalline porous materials with designable topology, porosity and functionality, having promising applications in gas storage and separation, ion conduction and catalysis. It is challenging to observe MOFs with transmission electron microscopy (TEM) due to the extreme instability of MOFs upon electron beam irradiation. Here, we use a direct-detection electron-counting camera to acquire TEM images of the MOF ZIF-8 with an ultralow dose of 4.1 electrons per square ångström to retain the structural integrity. The obtained image involves structural information transferred up to 2.1 Å, allowing the resolution of individual atomic columns of Zn and organic linkers in the framework. Furthermore, TEM reveals important local structural features of ZIF-8 crystals that cannot be identified by diffraction techniques, including armchair-type surface terminations and coherent interfaces between assembled crystals. These observations allow us to understand how ZIF-8 crystals self-assemble and the subsequent influence of interfacial cavities on mass transport of guest molecules.

  2. Mesoporous stilbene-based lanthanide metal organic frameworks: synthesis, photoluminescence and radioluminescence characteristics.

    PubMed

    Mathis Ii, Stephan R; Golafale, Saki T; Bacsa, John; Steiner, Alexander; Ingram, Conrad W; Doty, F Patrick; Auden, Elizabeth; Hattar, Khalid

    2017-01-03

    Ultra large pore isostructural metal organic frameworks (MOFs) which exhibit both photoluminescence and scintillation properties, were synthesized from trans-4,4'-stilbenedicarboxylic acid (H 2 L) and trivalent lanthanide (Ln) metal salts under solvothermal conditions (Ln = Er 3+ (1) and Tm 3+ (2)). This new class of mesoporous materials is a non-interpenetrating network that features ultra-large diamond shaped pores of dimensions with approximate cross-sectional dimensions of 28 Å × 12 Å. The fully deprotonated ligand, L, is isolated and rigidified as it serves as the organic linker component of the MOF structure. Its low density unit cells possess asymmetric units with two crystallographically independent Ln 3+ ions in seven coordinate arrangements. A distinct feature of the structure is the bis-bidentate carboxylate groups. They serve as a ligand that coordinates two Ln(iii) ions while each L connects four Ln(iii) ions yielding an exceptionally large diamond-shaped rectangular network. The structure exhibits ligand-based photoluminescence with increased lifetime compared to free stilbene molecules on exposure to UV radiation, and also exhibits strong scintillation characteristics, comprising of both prompt and delayed radioluminescence features, on exposure to ionizing radiation.

  3. Enhanced stability of vitamin A palmitate microencapsulated by γ-cyclodextrin metal-organic frameworks.

    PubMed

    Zhang, Guoqing; Meng, Fanyue; Guo, Zhen; Guo, Tao; Peng, Hui; Xiao, Jian; Liu, Botao; Singh, Vikaramjeet; Gui, Shuangying; York, Peter; Qian, Wei; Wu, Li; Zhang, Jiwen

    2018-04-24

    γ-Cyclodextrin metal-organic frameworks (γ-CD-MOFs) are highly porous and bio-friendly novel materials formed by γ-CD as an organic ligand and potassium ion as an inorganic metal centre. The aim of this study was to enhance the stability of vitamin A palmitate (VAP) using γ-CD-MOFs as the carrier. Herein, γ-CD-MOFs displayed VAP microencapsulating capacity of 9.77 ± 0.24% with molar ratio as n MOFs :n VAP  = 3.2:1.0. It was important to find that the improved stability of VAP microencapsulated by γ-CD-MOFs without addition of any antioxidant(s) was better than that of the best available reference product in the market, with 1.6-fold elongated half-life. The protecting mechanism of γ-CD-MOFs for VAP contributed that VAP molecules preferentially curled inside the cavities of dual γ-CD pairs in γ-CD-MOFs. It was proved that γ-CD-MOFs were an efficient new carrier to deliver and protect VAP for food and pharmaceutical applications.

  4. Metal-Organic Framework (MOF) Nanorods, Nanotubes, and Nanowires.

    PubMed

    Arbulu, Roberto C; Jiang, Ying-Bing; Peterson, Eric J; Qin, Yang

    2018-05-14

    New mechanisms for the controlled growth of one-dimensional (1D) metal-organic framework (MOF) nano- and superstructures under size-confinement and surface-directing effects have been discovered. Through applying interfacial synthesis templated by track-etched polycarbonate (PCTE) membranes, congruent polycrystalline zeolitic imidazolate framework-8 (ZIF-8) solid nanorods and hollow nanotubes were found to form within 100 nm membrane pores, while single crystalline ZIF-8 nanowires grew inside 30 nm pores, all of which possess large aspect ratios up to 60 and show preferential crystal orientation with the {100} planes aligned parallel to the long axis of the pore. Our findings provide a generalizable method for controlling size, morphology, and lattice orientation of MOF nanomaterials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Reusable Oxidation Catalysis Using Metal-Monocatecholato Species in a Robust Metal–Organic Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, Honghan; Shin, JaeWook; Meng, Ying Shirley

    2014-04-02

    An isolated metal-monocatecholato moiety has been achieved in a highly robust metal–organic framework (MOF) by two fundamentally different postsynthetic strategies: postsynthetic deprotection (PSD) and postsynthetic exchange (PSE). Compared with PSD, PSE proved to be a more facile and efficient functionalization approach to access MOFs that could not be directly synthesized under solvothermal conditions. Metalation of the catechol functionality residing in the MOFs resulted in unprecedented Fe-monocatecholato and Cr-monocatecholato species, which were characterized by X-ray absorption spectroscopy, X-band electron paramagnetic resonance spectroscopy, and ⁵⁷Fe Mössbauer spectroscopy. The resulting materials are among the first examples of Zr(IV)-based UiO MOFs (UiO = Universitymore » of Oslo) with coordinatively unsaturated active metal centers. Importantly, the Cr-metalated MOFs are active and efficient catalysts for the oxidation of alcohols to ketones using a wide range of substrates. Catalysis could be achieved with very low metal loadings (0.5–1 mol %). Unlike zeolite-supported, Cr-exchange oxidation catalysts, the MOF-based catalysts reported here are completely recyclable and reusable, which may make them attractive catalysts for ‘green’ chemistry processes.« less

  6. Self-Template-Directed Metal-Organic Frameworks Network and the Derived Honeycomb-Like Carbon Flakes via Confinement Pyrolysis.

    PubMed

    Wang, Jie; Tang, Jing; Ding, Bing; Chang, Zhi; Hao, Xiaodong; Takei, Toshiaki; Kobayashi, Naoya; Bando, Yoshio; Zhang, Xiaogang; Yamauchi, Yusuke

    2018-04-01

    Metal-organic frameworks (MOFs) have become a research hotspot since they have been explored as convenient precursors for preparing various multifunctional nanomaterials. However, the preparation of MOF networks with controllable flake morphology in large scale is not realized yet. Herein, a self-template strategy is developed to prepare MOF networks. In this work, layered double-metal hydroxide (LDH) and other layered metal hydroxides are used not only as a scaffold but also as a self-sacrificed metal source. After capturing the abundant metal cations identically from the LDH by the organic linkers, MOF networks are in situ formed. It is interesting that the MOF network-derived carbon materials retain the flake morphology and exhibit a unique honeycomb-like macroporous structure due to the confined shrinkage of the polyhedral facets. The overall properties of the carbon networks are adjustable according to the tailored metal compositions in LDH and the derived MOFs, which are desirable for target-oriented applications as exemplified by the electrochemical application in supercapacitors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Functionalization of cotton fiber by partial etherification and self-assembly of polyoxometalate encapsulated in Cu3(BTC)2 metal-organic framework.

    PubMed

    Lange, Laura E; Obendorf, S Kay

    2015-02-25

    A combination of a Keggin-type polyoxometalate (POM), [CuPW11O39](5-), with a Cu3(BTC)2 metal-organic framework (MOF-199/HKUST-1; where BTC is benzene-1,3,5-tricarboxylate), was successfully self-assembled on a cellulose substrate (cotton) with a room-temperature process. Cotton fibers were functionalized by partial etherification. Cu3(BTC)2 metal-organic framework and polyoxometalate encapsulated in Cu3(BTC)2 metal-organic framework were self-assembled on the carboxymethylate ion sites initiated with copper nitrate using ethanol and water as solvents. Octahedral crystals were observed on both MOF-cotton and POM-MOF-cotton; both contained copper while the POM-MOF-cotton also contained tungsten. Occupancy of POM in MOF cages was calculated to be about 13%. Moisture content remained at 3 to 4 wt % similar to that of untreated cotton. Reactivity to both hydrogen sulfide and methyl parathion was higher for POM-MOF-cotton due to the Keggin polyoxometalate and the extra-framework cations Cu(2+) ions compensating the charges of the encapsulated Keggins. The POM-MOF material was found to effectively remove 0.089 mg of methyl parathion per mg of MOF from a hexane solution while MOF-cotton removed only 0.054 mg of methyl parathion per mg of MOF.

  8. Sinter-Resistant Platinum Catalyst Supported by Metal-Organic Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, In Soo; Li, Zhanyong; Zheng, Jian

    Installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 degrees C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and Xray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novelmore » catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support.« less

  9. A sol-gel monolithic metal-organic framework with enhanced methane uptake.

    PubMed

    Tian, Tian; Zeng, Zhixin; Vulpe, Diana; Casco, Mirian E; Divitini, Giorgio; Midgley, Paul A; Silvestre-Albero, Joaquin; Tan, Jin-Chong; Moghadam, Peyman Z; Fairen-Jimenez, David

    2018-02-01

    A critical bottleneck for the use of natural gas as a transportation fuel has been the development of materials capable of storing it in a sufficiently compact form at ambient temperature. Here we report the synthesis of a porous monolithic metal-organic framework (MOF), which after successful packing and densification reaches 259 cm 3 (STP) cm -3 capacity. This is the highest value reported to date for conformed shape porous solids, and represents a greater than 50% improvement over any previously reported experimental value. Nanoindentation tests on the monolithic MOF showed robust mechanical properties, with hardness at least 130% greater than that previously measured in its conventional MOF counterparts. Our findings represent a substantial step in the application of mechanically robust conformed and densified MOFs for high volumetric energy storage and other industrial applications.

  10. A sol-gel monolithic metal-organic framework with enhanced methane uptake

    NASA Astrophysics Data System (ADS)

    Tian, Tian; Zeng, Zhixin; Vulpe, Diana; Casco, Mirian E.; Divitini, Giorgio; Midgley, Paul A.; Silvestre-Albero, Joaquin; Tan, Jin-Chong; Moghadam, Peyman Z.; Fairen-Jimenez, David

    2018-02-01

    A critical bottleneck for the use of natural gas as a transportation fuel has been the development of materials capable of storing it in a sufficiently compact form at ambient temperature. Here we report the synthesis of a porous monolithic metal-organic framework (MOF), which after successful packing and densification reaches 259 cm3 (STP) cm-3 capacity. This is the highest value reported to date for conformed shape porous solids, and represents a greater than 50% improvement over any previously reported experimental value. Nanoindentation tests on the monolithic MOF showed robust mechanical properties, with hardness at least 130% greater than that previously measured in its conventional MOF counterparts. Our findings represent a substantial step in the application of mechanically robust conformed and densified MOFs for high volumetric energy storage and other industrial applications.

  11. Light Hydrocarbon Adsorption Mechanisms in Two Calcium-Based Microporous Metal Organic Frameworks

    DOE PAGES

    Plonka, Anna M.; Chen, Xianyin; Wang, Hao; ...

    2016-01-25

    The adsorption mechanism of ethane, ethylene, and acetylene (C 2H n; n = 2, 4, 6) on two microporous metal organic frameworks (MOFs) is described here that is consistent with observations from single crystal and powder X-ray diffraction, calorimetric measurements, and gas adsorption isotherm measurements. Two calcium-based MOFs, designated as SBMOF-1 and SBMOF-2 (SB: Stony Brook), form three-dimensional frameworks with one-dimensional open channels. As determined from single crystal diffraction experiments, channel geometries of both SBMOF-1 and SBMOF-2 provide multiple adsorption sites for hydrocarbon molecules through C–H···π and C–H···O interactions, similarly to interactions in the molecular and protein crystals. In conclusion,more » both materials selectively adsorb C 2 hydrocarbon gases over methane as determined with IAST and breakthrough calculations as well as experimental breakthrough measurements, with C 2H 6/CH 4 selectivity as high as 74 in SBMOF-1.« less

  12. Microporous rod metal-organic frameworks with diverse Zn/Cd-triazolate ribbons as secondary building units for CO2 uptake and selective adsorption of hydrocarbons.

    PubMed

    Zhang, Jian-Wei; Hu, Man-Cheng; Li, Shu-Ni; Jiang, Yu-Cheng; Zhai, Quan-Guo

    2017-01-17

    The synthetic design of new porous open-framework materials with pre-designed pore properties for desired applications such as gas adsorption and separation remains challenging. We proposed one such class of materials, rod metal-organic frameworks (rod MOFs), which can be tuned by using rod secondary building units (rod SBUs) with different geometrical and chemical features. Our approach takes advantage of the readily accessible metal-triazolate 1-D motifs as rod SBUs to combine with dicarboxylate ligands to prepare target rod MOFs. Herein we report three such metal-triazolate-dicarboxylate frameworks (SNNU-21, -22 and -23). During the formation of these three MOFs, Cd or Zn ions are firstly connected by 1,2,4-triazole through the N1,N2,N4-mode to form 1-D metal-organic ribbon-like rod SBUs, which further joint four adjacent rod SBUs via eight BDC linkers to give 3-D microporous frameworks. However, tuned by the different NH 2 groups from metal-triazolate rod SBUs, different space groups, pore sizes and shapes are observed for SNNU-21-23. All of these rod MOFs show not only remarkable CO 2 uptake capacity, but also high CO 2 over CH 4 and C 2 -hydrocarbons over CH 4 selectivity under ambient conditions. Specially, SNNU-23 exhibits a very high isosteric heat of adsorption (Q st ) for C 2 H 2 (62.2 kJ mol -1 ), which outperforms the values of all MOF materials reported to date including the famous MOF-74-Co.

  13. Scalable synthesis and post-modification of a mesoporous metal-organic framework called NU-1000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Timothy C.; Vermeulen, Nicolaas A.; Kim, In Soo

    The synthesis of NU-1000, a mesoporous metal-organic framework (MOF), can be conducted efficiently on a multigram scale from inexpensive starting materials. NU-1000 has been reported as an excellent candidate for gas separation and catalysis. In particular, it is ideal for the catalytic deactivation of nerve agents and shows great promise as a new generic platform for a wide range of applications. Multiple post-synthetic modification protocols have been developed using NU-1000 as the parent material, making it a potentially useful scaffold for several catalytic applications. The procedure for the preparation of NU-1000 can be scaled up reliably, and it is suitablemore » for the production of 50 g of the tetracarboxylic acid containing organic linker and 200 mg–2.5 g of NU-1000. Lastly, the entire synthesis is performed without purification by column chromatography and can be completed within 10 d.« less

  14. Scalable synthesis and post-modification of a mesoporous metal-organic framework called NU-1000

    DOE PAGES

    Wang, Timothy C.; Vermeulen, Nicolaas A.; Kim, In Soo; ...

    2015-12-17

    The synthesis of NU-1000, a mesoporous metal-organic framework (MOF), can be conducted efficiently on a multigram scale from inexpensive starting materials. NU-1000 has been reported as an excellent candidate for gas separation and catalysis. In particular, it is ideal for the catalytic deactivation of nerve agents and shows great promise as a new generic platform for a wide range of applications. Multiple post-synthetic modification protocols have been developed using NU-1000 as the parent material, making it a potentially useful scaffold for several catalytic applications. The procedure for the preparation of NU-1000 can be scaled up reliably, and it is suitablemore » for the production of 50 g of the tetracarboxylic acid containing organic linker and 200 mg–2.5 g of NU-1000. Lastly, the entire synthesis is performed without purification by column chromatography and can be completed within 10 d.« less

  15. General and Direct Method for Preparing Oligonucleotide-Functionalized Metal-Organic Framework Nanoparticles.

    PubMed

    Wang, Shunzhi; McGuirk, C Michael; Ross, Michael B; Wang, Shuya; Chen, Pengcheng; Xing, Hang; Liu, Yuan; Mirkin, Chad A

    2017-07-26

    Metal-organic frameworks (MOFs) are a class of modular, crystalline, and porous materials that hold promise for storage and transport of chemical cargoes. Though MOFs have been studied in bulk forms, ways of deliberately manipulating the external surface functionality of MOF nanoparticles are less developed. A generalizable approach to modify their surfaces would allow one to impart chemical functionality onto the particle surface that is independent of the bulk MOF structure. Moreover, the use of a chemically programmable ligand, such as DNA, would allow for the manipulation of interparticle interactions. Herein, we report a coordination chemistry-based strategy for the surface functionalization of the external metal nodes of MOF nanoparticles with terminal phosphate-modified oligonucleotides. The external surfaces of nine distinct archetypical MOF particles containing four different metal species (Zr, Cr, Fe, and Al) were successfully functionalized with oligonucleotides, illustrating the generality of this strategy. By taking advantage of the programmable and specific interactions of DNA, 11 distinct MOF particle-inorganic particle core-satellite clusters were synthesized. In these hybrid nanoclusters, the relative stoichiometry, size, shape, and composition of the building blocks can all be independently controlled. This work provides access to a new set of nucleic acid-nanoparticle conjugates, which may be useful as programmable material building blocks and as probes for measuring and manipulating intracellular processes.

  16. Force-Field Prediction of Materials Properties in Metal-Organic Frameworks

    PubMed Central

    2016-01-01

    In this work, MOF bulk properties are evaluated and compared using several force fields on several well-studied MOFs, including IRMOF-1 (MOF-5), IRMOF-10, HKUST-1, and UiO-66. It is found that, surprisingly, UFF and DREIDING provide good values for the bulk modulus and linear thermal expansion coefficients for these materials, excluding those that they are not parametrized for. Force fields developed specifically for MOFs including UFF4MOF, BTW-FF, and the DWES force field are also found to provide accurate values for these materials’ properties. While we find that each force field offers a moderately good picture of these properties, noticeable deviations can be observed when looking at properties sensitive to framework vibrational modes. This observation is more pronounced upon the introduction of framework charges. PMID:28008758

  17. Metal-Organic Framework-Templated Porous Carbon for Highly Efficient Catalysis: The Critical Role of Pyrrolic Nitrogen Species.

    PubMed

    Huang, Gang; Yang, Li; Ma, Xiao; Jiang, Jun; Yu, Shu-Hong; Jiang, Hai-Long

    2016-03-01

    Metal-free catalysts are of great importance and alternative candidates to conventional metal-based catalysts for many reactions. Herein, several types of metal-organic frameworks have been exploited as templates/precursors to afford porous carbon materials with various nitrogen dopant forms and contents, degrees of graphitization, porosities, and surface areas. Amongst these materials, the PCN-224-templated porous carbon material optimized by pyrolysis at 700 °C (denoted as PCN-224-700) is composed of amorphous carbon coated with well-defined graphene layers, offering a high surface area, hierarchical pores, and high nitrogen content (mainly, pyrrolic nitrogen species). Remarkably, as a metal-free catalyst, PCN-224-700 exhibits a low activation energy and superior activity to most metallic catalysts in the catalytic reduction of 4-nitrophenol to 4-aminophenol. Theoretical investigations suggest that the content and type of the nitrogen dopant play crucial roles in determining the catalytic performance and that the pyrrolic nitrogen species makes the dominant contribution to this activity, which explains the excellent efficiency of the PCN-224-700 catalyst well. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Metal-organic frameworks for lithium ion batteries and supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke, Fu-Sheng; Wu, Yu-Shan; Deng, Hexiang, E-mail: hdeng@whu.edu.cn

    2015-03-15

    Porous materials have been widely used in batteries and supercapacitors attribute to their large internal surface area (usually 100–1000 m{sup 2} g{sup −1}) and porosity that can favor the electrochemical reaction, interfacial charge transport, and provide short diffusion paths for ions. As a new type of porous crystalline materials, metal-organic frameworks (MOFs) have received huge attention in the past decade due to their unique properties, i.e. huge surface area (up to 7000 m{sup 2} g{sup −1}), high porosity, low density, controllable structure and tunable pore size. A wide range of applications including gas separation, storage, catalysis, and drug delivery benefitmore » from the recent fast development of MOFs. However, their potential in electrochemical energy storage has not been fully revealed. Herein, the present mini review appraises recent and significant development of MOFs and MOF-derived materials for rechargeable lithium ion batteries and supercapacitors, to give a glimpse into these potential applications of MOFs. - Graphical abstract: MOFs with large surface area and high porosity can offer more reaction sites and charge carriers diffusion path. Thus MOFs are used as cathode, anode, electrolyte, matrix and precursor materials for lithium ion battery, and also as electrode and precursor materials for supercapacitors. - Highlights: • MOFs have potential in electrochemical area due to their high porosity and diversity. • We summarized and compared works on MOFs for lithium ion battery and supercapacitor. • We pointed out critical challenges and provided possible solutions for future study.« less

  19. A mixed molecular building block strategy for the design of nested polyhedron metal-organic frameworks.

    PubMed

    Tian, Dan; Chen, Qiang; Li, Yue; Zhang, Ying-Hui; Chang, Ze; Bu, Xian-He

    2014-01-13

    A mixed molecular building block (MBB) strategy for the synthesis of double-walled cage-based porous metal-organic frameworks (MOFs) is presented. By means of this method, two isostructural porous MOFs built from unprecedented double-walled metal-organic octahedron were obtained by introducing two size-matching C3 -symmetric molecular building blocks with different rigidities. With their unique framework structures, these MOFs provide, to the best of our knowledge, the first examples of double-walled octahedron-based MOFs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Post Modification of Metal-Organic Framework and Their Application In Cancer Theranostics

    NASA Astrophysics Data System (ADS)

    Lakkakula, Hima bindu

    The research proposal aims to demonstrate that Metal-Organic Frameworks (MOFs) are mainly used for cancer theranostics which is the combination of both diagnostic and therapeutic functions. The research will emphasis on synthesis of Fe- MOFs by solvothermal nucleation, crystallization, characterization by microscopy and spectroscopy and evaluation with different lattice parameters and its morphology. Nowadays MOFs are used for the novel drug delivery purposes. The current published Fe- MOFs research focus is on the cancer theranostics by Indian medicines which will be impregnated into the MOFs and which will evaluate bioavailability and the chemotherapeutic activity of the drug. Nanotechnology provides the target specificity without affecting the healthy tissues. Other research problems to be addressed are the relationship between metal connectivity and ligand-based luminescence, MOF stability in an aqueous environment and activating it at increased temperature serves as a crucial role. The merits of this research are to increase the surface area and pore size of the drug so that the therapeutic efficacy can be improved. Moreover, the stabilization of metal-organic frameworks can also be enhanced with high surface area.

  1. High performance hydrogen storage from Be-BTB metal-organic framework at room temperature.

    PubMed

    Lim, Wei-Xian; Thornton, Aaron W; Hill, Anita J; Cox, Barry J; Hill, James M; Hill, Matthew R

    2013-07-09

    The metal-organic framework beryllium benzene tribenzoate (Be-BTB) has recently been reported to have one of the highest gravimetric hydrogen uptakes at room temperature. Storage at room temperature is one of the key requirements for the practical viability of hydrogen-powered vehicles. Be-BTB has an exceptional 298 K storage capacity of 2.3 wt % hydrogen. This result is surprising given that the low adsorption enthalpy of 5.5 kJ mol(-1). In this work, a combination of atomistic simulation and continuum modeling reveals that the beryllium rings contribute strongly to the hydrogen interaction with the framework. These simulations are extended with a thermodynamic energy optimization (TEO) model to compare the performance of Be-BTB to a compressed H2 tank and benchmark materials MOF-5 and MOF-177 in a MOF-based fuel cell. Our investigation shows that none of the MOF-filled tanks satisfy the United States Department of Energy (DOE) storage targets within the required operating temperatures and pressures. However, the Be-BTB tank delivers the most energy per volume and mass compared to the other material-based storage tanks. The pore size and the framework mass are shown to be contributing factors responsible for the superior room temperature hydrogen adsorption of Be-BTB.

  2. Adsorption of Azo-Dye Orange II from Aqueous Solutions Using a Metal-Organic Framework Material: Iron- Benzenetricarboxylate

    PubMed Central

    Rojas García, Elizabeth; López Medina, Ricardo; May Lozano, Marcos; Hernández Pérez, Isaías; Valero, Maria J.; Maubert Franco, Ana M.

    2014-01-01

    A Metal-Organic Framework (MOF), iron-benzenetricarboxylate (Fe(BTC)), has been studied for the adsorptive removal of azo-dye Orange II from aqueous solutions, where the effect of various parameters was tested and isotherm and kinetic models were suggested. The adsorption capacities of Fe(BTC) were much higher than those of an activated carbon. The experimental data can be best described by the Langmuir isotherm model (R2 > 0.997) and revealed the ability of Fe(BTC) to adsorb 435 mg of Orange II per gram of adsorbent at the optimal conditions. The kinetics of Orange II adsorption followed a pseudo-second-order kinetic model, indicating the coexistence of physisorption and chemisorption, with intra-particle diffusion being the rate controlling step. The thermodynamic study revealed that the adsorption of Orange II was feasible, spontaneous and exothermic process (−25.53 kJ·mol−1). The high recovery of the dye showed that Fe(BTC) can be employed as an effective and reusable adsorbent for the removal of Orange II from aqueous solutions and showed the economic interest of this adsorbent material for environmental purposes. PMID:28788289

  3. Copper Benzenetricarboxylate Metal-Organic Framework Nucleation Mechanisms on Metal Oxide Powders and Thin Films formed by Atomic Layer Deposition.

    PubMed

    Lemaire, Paul C; Zhao, Junjie; Williams, Philip S; Walls, Howard J; Shepherd, Sarah D; Losego, Mark D; Peterson, Gregory W; Parsons, Gregory N

    2016-04-13

    Chemically functional microporous metal-organic framework (MOF) crystals are attractive for filtration and gas storage applications, and recent results show that they can be immobilized on high surface area substrates, such as fiber mats. However, fundamental knowledge is still lacking regarding initial key reaction steps in thin film MOF nucleation and growth. We find that thin inorganic nucleation layers formed by atomic layer deposition (ALD) can promote solvothermal growth of copper benzenetricarboxylate MOF (Cu-BTC) on various substrate surfaces. The nature of the ALD material affects the MOF nucleation time, crystal size and morphology, and the resulting MOF surface area per unit mass. To understand MOF nucleation mechanisms, we investigate detailed Cu-BTC MOF nucleation behavior on metal oxide powders and Al2O3, ZnO, and TiO2 layers formed by ALD on polypropylene substrates. Studying both combined and sequential MOF reactant exposure conditions, we find that during solvothermal synthesis ALD metal oxides can react with the MOF metal precursor to form double hydroxy salts that can further convert to Cu-BTC MOF. The acidic organic linker can also etch or react with the surface to form MOF from an oxide metal source, which can also function as a nucleation agent for Cu-BTC in the mixed solvothermal solution. We discuss the implications of these results for better controlled thin film MOF nucleation and growth.

  4. Sinter-Resistant Platinum Catalyst Supported by Metal-Organic Framework.

    PubMed

    Kim, In Soo; Li, Zhanyong; Zheng, Jian; Platero-Prats, Ana E; Mavrandonakis, Andreas; Pellizzeri, Steven; Ferrandon, Magali; Vjunov, Aleksei; Gallington, Leighanne C; Webber, Thomas E; Vermeulen, Nicolaas A; Penn, R Lee; Getman, Rachel B; Cramer, Christopher J; Chapman, Karena W; Camaioni, Donald M; Fulton, John L; Lercher, Johannes A; Farha, Omar K; Hupp, Joseph T; Martinson, Alex B F

    2018-01-22

    Single atoms and few-atom clusters of platinum are uniformly installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 °C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and X-ray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novel catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Observation of Resonant Quantum Magnetoelectric Effect in a Multiferroic Metal-Organic Framework.

    PubMed

    Tian, Ying; Shen, Shipeng; Cong, Junzhuang; Yan, Liqin; Wang, Shouguo; Sun, Young

    2016-01-27

    A resonant quantum magnetoelectric coupling effect has been demonstrated in the multiferroic metal-organic framework of [(CH3)2NH2]Fe(HCOO)3. This material shows a coexistence of a spin-canted antiferromagnetic order and ferroelectricity as well as clear magnetoelectric coupling below TN ≈ 19 K. In addition, a component of single-ion quantum magnets develops below ∼ 8 K because of an intrinsic magnetic phase separation. The stair-shaped magnetic hysteresis loop at 2 K signals resonant quantum tunneling of magnetization. Meanwhile, the magnetic field dependence of dielectric permittivity exhibits sharp peaks just at the critical tunneling fields, evidencing the occurrence of resonant quantum magnetoelectric coupling effect. This resonant effect enables a simple electrical detection of quantum tunneling of magnetization.

  6. Force-field prediction of materials properties in metal-organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Peter G.; Moosavi, Seyed Mohamad; Witman, Matthew

    In this work, MOF bulk properties are evaluated and compared using several force fields on several well-studied MOFs, including IRMOF-1 (MOF-5), IRMOF-10, HKUST-1, and UiO-66. It is found that, surprisingly, UFF and DREIDING provide good values for the bulk modulus and linear thermal expansion coefficients for these materials, excluding those that they are not parametrized for. Force fields developed specifically for MOFs including UFF4MOF, BTW-FF, and the DWES force field are also found to provide accurate values for these materials’ properties. While we find that each force field offers a moderately good picture of these properties, noticeable deviations can bemore » observed when looking at properties sensitive to framework vibrational modes. As a result, this observation is more pronounced upon the introduction of framework charges.« less

  7. Force-field prediction of materials properties in metal-organic frameworks

    DOE PAGES

    Boyd, Peter G.; Moosavi, Seyed Mohamad; Witman, Matthew; ...

    2016-12-23

    In this work, MOF bulk properties are evaluated and compared using several force fields on several well-studied MOFs, including IRMOF-1 (MOF-5), IRMOF-10, HKUST-1, and UiO-66. It is found that, surprisingly, UFF and DREIDING provide good values for the bulk modulus and linear thermal expansion coefficients for these materials, excluding those that they are not parametrized for. Force fields developed specifically for MOFs including UFF4MOF, BTW-FF, and the DWES force field are also found to provide accurate values for these materials’ properties. While we find that each force field offers a moderately good picture of these properties, noticeable deviations can bemore » observed when looking at properties sensitive to framework vibrational modes. As a result, this observation is more pronounced upon the introduction of framework charges.« less

  8. Layer-by-Layer Assembled Films of Perylene Diimide- and Squaraine-Containing Metal-Organic Frameworks- like Materials: Solar Energy Capture and Directional Energy Transfer

    DOE PAGES

    Park, Hea Jung; So, Monica C.; Gosztola, David J.

    2016-09-28

    We demonstrate that thin films of metal organic framework (MOF)-like materials, containing two perylenedlimides (PDICl4, PDIOPh2) and a squaraine dye (S1); can be fabricated by, layer-by-layer assembly (LbL). Interestingly, these LbL films absorb across the visible light region (400-750 nm) and facilitate directional energy transfer. Due to the high spectral overlap and oriented transition dipole moments of the donor (PDICl4 and PDIOPh2) and acceptor (S1) components, directional long-range energy transfer from the bluest to reddest absorber was successfully demonstrated in the multicomponent MOF-like films. These findings have significant implications for the development of solar energy conversion devices based on MOFs.

  9. Stress-induced chemical detection using flexible metal-organic frameworks.

    PubMed

    Allendorf, Mark D; Houk, Ronald J T; Andruszkiewicz, Leanne; Talin, A Alec; Pikarsky, Joel; Choudhury, Arnab; Gall, Kenneth A; Hesketh, Peter J

    2008-11-05

    In this work we demonstrate the concept of stress-induced chemical detection using metal-organic frameworks (MOFs) by integrating a thin film of the MOF HKUST-1 with a microcantilever surface. The results show that the energy of molecular adsorption, which causes slight distortions in the MOF crystal structure, can be converted to mechanical energy to create a highly responsive, reversible, and selective sensor. This sensor responds to water, methanol, and ethanol vapors, but yields no response to either N2 or O2. The magnitude of the signal, which is measured by a built-in piezoresistor, is correlated with the concentration and can be fitted to a Langmuir isotherm. Furthermore, we show that the hydration state of the MOF layer can be used to impart selectivity to CO2. Finally, we report the first use of surface-enhanced Raman spectroscopy to characterize the structure of a MOF film. We conclude that the synthetic versatility of these nanoporous materials holds great promise for creating recognition chemistries to enable selective detection of a wide range of analytes.

  10. Vapor-Phase Deposition and Modification of Metal-Organic Frameworks: State-of-the-Art and Future Directions.

    PubMed

    Stassen, Ivo; De Vos, Dirk; Ameloot, Rob

    2016-10-04

    Materials processing, and thin-film deposition in particular, is decisive in the implementation of functional materials in industry and real-world applications. Vapor processing of materials plays a central role in manufacturing, especially in electronics. Metal-organic frameworks (MOFs) are a class of nanoporous crystalline materials on the brink of breakthrough in many application areas. Vapor deposition of MOF thin films will facilitate their implementation in micro- and nanofabrication research and industries. In addition, vapor-solid modification can be used for postsynthetic tailoring of MOF properties. In this context, we review the recent progress in vapor processing of MOFs, summarize the underpinning chemistry and principles, and highlight promising directions for future research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Postsynthetic Tuning of Metal-Organic Frameworks for Targeted Applications.

    PubMed

    Islamoglu, Timur; Goswami, Subhadip; Li, Zhanyong; Howarth, Ashlee J; Farha, Omar K; Hupp, Joseph T

    2017-04-18

    Metal-organic frameworks (MOFs) are periodic, hybrid, atomically well-defined porous materials that typically form by self-assembly and consist of inorganic nodes (metal ions or clusters) and multitopic organic linkers. MOFs as a whole offer many intriguing properties, including ultrahigh porosity, tunable chemical functionality, and low density. These properties point to numerous potential applications, including gas storage, chemical separations, catalysis, light harvesting, and chemical sensing, to name a few. Reticular chemistry, or the linking of molecular building blocks into predetermined network structures, has been employed to synthesize thousands of MOFs. Given the vast library of candidate nodes and linkers, the number of potentially synthetically accessible MOFs is enormous. Nevertheless, a powerful complementary approach to obtain specific structures with desired chemical functionality is to modify known MOFs after synthesis. This approach is particularly useful when incorporation of particular chemical functionalities via direct synthesis is challenging or impossible. The challenges may stem from limited stability or solubility of precursors, unwanted secondary reactivity of precursors, or incompatibility of functional groups with the conditions needed for direct synthesis. MOFs can be postsynthetically modified by replacing the metal nodes and/or organic linkers or via functionalization of the metal nodes and/or organic linkers. Here we describe some of our efforts toward the development and application of postsynthetic strategies for imparting desired chemical functionalities in MOFs of known topology. The techniques include methods for functionalizing MOF nodes, i.e., solvent-assisted ligand incorporation (SALI) and atomic layer deposition in MOFs (AIM) as well as a method to replace structural linkers, termed solvent-assisted linker exchange (SALE), also known as postsynthethic exchange (PSE). For each functionalization strategy, we first describe

  12. Nanomechanical investigation of thin-film electroceramic/metal-organic framework multilayers

    NASA Astrophysics Data System (ADS)

    Best, James P.; Michler, Johann; Liu, Jianxi; Wang, Zhengbang; Tsotsalas, Manuel; Maeder, Xavier; Röse, Silvana; Oberst, Vanessa; Liu, Jinxuan; Walheim, Stefan; Gliemann, Hartmut; Weidler, Peter G.; Redel, Engelbert; Wöll, Christof

    2015-09-01

    Thin-film multilayer stacks of mechanically hard magnetron sputtered indium tin oxide (ITO) and mechanically soft highly porous surface anchored metal-organic framework (SURMOF) HKUST-1 were studied using nanoindentation. Crystalline, continuous, and monolithic surface anchored MOF thin films were fabricated using a liquid-phase epitaxial growth method. Control over respective fabrication processes allowed for tuning of the thickness of the thin film systems with a high degree of precision. It was found that the mechanical indentation of such thin films is significantly affected by the substrate properties; however, elastic parameters were able to be decoupled for constituent thin-film materials (EITO ≈ 96.7 GPa, EHKUST-1 ≈ 22.0 GPa). For indentation of multilayer stacks, it was found that as the layer thicknesses were increased, while holding the relative thickness of ITO and HKUST-1 constant, the resistance to deformation was significantly altered. Such an observation is likely due to small, albeit significant, changes in film texture, interfacial roughness, size effects, and controlling deformation mechanism as a result of increasing material deposition during processing. Such effects may have consequences regarding the rational mechanical design and utilization of MOF-based hybrid thin-film devices.

  13. Nanoarchitectures for Metal-Organic Framework-Derived Nanoporous Carbons toward Supercapacitor Applications.

    PubMed

    Salunkhe, Rahul R; Kaneti, Yusuf Valentino; Kim, Jeonghun; Kim, Jung Ho; Yamauchi, Yusuke

    2016-12-20

    The future advances of supercapacitors depend on the development of novel carbon materials with optimized porous structures, high surface area, high conductivity, and high electrochemical stability. Traditionally, nanoporous carbons (NPCs) have been prepared by a variety of methods, such as templated synthesis, carbonization of polymer precursors, physical and chemical activation, etc. Inorganic solid materials such as mesoporous silica and zeolites have been successfully utilized as templates to prepare NPCs. However, the hard-templating methods typically involve several synthetic steps, such as preparation of the original templates, formation of carbon frameworks, and removal of the original templates. Therefore, these methods are not favorable for large-scale production. Metal-organic frameworks (MOFs) with high surface areas and large pore volumes have been studied over the years, and recently, enormous efforts have been made to utilize MOFs for electrochemical applications. However, their low conductivity and poor stability still present major challenges toward their practical applications in supercapacitors. MOFs can be used as precursors for the preparation of NPCs with high porosity. Their parent MOFs can be prepared with endless combinations of organic and inorganic constituents by simple coordination chemistry, and it is possible to control their porous architectures, pore volumes, surface areas, etc. These unique properties of MOF-derived NPCs make them highly attractive for many technological applications. Compared with carbonaceous materials prepared using conventional precursors, MOF-derived carbons have significant advantages in terms of a simple synthesis with inherent diversity affording precise control over porous architectures, pore volumes, and surface areas. In this Account, we will summarize our recent research developments on the preparation of three-dimensional (3-D) MOF-derived carbons for supercapacitor applications. This Account will be

  14. Efficient photocatalytic degradation of rhodamine 6G with a quantum dot-metal organic framework nanocomposite.

    PubMed

    Kaur, Rajnish; Vellingiri, Kowsalya; Kim, Ki-Hyun; Paul, A K; Deep, Akash

    2016-07-01

    The hybrid structures of metal organic frameworks (MOFs) and nanoparticles may offer the realization of effective photocatalytic materials due to combined benefits of the porous and molecular sieving properties of MOF matrix and the functional characteristics of encapsulated nanoparticles. In this study, cadmium telluride (CdTe) quantum dots (QD) are conjugated with a europium-MOF for the synthesis of a novel nanocomposite material with photocatalytic properties. Successful synthesis of a QD/Eu-MOF nanocomposite was characterized with various spectroscopic and microscopic techniques. This QD/Eu-MOF is found to be an effective catalyst to complete the degradation of Rhodamine 6G dye within 50 min. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Ionic Liquid/Metal-Organic Framework Composites: From Synthesis to Applications.

