Sample records for metal-poor binary star

  1. High-resolution spectroscopy of extremely metal-poor stars from SDSS/Segue. II. Binary fraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Wako; Suda, Takuma; Beers, Timothy C.

    2015-02-01

    The fraction of binary systems in various stellar populations of the Galaxy and the distribution of their orbital parameters are important but not well-determined factors in studies of star formation, stellar evolution, and Galactic chemical evolution. While observational studies have been carried out for a large sample of nearby stars, including some metal-poor Population II stars, almost no constraints on the binary nature for extremely metal-poor (EMP; [Fe/H] <−3.0) stars have yet been obtained. Here we investigate the fraction of double-lined spectroscopic binaries and carbon-enhanced metal-poor (CEMP) stars, many of which could have formed as pairs of low-mass and intermediate-massmore » stars, to estimate the lower limit of the fraction of binary systems having short periods. The estimate is based on a sample of very metal-poor stars selected from the Sloan Digital Sky Survey and observed at high spectral resolution in a previous study by Aoki et al. That survey reported 3 double-lined spectroscopic binaries and 11 CEMP stars, which we consider along with a sample of EMP stars from the literature compiled in the SAGA database. We have conducted measurements of the velocity components for stacked absorption features of different spectral lines for each double-lined spectroscopic binary. Our estimate indicates that the fraction of binary stars having orbital periods shorter than 1000 days is at least 10%, and possibly as high as 20% if the majority of CEMP stars are formed in such short-period binaries. This result suggests that the period distribution of EMP binary systems is biased toward short periods, unless the binary fraction of low-mass EMP stars is significantly higher than that of other nearby stars.« less

  2. OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. V. TOWARD AN EMPIRICAL METAL-POOR MASS–LUMINOSITY RELATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horch, Elliott P.; Van Altena, William F.; Demarque, Pierre

    2015-05-15

    In an effort to better understand the details of the stellar structure and evolution of metal-poor stars, the Gemini North telescope was used on two occasions to take speckle imaging data of a sample of known spectroscopic binary stars and other nearby stars in order to search for and resolve close companions. The observations were obtained using the Differential Speckle Survey Instrument, which takes data in two filters simultaneously. The results presented here are of 90 observations of 23 systems in which one or more companions was detected, and six stars where no companion was detected to the limit ofmore » the camera capabilities at Gemini. In the case of the binary and multiple stars, these results are then further analyzed to make first orbit determinations in five cases, and orbit refinements in four other cases. The mass information is derived, and since the systems span a range in metallicity, a study is presented that compares our results with the expected trend in total mass as derived from the most recent Yale isochrones as a function of metal abundance. These data suggest that metal-poor main-sequence stars are less massive at a given color than their solar-metallicity analogues in a manner consistent with that predicted from the theory.« less

  3. A Search for Nitrogen-enhanced Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Johnson, Jennifer A.; Herwig, Falk; Beers, Timothy C.; Christlieb, Norbert

    2007-04-01

    Theoretical models of very metal-poor intermediate-mass asymptotic giant branch (AGB) stars predict a large overabundance of primary nitrogen. The very metal-poor, carbon-enhanced, s-process-rich stars, which are thought to be the polluted companions of now extinct AGB stars, provide direct tests of the predictions of these models. Recent studies of the carbon and nitrogen abundances in metal-poor stars have focused on the most carbon-rich stars, leading to a potential selection bias against stars that have been polluted by AGB stars that produced large amounts of nitrogen and hence have small [C/N] ratios. We call these stars nitrogen-enhanced metal-poor (NEMP) stars and define them as having [N/Fe]>+0.5 and [C/N]<-0.5. In this paper we report on the [C/N] abundances of a sample of 21 carbon-enhanced stars, all but three of which have [C/Fe]<+2.0. If NEMP stars were made as easily as carbon-enhanced metal-poor (CEMP) stars, then we expected to find between two and seven NEMP stars. Instead, we found no NEMP stars in our sample. Therefore, this observational bias is not an important contributor to the apparent dearth of N-rich stars. Our [C/N] values are in the same range as values reported previously in the literature (-0.5 to +2.0), and all stars are in disagreement with the predicted [C/N] ratios for both low- and high-mass AGB stars. We suggest that the decrease in [C/N] from the low-mass AGB models is due to enhanced extramixing, while the lack of NEMP stars may be caused by unfavorable mass ratios in binaries or the difficulty of mass transfer in binary systems with large mass ratios. Based on observations obtained at Cerro Tololo Inter-American Observatory and Kitt Peak National Observatory, a division of the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

  4. Dynamics of stellar black holes in young star clusters with different metallicities - II. Black hole-black hole binaries

    NASA Astrophysics Data System (ADS)

    Ziosi, Brunetto Marco; Mapelli, Michela; Branchesi, Marica; Tormen, Giuseppe

    2014-07-01

    In this paper, we study the formation and dynamical evolution of black hole-black hole (BH-BH) binaries in young star clusters (YSCs), by means of N-body simulations. The simulations include metallicity-dependent recipes for stellar evolution and stellar winds, and have been run for three different metallicities (Z = 0.01, 0.1 and 1 Z⊙). Following recent theoretical models of wind mass-loss and core-collapse supernovae, we assume that the mass of the stellar remnants depends on the metallicity of the progenitor stars. We find that BH-BH binaries form efficiently because of dynamical exchanges: in our simulations, we find about 10 times more BH-BH binaries than double neutron star binaries. The simulated BH-BH binaries form earlier in metal-poor YSCs, which host more massive black holes (BHs) than in metal-rich YSCs. The simulated BH-BH binaries have very large chirp masses (up to 80 M⊙), because the BH mass is assumed to depend on metallicity, and because BHs can grow in mass due to the merger with stars. The simulated BH-BH binaries span a wide range of orbital periods (10-3-107 yr), and only a small fraction of them (0.3 per cent) is expected to merge within a Hubble time. We discuss the estimated merger rate from our simulations and the implications for Advanced VIRGO and LIGO.

  5. The s-Process Nucleosynthesis in Extremely Metal-Poor Stars as the Generating Mechanism of Carbon Enhanced Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Suda, Takuma; Yamada, Shimako; Fujimoto, Masayuki Y.

    The origin of carbon-enhanced metal-poor (CEMP) stars plays a key role in characterising the formation and evolution of the first stars and the Galaxy since the extremely-metal-poor (EMP) stars with [Fe/H] ≤ -2.5 share the common features of carbon enhancement in their surface chemical compositions. The origin of these stars is not yet established due to the controversy of the origin of CEMP stars without the enhancement of s-process element abundances, i.e., so called CEMP-no stars. In this paper, we elaborate the s-process nucleosynthesis in the EMP AGB stars and explore the origin of CEMP stars. We find that the efficiency of the s-process is controlled by O rather than Fe at [Fe/H] ≲ -2. We demonstrate that the relative abundances of Sr, Ba, Pb to C are explained in terms of the wind accretion from AGB stars in binary systems.

  6. Roche-lobe overflow systems powered by black holes in young star clusters: the importance of dynamical exchanges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mapelli, Michela; Zampieri, Luca, E-mail: michela.mapelli@oapd.inaf.it

    2014-10-10

    We have run 600 N-body simulations of intermediate-mass (∼3500 M {sub ☉}) young star clusters (SCs; with three different metallicities (Z = 0.01, 0.1, and 1 Z {sub ☉}). The simulations include the dependence of stellar properties and stellar winds on metallicity. Massive stellar black holes (MSBHs) with mass >25 M {sub ☉} are allowed to form through direct collapse of very massive metal-poor stars (Z < 0.3 Z {sub ☉}). We focus on the demographics of black hole (BH) binaries that undergo mass transfer via Roche lobe overflow (RLO). We find that 44% of all binaries that undergo anmore » RLO phase (RLO binaries) formed through dynamical exchange. RLO binaries that formed via exchange (RLO-EBs) are powered by more massive BHs than RLO primordial binaries (RLO-PBs). Furthermore, the RLO-EBs tend to start the RLO phase later than the RLO-PBs. In metal-poor SCs (0.01-0.1 Z {sub ☉}), >20% of all RLO binaries are powered by MSBHs. The vast majority of RLO binaries powered by MSBHs are RLO-EBs. We have produced optical color-magnitude diagrams of the simulated RLO binaries, accounting for the emission of both the donor star and the irradiated accretion disk. We find that RLO-PBs are generally associated with bluer counterparts than RLO-EBs. We compare the simulated counterparts with the observed counterparts of nine ultraluminous X-ray sources. We discuss the possibility that IC 342 X-1, Ho IX X-1, NGC 1313 X-2, and NGC 5204 X-1 are powered by an MSBH.« less

  7. Something borrowed, something blue: The nature of blue metal-poor stars inferred from their colours and chemical abundances

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; Jofré, P.; Koch, A.; McWilliam, A.; Sneden, C. S.

    2017-02-01

    Blue metal-poor (BMP) stars are main sequence stars that appear bluer and more luminous than normal turnoff stars. They were originally singled out by using B-V and U-B colour cuts.Early studies found that a larger fraction of field BMP stars were binaries compared to normal halo stars. Thus, BMP stars are ideal field blue straggler candidates for investigating internal stellar evolution processes and binary interaction. In particular, the presence or depletion in lithium in their spectra is a powerful indicator of their origin. They are either old, halo blue stragglers experiencing internal mixing processes or mass transfer (Li-depletion), or intermediate-age, single stars of possibly extragalactic origin (2.2 dex halo plateau Li). However, we note that internal mixing processes can lead to an increased level of Li. Hence, this study combines photometry and spectroscopy to unveil the origin of various BMP stars. We first show how to separate binaries from young blue stars using photometry, metallicity and lithium. Using a sample of 80 BMP stars (T > 6300 K), we find that 97% of the BMP binaries have V-Ks0 < 1.08 ± 0.03, while BMP stars that are not binaries lie above this cut in two thirds of the cases. This cut can help classify stars that lack radial velocities from follow-up observations. We then trace the origin of two BMP stars from the photometric sample by conducting a full chemical analysis using new high-resolution and high signal-to-noise spectra. Based on their radial velocities, Li, α and s- and r-process abundances we show that BPS CS22874-042 is a single star (A(Li) = 2.38 ± 0.10 dex) while with A(Li)= 2.23 ± 0.07 dex CD-48 2445 is a binary, contrary to earlier findings. Our analysis emphasises that field blue stragglers can be segregated from single metal-poor stars, using (V-Ks) colours with a fraction of single stars polluting the binary sample, but not vice versa. These two groups can only be properly separated by using information from stellar spectra, illustrating the need for accurate and precise stellar parameters and high-resolution, high-S/N spectra in order to fully understand and classify this intriguing class of stars. Our high-resolution spectrum analysis confirms the findings from the colour cuts and shows that CS 22874-042 is single, while CD -48 2445 is most likely a binary. Moreover, the stellar abundances show that both stars formed in situ; CS 22874-042 carries traces of massive star enrichment and CD -48 2445 shows indications of AGB mass transfer mixed with gases ejected possibly from neutron star mergers. Based on UVES archive data 077.B-0507 and 090.B-0605. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. Full Table 4 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A54

  8. Searching for Dust around Hyper Metal Poor Stars

    NASA Astrophysics Data System (ADS)

    Venn, Kim A.; Puzia, Thomas H.; Divell, Mike; Côté, Stephanie; Lambert, David L.; Starkenburg, Else

    2014-08-01

    We examine the mid-infrared fluxes and spectral energy distributions for stars with iron abundances [Fe/H] <-5, and other metal-poor stars, to eliminate the possibility that their low metallicities are related to the depletion of elements onto dust grains in the formation of a debris disk. Six out of seven stars examined here show no mid-IR excesses. These non-detections rule out many types of circumstellar disks, e.g., a warm debris disk (T <= 290 K), or debris disks with inner radii <=1 AU, such as those associated with the chemically peculiar post-asymptotic giant branch spectroscopic binaries and RV Tau variables. However, we cannot rule out cooler debris disks, nor those with lower flux ratios to their host stars due to, e.g., a smaller disk mass, a larger inner disk radius, an absence of small grains, or even a multicomponent structure, as often found with the chemically peculiar Lambda Bootis stars. The only exception is HE0107-5240, for which a small mid-IR excess near 10 μm is detected at the 2σ level; if the excess is real and associated with this star, it may indicate the presence of (recent) dust-gas winnowing or a binary system.

  9. V474 Car: A RARE HALO RS CVn BINARY IN RETROGRADE GALACTIC ORBIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bubar, Eric J.; Mamajek, Eric E.; Jensen, Eric L. N.