    PubMed

    Kinik, Fatma Pelin; Uzun, Alper; Keskin, Seda

    2017-07-21

    Metal-organic frameworks (MOFs) have been widely studied for different applications owing to their fascinating properties such as large surface areas, high porosities, tunable pore sizes, and acceptable thermal and chemical stabilities. Ionic liquids (ILs) have been recently incorporated into the pores of MOFs as cavity occupants to change the physicochemical properties and gas affinities of MOFs. Several recent studies have shown that IL/MOF composites show superior performances compared with pristine MOFs in various fields, such as gas storage, adsorption and membrane-based gas separation, catalysis, and ionic conductivity. In this review, we address the recent advances in syntheses of IL/MOF composites and provide a comprehensive overview of their applications. Opportunities and challenges of using IL/MOF composites in many applications are reviewed and the requirements for the utilization of these composite materials in real industrial processes are discussed to define the future directions in this field. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Chiral Recognition and Separation by Chirality-Enriched Metal-Organic Frameworks.

    PubMed

    Das, Saikat; Xu, Shixian; Ben, Teng; Qiu, Shilun

    2018-05-16

    Endowed with chiral channels and pores, chiral metal-organic frameworks (MOFs) are highly useful; however, their synthesis remains a challenge given that most chiral building blocks are expensive. Although MOFs with induced chirality have been reported to avoid this shortcoming, no study providing evidence for the ee value of such MOFs has yet been reported. We herein describe the first study on the efficiency of chiral induction in MOFs using inexpensive achiral building blocks and fully recoverable chiral dopants to control the handedness of racemic MOFs. This method yielded chirality-enriched MOFs with accessible pores. The ability of the materials to form host-guest complexes was probed with enantiomers of varying size and coordination and in solvents with varying polarity. Furthermore, mixed-matrix membranes (MMMs) composed of chirality-enriched MOF particles dispersed in a polymer matrix demonstrated a new route for chiral separation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Separation of C2 hydrocarbons from methane in a microporous metal-organic framework

    NASA Astrophysics Data System (ADS)

    Tang, Fu-Shun; Lin, Rui-Biao; Lin, Rong-Guang; Zhao, John Cong-Gui; Chen, Banglin

    2018-02-01

    The recovery of C2 hydrocarbons including acetylene, ethylene and ethane is challenging but important for natural gas upgrading. The separation of C2 hydrocarbons over methane was demonstrated here by using a microporous metal-organic framework [Zn3(OH)2(SDB)2] (H2SDB = 4,4'-sulfonyldibenzoic acid) consisting narrow one-dimensional pore channels. Gas sorption experiments revealed that this MOF material showed considerable uptake capacity for C2H2, C2H4 and C2H6 under ambient conditions, while its capacity for CH4 was very low. High selectivity from IAST calculations for C2H2/CH4, C2H4/CH4 and C2H6/CH4 binary mixtures demonstrated that this MOF material were promising for efficiently separating important separation of C2 hydrocarbons from methane in natural gas processing.

  18. From Metal-Organic Framework to Porous Carbon Polyhedron: Toward Highly Reversible Lithium Storage.

    PubMed

    Peng, Hai-Jun; Hao, Gui-Xia; Chu, Zhao-Hua; Cui, Ying-Lin; Lin, Xiao-Ming; Cai, Yue-Peng

    2017-08-21

    By application of a newly designed T-shaped ligand 5-(4-pyridin-4-yl-benzoylamino)isophthalic acid (H 2 PBAI) to assemble with Zn(II) ions under solvothermal conditions, a novel porous polyhedral metal-organic framework (Zn-PBAI) with pcu topology has been obtained. When treated as a precursor by annealing of Zn-PBAI at various temperatures, porous carbon polyhedra (PCP) were prepared and tested as an anode material for lithium-ion batteries. The results show that PCP carbonized at 1000 °C (PCP-1000) manifest the highest reversible specific capacity of about 1125 mAh g -1 at a current of 500 mA g -1 after 200 cycles, which is supposed to benefit from the large accessible specific area and high electric conductivity. Moreover, PCP-1000 electrode materials also exhibit superior cyclic stability and good rate capacity.

  19. Study of the Inorganic Substitution in a Functionalized UiO-66 Metal-Organic Framework

    NASA Astrophysics Data System (ADS)

    Yasin, Alhassan Salman

    Metal-Organic Frameworks (MOFs) have received considerable attention and fast development in the past few years. These materials have demonstrated a wide range of applications due to their porosity, tailorability of optical properties, and chemical selectivity. This report catalogs common MOF designs based on application and diversity in various fields, as well as conduct an in-depth study of inorganic substitution in a functionalized MOF. This study investigates the band gap modulation in response to inorganic ion substitution within a thermally stable UiO-66 Metal-Organic Framework (MOF). A combination of density functional theory (DFT) predictions in conjunction with experimental predictions were used to map out the complete composition space for three inorganic ions (Zr, Hf, Ti) and three functional groups. The three functional groups include an amino group (NH2), a nitro group (NO2), and a hydrogenated case (H). The smallest determined band gap was for a partially substituted UiO-66(Ti5Zr1)-NH2 resulting in 2.60eV. Theoretical findings sup-port that Ti can be fully substituted within the lattice resulting in a predicted band gap as low as 1.62(2.77)eV. Band gap modulation was reasoned to be a result of a mid gap state introduced through the amino functionalization and HOMO shifting as a result of increased binding of the Ti-O-C bonds.

  20. Three-dimensional printed acrylonitrile butadiene styrene framework coated with Cu-BTC metal-organic frameworks for the removal of methylene blue.

    PubMed

    Wang, Zongyuan; Wang, Jiajun; Li, Minyue; Sun, Kaihang; Liu, Chang-jun

    2014-08-04

    Three-dimensional (3D) printing was applied for the fabrication of acrylonitrile butadiene styrene (ABS) framework. Functionalization of the ABS framework was then performed by coating of porous Cu-BTC (BTC = benzene tricarboxylic acid) metal-organic frameworks on it using a step-by-step in-situ growth. The size of the Cu-BTC particles on ABS was ranged from 200 nm to 900 nm. The Cu-BTC/ABS framework can take up most of the space of the tubular reactor that makes the adsorption effective with no need of stirring. Methylene blue (MB) can be readily removed from aqueous solution by this Cu-BTC/ABS framework. The MB removal efficiency for solutions with concentrations of 10 and 5 mg/L was 93.3% and 98.3%, respectively, within 10 min. After MB adsorption, the Cu-BTC/ABS composite can easily be recovered without the need for centrifugation or filtration and the composite is reusable. In addition the ABS framework can be recovered for subsequent reuse. A significant advantage of 3D-printed frameworks is that different frameworks can be easily fabricated to meet the needs of different applications. This is a promising strategy to synthesize new frameworks using MOFs and polymers to develop materials for applications beyond adsorption.

  1. Three-dimensional Printed Acrylonitrile Butadiene Styrene Framework Coated with Cu-BTC Metal-organic Frameworks for the Removal of Methylene Blue

    PubMed Central

    Wang, Zongyuan; Wang, Jiajun; Li, Minyue; Sun, Kaihang; Liu, Chang-jun

    2014-01-01

    Three-dimensional (3D) printing was applied for the fabrication of acrylonitrile butadiene styrene (ABS) framework. Functionalization of the ABS framework was then performed by coating of porous Cu-BTC (BTC = benzene tricarboxylic acid) metal-organic frameworks on it using a step-by-step in-situ growth. The size of the Cu-BTC particles on ABS was ranged from 200 nm to 900 nm. The Cu-BTC/ABS framework can take up most of the space of the tubular reactor that makes the adsorption effective with no need of stirring. Methylene blue (MB) can be readily removed from aqueous solution by this Cu-BTC/ABS framework. The MB removal efficiency for solutions with concentrations of 10 and 5 mg/L was 93.3% and 98.3%, respectively, within 10 min. After MB adsorption, the Cu-BTC/ABS composite can easily be recovered without the need for centrifugation or filtration and the composite is reusable. In addition the ABS framework can be recovered for subsequent reuse. A significant advantage of 3D-printed frameworks is that different frameworks can be easily fabricated to meet the needs of different applications. This is a promising strategy to synthesize new frameworks using MOFs and polymers to develop materials for applications beyond adsorption. PMID:25089616

  2. Computational studies of adsorption in metal organic frameworks and interaction of nanoparticles in condensed phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annapureddy, HVR; Motkuri, RK; Nguyen, PTM

    In this review, we describe recent efforts to systematically study nano-structured metal organic frameworks (MOFs), also known as metal organic heat carriers, with particular emphasis on their application in heating and cooling processes. We used both molecular dynamics and grand canonical Monte Carlo simulation techniques to gain a molecular-level understanding of the adsorption mechanism of gases in these porous materials. We investigated the uptake of various gases such as refrigerants R12 and R143a. We also evaluated the effects of temperature and pressure on the uptake mechanism. Our computed results compared reasonably well with available measurements from experiments, thus validating ourmore » potential models and approaches. In addition, we investigated the structural, diffusive and adsorption properties of different hydrocarbons in Ni-2(dhtp). Finally, to elucidate the mechanism of nanoparticle dispersion in condensed phases, we studied the interactions among nanoparticles in various liquids, such as n-hexane, water and methanol.« less

  3. Hemin immobilized into metal-organic frameworks as an electrochemical biosensor for 2,4,6-trichlorophenol

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Wang, Lu; Gao, Congwei; Zhao, Chaoyue; Wang, Yang; Wang, Jianmin

    2018-02-01

    Hemin immobilized into copper-based metal-organic frameworks was successfully prepared and used as a new electrode material for sensitive electrochemical biosensing. X-ray diffraction patterns, Fourier transform infrared spectra, scanning electron microscopy, UV-vis absorption spectroscopy, and cyclic voltammetry were used to characterize the resultant composites. Due to the interaction between the copper atom groups and hemin, the constrained environment in Cu-MOF-74 acts as a matrix to avoid the dimerization of enzyme molecules and retain its biological activity. The hemin/Cu-MOF composites demonstrated enhanced electrocatalytical activity and high stability towards the oxidation of 2,4,6-trichlorophenol. Under optimum experimental conditions, the sensor showed a wide linear relationship over the range of 0.01-9 μmol L-1 with a detection limit (3σ) of 0.005 μmol L-1. The relative standard deviations were 4.6% and 3.5% for five repeated measurements of 0.5 and 5 μmol L-1 2,4,6-trichlorophenol, respectively. The detection platforms for 2,4,6-trichlorophenol developed here not only indicate that hemin/Cu-MOF-74 possesses intrinsic biological reactivity, but also enable further work to be conducted towards the application of enzyme-containing metal-organic frameworks in electrochemical biosensors.

  4. Hemin immobilized into metal-organic frameworks as an electrochemical biosensor for 2,4,6-trichlorophenol.

    PubMed

    Zhang, Ting; Wang, Lu; Gao, Congwei; Zhao, Chaoyue; Wang, Yang; Wang, Jianmin

    2018-02-16

    Hemin immobilized into copper-based metal-organic frameworks was successfully prepared and used as a new electrode material for sensitive electrochemical biosensing. X-ray diffraction patterns, Fourier transform infrared spectra, scanning electron microscopy, UV-vis absorption spectroscopy, and cyclic voltammetry were used to characterize the resultant composites. Due to the interaction between the copper atom groups and hemin, the constrained environment in Cu-MOF-74 acts as a matrix to avoid the dimerization of enzyme molecules and retain its biological activity. The hemin/Cu-MOF composites demonstrated enhanced electrocatalytical activity and high stability towards the oxidation of 2,4,6-trichlorophenol. Under optimum experimental conditions, the sensor showed a wide linear relationship over the range of 0.01-9 μmol L -1 with a detection limit (3σ) of 0.005 μmol L -1 . The relative standard deviations were 4.6% and 3.5% for five repeated measurements of 0.5 and 5 μmol L -1 2,4,6-trichlorophenol, respectively. The detection platforms for 2,4,6-trichlorophenol developed here not only indicate that hemin/Cu-MOF-74 possesses intrinsic biological reactivity, but also enable further work to be conducted towards the application of enzyme-containing metal-organic frameworks in electrochemical biosensors.

  5. Selective CO2 adsorption by a new metal-organic framework: synergy between open metal sites and a charged imidazolinium backbone.

    PubMed

    Kochetygov, Ilia; Bulut, Safak; Asgari, Mehrdad; Queen, Wendy L

    2018-05-30

    Metal-organic frameworks (MOFs) are porous, tunable crystalline materials that are attracting widespread scientific attention for their potential use in post-combustion CO2 capture. In this work, we report the synthesis of a new ligand, 1,3-bis(4-carboxyphenyl)-4,5-dihydro-1H-imidazol-3-ium tetrafluoroborate, H2Sp5-BF4, that is subsequently used for the construction of a novel MOF, Cu-Sp5-EtOH. This highly crystalline material has a charged framework that is expected to give rise to high CO2/N2 selectivity. However, the pores of the parent structure could not be accessed due to the presence of strongly coordinated ethanol molecules. After solvent exchange with methanol and subsequently heating Cu-Sp5-MeOH under vacuum, we are able to liberate the solvent providing other small molecules like CO2 access to the inside of the now porous structure, Cu-Sp5. The combination of open metal sites and framework charge leads to an exceptionally high CO2/N2 selectivity, as determined by Ideal Adsorbed Solution Theory (IAST) calculations performed on single-component adsorption isotherms. The CO2/N2 selectivity of Cu-Sp5 reaches a value of over 200 at pressures typically found in post-combustion flue gas (0.15 bar CO2/0.85 bar N2), a value that is among the highest reported to date.

  6. Self-assembly of polyhedral metal-organic framework particles into three-dimensional ordered superstructures

    NASA Astrophysics Data System (ADS)

    Avci, Civan; Imaz, Inhar; Carné-Sánchez, Arnau; Pariente, Jose Angel; Tasios, Nikos; Pérez-Carvajal, Javier; Alonso, Maria Isabel; Blanco, Alvaro; Dijkstra, Marjolein; López, Cefe; Maspoch, Daniel

    2018-01-01

    Self-assembly of particles into long-range, three-dimensional, ordered superstructures is crucial for the design of a variety of materials, including plasmonic sensing materials, energy or gas storage systems, catalysts and photonic crystals. Here, we have combined experimental and simulation data to show that truncated rhombic dodecahedral particles of the metal-organic framework (MOF) ZIF-8 can self-assemble into millimetre-sized superstructures with an underlying three-dimensional rhombohedral lattice that behave as photonic crystals. Those superstructures feature a photonic bandgap that can be tuned by controlling the size of the ZIF-8 particles and is also responsive to the adsorption of guest substances in the micropores of the ZIF-8 particles. In addition, superstructures with different lattices can also be assembled by tuning the truncation of ZIF-8 particles, or by using octahedral UiO-66 MOF particles instead. These well-ordered, sub-micrometre-sized superstructures might ultimately facilitate the design of three-dimensional photonic materials for applications in sensing.

  7. Amides Do Not Always Work: Observation of Guest Binding in an Amide-Functionalized Porous Metal-Organic Framework.

    PubMed

    Benson, Oguarabau; da Silva, Ivan; Argent, Stephen P; Cabot, Rafel; Savage, Mathew; Godfrey, Harry G W; Yan, Yong; Parker, Stewart F; Manuel, Pascal; Lennox, Matthew J; Mitra, Tamoghna; Easun, Timothy L; Lewis, William; Blake, Alexander J; Besley, Elena; Yang, Sihai; Schröder, Martin

    2016-11-16

    An amide-functionalized metal organic framework (MOF) material, MFM-136, shows a high CO 2 uptake of 12.6 mmol g -1 at 20 bar and 298 K. MFM-136 is the first example of an acylamide pyrimidyl isophthalate MOF without open metal sites and, thus, provides a unique platform to study guest binding, particularly the role of free amides. Neutron diffraction reveals that, surprisingly, there is no direct binding between the adsorbed CO 2 /CH 4 molecules and the pendant amide group in the pore. This observation has been confirmed unambiguously by inelastic neutron spectroscopy. This suggests that introduction of functional groups solely may not necessarily induce specific guest-host binding in porous materials, but it is a combination of pore size, geometry, and functional group that leads to enhanced gas adsorption properties.

  8. Controlling Cooperative CO2 Adsorption in Diamine-Appended Mg2(dobpdc) Metal-Organic Frameworks.

    PubMed

    Siegelman, Rebecca L; McDonald, Thomas M; Gonzalez, Miguel I; Martell, Jeffrey D; Milner, Phillip J; Mason, Jarad A; Berger, Adam H; Bhown, Abhoyjit S; Long, Jeffrey R

    2017-08-02

    In the transition to a clean-energy future, CO 2 separations will play a critical role in mitigating current greenhouse gas emissions and facilitating conversion to cleaner-burning and renewable fuels. New materials with high selectivities for CO 2 adsorption, large CO 2 removal capacities, and low regeneration energies are needed to achieve these separations efficiently at scale. Here, we present a detailed investigation of nine diamine-appended variants of the metal-organic framework Mg 2 (dobpdc) (dobpdc 4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) that feature step-shaped CO 2 adsorption isotherms resulting from cooperative and reversible insertion of CO 2 into metal-amine bonds to form ammonium carbamate chains. Small modifications to the diamine structure are found to shift the threshold pressure for cooperative CO 2 adsorption by over 4 orders of magnitude at a given temperature, and the observed trends are rationalized on the basis of crystal structures of the isostructural zinc frameworks obtained from in situ single-crystal X-ray diffraction experiments. The structure-activity relationships derived from these results can be leveraged to tailor adsorbents to the conditions of a given CO 2 separation process. The unparalleled versatility of these materials, coupled with their high CO 2 capacities and low projected energy costs, highlights their potential as next-generation adsorbents for a wide array of CO 2 separations.

  9. Drawing Sensors with Ball-Milled Blends of Metal-Organic Frameworks and Graphite

    PubMed Central

    Ko, Michael; Aykanat, Aylin; Smith, Merry K.

    2017-01-01

    The synthetically tunable properties and intrinsic porosity of conductive metal-organic frameworks (MOFs) make them promising materials for transducing selective interactions with gaseous analytes in an electrically addressable platform. Consequently, conductive MOFs are valuable functional materials with high potential utility in chemical detection. The implementation of these materials, however, is limited by the available methods for device incorporation due to their poor solubility and moderate electrical conductivity. This manuscript describes a straightforward method for the integration of moderately conductive MOFs into chemiresistive sensors by mechanical abrasion. To improve electrical contacts, blends of MOFs with graphite were generated using a solvent-free ball-milling procedure. While most bulk powders of pure conductive MOFs were difficult to integrate into devices directly via mechanical abrasion, the compressed solid-state MOF/graphite blends were easily abraded onto the surface of paper substrates equipped with gold electrodes to generate functional sensors. This method was used to prepare an array of chemiresistors, from four conductive MOFs, capable of detecting and differentiating NH3, H2S and NO at parts-per-million concentrations. PMID:28946624

  10. Controlling interfacial properties in supported metal oxide catalysts through metal–organic framework templating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abney, Carter W.; Patterson, Jacob T.; Gilhula, James C.

    Precise control over the chemical structure of hard-matter materials is a grand challenge of basic science and a prerequisite for the development of advanced catalyst systems. In this work we report the application of a sacrificial metal-organic framework (MOF) template for the synthesis of a porous supported metal oxide catalyst, demonstrating proof-of-concept for a highly generalizable approach to the preparation new catalyst materials. Application of 2,2’-bipyridine-5,5’-dicarboxylic acid as the organic strut in the Ce MOF precursor results in chelation of Cu 2+ and affords isolation of the metal oxide precursor. Following pyrolysis of the template, homogeneously dispersed CuO nanoparticles aremore » formed in the resulting porous CeO 2 support. By partially substituting non-chelating 1,1’-biphenyl-4,4’-dicarboxylic acid, the Cu 2+ loading and dispersion can be finely tuned, allowing precise control over the CuO/CeO 2 interface in the final catalyst system. Characterization by x-ray diffraction, x-ray absorption fine structure spectroscopy, and in situ IR spectroscopy/mass spectrometry confirm control over interface formation to be a function of template composition, constituting the first report of a MOF template being used to control interfacial properties in a supported metal oxide. Using CO oxidation as a model reaction, the system with the greatest number of interfaces possessed the lowest activation energy and better activity under differential conditions, but required higher temperature for catalytic onset and displayed inferior efficiency at 100 °C than systems with higher Cu-loading. This finding is attributable to greater CO adsorption in the more heavily-loaded systems, and indicates catalyst performance for these supported oxide systems to be a function of at least two parameters: size of adsorption site and extent of interface. In conclusion, optimization of catalyst materials thus requires precise control over synthesis parameters, such

  11. Experimental comparison of chiral metal-organic framework used as stationary phase in chromatography.

    PubMed

    Xie, Sheng-Ming; Zhang, Mei; Fei, Zhi-Xin; Yuan, Li-Ming

    2014-10-10

    Chiral metal-organic frameworks (MOFs) are a new class of multifunctional material, which possess diverse structures and unusual properties such as high surface area, uniform and permanent cavities, as well as good chemical and thermal stability. Their chiral functionality makes them attractive as novel enantioselective adsorbents and stationary phases in separation science. In this paper, the experimental comparison of a chiral MOF [In₃O(obb)₃(HCO₂)(H₂O)] solvent used as a stationary phase was investigated in gas chromatography (GC), high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC). The potential relationship between the structure and components of chiral MOFs with their chiral recognition ability and selectivity are presented. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Conformational locking by design: relating strain energy with luminescence and stability in rigid metal-organic frameworks.

    PubMed

    Shustova, Natalia B; Cozzolino, Anthony F; Dincă, Mircea

    2012-12-05

    Minimization of the torsional barrier for phenyl ring flipping in a metal-organic framework (MOF) based on the new ethynyl-extended octacarboxylate ligand H(8)TDPEPE leads to a fluorescent material with a near-dark state. Immobilization of the ligand in the rigid structure also unexpectedly causes significant strain. We used DFT calculations to estimate the ligand strain energies in our and all other topologically related materials and correlated these with empirical structural descriptors to derive general rules for trapping molecules in high-energy conformations within MOFs. These studies portend possible applications of MOFs for studying fundamental concepts related to conformational locking and its effects on molecular reactivity and chromophore photophysics.

  13. Peptide assembly-driven metal-organic framework (MOF) motors for micro electric generators.

    PubMed

    Ikezoe, Yasuhiro; Fang, Justin; Wasik, Tomasz L; Uemura, Takashi; Zheng, Yongtai; Kitagawa, Susumu; Matsui, Hiroshi

    2015-01-14

    Peptide-metal-organic framework (Pep-MOF) motors, whose motions are driven by anisotropic surface tension gradients created via peptide self-assembly around frameworks, can rotate microscopic rotors and magnets fast enough to generate an electric power of 0.1 μW. A new rigid Pep-MOF motor can be recycled by refilling the peptide fuel into the nanopores of the MOF. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A General Model of Sensitized Luminescence in Lanthanide-Based Coordination Polymers and Metal-Organic Framework Materials.

    PubMed

    Einkauf, Jeffrey D; Clark, Jessica M; Paulive, Alec; Tanner, Garrett P; de Lill, Daniel T

    2017-05-15

    Luminescent lanthanides containing coordination polymers and metal-organic frameworks hold great potential in many applications due to their distinctive spectroscopic properties. While the ability to design coordination polymers for specific functions is often mentioned as a major benefit bestowed on these compounds, the lack of a meaningful understanding of the luminescence in lanthanide coordination polymers remains a significant challenge toward functional design. Currently, the study of these compounds is based on the antenna effect as derived from molecular systems, where organic antennae are used to facilitate lanthanide-centered luminescence. This molecular-based approach does not take into account the unique features of extended network solids, particularly the formation of band structure. While guidelines for the antenna effect are well established, they require modification before being applied to coordination polymers. A series of nine coordination polymers with varying topologies and organic linkers were studied to investigate the accuracy of the antenna effect in coordination polymer systems. By comparing a molecular-based approach to a band-based one, it was determined that the band structure that occurs in aggregated organic solids needs to be considered when evaluating the luminescence of lanthanide coordination polymers.

  15. Metal-organic framework catalysts for selective cleavage of aryl-ether bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allendorf, Mark D.; Stavila, Vitalie

    The present invention relates to methods of employing a metal-organic framework (MOF) as a catalyst for cleaving chemical bonds. In particular instances, the MOF results in selective bond cleavage that results in hydrogenolyzis. Furthermore, the MOF catalyst can be reused in multiple cycles. Such MOF-based catalysts can be useful, e.g., to convert biomass components.

  16. High-rate synthesis of Cu-BTC metal-organic frameworks.

    PubMed

    Kim, Ki-Joong; Li, Yong Jun; Kreider, Peter B; Chang, Chih-Hung; Wannenmacher, Nick; Thallapally, Praveen K; Ahn, Ho-Geun

    2013-12-21

    The reaction conditions for the synthesis of Cu-BTC (BTC = benzene-1,3,5-tricarboxylic acid) were elucidated using a continuous-flow microreactor-assisted solvothermal system to achieve crystal size and phase control. A high-rate synthesis of Cu-BTC metal-organic frameworks with a BET surface area of more than 1600 m(2) g(-1) (Langmuir surface area of more than 2000 m(2) g(-1)) and with a 97% production yield could be achieved with a total reaction time of 5 minutes.

  17. Synthesis and Characterization of Metal-Organic Frameworks (MOFs) That Are Difficult to Access De Novo

    NASA Astrophysics Data System (ADS)

    Karagiaridi, Olga

    Metal-organic frameworks (MOFs) are a class of intriguing hybrid materials, comprised of metal-based nodes joined by organic linkers into a crystalline, porous, three-dimensional lattice. Their signature properties (well-defined surfaces, tailorability and ultra-high porosity) render them promising candidates for many applications, including, but not limited to, gas storage, gas separation, catalysis and sensing. One of the greatest challenges associated with MOF synthesis lies in the fact that obtaining a desired MOF structure that is tailored to perform a specific application is often not trivial. Traditional synthetic pathways termed "de novo synthesis" (typically one-pot reactions between the MOF structural building blocks under solvothermal conditions) often give rise to side products that do not possess the desired structure. To circumvent this problem, we have studied in depth two powerful MOF synthetic techniques -- solvent-assisted linker exchange (SALE) and transmetalation. These are heterogeneous reactions of parent MOF crystals with concentrated solutions of organic linkers and inorganic metal salts, respectively, that lead to the replacement of the linkers or metal nodes within the parent MOFs by the desired components, while the overall framework topology is preserved. The projects described in this dissertation have aimed to apply these techniques to transform simple (unfunctionalized) and easy to synthesize representative materials from various MOF systems to structurally and functionally interesting daughter products. Examples include synthesis of MOFs that are energetically "unfavorable", extension of MOF cages by longer linker incorporation, functionalization of MOF pores and endowment of MOFs with permanent and persistent porosity. Through these projects, we have been able to formulate a set of rules that can be applied to predict the successful outcome of SALE. Since the allure of MOFs lies in their applications, expanding the range of

  18. A 3D Ag(I) metal-organic framework for sensing luminescence and photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Chang, Hai-Ning; Liu, Li-Wei; Hao, Zeng Chuan; Cui, Guang-Hua

    2018-03-01

    A fluorescent metal-organic framework (MOF), [Ag(btx)0.5(DCTP)0.5]n (1) (H2DCTP = 2,5-dichloroterephthalic acid and btx = 1,4-bis(1,2,4-triazol-1-ylmethyl)benzene) has been hydrothermally synthesized and characterized by IR spectroscopy, elemental analysis, powder X-ray diffractions and thermogravimetry. The framework of 1 can be classified as a binodal (4,4)-connected PtS topological network. The fluorescence explorations demonstrated that 1 shows selective and sensitive detection towards Cr2O72- with high quenching efficiency of 1.92 × 104 M-1. The rapid and efficient response of 1 to Cr2O72- ion suggests that this material could be used as a luminescent sensor for Cr2O72- ion. Meanwhile the photocatalytic properties of 1 for the degradation of RhB have also been investigated under UV radiation. The possible photocatalytic mechanisms were also speculated. Hence, 1 can become multi-functional material in sensitive detection and effective removal of some environment pollutants in industrial waste water solutions.

  19. Amino substituted Cu3(btc)2: a new metal-organic framework with a versatile functionality.

    PubMed

    Peikert, Katharina; Hoffmann, Frank; Fröba, Michael

    2012-11-25

    A new amino substituted tricarboxylate linker and the new metal-organic framework Cu(3)(NH(2)btc)(2) have been synthesised. The new MOF shows good adsorption properties and is suitable for postsynthetic modification to form an amide functionalised framework.

  20. A Recyclable Metal-Organic Framework as a Dual Detector and Adsorbent for Ammonia.

    PubMed

    Gładysiak, Andrzej; Nguyen, Tu N; Navarro, Jorge A R; Rosseinsky, Matthew J; Stylianou, Kyriakos C

    2017-10-04

    Recyclable materials for simultaneous detection and uptake of ammonia (NH 3 ) are of great interest due to the hazardous nature of NH 3 . The structural versatility and porous nature of metal-organic frameworks (MOFs) make them ideal candidates for NH 3 capture. Herein, the synthesis of a water-stable and porous 3-dimensional Cu II -based MOF (SION-10) displaying a ship-in-a-bottle structure is reported; the pores of the host SION-10 framework accommodate mononuclear Cu II -complexes. SION-10 spontaneously uptakes NH 3 as a result of two concurrent mechanisms: chemisorption due to the presence of active Cu II sites and physisorption (bulk permanent porosity). The color of the material changes from green to blue upon NH 3 capture, with the shifts of the UV/Vis absorption bands clearly seen at NH 3 concentrations as low as 300 ppm. SION-10 can be recovered upon immersion of SION-10⊃NH 3 in water and can be further reused for NH 3 capture for at least three cycles. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Kinetic Methods for Understanding Linker Exchange in Metal-Organic Frameworks

    NASA Astrophysics Data System (ADS)

    Morabito, Joseph V.

    Exchange reactions have enabled a new level of control in the rational, stepwise preparation of metal-organic framework (MOF) materials. However, their full potential is limited by a lack of understanding of the molecular mechanisms by which they occur. This dissertation describes our efforts to understand this important class of reactions in two parts. The first reports our use of a linker exchange process to encapsulate guest molecules larger than the limiting pore aperture of the MOF. The concept is demonstrated, along with evidence for guest encapsulation and its relation to a dissociative linker exchange process. The second part describes our development of the first quantitative kinetic method for studying MOF linker exchange reactions and our application of this method to understand the solvent dependence of the reaction of ZIF-8 with imidazole. This project involved the collection of the largest set of rate data available on any MOF linker exchange reaction. The combination of this dataset with small molecule encapsulation experiments allowed us to formulate a mechanistic model that could account for all the observed kinetic and structural data. By comparison with the kinetic behavior of complexes in solution, we were able to fit the kinetic behavior of ZIF-8 into the broader family of coordination compounds. Aside from the specific use that our kinetic data may have in predicting the reactivity of ZIF linker exchange, we hope that the conceptual bridges made between MOFs and related metal?organic compounds can help reveal underlying patterns in behavior and advance the field.

  2. Rapid, Selective Heavy Metal Removal from Water by a Metal–Organic Framework/Polydopamine Composite

    PubMed Central

    2018-01-01

    Drinking water contamination with heavy metals, particularly lead, is a persistent problem worldwide with grave public health consequences. Existing purification methods often cannot address this problem quickly and economically. Here we report a cheap, water stable metal–organic framework/polymer composite, Fe-BTC/PDA, that exhibits rapid, selective removal of large quantities of heavy metals, such as Pb2+ and Hg2+, from real world water samples. In this work, Fe-BTC is treated with dopamine, which undergoes a spontaneous polymerization to polydopamine (PDA) within its pores via the Fe3+ open metal sites. The PDA, pinned on the internal MOF surface, gains extrinsic porosity, resulting in a composite that binds up to 1634 mg of Hg2+ and 394 mg of Pb2+ per gram of composite and removes more than 99.8% of these ions from a 1 ppm solution, yielding drinkable levels in seconds. Further, the composite properties are well-maintained in river and seawater samples spiked with only trace amounts of lead, illustrating unprecedented selectivity. Remarkably, no significant uptake of competing metal ions is observed even when interferents, such as Na+, are present at concentrations up to 14 000 times that of Pb2+. The material is further shown to be resistant to fouling when tested in high concentrations of common organic interferents, like humic acid, and is fully regenerable over many cycles. PMID:29632880

  3. A COMPUTATIONAL AND EXPERIMENTAL STUDY OF METAL AND COVALENT ORGANIC FRAMEWORKS USED IN ADSORPTION COOLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenks, Jeromy WJ; TeGrotenhuis, Ward E.; Motkuri, Radha K.

    2015-07-09

    Metal-organic frameworks (MOFs) have recently attracted enormous interest over the past few years due to their potential applications in energy storage and gas separation. However, there have been few reports on MOFs for adsorption cooling applications. Adsorption cooling technology is an established alternative to mechanical vapor compression refrigeration systems. Adsorption cooling is an excellent alternative in industrial environments where waste heat is available. Applications also include hybrid systems, refrigeration, power-plant dry cooling, cryogenics, vehicular systems and building HVAC. Adsorption based cooling and refrigeration systems have several advantages including few moving parts and negligible power consumption. Key disadvantages include large thermalmore » mass, bulkiness, complex controls, and low COP (0.2-0.5). We explored the use of metal organic frameworks that have very high mass loading and relatively low heats of adsorption, with certain combinations of refrigerants to demonstrate a new type of highly efficient adsorption chiller. An adsorption chiller based on MOFs suggests that a thermally-driven COP>1 may be possible with these materials, which would represent a fundamental breakthrough in performance of adsorption chiller technology. Computational fluid dynamics combined with a system level lumped-parameter model have been used to project size and performance for chillers with a cooling capacity ranging from a few kW to several thousand kW. In addition, a cost model has been developed to project manufactured cost of entire systems. These systems rely on stacked micro/mini-scale architectures to enhance heat and mass transfer. Presented herein are computational and experimental results for hydrophyilic MOFs, fluorophilic MOFs and also flourophilic Covalent-organic frameworks (COFs).« less

  4. Rational composition control of mixed-lanthanide metal-organic frameworks by an interfacial reaction with metal ion-doped polymer substrates

    NASA Astrophysics Data System (ADS)

    Tsuruoka, Takaaki; Miyanaga, Ayumi; Ohhashi, Takashi; Hata, Manami; Takashima, Yohei; Akamatsu, Kensuke

    2017-09-01

    A simple composition control route to mixed-lanthanide metal-organic frameworks (MOFs) was developed based on an interfacial reaction with mixed-lanthanide metal ion-doped polymer substrates. By controlling the composition of lanthanide ion (Eu3+ and Tb3+) dopants in polymer substrates to be used as metal ion precursors and scaffolding for the formation of MOFs, [EuxTb2-x(bdc)3(H2O)4]n crystals with a tunable metal composition could be routinely prepared on polymer substrates. Inductively coupled plasma (ICP) measurements revealed that the composition of the obtained frameworks was almost the same as that of the initial polymer substrates. In addition, the resulting [EuxTb2-x(bdc)3(H2O)4]n crystals showed strong phosphorescence because of Eu3+ transitions, indicating that the energy transfer from Tb3+ to Eu3+ ions in the frameworks could be achieved with high efficiency.

  5. Exploring Charge Transport in Guest Molecule Infiltrated Cu 3(BTC) 2 Metal Organic Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, Francois Leonard; Stavila, Vitalie; Allendorf, Mark D.

    2014-09-01

    The goal of this Exploratory Express project was to expand the understanding of the physical properties of our recently discovered class of materials consisting of metal-organic frameworks with electroactive ‘guest’ molecules that together form an electrically conducting charge-transfer complex (molecule@MOF). Thin films of Cu 3(BTC) 2 were grown on fused silica using solution step-by-step growth and were infiltrated with the molecule tetracyanoquinodimethane (TCNQ). The infiltrated MOF films were extensively characterized using optical microscopy, scanning electron microscopy, Raman spectroscopy, electrical conductivity, and thermoelectric properties. Thermopower measurements on TCNQ@Cu 3(BTC) 2 revealed a positive Seebeck coefficient of ~400 μV/k, indicating that holesmore » are the primary carriers in this material. The high value of the Seebeck coefficient and the expected low thermal conductivity suggest that molecule@MOF materials may be attractive for thermoelectric power conversion applications requiring low cost, solution-processable, and non-toxic active materials.« less

  6. A flexible metal-organic framework with a high density of sulfonic acid sites for proton conduction

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Xu, Gang; Dou, Yibo; Wang, Bin; Zhang, Heng; Wu, Hui; Zhou, Wei; Li, Jian-Rong; Chen, Banglin

    2017-11-01

    The design of stable electrolyte materials with high proton conductivity for use in proton exchange membrane fuel cells remains a challenge. Most of the materials explored have good conductivity at high relative humidity (RH), but significantly decreased conductivity at reduced RH. Here we report a chemically stable and structurally flexible metal-organic framework (MOF), BUT-8(Cr)A, possessing a three-dimensional framework structure with one-dimensional channels, in which high-density sulfonic acid (-SO3H) sites arrange on channel surfaces for proton conduction. We propose that its flexible nature, together with its -SO3H sites, could allow BUT-8(Cr)A to self-adapt its framework under different humid environments to ensure smooth proton conduction pathways mediated by water molecules. Relative to other MOFs, BUT-8(Cr)A not only has a high proton conductivity of 1.27 × 10-1 S cm-1 at 100% RH and 80 °C but also maintains moderately high proton conductivity at a wide range of RH and temperature.

  7. Stability and Degradation Mechanisms of Metal-Organic Frameworks Containing the Zr6O4(OH)4 Secondary Building Unit

    DTIC Science & Technology

    2013-03-18

    0188 3. DATES COVERED (From - To) - UU UU UU UU Approved for public release; distribution is unlimited. Stability and degradation mechanisms of metal ...Stability and degradation mechanisms of metalorganic frameworks containing the Zr6O4(OH)4 secondary building unit Report Title See publication. 3...Stability and degradation mechanisms of metalorganic frameworks containing the Zr6O4(OH)4 secondary building unit Approved for public release; distribution

  8. A Titanium–Organic Framework as an Exemplar of Combining the Chemistry of Metal– and Covalent–Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ha L.; Gándara, Felipe; Furukawa, Hiroyasu

    A crystalline material with a two-dimensional structure, termed metal–organic framework-901 (MOF-901), was prepared using a strategy that combines the chemistry of MOFs and covalent–organic frameworks (COFs). This strategy involves in situ generation of an amine-functionalized titanium oxo cluster, Ti6O6(OCH3)6(AB)6 (AB = 4-aminobenzoate), which was linked with benzene-1,4-dialdehyde using imine condensation reactions, typical of COFs. The crystal structure of MOF-901 is composed of hexagonal porous layers that are likely stacked in staggered conformation (hxl topology). This MOF represents the first example of combining metal cluster chemistry with dynamic organic covalent bond formation to give a new crystalline, extended framework of titaniummore » metal, which is rarely used in MOFs. The incorporation of Ti(IV) units made MOF-901 useful in the photocatalyzed polymerization of methyl methacrylate (MMA). The resulting polyMMA product was obtained with a high-number-average molar mass (26 850 g mol–1) and low polydispersity index (1.6), which in many respects are better than those achieved by the commercially available photocatalyst (P-25 TiO2). Additionally, the catalyst can be isolated, reused, and recycled with no loss in performance.« less

  9. Preparation and performance study of MgFe2O4/metal-organic framework composite for rapid removal of organic dyes from water

    NASA Astrophysics Data System (ADS)

    Tian, Huairu; Peng, Jun; Lv, Tingting; Sun, Chen; He, Hua

    2018-01-01

    In present study, a stable and magnetic metal-organic framework (MOF) material was synthesized by simple solvothermal method as adsorbent to rapid removal of two organic dyes, the Rhodamine B (RB) and Rhodamine 6G (Rh6G), in water samples. The prepared material showed great characteristics of large surface area (519.86 m2 g-1), excellent magnetic responsivity (35.00 emu g-1) and rapid removal (within 5 min). Maximum adsorption capacities of the magnetic material toward RB and Rh6G were up to 219.78 and 306.75 mg g-1, respectively. Adsorption kinetics suggested the adsorption process met the pseudo-second-order kinetic model. The prepared material could be reused at least 10 times by washing with acetonitrile solution, the relative standard deviation (RSD) of these ten cycles removal efficiency was 4.8%. In conclusion, good chemical inertness, a mechanical/water stability and super-hydrophilicity feature made this MOF a promising adsorbent for targets removal from environmental water sample.

  10. Two zeolite-type frameworks in one metal-organic framework with Zn24 @Zn104 cube-in-sodalite architecture.

    PubMed

    Bu, Fei; Lin, Qipu; Zhai, Quanguo; Wang, Le; Wu, Tao; Zheng, Shou-Tian; Bu, Xianhui; Feng, Pingyun

    2012-08-20

    Two in one: A metal-organic framework obtained from three different inorganic building blocks (tetrameric Zn(4) O, trimeric Zn(3) OH, and monomeric Zn) posseses a nested cage-in-cage and framework-in-framework architecture. 24 Zn(4) O tetramers and eight Zn monomers form a sodalite cage into which a cubic cage made from eight Zn(3) (OH) trimers is nestled. Eight monomeric Zn(2+) centers interconnect these two cages. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Planar Heterojunction Perovskite Solar Cells Incorporating Metal-Organic Framework Nanocrystals.

    PubMed

    Chang, Ting-Hsiang; Kung, Chung-Wei; Chen, Hsin-Wei; Huang, Tzu-Yen; Kao, Sheng-Yuan; Lu, Hsin-Che; Lee, Min-Han; Boopathi, Karunakara Moorthy; Chu, Chih-Wei; Ho, Kuo-Chuan

    2015-11-25

    Zr-based porphyrin metal-organic framework (MOF-525) nanocrystals with a crystal size of about 140 nm are synthesized and incorporated into perovskite solar cells. The morphology and crystallinity of the perovskite thin film are enhanced since the micropores of MOF-525 allow the crystallization of perovskite to occur inside; this observation results in a higher cell efficiency of the obtained MOF/perovskite solar cell. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Gel-based morphological design of zirconium metal-organic frameworks.

    PubMed

    Bueken, Bart; Van Velthoven, Niels; Willhammar, Tom; Stassin, Timothée; Stassen, Ivo; Keen, David A; Baron, Gino V; Denayer, Joeri F M; Ameloot, Rob; Bals, Sara; De Vos, Dirk; Bennett, Thomas D

    2017-05-01

    The ability of metal-organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the first examples of xero- or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr 4+ -based MOFs: UiO-66-X (X = H, NH 2 , NO 2 , (OH) 2 ), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO 2 . Electron microscopy, combined with N 2 physisorption experiments, was used to show that irregular nanoparticle packing leads to pure MOF monoliths with hierarchical pore systems, featuring both intraparticle micropores and interparticle mesopores. Finally, UiO-66 gels were shaped into monolithic spheres of 600 μm diameter using an oil-drop method, creating promising candidates for packed-bed catalytic or adsorptive applications, where hierarchical pore systems can greatly mitigate mass transfer limitations.

  13. Nanomechanical investigation of thin-film electroceramic/metal-organic framework multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Best, James P., E-mail: james.best@empa.ch, E-mail: engelbert.redel@kit.edu, E-mail: christof.woell@kit.edu; Michler, Johann; Maeder, Xavier

    2015-09-07

    Thin-film multilayer stacks of mechanically hard magnetron sputtered indium tin oxide (ITO) and mechanically soft highly porous surface anchored metal-organic framework (SURMOF) HKUST-1 were studied using nanoindentation. Crystalline, continuous, and monolithic surface anchored MOF thin films were fabricated using a liquid-phase epitaxial growth method. Control over respective fabrication processes allowed for tuning of the thickness of the thin film systems with a high degree of precision. It was found that the mechanical indentation of such thin films is significantly affected by the substrate properties; however, elastic parameters were able to be decoupled for constituent thin-film materials (E{sub ITO} ≈ 96.7 GPa, E{sub HKUST−1} ≈ 22.0 GPa).more » For indentation of multilayer stacks, it was found that as the layer thicknesses were increased, while holding the relative thickness of ITO and HKUST-1 constant, the resistance to deformation was significantly altered. Such an observation is likely due to small, albeit significant, changes in film texture, interfacial roughness, size effects, and controlling deformation mechanism as a result of increasing material deposition during processing. Such effects may have consequences regarding the rational mechanical design and utilization of MOF-based hybrid thin-film devices.« less

  14. Molecular simulations of self-assembly processes in metal-organic frameworks: Model dependence

    NASA Astrophysics Data System (ADS)

    Biswal, Debasmita; Kusalik, Peter G.

    2017-07-01

    Molecular simulation is a powerful tool for investigating microscopic behavior in various chemical systems, where the use of suitable models is critical to successfully reproduce the structural and dynamic properties of the real systems of interest. In this context, molecular dynamics simulation studies of self-assembly processes in metal-organic frameworks (MOFs), a well-known class of porous materials with interesting chemical and physical properties, are relatively challenging, where a reasonably accurate representation of metal-ligand interactions is anticipated to play an important role. In the current study, we both investigate the performance of some existing models and introduce and test new models to help explore the self-assembly in an archetypal Zn-carboxylate MOF system. To this end, the behavior of six different Zn-ion models, three solvent models, and two ligand models was examined and validated against key experimental structural parameters. To explore longer time scale ordering events during MOF self-assembly via explicit solvent simulations, it is necessary to identify a suitable combination of simplified model components representing metal ions, organic ligands, and solvent molecules. It was observed that an extended cationic dummy atom (ECDA) Zn-ion model combined with an all-atom carboxylate ligand model and a simple dipolar solvent model can reproduce characteristic experimental structures for the archetypal MOF system. The successful use of these models in extensive sets of molecular simulations, which provide key insights into the self-assembly mechanism of this archetypal MOF system occurring during the early stages of this process, has been very recently reported.

  15. Thermodynamic and Kinetic Effects in the Crystallization of Metal-Organic Frameworks.

    PubMed

    Cheetham, Anthony K; Kieslich, G; Yeung, H H-M

    2018-03-20

    The evolution of metal-organic frameworks (MOFs) has been one of the most exciting aspects of materials chemistry over the last 20 years. In this Account, we discuss the development during this period in our understanding of the factors that control the crystallization of MOFs from solution. Both classical porous MOFs and dense MOF phases are considered. This is an opportune time at which to examine this complex area because the experimental tools now available to interrogate crystallization processes have matured significantly in the last 5 years, particularly with the use of in situ synchrotron X-ray diffraction. There have also been impressive developments in the use of density functional theory (DFT) to treat not only the energies of very complex structures but also their entropies. This is particularly important in MOF frameworks because of their much greater flexibility compared with inorganic structures such as zeolites. The first section of the Account describes how early empirical observations on the crystallization of dense MOFs pointed to a strong degree of thermodynamic control, with both enthalpic and entropic factors playing important roles. For example, reactions at higher temperatures tend to lead to denser structures with higher degrees of framework connectivity and lower levels of solvation, and polymorphs tend to form according to their thermodynamic stabilities. In the case of metal tartrates, these trends have been validated by calorimetric studies. It has been clear for more than a decade, however, that certain phases crystallize under kinetic control, especially when a change in conformation of the ligand or coordination around a metal center might be necessary to form the thermodynamically preferred product. We describe how this can lead to time-dependent crystallization processes that evolve according to the Ostwald rule of stages and can be observed by in situ methods. We then consider the crystallization of porous MOFs, which presents

  16. Metal-organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy.

    PubMed

    Chaemchuen, Somboon; Kabir, Nawsad Alam; Zhou, Kui; Verpoort, Francis

    2013-12-21

    In the midst of the global climate change phenomenon, mainly caused by fossil fuel burning to provide energy for our daily life and discharge of CO2 into the atmosphere, biogas is one of the important renewable energy sources that can be upgraded and applied as a fuel source for energy in daily life. The advantages of the production of hybrid materials, metal-organic framework (MOF) adsorbents, expected for the biogas upgrading, rely on the bulk separation of CO2 under near-ambient conditions. This review highlights the challenges for MOF adsorbents, which have the greatest upgrading abilities for biogas via selective passage of methane. The key factors improving the ideal MOF materials for these high CO2 capture and selectivity uses for biogas upgrading to produce bio-methane and reduce fossil-fuel CO2 emission will be discussed.

  17. Structural characterization of framework-gas interactions in the metal-organic framework Co2(dobdc) by in situ single-crystal X-ray diffraction.

    PubMed

    Gonzalez, Miguel I; Mason, Jarad A; Bloch, Eric D; Teat, Simon J; Gagnon, Kevin J; Morrison, Gregory Y; Queen, Wendy L; Long, Jeffrey R

    2017-06-01

    The crystallographic characterization of framework-guest interactions in metal-organic frameworks allows the location of guest binding sites and provides meaningful information on the nature of these interactions, enabling the correlation of structure with adsorption behavior. Here, techniques developed for in situ single-crystal X-ray diffraction experiments on porous crystals have enabled the direct observation of CO, CH 4 , N 2 , O 2 , Ar, and P 4 adsorption in Co 2 (dobdc) (dobdc 4- = 2,5-dioxido-1,4-benzenedicarboxylate), a metal-organic framework bearing coordinatively unsaturated cobalt(ii) sites. All these molecules exhibit such weak interactions with the high-spin cobalt(ii) sites in the framework that no analogous molecular structures exist, demonstrating the utility of metal-organic frameworks as crystalline matrices for the isolation and structural determination of unstable species. Notably, the Co-CH 4 and Co-Ar interactions observed in Co 2 (dobdc) represent, to the best of our knowledge, the first single-crystal structure determination of a metal-CH 4 interaction and the first crystallographically characterized metal-Ar interaction. Analysis of low-pressure gas adsorption isotherms confirms that these gases exhibit mainly physisorptive interactions with the cobalt(ii) sites in Co 2 (dobdc), with differential enthalpies of adsorption as weak as -17(1) kJ mol -1 (for Ar). Moreover, the structures of Co 2 (dobdc)·3.8N 2 , Co 2 (dobdc)·5.9O 2 , and Co 2 (dobdc)·2.0Ar reveal the location of secondary (N 2 , O 2 , and Ar) and tertiary (O 2 ) binding sites in Co 2 (dobdc), while high-pressure CO 2 , CO, CH 4 , N 2 , and Ar adsorption isotherms show that these binding sites become more relevant at elevated pressures.

  18. Graphene-Templated Synthesis of Magnetic Metal Organic Framework Nanocomposites for Selective Enrichment of Biomolecules.

    PubMed

    Cheng, Gong; Wang, Zhi-Gang; Denagamage, Sachira; Zheng, Si-Yang

    2016-04-27

    Successful control of homogeneous and complete coating of graphene or graphene-based composites with well-defined metal organic framework (MOF) layers is a great challenge. Herein, novel magnetic graphene MOF composites were constructed via a simple strategy for self-assembly of well-distributed, dense, and highly porous MOFs on both sides of graphene nanosheets. Graphene functionalized with magnetic nanoparticles and carboxylic groups on both sides was explored as the backbone and template to direct the controllable self-assembly of MOFs. The prepared composite materials have a relatively high specific surface area (345.4 m(2) g(-1)), and their average pore size is measured to be 3.2 nm. Their relatively high saturation magnetization (23.8 emu g(-1)) indicates their strong magnetism at room temperature. Moreover, the multifunctional composite was demonstrated to be a highly effective affinity material in selective extraction and separation of low-concentration biomolecules from biological samples, in virtue of the size-selection property of the unique porous structure and the excellent affinity of the composite materials. Besides providing a solution for the construction of well-defined functional graphene-based MOFs, this work could also contribute to selective extraction of biomolecules, in virtue of the universal affinity between immobilized metal ions and biomolecules.

  19. Design of Single-Site Photocatalyst using Metal-Organic Framework as Matrix.

    PubMed

    Wen, Meicheng; Mori, Kohsuke; Kuwahara, Yasutaka; An, Taicheng; Yamashita, Hiromi

    2018-05-14

    Single-site photocatalyst generally displays excellent photocatalytic activtiy and considerable high stability as compared to homogeneous catalytic system. A rational structural design of single-site photocatalyst with isolated, uniform and spatially separated active sites in a given solid is of prime importance to achieve high photocatalytic activity. Intense attentions have been focused on the engineering and fabrication of single-site photocatalys by using porous materials as platform. Metal-organic frameworks (MOFs) hold great potential for the design and fabrication of single-site photocatalysts due to their remarkable porosity, ultrahigh surface area, extraordinary tailorability and significant diversity. MOFs can provide abundant number of binding sites for anchoring active sites, result in significant enhancement of photocatalytic performance. In this focus review, the development of single-site MOF photocatalysts that perform in important and challenging chemical redox reaction such as photocatalytic water splitting, photocatalytic CO₂ conversion and organic transformations is summarized thoroughly. The successful strategies applied for the construction of single-site MOF photocatalysts and major challenge toward practical application was summarized and pointed out, respectively. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Iron Containing Metal-Organic Frameworks: Structure, Synthesis, and Applications in Environmental Remediation.

    PubMed

    Liu, Xiaocheng; Zhou, Yaoyu; Zhang, Jiachao; Tang, Lin; Luo, Lin; Zeng, Guangming

    2017-06-21

    Metal-organic frameworks (MOFs) with Fe content are gradually developing into an independent branch in environmental remediation, requiring economical, effective, low-toxicity strategies to the complete procedure. In this review, recent advancements in the structure, synthesis, and environmental application focusing on the mechanism are presented. The unique structure of novel design proposed specific characteristics of different iron-containing MOFs with potential innovation. Synthesis of typical MILs, NH 2 -MILs and MILs based materials reveal the basis and defect of the current method, indicating the optimal means for the actual requirements. The adsorption of various contamination with multiple interaction as well as the catalytic degradation over radicals or electron-hole pairs are reviewed. This review implied considerable prospects of iron-containing MOFs in the field of environment and a more comprehensive cognition into the challenges and potential improvement.

  1. Electronic and structural properties of M3(HITP)2 (M = Ni, Cu and Co) metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Silveira, Orlando; Chacham, Helio; Alexandre, Simone

    Theoretical and experimental works have demonstrated that electrical and structural properties of metal-organic frameworks (MOF) can be significantly changed by the identity of the metal center, leading to a potential strategy for tuning the selectivity of the material toward different types of technological applications. In this work, we use first principle calculations to investigate the electronic properties of 2D MOF M3(HITP)2 (M is Ni, Cu and Co and HITP = 2,3,6,7,10,11 - hexaiminotriphenylene). Our results show that for M=Ni and Co, the structures are perfect planar and there is a full charge delocalization in the 2D plane of stacking due to the predominance of π - π bonding. The band structure for M = Ni shows that this material is a semiconductor with an indirect band gap of 132 meV, whilst for M = Co the band structure shows that this material is a ferromagnetic semiconductor with a direct band gap of 386 meV for spin down and a indirect band gap of 246 meV for spin up. For M=Cu, the material is a metal and adopts a distorted structure due to a different hybridization of the metal atom in comparison with its counterparts. We also propose a tight binding model that can represent the electronic structure near the Fermi level of this family of MOF.

  2. Programmable Topology in New Families of Heterobimetallic Metal-Organic Frameworks.

    PubMed

    Muldoon, Patrick F; Liu, Chong; Miller, Carson C; Koby, S Benjamin; Gamble Jarvi, Austin; Luo, Tian-Yi; Saxena, Sunil; O'Keeffe, Michael; Rosi, Nathaniel L

    2018-05-09

    Using diverse building blocks, such as different heterometallic clusters, in metal-organic framework (MOF) syntheses greatly increases MOF complexity and leads to emergent synergistic properties. However, applying reticular chemistry to syntheses involving more than two molecular building blocks is challenging and there is limited progress in this area. We are therefore motivated to develop a strategy for achieving systematic and differential control over the coordination of multiple metals in MOFs. Herein, we report the design and synthesis of a diverse series of heterobimetallic MOFs with different metal ions and clusters severally distributed throughout two or three inorganic secondary building units (SBUs). By taking advantage of the bifunctional isonicotinate linker and its derivatives, which can coordinatively distinguish between early and late transition metals, we control the assembly and topology of up to three different inorganic SBUs in one-pot solvothermal reactions. Specifically, M 6 (μ 3 -O) n (μ 3 -OH) 8- n (CO 2 ) 12 (M = Zr 4+ , Hf 4+ , Dy 3+ ) SBUs are formed along with metal-pyridyl complexes. By controlling the geometry of the metal-pyridyl complexes, we direct the overall topology to produce eight new MOFs with fcu, ftw, and previously unreported trinodal pfm crystallographic nets.

  3. Surface-supported metal-organic framework thin films: fabrication methods, applications, and challenges.

    PubMed

    Liu, Jinxuan; Wöll, Christof

    2017-10-02

    Surface-supported metal-organic framework thin films are receiving increasing attention as a novel form of nanotechnology. New deposition techniques that enable the control of the film thickness, homogeneity, morphology, and dimensions with a huge number of metal-organic framework compounds offer tremendous opportunities in a number of different application fields. In response to increasing demands for environmental sustainability and cleaner energy, much effort in recent years has been devoted to the development of MOF thin films for applications in photovoltaics, CO 2 reduction, energy storage, water splitting, and electronic devices, as well as for the fabrication of membranes. Although existing applications are promising and encouraging, MOF thin films still face numerous challenges, including the need for a more thorough understanding of the thin-film growth mechanism, stability of the internal and external interfaces, strategies for doping and models for charge carrier transport. In this paper, we review the recent advances in MOF thin films, including fabrication and patterning strategies and existing nanotechnology applications. We conclude by listing the most attractive future opportunities as well as the most urgent challenges.

  4. Platinum–nickel frame within metal-organic framework fabricated in situ for hydrogen enrichment and molecular sieving

    PubMed Central

    Li, Zhi; Yu, Rong; Huang, Jinglu; Shi, Yusheng; Zhang, Diyang; Zhong, Xiaoyan; Wang, Dingsheng; Wu, Yuen; Li, Yadong

    2015-01-01

    Developing catalysts that provide the effective activation of hydrogen and selective absorption of substrate on metal surface is crucial to simultaneously improve activity and selectivity of hydrogenation reaction. Here we present an unique in situ etching and coordination synthetic strategy for exploiting a functionalized metal-organic framework to incorporate the bimetallic platinum–nickel frames, thereby forming a frame within frame nanostructure. The as-grown metal-organic framework serves as a ‘breath shell' to enhance hydrogen enrichment and activation on platinum–nickel surface. More importantly, this framework structure with defined pores can provide the selective accessibility of molecules through its one-dimensional channels. In a mixture containing four olefins, the composite can selectively transport the substrates smaller than its pores to the platinum–nickel surface and catalyse their hydrogenation. This molecular sieve effect can be also applied to selectively produce imines, which are important intermediates in the reductive imination of nitroarene, by restraining further hydrogenation via cascade processes. PMID:26391605

  5. Ligand combination strategy for the preparation of novel low-dimensional and open-framework metal cluster materials

    NASA Astrophysics Data System (ADS)

    Anokhina, Ekaterina V.

    Low-dimensional and open-framework materials containing transition metals have a wide range of applications in redox catalysis, solid-state batteries, and electronic and magnetic devices. This dissertation reports on research carried out with the goal to develop a strategy for the preparation of low-dimensional and open-framework materials using octahedral metal clusters as building blocks. Our approach takes its roots from crystal engineering principles where the desired framework topologies are achieved through building block design. The key idea of this work is to induce directional bonding preferences in the cluster units using a combination of ligands with a large difference in charge density. This investigation led to the preparation and characterization of a new family of niobium oxychloride cluster compounds with original structure types exhibiting 1ow-dimensional or open-framework character. Most of these materials have framework topologies unprecedented in compounds containing octahedral clusters. Comparative analysis of their structural features indicates that the novel cluster connectivity patterns in these systems are the result of complex interplay between the effects of anisotropic ligand arrangement in the cluster unit and optimization of ligand-counterion electrostatic interactions. The important role played by these factors sets niobium oxychloride systems apart from cluster compounds with one ligand type or statistical ligand distribution where the main structure-determining factor is the total number of ligands. These results provide a blueprint for expanding the ligand combination strategy to other transition metal cluster systems and for the future rational design of cluster-based materials.

  6. Three-Dimensional Networked Metal-Organic Frameworks with Conductive Polypyrrole Tubes for Flexible Supercapacitors.

    PubMed

    Xu, Xingtao; Tang, Jing; Qian, Huayu; Hou, Shujin; Bando, Yoshio; Hossain, Md Shahriar A; Pan, Likun; Yamauchi, Yusuke

    2017-11-08

    Metal-organic frameworks (MOFs) with high porosity and a regular porous structure have emerged as a promising electrode material for supercapacitors, but their poor electrical conductivity limits their utilization efficiency and capacitive performance. To increase the overall electrical conductivity as well as the efficiency of MOF particles, three-dimensional networked MOFs are developed via using preprepared conductive polypyrrole (PPy) tubes as the support for in situ growth of MOF particles. As a result, the highly conductive PPy tubes that run through the MOF particles not only increase the electron transfer between MOF particles and maintain the high effective porosity of the MOFs but also endow the MOFs with flexibility. Promoted by such elaborately designed MOF-PPy networks, the specific capacitance of MOF particles has been increased from 99.2 F g -1 for pristine zeolitic imidazolate framework (ZIF)-67 to 597.6 F g -1 for ZIF-PPy networks, indicating the importance of the design of the ZIF-PPy continuous microstructure. Furthermore, a flexible supercapacitor device based on ZIF-PPy networks shows an outstanding areal capacitance of 225.8 mF cm -2 , which is far above other MOFs-based supercapacitors reported up to date, confirming the significance of in situ synthetic chemistry as well as the importance of hybrid materials on the nanoscale.

  7. Adsorptive removal and separation of chemicals with metal-organic frameworks: Contribution of π-complexation.

    PubMed

    Khan, Nazmul Abedin; Jhung, Sung Hwa

    2017-03-05

    Efficient removal and separation of chemicals from the environment has become a vital issue from a biological and environmental point of view. Currently, adsorptive removal/separation is one of the most promising approaches for cleaning purposes. Selective adsorption/removal of various sulfur- and nitrogen-containing compounds, olefins, and π-electron-rich gases via π-complex formation between an adsorbent and adsorbate molecules is very competitive. Porous metal-organic framework (MOF) materials are very promising in the adsorption/separation of various liquids and gases owing to their distinct characteristics. This review summarizes the literature on the adsorptive removal/separation of various π-electron-rich compounds mainly from fuel and gases using MOF materials containing metal ions that are active for π-complexation. Details of the π-complexation, including mechanism, pros/cons, applications, and efficient ways to form the complex, are discussed systematically. For in-depth understanding, molecular orbital calculations regarding charge transfer between the π-complexing species are also explained in a separate section. From this review, readers will gain an understanding of π-complexation for adsorption and separation, especially with MOFs, to develop new insight for future research. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A rapid microwave-assisted synthesis of a sodium-cadmium metal-organic framework having improved performance as a CO2 adsorbent for CCS.

    PubMed

    Palomino Cabello, Carlos; Arean, Carlos Otero; Parra, José B; Ania, Conchi O; Rumori, P; Turnes Palomino, G

    2015-06-07

    We report on a facile and rapid microwave-assisted method for preparing a sodium-cadmium metal-organic framework (having coordinatively unsaturated sodium ions) that considerably shortens the conventional synthesis time from 5 days to 1 hour. The obtained (Na,Cd)-MOF showed an excellent volumetric CO2 adsorption capacity (5.2 mmol cm(-3) at 298 K and 1 bar) and better CO2 adsorption properties than those shown by the same metal-organic framework when synthesized following a more conventional procedure. Moreover, the newly prepared material was found to display high selectivity for adsorption of carbon dioxide over nitrogen, and good regenerability and stability during repeated CO2 adsorption-desorption cycles, which are the required properties for any adsorbent intended for carbon dioxide capture and sequestration (CSS) from the post-combustion flue gas of fossil fuelled power stations.

  9. Computational discovery of metal-organic frameworks with high gas deliverable capacity

    NASA Astrophysics Data System (ADS)

    Bao, Yi

    Metal-organic frameworks (MOFs) are a rapidly emerging class of nanoporous materials with largely tunable chemistry and diverse applications in gas storage, gas purification, catalysis, sensing and drug delivery. Efforts have been made to develop new MOFs with desirable properties both experimentally and computationally for decades. To guide experimental synthesis, we here develop a computational methodology to explore MOFs with high gas deliverable capacity. This de novo design procedure applies known chemical reactions, considers synthesizability and geometric requirements of organic linkers, and efficiently evolves a population of MOFs to optimize a desirable property. We identify 48 MOFs with higher methane deliverable capacity at 65-5.8 bar condition than the MOF-5 reference in nine networks. In a more comprehensive work, we predict two sets of MOFs with high methane deliverable capacity at a 65-5.8 bar loading-delivery condition or a 35-5.8 bar loading-delivery condition. We also optimize a set of MOFs with high methane accessible internal surface area to investigate the relationship between deliverable capacities and internal surface area. This methodology can be extended to MOFs with multiple types of linkers and multiple SBUs. Flexibile MOFs may allow for sophisticated heat management strategies and also provide higher gas deliverable capacity than rigid frameworks. We investigate flexible MOFs, such as MIL-53 families, and Fe(bdp) and Co(bdp) analogs, to understand the structural phase transition of frameworks and the resulting influence on heat of adsorption. Challenges of simulating a system with a flexible host structure and incoming guest molecules are discussed. Preliminary results from isotherm simulation using the hybrid MC/MD simulation scheme on MIL-53(Cr) are presented. Suggestions for proceeding to understand the free energy profile of flexible MOFs are provided.

  10. Construction of flexible metal-organic framework (MOF) papers through MOF growth on filter paper and their selective dye capture.

    PubMed

    Park, Jeehyun; Oh, Moonhyun

    2017-09-14

    The conjugation of metal-organic frameworks (MOFs) with other materials is an excellent strategy for the production of advanced materials having desired properties and so appropriate applicability. In particular, the integration of MOFs with a flexible paper is expected to form valuable materials in separation technology. Here we report a simple method for the generation of MOF papers through the compact and uniform growth of MOF nanoparticles on the cellulose surface of a carboxymethylated filter paper. The resulting MOF papers show a selective capture ability for negatively charged organic dyes and they can be used for dye separation through simple filtration of a dye solution on the MOF papers. In addition, MOF papers can be reused after a simple washing process without losing their effective dye capture ability.

  11. Structure-directing effects of ionic liquids in the ionothermal synthesis of metal-organic frameworks.

    PubMed

    Vaid, Thomas P; Kelley, Steven P; Rogers, Robin D

    2017-07-01

    Traditional synthesis of metal-organic frameworks (MOFs) involves the reaction of a metal-containing precursor with an organic linker in an organic solvent at an elevated temperature, in what is termed a 'solvothermal' reaction. More recently, many examples have been reported of MOF synthesis in ionic liquids (ILs), rather than an organic solvent, in 'ionothermal' reactions. The high concentration of both cations and anions in an ionic liquid allows for the formation of new MOF structures in which the IL cation or anion or both are incorporated into the MOF. Most commonly, the IL cation is included in the open cavities of the MOF, countering the anionic charge of the MOF framework itself and acting as a template around which the MOF structure forms. Ionic liquids can also serve other structure-directing roles, for example, when an IL containing a single enantiomer of a chiral anion leads to a homochiral MOF, even though the IL anion is not itself incorporated into the MOF. A comprehensive review of ionothermal syntheses of MOFs, and the structure-directing effects of the ILs, is given.

  12. Nano- and microsized cubic gel particles from cyclodextrin metal-organic frameworks.

    PubMed

    Furukawa, Yuki; Ishiwata, Takumi; Sugikawa, Kouta; Kokado, Kenta; Sada, Kazuki

    2012-10-15

    Sweet cube o' mine: Bottom-up control of gel particles has been regarded as a great challenge. By employing internal cross-linking of cyclodextrin metal-organic frameworks, cubic sugar gels were formed with sharp edges that reflect the shape of the crystals. This enabled the fabrication of shape- and size-controlled polymer gels from porous crystals (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A malonitrile-functionalized metal-organic framework for hydrogen sulfide detection and selective amino acid molecular recognition

    NASA Astrophysics Data System (ADS)

    Li, Haiwei; Feng, Xiao; Guo, Yuexin; Chen, Didi; Li, Rui; Ren, Xiaoqian; Jiang, Xin; Dong, Yuping; Wang, Bo

    2014-03-01

    A novel porous polymeric fluorescence probe, MN-ZIF-90, has been designed and synthesized for quantitative hydrogen sulfide (H2S) fluorescent detection and highly selective amino acid recognition. This distinct crystalline structure, derived from rational design and malonitrile functionalization, can trigger significant enhancement of its fluorescent intensity when exposed to H2S or cysteine molecules. Indeed this new metal-organic framework (MOF) structure shows high selectivity of biothiols over other amino acids and exhibits favorable stability. Moreover, in vitro viability assays on HeLa cells show low cytotoxicity of MN-ZIF-90 and its imaging contrast efficiency is further demonstrated by fluorescence microscopy studies. This facile yet powerful strategy also offers great potential of using open-framework materials (i.e. MOFs) as the novel platform for sensing and other biological applications.

  14. Bridging Zirconia Nodes within a Metal-Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires.

    PubMed

    Platero-Prats, Ana E; League, Aaron B; Bernales, Varinia; Ye, Jingyun; Gallington, Leighanne C; Vjunov, Aleksei; Schweitzer, Neil M; Li, Zhanyong; Zheng, Jian; Mehdi, B Layla; Stevens, Andrew J; Dohnalkova, Alice; Balasubramanian, Mahalingam; Farha, Omar K; Hupp, Joseph T; Browning, Nigel D; Fulton, John L; Camaioni, Donald M; Lercher, Johannes A; Truhlar, Donald G; Gagliardi, Laura; Cramer, Christopher J; Chapman, Karena W

    2017-08-02

    Metal-organic frameworks (MOFs), with their well-ordered pore networks and tunable surface chemistries, offer a versatile platform for preparing well-defined nanostructures wherein functionality such as catalysis can be incorporated. Notably, atomic layer deposition (ALD) in MOFs has recently emerged as a versatile approach to functionalize MOF surfaces with a wide variety of catalytic metal-oxo species. Understanding the structure of newly deposited species and how they are tethered within the MOF is critical to understanding how these components couple to govern the active material properties. By combining local and long-range structure probes, including X-ray absorption spectroscopy, pair distribution function analysis, and difference envelope density analysis, with electron microscopy imaging and computational modeling, we resolve the precise atomic structure of metal-oxo species deposited in the MOF NU-1000 through ALD. These analyses demonstrate that deposition of NiO x H y clusters occurs selectively within the smallest pores of NU-1000, between the zirconia nodes, serving to connect these nodes along the c-direction to yield heterobimetallic metal-oxo nanowires. This bridging motif perturbs the NU-1000 framework structure, drawing the zirconia nodes closer together, and also underlies the sintering resistance of these clusters during the hydrogenation of light olefins.

  15. Are metal-organic frameworks able to provide a new generation of solid-phase microextraction coatings? - A review.

    PubMed

    Rocío-Bautista, Priscilla; Pacheco-Fernández, Idaira; Pasán, Jorge; Pino, Verónica

    2016-10-05

    Solid-phase microextraction (SPME) is a powerful technique commonly used in sample preparation for extraction/preconcentration of analytes from a wide variety of samples. Among the trends in improving SPME applications, current investigations are focused on the development of novel coatings able to improve the extraction efficiency, sensitivity, and thermal and mechanical stability, within other properties, of current commercial SPME fibers. Metal-organic frameworks (MOFs) merit to be highlighted as promising sorbent materials in SPME schemes. MOFs are porous hybrid materials composed by metal ions and organic linkers, presenting the highest surface areas known, with ease synthesis and high tuneability, together with adequate chemical and thermal stability. For MOF based-SPME fibers, it results important to pretreat adequately the SPME supports to ensure the correct formation of the MOF onto the fiber or the attachment MOF-support. This, in turn, will increase the final stability of the fiber while generating uniform coatings. This review provides a critical overview of the current state of the use of MOFs as SPME coatings, not only highlighting the advantages of these materials versus commercial SPME coatings in terms of stability, selectivity, and sensitivity; but also insightfully describing the current methods to obtain reproducible MOF-based SPME coatings. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Highly selective luminescent sensing of picric acid based on a water-stable europium metal-organic framework

    NASA Astrophysics Data System (ADS)

    Xia, Tifeng; Zhu, Fengliang; Cui, Yuanjing; Yang, Yu; Wang, Zhiyu; Qian, Guodong

    2017-01-01

    A water-stable metal-organic framework (MOF) EuNDC has been synthesized for selective detection of the well-known contaminant and toxicant picric acid (PA) in aqueous solution. Due to the photo-induced electron transfer and self-absorption mechanism, EuNDC displayed rapid, selective and sensitive detection of PA with a detection limit of 37.6 ppb. Recyclability experiments revealed that EuNDC retains its initial luminescent intensity and same quenching efficiency in each cycle, suggesting high photostability and reusability for long-term sensing applications. The excellent detection performance of EuNDC makes it a promising PA sensing material for practical applications.

  17. 2D Metal-Organic Frameworks Derived Nanocarbon Arrays for Substrate Enhancement in Flexible Supercapacitors.

    PubMed

    Liu, Ximeng; Guan, Cao; Hu, Yating; Zhang, Lei; Elshahawy, Abdelnaby M; Wang, John

    2017-10-27

    Direct assembling of active materials on carbon cloth (CC) is a promising way to achieve flexible electrodes for energy storage. However, the overall surface area and electrical conductivity of such electrodes are usually limited. Herein, 2D metal-organic framework derived nanocarbon nanowall (MOFC) arrays are successfully developed on carbon cloth by a facile solution + carbonization process. Upon growth of the MOFC arrays, the sites for growth of the active materials are greatly increased, and the equivalent series resistance is decreased, which contribute to the enhancement of the bare CC substrate. After decorating ultrathin flakes of MnO 2 and Bi 2 O 3 on the flexible CC/MOFC substrate, the hierarchical electrode materials show an abrupt improvement of areal capacitances by around 50% and 100%, respectively, compared to those of the active materials on pristine carbon cloth. A flexible supercapacitor can be further assembled using two hierarchical electrodes, which demonstrates an energy density of 124.8 µWh cm -2 at the power density of 2.55 mW cm -2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Text Mining Metal-Organic Framework Papers.

    PubMed

    Park, Sanghoon; Kim, Baekjun; Choi, Sihoon; Boyd, Peter G; Smit, Berend; Kim, Jihan

    2018-02-26

    We have developed a simple text mining algorithm that allows us to identify surface area and pore volumes of metal-organic frameworks (MOFs) using manuscript html files as inputs. The algorithm searches for common units (e.g., m 2 /g, cm 3 /g) associated with these two quantities to facilitate the search. From the sample set data of over 200 MOFs, the algorithm managed to identify 90% and 88.8% of the correct surface area and pore volume values. Further application to a test set of randomly chosen MOF html files yielded 73.2% and 85.1% accuracies for the two respective quantities. Most of the errors stem from unorthodox sentence structures that made it difficult to identify the correct data as well as bolded notations of MOFs (e.g., 1a) that made it difficult identify its real name. These types of tools will become useful when it comes to discovering structure-property relationships among MOFs as well as collecting a large set of data for references.

  19. Stable metal-organic frameworks as a host platform for catalysis and biomimetics.

    PubMed

    Qin, Jun-Sheng; Yuan, Shuai; Lollar, Christina; Pang, Jiandong; Alsalme, Ali; Zhou, Hong-Cai

    2018-04-24

    Recent years have witnessed the exploration and synthesis of an increasing number of metal-organic frameworks (MOFs). The utilization of stable MOFs as a platform for catalysis and biomimetics is discussed. This Feature Article will provide insights into the rational design and synthesis of three types of stable MOF catalysts on the basis of structural features of MOFs, that is, (i) MOF catalysts with catalytic sites on metal nodes, (ii) MOF catalysts with catalytic sites immobilized in organic struts, and (iii) MOF catalysts with catalytic centres encapsulated in the pores. Then, MOFs used in biomimetics including biomimetic mineralization, biosensors and biomimetic replication are introduced. Finally, a discussion on the challenges that must be addressed for successful implementation of MOFs in catalysis and biomimetics is presented.