    We report the discovery that the star V474 Car is an extremely active, high velocity halo RS CVn system. The star was originally identified as a possible pre-main-sequence star in Carina, given its enhanced stellar activity, rapid rotation (10.3 days), enhanced Li, and absolute magnitude which places it above the main sequence (MS). However, its extreme radial velocity (264 km s{sup -1}) suggested that this system was unlike any previously known pre-MS system. Our detailed spectroscopic analysis of echelle spectra taken with the CTIO 4 m finds that V474 Car is both a spectroscopic binary with an orbital period similarmore » to the photometric rotation period and metal-poor ([Fe/H] {approx_equal}-0.99). The star's Galactic orbit is extremely eccentric (e {approx_equal} 0.93) with a perigalacticon of only {approx}0.3 kpc of the Galactic center-and the eccentricity and smallness of its perigalacticon are surpassed by only {approx}0.05% of local F/G-type field stars. The observed characteristics are consistent with V474 Car being a high-velocity, metal-poor, tidally locked, chromospherically active binary, i.e., a halo RS CVn binary, and one of only a few such specimens known.« less

  10. Lithium-rich very metal-poor stars discovered with LAMOST and Subaru

    NASA Astrophysics Data System (ADS)

    Aoki, Wako; Li, Haining; Matsuno, Tadafumi; Kumar, Yerra Bharat; Shi, Jianrong; Suda, Takuma; Zhao, Gang

    2018-04-01

    Lithium is a unique element that is produced in the Big Bang nucleosynthesis but is destroyed by nuclear reactions inside stars. As a result, almost constant lithium abundance is found in unevolved main-sequence metal-poor stars, although the value is systematically lower than that expected from the standard Big Bang nucleosynthesis models, whereas lithium abundances of red giants are more than one order of magnitudes lower than those of unevolved stars. There are, however, a small fraction of metal-poor stars that show extremely high lithium abundances, which is not explained by standard stellar evolution models. We have discovered 12 new very metal-poor stars that have enhancement of lithium by more than 10 times compared with typical metal-poor stars at similar evolutionary stages by the large-scale spectroscopic survey with LAMOST and the follow-up high-resolution spectroscopy with the Subaru Telescope. The sample shows a wide distribution of evolutionary stages from subgiants to red giants with the metallicity of -3.3 <[Fe/H]< -1.6. The chemical abundance ratios of other elements have been obtained by our spectroscopic study, and an estimate of the binary frequency by radial velocity monitoring is ongoing. The observational results provide new constraints on the scenarios to explain lithium-rich metal-poor stars, such as extra mixing during the evolution along the red giant branch, mass-transfer from a companion AGB star, and engulfment of planet-like objects. These explanations are very unlikely for at least some of lithium-rich objects in our sample, suggesting a new mechanism that enhances lithium during the low-mass star evolution.

  11. Abundance analysis of SDSS J134338.67+484426.6; an extremely metal-poor star from the MARVELS pre-survey

    NASA Astrophysics Data System (ADS)

    Susmitha Rani, A.; Sivarani, T.; Beers, T. C.; Fleming, S.; Mahadevan, S.; Ge, J.

    2016-05-01

    We present an elemental-abundance analysis of an extremely metal-poor (EMP; [Fe/H] <-3.0) star, SDSS J134338.67+484426.6, identified during the course of the Multi-object Apache Point Observatory Radial Velocity Exoplanet Large-area Survey spectroscopic pre-survey of some 20 000 stars to identify suitable candidates for exoplanet searches. This star, with an apparent magnitude V = 12.14, is the lowest metallicity star found in the pre-survey, and is one of only ˜20 known EMP stars that are this bright or brighter. Our high-resolution spectroscopic analysis shows that this star is a subgiant with [Fe/H] = -3.42, having `normal' carbon and no enhancement of neutron-capture abundances. Strontium is underabundant, [Sr/Fe] = -0.47, but the derived lower limit on [Sr/Ba] indicates that Sr is likely enhanced relative to Ba. This star belongs to the sparsely populated class of α-poor EMP stars that exhibit low ratios of [Mg/Fe], [Si/Fe], and [Ca/Fe] compared to typical halo stars at similar metallicity. The observed variations in radial velocity from several epochs of (low- and high-resolution) spectroscopic follow-up indicate that SDSS J134338.67+484426.6 is a possible long-period binary. We also discuss the abundance trends in EMP stars for r-process elements, and compare with other magnesium-poor stars.

  12. Wolf-Rayet stars in the Small Magellanic Cloud as testbed for massive star evolution

    NASA Astrophysics Data System (ADS)

    Schootemeijer, A.; Langer, N.

    2018-03-01

    Context. The majority of the Wolf-Rayet (WR) stars represent the stripped cores of evolved massive stars who lost most of their hydrogen envelope. Wind stripping in single stars is expected to be inefficient in producing WR stars in metal-poor environments such as the Small Magellanic Cloud (SMC). While binary interaction can also produce WR stars at low metallicity, it is puzzling that the fraction of WR binaries appears to be about 40%, independent of the metallicity. Aim. We aim to use the recently determined physical properties of the twelve known SMC WR stars to explore their possible formation channels through comparisons with stellar models. Methods: We used the MESA stellar evolution code to construct two grids of stellar models with SMC metallicity. One of these consists of models of rapidly rotating single stars, which evolve in part or completely chemically homogeneously. In a second grid, we analyzed core helium burning stellar models assuming constant hydrogen and helium gradients in their envelopes. Results: We find that chemically homogeneous evolution is not able to account for the majority of the WR stars in the SMC. However, in particular the apparently single WR star SMC AB12, and the double WR system SMC AB5 (HD 5980) appear consistent with this channel. We further find a dichotomy in the envelope hydrogen gradients required to explain the observed temperatures of the SMC WR stars. Shallow gradients are found for the WR stars with O star companions, while much steeper hydrogen gradients are required to understand the group of hot apparently single WR stars. Conclusions: The derived shallow hydrogen gradients in the WR component of the WR+O star binaries are consistent with predictions from binary models where mass transfer occurs early, in agreement with their binary properties. Since the hydrogen profiles in evolutionary models of massive stars become steeper with time after the main sequence, we conclude that most of the hot (Teff > 60 kK ) apparently single WR stars lost their envelope after a phase of strong expansion, e.g., as the result of common envelope evolution with a lower mass companion. The so far undetected companions, either main sequence stars or compact objects, are then expected to still be present. A corresponding search might identify the first immediate double black hole binary progenitor with masses as high as those detected in GW150914.

  13. High-resolution spectroscopic observations of the new CEMP-s star CD -50°776

    NASA Astrophysics Data System (ADS)

    Roriz, M.; Pereira, C. B.; Drake, N. A.; Roig, F.; Silva, J. V. Sales

    2017-11-01

    Carbon enhanced metal-poor (CEMP) stars are a particular class of low-metalicity halo stars whose chemical analysis may provide important contrains to the chemistry evolution of the Galaxy and to the models of mass-transfer and evolution of components in binary systems. Here, we present a detailed analysis of the CEMP star CD -50°776, using high resolution optical spectroscopy. We found that CD -50°776 has a metalicity [Fe/H] = -2.31 and a carbon abundance [C/Fe] = +1.21. Analysing the s-process elements and the europium abundances, we show that this star is actually a CEMP-s star, based on the criteria set in the literature to classify these chemically peculiar objects. We also show that CD -50°776 is a lead star, since it has a ratio [Pb/Ce] = +0.97. In addition, we show that CD -50°776 develops radial velocity variations that may be attributed to the orbital motion in a binary system. The abundance pattern of CD -50°776 is discussed and compared to other CEMP-s stars already reported in the literature to show that this star is a quite exceptional object among the CEMP stars, particularly due to its low nitrogen abundance. Explaining this pattern may require to improve the nucleosynthesis models, and the evolutionary models of mass transfer and binary interaction.

  14. Dwarf carbon stars are likely metal-poor binaries and unlikely hosts to carbon planets

    NASA Astrophysics Data System (ADS)

    Whitehouse, Lewis J.; Farihi, J.; Green, P. J.; Wilson, T. G.; Subasavage, J. P.

    2018-06-01

    Dwarf carbon stars make up the largest fraction of carbon stars in the Galaxy with ≈1200 candidates known to date primarily from the Sloan Digital Sky Survey. They either possess primordial carbon-enhancements, or are polluted by mass transfer from an evolved companion such that C/O is enhanced beyond unity. To directly test the binary hypothesis, a radial velocity monitoring survey has been carried out on 28 dwarf carbon stars, resulting in the detection of variations in 21 targets. Using Monte Carlo simulations,this detection fraction is found to be consistent with a 100% binary population and orbital periods on the order of hundreds of days. This result supports the post-mass transfer nature of dwarf carbon stars, and implies they are not likely hosts to carbon planets.

  15. Binary statistics among population II stars

    NASA Astrophysics Data System (ADS)

    Zinnecker, H.; Köhler, R.; Jahreiß, H.

    2004-08-01

    Population II stars are old, metal-poor, Galactic halo stars with high proper motion. We have carried out a visual binary survey of 164 halo stars in the solar neighborhood (median distance 100 pc), using infrared speckle interferometry, adaptive optics, and wide field direct imaging. The sample is based on the lists of Population II stars of Carney et al. (1994) and Norris (1986), with reliable distances from HIPPARCOS measurements. At face value, we found 33 binaries, 6 triples, and 1 quadruple system. When we limit ourselves to K-band flux ratios larger than 0.1 (to avoid background contamination), the numbers drop to 9 binaries and 1 triple, corresponding to a binary frequency of 6 - 7 % above our angular resolution limit of about 0.1 arcsec. If we count all systems with K-band flux ratios greater than 0.01, we obtain 15 more binaries and 3 more triples, corresponding to a binary frequency for projected separations in excess of 10 AU of around 20 %. This is to be compared with the frequency of spectroscopic binaries (up to a period of 3000 days) of Population II stars of about 15 % (Latham et al. 2002). We also determined a semi-major axis distribution for our visual Population II binary and triple systems, which appears to be remarkably different from that of Population I stars. Second epoch-observations must help confirm the reality of our results.

  16. Chemical Composition of Two Bright, Extremely Metal-poor Stars from the SDSS MARVELS Pre-survey

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Avrajit; Sivarani, Thirupathi; Susmitha, Antony; Beers, Timothy C.; Giridhar, Sunetra; Surya, Arun; Masseron, Thomas

    2018-06-01

    SDSS J082625.70+612515.10 (V = 11.4 [Fe/H] = ‑3.1) and SDSS J134144.60+474128.90 (V = 12.4 [Fe/H] = ‑3.2) were observed with the SDSS 2.5m telescope as part of the SDSS MARVELS spectroscopic pre-survey and identified as extremely metal-poor (EMP; [Fe/H] < ‑3.0) stars during the high-resolution follow-up using the Hanle Echelle Spectrograph (HESP) on the 2.0-m Himalayan Chandra Telescope. In this paper, the first science results using HESP, we present a detailed analysis of their chemical abundances. Both stars exhibit under-abundances in their neutron capture elements, while one of them (SDSS J134144.60+474128.90) is clearly enhanced in carbon. Lithium was also detected in this star at a level of about A(Li) = 1.95. The spectra were obtained over a span of 6–24 months, and indicate that both stars could be members of binary systems. We compare the elemental abundances derived for these two stars along with other carbon-enhanced metal-poor (CEMP) and EMP stars, in order to understand the nature of their parent supernovae. We find that CEMP-no stars and EMP-dwarfs show a very similar trend in their lithium abundances at various metallicities. We also find indications of CEMP-no stars having larger abundances of Cr and Co at given metallicities compared to EMP stars.