  20. Biomimicry in metal-organic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, MW; Gu, ZY; Bosch, M

    2015-06-15

    Nature has evolved a great number of biological molecules which serve as excellent constructional or functional units for metal-organic materials (MOMs). Even though the study of biomimetic MOMs is still at its embryonic stage, considerable progress has been made in the past few years. In this critical review, we will highlight the recent advances in the design, development and application of biomimetic MOMs, and illustrate how the incorporation of biological components into MOMs could further enrich their structural and functional diversity. More importantly, this review will provide a systematic overview of different methods for rational design of MOMs with biomimeticmore » features. Published by Elsevier B.V.« less

  1. Development of new inorganic luminescent materials by organic-metal complex route

    NASA Astrophysics Data System (ADS)

    Manavbasi, Alp

    The development of novel inorganic luminescent materials has provided important improvements in lighting, display, and other technologically-important optical devices. The optical characteristics of inorganic luminescent materials (phosphors) depend on their physicochemical characteristics, including the atomic structure, homogeneity in composition, microstructure, defects, and interfaces which are all controlled by thermodynamics and kinetics of synthesis from various raw materials. A large variety of technologically-important phosphors have been produced using conventional high-temperature solid-state methods. For the synthesis of functional ceramic materials with ionic dopants in a host lattice, (such as phosphors), synthesis using organic-metal complex methods and other wet chemistry routes have been found to be excellent techniques. These methods have inherent advantages such as good control of stoichiometry by molecular level of mixing, product homogeneity, simpler synthesis procedures, and use of relatively-low calcination temperatures. Supporting evidence for this claim is accomplished by a comparison of photoluminescence characteristics of a commercially available green phosphor, Zn2SiO4:Mn, with the same material system synthesized by organic-metal synthesis route. In this study, new inorganic luminescent materials were produced using rare-earth elements (Eu3+, Ce3+, Tb3+ ) and transition metals (Cu+, Pb2+) as dopants within the crystalline host lattices; SrZnO2, Ba2YAlO 5, M3Al2O6 (M=Ca,Sr,Ba). These novel phosphors were prepared using the organic-metal complex route. Polyvinyl alcohol, sucrose, and adipic acid were used as the organic component to prepare the ceramic precursors. Materials characterization of the synthesized precursor powders and calcined phosphor samples was performed usingX-Ray Diffraction, Scanning Electron Microscopy, Photon-Correlation spectroscopy, and Fourier Transform Infrared Spectroscopy techniques. In addition to the

  2. Ultra-sensitive Trace-Water Optical Sensor with In situ- synthesized Metal-Organic Framework in Glass Paper.

    PubMed

    Ohira, Shin-Ichi; Nakamura, Nao; Endo, Masaaki; Miki, Yusuke; Hirose, Yasuo; Toda, Kei

    2018-01-01

    Monitoring of trace water in industrial gases is strongly recommended because contaminants cause serious problems during use, especially in the semiconductor industry. An ultra-sensitive trace-water sensor was developed with an in situ-synthesized metal-organic framework as the sensing material. The sample gas is passed through the sensing membrane and efficiently and rapidly collected by the sensing material in the newly designed gas collection/detection cell. The sensing membrane, glass paper impregnated with copper 1,3,5-benzenetricarboxylate (Cu-BTC), is also newly developed. The amount and density of the sensing material in the sensing membrane must be well balanced to achieve rapid and sensitive responses. In the present study, Cu-BTC was synthesized in situ in glass paper. The developed system gave high sensing performances with a limit of detection (signal/noise ratio = 3) of 9 parts per billion by volume (ppbv) H 2 O and a 90% response time of 86 s for 200 ppbv H 2 O. The reproducibility of the responses within and between lots had relative standard deviations for 500 ppbv H 2 O of 0.8% (n = 10) and 1.5% (n = 3), respectively. The long-term (2 weeks) stability was 7.3% for 400 ppbv H 2 O and one-year continuous monitoring test showed the sensitivity change of <∼3% before and after the study. Furthermore, the system response was in good agreement with the response achieved in cavity ring-down spectroscopy. These performances are sufficient for monitoring trace water in industrial gases. The integrated system with light and gas transparent structure for gas collection/absorbance detection can also be used for other target gases, using specific metal-organic frameworks.

  3. Hydrogen adsorption strength and sites in the metal organic framework MOF5: Comparing experiment and model calculations

    NASA Astrophysics Data System (ADS)

    Mulder, F. M.; Dingemans, T. J.; Schimmel, H. G.; Ramirez-Cuesta, A. J.; Kearley, G. J.

    2008-07-01

    Hydrogen adsorption in porous, high surface area, and stable metal organic frameworks (MOF's) appears a novel route towards hydrogen storage materials [N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O'Keeffe, O.M. Yaghi, Science 300 (2003) 1127; J.L.C. Rowsell, A.R. Millward, K. Sung Park, O.M. Yaghi, J. Am. Chem. Soc. 126 (2004) 5666; G. Ferey, M. Latroche, C. Serre, F. Millange, T. Loiseau, A. Percheron-Guegan, Chem. Commun. (2003) 2976; T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Férey, Chem. Eur. J. 10 (2004) 1373]. A prerequisite for such materials is sufficient adsorption interaction strength for hydrogen adsorbed on the adsorption sites of the material because this facilitates successful operation under moderate temperature and pressure conditions. Here we report detailed information on the geometry of the hydrogen adsorption sites, based on the analysis of inelastic neutron spectroscopy (INS). The adsorption energies for the metal organic framework MOF5 equal about 800 K for part of the different sites, which is significantly higher than for nanoporous carbon materials (˜550 K) [H.G. Schimmel, G.J. Kearley, M.G. Nijkamp, C.T. Visser, K.P. de Jong, F.M. Mulder, Chem. Eur. J. 9 (2003) 4764], and is in agreement with what is found in first principles calculations [T. Sagara, J. Klassen, E. Ganz, J. Chem. Phys. 121 (2004) 12543; F.M. Mulder, T.J. Dingemans, M. Wagemaker, G.J. Kearley, Chem. Phys. 317 (2005) 113]. Assignments of the INS spectra is realized using comparison with independently published model calculations [F.M. Mulder, T.J. Dingemans, M. Wagemaker, G.J. Kearley, Chem. Phys. 317 (2005) 113] and structural data [T. Yildirim, M.R. Hartman, Phys. Rev. Lett. 95 (2005) 215504].

  4. Silica-Protection-Assisted Encapsulation of Cu2 O Nanocubes into a Metal-Organic Framework (ZIF-8) To Provide a Composite Catalyst.

    PubMed

    Li, Bo; Ma, Jian-Gong; Cheng, Peng

    2018-06-04

    The integration of metal/metal oxide nanoparticles (NPs) into metal-organic frameworks (MOFs) to form composite materials has attracted great interest due to the broad range of applications. However, to date, it has not been possible to encapsulate metastable NPs with high catalytic activity into MOFs, due to their instability during the preparation process. For the first time, we have successfully developed a template protection-sacrifice (TPS) method to encapsulate metastable NPs such as Cu 2 O into MOFs. SiO 2 was used as both a protective shell for Cu 2 O nanocubes and a sacrificial template for forming a yolk-shell structure. The obtained Cu 2 O@ZIF-8 composite exhibits excellent cycle stability in the catalytic hydrogenation of 4-nitrophenol with high activity. This is the first report of a Cu 2 O@MOF-type composite material. The TPS method provides an efficient strategy for encapsulating unstable active metal/metal oxide NPs into MOFs or maybe other porous materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Block Copolymer-Templated Approach to Nanopatterned Metal-Organic Framework Films.

    PubMed

    Zhou, Meimei; Wu, Yi-Nan; Wu, Baozhen; Yin, Xianpeng; Gao, Ning; Li, Fengting; Li, Guangtao

    2017-08-17

    The fabrication of patterned metal-organic framework (MOF) films with precisely controlled nanoscale resolution has been a fundamental challenge in nanoscience and nanotechnology. In this study, nanopatterned MOF films were fabricated using a layer-by-layer (LBL) growth method on functional templates (such as a bicontinuous nanoporous membrane or a structure with highly long-range-ordered nanoscopic channels parallel to the underlying substrate) generated by the microphase separation of polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymers. HKUST-1 can be directly deposited on the templates without any chemical modification because the pyridine groups in P2VP interact with metal ions via metal-BCP complexes. As a result, nanopatterned HKUST-1 films with feature sizes below 50 nm and controllable thicknesses can be fabricated by controlling the number of LBL growth cycles. The proposed fabrication method further extends the applications of MOFs in various fields. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Trapping guests within a nanoporous metal-organic framework through pressure-induced amorphization.

    PubMed

    Chapman, Karena W; Sava, Dorina F; Halder, Gregory J; Chupas, Peter J; Nenoff, Tina M

    2011-11-23

    The release of guest species from within a nanoporous metal-organic framework (MOF) has been inhibited by amorphization of the guest-loaded framework structure under applied pressure. Thermogravimetric analyses have shown that by amorphizing ZIF-8 following sorption of molecular I(2), a hazardous radiological byproduct of nuclear energy production, the pore apertures in the framework are sufficiently distorted to kinetically trap I(2) and improve I(2) retention. Pair distribution function (PDF) analysis indicates that the local structure of the captive I(2) remains essentially unchanged upon amorphization of the framework, with the amorphization occurring under the same conditions for the vacant and guest-loaded framework. The low, accessible pressure range needed to effect this change in desorption is much lower than in tradition sorbents such as zeolites, opening the possibility for new molecular capture, interim storage, or controlled release applications.

  7. Intercalation of Coordinatively Unsaturated Fe(III) Ion within Interpenetrated Metal-Organic Framework MOF-5.

    PubMed

    Holmberg, Rebecca J; Burns, Thomas; Greer, Samuel M; Kobera, Libor; Stoian, Sebastian A; Korobkov, Ilia; Hill, Stephen; Bryce, David L; Woo, Tom K; Murugesu, Muralee

    2016-06-01

    Coordinatively unsaturated Fe(III) metal sites were successfully incorporated into the iconic MOF-5 framework. This new structure, Fe(III) -iMOF-5, is the first example of an interpenetrated MOF linked through intercalated metal ions. Structural characterization was performed with single-crystal and powder XRD, followed by extensive analysis by spectroscopic methods and solid-state NMR, which reveals the paramagnetic ion through its interaction with the framework. EPR and Mössbauer spectroscopy confirmed that the intercalated ions were indeed Fe(III) , whereas DFT calculations were employed to ascertain the unique pentacoordinate architecture around the Fe(III) ion. Interestingly, this is also the first crystallographic evidence of pentacoordinate Zn(II) within the MOF-5 SBU. This new MOF structure displays the potential for metal-site addition as a framework connector, thus creating further opportunity for the innovative development of new MOF materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Porous Hydrogen-Bonded Organic Frameworks.

    PubMed

    Han, Yi-Fei; Yuan, Ying-Xue; Wang, Hong-Bo

    2017-02-13

    Ordered porous solid-state architectures constructed via non-covalent supramolecular self-assembly have attracted increasing interest due to their unique advantages and potential applications. Porous metal-coordination organic frameworks (MOFs) are generated by the assembly of metal coordination centers and organic linkers. Compared to MOFs, porous hydrogen-bonded organic frameworks (HOFs) are readily purified and recovered via simple recrystallization. However, due to lacking of sufficiently ability to orientate self-aggregation of building motifs in predictable manners, rational design and preparation of porous HOFs are still challenging. Herein, we summarize recent developments about porous HOFs and attempt to gain deeper insights into the design strategies of basic building motifs.

  9. In Search of the Reason for the Breathing Effect of MIL53 Metal-Organic Framework: An ab Initio Multiconfigurational Study.

    PubMed

    Weser, Oskar; Veryazov, Valera

    2017-01-01

    Multiconfigurational methods are applied to study electronic properties and structural changes in the highly flexible metal-organic framework MIL53(Cr). Via calculated bending potentials of angles, that change the most during phase transition, it is verified that the high flexibility of this material is not a question about special electronic properties in the coordination chemistry, but about overall linking of the framework. The complex posseses a demanding electronic structure with delocalized spin density, antifferomagnetic coupling and high multi-state character requiring multiconfigurational methods. Calculated properties are in good agreement with known experimental values confirming our chosen methods.

  10. Innovative application of metal-organic frameworks for encapsulation and controlled release of allyl isothiocyanate

    USDA-ARS?s Scientific Manuscript database

    This research investigated the technical feasibility of metal-organic frameworks (MOFs) as novel delivery systems for encapsulation and controlled release of volatile allyl isothiocyanate (AITC) molecules. We hypothesized that water vapor molecules could act as an external stimulus to trigger the re...

  11. Xenon Recovery at Room Temperature using Metal-Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elsaidi, Sameh K.; Ongari, Daniele; Xu, Wenqian

    2017-07-24

    Xenon is known to be a very efficient anesthetic gas but its cost prohibits the wider use in medical industry and other potential applications. It has been shown that Xe recovery and recycle from anesthetic gas mixture can significantly reduce its cost as anesthetic. The current technology uses series of adsorbent columns followed by low temperature distillation to recover Xe, which is expensive to use in medical facilities. Herein, we propose much efficient and simpler system to recover and recycle Xe from simulant exhale anesthetic gas mixture at room temperature using metal organic frameworks. Among the MOFs tested, PCN-12 exhibitsmore » unprecedented performance with high Xe capacity, Xe/O2, Xe/N2 and Xe/CO2 selectivity at room temperature. The in-situ synchrotron measurements suggest the Xe is occupied in the small pockets of PCN-12 compared to unsaturated metal centers (UMCs). Computational modeling of adsorption further supports our experimental observation of Xe binding sites in PCN-12.« less

  12. Xenon Recovery at Room Temperature using Metal-Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elsaidi, Sameh K.; Ongari, Daniele; Xu, Wenqian

    2017-07-24

    Xenon is known to be a very efficient anesthetic gas but its cost prohibits the wider use in medical industry and other potential applications. It has been shown that Xe recovery and recycle from anesthetic gas mixture can significantly reduce its cost as anesthetic. The current technology uses series of adsorbent columns followed by low temperature distillation to recover Xe, which is expensive to use in medical facilities. Herein, we propose much efficient and simpler system to recover and recycle Xe from simulant exhale anesthetic gas mixture at room temperature using metal organic frameworks. Among the MOFs tested, PCN-12 exhibitsmore » unprecedented performance with high Xe capacity, Xe/N2 and Xe/O2 selectivity at room temperature. The in-situ synchrotron measurements suggest the Xe is occupied in the small pockets of PCN-12 compared to unsaturated metal centers (UMCs). Computational modeling of adsorption further supports our experimental observation of Xe binding sites in PCN-12.« less

  13. Transformation of metal-organic frameworks for molecular sieving membranes

    PubMed Central

    Li, Wanbin; Zhang, Yufan; Zhang, Congyang; Meng, Qin; Xu, Zehai; Su, Pengcheng; Li, Qingbiao; Shen, Chong; Fan, Zheng; Qin, Lei; Zhang, Guoliang

    2016-01-01

    The development of simple, versatile strategies for the synthesis of metal-organic framework (MOF)-derived membranes are of increasing scientific interest, but challenges exist in understanding suitable fabrication mechanisms. Here we report a route for the complete transformation of a series of MOF membranes and particles, based on multivalent cation substitution. Through our approach, the effective pore size can be reduced through the immobilization of metal salt residues in the cavities, and appropriate MOF crystal facets can be exposed, to achieve competitive molecular sieving capabilities. The method can also be used more generally for the synthesis of a variety of MOF membranes and particles. Importantly, we design and synthesize promising MOF membranes candidates that are hard to achieve through conventional methods. For example, our CuBTC/MIL-100 membrane exhibits 89, 171, 241 and 336 times higher H2 permeance than that of CO2, O2, N2 and CH4, respectively. PMID:27090597

  14. Achieving Amphibious Superprotonic Conductivity in a CuI Metal-Organic Framework by Strategic Pyrazinium Salt Impregnation.

    PubMed

    Khatua, Sajal; Bar, Arun Kumar; Sheikh, Javeed Ahmad; Clearfield, Abraham; Konar, Sanjit

    2018-01-19

    Treatment of a pyrazine (pz)-impregnated Cu I metal-organic framework (MOF) ([1⊃pz]) with HCl vapor renders an interstitial pyrazinium chloride salt-hybridized MOF ([1⊃pz⋅6 HCl]) that exhibits proton conductivity over 10 -2  S cm -1 both in anhydrous and under humid conditions. Framework [1⊃pz⋅6 HCl] features the highest anhydrous proton conductivity among the lesser-known examples of MOF-based materials exhibiting proton conductivity under both anhydrous and humid conditions. Moreover, [1⊃pz] and corresponding pyrazinium sulfate- and pyrazinium phosphate-hybridized MOFs also exhibit superprotonic conductivity over 10 -2  S cm -1 under humid conditions. The impregnated pyrazinium ions play a crucial role in protonic conductivity, which occurs through a Grotthuss mechanism. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Substrate-Independent Epitaxial Growth of the Metal-Organic Framework MOF-508a.

    PubMed

    Wilson, M; Barrientos-Palomo, S N; Stevens, P C; Mitchell, N L; Oswald, G; Nagaraja, C M; Badyal, J P S

    2018-01-31

    Plasmachemical deposition is a substrate-independent method for the conformal surface functionalization of solid substrates. Structurally well-defined pulsed plasma deposited poly(1-allylimidazole) layers provide surface imidazole linker groups for the directed liquid-phase epitaxial (layer-by-layer) growth of metal-organic frameworks (MOFs) at room temperature. For the case of microporous [Zn (benzene-1,4-dicarboxylate)-(4,4'-bipyridine) 0.5 ] (MOF-508), the MOF-508a polymorph containing two interpenetrating crystal lattice frameworks undergoes orientated Volmer-Weber growth and displays CO 2 gas capture behavior at atmospheric concentrations in proportion to the number of epitaxially grown MOF-508 layers.

  16. Metal organic framework Cu9Cl2(cpa)6 as tunable molecular magnet

    NASA Astrophysics Data System (ADS)

    Hamilton, Heather S. C.; Farmer, William M.; Skinner, Samuel F.; ter Haar, Leonard W.

    2018-05-01

    Chemical modifications of the magnetic metal organic framework (MOF) Cu9X2(cpa)6.42H2O (X = F, Cl, Br; cpa = anion of 2-carboxypentonicacid) have been investigated as a means of modifying, in a tunable manner, the magnetism of this 2-D material best described as a triangles-in-triangles (TIT) or triangulated-Kagomé-latttice (TKL). Since numerous theoretical studies have already attempted to describe the enigmatic ground state of this Heisenberg lattice, tunable chemical modifications should provide an excellent opportunity to expand this class of materials for studies concerning fundamental physics of frustrated spins, and applications such as adiabatic demagnetization refrigeration (ADR) that depend on the magnetocaloric effect (MCE). The chemical modification investigated is the intercalation of d- and f-orbital ions into the voids of the framework (channels of nearly 20 Å diameter). Magnetic measurements in the temperature range 1.8 - 300 K confirm signature features of TKL magnetism in intercalated samples persist, specifically: i) large negative Weiss constant (θCW); ii) absence of a phase transition down to 1.8 K; iii) minimum in χMT; iv) low temperature χMT values increasingly divergent at low fields indicating net ferromagnetic correlations; and, v) increasing field dependence of magnetization at low temperatures suggestive of intermediate plateaus, or ferrimagnetism, not saturation.

  17. A near infrared luminescent metal-organic framework for temperature sensing in the physiological range.

    PubMed

    Lian, Xiusheng; Zhao, Dian; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2015-12-28

    A near infrared pumped luminescent metal-organic framework thermometer Nd(0.577)Yb(0.423)BDC-F4, with near infrared fluorescence and excellent sensitivity in the physiological temperature range (293-313 K), has been first realized, and might be potentially applied for biomedical systems.

  18. CFA-1: the first chiral metal-organic framework containing Kuratowski-type secondary building units.

    PubMed

    Schmieder, Phillip; Denysenko, Dmytro; Grzywa, Maciej; Baumgärtner, Benjamin; Senkovska, Irena; Kaskel, Stefan; Sastre, German; van Wüllen, Leo; Volkmer, Dirk

    2013-08-14

    The novel homochiral metal-organic framework CFA-1 (Coordination Framework Augsburg-1), [Zn5(OAc)4(bibta)3], containing the achiral linker {H2-bibta = 1H,1'H-5,5'-bibenzo[d][1,2,3]triazole}, has been synthesised. The reaction of H2-bibta and Zn(OAc)2·2H2O in N-methylformamide (NMF) (90 °C, 3 d) yields CFA-1 as trigonal prismatic single crystals. CFA-1 serves as a convenient precursor for the synthesis of isostructural frameworks with redox-active metal centres, which is demonstrated by the postsynthetic exchange of Zn(2+) by Co(2+) ions. The framework is robust to solvent removal and has been structurally characterized by synchrotron single-crystal X-ray diffraction and solid state NMR measurements ((13)C MAS- and (1)H MAS-NMR at 10 kHz). Results from MAS-NMR and IR spectroscopy studies are corroborated by cluster and periodic DFT calculations performed on CFA-1 cluster fragments.

  19. High-resolution inelastic neutron scattering and neutron powder diffraction study of the adsorption of dihydrogen by the Cu(II) metal-organic framework material HKUST-1

    NASA Astrophysics Data System (ADS)

    Callear, Samantha K.; Ramirez-Cuesta, Anibal J.; David, William I. F.; Millange, Franck; Walton, Richard I.

    2013-12-01

    We present new high-resolution inelastic neutron scattering (INS) spectra (measured using the TOSCA and MARI instruments at ISIS) and powder neutron diffraction data (measured on the diffractometer WISH at ISIS) from the interaction of the prototypical metal-organic framework HKUST-1 with various dosages of dihydrogen gas. The INS spectra show direct evidence for the sequential occupation of various distinct sites for dihydrogen in the metal-organic framework, whose population is adjusted during increasing loading of the guest. The superior resolution of TOSCA reveals subtle features in the spectra, not previously reported, including evidence for split signals, while complementary spectra recorded on MARI present full information in energy and momentum transfer. The analysis of the powder neutron patterns using the Rietveld method shows a consistent picture, allowing the crystallographic indenisation of binding sites for dihydrogen, thus building a comprehensive picture of the interaction of the guest with the nanoporous host.

  20. Metal-organic frameworks as biosensors for luminescence-based detection and imaging

    PubMed Central

    Miller, Sophie E.; Teplensky, Michelle H.; Moghadam, Peyman Z.; Fairen-Jimenez, David

    2016-01-01

    Metal-organic frameworks (MOFs), formed by the self-assembly of metal centres or clusters and organic linkers, possess many key structural and chemical features that have enabled them to be used in sensing platforms for a variety of environmentally, chemically and biomedically relevant compounds. In particular, their high porosity, large surface area, tuneable chemical composition, high degree of crystallinity, and potential for post-synthetic modification for molecular recognition make MOFs promising candidates for biosensing applications. In this review, we separate our discussion of MOF biosensors into two categories: quantitative sensing, focusing specifically on luminescence-based sensors for the direct measurement of a specific analyte, and qualitative sensing, where we describe MOFs used for fluorescence microscopy and as magnetic resonance imaging contrast agents. We highlight several key publications in each of these areas, concluding that MOFs present an exciting, versatile new platform for biosensing applications and imaging, and we expect to see their usage grow as the field progresses. PMID:27499847

  1. Computational Investigations of Potential Energy Function Development for Metal--Organic Framework Simulations, Metal Carbenes, and Chemical Warfare Agents

    NASA Astrophysics Data System (ADS)

    Cioce, Christian R.

    Metal-Organic Frameworks (MOFs) are three-dimensional porous nanomaterials with a variety of applications, including catalysis, gas storage and separation, and sustainable energy. Their potential as air filtration systems is of interest for designer carbon capture materials. The chemical constituents (i.e. organic ligands) can be functionalized to create rationally designed CO2 sequestration platforms, for example. Hardware and software alike at the bleeding edge of supercomputing are utilized for designing first principles-based molecular models for the simulation of gas sorption in these frameworks. The classical potentials developed herein are named PHAST --- Potentials with High Accuracy, Speed, and Transferability, and thus are designed via a "bottom-up" approach. Specifically, models for N2 and CH4 are constructed and presented. Extensive verification and validation leads to insights and range of applicability. Through this experience, the PHAST models are improved upon further to be more applicable in heterogeneous environments. Given this, the models are applied to reproducing high level ab initio energies for gas sorption trajectories of helium atoms in a variety of rare-gas clusters, the geometries of which being representative of sorption-like environments commonly encountered in a porous nanomaterial. This work seeks to push forward the state of classical and first principles materials modeling. Additionally, the characterization of a new type of tunable radical metal---carbene is presented. Here, a cobalt(II)---porphyrin complex, [Co(Por)], was investigated to understand its role as an effective catalyst in stereoselective cyclopropanation of a diazoacetate reagent. Density functional theory along with natural bond order analysis and charge decomposition analysis gave insight into the electronics of the catalytic intermediate. The bonding pattern unveiled a new class of radical metal---carbene complex, with a doublet cobalt into which a triplet carbene

  2. Metal-organic framework thin films on a surface of optical fibre long period grating for chemical sensing

    NASA Astrophysics Data System (ADS)

    Hromadka, J.; Tokay, B.; James, S.; Korposh, S.

    2017-04-01

    An optical fibre long period grating (LPG) modified with a thin film of HKUST-1, a material from metal organic framework (MOF) family, was employed for the detection of carbon dioxide. The sensing mechanism is based on the measurement of the change of the refractive index (RI) of the coating that is induced by the penetration of CO2 molecules into the HKUST-1 pores. The responses of the resonance bands in the transmission spectrum of an LPG modified with 40 layers of HKUST-1 upon exposure to carbon dioxide in mixture with nitrogen were investigated.

  3. Stable Metal–Organic Frameworks with Group 4 Metals: Current Status and Trends

    PubMed Central

    2018-01-01

    Group 4 metal-based metal–organic frameworks (MIV-MOFs), including Ti-, Zr-, and Hf-based MOFs, are one of the most attractive classes of MOF materials owing to their superior chemical stability and structural tunability. Despite being a relatively new field, MIV-MOFs have attracted significant research attention in the past few years, leading to exciting advances in syntheses and applications. In this outlook, we start with a brief overview of the history and current status of MIV-MOFs, emphasizing the challenges encountered in their syntheses. The unique properties of MIV-MOFs are discussed, including their high chemical stability and strong tolerance toward defects. Particular emphasis is placed on defect engineering in Zr-MOFs which offers additional routes to tailor their functions. Photocatalysis of MIV-MOF is introduced as a representative example of their emerging applications. Finally, we conclude with the perspective of new opportunities in synthesis and defect engineering. PMID:29721526

  4. A facile strategy for enzyme immobilization with highly stable hierarchically porous metal-organic frameworks.

    PubMed

    Liu, Xiao; Qi, Wei; Wang, Yuefei; Su, Rongxin; He, Zhimin

    2017-11-16

    Metal-organic frameworks (MOFs) have drawn extensive research interest as candidates for enzyme immobilization owing to their tunable porosity, high surface area, and excellent chemical/thermal stability. Herein, we report a facile and universal strategy for enzyme immobilization using highly stable hierarchically porous metal-organic frameworks (HP-MOFs). The HP-MOFs were stable over a wide pH range (pH = 2-11 for HP-DUT-5) and met the catalysis conditions of most enzymes. The as-prepared hierarchical micro/mesoporous MOFs with mesoporous defects showed a superior adsorption capacity towards enzymes. The maximum adsorption capacity of HP-DUT-5 for glucose oxidase (GOx) and uricase was 208 mg g -1 and 225 mg g -1 , respectively. Furthermore, we constructed two multi-enzyme biosensors for glucose and uric acid (UA) by immobilizing GOx and uricase with horseradish peroxidase (HRP) on HP-DUT-5, respectively. These sensors were efficiently applied in the colorimetric detection of glucose and UA and showed good sensitivity, selectivity, and recyclability.

  5. Protonated graphitic carbon nitride coated metal-organic frameworks with enhanced visible-light photocatalytic activity for contaminants degradation

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Zhang, Xibiao; Song, Haiyan; Chen, Chunxia; Han, Fuqin; Wen, Congcong

    2018-05-01

    Most of the reported composites of g-C3N4/metal-organic frameworks (MOFs) were obtained via exfoliation of g-C3N4 and wrapping the nanosheets on MOFs with weak interaction. In this work, chemical protonation of g-C3N4 and dip-coating was adopted as a feasible pathway to achieve the real combination of g-C3N4 derivatives with a familiar MOF material MIL-100(Fe). Structural, chemical and photophysical properties of the novel hybrid photocatalysts were characterized and compared to those of the parent materials. It was verified that the protonated g-C3N4 species of appropriate content were uniformly coated along the frameworks of MIL-100(Fe) with strong interaction. The optimal materials maintained the intact framework structure, surface property and porosity of MIL-100(Fe), as well as the inherent structural units and physicochemical properties of C3N4. In comparison to the parent materials, the protonated g-C3N4 coated MIL-100(Fe) materials exhibited enhanced photocatalytic activity in degradation of rhodamine B or methylene blue dye, as well as in oxidative denitrogenation for pyridine by molecular oxygen under visible light. Introduction of protonated g-C3N4 on MOFs improved the adsorption ability for contaminant molecules. Furthermore, coating effect provided a platform for rapid photoexcited electrons transfer and superior separation of photogenerated electron-hole pairs. Photocatalytic conversion of the three contaminants followed different mechanisms.

  6. Gas sorption and transition-metal cation separation with a thienothiophene based zirconium metal–organic framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SK, Mostakim; Grzywa, Maciej; Volkmer, Dirk

    2015-12-15

    The modulated synthesis of the thienothiophene based zirconium metal–organic framework (MOF) material having formula [Zr{sub 6}O{sub 4}(OH){sub 4}(DMTDC){sub 6}]·4.8DMF·10H{sub 2}O (1) (H{sub 2}DMTDC=3,4-dimethylthieno[2,3-b]thiophene-2,5-dicarboxylic acid; DMF=N,N'-dimethylformamide) was carried out by heating a mixture of ZrCl{sub 4}, H{sub 2}DMTDC linker and benzoic acid (used as a modulator) with a molar ratio of 1:1:30 in DMF at 150 °C for 24 h. Systematic investigations have been performed in order to realize the effect of ZrCl{sub 4}/benzoic acid molar ratio on the crystallinity of the material. The activation (i.e., the removal of the guest solvent molecules from the pores) of as-synthesized compound was achievedmore » by stirring it with methanol and subsequently heating under vacuum. A combination of X-ray diffraction (XRD), Fourier transform infrared (FT-IR), thermogravimetric (TG) and elemental analysis was used to examine the phase purity of the as-synthesized and thermally activated 1. The material displays high thermal stability up to 310 °C in an air atmosphere. As revealed from the XRD measurements, the compound retains its crystallinity when treated with water, acetic acid and 1 M HCl solutions. The N{sub 2} and CO{sub 2} sorption analyses suggest that the material possesses remarkably high microporosity (S{sub BET}=1236 m{sup 2} g{sup −1}; CO{sub 2} uptake=3.5 mmol g{sup −1} at 1 bar and 0 °C). The compound also shows selective adsorption behavior for Cu{sup 2+} over Co{sup 2+} and Ni{sup 2+} ions. - Graphical abstract: Selective transition-metal cation adsorption by a thienothiophene based zirconium metal–organic framework material. - Highlights: • The modulated synthesis of a thienothiophene based Zr(IV) MOF has been described. • Effect of metal salt/modulator ratio on the crystallinity was thoroughly studied. • The compound showed high thermal and physiochemical stability. • N{sub 2} and CO{sub 2} sorption experiments

  7. Switchable electric polarization and ferroelectric domains in a metal-organic-framework

    DOE PAGES

    Jain, Prashant; Stroppa, Alessandro; Nabok, Dmitrii; ...

    2016-09-30

    Multiferroics and magnetoelectrics with coexisting and coupled multiple ferroic orders are materials promising new technological advances. While most studies have focused on single-phase or heterostructures of inorganic materials, a new class of materials called metal–organic frameworks (MOFs) has been recently proposed as candidate materials demonstrating interesting new routes for multiferroism and magnetoelectric coupling. Herein, we report on the origin of multiferroicity of (CH 3) 2NH 2Mn(HCOO) 3 via direct observation of ferroelectric domains using second-harmonic generation techniques. For the first time, we observe how these domains are organized (sized in micrometer range), and how they are mutually affected by appliedmore » electric and magnetic fields. Lastly, calculations provide an estimate of the electric polarization and give insights into its microscopic origin.« less

  8. Metal-organic framework tethering PNIPAM for ON-OFF controlled release in solution.

    PubMed

    Nagata, Shunjiro; Kokado, Kenta; Sada, Kazuki

    2015-05-21

    A smart metal-organic framework (MOF) exhibiting controlled release was achieved by modification with a thermoresponsive polymer (PNIPAM) via a surface-selective post-synthetic modification technique. Simple temperature variation readily switches "open" (lower temperature) and "closed" (higher temperature) states of the polymer-modified MOF through conformational change of PNIPAM grafted onto the MOF, resulting in controlled release of the included guest molecules such as resorufin, caffeine, and procainamide.

  9. Regulating the spatial distribution of metal nanoparticles within metal-organic frameworks to enhance catalytic efficiency

    DOE PAGES

    Yang, Qiu; Liu, Wenxian; Wang, Bingqing; ...

    2017-02-14

    Composites incorporating metal nanoparticles (MNPs) within metal-organic frameworks (MOFs) have broad applications in many fields. However, the controlled spatial distribution of the MNPs within MOFs remains a challenge for addressing key issues in catalysis, for example, the efficiency of catalysts due to the limitation of molecular diffusion within MOF channels. We report a facile strategy that enables MNPs to be encapsulated into MOFs with controllable spatial localization by using metal oxide both as support to load MNPs and as a sacrificial template to grow MOFs. This strategy is versatile to a variety of MNPs and MOF crystals. By localizing themore » encapsulated MNPs closer to the surface of MOFs, the resultant MNPs@MOF composites not only exhibit effective selectivity derived from MOF cavities, but also enhanced catalytic activity due to the spatial regulation of MNPs as close as possible to the MOF surface.« less

  10. Chemical principles underpinning the performance of the metal–organic framework HKUST-1

    PubMed Central

    Hendon, Christopher H.

    2015-01-01

    A common feature of multi-functional metal–organic frameworks is a metal dimer in the form of a paddlewheel, as found in the structure of Cu3(btc)2 (HKUST-1). The HKUST-1 framework demonstrates exceptional gas storage, sensing and separation, catalytic activity and, in recent studies, unprecedented ionic and electrical conductivity. These results are a promising step towards the real-world application of metal–organic materials. In this perspective, we discuss progress in the understanding of the electronic, magnetic and physical properties of HKUST-1, representative of the larger family of Cu···Cu containing metal–organic frameworks. We highlight the chemical interactions that give rise to its favourable properties, and which make this material well suited to a range of technological applications. From this analysis, we postulate key design principles for tailoring novel high-performance hybrid frameworks. PMID:28706713

  11. Guest-induced emergent properties in Metal–Organic Frameworks

    DOE PAGES

    Allendorf, Mark D.; Foster, Michael E.; Léonard, François; ...

    2015-03-19

    Metal–Organic frameworks (MOFs) are crystalline nanoporous materials comprised of organic electron donors linked to metal ions by strong coordination bonds. Applications such as gas storage and separations are currently receiving considerable attention, but if the unique properties of MOFs could be extended to electronics, magnetics, and photonics, the impact on material science would greatly increase. Recently, we obtained “emergent properties,” such as electronic conductivity and energy transfer, by infiltrating MOF pores with “guest” molecules that interact with the framework electronic structure. In this Perspective, we define a path to emergent properties based on the Guest@MOF concept, using zinc-carboxylate and copper-paddlewheelmore » MOFs for illustration. Energy transfer and light harvesting are discussed for zinc carboxylate frameworks infiltrated with triplet-scavenging organometallic compounds and thiophene- and fullerene-infiltrated MOF-177. In addition, we discuss the mechanism of charge transport in TCNQ-infiltrated HKUST-1, the first MOF with electrical conductivity approaching conducting organic polymers. Lastly, these examples show that guest molecules in MOF pores should be considered not merely as impurities or analytes to be sensed but also as an important aspect of rational design.« less

  12. Adsorption of silver nanoparticles from aqueous solution on copper-based metal organic frameworks (HKUST-1).

    PubMed

    Conde-González, J E; Peña-Méndez, E M; Rybáková, S; Pasán, J; Ruiz-Pérez, C; Havel, J

    2016-05-01

    Silver nanoparticles (AgNP) are emerging pollutants. The use of novel materials such as Cu-(benzene 1,3,5-tricarboxylate, BTC) Metal-Organic Framework (MOFs), for AgNP adsorption and their removal from aqueous solutions has been studied. The effect of different parameters was followed and isotherm model was suggested. MOFs adsorbed fast and efficiently AgNP in the range C0 < 10 mg L(-1), being Freundlich isotherm (R = 0.993) these data fitted to. Among studied parameters a remarkable effect of chloride on sorption was found, thus their possible interactions were considered. The high adsorption efficiency of AgNP was achieved and it was found to be very fast. The feasibility of adsorption on Cu-(BTC) was proved in spiked waters. The results showed the potential interest of new material as adsorbent for removing AgNP from environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Molecular Modelling of the H2 -Adsorptive Properties of Tetrazolate-Based Metal-Organic Frameworks: From the Cluster Approach to Periodic Simulations.

    PubMed

    Brea, Oriana; Luna, Alberto; Díaz, Cristina; Corral, Inés

    2018-06-05

    Hydrogen has been proposed as a long-term non-fossil fuel to be used in a future ideal carbon-neutral energetic economy. However, its low volumetric energy density hinders its storage and transportation. Metal-organic frameworks (MOFs) represent very promising materials for this purpose due to their very extended surface areas. Azolates, in particular tetrazolates, are - together with carboxylate functionalities - very common organic linkers connecting metallic secondary building units in MOFs. This study addresses, from a theoretical perspective, the H 2 adsorptive properties of tetrazolate linkers at the molecular level, following a size-progressive approach. Specifically, we have investigated how the physisorption energies and geometries are affected when changing the environment of the linker by considering the azolates in the gas phase, immersed in a finite cluster, or being part of an infinite extended crystal material. Furthermore, we also study the H 2 adsorptive capacity of these linkers within the cluster model. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Creating Lithium-Ion Electrolytes with Biomimetic Ionic Channels in Metal-Organic Frameworks.

    PubMed

    Shen, Li; Wu, Hao Bin; Liu, Fang; Brosmer, Jonathan L; Shen, Gurong; Wang, Xiaofeng; Zink, Jeffrey I; Xiao, Qiangfeng; Cai, Mei; Wang, Ge; Lu, Yunfeng; Dunn, Bruce

    2018-06-01

    Solid-state electrolytes are the key to the development of lithium-based batteries with dramatically improved energy density and safety. Inspired by ionic channels in biological systems, a novel class of pseudo solid-state electrolytes with biomimetic ionic channels is reported herein. This is achieved by complexing the anions of an electrolyte to the open metal sites of metal-organic frameworks (MOFs), which transforms the MOF scaffolds into ionic-channel analogs with lithium-ion conduction and low activation energy. This work suggests the emergence of a new class of pseudo solid-state lithium-ion conducting electrolytes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Reliably Modeling the Mechanical Stability of Rigid and Flexible Metal-Organic Frameworks.

    PubMed

    Rogge, Sven M J; Waroquier, Michel; Van Speybroeck, Veronique

    2018-01-16

    Over the past two decades, metal-organic frameworks (MOFs) have matured from interesting academic peculiarities toward a continuously expanding class of hybrid, nanoporous materials tuned for targeted technological applications such as gas storage and heterogeneous catalysis. These oft-times crystalline materials, composed of inorganic moieties interconnected by organic ligands, can be endowed with desired structural and chemical features by judiciously functionalizing or substituting these building blocks. As a result of this reticular synthesis, MOF research is situated at the intriguing intersection between chemistry and physics, and the building block approach could pave the way toward the construction of an almost infinite number of possible crystalline structures, provided that they exhibit stability under the desired operational conditions. However, this enormous potential is largely untapped to date, as MOFs have not yet found a major breakthrough in technological applications. One of the remaining challenges for this scale-up is the densification of MOF powders, which is generally achieved by subjecting the material to a pressurization step. However, application of an external pressure may substantially alter the chemical and physical properties of the material. A reliable theoretical guidance that can presynthetically identify the most stable materials could help overcome this technological challenge. In this Account, we describe the recent research the progress on computational characterization of the mechanical stability of MOFs. So far, three complementary approaches have been proposed, focusing on different aspects of mechanical stability: (i) the Born stability criteria, (ii) the anisotropy in mechanical moduli such as the Young and shear moduli, and (iii) the pressure-versus-volume equations of state. As these three methods are grounded in distinct computational approaches, it is expected that their accuracy and efficiency will vary. To date

  16. Crystallographic studies of gas sorption in metal–organic frameworks

    PubMed Central

    Carrington, Elliot J.; Vitórica-Yrezábal, Iñigo J.; Brammer, Lee

    2014-01-01

    Metal–organic frameworks (MOFs) are a class of porous crystalline materials of modular design. One of the primary applications of these materials is in the adsorption and separation of gases, with potential benefits to the energy, transport and medical sectors. In situ crystallography of MOFs under gas atmospheres has enabled the behaviour of the frameworks under gas loading to be investigated and has established the precise location of adsorbed gas molecules in a significant number of MOFs. This article reviews progress in such crystallographic studies, which has taken place over the past decade, but has its origins in earlier studies of zeolites, clathrates etc. The review considers studies by single-crystal or powder diffraction using either X-rays or neutrons. Features of MOFs that strongly affect gas sorption behaviour are discussed in the context of in situ crystallographic studies, specifically framework flexibility, and the presence of (organic) functional groups and unsaturated (open) metal sites within pores that can form specific interactions with gas molecules. PMID:24892587

  17. Sn Nanoparticles Encapsulated in 3D Nanoporous Carbon Derived from a Metal-Organic Framework for Anode Material in Lithium-Ion Batteries.

    PubMed

    Guo, Yuanyuan; Zeng, Xiaoqiao; Zhang, Yu; Dai, Zhengfei; Fan, Haosen; Huang, Ying; Zhang, Weina; Zhang, Hua; Lu, Jun; Huo, Fengwei; Yan, Qingyu

    2017-05-24

    Three-dimensional nanoporous carbon frameworks encapsulated Sn nanoparticles (Sn@3D-NPC) are developed by a facile method as an improved lithium ion battery anode. The Sn@3D-NPC delivers a reversible capacity of 740 mAh g -1 after 200 cycles at a current density of 200 mA g -1 , corresponding to a capacity retention of 85% (against the second capacity) and high rate capability (300 mAh g -1 at 5 A g -1 ). Compared to the Sn nanoparticles (SnNPs), such improvements are attributed to the 3D porous and conductive framework. The whole structure can provide not only the high electrical conductivity that facilities the electron transfer but also the elasticity that will suppress the volume expansion and aggregation of SnNPs during the charge and discharge process. This work opens a new application of metal-organic frameworks in energy storage.

  18. Copper-Based Metal-Organic Porous Materials for CO2 Electrocatalytic Reduction to Alcohols.

    PubMed

    Albo, Jonathan; Vallejo, Daniel; Beobide, Garikoitz; Castillo, Oscar; Castaño, Pedro; Irabien, Angel

    2017-03-22

    The electrocatalytic reduction of CO 2 has been investigated using four Cu-based metal-organic porous materials supported on gas diffusion electrodes, namely, (1) HKUST-1 metal-organic framework (MOF), [Cu 3 (μ 6 -C 9 H 3 O 6 ) 2 ] n ; (2) CuAdeAce MOF, [Cu 3 (μ 3 -C 5 H 4 N 5 ) 2 ] n ; (3) CuDTA mesoporous metal-organic aerogel (MOA), [Cu(μ-C 2 H 2 N 2 S 2 )] n ; and (4) CuZnDTA MOA, [Cu 0.6 Zn 0.4 (μ-C 2 H 2 N 2 S 2 )] n . The electrodes show relatively high surface areas, accessibilities, and exposure of the Cu catalytic centers as well as favorable electrocatalytic CO 2 reduction performance, that is, they have a high efficiency for the production of methanol and ethanol in the liquid phase. The maximum cumulative Faradaic efficiencies for CO 2 conversion at HKUST-1-, CuAdeAce-, CuDTA-, and CuZnDTA-based electrodes are 15.9, 1.2, 6, and 9.9 %, respectively, at a current density of 10 mA cm -2 , an electrolyte-flow/area ratio of 3 mL min cm -2 , and a gas-flow/area ratio of 20 mL min cm -2 . We can correlate these observations with the structural features of the electrodes. Furthermore, HKUST-1- and CuZnDTA-based electrodes show stable electrocatalytic performance for 17 and 12 h, respectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Characterization of Adsorption Enthalpy of Novel Water-Stable Zeolites and Metal-Organic Frameworks

    NASA Astrophysics Data System (ADS)

    Kim, Hyunho; Cho, H. Jeremy; Narayanan, Shankar; Yang, Sungwoo; Furukawa, Hiroyasu; Schiffres, Scott; Li, Xiansen; Zhang, Yue-Biao; Jiang, Juncong; Yaghi, Omar M.; Wang, Evelyn N.

    2016-01-01

    Water adsorption is becoming increasingly important for many applications including thermal energy storage, desalination, and water harvesting. To develop such applications, it is essential to understand both adsorbent-adsorbate and adsorbate-adsorbate interactions, and also the energy required for adsorption/desorption processes of porous material-adsorbate systems, such as zeolites and metal-organic frameworks (MOFs). In this study, we present a technique to characterize the enthalpy of adsorption/desorption of zeolites and MOF-801 with water as an adsorbate by conducting desorption experiments with conventional differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA). With this method, the enthalpies of adsorption of previously uncharacterized adsorbents were estimated as a function of both uptake and temperature. Our characterizations indicate that the adsorption enthalpies of type I zeolites can increase to greater than twice the latent heat whereas adsorption enthalpies of MOF-801 are nearly constant for a wide range of vapor uptakes.

  20. High-pressure, ambient temperature hydrogen storage in metal-organic frameworks and porous carbon

    NASA Astrophysics Data System (ADS)

    Beckner, Matthew; Dailly, Anne

    2014-03-01

    We investigated hydrogen storage in micro-porous adsorbents at ambient temperature and pressures up to 320 bar. We measured three benchmark adsorbents: two metal-organic frameworks, Cu3(1,3,5-benzenetricarboxylate)2 [Cu3(btc)2; HKUST-1] and Zn4O(1,3,5-benzenetribenzoate)2 [Zn4O(btb)2; MOF-177], and the activated carbon MSC-30. In this talk, we focus on adsorption enthalpy calculations using a single adsorption isotherm. We use the differential form of the Claussius-Clapeyron equation applied to the Dubinin-Astakhov adsorption model to calculate adsorption enthalpies. Calculation of the adsorption enthalpy in this way gives a temperature independent enthalpy of 5-7 kJ/mol at the lowest coverage for the three materials investigated. Additionally, we discuss the assumptions and corrections that must be made when calculating adsorption isotherms at high-pressure and adsorption enthalpies.

  1. Design and construction of porous metal-organic frameworks based on flexible BPH pillars

    NASA Astrophysics Data System (ADS)

    Hao, Xiang-Rong; Yang, Guang-sheng; Shao, Kui-Zhan; Su, Zhong-Min; Yuan, Gang; Wang, Xin-Long

    2013-02-01

    Three metal-organic frameworks (MOFs), [Co2(BPDC)2(4-BPH)·3DMF]n (1), [Cd2(BPDC)2(4-BPH)2·2DMF]n (2) and [Ni2(BDC)2(3-BPH)2 (H2O)·4DMF]n (3) (H2BPDC=biphenyl-4,4'-dicarboxylic acid, H2BDC=terephthalic acid, BPH=bis(pyridinylethylidene)hydrazine and DMF=N,N'-dimethylformamide), have been solvothermally synthesized based on the insertion of heterogeneous BPH pillars. Framework 1 has "single-pillared" MOF-5-like motif with inner cage diameters of up to 18.6 Å. Framework 2 has "double pillared" MOF-5-like motif with cage diameters of 19.2 Å while 3 has "double pillared" 8-connected framework with channel diameters of 11.0 Å. Powder X-ray diffraction (PXRD) shows that 3 is a dynamic porous framework.

  2. Formation of bimetallic metal-organic framework nanosheets and their derived porous nickel-cobalt sulfides for supercapacitors.

    PubMed

    Chen, Chen; Wu, Meng-Ke; Tao, Kai; Zhou, Jiao-Jiao; Li, Yan-Li; Han, Xue; Han, Lei

    2018-04-24

    Metal-organic frameworks (MOFs) show great advantages as new kinds of active materials for energy storage. In this study, bimetallic metal-organic frameworks (Ni/Co-MOFs) with nanosheet-assembled flower-like structures were synthesized by etching Ni-MOF microspheres in a cobalt nitrate solution. It can be clearly observed that the amount of Co(NO3)2 and etching time play crucial roles in the formation of Ni/Co-MOF nanosheets. The Ni/Co-MOFs were used as electrode materials for supercapacitors and the optimized Ni/Co-MOF-5 exhibited the highest capacitances of 1220.2 F g-1 and 986.7 F g-1 at current densities of 1 A g-1 and 10 A g-1, respectively. Ni/Co-MOF-5 was further sulfurized, and the derived Ni-Co-S electrode showed a higher specific capacitance of 1377.5 F g-1 at a current density of 1 A g-1 and a retention of 89.4% when the current density was increased to 10 A g-1, indicating superior rate capability. Furthermore, Ni/Co-MOF-5 and Ni-Co-S showed excellent cycling stability, i.e. about 87.8% and 93.7% of initial capacitance can be still maintained after 3000 cycles of charge-discharge. More interestingly, the Ni/Co-MOF-5//AC ASC shows an energy density of 30.9 W h kg-1 at a power density of 1132.8 W kg-1, and the Ni-Co-S//AC ASC displays a high energy density of 36.9 W h kg-1 at a power density of 1066.42 W kg-1. These results demonstrate that the as-synthesized bimetallic Ni/Co-MOF nanosheets and their derived nickel-cobalt sulfides have promising applications in electrochemical supercapacitors.

  3. In silico discovery of metal-organic frameworks for precombustion CO2 capture using a genetic algorithm

    PubMed Central

    Chung, Yongchul G.; Gómez-Gualdrón, Diego A.; Li, Peng; Leperi, Karson T.; Deria, Pravas; Zhang, Hongda; Vermeulen, Nicolaas A.; Stoddart, J. Fraser; You, Fengqi; Hupp, Joseph T.; Farha, Omar K.; Snurr, Randall Q.

    2016-01-01

    Discovery of new adsorbent materials with a high CO2 working capacity could help reduce CO2 emissions from newly commissioned power plants using precombustion carbon capture. High-throughput computational screening efforts can accelerate the discovery of new adsorbents but sometimes require significant computational resources to explore the large space of possible materials. We report the in silico discovery of high-performing adsorbents for precombustion CO2 capture by applying a genetic algorithm to efficiently search a large database of metal-organic frameworks (MOFs) for top candidates. High-performing MOFs identified from the in silico search were synthesized and activated and show a high CO2 working capacity and a high CO2/H2 selectivity. One of the synthesized MOFs shows a higher CO2 working capacity than any MOF reported in the literature under the operating conditions investigated here. PMID:27757420

  4. Multifunctional Metal-Organic Frameworks Based on Redox-Active Rhenium Octahedral Clusters.

    PubMed

    Litvinova, Yulia M; Gayfulin, Yakov M; Kovalenko, Konstantin A; Samsonenko, Denis G; van Leusen, Jan; Korolkov, Ilya V; Fedin, Vladimir P; Mironov, Yuri V

    2018-02-19

    The redox-active rhenium octahedral cluster unit [Re 6 Se 8 (CN) 6 ] 4- was combined with Gd 3+ ions and dicarboxylate linkers in novel types of metal-organic frameworks (MOFs) that display a set of functional properties. The hydrolytically stable complexes [{Gd(H 2 O) 3 } 2 (L)Re 6 Se 8 (CN) 6 ]·nH 2 O (1, L = furan-2,5-dicarboxylate, fdc; 2, L = thiophene-2,5-dicarboxylate, tdc) exhibit a 3D framework of trigonal symmetry where 1D chains of [{Gd(H 2 O) 3 } 2 (L)] 4+ are connected by [Re 6 Se 8 (CN) 6 ] 4- clusters. Frameworks contain spacious channels filled with H 2 O. Solvent molecules can be easily removed under vacuum to produce permanently porous solids with high volumetric CO 2 uptake and remarkable CO 2 /N 2 selectivity at room temperature. The frameworks demonstrate an ability for reversible redox transformations of the cluster fragment. The orange powders of compounds 1 and 2 react with Br 2 , yielding dark-green powders of [{Gd(H 2 O) 3 } 2 (L)Re 6 Se 8 (CN) 6 ]Br·nH 2 O (3, L = fdc; 4, L = tdc). Compounds 3 and 4 are isostructural with 1 and 2 and also have permanently porous frameworks but display different optical, magnetic, and sorption properties. In particular, oxidation of the cluster fragment "switches off" its luminescence in the red region, and the incorporation of Br - leads to a decrease of the solvent-accessible volume in the channels of 3 and 4. Finally, the green powders of 3 and 4 can be reduced back to the orange powders of 1 and 2 by reaction with hydrazine, thus displaying a rare ability for fully reversible chemical redox transitions. Compounds 1-4 are mentioned as a new class of redox-active cluster-based MOFs with potential usage as multifunctional materials for gas separation and chemical contamination sensors.

  5. Diamine-Functionalization of a Metal-Organic Framework Adsorbent for Superb Carbon Dioxide Adsorption and Desorption Properties.

    PubMed

    Lee, Woo Ram; Kim, Jeong Eun; Lee, Sung Jin; Kang, Minjung; Kang, Dong Won; Lee, Hwa Young; Hiremath, Vishwanath; Seo, Jeong Gil; Jin, Hailian; Moon, Dohyun; Cho, Moses; Jung, Yousung; Hong, Chang Seop

    2018-05-25

    For real-world postcombustion applications in the mitigation of CO 2 emissions using dry sorbents, adsorption and desorption behaviors should be controlled to design and fabricate prospective materials with optimal CO 2 performances. Herein, we prepared diamine-functionalized Mg 2 (dobpdc) (H 4 dobpdc=4,4'-dihydroxy-(1,1'-biphenyl)-3,3'-dicarboxylic acid). (1-diamine) with ethylenediamine (en), primary-secondary (N-ethylethylenediamine-een and N-isopropylethylenediamine-ipen), primary-tertiary, and secondary-secondary diamines. A slight alteration of the number of alkyl substituents on the diamines and their alkyl chain length dictates the desorption temperature (T des ) at 100 % CO 2 , desorption characteristics, and ΔT systematically to result in the tuning of the working capacity. The existence of bulky substituents on the diamines improves the framework stability upon exposure to O 2 , SO 2 , and water vapor, relevant to real flue-gas conditions. Bulky substituents are also responsible for an interesting two-step behavior observed for the ipen case, as revealed by DFT calculations. Among the diamine-appended metal-organic frameworks, 1-een, which has the required adsorption and desorption properties, is a promising material for sorbent-based CO 2 capture processes. Hence, CO 2 performance and framework durability can be tailored by the judicial selection of the diamine structure, which enables property design at will and facilitates the development of desirable CO 2 -capture materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Chiral direction and interconnection of helical three-connected networks in metal-organic frameworks.

    PubMed

    Prior, T J; Rosseinsky, M J

    2003-03-10

    The control of the interpenetration and chirality of a family of metal-organic frameworks is discussed. These systems contain two- (A) and four-fold (B) interpenetration of helical three-connected networks generated by binding the 1,3,5-benzenetricarboxylate (btc) ligand to a metal center. These frameworks have the general formula Ni(3)(btc)(2)X(m)Y(n).solvent (where X = pyridine or 4-picoline, Y = ethylene glycol, 1,2-propanediol, 1,4-butanediol, meso-2,3-butanediol, 1,2,6-hexanetriol, glycerol). The structural and chemical effects of modifying the alcohol and aromatic amine ligands bound to the metal center include controlling the thermal stability and the degree of interpenetration. Covalent linking of the four interpenetrating networks in the A family and the switching of diol binding from mono- to bidentate are demonstrated. Recognition of chiral diols by the hand of the network helices is investigated by binding an alcohol ligand with two chiral centers of opposite sense to the same helix. This reveals the subtle nature of the helix-ligand interaction.

  7. Through-Space Intervalence Charge Transfer as a Mechanism for Charge Delocalisation in Metal-Organic Frameworks.

    PubMed

    Hua, Carol; Doheny, Patrick William; Ding, Bowen; Chan, Bun; Yu, Michelle; Kepert, Cameron J; D'Alessandro, Deanna M

    2018-05-04

    Understanding the nature of charge transfer mechanisms in 3-dimensional Metal-Organic Frameworks (MOFs) is an important goal owing to the possibility of harnessing this knowledge to design conductive frameworks. These materials have been implicated as the basis for the next generation of technological devices for applications in energy storage and conversion, including electrochromic devices, electrocatalysts, and battery materials. After nearly two decades of intense research into MOFs, the mechanisms of charge transfer remain relatively poorly understood, and new strategies to achieve charge mobility remain elusive and challenging to experimentally explore, validate and model. We now demonstrate that aromatic stacking interactions in Zn(II) frameworks containing cofacial thiazolo[5,4-d]thiazole units lead to a mixed-valence state upon electrochemical or chemical reduction. This through-space Intervalence Charge Transfer (IVCT) phenomenon represents a new mechanism for charge delocalisation in MOFs. Computational modelling of the optical data combined with application of Marcus-Hush theory to the IVCT bands for the mixed-valence framework has enabled quantification of the degree of delocalisation using both in situ and ex situ electro- and spectro-electrochemical methods. A distance dependence for the through-space electron transfer has also been identified on the basis of experimental studies and computational calculations. This work provides a new window into electron transfer phenomena in 3-dimensional coordination space, of relevance to electroactive MOFs where new mechanisms for charge transfer are highly sought after, and to understanding biological light harvesting systems where through-space mixed-valence interactions are operative.

  8. Dual Role of Water in Heterogeneous Catalytic Hydrolysis of Sarin by Zirconium-Based Metal-Organic Frameworks.

    PubMed

    Momeni, Mohammad R; Cramer, Christopher J

    2018-05-22

    Recent experimental studies on Zr IV -based metal-organic frameworks (MOFs) have shown the extraordinary effectiveness of these porous materials for the detoxification of phosphorus-based chemical warfare agents (CWAs). However, pressing challenges remain with respect to characterizing these catalytic processes both at the molecular and crystalline levels. We here use theory to compare the reactivity of different zirconium-based MOFs for the catalytic hydrolysis of the CWA sarin, using both periodic and cluster modeling. We consider both hydrated and dehydrated secondary building units, as well as linker functionalized MOFs, to more fully understand and rationalize available experimental findings as well as to enable concrete predictions for achieving higher activities for the decomposition of CWAs.

  9. Evaluation of Heterogeneous Metal-Organic Framework Organocatalysts Prepared by Postsynthetic Modification

    PubMed Central

    Garibay, Sergio J.; Wang, Zhenqiang; Cohen, Seth M.

    2010-01-01

    A metal-organic framework (MOF) containing 2-amino-1,4-benzenedicarboxylate (NH2-BDC) as a building block is shown to undergo chemical modification with a set of cyclic anhydrides. The modification of the aluminum-based MOF known as MIL-53(Al)-NH2 (MIL = Matérial Institut Lavoisier) by these reagents is demonstrated by using a variety of methods, including NMR and ESI-MS, and the structural integrity of the modified MOFs has been confirmed by TGA, PXRD, and gas sorption analysis. Reaction with these cyclic anhydrides produces MOFs that display carboxylic acid functional groups within their pores. Furthermore, it is shown that maleic acid functionalized MIL-53(Al)-AMMal can act as a Brønsted acid catalyst and facilitate the methanolysis of several small epoxides. Experiments show that MIL-53(Al)-AMMal acts in a heterogeneous manner and is recyclable with consistent activity over at least three catalytic cycles. The findings presented here demonstrate several important features of covalent postsynthetic modification (PSM) on MOFs, including: 1) facile introduction of catalytic functionality using simple organic reagents (e.g. anhydrides); 2) the ability to utilize and recycle organocatalytic MOFs; 3) control of catalytic activity through choice of functional group. The findings clearly illustrate that covalent postsynthetic modification represents a powerful means to access new MOF compounds that serve as organocatalytic materials. PMID:20698561

  10. Synthesis and characterization of zinc adeninate metal-organic frameworks (bioMOF1) as potential anti-inflammatory drug delivery material

    NASA Astrophysics Data System (ADS)

    Usman, Ken Aldren S.; Buenviaje, Salvador C.; Razal, Joselito M.; Conato, Marlon T.; Payawan, Leon M.

    2018-05-01

    Zn8(ad)4(BPDC)6O•2Me2NH2 (bioMOF1), a porous metal-organic framework with zinc-adeninate secondary building units (SBUs), interconnected via biphenyldicarboxylate linkers, shows great potential for drug delivery applications due to its non-toxic and biocompatible components (zinc and adenine). In this study, bioMOF1 crystals synthesized solvothermally at 130°C for 24 hours, were characterized thoroughly and loaded with a known anti-inflammatory drug, nimesulide (NIM). The crystalline nature of the material was confirmed using powder x-ray diffraction crystallography (PXRD) along with morphology assessment using focused-ion beam/field emission scanning electron microscopy (FIB/FESEM). NIM was introduced to the crystals via solvent exchange accompanied with vigorous stirring and quantified using thermogravimetric analysis (TGA) with loading saturation of ˜30% attained during the 2nd to 3rd day of drug immersion. Drug release in phosphate buffer saline and in deionized water was done to monitor the kinetic of drug release in vitro. The drug release showed a controlled discharge profile which slowed down at the 24th and 48th hour of release. Drug release in buffer showed a faster release of drug from the material, which means that the presence of cations in the solution could further trigger the release of drug. Slow drug release was observed for all of the set-ups with maximum % drug release of 24.47%, and 16.14% for the bioMOF1 in buffer and bioMOF1 in water respectively for the span of 48 hours.

  11. Preparation of Pickering emulsions stabilized by metal organic frameworks using oscillatory woven metal micro-screen.

    PubMed

    Sabouni, R; Gomaa, H G

    2015-06-14

    Uniform Pickering emulsions stabilized by metal organic frameworks (MOFs) MIL-101 and ZIF-8 nanoparticles (NPs) were successfully prepared using an oscillatory woven metal microscreen (WMMS) emulsification system in the presence and the absence of surfactants. The effects of operating and system parameters including the frequency and amplitude of oscillation, the type of nano-particle and/or surfactant on the droplet size and coefficient of variance of the prepared emulsions are investigated. The results showed that both the hydrodynamics of the system and the hydrophobic/hydrophilic nature of the NP influenced the interfacial properties of the oil-water interface during droplet formation and after detachment, which in turn affected the final droplet size and distribution. Comparison between the measured and predicted droplet size using a simple torque balance (TB) model is discussed.

  12. Fabrication of magnetite nano particles and modification with metal organic framework of Zn(2+) for sorption of doxycyline.

    PubMed

    Ghassemi Nooreini, Mahsa; Ahmad Panahi, Homayon

    2016-10-15

    This study presents a novel method for synthesis and characterization of a metal-organic framework and application in drug delivery. The first step was synthesis of amino functionalized magnetite that was then modified by a metal-organic framework of Zn(2+). This newly developed nano-sorbent was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive x-ray spectroscopy, thermogravimetric analysis, vibrating sample magnetometer and x-ray diffraction. Doxycycline was loaded to the nano-sorbent and effects of the variable parameters, kinetics of adsorption, release and capacity of adsorption were investigated. Test results specified maximum sorption of 21.5mgg(-1) for doxycycline in conditions of nano-sorbent at pH 7 and optimum time of 10min. Equilibrium adsorption data were analyzed by the Langmuir, Freundlich and Temkin models. Results showed that about 40% of doxycycline was released in simulated gastric fluid for the 30min and more than 70% was released in simulated intestinal fluid during 12h. These results were satisfactory and demonstrate that this new nano-sorbent modified with metal-organic framework had a good level of efficiency for drug delivery of doxycycline. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The direct heat measurement of mechanical energy storage metal-organic frameworks.

    PubMed

    Rodriguez, Julien; Beurroies, Isabelle; Loiseau, Thierry; Denoyel, Renaud; Llewellyn, Philip L

    2015-04-07

    In any process, the heat exchanged is an essential property required in its development. Whilst the work related to structural transitions of some flexible metal-organic frameworks (MOFs) has been quantified and linked with potential applications such as molecular springs or shock absorbers, the heat related to such transitions has never been directly measured. This has now been carried out with MIL-53(Al) using specifically devised calorimetry experiments. We project the importance of these heats in devices such as molecular springs or dampers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Anionic Gallium-Based Metal;#8722;Organic Framework and Its Sorption and Ion-Exchange Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Debasis; Kim, Sun Jin; Wu, Haohan

    2012-04-30

    A gallium-based metal-organic framework Ga{sub 6}(C{sub 9}H{sub 3}O{sub 6}){sub 8} {center_dot} (C{sub 2}H{sub 8}N){sub 6}(C{sub 3}H{sub 7}NO){sub 3}(H{sub 2}O){sub 26} [1, Ga{sub 6}(1,3,5-BTC){sub 8} {center_dot} 6DMA {center_dot} 3DMF {center_dot} 26H{sub 2}O], GaMOF-1; BTC = benzenetricarboxylate/trimesic acid and DMA = dimethylamine, with space group I{bar 4}3d, a = 19.611(1) {angstrom}, and V = 7953.4(6) {angstrom}{sup 3}, was synthesized using solvothermal techniques and characterized by synchrotron-based X-ray microcrystal diffraction. Compound 1 contains isolated gallium tetrahedra connected by the organic linker (BTC) forming a 3,4-connected anionic porous network. Disordered positively charged ions and solvent molecules are present in the pore, compensating for themore » negative charge of the framework. These positively charged molecules could be exchanged with alkali-metal ions, as is evident by an ICP-MS study. The H{sub 2} storage capacity of the parent framework is moderate with a H{sub 2} storage capacity of {approx}0.5 wt % at 77 K and 1 atm.« less

  15. Metal-Organic Frameworks for Cultural Heritage Preservation: The Case of Acetic Acid Removal.

    PubMed

    Dedecker, Kevin; Pillai, Renjith S; Nouar, Farid; Pires, João; Steunou, Nathalie; Dumas, Eddy; Maurin, Guillaume; Serre, Christian; Pinto, Moisés L

    2018-04-25

    The removal of low concentrations of acetic acid from indoor air at museums poses serious preservation problems that the current adsorbents cannot easily address owing to their poor affinity for acetic acid and/or their low adsorption selectivity versus water. In this context, a series of topical water-stable metal-organic frameworks (MOFs) with different pore sizes, topologies, hydrophobic characters, and functional groups was explored through a joint experimental-computational exploration. We demonstrate how a subtle combination of sufficient hydrophobicity and optimized host-guest interactions allows one to overcome the challenge of capturing traces of this very polar volatile organic compound in the presence of humidity. The optimal capture of acetic acid was accomplished with MOFs that do not show polar groups in the inorganic node or have lipophilic but polar (e.g., perfluoro) groups functionalized to the organic linkers, that is, the best candidates from the list of explored MOFs are MIL-140B and UiO-66-2CF 3 . These two MOFs present the appropriate pore size to favor a high degree of confinement, together with organic spacers that allow an enhancement of the van der Waals interactions with the acetic acid. We establish in this work that MOFs can be a viable solution to this highly challenging problem in cultural heritage protection, which is a new field of application for this type of hybrid materials.

  16. Surface functionalization of metal organic frameworks for mixed matrix membranes

    DOEpatents

    Albenze, Erik; Lartey, Michael; Li, Tao; Luebke, David R.; Nulwala, Hunaid B.; Rosi, Nathaniel L.; Venna, Surendar R.

    2017-03-21

    Mixed Matrix Membrane (MMM) are composite membranes for gas separation and comprising a quantity of inorganic filler particles, in particular metal organic framework (MOF), dispersed throughout a polymer matrix comprising one or more polymers. This disclosure is directed to MOF functionalized through addition of a pendant functional group to the MOF, in order to improve interaction with a surrounding polymer matrix in a MMM. The improved interaction aids in avoiding defects in the MMM due to incompatible interfaces between the polymer matrix and the MOF particle, in turn increasing the mechanical and gas separation properties of the MMM. The disclosure is also directed to a MMM incorporating the surface functionalized MOF.

  17. A force field for dynamic Cu-BTC metal-organic framework.

    PubMed

    Zhao, Lei; Yang, Qingyuan; Ma, Qintian; Zhong, Chongli; Mi, Jianguo; Liu, Dahuan

    2011-02-01

    A new force field that can describe the flexibility of Cu-BTC metal-organic framework (MOF) was developed in this work. Part of the parameters were obtained using density functional theory calculations, and the others were taken from other force fields. The new force field could reproduce well the experimental crystal structure, negative thermal expansion, vibrational properties as well as adsorption behavior in Cu-BTC. In addition, the bulk modulus of Cu-BTC was predicted using the new force field. We believe the new force field is useful in understanding the structure-property relationships for MOFs, and the approach can be extended to other MOFs.

  18. A theoretical study of the hydrogen-storage potential of (H2)4CH4 in metal organic framework materials and carbon nanotubes.

    PubMed

    Li, Q; Thonhauser, T

    2012-10-24

    The hydrogen-methane compound (H(2))(4)CH(4)-or for short H4M-is one of the most promising hydrogen-storage materials. This van der Waals compound is extremely rich in molecular hydrogen: 33.3 mass%, not including the hydrogen bound in CH(4); including it, we reach even 50.2 mass%. Unfortunately, H4M is not stable under ambient pressure and temperature, requiring either low temperature or high pressure. In this paper, we investigate the properties and structure of the molecular and crystalline forms of H4M, using ab initio methods based on van der Waals DFT (vdW-DF). We further investigate the possibility of creating the pressures required to stabilize H4M through external agents such as metal organic framework (MOF) materials and carbon nanotubes, with very encouraging results. In particular, we find that certain MOFs can create considerable pressure for H4M in their cavities, but not enough to stabilize it at room temperature, and moderate cooling is still necessary. On the other hand, we find that all the investigated carbon nanotubes can create the high pressures required for H4M to be stable at room temperature, with direct implications for new and exciting hydrogen-storage applications.

  19. Synergizing Noncovalent Bonding Interactions in the Self-Assembly of Organic Charge-Transfer Ferroelectrics and Metal-Organic Frameworks

    NASA Astrophysics Data System (ADS)

    Cao, Dennis

    Contemporary supramolecular chemistry---chemistry beyond the molecule---seeks to leverage noncovalent bonding interactions to generate emergent properties and complexity. These aims extend beyond the solution phase and into the solid state, where crystalline organic materials have attracted much attention for their ability to imitate the physical properties of inorganic crystals. This Thesis outlines my efforts to understand the properties of the solid-state materials that are self-assembled with noncovalent bonding motifs which I have helped to realize. In the first five Chapters, I chronicle the development of the lock-arm supramolecular ordering (LASO) paradigm, which is a general molecular design strategy for amplifying the crystallization of charge transfer complexes that revolves around the synergistic action of hydrogen bonding and charge transfer interactions. In an effort to expand upon the LASO paradigm, I identify a two-point halogen-bonding motif which appears to operate orthogonally from the hydrogen bonding and charge transfer interactions. Since some of these single crystalline materials are ferroelectric at room temperature, I discuss the implications of these experimental observations and reconcile them with the centrosymmetric space groups assigned after X-ray crystallographic refinements. I conclude in the final two Chapters by recording my endeavors to control the assembly of metal-organic frameworks (MOFs) with noncovalent bonding interactions between [2]catenane-bearing struts. First of all, I describe the formation of syndiotactic pi-stacked 2D MOF layers before highlighting a two-component MOF that assembles with a magic number ratio of components that is independent of the molar proportions present in the crystallization medium.

  20. Asymmetric supercapacitors utilizing highly porous metal-organic framework derived Co3O4 nanosheets grown on Ni foam and polyaniline hydrogel derived N-doped nanocarbon electrode materials

    NASA Astrophysics Data System (ADS)

    Fan, Xin; Chen, Weiliang; Pang, Shuhua; Lu, Wei; Zhao, Yu; Liu, Zheng; Fang, Dong

    2017-12-01

    In the present work, asymmetric supercapacitors (ASCs) are assembled using a highly conductive N-doped nanocarbon (NDC) material derived from a polyaniline hydrogel as a cathode, and Ni foam covered with flower-like Co3O4 nanosheets (Co3O4-Ni) prepared from a zeolitic imidazolate metal-organic framework as a single precursor serves as a high gravimetric capacitance anode. At a current of 0.2 A g-1, the Co3O4-Ni electrode provides a gravimetric capacitance of 637.7 F g-1, and the NDC electrode provides a gravimetric capacitance of 359.6 F g-1. The ASC assembled with an optimal active material loading operates within a wide potential window of 0-1.1 V, and provides a high areal capacitance of 25.7 mF cm-2. The proposed ASC represents a promising strategy for designing high-performance supercapacitors.

  1. Hydrogen storage in metal-organic frameworks: An investigation of structure-property relationships

    NASA Astrophysics Data System (ADS)

    Rowsell, Jesse

    Metal-organic frameworks (MOFs) have been identified as candidate hydrogen storage materials due to their ability to physisorb large quantities of small molecules. Thirteen compounds (IRMOF-1, -2, -3, -6, -8, -9, -11, -13, -18, -20, MOF-74, MOF-177 and HKUST-1) have been prepared and fully characterized for the evaluation of their dihydrogen (H2) adsorption properties. All compounds display approximately type I isotherms with no hysteresis at 77 K up to 1 atm. The amount adsorbed ranges from 0.89 to 2.54 wt%; however, saturation is not achieved under these conditions. The influences of link functionalization, catenation and topology are examined for the eleven MOFs composed of Zn4O(O2C-)6 clusters. Enhanced H2 uptake by catenated compounds is rationalized by increased overlap of the surface potentials within their narrower pores. This is corroborated by the larger isosteric heat of adsorption of IRMOF-11 compared to IRMOF-1. Inelastic neutron scattering spectroscopic analysis of four Zn4O-based materials (IRMOF-1, -8, -11, and MOF-74) under a range of H2 loading suggests the presence of multiple localized adsorption sites on both the inorganic and organic moieties. To determine the structural details of the adsorption sites, variable temperature single crystal X-ray diffraction was used to analyze adsorbed argon and dinitrogen molecules in IRMOF-1. The principle binding site was found to be the same for both adsorbates and is located on faces of the octahedral Zn4O(O2C-)6 clusters with close contacts to three carboxylate groups. A total of eight symmetry-independent adsorption sites were identified for argon at 30 K. Similar sites were observed for dinitrogen, suggesting that they are good model adsorbates for the behaviour of dihydrogen. Two additional materials composed of inorganic clusters with coordinatively unsaturated metal sites (MOF-74, HKUST-1) were examined and their increased capacities and isosteric heats of adsorption provide further evidence that the

  2. Active and Durable Hydrogen Evolution Reaction Catalyst Derived from Pd-Doped Metal-Organic Frameworks.

    PubMed

    Chen, Jitang; Xia, Guoliang; Jiang, Peng; Yang, Yang; Li, Ren; Shi, Ruohong; Su, Jianwei; Chen, Qianwang

    2016-06-01

    The water electrolysis is of critical importance for sustainable hydrogen production. In this work, a highly efficient and stable PdCo alloy catalyst (PdCo@CN) was synthesized by direct annealing of Pd-doped metal-organic frameworks (MOFs) under N2 atmosphere. In 0.5 M H2SO4 solution, PdCo@CN displays remarkable electrocatalytic performance with overpotential of 80 mV, a Tafel slope of 31 mV dec(-1), and excellent stability of 10 000 cycles. Our studies reveal that noble metal doped MOFs are ideal precursors for preparing highly active alloy electrocatalysts with low content of noble metal.

  3. Synthesis of Hierarchically Structured Hybrid Materials by Controlled Self-Assembly of Metal-Organic Framework with Mesoporous Silica for CO2 Adsorption.

    PubMed

    Chen, Chong; Li, Bingxue; Zhou, Lijin; Xia, Zefeng; Feng, Nengjie; Ding, Jing; Wang, Lei; Wan, Hui; Guan, Guofeng

    2017-07-12

    The HKUST-1@SBA-15 composites with hierarchical pore structure were constructed by in situ self-assembly of metal-organic framework (MOF) with mesoporous silica. The structure directing role of SBA-15 had an obvious impact on the growth of MOF crystals, which in turn affected the morphologies and structural properties of the composites. The pristine HKUST-1 and the composites with different content of SBA-15 were characterized by XRD, N 2 adsorption-desorption, SEM, TEM, FT-IR, TG, XPS, and CO 2 -TPD techniques. It was found that the composites were assembled by oriented growth of MOF nanocrystals on the surfaces of SBA-15 matrix. The interactions between surface silanol groups and metal centers induced structural changes and resulted in the increases in surface areas as well as micropore volumes of hybrid materials. Besides, the additional constraints from SBA-15 also restrained the expansion of HKUST-1, contributing to their smaller crystal sizes in the composites. The adsorption isotherms of CO 2 on the materials were measured and applied to calculate the isosteric heats of adsorption. The HS-1 composite exhibited an increase of 15.9% in CO 2 uptake capacity compared with that of HKUST-1. Moreover, its higher isosteric heats of CO 2 adsorption indicated the stronger interactions between the surfaces and CO 2 molecules. The adsorption rate of the composite was also improved due to the introduction of mesopores. Ten cycles of CO 2 adsorption-desorption experiments implied that the HS-1 had excellent reversibility of CO 2 adsorption. This study was intended to provide the possibility of assembling new composites with tailored properties based on MOF and mesoporous silica to satisfy the requirements of various applications.