  17. The close binary frequency of Wolf-Rayet stars as a function of metallicity in M31 and M33

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neugent, Kathryn F.; Massey, Philip, E-mail: kneugent@lowell.edu, E-mail: phil.massey@lowell.edu

    Massive star evolutionary models generally predict the correct ratio of WC-type and WN-type Wolf-Rayet stars at low metallicities, but underestimate the ratio at higher (solar and above) metallicities. One possible explanation for this failure is perhaps single-star models are not sufficient and Roche-lobe overflow in close binaries is necessary to produce the 'extra' WC stars at higher metallicities. However, this would require the frequency of close massive binaries to be metallicity dependent. Here we test this hypothesis by searching for close Wolf-Rayet binaries in the high metallicity environments of M31 and the center of M33 as well as in themore » lower metallicity environments of the middle and outer regions of M33. After identifying ∼100 Wolf-Rayet binaries based on radial velocity variations, we conclude that the close binary frequency of Wolf-Rayets is not metallicity dependent and thus other factors must be responsible for the overabundance of WC stars at high metallicities. However, our initial identifications and observations of these close binaries have already been put to good use as we are currently observing additional epochs for eventual orbit and mass determinations.« less

  18. The Magellan PFS Planet Search Program: Radial Velocity and Stellar Abundance Analyses of the 360 au, Metal-poor Binary “Twins” HD 133131A & B

    NASA Astrophysics Data System (ADS)

    Teske, Johanna K.; Shectman, Stephen A.; Vogt, Steve S.; Díaz, Matías; Butler, R. Paul; Crane, Jeffrey D.; Thompson, Ian B.; Arriagada, Pamela

    2016-12-01

    We present a new precision radial velocity (RV) data set that reveals multiple planets orbiting the stars in the ˜360 au, G2+G2 “twin” binary HD 133131AB. Our six years of high-resolution echelle observations from MIKE and five years from the Planet Finder Spectrograph (PFS) on the Magellan telescopes indicate the presence of two eccentric planets around HD 133131A with minimum masses of 1.43 ± 0.03 and 0.63 ± 0.15 {{ M }}{{J}} at 1.44 ± 0.005 and 4.79 ± 0.92 au, respectively. Additional PFS observations of HD 133131B spanning five years indicate the presence of one eccentric planet of minimum mass 2.50 ± 0.05 {{ M }}{{J}} at 6.40 ± 0.59 au, making it one of the longest-period planets detected with RV to date. These planets are the first to be reported primarily based on data taken with the PFS on Magellan, demonstrating the instrument’s precision and the advantage of long-baseline RV observations. We perform a differential analysis between the Sun and each star, and between the stars themselves, to derive stellar parameters and measure a suite of 21 abundances across a wide range of condensation temperatures. The host stars are old (likely ˜9.5 Gyr) and metal-poor ([Fe/H] ˜ -0.30), and we detect a ˜0.03 dex depletion in refractory elements in HD 133131A versus B (with standard errors ˜0.017). This detection and analysis adds to a small but growing sample of binary “twin” exoplanet host stars with precise abundances measured, and represents the most metal-poor and likely oldest in that sample. Overall, the planets around HD 133131A and B fall in an unexpected regime in planet mass-host star metallicity space and will serve as an important benchmark for the study of long-period giant planets. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  19. HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS IN THE LEAST EVOLVED GALAXIES: BOÖTES II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Alexander P.; Frebel, Anna; Simon, Joshua D.

    2016-01-20

    We present high-resolution Magellan/MIKE spectra of the four brightest confirmed red giant stars in the ultra-faint dwarf galaxy Boötes II (Boo II). These stars all inhabit the metal-poor tail of the Boo II metallicity distribution function. The chemical abundance pattern of all detectable elements in these stars is consistent with that of the Galactic halo. However, all four stars have undetectable amounts of neutron-capture elements Sr and Ba, with upper limits comparable to the lowest ever detected in the halo or in other dwarf galaxies. One star exhibits significant radial velocity variations over time, suggesting it to be in a binary system. Itsmore » variable velocity has likely increased past determinations of the Boo II velocity dispersion. Our four stars span a limited metallicity range, but their enhanced α-abundances and low neutron-capture abundances are consistent with the interpretation that Boo II has been enriched by very few generations of stars. The chemical abundance pattern in Boo II confirms the emerging trend that the faintest dwarf galaxies have neutron-capture abundances distinct from the halo, suggesting the dominant source of neutron-capture elements in halo stars may be different than in ultra-faint dwarfs.« less

  20. The Physical Nature of Subdwarf A Stars: White Dwarf Impostors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Warren R.; Kilic, Mukremin; Gianninas, A., E-mail: wbrown@cfa.harvard.edu, E-mail: kilic@ou.edu, E-mail: alexg@nhn.ou.edu

    We address the physical nature of subdwarf A-type (sdA) stars and their possible link to extremely low mass (ELM) white dwarfs (WDs). The two classes of objects are confused in low-resolution spectroscopy. However, colors and proper motions indicate that sdA stars are cooler and more luminous, and thus larger in radius, than published ELM WDs. We demonstrate that surface gravities derived from pure hydrogen models suffer a systematic ∼1 dex error for sdA stars, likely explained by metal line blanketing below 9000 K. A detailed study of five eclipsing binaries with radial velocity orbital solutions and infrared excess establishes thatmore » these sdA stars are metal-poor ≃1.2 M {sub ⊙} main sequence stars with ≃0.8 M {sub ⊙} companions. While WDs must exist at sdA temperatures, only ∼1% of a magnitude-limited sdA sample should be ELM WDs. We conclude that the majority of sdA stars are metal-poor A–F type stars in the halo, and that recently discovered pulsating ELM WD-like stars with no obvious radial velocity variations may be SX Phe variables, not pulsating WDs.« less

  1. The Physical Nature of Subdwarf A Stars: White Dwarf Impostors

    NASA Astrophysics Data System (ADS)

    Brown, Warren R.; Kilic, Mukremin; Gianninas, A.

    2017-04-01

    We address the physical nature of subdwarf A-type (sdA) stars and their possible link to extremely low mass (ELM) white dwarfs (WDs). The two classes of objects are confused in low-resolution spectroscopy. However, colors and proper motions indicate that sdA stars are cooler and more luminous, and thus larger in radius, than published ELM WDs. We demonstrate that surface gravities derived from pure hydrogen models suffer a systematic ˜1 dex error for sdA stars, likely explained by metal line blanketing below 9000 K. A detailed study of five eclipsing binaries with radial velocity orbital solutions and infrared excess establishes that these sdA stars are metal-poor ≃1.2 M ⊙ main sequence stars with ≃0.8 M ⊙ companions. While WDs must exist at sdA temperatures, only ˜1% of a magnitude-limited sdA sample should be ELM WDs. We conclude that the majority of sdA stars are metal-poor A-F type stars in the halo, and that recently discovered pulsating ELM WD-like stars with no obvious radial velocity variations may be SX Phe variables, not pulsating WDs.

  2. Addressing the [O III] / Hβ offset in metal poor star forming galaxies found in the RESOLVE survey and ECO catalog

    NASA Astrophysics Data System (ADS)

    Richardson, Chris T.; Kannappan, Sheila; Moffett, Amanda J.; RESOLVE survey team

    2018-06-01

    Metal poor star forming galaxies sit on the far left wing of the BPT diagram just below traditional demarcation lines. The basic approach to reproducing their emission lines by coupling photoionization models to stellar population synthesis models underestimates the observed [O III] / Hβ ratio by a factor 0.3-0.5 dex. We classified galaxies as metal poor in the REsolved Spectroscopy of a Local VolumE (RESOLVE) survey and the Environmental COntext (ECO) catalog by using the IZI code based off of Bayesian inference. We used a variety of stellar population synthesis codes to generate SEDs covering a range of starburst ages and metallicities including both secular and binary stellar evolution. Here, we show that multiple SPS codes can produce SEDs hard enough to reduce the offset assuming that simple, and perhaps unjustified, nebular conditions hold. Adopting more realistic nebular conditions shows that, despite the recent emphasis placed on binary evolution to fit high O III ratios, none of our SEDs can reduce the offset. We propose several new solutions including using ensembles of nebular clouds and improved microphysics to address this issue. This work is supported by National Science Foundation awards OCI-1053575, though XSEDE award TG-AST140040, and NSF awards AST-0955368 and CISE/ACI-1156614.

  3. Innocent Bystanders and Smoking Guns: Dwarf Carbon Stars

    NASA Astrophysics Data System (ADS)

    Green, Paul J.

    2014-01-01

    As far as we know, most carbon throughout the Universe is created and dispersed by AGB stars. So it was at first surprising to find that the carbon stars most prevalent in the Galaxy are in fact dwarfs. We suspect that dC stars are most likely innocent bystanders in post-mass transfer binaries, and may be predominantly metal-poor. Among 1200 C stars found in the SDSS (Green 2013), we confirm 724 dCs, of which a dozen are DA/dC stars in composite spectrum binaries, quadrupling the total sample of these "smoking guns" for AGB binary mass transfer. The dCs likely span absolute magnitudes M_i from about 6.5 to 10.5. G-type dC stars with weak CN and relatively blue colors are probably the most massive dCs still cool enough to show C_2 bands. Eleven very red C stars with strong red CN bands appear to be N-type AGB stars at large Galactocentric distances, one likely a new discovery in the dIrr galaxy Le A. Two such stars within 30arcmin of each other may trace a previously unidentified dwarf galaxy or tidal stream at ~40 kpc. We describe follow-up projects to study the spatial, kinematic, and binary properties of these C-enriched dwarfs.

  4. s-Process in low metallicity Pb stars.

    NASA Astrophysics Data System (ADS)

    Bisterzo, S.; Gallino, R.; Straniero, O.; Ivans, I. I.; Käppeler, F.; Aoki, W.

    We consider a sample of very metal-poor, C-rich, s-rich and lead-rich stars observed at high-resolution spectroscopy, and some recent spectroscopic data of C+s-rich stars obtained at moderate resolution. The spectroscopic data of these stars are interpreted with AGB theoretical models of different 13C-pocket efficiencies, initial mass and initial r-enrichment. When lead is not measured we give our theoretical prediction. The observed stars are not on the AGB phase, but are main sequence or giant stars. They acquired the C and s enrichments by mass transfer in a close binary system from the more massive companion while on the AGB (now a white dwarf). A considerable fraction of the stars show both high s and r enrichments. To explain the s+r enriched stars we assume a parental cloud already enriched in r-elements. The measurement of Nb is an indicator of an extrinsic AGB in a binary system. The intrinsic indicator [hs/ls] constrains the initial mass, while [Pb/hs] and [Pb/ls] are a measure of the s-process efficiency. The apparent discrepancies of C and N abundances may be reconciled by assuming a strong cool bottom process occurring during the AGB. An important primary production of light elements, from Ne to Si, increasing with the star mass, is predicted for AGB models at very low metallicity, induced by n capture on primary 22Ne and its progenies.

  5. Milky Way globular cluster metallicity and low-mass X-ray binaries: the red giant influence

    NASA Astrophysics Data System (ADS)

    Vulic, N.; Barmby, P.; Gallagher, S. C.

    2018-02-01

    Galactic and extragalactic studies have shown that metal-rich globular clusters (GCs) are approximately three times more likely to host bright low-mass X-ray binaries (LMXBs) than metal-poor GCs. There is no satisfactory explanation for this metallicity effect. We tested the hypothesis that the number density of red giant branch (RGB) stars is larger in metal-rich GCs, and thus potentially the cause of the metallicity effect. Using Hubble Space Telescope photometry for 109 unique Milky Way GCs, we investigated whether RGB star density was correlated with GC metallicity. Isochrone fitting was used to calculate the number of RGB stars, which were normalized by the GC mass and fraction of observed GC luminosity, and determined density using the volume at the half-light radius (rh). The RGB star number density was weakly correlated with metallicity [Fe/H], giving Spearman and Kendall Rank test p-values of 0.000 16 and 0.000 21 and coefficients rs = 0.35 and τ = 0.24, respectively. This correlation may be biased by a possible dependence of rh on [Fe/H], although studies have shown that rh is correlated with Galactocentric distance and independent of [Fe/H]. The dynamical origin of the rh-metallicity correlation (tidal stripping) suggests that metal-rich GCs may have had more active dynamical histories, which would promote LMXB formation. No correlation between the RGB star number density and metallicity was found when using only the GCs that hosted quiescent LMXBs. A complete census of quiescent LMXBs in our Galaxy is needed to further probe the metallicity effect, which will be possible with the upcoming launch of eROSITA.

  6. METAL-POOR STARS OBSERVED WITH THE MAGELLAN TELESCOPE. I. CONSTRAINTS ON PROGENITOR MASS AND METALLICITY OF AGB STARS UNDERGOING s-PROCESS NUCLEOSYNTHESIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Placco, Vinicius M.; Rossi, Silvia; Frebel, Anna

    2013-06-20

    We present a comprehensive abundance analysis of two newly discovered carbon-enhanced metal-poor (CEMP) stars. HE 2138-3336 is a s-process-rich star with [Fe/H] = -2.79, and has the highest [Pb/Fe] abundance ratio measured thus far, if non-local thermodynamic equilibrium corrections are included ([Pb/Fe] = +3.84). HE 2258-6358, with [Fe/H] = -2.67, exhibits enrichments in both s- and r-process elements. These stars were selected from a sample of candidate metal-poor stars from the Hamburg/ESO objective-prism survey, and followed up with medium-resolution (R {approx} 2000) spectroscopy with GEMINI/GMOS. We report here on derived abundances (or limits) for a total of 34 elements inmore » each star, based on high-resolution (R {approx} 30, 000) spectroscopy obtained with Magellan-Clay/MIKE. Our results are compared to predictions from new theoretical asymptotic giant branch (AGB) nucleosynthesis models of 1.3 M{sub Sun} with [Fe/H] = -2.5 and -2.8, as well as to a set of AGB models of 1.0 to 6.0 M{sub Sun} at [Fe/H] = -2.3. The agreement with the model predictions suggests that the neutron-capture material in HE 2138-3336 originated from mass transfer from a binary companion star that previously went through the AGB phase, whereas for HE 2258-6358, an additional process has to be taken into account to explain its abundance pattern. We find that a narrow range of progenitor masses (1.0 {<=} M(M{sub Sun }) {<=} 1.3) and metallicities (-2.8 {<=} [Fe/H] {<=}-2.5) yield the best agreement with our observed elemental abundance patterns.« less

  7. New spectroscopic binary companions of giant stars and updated metallicity distribution for binary systems

    NASA Astrophysics Data System (ADS)

    Bluhm, P.; Jones, M. I.; Vanzi, L.; Soto, M. G.; Vos, J.; Wittenmyer, R. A.; Drass, H.; Jenkins, J. S.; Olivares, F.; Mennickent, R. E.; Vučković, M.; Rojo, P.; Melo, C. H. F.

    2016-10-01

    We report the discovery of 24 spectroscopic binary companions to giant stars. We fully constrain the orbital solution for 6 of these systems. We cannot unambiguously derive the orbital elements for the remaining stars because the phase coverage is incomplete. Of these stars, 6 present radial velocity trends that are compatible with long-period brown dwarf companions. The orbital solutions of the 24 binary systems indicate that these giant binary systems have a wide range in orbital periods, eccentricities, and companion masses. For the binaries with restricted orbital solutions, we find a range of orbital periods of between ~97-1600 days and eccentricities of between ~0.1-0.4. In addition, we studied the metallicity distribution of single and binary giant stars. We computed the metallicity of a total of 395 evolved stars, 59 of wich are in binary systems. We find a flat distribution for these binary stars and therefore conclude that stellar binary systems, and potentially brown dwarfs, have a different formation mechanism than planets. This result is confirmed by recent works showing that extrasolar planets orbiting giants are more frequent around metal-rich stars. Finally, we investigate the eccentricity as a function of the orbital period. We analyzed a total of 130 spectroscopic binaries, including those presented here and systems from the literature. We find that most of the binary stars with periods ≲30 days have circular orbits, while at longer orbital periods we observe a wide spread in their eccentricities. Based on observations collected at La Silla - Paranal Observatory under programs IDs IDs 085.C-0557, 087.C.0476, 089.C-0524, 090.C-0345, 096.A-9020 and through the Chilean Telescope Time under programs IDs CN2012A-73, CN2012B-47, CN2013A-111, CN2013B-51, CN2014A-52 and CN2015A-48.

  8. A spectroscopic binary in the Hercules dwarf spheroidal galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Andreas; Hansen, Terese; Feltzing, Sofia

    2014-01-01

    We present the radial velocity curve of a single-lined spectroscopic binary in the faint Hercules dwarf spheroidal (dSph) galaxy, based on 34 individual spectra covering more than 2 yr of observations. This is the first time that orbital elements could be derived for a binary in a dSph. The system consists of a metal-poor red giant and a low-mass companion, possibly a white dwarf, with a 135 day period in a moderately eccentric (e = 0.18) orbit. Its period and eccentricity are fully consistent with metal-poor binaries in the Galactic halo, while the projected semimajor axis is small, at a{submore » p} sin i = 38 R {sub ☉}. In fact, a very close orbit could inhibit the production of heavier elements through s-process nucleosynthesis, leading to the very low abundances of neutron-capture elements that are found in this star. We discuss the further implications for the chemical enrichment history of the Hercules dSph, but find no compelling binary scenario that could reasonably explain the full, peculiar abundance pattern of the Hercules dSph galaxy.« less

  9. The Mass-Luminosity-Metallicity Relation for M Dwarfs

    NASA Astrophysics Data System (ADS)

    Mann, Andrew; Dupuy, Trent; Rizzuto, Aaron; Kraus, Adam; Gaidos, Eric; Ansdell, Megan

    2018-01-01

    One of the most powerful tools for stellar characterization is the mass-luminosity relation (MLR). In addition to its use for characterizing exoplanet hosts, the MLR for late-type stars is critical to measuring the stellar IMF, testing isochrones, and studies of Galactic archeology. However, existing MLRs do not fully account for metallicity effects, do not extend down to the substellar boundary, and are not precise enough to take full advantage of the impending arrival of Gaia parallaxes for millions of late-type stars. For two years we monitored 72 nearby M-dwarf astrometric binaries using adaptive optics and non-redundant aperture masking, with the goal of better constraining the MLR. We combined our astrometry with measurements from the literature and Keck archive to measure orbits, masses, and flux ratios of all binaries in JHK bands. In parallel, we obtained moderate-resolution NIR spectra of all binaries, from which we determine empirical metallicities for each system. We derived an updated MLR-metallicity relation that spans most of the M dwarf sequence (K5 to M7) and the metallicity range expected in the solar neighborhood (-0.5 < [M/H] +0.4). With this we explored the role metallicity plays in the MLR. With our revised relation and Gaia-precision parallaxes, it will soon be possible to calculate empirical masses of nearby M dwarfs to better than 2%, and future studies will enable us to extend our relation to more metal-poor stars and explore the role of youth and evolution of the MLR for M dwarfs.

  10. MASS OUTFLOW AND CHROMOSPHERIC ACTIVITY OF RED GIANT STARS IN GLOBULAR CLUSTERS. II. M13 AND M92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meszaros, Sz.; Dupree, A. K.; Szalai, T.

    High-resolution spectra of 123 red giant stars in the globular cluster M13 and 64 red giant stars in M92 were obtained with Hectochelle at the MMT telescope. Emission and line asymmetries in H{alpha} and Ca II K are identified, characterizing motions in the extended atmospheres and seeking differences attributable to metallicity in these clusters and M15. On the red giant branch, emission in H{alpha} generally appears in stars with T {sub eff} {approx}< 4500 K and log L/L {sub sun}{approx}> 2.75. Fainter stars showing emission are asymptotic giant branch (AGB) stars or perhaps binary stars. The line-bisector for H{alpha} revealsmore » the onset of chromospheric expansion in stars more luminous than log (L/L {sub sun}) {approx} 2.5 in all clusters, and this outflow velocity increases with stellar luminosity. However, the coolest giants in the metal-rich M13 show greatly reduced outflow in H{alpha} most probably due to decreased T {sub eff} and changing atmospheric structure. The Ca II K{sub 3} outflow velocities are larger than shown by H{alpha} at the same luminosity and signal accelerating outflows in the chromospheres. Stars clearly on the AGB show faster chromospheric outflows in H{alpha} than RGB objects. While the H{alpha} velocities on the RGB are similar for all metallicities, the AGB stars in the metal-poor M15 and M92 have higher outflow velocities than in the metal-rich M13. Comparison of these chromospheric line profiles in the paired metal-poor clusters, M15 and M92, shows remarkable similarities in the presence of emission and dynamical signatures, and does not reveal a source of the 'second-parameter' effect.« less

  11. The sdA problem - I. Physical properties

    NASA Astrophysics Data System (ADS)

    Pelisoli, Ingrid; Kepler, S. O.; Koester, D.

    2018-04-01

    The so-called sdA stars are defined by having H-rich spectra and surface gravities similar to hot subdwarf stars, but effective temperature below the zero-age horizontal branch. Their evolutionary history is an enigma: their surface gravity is too high for main-sequence stars, but too low for single evolution white dwarfs. They are most likely byproducts of binary evolution, including blue-stragglers, extremely-low mass white dwarf stars (ELMs) and their precursors (pre-ELMs). A small number of ELMs with similar properties to sdAs is known. Other possibilities include metal-poor A/F dwarfs, second generation stars, or even stars accreted from dwarf galaxies. In this work, we analyse colours, proper motions, and spacial velocities of a sample of sdAs from the Sloan Digital Sky Survey to assess their nature and evolutionary origin. We define a probability of belonging to the main sequence and a probability of being a (pre-)ELM based on these properties. We find that 7 per cent of the sdAs are more likely to be (pre-)ELMs than main-sequence stars. However, the spacial velocity distribution suggests that over 35 per cent of them cannot be explained as single metal-poor A/F stars.

  12. Stars and gas in the most metal-deficient galaxies in the Universe.

    NASA Astrophysics Data System (ADS)

    Wofford, Aida

    2017-08-01

    Improving our understanding of star formation at low metallicity is of large relevance for a variety of fields in astrophysics since it relates to multiple topical questions. These range from understanding the properties of galaxies that contributed to cosmic reionization to the evolution of metal poor massive stars that give rise to the formation of heavy binary black holes. Crucial are observational constraints for the theoretical predictions, which can be obtained from rest-frame UV spectra of local star-forming dwarf galaxies with ionized-gas oxygen abundances at the low-metallicity threshold of the nearby Universe.While samples of UV spectra exist for galaxies in the metallicity range above 1/20 solar, only two useful spectra covering from H I Lyman-alpha (LyA, 1216 Ang) to C III] 1909 are available at lower metallicites. We propose COS G140L observations of eight extremely-metal poor galaxies (XMPGs) with He II emission that will: i) provide three more spectra with 12+log(O/H)=<7.4 (suitable targets at such low Z are hard to find), and ii) leverage existing WFC3 and Chandra images which are useful for discrimintating among different sources of ionization. Combining this dataset with existing spectra at similar and higher metallicity will allow us to address three questions: 1) How does metallicity determine galaxy properties?, 2) Is narrow He II emission a good tracer of peculiar massive stars?, and 3) Can we probe star-formation at high redshift with UV lines other than LyA? Our study will provide valuable clues for interpreting rest-frame UV spectra of high-z galaxies that will challenge our understanding of star formation at low Z.

  13. Massive stars in advanced evolutionary stages, and the progenitor of GW150914

    NASA Astrophysics Data System (ADS)

    Hamann, Wolf-Rainer; Oskinova, Lidia; Todt, Helge; Sander, Andreas; Hainich, Rainer; Shenar, Tomer; Ramachandran, Varsha

    2017-11-01

    The recent discovery of a gravitational wave from the merging of two black holes of about 30 solar masses each challenges our incomplete understanding of massive stars and their evolution. Critical ingredients comprise mass-loss, rotation, magnetic fields, internal mixing, and mass transfer in close binary systems. The imperfect knowledge of these factors implies large uncertainties for models of stellar populations and their feedback. In this contribution we summarize our empirical studies of Wolf-Rayet populations at different metallicities by means of modern non-LTE stellar atmosphere models, and confront these results with the predictions of stellar evolution models. At the metallicity of our Galaxy, stellar winds are probably too strong to leave remnant masses as high as ~30 M⊙, but given the still poor agreement between evolutionary tracks and observation even this conclusion is debatable. At the low metallicity of the Small Magellanic Cloud, all WN stars which are (at least now) single are consistent with evolving quasi-homogeneously. O and B-type stars, in contrast, seem to comply with standard evolutionary models without strong internal mixing. Close binaries which avoided early merging could evolve quasi-homogeneously and lead to close compact remnants of relatively high masses that merge within a Hubble time.

  14. A possible formation channel for blue hook stars in globular cluster - II. Effects of metallicity, mass ratio, tidal enhancement efficiency and helium abundance

    NASA Astrophysics Data System (ADS)

    Lei, Zhenxin; Zhao, Gang; Zeng, Aihua; Shen, Lihua; Lan, Zhongjian; Jiang, Dengkai; Han, Zhanwen

    2016-12-01

    Employing tidally enhanced stellar wind, we studied in binaries the effects of metallicity, mass ratio of primary to secondary, tidal enhancement efficiency and helium abundance on the formation of blue hook (BHk) stars in globular clusters (GCs). A total of 28 sets of binary models combined with different input parameters are studied. For each set of binary model, we presented a range of initial orbital periods that is needed to produce BHk stars in binaries. All the binary models could produce BHk stars within different range of initial orbital periods. We also compared our results with the observation in the Teff-logg diagram of GC NGC 2808 and ω Cen. Most of the BHk stars in these two GCs locate well in the region predicted by our theoretical models, especially when C/N-enhanced model atmospheres are considered. We found that mass ratio of primary to secondary and tidal enhancement efficiency have little effects on the formation of BHk stars in binaries, while metallicity and helium abundance would play important roles, especially for helium abundance. Specifically, with helium abundance increasing in binary models, the space range of initial orbital periods needed to produce BHk stars becomes obviously wider, regardless of other input parameters adopted. Our results were discussed with recent observations and other theoretical models.

  15. Wide binaries in Tycho-Gaia II: metallicities, abundances and prospects for chemical tagging

    NASA Astrophysics Data System (ADS)

    Andrews, Jeff J.; Chanamé, Julio; Agüeros, Marcel A.