  4. Bimetallic Metal-Organic Frameworks: Probing the Lewis Acid Site for CO2 Conversion.

    PubMed

    Zou, Ruyi; Li, Pei-Zhou; Zeng, Yong-Fei; Liu, Jia; Zhao, Ruo; Duan, Hui; Luo, Zhong; Wang, Jin-Gui; Zou, Ruqiang; Zhao, Yanli

    2016-05-01

    A highly porous metal-organic framework (MOF) incorporating two kinds of second building units (SBUs), i.e., dimeric paddlewheel (Zn2 (COO)4 ) and tetrameric (Zn4 (O)(CO2 )6 ), is successfully assembled by the reaction of a tricarboxylate ligand with Zn(II) ion. Subsequently, single-crystal-to-single-crystal metal cation exchange using the constructed MOF is investigated, and the results show that Cu(II) and Co(II) ions can selectively be introduced into the MOF without compromising the crystallinity of the pristine framework. This metal cation-exchangeable MOF provides a useful platform for studying the metal effect on both gas adsorption and catalytic activity of the resulted MOFs. While the gas adsorption experiments reveal that Cu(II) and Co(II) exchanged samples exhibit comparable CO2 adsorption capability to the pristine Zn(II) -based MOF under the same conditions, catalytic investigations for the cycloaddition reaction of CO2 with epoxides into related carbonates demonstrate that Zn(II) -based MOF affords the highest catalytic activity as compared with Cu(II) and Co(II) exchanged ones. Molecular dynamic simulations are carried out to further confirm the catalytic performance of these constructed MOFs on chemical fixation of CO2 to carbonates. This research sheds light on how metal exchange can influence intrinsic properties of MOFs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Mimic Carbonic Anhydrase Using Metal-Organic Frameworks for CO2 Capture and Conversion.

    PubMed

    Jin, Chaonan; Zhang, Sainan; Zhang, Zhenjie; Chen, Yao

    2018-02-19

    Carbonic anhydrase (CA) is a zinc-containing metalloprotein, in which the Zn active center plays the key role to transform CO 2 into carbonate. Inspired by nature, herein we used metal-organic frameworks (MOFs) to mimic CA for CO 2 conversion, on the basis of the structural similarity between the Zn coordination in MOFs and CA active center. The biomimetic activity of MOFs was investigated by detecting the hydrolysis of para-nitrophenyl acetate, which is a model reaction used to evaluate CA activity. The biomimetic materials (e.g., CFA-1) showed good catalytic activity, and excellent reusability, and solvent and thermal stability, which is very important for practical applications. In addition, ZIF-100 and CFA-1 were used to mimic CA to convert CO 2 gas, and exhibited good efficiency on CO 2 conversion compared with those of other porous materials (e.g., MCM-41, active carbon). This biomimetic study revealed a novel CO 2 treatment method. Instead of simply using MOFs to absorb CO 2 , ZIF-100 and CFA-1 were used to mimic CA for in situ CO 2 conversion, which provides a new prospect in the biological and industrial applications of MOFs.

  6. Gas sorption and transition-metal cation separation with a thienothiophene based zirconium metal-organic framework

    NASA Astrophysics Data System (ADS)

    SK, Mostakim; Grzywa, Maciej; Volkmer, Dirk; Biswas, Shyam

    2015-12-01

    The modulated synthesis of the thienothiophene based zirconium metal-organic framework (MOF) material having formula [Zr6O4(OH)4(DMTDC)6]·4.8DMF·10H2O (1) (H2DMTDC=3,4-dimethylthieno[2,3-b]thiophene-2,5-dicarboxylic acid; DMF=N,N'-dimethylformamide) was carried out by heating a mixture of ZrCl4, H2DMTDC linker and benzoic acid (used as a modulator) with a molar ratio of 1:1:30 in DMF at 150 °C for 24 h. Systematic investigations have been performed in order to realize the effect of ZrCl4/benzoic acid molar ratio on the crystallinity of the material. The activation (i.e., the removal of the guest solvent molecules from the pores) of as-synthesized compound was achieved by stirring it with methanol and subsequently heating under vacuum. A combination of X-ray diffraction (XRD), Fourier transform infrared (FT-IR), thermogravimetric (TG) and elemental analysis was used to examine the phase purity of the as-synthesized and thermally activated 1. The material displays high thermal stability up to 310 °C in an air atmosphere. As revealed from the XRD measurements, the compound retains its crystallinity when treated with water, acetic acid and 1 M HCl solutions. The N2 and CO2 sorption analyses suggest that the material possesses remarkably high microporosity (SBET=1236 m2 g-1; CO2 uptake=3.5 mmol g-1 at 1 bar and 0 °C). The compound also shows selective adsorption behavior for Cu2+ over Co2+ and Ni2+ ions.

  7. Coordination polymer nanocapsules prepared using metal-organic framework templates for pH-responsive drug delivery

    NASA Astrophysics Data System (ADS)

    Tang, Lei; Shi, Jiafu; Wang, Xiaoli; Zhang, Shaohua; Wu, Hong; Sun, Hongfan; Jiang, Zhongyi

    2017-07-01

    A facile, efficient, and versatile approach is presented to synthesize pH-responsive nanocapsules (˜120 nm) by combining the advantages of metal-organic frameworks (MOFs) and metal-organic thin films. ZIF-8 nanoparticles are used as templates on which a thin film coating of iron(III)-catechol complexes is derived from the coordination between dopamine-modified alginate (AlgDA) and iron(III) ions. After the template removal, nanocapsules with a pH-responsive wall are obtained. Doxorubicin (Dox), a typical anticancer drug, is first immobilized in ZIF-8 frameworks through coprecipitation and then encapsulated in nanocapsules after the removal of ZIF-8. The structure of the iron(III)-catechol complex varies with pH value, thus conferring the Dox@Nanocapsules with tailored release behavior in vitro. Cytotoxicity tests illustrate the highly effective cytotoxicity of Dox@Nanocapsules towards cancer cells. This study provides a new method for preparing smart nanocapsules and offers more opportunities for the controlled delivery of drugs.

  8. Photothermal Activation of Metal-Organic Frameworks Using a UV-Vis Light Source.

    PubMed

    Espín, Jordi; Garzón-Tovar, Luis; Carné-Sánchez, Arnau; Imaz, Inhar; Maspoch, Daniel

    2018-03-21

    Metal-organic frameworks (MOFs) usually require meticulous removal of the solvent molecules to unlock their potential porosity. Herein, we report a novel one-step method for activating MOFs based on the photothermal effect induced by directly irradiating them with a UV-vis lamp. The localized light-to-heat conversion produced in the MOF crystals upon irradiation enables a very fast solvent removal, thereby significantly reducing the activation time to as low as 30 min and suppressing the need for time-consuming solvent-exchange procedures and vacuum conditions. This approach is successful for a broad range of MOFs, including HKUST-1, UiO-66-NH 2 , ZIF-67, CPO-27-M (M = Zn, Ni, and Mg), Fe-MIL-101-NH 2 , and IRMOF-3, all of which exhibit absorption bands in the light emission range. In addition, we anticipate that this photothermal activation can also be used to activate covalent organic frameworks (COFs).

  9. Characterization of Adsorption Enthalpy of Novel Water-Stable Zeolites and Metal-Organic Frameworks

    PubMed Central

    Kim, Hyunho; Cho, H. Jeremy; Narayanan, Shankar; Yang, Sungwoo; Furukawa, Hiroyasu; Schiffres, Scott; Li, Xiansen; Zhang, Yue-Biao; Jiang, Juncong; Yaghi, Omar M.; Wang, Evelyn N.

    2016-01-01

    Water adsorption is becoming increasingly important for many applications including thermal energy storage, desalination, and water harvesting. To develop such applications, it is essential to understand both adsorbent-adsorbate and adsorbate-adsorbate interactions, and also the energy required for adsorption/desorption processes of porous material-adsorbate systems, such as zeolites and metal-organic frameworks (MOFs). In this study, we present a technique to characterize the enthalpy of adsorption/desorption of zeolites and MOF-801 with water as an adsorbate by conducting desorption experiments with conventional differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA). With this method, the enthalpies of adsorption of previously uncharacterized adsorbents were estimated as a function of both uptake and temperature. Our characterizations indicate that the adsorption enthalpies of type I zeolites can increase to greater than twice the latent heat whereas adsorption enthalpies of MOF-801 are nearly constant for a wide range of vapor uptakes. PMID:26796523

  10. High thermal stability and antiferromagnetic properties of a 3D Mn(II)-organic framework with metal carboxylate chains

    NASA Astrophysics Data System (ADS)

    Han, Lei; Zhou, Yan; Wang, Xiu-Teng; Li, Xing; Tong, Ming-Liang

    2009-04-01

    A novel three-dimensional metal-organic framework, [Mn 2(hfipbb) 2(bpy)] n ( 1) (H 2hfipbb = 4,4'-(hexafluoroisopropylidene)bis(benzoic acid), bpy = 4,4'-bipyridine), has been hydrothermally synthesized and structurally characterized. The complex consists of metal carboxylate chains, which are cross-linked to six adjacent chains through organic moieties forming extended three-dimensional networks. Complex 1 exhibits high thermal stability (450 °C) and antiferromagnetic properties.

  11. Metal-Organic Frameworks as Potential Platforms for Carbon Dioxide Capture and Chemical Transformation

    NASA Astrophysics Data System (ADS)

    Gao, Wenyang

    The anthropogenic carbon dioxide (CO2) emission into the atmosphere, mainly through the combustion of fossil fuels, has resulted in a balance disturbance of the carbon cycle. Overwhelming scientific evidence proves that the escalating level of atmospheric CO2 is deemed as the main culprit for global warming and climate change. It is thus imperative to develop viable CO2 capture and sequestration (CCS) technologies to reduce CO2 emissions, which is also essential to avoid the potential devastating effects in future. The drawbacks of energy-cost, corrosion and inefficiency for amine-based wet-scrubbing systems which are currently used in industry, have prompted the exploration of alternative approaches for CCS. Extensive efforts have been dedicated to the development of functional porous materials, such as activated carbons, zeolites, porous organic polymers, and metal-organic frameworks (MOFs) to capture CO2. However, these adsorbents are limited by either poor selectivity for CO2 separation from gas mixtures or low CO2 adsorption capacity. Therefore, it is still highly demanding to design next-generation adsorbent materials fulfilling the requirements of high CO2 selectivity and enough CO2 capacity, as well as high water/moisture stability under practical conditions. Metal-organic frameworks (MOFs) have been positioned at the forefront of this area as a promising type of candidate amongst various porous materials. This is triggered by the modularity and functionality of pore size, pore walls and inner surface of MOFs by use of crystal engineering approaches. In this work, several effective strategies, such as incorporating 1,2,3-triazole groups as moderate Lewis base centers into MOFs and employing flexible azamacrocycle-based ligands to build MOFs, demonstrate to be promising ways to enhance CO 2 uptake capacity and CO2 separation ability of porous MOFs. It is revealed through in-depth studies on counter-intuitive experimental observations that the local electric

  12. Prediction of molecular separation of polar-apolar mixtures on heterogeneous metal-organic frameworks: HKUST-1.

    PubMed

    Van Assche, Tom R C; Duerinck, Tim; Van der Perre, Stijn; Baron, Gino V; Denayer, Joeri F M

    2014-07-08

    Due to the combination of metal ions and organic linkers and the presence of different types of cages and channels, metal-organic frameworks often possess a large structural and chemical heterogeneity, complicating their adsorption behavior, especially for polar-apolar adsorbate mixtures. By allocating isotherms to individual subunits in the structure, the ideal adsorbed solution theory (IAST) can be adjusted to cope with this heterogeneity. The binary adsorption of methanol and n-hexane on HKUST-1 is analyzed using this segregated IAST (SIAST) approach and offers a significant improvement over the standard IAST model predictions. It identifies the various HKUST-1 cages to have a pronounced polar or apolar adsorptive behavior.

  13. Selective degradation of organic dyes by a resin modified Fe-based metal-organic framework under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Araya, Tirusew; Chen, Chun-cheng; Jia, Man-ke; Johnson, David; Li, Ruiping; Huang, Ying-ping

    2017-02-01

    Metal organic frameworks (MOFs), a new class of porous crystalline materials have attracted attention because of potential applications in environmental remediation. In this work, an Fe-based MOF, FeBTC (BTC = 1,3,5-tricarboxylic acid), was successfully modified with Amberlite IRA-200 resin to yield a novel heterogeneous photocatalyst, A@FeBTC. The modification resulted in higher photocatalytic activity than FeBTC under the same conditions. After 60 min of visible light illumination (λ ≥ 420 nm) 99% of rhodamine B was degraded. The modification lowers the zeta potential, enhancing charge-based selective adsorption and subsequent photocatalytic degradation of cationic dye pollutants. The composite also improved catalyst stability and recyclability by significantly reducing loss of iron leaching. Photoluminescence studies show that introduction of the resin reduces the recombination rate of photogenerated charge carriers thereby improving the photocatalytic activity of the composite. Finally, a plausible photocatalytic reaction mechanism is proposed.

  14. Extracting organic contaminants from water using the metal-organic framework CrIII(OH)·{O2C-C6H4-CO2}.

    PubMed

    Maes, Michael; Schouteden, Stijn; Alaerts, Luc; Depla, Diederik; De Vos, Dirk E

    2011-04-07

    The water-stable metal-organic framework MIL-53(Cr) is able to adsorb phenol and p-cresol from contaminated water as well as the monomeric sugar D-(-)-fructose. Based on the isotherm for phenol uptake from the liquid phase, it is proposed that the framework breathes to maximize the uptake.

  15. Preparation Methods of Metal Organic Frameworks and Their Capture of CO2

    NASA Astrophysics Data System (ADS)

    Zhang, Linjian; Liand, Fangqin; Luo, Liangfei

    2018-01-01

    The increasingly serious greenhouse effect makes people pay more attention to the capture and storage technology of CO2. Metal organic frameworks (MOFs) have the advantages of high specific surface area, porous structure and controllable structure, and become the research focus of CO2 emission reduction technology in recent years. In this paper, the characteristics, preparation methods and application of MOFs in the field of CO2 adsorption and separation are discussed, especially the application of flue gas environment in power plants.

  16. Rapid and selective adsorption of cationic dyes by a unique metal-organic framework with decorated pore surface

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Li, Fan; Sun, Qian

    2018-05-01

    Organic dye pollutants become a big headache due to their toxic nature to the environment, and it should be one of the best solutions if we can remove and separate them. Here, a metal-organic framework (MOF) (denoted as Zn-MOF) with carbonyl group based on fluorenone-2,7-dicarboxylate ligand, was directly synthesized without post-synthesis method and applied to selectively absorb cationic dyes such as MB, CV, RhB from aqueous solution, while anionic or neutral dyes were excluded. Characterization of the Zn-MOF was achieved by X-ray diffraction, scanning electron microscope, Fourier transform infrared spectrometry and elemental analysis. The Zn-MOF mainly possesses open pore channels, high surface area, big pore volume, and most important, the pore surface is furnished with carbonyl groups arising from the ligand and pointing toward the centers of the large chambers of the framework, which are benefit for the adsorption of the cationic dyes. The MB maximum adsorption capacities can attain 326 mg g-1, which is probably due to the suitable pore size, higher solvent-accessible void, and the prominent adsorption capacity of the mesoporous material. The dye adsorption process for the material is proven to be charge-selective and size-selective, and the adsorption isotherms, as well as kinetics characteristic of dye adsorption onto the Zn-MOF were also investigated.

  17. A New Class of Metal-Cyclam-Based Zirconium Metal-Organic Frameworks for CO2 Adsorption and Chemical Fixation.

    PubMed

    Zhu, Jie; Usov, Pavel M; Xu, Wenqian; Celis-Salazar, Paula J; Lin, Shaoyang; Kessinger, Matthew C; Landaverde-Alvarado, Carlos; Cai, Meng; May, Ann M; Slebodnick, Carla; Zhu, Dunru; Senanayake, Sanjaya D; Morris, Amanda J

    2018-01-24

    Metal-organic frameworks (MOFs) have shown great promise in catalysis, mainly due to their high content of active centers, large internal surface areas, tunable pore size, and versatile chemical functionalities. However, it is a challenge to rationally design and construct MOFs that can serve as highly stable and reusable heterogeneous catalysts. Here two new robust 3D porous metal-cyclam-based zirconium MOFs, denoted VPI-100 (Cu) and VPI-100 (Ni), have been prepared by a modulated synthetic strategy. The frameworks are assembled by eight-connected Zr 6 clusters and metallocyclams as organic linkers. Importantly, the cyclam core has accessible axial coordination sites for guest interactions and maintains the electronic properties exhibited by the parent cyclam ring. The VPI-100 MOFs exhibit excellent chemical stability in various organic and aqueous solvents over a wide pH range and show high CO 2 uptake capacity (up to ∼9.83 wt% adsorption at 273 K under 1 atm). Moreover, VPI-100 MOFs demonstrate some of the highest reported catalytic activity values (turnover frequency and conversion efficiency) among Zr-based MOFs for the chemical fixation of CO 2 with epoxides, including sterically hindered epoxides. The MOFs, which bear dual catalytic sites (Zr and Cu/Ni), enable chemistry not possible with the cyclam ligand under the same conditions and can be used as recoverable stable heterogeneous catalysts without losing performance.

  18. Structure, photoluminescent properties and photocatalytic activities of a new Cd(II) metal-organic framework.

    PubMed

    Zhang, Cheng Yan; Ma, Wei Xing; Wang, Ming Yan; Yang, Xu Jie; Xu, Xing You

    2014-01-24

    A new metal-organic framework, [Cd(TDC)(bix)(H2O)]n (H2TDC = thiophene-2,5-dicarboxylic acid; bix = 1,4-bis(imidazol-1-ylmethyl)benzene), has been synthesized under hydrothermal conditions and structurally characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis, UV-vis and single X-ray diffraction. Cd-MOF is a 2D infinite layer framework, which is further interconnected by hydrogen-bond interactions leading to a 3D supramolecular architecture. The photoluminescent properties of the Cd-MOF were investigated and this compound shows intense fluorescent emissions in the solid state. In addition, it exhibits good photocatalytic activities for the degradation of methyl organic under UV light irradiation. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. 3D hybrid-porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Bao, Weizhai; Mondal, Anjon Kumar; Xu, Jing; Wang, Chengyin; Su, Dawei; Wang, Guoxiu

    2016-09-01

    We report a rational design and synthesis of 3D hybrid-porous carbon with a hierarchical pore architecture for high performance supercapacitors. It contains micropores (<2 nm diameter) and mesopores (2-4 nm), derived from carbonization of unique porous metal organic frameworks (MOFs). Owning to the synergistic effect of micropores and mesopores, the hybrid-porous carbon has exceptionally high ion-accessible surface area and low ion diffusion resistance, which is desired for supercapacitor applications. When applied as electrode materials in supercapacitors, 3D hybrid-porous carbon demonstrates a specific capacitance of 332 F g-1 at a constant charge/discharge current of 500 mA g-1. The supercapacitors can endure more than 10,000 cycles without degradation of capacitance.

  20. Dubinin-Astakhov model for acetylene adsorption on metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Cheng, Peifu; Hu, Yun Hang

    2016-07-01

    Acetylene (C2H2) is explosive at a pressure above 29 psi, causing a safety issue for its storage and applications. C2H2 adsorption on metal-organic frameworks (MOFs) has been explored to solve the issue. However, a suitable isotherm equation for C2H2 adsorption on various MOFs has not been found. In this paper, it was demonstrated that Dubinin-Astakhov equation can be exploited as a general isotherm model to depict C2H2 adsorption on MOF-5, ZIF-8, HKUST-1, and MIL-53. In contrast, commonly used Langmuir and BET models exhibited their inapplicability for C2H2 adsorption on those MOFs.

  1. Tunable Two-color Luminescence and Host-guest Energy Transfer of Fluorescent Chromophores Encapsulated in Metal-Organic Frameworks

    NASA Astrophysics Data System (ADS)

    Yan, Dongpeng; Tang, Yanqun; Lin, Heyang; Wang, Dan

    2014-03-01

    Co-assembly of chromophore guests with host matrices can afford materials which have photofunctionalities different from those of individual components. Compared with clay and zeolite materials, the use of metal-organic frameworks (MOFs) as a host structure for fabricating luminescent host-guest materials is still at an early stage. Herein, we report the incorporation of a laser dye, 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM), into stilbene-based and naphthalene-based MOF systems. The resulting materials exhibit blue/red two-color emission, and the intensity ratio of blue to red fluorescence varies in different planes within the MOF crystal as detected by 3D confocal fluorescence microscopy. The observed changes in ratiometric fluorescence suggest the occurrence of energy transfer from MOF host to DCM molecules, which can be further confirmed by periodic density functional theoretical (DFT) calculations. Moreover, selective changes in luminescence behavior are observed on treating the guest@MOF samples with volatile organic compounds (methanol, acetone and toluene), indicating that these host-guest systems have potential applications as fluorescence sensors. It can be expected that by rational selection of MOF hosts and guest chromophores with suitable emissive colors and energy levels, a wide variety of multi-color luminescent and energy-transfer systems can readily be prepared in a similar manner.

  2. Particle size studies to reveal crystallization mechanisms of the metal organic framework HKUST-1 during sonochemical synthesis.

    PubMed

    Armstrong, Mitchell R; Senthilnathan, Sethuraman; Balzer, Christopher J; Shan, Bohan; Chen, Liang; Mu, Bin

    2017-01-01

    Systematic studies of key operating parameters for the sonochemical synthesis of the metal organic framework (MOF) HKUST-1(also called CuBTC) were performed including reaction time, reactor volume, sonication amplitude, sonication tip size, solvent composition, and reactant concentrations analyzed through SEM particle size analysis. Trends in the particle size and size distributions show reproducible control of average particle sizes between 1 and 4μm. These results along with complementary studies in sonofragmentation and temperature control were conducted to compare these results to kinetic crystal growth models found in literature to develop a plausible hypothetical mechanism for ultrasound-assisted growth of metal-organic-frameworks composed of a competitive mechanism including constructive solid-on-solid (SOS) crystal growth and a deconstructive sonofragmentation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Photoswitchable nanoporous films by loading azobenzene in metal-organic frameworks of type HKUST-1.

    PubMed

    Müller, Kai; Wadhwa, Jasmine; Singh Malhi, Jasleen; Schöttner, Ludger; Welle, Alexander; Schwartz, Heidi; Hermann, Daniela; Ruschewitz, Uwe; Heinke, Lars

    2017-07-13

    Photoswitchable metal-organic frameworks (MOFs) enable the dynamic remote control of their key properties. Here, a readily producible approach is presented where photochromic molecules, i.e. azobenzene (AB) and o-tetrafluoroazobenzene (tfAB), are loaded in MOF films of type HKUST-1. These nanoporous films, which can be reversibly switched with UV/visible or only visible light, have remote-controllable guest uptake properties.

  4. Molecular simulation of separation of CO{sub 2} from flue gases in Cu-BTC metal-organic framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Q.Y.; Xue, C.Y.; Zhong, C.L.

    2007-11-15

    In this work, a computational study was performed on the adsorption separation of CO{sub 2} from flue gases (mixtures of CO{sub 2}/N{sub 2}/O{sub 2}) in Cu-BTC metal-organic framework (MOF) to investigate the applicability of MOFs to this important industrial system. The computational results showed that Cu-BTC is a promising material for separation of CO{sub 2} from flue gases, and the macroscopic separation behaviors of the MOF were elucidated at a molecular level to give insight into the underlying mechanisms. The present work not only provided useful information for understanding the separation characteristics of MOFs, but also showed their potential applicationsmore » in chemical industry.« less

  5. Large H2 storage capacity of a new polyhedron-based metal-organic framework with high thermal and hygroscopic stability.

    PubMed

    Hong, Seunghee; Oh, Minhak; Park, Mira; Yoon, Ji Woong; Chang, Jong-San; Lah, Myoung Soo

    2009-09-28

    Two metal-organic frameworks (MOFs) based on metal-organic cuboctahedra were prepared using a rigid C3 symmetric ligand, where Zn polyhedron-based MOF (PMOF-2(Zn)) did not show any significant gas sorption behavior, whereas the isostructural Cu polyhedron-based MOF (PMOF-2(Cu)) showed a large surface area of approximately 4180 m2 g(-1), high hydrothermal stability, and very promising H2 sorption properties.

  6. Uncovering a reconstructive solid-solid phase transition in a metal-organic framework.

    PubMed

    Longley, L; Li, N; Wei, F; Bennett, T D

    2017-11-01

    A nanoporous three-dimensional metal-organic framework (MOF), ZnPurBr undergoes a transition to a previously unreported high-temperature phase, ZnPurBr-ht. The transition, which proceeds without mass loss, is uncovered through the use of differential scanning calorimetry (DSC). The new crystal structure was solved using single-crystal X-ray diffraction, and the mechanical properties of both phases investigated by nanoindentation and density functional theory. The anisotropy of the calculated Young's moduli showed good agreement with the crystallographic alignment of the stiff purinate organic linker. The results provide a prototypical example of the importance of the use of DSC in the MOF field, where its use is not currently standard in characterization.

  7. Carbon dioxide capture using covalent organic frameworks (COFs) type material-a theoretical investigation.

    PubMed

    Dash, Bibek

    2018-04-26

    The present work deals with a density functional theory (DFT) study of porous organic framework materials containing - groups for CO 2 capture. In this study, first principle calculations were performed for CO 2 adsorption using N-containing covalent organic framework (COFs) models. Ab initio and DFT-based methods were used to characterize the N-containing porous model system based on their interaction energies upon complexing with CO 2 and nitrogen gas. Binding energies (BEs) of CO 2 and N 2 molecules with the polymer framework were calculated with DFT methods. Hybrid B3LYP and second order MP2 methods combined with of Pople 6-31G(d,p) and correlation consistent basis sets cc-pVDZ, cc-pVTZ and aug-ccVDZ were used to calculate BEs. The effect of linker groups in the designed covalent organic framework model system on the CO 2 and N 2 interactions was studied using quantum calculations.

  8. Two luminescent Zn(II) metal-organic frameworks for exceptionally selective detection of picric acid explosives.

    PubMed

    Shi, Zhi-Qiang; Guo, Zi-Jian; Zheng, He-Gen

    2015-05-14

    Two luminescent Zn(II) metal-organic frameworks were prepared from a π-conjugated thiophene-containing carboxylic acid ligand. These two MOFs show strong luminescene and their luminescence could be quenched by a series of nitroaromatic explosives. Importantly, they exhibit very highly sensitive and selective detection of picric acid compared to other nitroaromatic explosives.

  9. Anisotropic thermal expansion in a metal-organic framework.

    PubMed

    Madsen, Solveig Røgild; Lock, Nina; Overgaard, Jacob; Iversen, Bo Brummerstedt

    2014-06-01

    Ionothermal reaction between Mn(II)(acetate)2·4H2O and 1,3,5-benzenetricarboxylic acid (H3BTC) in either of the two ionic liquids 1-ethyl-3-methylimidazolium bromide (EMIMBr) and 1-ethyl-3-methylimidazolium tosylate (EMIMOTs) resulted in the formation of the new metal-organic framework (MOF) EMIM[Mn(II)BTC] (BTC = 1,3,5-benzenetricarboxylate). The compound crystallizes in the orthorhombic space group Pbca with unit-cell parameters of a = 14.66658 (12), b = 12.39497 (9), c = 16.63509 (14) Å at 100 K. Multi-temperature single-crystal (15-340 K) and powder X-ray diffraction studies (100-400 K) reveal strongly anisotropic thermal expansion properties. The linear thermal expansion coefficients, αL(l), attain maximum values at 400 K along the a- and b-axis, with αL(a) = 115 × 10(-6) K(-1) and αL(b) = 75 × 10(-6) K(-1). At 400 K a negative thermal expansion coefficient of -40 × 10(-6) K(-1) is observed along the c-axis. The thermal expansion is coupled to a continuous deformation of the framework, which causes the structure to expand in two directions. Due to the rigidity of the linker, the expansion in the ab plane causes the network to contract along the c-axis. Hirshfeld surface analysis has been used to describe the interaction between the framework structure and the EMIM cation that resides within the channel. This reveals a number of rather weak interactions and one governing hydrogen-bonding interactions.

  10. Formation mechanism of the secondary building unit in a chromium terephthalate metal-organic framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantu Cantu, David; McGrail, B. Peter; Glezakou, Vassiliki Alexandra

    2014-09-18

    Based on density functional theory calculations and simulation, a detailed mechanism is presented on the formation of the secondary building unit (SBU) of MIL-101, a chromium terephthalate metal-organic framework (MOF). SBU formation is key to MOF nucleation, the rate-limiting step in the formation process of many MOFs. A series of reactions that lead to the formation of the SBU of MIL-101 is proposed in this work. Initial rate-limiting reactions form the metal cluster with three chromium (III) atoms linked to a central bridging oxygen. Terephthalate linkers play a key role as chromium (III) atoms are joined to linker carboxylate groupsmore » prior to the placement of the central bridging oxygen. Multiple linker addition reactions, which follow in different paths due to structural isomers, are limited by the removal of water molecules in the first chromium coordination shell. The least energy path is identified were all linkers on one face of the metal center plane are added first. A simple kinetic model based on transition state theory shows the rate of secondary building unit formation similar to the rate metal-organic framework nucleation. The authors are thankful to Dr. R. Rousseau for a critical reading of the manuscript. This research would not have been possible without the support of the Office of Fossil Energy, U.S. Department of Energy. This research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and the PNNL Institutional Computing (PIC) program located at Pacific Northwest National Laboratory.« less

  11. Synthesis, structural characterization and selectively catalytic properties of metal-organic frameworks with nano-sized channels: A modular design strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu Lingguang; Gu Lina; Hu Gang

    2009-03-15

    Modular design method for designing and synthesizing microporous metal-organic frameworks (MOFs) with selective catalytical activity was described. MOFs with both nano-sized channels and potential catalytic activities could be obtained through self-assembly of a framework unit and a catalyst unit. By selecting hexaaquo metal complexes and the ligand BTC (BTC=1,3,5-benzenetricarboxylate) as framework-building blocks and using the metal complex [M(phen){sub 2}(H{sub 2}O){sub 2}]{sup 2+} (phen=1,10-phenanthroline) as a catalyst unit, a series of supramolecular MOFs 1-7 with three-dimensional nano-sized channels, i.e. [M{sup 1}(H{sub 2}O){sub 6}].[M{sup 2}(phen){sub 2}(H{sub 2}O){sub 2}]{sub 2}.2(BTC).xH{sub 2}O (M{sup 1}, M{sup 2}=Co(II), Ni(II), Cu(II), Zn(II), or Mn(II), phen=1,10-phenanthroline, BTC=1,3,5-benzenetricarboxylate, x=22-24),more » were synthesized through self-assembly, and their structures were characterized by IR, elemental analysis, and single-crystal X-ray diffraction. These supramolecular microporous MOFs showed significant size and shape selectivity in the catalyzed oxidation of phenols, which is due to catalytic reactions taking place in the channels of the framework. Design strategy, synthesis, and self-assembly mechanism for the construction of these porous MOFs were discussed. - Grapical abstract: A modular design strategy has been developed to synthesize microporous metal-organic frameworks with potential catalytic activity by self-assembly of the framework-building blocks and the catalyst unit.« less

  12. Dendronized Metal Nanoparticles-Self-Organizing Building Blocks for the Design of New Functional Materials

    DTIC Science & Technology

    2016-04-01

    characterization has just started.       The hybrids that we have synthesized are based on plasmonic gold and  silver   nanoparticles  (NPs) but  the concept  is...AFRL-AFOSR-UK-TR-2016-0010 Dendronized metal nanoparticles - self-organizing building blocks for the design of new functional materials Bertrand...2015 4. TITLE AND SUBTITLE Dendronized metal nanoparticles - self-organizing building blocks for the design of new functional materials 5a. CONTRACT

  13. Capturing Guest Dynamics in Metal-Organic Framework CPO-27-M (M = Mg, Zn) by (2)H Solid-State NMR Spectroscopy.

    PubMed

    Xu, Jun; Sinelnikov, Regina; Huang, Yining

    2016-06-07

    Metal-organic frameworks (MOFs) are promising porous materials for gas separation and storage as well as sensing. In particular, a series of isostructural MOFs with coordinately unsaturated metal centers, namely, CPO-27-M or M-MOF-74 (M = Mg, Zn, Mn, Fe, Ni, Co, Cu), have shown exceptional adsorption capacity and selectivity compared to those of classical MOFs that contain only fully coordinated metal sites. Although it is widely accepted that the interaction between guest molecules and exposed metal centers is responsible for good selectivity and large maximum uptake, the investigation of such guest-metal interaction is very challenging because adsorbed molecules are usually disordered in the pores and undergo rapid thermal motions. (2)H solid-state NMR (SSNMR) spectroscopy is one of the most extensively used techniques for capturing guest dynamics in porous materials. In this work, variable-temperature (2)H wide-line SSNMR experiments were performed on CPO-27-M (M = Mg, Zn) loaded with four prototypical guest molecules: D2O, CD3CN, acetone-d6, and C6D6. The results indicate that different guest molecules possess distinct dynamic behaviors inside the channel of CPO-27-M. For a given guest molecule, its dynamic behavior also depends on the nature of the metal centers. The binding strength of guest molecules is discussed on the basis of the (2)H SSNMR data.

  14. Redox-Flow Batteries: From Metals to Organic Redox-Active Materials.

    PubMed

    Winsberg, Jan; Hagemann, Tino; Janoschka, Tobias; Hager, Martin D; Schubert, Ulrich S

    2017-01-16

    Research on redox-flow batteries (RFBs) is currently experiencing a significant upturn, stimulated by the growing need to store increasing quantities of sustainably generated electrical energy. RFBs are promising candidates for the creation of smart grids, particularly when combined with photovoltaics and wind farms. To achieve the goal of "green", safe, and cost-efficient energy storage, research has shifted from metal-based materials to organic active materials in recent years. This Review presents an overview of various flow-battery systems. Relevant studies concerning their history are discussed as well as their development over the last few years from the classical inorganic, to organic/inorganic, to RFBs with organic redox-active cathode and anode materials. Available technologies are analyzed in terms of their technical, economic, and environmental aspects; the advantages and limitations of these systems are also discussed. Further technological challenges and prospective research possibilities are highlighted. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  15. Synthesis of metal-organic framework films by pore diffusion method

    NASA Astrophysics Data System (ADS)

    Murayama, Naohiro; Nishimura, Yuki; Kajiro, Hiroshi; Kishida, Satoru; Kinoshita, Kentaro; Tottori Univ Team; Nippon Steel; Sumitomo Metal Co. Collaboration; Tottori Integrated Frontier Resaerch Center (Tifrec) Collaboration; Tottori University Electronic Display Resaerch Center (Tedrec) Collaboration

    Metal-organic frameworks (MOFs) presents high controllability in designing the nano-scale pore, and this enable molecular storages, catalysts, gas sensors, gas separation membranes, and electronic devices for next-generation. Therefore, a simple method for film synthesis of MOFs compared with conventional methods [1] is strongly required. In this paper, we provide pore diffusion method, in which a substrate containing constituent metals of MOF is inserted in solution that includes only linker molecules of MOF. As a result, 2D growth of MOF was effectively enhanced, and the formation of flat and dense MOF films was attained. The growth time, t, dependence of film thickness, d, can be expressed by the relation of d = Aln(t + 1) + B, where A and B are constants. It means that ionized coppers diffuse through the pores of MOFs and the synthesis reaction proceeds at the MOF/solvent interface. We demonstrated the fabrication of a HKUST-1/Cu-TPA hetero structure by synthesizing a Cu-TPA film continuously after the growth of a HKUST-1 film on the CuOx substrate.