    2018-02-01

    From our recent catalogue based on the first Gaia data release (TGAS), we select wide binaries in which both stars have been observed by the Radial Velocity Experiment (RAVE) or the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). Using RAVE and LAMOST metallicities and RAVE Mg, Al, Si, Ti and Fe abundances, we find that the differences in the metallicities and elemental abundances of components of wide binaries are consistent with being due to observational uncertainties, in agreement with previous results for smaller and more restricted samples. The metallicity and elemental abundance consistency between wide binary components presented in this work confirms their common origin and bolsters the status of wide binaries as 'mini-open clusters'. Furthermore, this is evident that wide binaries are effectively co-eval and co-chemical, supporting their use for, e.g. constraining age-activity-rotation relations, the initial-final mass relation for white dwarfs and M-dwarf metallicity indicators. Additionally, we demonstrate that the common proper motion, common parallax pairs in TGAS with the most extreme separations (s ≳ 0.1 pc) typically have inconsistent metallicities, radial velocities or both and are therefore likely to be predominantly comprised of random alignments of unassociated stars with similar astrometry, in agreement with our previous results. Finally, we propose that wide binaries form an ideal data set with which we can test chemical tagging as a method to identify stars of common origin, particularly because the stars in wide binaries span a wide range of metallicities, much wider than that spanned by nearby open clusters.

  16. OV Bootis: Forty Nights Of World-Wide Photometry

    NASA Astrophysics Data System (ADS)

    Patterson, Joseph; de Miguel, Enrique; Barret, Douglas; Brincat, Stephen; Boardman, James, Jr.; Buczynski, Denis; Campbell, Tut; Cejudo, David; Cook, Lew; Cook, Michael J.; Collins, Donald; Cooney, Walt; Dubois, Franky; Dvorak, Shawn; Halpern, Jules P.; Kroes, Anthony J.; Lemay, Damien; Licchelli, Domenico; Mankel, Dylan; Marshall, Matt; Novak, Rudolf; Oksanen, Arto; Roberts, George; Seargeant, Jim; Sears, Huei; Silcox, Austin; Slauson, Douglas; Stone, Geoff; Thorstensen, J. R.; Ulowetz, Joe; Vanmunster, Tonny; Wallgren, John; Wood, Matt

    2017-06-01

    Among the 1000 known cataclysmic variables, only one appears to belong to the "Galactic halo" - the Population II stars. We report round-the-world photometry of this star (OV Boo) during March-April 2017, when it staged its first certified dwarf-nova outburst. The star is remarkable for its short binary period (66 minutes), high proper motion, metal-poor composition, substellar secondary, sharp white-dwarf eclipses, and nonradial pulsations. Something for everybody...... and it even had the good manners to erupt in northern springtime, when it transits near local midnight. Move over, SS Cyg and WZ Sge; there's a new celebrity in town!

  17. Emission-line diagnostics of nearby H II regions including interacting binary populations

    NASA Astrophysics Data System (ADS)

    Xiao, Lin; Stanway, Elizabeth R.; Eldridge, J. J.

    2018-06-01

    We present numerical models of the nebular emission from H II regions around young stellar populations over a range of compositions and ages. The synthetic stellar populations include both single stars and interacting binary stars. We compare these models to the observed emission lines of 254 H II regions of 13 nearby spiral galaxies and 21 dwarf galaxies drawn from archival data. The models are created using the combination of the BPASS (Binary Population and Spectral Synthesis) code with the photoionization code CLOUDY to study the differences caused by the inclusion of interacting binary stars in the stellar population. We obtain agreement with the observed emission line ratios from the nearby star-forming regions and discuss the effect of binary-star evolution pathways on the nebular ionization of H II regions. We find that at population ages above 10 Myr, single-star models rapidly decrease in flux and ionization strength, while binary-star models still produce strong flux and high [O III]/H β ratios. Our models can reproduce the metallicity of H II regions from spiral galaxies, but we find higher metallicities than previously estimated for the H II regions from dwarf galaxies. Comparing the equivalent width of H β emission between models and observations, we find that accounting for ionizing photon leakage can affect age estimates for H II regions. When it is included, the typical age derived for H II regions is 5 Myr from single-star models, and up to 10 Myr with binary-star models. This is due to the existence of binary-star evolution pathways, which produce more hot Wolf-Rayet and helium stars at older ages. For future reference, we calculate new BPASS binary maximal starburst lines as a function of metallicity, and for the total model population, and present these in Appendix A.

  18. Evidences of extragalactic origin and planet engulfment in the metal-poor twin pair HD 134439/HD 134440

    NASA Astrophysics Data System (ADS)

    Reggiani, Henrique; Meléndez, Jorge

    2018-04-01

    Recent studies of chemical abundances in metal-poor halo stars show the existence of different populations, which is important for studies of Galaxy formation and evolution. Here, we revisit the twin pair of chemically anomalous stars HD 134439 and HD 134440, using high resolution (R ˜ 72 000) and high S/N ratio (S/N ˜ 250) HDS/Subaru spectra. We compare them to the well-studied halo star HD 103095, using the line-by-line differential technique to estimate precise stellar parameters and LTE chemical abundances. We present the abundances of C, O, Na, Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Sr, Y, Ba, La, Ce, Nd, and Sm. We compare our results to the precise abundance patterns of Nissen & Schuster (2010) and data from dwarf Spheroidal galaxies (dSphs). We show that the abundance pattern of these stars appears to be closely linked to that of dSphs with [α/Fe] knee below [Fe/H] < -1.5. We also find a systematic difference of 0.06 ± 0.01 dex between the abundances of these twin binary stars, which could be explained by the engulfment of a planet, thus suggesting that planet formation is possible at low metallicities ([Fe/H] = -1.4).

  19. Evolution and nucleosynthesis of extremely metal-poor and metal-free low- and intermediate-mass stars. II. s-process nucleosynthesis during the core He flash

    NASA Astrophysics Data System (ADS)

    Campbell, S. W.; Lugaro, M.; Karakas, A. I.

    2010-11-01

    Context. Models of primordial and hyper-metal-poor stars that have masses similar to the Sun are known to experience an ingestion of protons into the hot core during the core helium flash phase at the end of their red giant branch evolution. This produces a concurrent secondary flash powered by hydrogen burning that gives rise to further nucleosynthesis in the core. Aims: We aim to model the nucleosynthesis occurring during the proton ingestion event to ascertain if any significant neutron-capture nucleosynthesis occurs. Methods: We perform post-process nucleosynthesis calculations on a one-dimensional stellar evolution calculation of a star with mass 1 M_⊙ and a metallicity of [Fe/H] = -6.5 that suffers a proton ingestion episode. Our network includes 320 nuclear species and 2366 reactions and treats mixing and burning simultaneously. Results: We find that the mixing and burning of protons into the hot convective core leads to the production of 13C, which then burns via the 13C(α, n)16O reaction, releasing a large number of free neutrons. During the first two years of neutron production the neutron poison 14N abundance is low, allowing the prodigious production of heavy elements such as strontium, barium, and lead via slow neutron captures (the s process). These nucleosynthetic products are later carried to the stellar surface and ejected via stellar winds. We compare our results with observations of the hyper-metal-poor halo star HE 1327-2326, which shows a strong Sr overabundance. Conclusions: Our model provides the possibility of self-consistently explaining the Sr overabundance in HE 1327-2326 together with its C, N, and O overabundances (all within a factor of ˜ ~4) if the material were heavily diluted, for example, via mass transfer in a wide binary system. The model produces at least 18 times too much Ba than observed, but this may be within the large modelling uncertainties. In this scenario, binary systems of low mass must have formed in the early Universe. If this is true, it puts constraints on the primordial initial mass function.

  20. STELLAR LOCI. I. METALLICITY DEPENDENCE AND INTRINSIC WIDTHS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Haibo; Liu, Xiaowei; Xiang, Maosheng

    2015-02-01

    Stellar loci are widely used for selection of interesting outliers, reddening determinations, and calibrations. However, until now, the dependence of stellar loci on metallicity has not been fully explored, and their intrinsic widths are unclear. In this paper, by combining the spectroscopic and recalibrated imaging data of the Sloan Digital Sky Survey (SDSS) Stripe 82, we have built a large, clean sample of dwarf stars with accurate colors and well-determined metallicities to investigate the metallicity dependence and intrinsic widths of the SDSS stellar loci. Typically, 1 dex decrease in metallicity causes 0.20 and 0.02 mag decrease in colors u – g and g – rmore » and 0.02 and 0.02 mag increase in colors r – i and i – z, respectively. The variations are larger for metal-rich stars than for metal-poor ones, and larger for F/G/K stars than for A/M ones. Using the sample, we have performed two-dimensional polynomial fitting to the u – g, g – r, r – i, and i – z colors as a function of color g – i and metallicity [Fe/H]. The residuals, at the level of 0.029, 0.008, 0.008, and 0.011 mag for the u – g, g – r, r – i, and i – z colors, respectively, can be fully accounted for by the photometric errors and metallicity uncertainties, suggesting that the intrinsic widths of the loci are at maximum a few millimagnitudes. The residual distributions are asymmetric, revealing that a significant fraction of stars are binaries. In a companion paper, we will present an unbiased estimate of the binary fraction for field stars. Other potential applications of the metallicity-dependent stellar loci are briefly discussed.« less

  1. Seven new carbon-enhanced metal-poor RR Lyrae stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, Catherine R.; Stancliffe, Richard J.; Kuehn, Charles

    2014-05-20

    We report estimated carbon-abundance ratios, [C/Fe], for seven newly discovered carbon-enhanced metal-poor (CEMP) RR Lyrae stars. These are well-studied RRab stars that had previously been selected as CEMP candidates based on low-resolution spectra. For this pilot study, we observed eight of these CEMP RR Lyrae candidates with the Wide Field Spectrograph on the ANU 2.3 m telescope. Prior to this study, only two CEMP RR Lyrae stars had been discovered: TY Gru and SDSS J1707+58. We compare our abundances to new theoretical models of the evolution of low-mass stars in binary systems. These simulations evolve the secondary stars, post accretionmore » from an asymptotic giant-branch (AGB) donor, all the way to the RR Lyrae stage. The abundances of CEMP RR Lyrae stars can be used as direct probes of the nature of the donor star, such as its mass, and the amount of material accreted onto the secondary. We find that the majority of the sample of CEMP RR Lyrae stars is consistent with AGB donor masses of around 1.5-2.0 M {sub ☉} and accretion masses of a few hundredths of a solar mass. Future high-resolution studies of these newly discovered CEMP RR Lyrae stars will help disentangle the effects of the proposed mixing processes that occur in such objects.« less

  2. How I Learned to Stop Worrying and Love Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Moe, Maxwell Cassady

    Relatively massive B-type stars with closely orbiting stellar companions can evolve to produce Type Ia supernovae, X-ray binaries, millisecond pulsars, mergers of neutron stars, gamma ray bursts, and sources of gravitational waves. However, the formation mechanism, intrinsic frequency, and evolutionary processes of B-type binaries are poorly understood. As of 2012, the binary statistics of massive stars had not been measured at low metallicities, extreme mass ratios, or intermediate orbital periods. This thesis utilizes large data sets of eclipsing binaries to measure the physical properties of B-type binaries in these previously unexplored portions of the parameter space. The updated binary statistics provide invaluable insight into the formation of massive stars and binaries as well as reliable initial conditions for population synthesis studies of binary star evolution. We first compare the properties of B-type eclipsing binaries in our Milky Way Galaxy and the nearby Magellanic Cloud Galaxies. We model the eclipsing binary light curves and perform detailed Monte Carlo simulations to recover the intrinsic properties and distributions of the close binary population. We find the frequency, period distribution, and mass-ratio distribution of close B-type binaries do not significantly depend on metallicity or environment. These results indicate the formation of massive binaries are relatively insensitive to their chemical abundances or immediate surroundings. Second, we search for low-mass eclipsing companions to massive B-type stars in the Large Magellanic Cloud Galaxy. In addition to finding such extreme mass-ratio binaries, we serendipitously discover a new class of eclipsing binaries. Each system comprises a massive B-type star that is fully formed and a nascent low-mass companion that is still contracting toward its normal phase of evolution. The large low-mass secondaries discernibly reflect much of the light they intercept from the hot B-type stars, thereby producing sinusoidal variations in perceived brightness as they orbit. These nascent eclipsing binaries are embedded in the hearts of star-forming emission nebulae, and therefore provide a unique snapshot into the formation and evolution of massive binaries and stellar nurseries. We next examine a large sample of B-type eclipsing binaries with intermediate orbital periods. To achieve such a task, we develop an automated pipeline to classify the eclipsing binaries, measure their physical properties from the observed light curves, and recover the intrinsic binary statistics by correcting for selection effects. We find the population of massive binaries at intermediate separations differ from those orbiting in close proximity. Close massive binaries favor small eccentricities and have correlated component masses, demonstrating they coevolved via competitive accretion during their formation in the circumbinary disk. Meanwhile, B-type binaries at slightly wider separations are born with large eccentricities and are weighted toward extreme mass ratios, indicating the components formed relatively independently and subsequently evolved to their current configurations via dynamical interactions. By using eclipsing binaries as accurate age indicators, we also reveal that the binary orbital eccentricities and the line-of-sight dust extinctions are anticorrelated with respect to time. These empirical relations provide robust constraints for tidal evolution in massive binaries and the evolution of the dust content in their surrounding environments. Finally, we compile observations of early-type binaries identified via spectroscopy, eclipses, long-baseline interferometry, adaptive optics, lucky imaging, high-contrast photometry, and common proper motion. We combine the samples from the various surveys and correct for their respective selection effects to determine a comprehensive nature of the intrinsic binary statistics of massive stars. We find the probability distributions of primary mass, secondary mass, orbital period, and orbital eccentricity are all interrelated. These updated multiplicity statistics imply a greater frequency of low-mass X-ray binaries, millisecond pulsars, and Type Ia supernovae than previously predicted.

  3. Giant Planet Candidates, Brown Dwarfs, and Binaries from the SDSS-III MARVELS Planet Survey.

    NASA Astrophysics Data System (ADS)

    Thomas, Neil; Ge, Jian; Li, Rui; de Lee, Nathan M.; Heslar, Michael; Ma, Bo; SDSS-Iii Marvels Team

    2015-01-01

    We report the discoveries of giant planet candidates, brown dwarfs, and binaries from the SDSS-III MARVELS survey. The finalized 1D pipeline has provided 18 giant planet candidates, 16 brown dwarfs, and over 500 binaries. An additional 96 targets having RV variability indicative of a giant planet companion are also reported for future investigation. These candidates are found using the advanced MARVELS 1D data pipeline developed at UF from scratch over the past three years. This pipeline carefully corrects most of the instrument effects (such as trace, slant, distortion, drifts and dispersion) and observation condition effects (such as illumination profile, fiber degradation, and tracking variations). The result is long-term RV precisions that approach the photon limits in many cases for the ~89,000 individual stellar observations. A 2D version of the pipeline that uses interferometric information is nearing completion and is demonstrating a reduction of errors to half the current levels. The 2D processing will be used to increase the robustness of the detections presented here and to find new candidates in RV regions not confidently detectable with the 1D pipeline. The MARVELS survey has produced the largest homogeneous RV measurements of 3300 V=7.6-12 FGK stars with a well defined cadence of 27 RV measurements over 2 years. The MARVELS RV data and other follow-up data (photometry, high contrast imaging, high resolution spectroscopy and RV measurements) will explore the diversity of giant planet companion formation and evolution around stars with a broad range in metallicity (Fe/H -1.5-0.5), mass ( 0.6-2.5M(sun)), and environment (thin disk and thick disk), and will help to address the key scientific questions identified for the MARVELS survey including, but not limited to: Do metal poor stars obey the same trends for planet occurrence as metal rich stars? What is the distribution of giant planets around intermediate-mass stars and binaries? Is the 'planet desert' within 0.6 AU in the planet orbital distribution of intermediate-mass stars real?

  4. OV Bootis: Forty Nights of World-Wide Photometry (Abstract)

    NASA Astrophysics Data System (ADS)

    Patterson, J.; de Miguel, E.; Barret, D.; Brincat, S.; Boardman, J., Jr.; Buczynski, D.; Campbell, T.; Cejudo, D.; Cook, L.; Cook, M. J.; Collins, D.; Cooney, W.; Dubois, F.; Dvorak, S.; Halpern, J. P.; Kroes, A. J.; Lemay, D.; Licchelli, D.; Mankel, D.; Marshall, M.; Novak, R.; Oksanen, A.; Roberts, G.; Seargeant, J.; Sears, H.; Silcox, A.; Slauson, D.; Stone, G.; Thorstensen, J. R.; Ulowetz, J.; Vanmunster, T.; Wallgren, J.; Wood, M.

    2017-12-01

    (Abstract only) Among the 1000 known cataclysmic variables, only one appears to belong to the "Galactic halo"-the Population II stars. We report round-the-world photometry of this star (OV Boo) during March-April 2017, when it staged its first certified dwarf-nova outburst. The star is remarkable for its short binary period (66 minutes), high proper motion, metal-poor composition, substellar secondary, sharp white-dwarf eclipses, and nonradial pulsations. Something for everybody - and it even had the good manners to erupt in northern springtime, when it transits near local midnight. Move over, SS Cyg and WZ Sge; there's a new celebrity in town!

  5. On the nature of the dwarf carbon star G77-61

    NASA Technical Reports Server (NTRS)

    Dearborn, D. S. P.; Liebert, J.; Aaronson, M.; Dahn, C. C.; Harrington, R.

    1986-01-01

    In the present study of astrometric, photometric, and spectrophotometric data for the low luminosity carbon star G77-61, radial velocity variations are detected which have a binary period of 245 days. The unseen companion is probably a cool white dwarf of much higher mass than the visible object. The most straightforward evolutionary hypothesis is that this star has an extremely metal-poor composition, and that it accreted a small amount of carbon-rich material when the now-unseen primary was at maximum radius. This may have inverted the C/O abundance of the secondary without achieving common envelope evolution and a sorter period.

  6. Snapshots in X-ray binary evolution: Using Hα Emitters and post-starburst galaxies to study the age-dependence of XRB populations

    NASA Astrophysics Data System (ADS)

    Basu-Zych, Antara; Hornschemeier, Ann; Fragkos, Anastasios; Lehmer, Bret; Zezas, Andreas; Yukita, Mihoko; Tzanavaris, Panayiotis

    2018-01-01

    The X-ray emission in galaxies, due to X-ray binaries (XRBs), appears to depend on global galaxy properties such as stellar mass (M*), star formation rate (SFR), metallicity, and stellar age. This poster will present unique galaxy populations with well-defined stellar ages to test current relations and models. Specifically, Hα emitters (HAEs), which are nearby analogs of galaxies in the early universe, trace how XRBs form and evolve in young, metal-poor environments. We find that HAEs have lower X-ray luminosities per SFR and metallicity compared to other normal galaxies. At such young ages (<10Myr), XRBs may not have fully formed. Therefore, these observations provide constraints for the expected X-ray emission from XRBs in the early Universe. Post-starburst galaxies, selected by the strength of the Hδ equivalent width (> 500 Å), probe the XRB population related to stellar ages of 0.1-1 Gyr. At these ages, the donor star is expected to be an A-star whose mass is ~2 M⊙ and similar to that of the compact object, which may potentially lead to high mass transfer rates and high X-ray luminosities. Together, these samples offer important constraints for the evolution of XRBs with stellar age.

  7. Low-Metallicity Lead Stars: Comparison between Theory and Observations

    NASA Astrophysics Data System (ADS)

    Bisterzo, S.; Gallino, R.; Straniero, O.; Aoki, W.; Ryan, S.; Beers, T. C.

    2006-07-01

    We compare AGB theoretical models with spectroscopic abundances of a sample of very metal-poor, C-rich, s-rich and lead-rich stars observed at high-resolution spectroscopy. Fits are obtained for AGB models with different 13C-pocket efficiencies and initial masses. The two intrinsic indicators, [hs/ls] and [Pb/hs] versus [Fe/H], are analyzed. An extended analysis of all the observed elements is made, outlining apparent discrepancies for a few elements. The analysis of C and N abundances strengthen the need of a strong cool bottom process occurring during the AGB. A significant number of these stars are both s-enriched and r-enriched. For them, the envelope abundances are predicted by mass transfer from the more massive AGB companion in a binary system from a parental cloud already enriched in r-elements.

  8. Ultraviolet spectra of extreme nearby star-forming regions - approaching a local reference sample for JWST

    NASA Astrophysics Data System (ADS)

    Senchyna, Peter; Stark, Daniel P.; Vidal-García, Alba; Chevallard, Jacopo; Charlot, Stéphane; Mainali, Ramesh; Jones, Tucker; Wofford, Aida; Feltre, Anna; Gutkin, Julia

    2017-12-01

    Nearby dwarf galaxies provide a unique laboratory in which to test stellar population models below Z⊙/2. Such tests are particularly important for interpreting the surprising high-ionization ultraviolet (UV) line emission detected at z > 6 in recent years. We present HST/COS UV spectra of 10 nearby metal-poor star-forming galaxies selected to show He II emission in SDSS optical spectra. The targets span nearly a dex in gas-phase oxygen abundance (7.8 < 12 + log O/H < 8.5) and present uniformly large specific star formation rates (sSFR ∼102 Gyr-1). The UV spectra confirm that metal-poor stellar populations can power extreme nebular emission in high-ionization UV lines, reaching C III] equivalent widths comparable to those seen in systems at z ∼ 6-7. Our data reveal a marked transition in UV spectral properties with decreasing metallicity, with systems below 12 + log O/H ≲ 8.0 (Z/Z⊙ ≲ 1/5) presenting minimal stellar wind features and prominent nebular emission in He II and C IV. This is consistent with nearly an order of magnitude increase in ionizing photon production beyond the He+-ionizing edge relative to H-ionizing flux as metallicity decreases below a fifth solar, well in excess of standard stellar population synthesis predictions. Our results suggest that often-neglected sources of energetic radiation such as stripped binary products and very massive O-stars produce a sharper change in the ionizing spectrum with decreasing metallicity than expected. Consequently, nebular emission in C IV and He II powered by these stars may provide useful metallicity constraints in the reionization era.

  9. TOPoS. IV. Chemical abundances from high-resolution observations of seven extremely metal-poor stars

    NASA Astrophysics Data System (ADS)

    Bonifacio, P.; Caffau, E.; Spite, M.; Spite, F.; Sbordone, L.; Monaco, L.; François, P.; Plez, B.; Molaro, P.; Gallagher, A. J.; Cayrel, R.; Christlieb, N.; Klessen, R. S.; Koch, A.; Ludwig, H.-G.; Steffen, M.; Zaggia, S.; Abate, C.

    2018-04-01

    Context. Extremely metal-poor (EMP) stars provide us with indirect information on the first generations of massive stars. The TOPoS survey has been designed to increase the census of these stars and to provide a chemical inventory that is as detailed as possible. Aims: Seven of the most iron-poor stars have been observed with the UVES spectrograph at the ESO VLT Kueyen 8.2 m telescope to refine their chemical composition. Methods: We analysed the spectra based on 1D LTE model atmospheres, but also used 3D hydrodynamical simulations of stellar atmospheres. Results: We measured carbon in six of the seven stars: all are carbon-enhanced and belong to the low-carbon band, defined in the TOPoS II paper. We measured lithium (A(Li) = 1.9) in the most iron-poor star (SDSS J1035+0641, [Fe/H] <-5.2). We were also able to measure Li in three stars at [Fe/H] -4.0, two of which lie on the Spite plateau. We confirm that SDSS J1349+1407 is extremely rich in Mg, but not in Ca. It is also very rich in Na. Several of our stars are characterised by low α-to-iron ratios. Conclusions: The lack of high-carbon band stars at low metallicity can be understood in terms of evolutionary timescales of binary systems. The detection of Li in SDSS J1035+0641 places a strong constraint on theories that aim at solving the cosmological lithium problem. The Li abundance of the two warmer stars at [Fe/H] -4.0 places them on the Spite plateau, while the third, cooler star, lies below. We argue that this suggests that the temperature at which Li depletion begins increases with decreasing [Fe/H]. SDSS J1349+1407 may belong to a class of Mg-rich EMP stars. We cannot assess if there is a scatter in α-to-iron ratios among the EMP stars or if there are several discrete populations. However, the existence of stars with low α-to-iron ratios is supported by our observations. Based on observations obtained at ESO Paranal Observatory, Programmes 189.D-0165,090.D-0306, 093.D-0136, and 096.D-0468.

  10. The binarity of Galactic dwarf stars along with effective temperature and metallicity

    NASA Astrophysics Data System (ADS)

    Gao, Shuang; Zhao, He; Yang, Hang; Gao, Ran

    2017-07-01

    The fraction of binary stars fb is one of most valuable tools to probe the star formation and evolution of multiple systems in the Galaxy. We focus on the relationship between fb and stellar metallicity [Fe/H] by employing the differential radial velocity (DRV) method and the large sample observed by the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). Main-sequence stars from A- to K-type in the third data release of LAMOST are selected to estimate fb. Contributions to a profile of DRV from the radial velocity (RV) error of single stars σRV and the orbital motion of binary stars are evaluated from the DRV profile. We employ 365 911 stars with randomly repeating spectral observations to present a detailed analysis of fb and σRV in the two-dimensional space of Teff and [Fe/H]. The A-type stars are more likely to be companions in binary star systems than other stars. Furthermore, the reverse correlation between fb and [Fe/H] can be shown statistically, which suggests that fb is a joint function of Teff and [Fe/H]. At the same time, σRV of the sample are fitted for different Teff and [Fe/H]. Metal-rich cold stars in our sample have the best RV measurement.