  16. The Construction of Metal-Organic Framework with Active Backbones by the Utilization of Reticular Chemistry

    NASA Astrophysics Data System (ADS)

    Choi, Eunwoo

    With the principles of reticular chemistry, metal-organic frameworks with ultra-high porosity, chiral-recognition unit as a chiral stationary phase, metalloporhyrins for enhanced hydrogen adsorption and an intrinsic conductivity to form porous conductors, have been prepared. This dissertation presents how the principles of reticular chemistry were utilized to achieve in the preparations of metal-organic frameworks with a large surface area and active backbones. Through the simple isoreticular (having the same framework topology) expansion from MOF-177 composed with 1,3,5-tris(4'-carboxyphenyl-)benzene (BTB3-) as the strut; MOF-200 was prepared with 4,4',4"-(benzene-1,3,5-triyl-tris(benzene-4,1-diy1))tribenzoic acid an extension from BTB3- by a phenylene unit to yield one of the most porous MOFs with a Langmuir surface area of 10,400 m2. and the lowest density of 0.22 cm3.g-1. A successful thermal polymerization reaction at 325 °C inside of the pores of highly porous MOF, MOF-177, was performed and verified the integrity of the MOF structure even after the thermal reaction. 1,4-Diphenylbutadiyne that is known to polymerize upon heating to form a conjugated backbone was impregnated via solution-diffusion into MOF-177 and then subsequently polymerized by heat to form polymer impregnated MOF-177. Characterization was carried out using powder X-ray diffraction and volumetric sorption analyzer. MOF-1020 with a linear quaterphenyl dicarboxylate-based strut was designed to contain a chiral bisbinaphthyl crown-ether moiety for alkyl ammonium resolution was precisely placed into a Zn4O(CO2)6-based cubic MOF structure. Unfortunately, the chiral resolution was not achieved due to the sensitivity and the pore environment of MOF-1020. However, an interesting phenomenon was observed, where the loss of crystallinity occurs upon solvent removal while the crystallites remain shiny and crystalline, but it readily is restored upon re-solvation of the crystallites. This rare

  17. Crystal Engineering of Naphthalenediimide-Based Metal-Organic Frameworks: Structure-Dependent Lithium Storage.

    PubMed

    Tian, Bingbing; Ning, Guo-Hong; Gao, Qiang; Tan, Li-Min; Tang, Wei; Chen, Zhongxin; Su, Chenliang; Loh, Kian Ping

    2016-11-16

    Metal-organic frameworks (MOFs) possess great structural diversity because of the flexible design of linker groups and metal nodes. The structure-property correlation has been extensively investigated in areas like chiral catalysis, gas storage and absorption, water purification, energy storage, etc. However, the use of MOFs in lithium storage is hampered by stability issues, and how its porosity helps with battery performance is not well understood. Herein, through anion and thermodynamic control, we design a series of naphthalenediimide-based MOFs 1-4 that can be used for cathode materials in lithium-ion batteries (LIBs). Complexation of the N,N'-di(4-pyridyl)-1,4,5,8-naphthalenediimide (DPNDI) ligand and CdX 2 (X = NO 3 - or ClO 4 - ) produces complexes MOFs 1 and 2 with a one-dimensional (1D) nonporous network and a porous, noninterpenetrated two-dimensional (2D) square-grid structure, respectively. With the DPNDI ligand and Co(NCS) 2 , a porous 1D MOF 3 as a kinetic product is obtained, while a nonporous, noninterpenetrated 2D square-grid structure MOF 4 as a thermodynamic product is formed. The performance of LIBs is largely affected by the stability and porosity of these MOFs. For instance, the initial charge-discharge curves of MOFs 1 and 2 show a specific capacity of ∼47 mA h g -1 with a capacity retention ratio of >70% during 50 cycles at 100 mA g -1 , which is much better than that of MOFs 3 and 4. The better performances are assigned to the higher stability of Cd(II) MOFs compared to that of Co(II) MOFs during the electrochemical process, according to X-ray diffraction analysis. In addition, despite having the same Cd(II) node in the framework, MOF 2 exhibits a lithium-ion diffusion coefficient (D Li ) larger than that of MOF 1 because of its higher porosity. X-ray photoelectron spectroscopy and Fourier transform infrared analysis indicate that metal nodes in these MOFs remain intact and only the DPNDI ligand undergoes the revisible redox reaction

  18. Constructing Free Standing Metal Organic Framework MIL-53 Membrane Based on Anodized Aluminum Oxide Precursor

    PubMed Central

    Zhang, Yunlu; Gao, Qiuming; Lin, Zhi; Zhang, Tao; Xu, Jiandong; Tan, Yanli; Tian, Weiqian; Jiang, Lei

    2014-01-01

    Metal organic framework (MOF) materials have attracted great attention due to their well-ordered and controllable pores possessing of prominent potentials for gas molecule sorption and separation performances. Organizing the MOF crystals to a continuous membrane with a certain scale will better exhibit their prominent potentials. Reports in recent years concentrate on well grown MOF membranes on specific substrates. Free standing MOF membranes could have more important applications since they are independent from the substrates. However, the method to prepare such a membrane has been a great challenge because good mechanical properties and stabilities are highly required. Here, we demonstrate a novel and facile technique for preparing the free standing membrane with a size as large as centimeter scale. The substrate we use proved itself not only a good skeleton but also an excellent precursor to fulfill the reaction. This kind of membrane owns a strong mechanical strength, based on the fact that it is much thinner than the composite membranes grown on substrates and it could exhibit good property of gas separation. PMID:24821299

  19. Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal-organic frameworks: A review of studies from the last decade.

    PubMed

    Wen, Jia; Fang, Ying; Zeng, Guangming

    2018-06-01

    The efficient removal of heavy metals (HMs) from the environment has become an important issue from both biological and environmental perspectives. Recently, porous metal-organic frameworks (MOFs), combining central metals and organic ligands, have been proposed as promising materials in the capture of various toxic substances, including HMs, due to their unique characteristics. Here we review recent progress in the field of water remediation from the perspective of primary HMs (including divalent metals and variable-valent metals) in water pollution and the corresponding MOFs (including virgin and modified MOFs, magnetic MOFs composites and so on) that can remove these metals from water. The reported values of various MOFs for adsorption of heavy metal ions were 8.40-313 mg Pb(II) g -1 , 0.65-2173 mg Hg(II) g -1 , 3.63-145 mg Cd(II) g -1 , 14.0-127 mg Cr(III) g -1 , 15.4-145 mg Cr(VI) g -1 , 49.5-123 mg As(III) g -1 , and 12.3-303 mg As(V) g -1 . The main adsorption mechanisms associated with these processes are chemical (including coordination interaction, chemical bonding and acid-base interactions) and physical (including electrostatic interaction, diffusion and van der Waals force) adsorption, which were discussed in detailed. Further efforts should be made towards expanding the repertoire of MOFs that effectively remove multiple targeted HMs, as well as exploring possible applications of MOFs in the removal of HMs from non-aqueous environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Novel approach for removing brominated flame retardant from aquatic environments using Cu/Fe-based metal-organic frameworks: A case of hexabromocyclododecane (HBCD).

    PubMed

    Li, Xiang; Liu, Hongli; Jia, Xiaoshan; Li, Guiying; An, Taicheng; Gao, Yanpeng

    2018-04-15

    Cu and Fe based metal-organic frameworks (Cu-BTC and Fe-BTC) were synthesized via a simple solvothermal method and innovatively utilized to remove a typical nonionic brominated flame retardant, hexabromocyclododecane (HBCD), from aquatic environment. Results show that over 80% of HBCD was removed by Cu-BTC within 5h, which is 1.3 times higher than removal by Fe-BTC. Thermodynamic analysis confirms spontaneous adsorption of HBCD onto the metal-organic frameworks (MOFs). Furthermore, the Gibbs free energy of Cu-BTC (-9.11kJ/mol) is more negative than that of Fe-BTC (-5.04kJ/mol). Both adsorption isotherms of HBCD onto Cu-BTC and Fe-BTC followed the Langmuir model, indicating a typical monomolecular-layer adsorption mechanism. In addition, the water stability test of these MOFs shows that the collapse of the Cu-BTC crystal structure is significantly hindered in the aquatic environment due to adsorption of the hydrophobic HBCD. The proposed adsorption mechanism includes van der Waals and hydrophobic interactions. These findings demonstrate that Cu/Fe-BTC are promising adsorbents for the removal of hydrophobic organic pollutants from aquatic environments, and may further improve the understanding of MOF materials for environmental applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Versatile, High Quality and Scalable Continuous Flow Production of Metal-Organic Frameworks

    PubMed Central

    Rubio-Martinez, Marta; Batten, Michael P.; Polyzos, Anastasios; Carey, Keri-Constanti; Mardel, James I.; Lim, Kok-Seng; Hill, Matthew R.

    2014-01-01

    Further deployment of Metal-Organic Frameworks in applied settings requires their ready preparation at scale. Expansion of typical batch processes can lead to unsuccessful or low quality synthesis for some systems. Here we report how continuous flow chemistry can be adapted as a versatile route to a range of MOFs, by emulating conditions of lab-scale batch synthesis. This delivers ready synthesis of three different MOFs, with surface areas that closely match theoretical maxima, with production rates of 60 g/h at extremely high space-time yields. PMID:24962145

  2. Mesoporous Fluorinated Metal-Organic Frameworks with Exceptional Adsorption of Fluorocarbons and CFCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Teng-Hao; Popov, Ilya; Kaveevivitchai, Watchareeya

    2016-02-08

    Two mesoporous fluorinated metal–organic frameworks (MOFs) were synthesized from extensively fluorinated tritopic carboxylate- and tetrazolate-based ligands. The tetrazolate-based framework MOFF-5 has an accessible surface area of 2445 m 2g -1, the highest among fluorinated MOFs. Crystals of MOFF-5 adsorb hydrocarbons, fluorocarbons, and chlorofluorocarbons (CFCs)—the latter two being ozone-depleting substances and potent greenhouse species—with weight capacities of up to 225%. The material exhibits an apparent preference for the adsorption of non-spherical molecules, binding unusually low amounts of both tetrafluoromethane and sulfur hexafluoride.

  3. On the dielectric and optical properties of surface-anchored metal-organic frameworks: A study on epitaxially grown thin films

    NASA Astrophysics Data System (ADS)

    Redel, Engelbert; Wang, Zhengbang; Walheim, Stefan; Liu, Jinxuan; Gliemann, Hartmut; Wöll, Christof

    2013-08-01

    We determine the optical constants of two highly porous, crystalline metal-organic frameworks (MOFs). Since it is problematic to determine the optical constants for the standard powder modification of these porous solids, we instead use surface-anchored metal-organic frameworks (SURMOFs). These MOF thin films are grown using liquid phase epitaxy (LPE) on modified silicon substrates. The produced SURMOF thin films exhibit good optical properties; these porous coatings are smooth as well as crack-free, they do not scatter visible light, and they have a homogenous interference color over the entire sample. Therefore, spectroscopic ellipsometry (SE) can be used in a straightforward fashion to determine the corresponding SURMOF optical properties. After careful removal of the solvent molecules used in the fabrication process as well as the residual water adsorbed in the voids of this highly porous solid, we determine an optical constant of n = 1.39 at a wavelength of 750 nm for HKUST-1 (stands for Hong Kong University of Science and Technology-1; and was first discovered there) or [Cu3(BTC)2]. After exposing these SURMOF thin films to moisture/EtOH atmosphere, the refractive index (n) increases to n = 1.55-1.6. This dependence of the optical properties on water/EtOH adsorption demonstrates the potential of such SURMOF materials for optical sensing.

  4. In situ-generated metal oxide catalyst during CO oxidation reaction transformed from redox-active metal-organic framework-supported palladium nanoparticles

    PubMed Central

    2012-01-01

    The preparation of redox-active metal-organic framework (ra-MOF)-supported Pd nanoparticles (NPs) via the redox couple-driven method is reported, which can yield unprotected metallic NPs at room temperature within 10 min without the use of reducing agents. The Pd@ra-MOF has been exploited as a precursor of an active catalyst for CO oxidation. Under the CO oxidation reaction condition, Pd@ra-MOF is transformed into a PdOx-NiOy/C nanocomposite to generate catalytically active species in situ, and the resultant nanocatalyst shows sustainable activity through synergistic stabilization. PMID:22898143

  5. Surfactant-thermal method to prepare two new cobalt metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Yu, Xianglin; Toh, Yong Siang; Zhao, Jun; Nie, Lina; Ye, Kaiqi; Wang, Yue; Li, Dongsheng; Zhang, Qichun

    2015-12-01

    Employing surfactants as reaction media, two new metal-organic frameworks (MOFs):(HTEA)3[Co3(BTC)3] (NTU-Z33) and (HTEA)[Co3(HBTC)2(BTC)] (NTU-Z34) (H3BTC=1,3,5-benzenetricarboxylic acid, TEA=trimethylamine, and NTU=Nanyang Technological University), have been successfully synthesized and fully characterized. Note that NTU-Z33 has an unusual trimeric [Co3(COO)9] secondary building unit (SBU). Magnetic characterization suggests that both compounds have weak antiferromagnetic behaviors. Our success in preparing new crystalline Co-BTC based MOFs under different surfactant media could provide a new road to prepare new diverse MOFs through various combinations of surfactants.

  6. Modulating supramolecular binding of carbon dioxide in a redox-active porous metal-organic framework

    PubMed Central

    Lu, Zhenzhong; Godfrey, Harry G. W.; da Silva, Ivan; Cheng, Yongqiang; Savage, Mathew; Tuna, Floriana; McInnes, Eric J. L.; Teat, Simon J.; Gagnon, Kevin J.; Frogley, Mark D.; Manuel, Pascal; Rudić, Svemir; Ramirez-Cuesta, Anibal J.; Easun, Timothy L.; Yang, Sihai; Schröder, Martin

    2017-01-01

    Hydrogen bonds dominate many chemical and biological processes, and chemical modification enables control and modulation of host–guest systems. Here we report a targeted modification of hydrogen bonding and its effect on guest binding in redox-active materials. MFM-300(VIII) {[VIII2(OH)2(L)], LH4=biphenyl-3,3′,5,5′-tetracarboxylic acid} can be oxidized to isostructural MFM-300(VIV), [VIV2O2(L)], in which deprotonation of the bridging hydroxyl groups occurs. MFM-300(VIII) shows the second highest CO2 uptake capacity in metal-organic framework materials at 298 K and 1 bar (6.0 mmol g−1) and involves hydrogen bonding between the OH group of the host and the O-donor of CO2, which binds in an end-on manner, =1.863(1) Å. In contrast, CO2-loaded MFM-300(VIV) shows CO2 bound side-on to the oxy group and sandwiched between two phenyl groups involving a unique ···c.g.phenyl interaction [3.069(2), 3.146(3) Å]. The macroscopic packing of CO2 in the pores is directly influenced by these primary binding sites. PMID:28194014

  7. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores

    PubMed Central

    Zhang, Huacheng; Hou, Jue; Hu, Yaoxin; Wang, Peiyao; Ou, Ranwen; Jiang, Lei; Liu, Jefferson Zhe; Freeman, Benny D.; Hill, Anita J.; Wang, Huanting

    2018-01-01

    Porous membranes with ultrafast ion permeation and high ion selectivity are highly desirable for efficient mineral separation, water purification, and energy conversion, but it is still a huge challenge to efficiently separate monatomic ions of the same valence and similar sizes using synthetic membranes. We report metal organic framework (MOF) membranes, including ZIF-8 and UiO-66 membranes with uniform subnanometer pores consisting of angstrom-sized windows and nanometer-sized cavities for ultrafast selective transport of alkali metal ions. The angstrom-sized windows acted as ion selectivity filters for selection of alkali metal ions, whereas the nanometer-sized cavities functioned as ion conductive pores for ultrafast ion transport. The ZIF-8 and UiO-66 membranes showed a LiCl/RbCl selectivity of ~4.6 and ~1.8, respectively, which are much greater than the LiCl/RbCl selectivity of 0.6 to 0.8 measured in traditional porous membranes. Molecular dynamics simulations suggested that ultrafast and selective ion transport in ZIF-8 was associated with partial dehydration effects. This study reveals ultrafast and selective transport of monovalent ions in subnanometer MOF pores and opens up a new avenue to develop unique MOF platforms for efficient ion separations in the future. PMID:29487910

  8. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores.

    PubMed

    Zhang, Huacheng; Hou, Jue; Hu, Yaoxin; Wang, Peiyao; Ou, Ranwen; Jiang, Lei; Liu, Jefferson Zhe; Freeman, Benny D; Hill, Anita J; Wang, Huanting

    2018-02-01

    Porous membranes with ultrafast ion permeation and high ion selectivity are highly desirable for efficient mineral separation, water purification, and energy conversion, but it is still a huge challenge to efficiently separate monatomic ions of the same valence and similar sizes using synthetic membranes. We report metal organic framework (MOF) membranes, including ZIF-8 and UiO-66 membranes with uniform subnanometer pores consisting of angstrom-sized windows and nanometer-sized cavities for ultrafast selective transport of alkali metal ions. The angstrom-sized windows acted as ion selectivity filters for selection of alkali metal ions, whereas the nanometer-sized cavities functioned as ion conductive pores for ultrafast ion transport. The ZIF-8 and UiO-66 membranes showed a LiCl/RbCl selectivity of ~4.6 and ~1.8, respectively, which are much greater than the LiCl/RbCl selectivity of 0.6 to 0.8 measured in traditional porous membranes. Molecular dynamics simulations suggested that ultrafast and selective ion transport in ZIF-8 was associated with partial dehydration effects. This study reveals ultrafast and selective transport of monovalent ions in subnanometer MOF pores and opens up a new avenue to develop unique MOF platforms for efficient ion separations in the future.

  9. Entrapment of metal clusters in metal-organic framework channels by extended hooks anchored at open metal sites.

    PubMed

    Zheng, Shou-Tian; Zhao, Xiang; Lau, Samuel; Fuhr, Addis; Feng, Pingyun; Bu, Xianhui

    2013-07-17

    Reported here are the new concept of utilizing open metal sites (OMSs) for architectural pore design and its practical implementation. Specifically, it is shown here that OMSs can be used to run extended hooks (isonicotinates in this work) from the framework walls to the channel centers to effect the capture of single metal ions or clusters, with the concurrent partitioning of the large channel spaces into multiple domains, alteration of the host-guest charge relationship and associated guest-exchange properties, and transfer of OMSs from the walls to the channel centers. The concept of the extended hook, demonstrated here in the multicomponent dual-metal and dual-ligand system, should be generally applicable to a range of framework types.

  10. Efficient purification of ethene by an ethane-trapping metal-organic framework

    PubMed Central

    Liao, Pei-Qin; Zhang, Wei-Xiong; Zhang, Jie-Peng; Chen, Xiao-Ming

    2015-01-01

    Separating ethene (C2H4) from ethane (C2H6) is of paramount importance and difficulty. Here we show that C2H4 can be efficiently purified by trapping the inert C2H6 in a judiciously designed metal-organic framework. Under ambient conditions, passing a typical cracked gas mixture (15:1 C2H4/C2H6) through 1 litre of this C2H6 selective adsorbent directly produces 56 litres of C2H4 with 99.95%+ purity (required by the C2H4 polymerization reactor) at the outlet, with a single breakthrough operation, while other C2H6 selective materials can only produce ca. ⩽ litre, and conventional C2H4 selective adsorbents require at least four adsorption–desorption cycles to achieve the same C2H4 purity. Single-crystal X-ray diffraction and computational simulation studies showed that the exceptional C2H6 selectivity arises from the proper positioning of multiple electronegative and electropositive functional groups on the ultramicroporous pore surface, which form multiple C–H···N hydrogen bonds with C2H6 instead of the more polar competitor C2H4. PMID:26510376

  11. Adsorption and Detection of Hazardous Trace Gases by Metal-Organic Frameworks.

    PubMed

    Woellner, Michelle; Hausdorf, Steffen; Klein, Nicole; Mueller, Philipp; Smith, Martin W; Kaskel, Stefan

    2018-06-19

    The quest for advanced designer adsorbents for air filtration and monitoring hazardous trace gases has recently been more and more driven by the need to ensure clean air in indoor, outdoor, and industrial environments. How to increase safety with regard to personal protection in the event of hazardous gas exposure is a critical question for an ever-growing population spending most of their lifetime indoors, but is also crucial for the chemical industry in order to protect future generations of employees from potential hazards. Metal-organic frameworks (MOFs) are already quite advanced and promising in terms of capacity and specific affinity to overcome limitations of current adsorbent materials for trace and toxic gas adsorption. Due to their advantageous features (e.g., high specific surface area, catalytic activity, tailorable pore sizes, structural diversity, and range of chemical and physical properties), MOFs offer a high potential as adsorbents for air filtration and monitoring of hazardous trace gases. Three advanced topics are considered here, in applying MOFs for selective adsorption: (i) toxic gas adsorption toward filtration for respiratory protection as well as indoor and cabin air, (ii) enrichment of hazardous gases using MOFs, and (iii) MOFs as sensors for toxic trace gases and explosives. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Direct in Situ Conversion of Metals into Metal-Organic Frameworks: A Strategy for the Rapid Growth of MOF Films on Metal Substrates.

    PubMed

    Ji, Hoon; Hwang, Sunhyun; Kim, Keonmok; Kim, CheolGi; Jeong, Nak Cheon

    2016-11-30

    The fabrication of metal-organic framework (MOF) films on conducting substrates has demonstrated great potential in applications such as electronic conduction and sensing. For these applications, direct contact of the film to the conducting substrate without a self-assembled monolayer (SAM) is a desired step that must be achieved prior to the use of MOF films. In this report, we propose an in situ strategy for the rapid one-step conversion of Cu metal into HKUST-1 films on conducting Cu substrates. The Cu substrate acts both as a conducting substrate and a source of Cu 2+ ions during the synthesis of HKUST-1. This synthesis is possible because of the simultaneous reaction of an oxidizing agent and a deprotonating agent, in which the former agent dissolves the metal substrate to form Cu 2+ ions while the latter agent deprotonates the ligand. Using this strategy, the HKUST-1 film could not only be rapidly synthesized within 5 min but also be directly attached to the Cu substrate. Based on microscopic studies, we propose a plausible mechanism for the growth reaction. Furthermore, we show the versatility of this in situ conversion methodology, applying it to ZIF-8, which comprises Zn 2+ ions and imidazole-based ligands. Using an I 2 -filled HKUST-1 film, we further demonstrate that the direct contact of the MOF film to the conducting substrate makes the material more suitable for use as a sensor or electronic conductor.

  13. Two Dimensional Host-Guest Metal-Organic Framework Sensor with High Selectivity and Sensitivity to Picric Acid.

    PubMed

    Bagheri, Minoo; Masoomi, Mohammad Yaser; Morsali, Ali; Schoedel, Alexander

    2016-08-24

    A dye-sensitized metal-organic framework, TMU-5S, was synthesized based on introducing the laser dye Rhodamine B into the porous framework TMU-5. TMU-5S was investigated as a ratiometric fluorescent sensor for the detection of explosive nitro aromatic compounds and showed four times greater selectivity to picric acid than any state-of-the-art luminescent-based sensor. Moreover, it can selectively discriminate picric acid concentrations in the presence of other nitro aromatics and volatile organic compounds. Our findings indicate that using this sensor in two dimensions leads to a greatly reduced environmental interference response and thus creates exceptional sensitivity toward explosive molecules with a fast response.

  14. Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion.

    PubMed

    Liang, Zibin; Qu, Chong; Xia, Dingguo; Zou, Ruqiang; Xu, Qiang

    2018-02-19

    Metal sites play an essential role for both electrocatalytic and photocatalytic energy conversion applications. The highly ordered arrangements of the organic linkers and metal nodes and the well-defined pore structures of metal-organic frameworks (MOFs) make them ideal substrates to support atomically dispersed metal sites (ADMSs) located in their metal nodes, linkers, and pores. Besides, porous carbon materials doped with ADMSs can be derived from these ADMS-incorporated MOF precursors through controlled treatments. These ADMSs incorporated in pristine MOFs and MOF-derived carbon materials possess unique merits over the molecular or the bulk metal-based catalysts, bridging the gap between homogeneous and heterogeneous catalysts for energy conversion applications. In this review, recent progress and perspective of design and incorporation of ADMSs in pristine MOFs and MOF-derived materials for energy conversion applications are highlighted, which will hopefully promote further developments of advanced MOF-based catalysts in foreseeable future. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Metal-Organic-Framework-Derived Dual Metal- and Nitrogen-Doped Carbon as Efficient and Robust Oxygen Reduction Reaction Catalysts for Microbial Fuel Cells.

    PubMed

    Tang, Haolin; Cai, Shichang; Xie, Shilei; Wang, Zhengbang; Tong, Yexiang; Pan, Mu; Lu, Xihong

    2016-02-01

    A new class of dual metal and N doped carbon catalysts with well-defined porous structure derived from metal-organic frameworks (MOFs) has been developed as a high-performance electrocatalyst for oxygen reduction reaction (ORR). Furthermore, the microbial fuel cell (MFC) device based on the as-prepared Ni/Co and N codoped carbon as air cathode catalyst achieves a maximum power density of 4335.6 mW m -2 and excellent durability.

  16. Hydrogen storage in Pd nanocrystals covered with a metal-organic framework

    NASA Astrophysics Data System (ADS)

    Li, Guangqin; Kobayashi, Hirokazu; Taylor, Jared M.; Ikeda, Ryuichi; Kubota, Yoshiki; Kato, Kenichi; Takata, Masaki; Yamamoto, Tomokazu; Toh, Shoichi; Matsumura, Syo; Kitagawa, Hiroshi

    2014-08-01

    Hydrogen is an essential component in many industrial processes. As a result of the recent increase in the development of shale gas, steam reforming of shale gas has received considerable attention as a major source of H2, and the more efficient use of hydrogen is strongly demanded. Palladium is well known as a hydrogen-storage metal and an effective catalyst for reactions related to hydrogen in a variety of industrial processes. Here, we present remarkably enhanced capacity and speed of hydrogen storage in Pd nanocrystals covered with the metal-organic framework (MOF) HKUST-1 (copper(II) 1,3,5-benzenetricarboxylate). The Pd nanocrystals covered with the MOF have twice the storage capacity of the bare Pd nanocrystals. The significantly enhanced hydrogen storage capacity was confirmed by hydrogen pressure-composition isotherms and solid-state deuterium nuclear magnetic resonance measurements. The speed of hydrogen absorption in the Pd nanocrystals is also enhanced by the MOF coating.

  17. An Ultrahydrophobic Fluorous Metal-Organic Framework Derived Recyclable Composite as a Promising Platform to Tackle Marine Oil Spills.

    PubMed

    Mukherjee, Soumya; Kansara, Ankit M; Saha, Debasis; Gonnade, Rajesh; Mullangi, Dinesh; Manna, Biplab; Desai, Aamod V; Thorat, Shridhar H; Singh, Puyam S; Mukherjee, Arnab; Ghosh, Sujit K

    2016-07-25

    Derived from a strategically chosen hexafluorinated dicarboxylate linker aimed at the designed synthesis of a superhydrophobic metal-organic framework (MOF), the fluorine-rich nanospace of a water-stable MOF (UHMOF-100) exhibits excellent water-repellent features. It registered the highest water contact angle (≈176°) in the MOF domain, marking the first example of an ultrahydrophobic MOF. Various experimental and theoretical studies reinforce its distinctive water-repellent characteristics, and the conjugation of superoleophilicity and unparalleled hydrophobicity of a MOF material has been coherently exploited to achieve real-time oil/water separation in recyclable membrane form, with significant absorption capacity performance. This is also the first report of an oil/water separating fluorinated ultrahydrophobic MOF-based membrane material, with potential promise for tackling marine oil spillages. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hierarchically Flower-like N-Doped Porous Carbon Materials Derived from an Explosive 3-Fold Interpenetrating Diamondoid Copper Metal-Organic Framework for a Supercapacitor.

    PubMed

    Li, Zuo-Xi; Zou, Kang-Yu; Zhang, Xue; Han, Tong; Yang, Ying

    2016-07-05

    A peculiar copper metal-organic framework (Cu-MOF) was synthesized by a self-assembly method, which presents a 3-fold interpenetrating diamondoid net based on the square-planar Cu(II) node. Although it exhibits a high degree of interpenetration, the Cu-MOF still exhibits a one-dimensional channel, which provides a template for constructing porous materials through the "precursor" strategy. Furthermore, the explosive ClO4(-) ion, which resided in the channel, could induce the quick decomposition of organic ingredients and release a huge amount of gas, which is beneficial for the porosity of postsynthetic materials. Significantly, we first utilize this explosive MOF to prepare a series of Cu@C composites through the calcination-thermolysis method at different temperatures, which contain copper particles exhibiting various shapes and combinations with the carbon substrate. Considering the hole-forming effect of copper particles, Cu@C composites were etched by HCl to afford a sequence of hierarchically flower-like N-doped porous carbon materials (NPCs), which retain the original morphology of the Cu-MOF. Interestingly, NPC-900, originating from the calcination of the Cu-MOF at 900 °C, exhibits a more regular flower-like morphology, the largest specific surface area, abundant porosities, and multiple nitrogen functionalities. The remarkable specific capacitances are 138 F g(-1) at 5 mV s(-1) and 149 F g(-1) at 0.5 A g(-1) for the NPC-900 electrode in a 6 M potassium hydroxide aqueous solution. Moreover, the retention of capacitance remains 86.8% (125 F g(-1)) at 1 A g(-1) over 2000 cycles, which displays good chemical stability. These findings suggest that NPC-900 can be applied as a suitable electrode for a supercapacitor.

  19. Osteogenic activity and antibacterial effect of porous titanium modified with metal-organic framework films.

    PubMed

    Chen, Junyu; Zhang, Xin; Huang, Chao; Cai, He; Hu, Shanshan; Wan, Qianbing; Pei, Xibo; Wang, Jian

    2017-03-01

    As a new class of crystalline nanoporous materials, metal-organic frameworks (MOFs) have recently been used for biomedical applications due to their large surface area, high porosity, and theoretically infinite structures. To improve the biological performance of titanium, MOF films were applied to surface modification of titanium. Zn-based MOF films composed of zeolitic imidazolate framework-8 (ZIF-8) crystals with nanoscale and microscale sizes (nanoZIF-8 and microZIF-8) were prepared on porous titanium surfaces by hydrothermal and solvothermal methods, respectively. The ZIF-8 films were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The nanoZIF-8 film exhibited good biocompatibility, whereas the microZIF-8 film showed obvious cytotoxicity to MG63 cells. Compared to pure titanium and alkali- and heat-treated porous titanium, the nanoZIF-8 film not only enhanced alkaline phosphatase (ALP) activity, extracellular matrix mineralization, and expression of osteogenic genes (ALP, Runx2) in MG63 cells but also inhibited the growth of Streptococcus mutans. These results indicate that MOF films or coatings may be promising candidates for bone tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 834-846, 2017. © 2016 Wiley Periodicals, Inc.

  20. Fit accuracy of metal partial removable dental prosthesis frameworks fabricated by traditional or light curing modeling material technique: An in vitro study

    PubMed Central

    Anan, Mohammad Tarek M.; Al-Saadi, Mohannad H.

    2015-01-01

    Objective The aim of this study was to compare the fit accuracies of metal partial removable dental prosthesis (PRDP) frameworks fabricated by the traditional technique (TT) or the light-curing modeling material technique (LCMT). Materials and methods A metal model of a Kennedy class III modification 1 mandibular dental arch with two edentulous spaces of different spans, short and long, was used for the study. Thirty identical working casts were used to produce 15 PRDP frameworks each by TT and by LCMT. Every framework was transferred to a metal master cast to measure the gap between the metal base of the framework and the crest of the alveolar ridge of the cast. Gaps were measured at three points on each side by a USB digital intraoral camera at ×16.5 magnification. Images were transferred to a graphics editing program. A single examiner performed all measurements. The two-tailed t-test was performed at the 5% significance level. Results The mean gap value was significantly smaller in the LCMT group compared to the TT group. The mean value of the short edentulous span was significantly smaller than that of the long edentulous span in the LCMT group, whereas the opposite result was obtained in the TT group. Conclusion Within the limitations of this study, it can be concluded that the fit of the LCMT-fabricated frameworks was better than the fit of the TT-fabricated frameworks. The framework fit can differ according to the span of the edentate ridge and the fabrication technique for the metal framework. PMID:26236129

  1. Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials.

    PubMed

    Cui, Lin; Wu, Jie; Ju, Huangxian

    2015-01-15

    As heavy metal ions severely harm human health, it is important to develop simple, sensitive and accurate methods for their detection in environment and food. Electrochemical detection featured with short analytical time, low power cost, high sensitivity and easy adaptability for in-situ measurement is one of the most developed methods. This review introduces briefly the recent achievements in electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials modified electrodes. In particular, the unique properties of inorganic nanomaterials, organic small molecules or their polymers, enzymes and nucleic acids for detection of heavy metal ions are highlighted. By employing some representative examples, the design and sensing mechanisms of these electrodes are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Suppressing molecular motions for enhanced room-temperature phosphorescence of metal-free organic materials

    PubMed Central

    Kwon, Min Sang; Yu, Youngchang; Coburn, Caleb; Phillips, Andrew W.; Chung, Kyeongwoon; Shanker, Apoorv; Jung, Jaehun; Kim, Gunho; Pipe, Kevin; Forrest, Stephen R.; Youk, Ji Ho; Gierschner, Johannes; Kim, Jinsang

    2015-01-01

    Metal-free organic phosphorescent materials are attractive alternatives to the predominantly used organometallic phosphors but are generally dimmer and are relatively rare, as, without heavy-metal atoms, spin–orbit coupling is less efficient and phosphorescence usually cannot compete with radiationless relaxation processes. Here we present a general design rule and a method to effectively reduce radiationless transitions and hence greatly enhance phosphorescence efficiency of metal-free organic materials in a variety of amorphous polymer matrices, based on the restriction of molecular motions in the proximity of embedded phosphors. Covalent cross-linking between phosphors and polymer matrices via Diels–Alder click chemistry is devised as a method. A sharp increase in phosphorescence quantum efficiency is observed in a variety of polymer matrices with this method, which is ca. two to five times higher than that of phosphor-doped polymer systems having no such covalent linkage. PMID:26626796

  3. Magneto-ionic phase control in a quasi-layered donor/acceptor metal-organic framework by means of a Li-ion battery system

    NASA Astrophysics Data System (ADS)

    Taniguchi, Kouji; Narushima, Keisuke; Yamagishi, Kayo; Shito, Nanami; Kosaka, Wataru; Miyasaka, Hitoshi

    2017-06-01

    Electrical magnetism control is realized in a Li-ion battery system through a redox reaction involving ion migrations; “magneto-ionic control”. A quasi-layered metal-organic framework compound with a cross-linked π-conjugated/unconjugated one-dimensional chain motifs composed of electron-donor/acceptor units is developed as the cathode material. A change in magnetic phase from paramagnetic to ferrimagnetic is demonstrated by means of electron-filling control for the acceptor units via insertion of Li+-ions into pores in the material. The transition temperature is as high as that expected for highly π-conjugated layered systems, indicating an extension of π-conjugated exchange paths by rearranging coordination bonds in the first discharge process.

  4. Construction of Metal-Organic Framework/Conductive Polymer Hybrid for All-Solid-State Fabric Supercapacitor.

    PubMed

    Qi, Kai; Hou, Ruizuo; Zaman, Shahid; Qiu, Yubing; Xia, Bao Yu; Duan, Hongwei

    2018-05-30

    Metal-organic frameworks (MOFs) hold promising potential in energy storage but are limited by poor conductivity. In this work, a metal-organic framework/polypyrrole hybrid is constructed by a facile one-pot electrodeposition method in the presence of dopamine. An all-solid-state fabric supercapacitor based on this hybrid demonstrates excellent electrochemical energy-storage performance, which achieves a specific capacitance of 10 mF cm -1 (206 mF cm -2 ), a power density of 132 μW cm -1 (2102 μW cm -2 ), and an energy density of 0.8 μWh cm -1 (12.8 μWh cm -2 ). The stable cycling life and excellent mechanical flexibility over a wide range of working temperature are also achieved, which maintains a capacitance retention of 89% over 10 000 charging/discharging cycles, a capacitance decrease of only 4% after 1000 frizzy (360° bending) cycles, and no obvious capacitance loss under 100 repeated heating (100 °C)/cooling (-15 °C) cycles. This fibrous supercapacitor displays promising potential in wearable textile electronics as it can be easily woven into common cotton cloth. Our strategy may shed some valuable light on the construction of MOF-based hybrids for flexible energy-storage electronics.

  5. Bi2O3 nanoparticles encapsulated in surface mounted metal-organic framework thin films

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Chen, Zhi; Yang, Chengwu; Neumann, Tobias; Kübel, Christian; Wenzel, Wolfgang; Welle, Alexander; Pfleging, Wilhelm; Shekhah, Osama; Wöll, Christof; Redel, Engelbert

    2016-03-01

    We describe a novel procedure to fabricate a recyclable hybrid-photocatalyst based on Bi2O3@HKUST-1 MOF porous thin films. Bi2O3 nanoparticles (NPs) were synthesized within HKUST-1 (or Cu3(BTC)2) surface-mounted metal-organic frame-works (SURMOFs) and characterized using X-ray diffraction (XRD), a quartz crystal microbalance (QCM) and transmission electron microscopy (TEM). The Bi2O3 semiconductor NPs (diameter 1-3 nm)/SURMOF heterostructures exhibit superior photo-efficiencies compared to NPs synthesized using conventional routes, as demonstrated via the photodegradation of the nuclear fast red (NFR) dye.We describe a novel procedure to fabricate a recyclable hybrid-photocatalyst based on Bi2O3@HKUST-1 MOF porous thin films. Bi2O3 nanoparticles (NPs) were synthesized within HKUST-1 (or Cu3(BTC)2) surface-mounted metal-organic frame-works (SURMOFs) and characterized using X-ray diffraction (XRD), a quartz crystal microbalance (QCM) and transmission electron microscopy (TEM). The Bi2O3 semiconductor NPs (diameter 1-3 nm)/SURMOF heterostructures exhibit superior photo-efficiencies compared to NPs synthesized using conventional routes, as demonstrated via the photodegradation of the nuclear fast red (NFR) dye. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00532b

  6. A novel hybrid metal-organic framework-polymeric monolith for solid-phase microextraction.

    PubMed

    Lin, Chen-Lan; Lirio, Stephen; Chen, Ya-Ting; Lin, Chia-Her; Huang, Hsi-Ya

    2014-03-17

    This study describes the fabrication of a novel hybrid metal-organic framework- organic polymer (MOF-polymer) for use as a stationary phase in fritless solid-phase microextraction (SPME) for validating analytical methods. The MOF-polymer was prepared by using ethylene dimethacrylate (EDMA), butyl methacrylate (BMA), and an imidazolium-based ionic liquid as porogenic solvent followed by microwave-assisted polymerization with the addition of 25 % MOF. This novel hybrid MOF-polymer was used to extract penicillin (penicillin G, penicillin V, oxacillin, cloxacillin, nafcillin, dicloxacillin) under different conditions. Quantitative analysis of the extracted penicillin samples using the MOF-organic polymer for SPME was conducted by using capillary electrochromatography (CEC) coupled with UV analysis. The penicillin recovery was 63-96.2 % with high reproducibility, sensitivity, and reusability. The extraction time with the proposed fabricated SPME was only 34 min. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Reversible pressure pre-amorphization of a piezochromic metal-organic framework.

    PubMed

    Andrzejewski, M; Casati, N; Katrusiak, A

    2017-11-07

    The piezochromic metal-organic framework Co 2 (Bdc) 2 Dabco·4DMF·H 2 O (Bdc denotes 1,4-benzenedicarboxylate, Dabco - 1,4-diazabicyclo[2.2.2]octane, and DMF - dimethylformamide) under ambient conditions is tetragonal (phase α) and at about 1.9 GPa undergoes a strong pressure-induced shortening of translational correlations in the sample. A broad gradual pre-amorphization process starting at about 0.7 GPa reduces the tetragonal symmetry and is described as phase β. The pre-amorphization mechanism involves several competing distortions of the Bdc linkers and Co(ii)-coordination schemes. These in turn, affect the crystal field around the cations and their optical absorption. The compression strongly affects the VIS absorption of this piezochromic compound visibly changing its colour from blue to red.

  8. Complete Transmetalation in a Metal-Organic Framework by Metal Ion Metathesis in a Single Crystal for Selective Sensing of Phosphate Ions in Aqueous Media.

    PubMed

    Asha, K S; Bhattacharjee, Rameswar; Mandal, Sukhendu

    2016-09-12

    A complete transmetalation has been achieved on a barium metal-organic framework (MOF), leading to the isolation of a new Tb-MOF in a single-crystal (SC) to single-crystal (SC) fashion. It leads to the transformation of an anionic framework with cations in the pore to one that is neutral. The mechanistic studies proposed a core-shell metal exchange through dissociation of metal-ligand bonds. This Tb-MOF exhibits enhanced photoluminescence and acts as a selective sensor for phosphate anion in aqueous medium. Thus, this work not only provides a method to functionalize a MOF that can have potential application in sensing but also elucidates the formation mechanism of the resulting MOF. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Solvent properties of hydrazine in the preparation of metal chalcogenide bulk materials and films.