  11. Neutral gas heating by X-rays in primitive galaxies: Infrared observations of the blue compact dwarf I Zw 18 with Herschel

    NASA Astrophysics Data System (ADS)

    Lebouteiller, V.; Péquignot, D.; Cormier, D.; Madden, S.; Pakull, M. W.; Kunth, D.; Galliano, F.; Chevance, M.; Heap, S. R.; Lee, M.-Y.; Polles, F. L.

    2017-06-01

    Context. The neutral interstellar medium of galaxies acts as a reservoir to fuel star formation. The dominant heating and cooling mechanisms in this phase are uncertain in extremely metal-poor star-forming galaxies. The low dust-to-gas mass ratio and low polycyclic aromatic hydrocarbon abundance in such objects suggest that the traditional photoelectric effect heating may not be effective. Aims: Our objective is to identify the dominant thermal mechanisms in one such galaxy, I Zw 18 (1/30Z⊙), assess the diagnostic value of fine-structure cooling lines, and estimate the molecular gas content. Even though molecular gas is an important catalyst and tracer of star formation, constraints on the molecular gas mass remain elusive in the most metal-poor galaxies. Methods: Building on a previous photoionization model describing the giant H II region of I Zw 18-NW within a multi-sector topology, we provide additional constraints using, in particular, the [C II] 157 μm and [O I] 63 μm lines and the dust mass recently measured with the Herschel Space Telescope. Results: The heating of the H I region appears to be mainly due to photoionization by radiation from a bright X-ray binary source, while the photoelectric effect is negligible. Significant cosmic ray heating is not excluded. Inasmuch as X-ray heating dominates in the H I gas, the infrared fine-structure lines provide an average X-ray luminosity of order 4 × 1040 erg s-1 over the last few 104 yr in the galaxy. The upper limits to the [Ne v] lines provide strong constraints on the soft X-ray flux arising from the binary. A negligible mass of H2 is predicted. Nonetheless, up to 107 M⊙ of H2 may be hidden in a few sufficiently dense clouds of order ≲5 pc (≲0.05'') in size. Regardless of the presence of significant amounts of H2 gas, [C II] and [O I] do not trace the so-called "CO-dark gas", but they trace the almost purely atomic medium. Although the [C II]+[O I] to total infrared ratio in I Zw 18 is similar to values in more metal-rich sources ( 1%), it cannot be safely used as a photoelectric heating efficiency proxy. This ratio seems to be kept stable owing to a correlation between the X-ray luminosity and the star formation rate. Conclusions: X-ray heating could be an important process in extremely metal-poor sources. The lack of photoelectric heating due to the low dust-to-gas ratio tends to be compensated for by the larger occurrence and power of X-ray binaries in low-metallicity galaxies. We speculate that X-ray heating may quench star formation. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  12. Are some CEMP-s stars the daughters of spinstars?

    NASA Astrophysics Data System (ADS)

    Choplin, Arthur; Hirschi, Raphael; Meynet, Georges; Ekström, Sylvia

    2017-11-01

    Carbon-enhanced metal-poor (CEMP)-s stars are long-lived low-mass stars with a very low iron content as well as overabundances of carbon and s-elements. Their peculiar chemical pattern is often explained by pollution from an asymptotic giant branch (AGB) star companion. Recent observations have shown that most CEMP-s stars are in binary systems, providing support to the AGB companion scenario. A few CEMP-s stars, however, appear to be single. We inspect four apparently single CEMP-s stars and discuss the possibility that they formed from the ejecta of a previous-generation massive star, referred to as the "source" star. In order to investigate this scenario, we computed low-metallicity massive-star models with and without rotation and including complete s-process nucleosynthesis. We find that non-rotating source stars cannot explain the observed abundance of any of the four CEMP-s stars. Three out of the four CEMP-s stars can be explained by a 25M⊙ source star with vini 500 km s-1 (spinstar). The fourth CEMP-s star has a high Pb abundance that cannot be explained by any of the models we computed. Since spinstars and AGB predict different ranges of [O/Fe] and [ls/hs], these ratios could be an interesting way to further test these two scenarios.

  13. Physical properties and catalog of EW-type eclipsing binaries observed by LAMOST

    NASA Astrophysics Data System (ADS)

    Qian, Sheng-Bang; He, Jia-Jia; Zhang, Jia; Zhu, Li-Ying; Shi, Xiang-Dong; Zhao, Er-Gang; Zhou, Xiao

    2017-08-01

    EW-type eclipsing binaries (hereafter called EWs) are strong interacting systems in which both component stars usually fill their critical Roche lobes and share a common envelope. Numerous EWs were discovered by several deep photometric surveys and there were about 40 785 EW-type binary systems listed in the international variable star index (VSX) by 2017 March 13. 7938 of them were observed with LAMOST by 2016 November 30 and their spectral types were identified. Stellar atmospheric parameters of 5363 EW-type binary stars were determined based on good spectroscopic observations. In the paper, those EWs are cataloged and their properties are analyzed. The distributions of orbital period (P), effective temperature (T), gravitational acceleration (log(g)), metallicity ([Fe/H]) and radial velocity (RV) are presented for these observed EW-type systems. It is shown that about 80.6% of sample stars have metallicity below zero, indicating that EW-type systems are old stellar populations. This is in agreement with the conclusion that EW binaries are formed from moderately close binaries through angular momentum loss via magnetic braking that takes a few hundred million to a few billion years. The unusually high metallicities of a few percent of EWs may be caused by contamination of material from the evolution of unseen neutron stars or black holes in the systems. The correlations between orbital period and effective temperature, gravitational acceleration and metallicity are presented and their scatters are mainly caused by (i) the presence of third bodies and (ii) sometimes wrongly determined periods. It is shown that some EWs contain evolved component stars and the physical properties of EWs mainly depend on their orbital periods. It is found that extremely short-period EWs may be older than their long-period cousins because they have lower metallicities. This reveals that they have a longer timescale of pre-contact evolution and their formation and evolution aremainly driven by angular momentum loss via magnetic braking.

  14. AN ELEMENTAL ASSAY OF VERY, EXTREMELY, AND ULTRA-METAL-POOR STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, T.; Christlieb, N.; Hansen, C. J.

    2015-07-10

    We present a high-resolution elemental-abundance analysis for a sample of 23 very metal-poor ([Fe/H] < −2.0) stars, 12 of which are extremely metal-poor ([Fe/H] < −3.0), and 4 of which are ultra-metal-poor ([Fe/H] < −4.0). These stars were targeted to explore differences in the abundance ratios for elements that constrain the possible astrophysical sites of element production, including Li, C, N, O, the α-elements, the iron-peak elements, and a number of neutron-capture elements. This sample substantially increases the number of known carbon-enhanced metal-poor (CEMP) and nitrogen-enhanced metal-poor (NEMP) stars—our program stars include eight that are considered “normal” metal-poor stars, sixmore » CEMP-no stars, five CEMP-s stars, two CEMP-r stars, and two CEMP-r/s stars. One of the CEMP-r stars and one of the CEMP-r/s stars are possible NEMP stars. We detect lithium for three of the six CEMP-no stars, all of which are Li depleted with respect to the Spite plateau. The majority of the CEMP stars have [C/N] > 0. The stars with [C/N] < 0 suggest a larger degree of mixing; the few CEMP-no stars that exhibit this signature are only found at [Fe/H] < −3.4, a metallicity below which we also find the CEMP-no stars with large enhancements in Na, Mg, and Al. We confirm the existence of two plateaus in the absolute carbon abundances of CEMP stars, as suggested by Spite et al. We also present evidence for a “floor” in the absolute Ba abundances of CEMP-no stars at A(Ba) ∼ −2.0.« less

  15. Evolution of Optical Binary Fraction in Sparse Stellar Systems

    NASA Astrophysics Data System (ADS)

    Li, Zhongmu; Mao, Caiyan

    2018-05-01

    This work studies the evolution of the fraction of optical binary stars (OBF; not including components such as neutron stars and black holes), which is caused by stellar evolution, and the contributions of various binaries to OBF via the stellar population synthesis technique. It is shown that OBF decreases from 1 to about 0.81 for stellar populations with the Salpeter initial mass function (IMF), and to about 0.85 for the case of the Kroupa IMF, on a timescale of 15 Gyr. This result depends on metallicity, slightly. The contributions of binaries varying with mass ratio, orbital period, separation, spectral types of primary and secondary, contact degree, and pair type to OBF are calculated for stellar populations with different ages and metallicities. The contribution of different kinds of binaries to OBF depends on age and metallicity. The results can be used for estimating the global OBF of star clusters or galaxies from the fraction of a kind of binary. It is also helpful for estimating the primordial and future binary fractions of sparse stellar systems from the present observations. Our results are suitable for studying field stars, open clusters, and the outer part of globular clusters, because the OBF of such objects is affected by dynamical processes, relatively slightly, but they can also be used for giving some limits for other populations.

  16. Near-Ultraviolet Observations of CS 29497-030: New Constraints on Neutron-Capture Nucleosynthesis Processes

    NASA Astrophysics Data System (ADS)

    Ivans, Inese I.; Sneden, Christopher; Gallino, Roberto; Cowan, John J.; Preston, George W.

    2005-07-01

    Employing spectra obtained with the new Keck I HIRES near-UV-sensitive detector, we have performed a comprehensive chemical composition analysis of the binary blue metal-poor star CS 29497-030. Abundances for 29 elements and upper limits for an additional seven have been derived, concentrating on elements largely produced by means of neutron-capture nucleosynthesis. Included in our analysis are the two elements that define the termination point of the slow neutron-capture process, lead and bismuth. We determine an extremely high value of [Pb/Fe]=+3.65+/-0.07 (σ=0.13) from three features, supporting the single-feature result obtained in previous studies. We detect Bi for the first time in a metal-poor star. Our derived Bi/Pb ratio is in accord with those predicted from the most recent FRANEC calculations of the slow neutron-capture process in low-mass asymptotic giant branch (AGB) stars. We find that the neutron-capture elemental abundances of CS 29497-030 are best explained by an AGB model that also includes very significant amounts of pre-enrichment of rapid neutron-capture process material in the protostellar cloud out of which the CS 29497-030 binary system formed. Mass transfer is consistent with the observed [Nb/Zr]~0. Thus, CS 29497-030 is both an r+s and ``extrinsic AGB'' star. Furthermore, we find that the mass of the AGB model can be further constrained by the abundance of the light odd-element Na. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  17. Prospecting in Ultracool Dwarfs: Measuring the Metallicities of Mid- and Late-M Dwarfs

    NASA Astrophysics Data System (ADS)

    Mann, Andrew W.; Deacon, Niall R.; Gaidos, Eric; Ansdell, Megan; Brewer, John M.; Liu, Michael C.; Magnier, Eugene A.; Aller, Kimberly M.

    2014-06-01

    Metallicity is a fundamental parameter that contributes to the physical characteristics of a star. The low temperatures and complex molecules present in M dwarf atmospheres make it difficult to measure their metallicities using techniques that have been commonly used for Sun-like stars. Although there has been significant progress in developing empirical methods to measure M dwarf metallicities over the last few years, these techniques have been developed primarily for early- to mid-M dwarfs. We present a method to measure the metallicity of mid- to late-M dwarfs from moderate resolution (R ~ 2000) K-band (sime 2.2 μm) spectra. We calibrate our formula using 44 wide binaries containing an F, G, K, or early-M primary of known metallicity and a mid- to late-M dwarf companion. We show that similar features and techniques used for early-M dwarfs are still effective for late-M dwarfs. Our revised calibration is accurate to ~0.07 dex for M4.5-M9.5 dwarfs with -0.58 < [Fe/H] < +0.56 and shows no systematic trends with spectral type, metallicity, or the method used to determine the primary star metallicity. We show that our method gives consistent metallicities for the components of M+M wide binaries. We verify that our new formula works for unresolved binaries by combining spectra of single stars. Lastly, we show that our calibration gives consistent metallicities with the Mann et al. study for overlapping (M4-M5) stars, establishing that the two calibrations can be used in combination to determine metallicities across the entire M dwarf sequence.

  18. The Chemical Abundances of New Extremely Metal-Poor Giants with [Fe/H] < -3.0

    NASA Astrophysics Data System (ADS)

    Rhee, Jaehyon; Fink, M.; Rhee, W.