    PubMed

    Yuan, Min; Mitzi, David B

    2009-08-21

    A combination of unique solvent properties of hydrazine enables the direct dissolution of a range of metal chalcogenides at ambient temperature, rendering this an extraordinarily simple and soft synthetic approach to prepare new metal chalcogenide-based materials. The extended metal chalcogenide parent framework is broken up during this process, and the resulting metal chalcogenide building units are re-organized into network structures (from 0D to 3D) based upon their interactions with the hydrazine/hydrazinium moieties. This Perspective will review recent crystal and materials chemistry developments within this family of compounds and will briefly discuss the utility of this approach in metal chalcogenide thin-film deposition.

  10. Transparent Metal-Organic Framework/Polymer Mixed Matrix Membranes as Water Vapor Barriers.

    PubMed

    Bae, Youn Jue; Cho, Eun Seon; Qiu, Fen; Sun, Daniel T; Williams, Teresa E; Urban, Jeffrey J; Queen, Wendy L

    2016-04-27

    Preventing the permeation of reactive molecules into electronic devices or photovoltaic modules is of great importance to ensure their life span and reliability. This work is focused on the formation of highly functioning barrier films based on nanocrystals (NCs) of a water-scavenging metal-organic framework (MOF) and a hydrophobic cyclic olefin copolymer (COC) to overcome the current limitations. Water vapor transmission rates (WVTR) of the films reveal a 10-fold enhancement in the WVTR compared to the substrate while maintaining outstanding transparency over most of the visible and solar spectrum, a necessary condition for integration with optoelectronic devices.

  11. Landscape of Research Areas for Zeolites and Metal-Organic Frameworks Using Computational Classification Based on Citation Networks.

    PubMed

    Ogawa, Takaya; Iyoki, Kenta; Fukushima, Tomohiro; Kajikawa, Yuya

    2017-12-14

    The field of porous materials is widely spreading nowadays, and researchers need to read tremendous numbers of papers to obtain a "bird's eye" view of a given research area. However, it is difficult for researchers to obtain an objective database based on statistical data without any relation to subjective knowledge related to individual research interests. Here, citation network analysis was applied for a comparative analysis of the research areas for zeolites and metal-organic frameworks as examples for porous materials. The statistical and objective data contributed to the analysis of: (1) the computational screening of research areas; (2) classification of research stages to a certain domain; (3) "well-cited" research areas; and (4) research area preferences of specific countries. Moreover, we proposed a methodology to assist researchers to gain potential research ideas by reviewing related research areas, which is based on the detection of unfocused ideas in one area but focused in the other area by a bibliometric approach.

  12. Landscape of Research Areas for Zeolites and Metal-Organic Frameworks Using Computational Classification Based on Citation Networks

    PubMed Central

    Ogawa, Takaya; Fukushima, Tomohiro; Kajikawa, Yuya

    2017-01-01

    The field of porous materials is widely spreading nowadays, and researchers need to read tremendous numbers of papers to obtain a “bird’s eye” view of a given research area. However, it is difficult for researchers to obtain an objective database based on statistical data without any relation to subjective knowledge related to individual research interests. Here, citation network analysis was applied for a comparative analysis of the research areas for zeolites and metal-organic frameworks as examples for porous materials. The statistical and objective data contributed to the analysis of: (1) the computational screening of research areas; (2) classification of research stages to a certain domain; (3) “well-cited” research areas; and (4) research area preferences of specific countries. Moreover, we proposed a methodology to assist researchers to gain potential research ideas by reviewing related research areas, which is based on the detection of unfocused ideas in one area but focused in the other area by a bibliometric approach. PMID:29240708

  13. Metal-Organic Framework-Stabilized CO2/Water Interfacial Route for Photocatalytic CO2 Conversion.

    PubMed

    Luo, Tian; Zhang, Jianling; Li, Wei; He, Zhenhong; Sun, Xiaofu; Shi, Jinbiao; Shao, Dan; Zhang, Bingxing; Tan, Xiuniang; Han, Buxing

    2017-11-29

    Here, we propose a CO 2 /water interfacial route for photocatalytic CO 2 conversion by utilizing a metal-organic framework (MOF) as both an emulsifier and a catalyst. The CO 2 reduction occurring at the CO 2 /water interface produces formate with remarkably enhanced efficiency as compared with that in conventional solvent. The route is efficient, facile, adjustable, and environmentally benign, which is applicable for the CO 2 transformation photocatalyzed by different kinds of MOFs.

  14. Electronic properties of bimetallic metal–organic frameworks (MOFs): Tailoring the density of electronic states through MOF modularity

    DOE PAGES

    Dolgopolova, Ekaterina A.; Brandt, Amy J.; Ejegbavwo, Otega A.; ...

    2017-03-18

    The development of porous well-defined hybrid materials (e.g., metal-organic frameworks or MOFs) will add a new dimension to a wide number of applications ranging from supercapacitors and electrodes to 'smart' membranes and thermoelectrics. From this perspective, the understanding and tailoring of the electronic properties of MOFs are key fundamental challenges that could unlock the full potential of these materials. In this work, we focused on the fundamental insights responsible for the electronic properties of three distinct classes of bimetallic systems, M x-yM' y-MOFs, M xM' y- MOFs, and M x(ligand-M' y)-MOFs, in which the second metal (M') incorporation occurs throughmore » (i) metal (M) replacement in the framework nodes (type I), (ii) metal node extension (type II), and (iii) metal coordination to the organic ligand (type III), respectively. We employed microwave conductivity, X-ray photoelectron spectroscopy, diffuse reflectance spectroscopy, powder X-ray diffraction, inductively coupled plasma atomic emission spectroscopy, pressed-pellet conductivity, and theoretical modeling to shed light on the key factors responsible for the tunability of MOF electronic structures. Experimental prescreening of MOFs was performed based on changes in the density of electronic states near the Fermi edge, which was used as a starting point for further selection of suitable MOFs. As a result, we demonstrated that the tailoring of MOF electronic properties could be performed as a function of metal node engineering, framework topology, and/or the presence of unsaturated metal sites while preserving framework porosity and structural integrity. Finally, these studies unveil the possible pathways for transforming the electronic properties of MOFs from insulating to semiconducting, as well as provide a blueprint for the development of hybrid porous materials with desirable electronic structures.« less

  15. Mechanical properties of metal-organic frameworks: An indentation study on epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Bundschuh, S.; Kraft, O.; Arslan, H. K.; Gliemann, H.; Weidler, P. G.; Wöll, C.

    2012-09-01

    We have determined the hardness and Young's modulus of a highly porous metal-organic framework (MOF) using a standard nanoindentation technique. Despite the very low density of these films, 1.22 g cm-3, Young's modulus reaches values of almost 10 GPa for HKUST-1, demonstrating that this porous coordination polymer is substantially stiffer than normal polymers. This progress in characterizing mechanical properties of MOFs has been made possible by the use of high quality, oriented thin films grown using liquid phase epitaxy on modified Au substrates.

  16. Metal-Organic-Framework-Derived Carbon Nanostructure Augmented Sonodynamic Cancer Therapy.

    PubMed

    Pan, Xueting; Bai, Lixin; Wang, Hui; Wu, Qingyuan; Wang, Hongyu; Liu, Shuang; Xu, Bolong; Shi, Xinghua; Liu, Huiyu

    2018-06-01

    Sonodynamic therapy (SDT) can overcome the critical issue of depth-penetration barrier of photo-triggered therapeutic modalities. However, the discovery of sonosensitizers with high sonosensitization efficacy and good stability is still a significant challenge. In this study, the great potential of a metal-organic-framework (MOF)-derived carbon nanostructure that contains porphyrin-like metal centers (PMCS) to act as an excellent sonosensitizer is identified. Excitingly, the superior sonosensitization effect of PMCS is believed to be closely linked to the porphyrin-like macrocycle in MOF-derived nanostructure in comparison to amorphous carbon nanospheres, due to their large highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap for high reactive oxygen species (ROS) production. The nanoparticle-assisted cavitation process, including the visualized formation of the cavitation bubbles and microjets, is also first captured by high-speed camera. High ROS production in PMCS under ultrasound is validated by electron spin resonance and dye measurement, followed by cellular destruction and high tumor inhibition efficiency (85%). This knowledge is important from the perspective of understanding the structure-dependent SDT enhancement of a MOF-derived carbon nanostructure. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Inorganic Nanoparticles/Metal Organic Framework Hybrid Membrane Reactors for Efficient Photocatalytic Conversion of CO2.

    PubMed

    Maina, James W; Schütz, Jürg A; Grundy, Luke; Des Ligneris, Elise; Yi, Zhifeng; Kong, Lingxue; Pozo-Gonzalo, Cristina; Ionescu, Mihail; Dumée, Ludovic F

    2017-10-11

    Photocatalytic conversion of carbon dioxide (CO 2 ) to useful products has potential to address the adverse environmental impact of global warming. However, most photocatalysts used to date exhibit limited catalytic performance, due to poor CO 2 adsorption capacity, inability to efficiently generate photoexcited electrons, and/or poor transfer of the photogenerated electrons to CO 2 molecules adsorbed on the catalyst surface. The integration of inorganic semiconductor nanoparticles across metal organic framework (MOF) materials has potential to yield new hybrid materials, combining the high CO 2 adsorption capacity of MOF and the ability of the semiconductor nanoparticles to generate photoexcited electrons. Herein, controlled encapsulation of TiO 2 and Cu-TiO 2 nanoparticles within zeolitic imidazolate framework (ZIF-8) membranes was successfully accomplished, using rapid thermal deposition (RTD), and their photocatalytic efficiency toward CO 2 conversion was investigated under UV irradiation. Methanol and carbon monoxide (CO) were found to be the only products of the CO 2 reduction, with yields strongly dependent upon the content and composition of the dopant semiconductor particles. CuTiO 2 nanoparticle doped membranes exhibited the best photocatalytic performance, with 7 μg of the semiconductor nanoparticle enhancing CO yield of the pristine ZIF-8 membrane by 233%, and methanol yield by 70%. This work opens new routes for the fabrication of hybrid membranes containing inorganic nanoparticles and MOFs, with potential application not only in catalysis but also in electrochemical, separation, and sensing applications.

  18. A Water-Stable Metal-Organic Framework for Highly Sensitive and Selective Sensing of Fe3+ Ion.

    PubMed

    Hou, Bing-Lei; Tian, Dan; Liu, Jiang; Dong, Long-Zhang; Li, Shun-Li; Li, Dong-Sheng; Lan, Ya-Qian

    2016-10-17

    A new metal-organic framework [Zn 5 (hfipbb) 4 (trz) 2 (H 2 O) 2 ] (NNU-1) [H 2 hfipbb = 4,4'-(hexafluoroisopropylidene)bis(benzoic acid), Htrz = 1H-1,2,3-triazole] was assembled by hydrothermal synthesis. Single-crystal X-ray diffraction analysis reveals that NNU-1 displays a twofold interpenetrating three-dimensional (3D) framework with a {4 24 ·6 4 }-bcu topology. Interestingly, the 3D framework contains a two-dimensional (2D) layered structure that consists of alternating left- and right-handed double helical chains. On the basis of the hydrophobic -CF 3 groups from H 2 hfipbb ligand, NNU-1 possesses excellent stability in water. It is worth noting that NNU-1 not only shows a highly selective fluorescence quenching effect to Fe 3+ ion in aqueous solution but also resists the interference of other metals including Fe 2+ ion. Accordingly, NNU-1 probably functions as a potential promising fluorescence sensor for detecting Fe 3+ ion with high sensitivity and selectivity.

  19. Metal-organic framework assembled from erbium and a tetrapodal polyphosphonic acid organic linker.

    PubMed

    Mendes, Ricardo F; Firmino, Ana D G; Tomé, João P C; Almeida Paz, Filipe A

    2018-06-01

    A three-dimensional metal-organic framework (MOF), poly[[μ 6 -5'-pentahydrogen [1,1'-biphenyl]-3,3',5,5'-tetrayltetrakis(phosphonato)]erbium(III)] 2.5-hydrate], formulated as [Er(C 12 H 11 O 12 P 4 )]·2.5H 2 O or [Er(H 5 btp)]·2.5H 2 O (I) and isotypical with a Y 3+ -based MOF reported previously by our research group [Firmino et al. (2017b). Inorg. Chem. 56, 1193-1208], was constructed based solely on Er 3+ and on the polyphosphonic organic linker [1,1'-biphenyl]-3,3',5,5'-tetrakis(phosphonic acid) (H 8 btp). The present work describes our efforts to introduce lanthanide cations into the flexible network, demonstrating that, on the one hand, the compound can be obtained using three distinct experimental methods, i.e. hydro(solvo)thermal (Hy), microwave-assisted (MW) and one-pot (Op), and, on the other hand, that crystallite size can be approximately fine-tuned according to the method employed. MOF I contains hexacoordinated Er 3+ cations which are distributed in a zigzag inorganic chain running parallel to the [100] direction of the unit cell. The chains are, in turn, bridged by the anionic organic linker to form a three-dimensional 6,6-connected binodal network. This connectivity leads to the existence of one-dimensional channels (also running parallel to the [100] direction) filled with disordered and partially occupied water molecules of crystalization which are engaged in O-H...O hydrogen-bonding interactions with the [Er(H 5 btp)] framework. Additional weak π-π interactions [intercentroid distance = 3.957 (7) Å] exist between aromatic rings, which help to maintain the structural integrity of the network.

  20. Highly active non-PGM catalysts prepared from metal organic frameworks

    DOE PAGES

    Barkholtz, Heather M.; Chong, Lina; Kaiser, Zachary B.; ...

    2015-06-11

    Finding inexpensive alternatives to platinum group metals (PGMs) is essential for reducing the cost of proton exchange membrane fuel cells (PEMFCs). Numerous materials have been investigated as potential replacements of Pt, of which the transition metal and nitrogen-doped carbon composites (TM/N x/C) prepared from iron doped zeolitic imidazolate frameworks (ZIFs) are among the most active ones in catalyzing the oxygen reduction reaction based on recent studies. In this report, we demonstrate that the catalytic activity of ZIF-based TM/N x/C composites can be substantially improved through optimization of synthesis and post-treatment processing conditions. Ultimately, oxygen reduction reaction (ORR) electrocatalytic activity mustmore » be demonstrated in membrane-electrode assemblies (MEAs) of fuel cells. The process of preparing MEAs using ZIF-based non-PGM electrocatalysts involves many additional factors which may influence the overall catalytic activity at the fuel cell level. Evaluation of parameters such as catalyst loading and perfluorosulfonic acid ionomer to catalyst ratio were optimized. Our overall efforts to optimize both the catalyst and MEA construction process have yielded impressive ORR activity when tested in a fuel cell system.« less

  1. Versatile Surface Functionalization of Metal-Organic Frameworks through Direct Metal Coordination with a Phenolic Lipid Enables Diverse Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Wei; Xiang, Guolei; Shang, Jin

    Here, a novel strategy for the versatile functionalization of the external surface of metal-organic frameworks (MOFs) has been developed based on the direct coordination of a phenolic-inspired lipid molecule DPGG (1,2-dipalmitoyl-sn-glycero-3-galloyl) with metal nodes/sites surrounding MOF surface. X-ray diffraction and Argon sorption analysis prove that the modified MOF particles retain their structural integrity and porosity after surface modification. Density functional theory calculations reveal that strong chelation strength between the metal sites and the galloyl head group of DPGG is the basic prerequisite for successful coating. Due to the pH-responsive nature of metal-phenol complexation, the modification process is reversible by simplemore » washing in weak acidic water, showing an excellent regeneration ability for water-stable MOFs. Moreover, the colloidal stability of the modified MOFs in the nonpolar solvent allows them to be further organized into 2 dimensional MOF or MOF/polymer monolayers by evaporation-induced interfacial assembly conducted on an air/water interface. Lastly, the easy fusion of a second functional layer onto DPGG-modified MOF cores, enabled a series of MOF-based functional nanoarchitectures, such as MOFs encapsulated within hybrid supported lipid bilayers (so-called protocells), polyhedral core-shell structures, hybrid lipid-modified-plasmonic vesicles and multicomponent supraparticles with target functionalities, to be generated. for a wide range of applications.« less

  2. Self-assembly of a binodal metal-organic framework exhibiting a demi-regular lattice.

    PubMed

    Yan, Linghao; Kuang, Guowen; Zhang, Qiushi; Shang, Xuesong; Liu, Pei Nian; Lin, Nian

    2017-10-26

    Designing metal-organic frameworks with new topologies is a long-standing quest because new topologies often accompany new properties and functions. Here we report that 1,3,5-tris[4-(pyridin-4-yl)phenyl]benzene molecules coordinate with Cu atoms to form a two-dimensional framework in which Cu adatoms form a nanometer-scale demi-regular lattice. The lattice is articulated by perfectly arranged twofold and threefold pyridyl-Cu coordination motifs in a ratio of 1 : 6 and features local dodecagonal symmetry. This structure is thermodynamically robust and emerges solely when the molecular density is at a critical value. In comparison, we present three framework structures that consist of semi-regular and regular lattices of Cu atoms self-assembled out of 1,3,5-tris[4-(pyridin-4-yl)phenyl]benzene and trispyridylbenzene molecules. Thus a family of regular, semi-regular and demi-regular lattices can be achieved by Cu-pyridyl coordination.

  3. Nonlinear optical properties, upconversion and lasing in metal-organic frameworks.

    PubMed

    Medishetty, Raghavender; Zaręba, Jan K; Mayer, David; Samoć, Marek; Fischer, Roland A

    2017-08-14

    The building block modular approach that lies behind coordination polymers (CPs) and metal-organic frameworks (MOFs) results not only in a plethora of materials that can be obtained but also in a vast array of material properties that could be aimed at. Optical properties appear to be particularly predetermined by the character of individual structural units and by the intricate interplay between them. Indeed, the "design principles" shaping the optical properties of these materials seem to be well explored for luminescence and second-harmonic generation (SHG) phenomena; these have been covered in numerous previous reviews. Herein, we shine light on CPs and MOFs as optical media for state-of-the-art photonic phenomena such as multi-photon absorption, triplet-triplet annihilation (TTA) and stimulated emission. In the first part of this review we focus on the nonlinear optical (NLO) properties of CPs and MOFs, with a closer look at the two-photon absorption property. We discuss the scope of applicability of most commonly used measurement techniques (Z-scan and two-photon excited fluorescence (TPEF)) that can be applied for proper determination of the NLO properties of these materials; in particular, we suggest recommendations for their use, along with a discussion of the best reporting practices of NLO parameters. We also outline design principles, employing both intramolecular and intermolecular strategies, that are necessary for maximizing the NLO response. A review of recent literature on two-, three- and multi-photon absorption in CPs and MOFs is further supplemented with application-oriented processes such as two-photon 3D patterning and data storage. Additionally, we provide an overview of the latest achievements in the field of frequency doubling (SHG) and tripling (third-harmonic generation, THG) in these materials. Apart from nonlinear processes, in the next sections we also target the photonic properties of MOFs that benefit from their porosity, and

  4. A porous Cd(II) metal-organic framework with high adsorption selectivity for CO2 over CH4

    NASA Astrophysics Data System (ADS)

    Zhu, Chunlan

    2017-05-01

    Metal-organic frameworks (MOFs) have attracted a lot of attention in recent decades. We applied a semi-rigid four-carboxylic acid linker to assemble with Cd(II) ions to generate a novel microporous Cd(II) MOF material. Single crystal X-ray diffraction study reveals the different two dimension (2D) layers can be further packed together with an AB fashion by hydrogen bonds (O4sbnd H4⋯O7 = 1.863 Å) to construct a three dimension (3D) supermolecular architecture. The resulting sample can be synthesized under solvothermal reactions successfully, which exhibits high selectivity adsorption of CO2 over CH4 at room temperature. In addition, the obtained sample was characterized by thermal gravimetric analyses (TGA), Fourier-transform infrared spectra (FT-IR), elemental analysis (CHN) and powder X-ray diffraction (PXRD).

  5. Enhancing the biofuel upgrade performance for Pd nanoparticles via increasing the support hydrophilicity of metal-organic frameworks.

    PubMed

    Sun, Qi; Chen, Meng; Aguila, Briana; Nguyen, Nicholas; Ma, Shengqian

    2017-09-08

    In this work, the influence of the hydrophilic/hydrophobic nature of metal-organic framework (MOF) materials on the catalytic performance of supported Pd nanoparticles for biofuel upgrade was studied. We show that the introduction of hydrophilic groups on a MOF can greatly enhance the performance of the resultant catalyst. Specifically, Pd nanoparticles supported on MIL-101-SO 3 Na with superhydrophilicity (Pd/MIL-101-SO 3 Na) far outperforms pristine MIL-101 and the benchmark catalyst Pd/C in the hydrodeoxygenation reaction of vanillin, a model component of pyrolysis oil derived from the lignin fraction. This is attributed to a favorable mode of adsorption of the highly water soluble reactants on the more hydrophilic support in the vicinity of the catalytically active Pd nanoparticles, thereby promoting their transformation.

  6. Preparation of Hydrophobic Metal-Organic Frameworks via Plasma Enhanced Chemical Vapor Deposition of Perfluoroalkanes for the Removal of Ammonia

    PubMed Central

    DeCoste, Jared B.; Peterson, Gregory W.

    2013-01-01

    Plasma enhanced chemical vapor deposition (PECVD) of perfluoroalkanes has long been studied for tuning the wetting properties of surfaces. For high surface area microporous materials, such as metal-organic frameworks (MOFs), unique challenges present themselves for PECVD treatments. Herein the protocol for development of a MOF that was previously unstable to humid conditions is presented. The protocol describes the synthesis of Cu-BTC (also known as HKUST-1), the treatment of Cu-BTC with PECVD of perfluoroalkanes, the aging of materials under humid conditions, and the subsequent ammonia microbreakthrough experiments on milligram quantities of microporous materials. Cu-BTC has an extremely high surface area (~1,800 m2/g) when compared to most materials or surfaces that have been previously treated by PECVD methods. Parameters such as chamber pressure and treatment time are extremely important to ensure the perfluoroalkane plasma penetrates to and reacts with the inner MOF surfaces. Furthermore, the protocol for ammonia microbreakthrough experiments set forth here can be utilized for a variety of test gases and microporous materials. PMID:24145623

  7. Cerium-based metal organic frameworks with UiO-66 architecture: synthesis, properties and redox catalytic activity.

    PubMed

    Lammert, Martin; Wharmby, Michael T; Smolders, Simon; Bueken, Bart; Lieb, Alexandra; Lomachenko, Kirill A; Vos, Dirk De; Stock, Norbert

    2015-08-14

    A series of nine Ce(iv)-based metal organic frameworks with the UiO-66 structure containing linker molecules of different sizes and functionalities were obtained under mild synthesis conditions and short reaction times. Thermal and chemical stabilities were determined and a Ce-UiO-66-BDC/TEMPO system was successfully employed for the aerobic oxidation of benzyl alcohol.

  8. A porphyrin-based metal-organic framework as a pH-responsive drug carrier

    NASA Astrophysics Data System (ADS)

    Lin, Wenxin; Hu, Quan; Jiang, Ke; Yang, Yanyu; Yang, Yu; Cui, Yuanjing; Qian, Guodong

    2016-05-01

    A low cytotoxic porphyrin-based metal-organic framework (MOF) PCN-221, which exhibited high PC12 cell viability via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay, was selected as an oral drug carrier. Methotrexate (MTX) was chosen as the model drug molecule which was absorbed into inner pores and channels of MOFs by diffusion. PCN-221 showed high drug loading and sustained release behavior under physiological environment without "burst effect". The controlled pH-responsive release of drugs by PCN-221 revealed its promising application in oral drug delivery.

  9. Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship.

    PubMed

    Adil, Karim; Belmabkhout, Youssef; Pillai, Renjith S; Cadiau, Amandine; Bhatt, Prashant M; Assen, Ayalew H; Maurin, Guillaume; Eddaoudi, Mohamed

    2017-06-06

    The separation of related molecules with similar physical/chemical properties is of prime industrial importance and practically entails a substantial energy penalty, typically necessitating the operation of energy-demanding low temperature fractional distillation techniques. Certainly research efforts, in academia and industry alike, are ongoing with the main aim to develop advanced functional porous materials to be adopted as adsorbents for the effective and energy-efficient separation of various important commodities. Of special interest is the subclass of metal-organic frameworks (MOFs) with pore aperture sizes below 5-7 Å, namely ultra-microporous MOFs, which in contrast to conventional zeolites and activated carbons show great prospects for addressing key challenges in separations pertaining to energy and environmental sustainability, specifically materials for carbon capture and separation of olefin/paraffin, acetylene/ethylene, linear/branched alkanes, xenon/krypton, etc. In this tutorial review we discuss the latest developments in ultra-microporous MOF adsorbents and their use as separating agents via thermodynamics and/or kinetics and molecular sieving. Appreciably, we provide insights into the distinct microscopic mechanisms governing the resultant separation performances, and suggest a plausible correlation between the inherent structural features/topology of MOFs and the associated gas/vapour separation performance.

  10. Modulating supramolecular binding of carbon dioxide in a redox-active porous metal-organic framework

    DOE PAGES

    Lu, Zhenzhong; Godfrey, Harry G. W.; da Silva, Ivan; ...

    2017-02-13

    Hydrogen bonds dominate many chemical and biological processes, and chemical modification enables control and modulation of host–guest systems. Here in this paper we report a targeted modification of hydrogen bonding and its effect on guest binding in redox-active materials. MFM-300(V III) {[V III 2(OH) 2(L)], LH 4=biphenyl-3,3',5,5'-tetracarboxylic acid} can be oxidized to isostructural MFM-300(V IV), [V IV 2O 2(L)], in which deprotonation of the bridging hydroxyl groups occurs. MFM-300(V III) shows the second highest CO 2 uptake capacity in metal-organic framework materials at 298 K and 1 bar (6.0 mmol g -1) and involves hydrogen bonding between the OH group of the host and the O-donor of CO 2, which binds in an end-on manner, OH∙∙∙ =1.863(1) Å. In contrast, CO 2-loaded MFM-300(V IV) shows CO 2 bound side-on to the oxy group and sandwiched between two phenyl groups involving a unique O COmore » $$_2$$···c.g.phenyl interaction [3.069(2), 3.146(3) Å]. Lastly, the macroscopic packing of CO 2 in the pores is directly influenced by these primary binding sites.« less

  11. Three new europium(III) methanetriacetate metal-organic frameworks: the influence of synthesis on the product topology.

    PubMed

    Cañadillas-Delgado, Laura; Fabelo, Oscar; Pasán, Jorge; Déniz, Mariadel; Martínez-Benito, Carla; Díaz-Gallifa, Pau; Martín, Tomás; Ruiz-Pérez, Catalina

    2014-02-01

    Three new metal-organic framework structures containing Eu(III) and the little explored methanetriacetate (C7H7O6(3-), mta(3-)) ligand have been synthesized. Gel synthesis yields a two-dimensional framework with the formula [Eu(mta)(H2O)3]n·2nH2O, (I), while two polymorphs of the three-dimensional framework material [Eu(mta)(H2O)]n·nH2O, (II) and (III), are obtained through hydrothermal synthesis at either 423 or 443 K. Compounds (I) and (II) are isomorphous with previously reported Gd(III) compounds, but compound (III) constitutes a new phase. Compound (I) can be described in terms of dinuclear [Eu2(H2O)4](6+) units bonded through mta(3-) ligands to form a two-dimensional framework with topology corresponding to a (6,3)-connected binodal (4(3))(4(6)6(6)8(3))-kgd net, where the dinuclear [Eu2(H2O)4](6+) units are considered as a single node. Compounds (II) and (III) have distinct three-dimensional topologies, namely a (4(12)6(3))(4(9)6(6))-nia net for (II) and a (4(10)6(5))(4(11)6(4))-K2O2; 36641 net for (III). The crystal density of (III) is greater than that of (II), consistent with the increase of temperature, and thereby autogeneous pressure, in the hydrothermal synthesis.

  12. Cobalt- and Cadmium-Based Metal-Organic Frameworks as High-Performance Anodes for Sodium Ion Batteries and Lithium Ion Batteries.

    PubMed

    Dong, Caifu; Xu, Liqiang

    2017-03-01

    Two multifunctional metal-organic frameworks (MOFs) with the same coordination mode, [Co(L)(H 2 O)] n ·2nH 2 O [defined as "Co(L) MOF"] and [Cd(L)(H 2 O)] n ·2nH 2 O [defined as "Cd(L) MOF"] (L = 5-aminoisophthalic acid) have been fabricated via a simple and versatile scalable solvothermal approach at 85 °C for 24 h. The relationship between the structure of the electrode materials (especially the coordination water and different metal ions) and the electrochemical properties of MOFs have been investigated for the first time. And then the possible electrochemical mechanisms of the electrodes have been studied and proposed. In addition, MOFs/RGO hybrid materials were prepared via ball milling, which demonstrated better electrochemical performances than those of individual Co(L) MOF and Cd(L) MOF. For example, when Co(L) MOF/RGO was applied as anode for sodium ion batteries (SIBs), it retained 206 mA h g -1 after 330 cycles at 500 mA g -1 and 1185 mA h g -1 could be obtained after 50 cycles at 100 mA g -1 for lithium-ion batteries (LIBs). The high-discharge capacity, excellent cyclic stability combined with the facile synthesis procedure enable Co(L) MOF- and Cd(L) MOF-based materials to be prospective anode materials for SIBs and LIBs.

  13. Transferable Force Field for Metal–Organic Frameworks from First-Principles: BTW-FF

    PubMed Central

    2014-01-01

    We present an ab-initio derived force field to describe the structural and mechanical properties of metal–organic frameworks (or coordination polymers). The aim is a transferable interatomic potential that can be applied to MOFs regardless of metal or ligand identity. The initial parametrization set includes MOF-5, IRMOF-10, IRMOF-14, UiO-66, UiO-67, and HKUST-1. The force field describes the periodic crystal and considers effective atomic charges based on topological analysis of the Bloch states of the extended materials. Transferable potentials were developed for the four organic ligands comprising the test set and for the associated Cu, Zn, and Zr metal nodes. The predicted materials properties, including bulk moduli and vibrational frequencies, are in agreement with explicit density functional theory calculations. The modal heat capacity and lattice thermal expansion are also predicted. PMID:25574157

  14. Synthesis and characterization of bimetallic metal-organic framework Cu-Ru-BTC with HKUST-1 structure.

    PubMed

    Gotthardt, Meike A; Schoch, Roland; Wolf, Silke; Bauer, Matthias; Kleist, Wolfgang

    2015-02-07

    The bimetallic metal-organic framework Cu-Ru-BTC with the stoichiometric formula Cu2.75Ru0.25(BTC)2·xH2O, which is isoreticular to HKUST-1, was successfully prepared in a direct synthesis using mild reaction conditions. The partial substitution of Cu(2+) by Ru(3+) centers in the paddlewheel structure and the absence of other Ru-containing phases was proven using X-ray absorption spectroscopy.

  15. A Sr2+-metal–organic framework with high chemical stability: synthesis, crystal structure and photoluminescence property

    PubMed Central

    Jia, Yan-Yuan; Liu, Xiao-Ting; Wang, Wen-He; Zhang, Li-Zhu; Bu, Xian-He

    2017-01-01

    Metal–organic frameworks (MOFs) are typically built by assembly of metal centres and organic linkers, and have emerged as promising crystalline materials in a variety of fields. However, the stability of MOFs is a key limitation for their practical applications. Herein, we report a novel Sr2+-MOF [Sr4(Tdada)2(H2O)3(DMF)2] (denoted as NKU-105, NKU = Nankai University; H4Tdada = 5,5'-((thiophene-2,5-dicar bonyl)bis(azanediyl))diisophthalic acid; DMF = N,N-dimethylformamide) featuring an open square channel of about 6 Å along the c-axis. Notably, NKU-105 exhibits much outstanding chemical stability against common organic solvents, boiling water, acids and bases, relative to most MOF materials. Furthermore, NKU-105 is an environment-friendly luminescent material with a bright cyan emission. This article is part of the themed issue ‘Coordination polymers and metal–organic frameworks: materials by design’. PMID:27895256

  16. Single Pt Atoms Confined into a Metal-Organic Framework for Efficient Photocatalysis.

    PubMed

    Fang, Xinzuo; Shang, Qichao; Wang, Yu; Jiao, Long; Yao, Tao; Li, Yafei; Zhang, Qun; Luo, Yi; Jiang, Hai-Long

    2018-02-01

    It is highly desirable yet remains challenging to improve the dispersion and usage of noble metal cocatalysts, beneficial to charge transfer in photocatalysis. Herein, for the first time, single Pt atoms are successfully confined into a metal-organic framework (MOF), in which electrons transfer from the MOF photosensitizer to the Pt acceptor for hydrogen production by water splitting under visible-light irradiation. Remarkably, the single Pt atoms exhibit a superb activity, giving a turnover frequency of 35 h -1 , ≈30 times that of Pt nanoparticles stabilized by the same MOF. Ultrafast transient absorption spectroscopy further unveils that the single Pt atoms confined into the MOF provide highly efficient electron transfer channels and density functional theory calculations indicate that the introduction of single Pt atoms into the MOF improves the hydrogen binding energy, thus greatly boosting the photocatalytic H 2 production activity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Postsynthetic Improvement of the Physical Properties in a Metal-Organic Framework through a Single Crystal to Single Crystal Transmetallation.

    PubMed

    Grancha, Thais; Ferrando-Soria, Jesús; Zhou, Hong-Cai; Gascon, Jorge; Seoane, Beatriz; Pasán, Jorge; Fabelo, Oscar; Julve, Miguel; Pardo, Emilio

    2015-05-26

    A single crystal to single crystal transmetallation process takes place in the three-dimensional (3D) metal-organic framework (MOF) of formula Mg(II) 2 {Mg(II) 4 [Cu(II) 2 (Me3 mpba)2 ]3 }⋅45 H2 O (1; Me3 mpba(4-) =N,N'-2,4,6-trimethyl-1,3-phenylenebis(oxamate)). After complete replacement of the Mg(II) ions within the coordination network and those hosted in the channels by either Co(II) or Ni(II) ions, 1 is transmetallated to yield two novel MOFs of formulae Co2 (II) {Co(II) 4 [Cu(II) 2 (Me3 mpba)2 ]3 }⋅56 H2 O (2) and Ni2 (II) {Ni(II) 4 [Cu(II) 2 (Me3 mpba)2 ]3 }⋅ 54 H2 O (3). This unique postsynthetic metal substitution affords materials with higher structural stability leading to enhanced gas sorption and magnetic properties. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Crystal conversion between metal-organic frameworks with different crystal topologies for efficient crystal design on two-dimensional substrates

    NASA Astrophysics Data System (ADS)

    Tsuruoka, Takaaki; Inoue, Kohei; Miyanaga, Ayumi; Tobiishi, Kaho; Ohhashi, Takashi; Hata, Manami; Takashima, Yohei; Akamatsu, Kensuke

    2018-04-01

    Crystal conversion of metal-organic frameworks (MOFs) between different crystal topologies on a polymer substrate has been successfully achieved by localized dissolution of MOF crystals followed by a rapid self-assembly of framework components. Upon addition of the desired organic linkers to the reaction system containing MOF crystals on the substrate, reversible crystal conversion between the [Cu2(btc)3]n and [Cu2(ndc)2(dabco)]n frameworks (btc = 1,3,5-benzene tricarboxylate, ndc = 1,4-naphthalene dicarboxylate, dabco = 1,4-diazabicyclo[2.2.2]octane) could be routinely achieved in high yields. Most surprisingly, in the case of conversion from the [Cu2(ndc)2(dabco)]n to [Cu2(btc)3]n frameworks, the [Cu2(btc)3]n crystals with unique shapes (cuboctahedron and truncated cube) could be prepared using butanol as a reaction medium.

  19. Screening metal-organic frameworks for selective noble gas adsorption in air: effect of pore size and framework topology.

    PubMed

    Parkes, Marie V; Staiger, Chad L; Perry, John J; Allendorf, Mark D; Greathouse, Jeffery A

    2013-06-21

    The adsorption of noble gases and nitrogen by sixteen metal-organic frameworks (MOFs) was investigated using grand canonical Monte Carlo simulation. The MOFs were chosen to represent a variety of net topologies, pore dimensions, and metal centers. Three commercially available MOFs (HKUST-1, AlMIL-53, and ZIF-8) and PCN-14 were also included for comparison. Experimental adsorption isotherms, obtained from volumetric and gravimetric methods, were used to compare krypton, argon, and nitrogen uptake with the simulation results. Simulated trends in gas adsorption and predicted selectivities among the commercially available MOFs are in good agreement with experiment. In the low pressure regime, the expected trend of increasing adsorption with increasing noble gas polarizabilty is seen. For each noble gas, low pressure adsorption correlates with several MOF properties, including free volume, topology, and metal center. Additionally, a strong correlation exists between the Henry's constant and the isosteric heat of adsorption for all gases and MOFs considered. Finally, we note that the simulated and experimental gas selectivities demonstrated by this small set of MOFs show improved performance compared to similar values reported for zeolites.

  20. A fiber optic sensor with a metal organic framework as a sensing material for trace levels of water in industrial gases.

    PubMed

    Ohira, Shin-Ichi; Miki, Yusuke; Matsuzaki, Toru; Nakamura, Nao; Sato, Yu-ki; Hirose, Yasuo; Toda, Kei

    2015-07-30

    Industrial gases such as nitrogen, oxygen, argon, and helium are easily contaminated with water during production, transfer and use, because there is a high volume fraction of water in the atmosphere (approximately 1.2% estimated with the average annual atmospheric temperature and relative humidity). Even trace water (<1 parts per million by volume (ppmv) of H2O, dew point < -76 °C) in the industrial gases can cause quality problems in the process such as production of semiconductors. Therefore, it is important to monitor and to control trace water levels in industrial gases at each supplying step, and especially during their use. In the present study, a fiber optic gas sensor was investigated for monitoring trace water levels in industrial gases. The sensor consists of a film containing a metal organic framework (MOF). MOFs are made of metals coordinated to organic ligands, and have mesoscale pores that adsorb gas molecules. When the MOF, copper benzene-1,3,5-tricarboxylate (Cu-BTC), was used as a sensing material, we investigated the color of Cu-BTC with water adsorption changed both in depth and tone. Cu-BTC crystals appeared deep blue in dry gases, and then changed to light blue in wet gases. An optical gas sensor with the Cu-BTC film was developed using a light emitting diode as the light source and a photodiode as the light intensity detector. The sensor showed a reversible response to trace water, did not require heating to remove the adsorbed water molecules. The sample gas flow rate did not affect the sensitivity. The obtained limit of detection was 40 parts per billion by volume (ppbv). The response time for sample gas containing 2.5 ppmvH2O was 23 s. The standard deviation obtained for daily analysis of 1.0 ppmvH2O standard gas over 20 days was 9%. Furthermore, the type of industrial gas did not affect the sensitivity. These properties mean the sensor will be applicable to trace water detection in various industrial gases. Copyright © 2015 Elsevier B