    2012-01-01

    Extremely metal-poor (EMP) stars with [Fe/H] < -3.0 observable in the Galactic halo and thick disk today are believed to be the second-generation stars born out of those materials that were slightly chemically polluted by the extinct, metal-free first stars. If true, these oldest surviving stars with the lowest metal abundances are astrophysical laboratories that may shed essential light on the origins and evolution of the chemical elements and on the formation of the Milky Way. In order to newly discover field metal-deficient stars in the inner halo of the Galaxy, the Purdue Ultra Metal-Poor Star Survey (PUMPSS) program was conducted. Candidate metal-poor stars were initially selected utilizing the photometric data of the GALEX and the 2MASS, and subsequent medium- and high-resolution spectroscopy were carried out for the identification of true metal-poor giant stars and detailed chemical abundance analyses, respectively. We present an overview of the PUMPSS program and the results of the abundance analysis for high-dispersion spectra of EMP giant stars taken at the KPNO 4m telescope. We acknowledge support for this work from NASA grants 07-ADP07-0080 and 05-GALEX05-27.

  19. Atypical Mg-poor Milky Way Field Stars with Globular Cluster Second-generation-like Chemical Patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández-Trincado, J. G.; Geisler, D.; Tang, B.

    We report the peculiar chemical abundance patterns of 11 atypical Milky Way (MW) field red giant stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). These atypical giants exhibit strong Al and N enhancements accompanied by C and Mg depletions, strikingly similar to those observed in the so-called second-generation (SG) stars of globular clusters (GCs). Remarkably, we find low Mg abundances ([Mg/Fe] < 0.0) together with strong Al and N overabundances in the majority (5/7) of the metal-rich ([Fe/H] ≳ −1.0) sample stars, which is at odds with actual observations of SG stars in Galactic GCs of similarmore » metallicities. This chemical pattern is unique and unprecedented among MW stars, posing urgent questions about its origin. These atypical stars could be former SG stars of dissolved GCs formed with intrinsically lower abundances of Mg and enriched Al (subsequently self-polluted by massive AGB stars) or the result of exotic binary systems. We speculate that the stars Mg-deficiency as well as the orbital properties suggest that they could have an extragalactic origin. This discovery should guide future dedicated spectroscopic searches of atypical stellar chemical patterns in our Galaxy, a fundamental step forward to understanding the Galactic formation and evolution.« less

  20. Atypical Mg-poor Milky Way Field Stars with Globular Cluster Second-generation-like Chemical Patterns

    NASA Astrophysics Data System (ADS)

    Fernández-Trincado, J. G.; Zamora, O.; García-Hernández, D. A.; Souto, Diogo; Dell'Agli, F.; Schiavon, R. P.; Geisler, D.; Tang, B.; Villanova, S.; Hasselquist, Sten; Mennickent, R. E.; Cunha, Katia; Shetrone, M.; Allende Prieto, Carlos; Vieira, K.; Zasowski, G.; Sobeck, J.; Hayes, C. R.; Majewski, S. R.; Placco, V. M.; Beers, T. C.; Schleicher, D. R. G.; Robin, A. C.; Mészáros, Sz.; Masseron, T.; García Pérez, Ana E.; Anders, F.; Meza, A.; Alves-Brito, A.; Carrera, R.; Minniti, D.; Lane, R. R.; Fernández-Alvar, E.; Moreno, E.; Pichardo, B.; Pérez-Villegas, A.; Schultheis, M.; Roman-Lopes, A.; Fuentes, C. E.; Nitschelm, C.; Harding, P.; Bizyaev, D.; Pan, K.; Oravetz, D.; Simmons, A.; Ivans, Inese I.; Blanco-Cuaresma, S.; Hernández, J.; Alonso-García, J.; Valenzuela, O.; Chanamé, J.

    2017-09-01

    We report the peculiar chemical abundance patterns of 11 atypical Milky Way (MW) field red giant stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). These atypical giants exhibit strong Al and N enhancements accompanied by C and Mg depletions, strikingly similar to those observed in the so-called second-generation (SG) stars of globular clusters (GCs). Remarkably, we find low Mg abundances ([Mg/Fe] < 0.0) together with strong Al and N overabundances in the majority (5/7) of the metal-rich ([Fe/H] ≳ -1.0) sample stars, which is at odds with actual observations of SG stars in Galactic GCs of similar metallicities. This chemical pattern is unique and unprecedented among MW stars, posing urgent questions about its origin. These atypical stars could be former SG stars of dissolved GCs formed with intrinsically lower abundances of Mg and enriched Al (subsequently self-polluted by massive AGB stars) or the result of exotic binary systems. We speculate that the stars Mg-deficiency as well as the orbital properties suggest that they could have an extragalactic origin. This discovery should guide future dedicated spectroscopic searches of atypical stellar chemical patterns in our Galaxy, a fundamental step forward to understanding the Galactic formation and evolution.

  1. SDSS-III MARVELS Planet Candidate RV Follow-up

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Thomas, Neil; Ma, Bo; Li, Rui; SIthajan, Sirinrat

    2014-02-01

    Planetary systems, discovered by the radial velocity (RV) surveys, reveal strong correlations between the planet frequency and stellar properties, such as metallicity and mass, and a greater diversity in planets than found in the solar system. However, due to the sample sizes of extant surveys (~100 to a few hundreds of stars) and their heterogeneity, many key questions remained to be addressed: Do metal poor stars obey the same trends for planet occurrence as metal rich stars? What is the distribution of giant planets around intermediate- mass stars and binaries? Is the ``planet desert'' within 0.6 AU in the planet orbital distribution of intermediate-mass stars real? The MARVELS survey has produced the largest homogeneous RV measurements of 3300 V=7.6-12 FGK stars. The latest data pipeline effort at UF has been able to remove long term systematic errors suffered in the earlier data pipeline. 18 high confident giant planet candidates have been identified among newly processed data. We propose to follow up these giant planet candidates with the KPNO EXPERT instrument to confirm the detection and also characterize their orbits. The confirmed planets will be used to measure occurrence rates, distributions and multiplicity of giants planets around F,G,K stars with a broad range of mass (~0.6-2.5 M_⊙) and metallicity ([Fe/H]~-1.5-0.5). The well defined MARVELS survey cadence allows robust determinations of completeness limits for rigorously testing giant planet formation theories and constraining models.

  2. New ultra metal-poor stars from SDSS: follow-up GTC medium-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Aguado, D. S.; Allende Prieto, C.; González Hernández, J. I.; Rebolo, R.; Caffau, E.

    2017-07-01

    Context. The first generation of stars formed in the Galaxy left behind the chemical signatures of their nucleosynthesis in the interstellar medium, visible today in the atmospheres of low-mass stars that formed afterwards. Sampling the chemistry of those low-mass provides insight into the first stars. Aims: We aim to increase the samples of stars with extremely low metal abundances, identifying ultra metal-poor stars from spectra with modest spectral resolution and signal-to-noise ratio (S/N). Achieving this goal involves deriving reliable metallicities and carbon abundances from such spectra. Methods: We carry out follow-up observations of faint, V > 19, metal-poor candidates selected from SDSS spectroscopy and observed with the Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) at GTC. The SDSS and follow-up OSIRIS spectra were analyzed using the FERRE code to derive effective temperatures, surface gravities, metallicities and carbon abundances. In addition, a well-known extremely metal-poor star has been included in our sample to calibrate the analysis methodology. Results: We observed and analyzed five metal-poor candidates from modest-quality SDSS spectra. All stars in our sample have been confirmed as extremely metal-poor stars, in the [Fe/H] < -3.3 regime. We report the recognition of J173403+644632, a carbon-enhanced ultra metal-poor dwarf star with [Fe/H] = -4.3 and [C/Fe] = + 3.1. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma. Programme ID GTC2E-16A and ID GTC65-16B.

  3. Stellar Multiplicity Meets Stellar Evolution and Metallicity: The APOGEE View

    NASA Astrophysics Data System (ADS)

    Badenes, Carles; Mazzola, Christine; Thompson, Todd A.; Covey, Kevin; Freeman, Peter E.; Walker, Matthew G.; Moe, Maxwell; Troup, Nicholas; Nidever, David; Allende Prieto, Carlos; Andrews, Brett; Barbá, Rodolfo H.; Beers, Timothy C.; Bovy, Jo; Carlberg, Joleen K.; De Lee, Nathan; Johnson, Jennifer; Lewis, Hannah; Majewski, Steven R.; Pinsonneault, Marc; Sobeck, Jennifer; Stassun, Keivan G.; Stringfellow, Guy S.; Zasowski, Gail

    2018-02-01

    We use the multi-epoch radial velocities acquired by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey to perform a large-scale statistical study of stellar multiplicity for field stars in the Milky Way, spanning the evolutionary phases between the main sequence (MS) and the red clump. We show that the distribution of maximum radial velocity shifts (ΔRVmax) for APOGEE targets is a strong function of log g, with MS stars showing ΔRVmax as high as ∼300 {km} {{{s}}}-1, and steadily dropping down to ∼30 {km} {{{s}}}-1 for log g ∼ 0, as stars climb up the red giant branch (RGB). Red clump stars show a distribution of ΔRVmax values comparable to that of stars at the tip of the RGB, implying they have similar multiplicity characteristics. The observed attrition of high ΔRVmax systems in the RGB is consistent with a lognormal period distribution in the MS and a multiplicity fraction of 0.35, which is truncated at an increasing period as stars become physically larger and undergo mass transfer after Roche Lobe overflow during H-shell burning. The ΔRVmax distributions also show that the multiplicity characteristics of field stars are metallicity-dependent, with metal-poor ([Fe/H] ≲ ‑0.5) stars having a multiplicity fraction a factor of 2–3 higher than metal-rich ([Fe/H] ≳ 0.0) stars. This has profound implications for the formation rates of interacting binaries observed by astronomical transient surveys and gravitational wave detectors, as well as the habitability of circumbinary planets.

  4. The observed distribution of spectroscopic binaries from the Anglo-Australian Planet Search

    NASA Astrophysics Data System (ADS)

    Jenkins, J. S.; Díaz, M.; Jones, H. R. A.; Butler, R. P.; Tinney, C. G.; O'Toole, S. J.; Carter, B. D.; Wittenmyer, R. A.; Pinfield, D. J.

    2015-10-01

    We report the detection of sixteen binary systems from the Anglo-Australian Planet Search. Solutions to the radial velocity data indicate that the stars have companions orbiting with a wide range of masses, eccentricities and periods. Three of the systems potentially contain brown-dwarf companions while another two have eccentricities that place them in the extreme upper tail of the eccentricity distribution for binaries with periods less than 1000 d. For periods up to 12 years, the distribution of our stellar companion masses is fairly flat, mirroring that seen in other radial velocity surveys, and contrasts sharply with the current distribution of candidate planetary masses, which rises strongly below 10 MJ. When looking at a larger sample of binaries that have FGK star primaries as a function of the primary star metallicity, we find that the distribution maintains a binary fraction of ˜43 ± 4 per cent between -1.0 and +0.6 dex in metallicity. This is in stark contrast to the giant exoplanet distribution. This result is in good agreement with binary formation models that invoke fragmentation of a collapsing giant molecular cloud, suggesting that this is the dominant formation mechanism for close binaries and not fragmentation of the primary star's remnant protoplanetary disc.

  5. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range.

    PubMed

    Belczynski, Krzysztof; Holz, Daniel E; Bulik, Tomasz; O'Shaughnessy, Richard

    2016-06-23

    The merger of two massive (about 30 solar masses) black holes has been detected in gravitational waves. This discovery validates recent predictions that massive binary black holes would constitute the first detection. Previous calculations, however, have not sampled the relevant binary-black-hole progenitors--massive, low-metallicity binary stars--with sufficient accuracy nor included sufficiently realistic physics to enable robust predictions to better than several orders of magnitude. Here we report high-precision numerical simulations of the formation of binary black holes via the evolution of isolated binary stars, providing a framework within which to interpret the first gravitational-wave source, GW150914, and to predict the properties of subsequent binary-black-hole gravitational-wave events. Our models imply that these events form in an environment in which the metallicity is less than ten per cent of solar metallicity, and involve stars with initial masses of 40-100 solar masses that interact through mass transfer and a common-envelope phase. These progenitor stars probably formed either about 2 billion years or, with a smaller probability, 11 billion years after the Big Bang. Most binary black holes form without supernova explosions, and their spins are nearly unchanged since birth, but do not have to be parallel. The classical field formation of binary black holes we propose, with low natal kicks (the velocity of the black hole at birth) and restricted common-envelope evolution, produces approximately 40 times more binary-black-holes mergers than do dynamical formation channels involving globular clusters; our predicted detection rate of these mergers is comparable to that from homogeneous evolution channels. Our calculations predict detections of about 1,000 black-hole mergers per year with total masses of 20-80 solar masses once second-generation ground-based gravitational-wave observatories reach full sensitivity.

  6. Effect of binary fraction on color-magnitude diagram of NGC 1904

    NASA Astrophysics Data System (ADS)

    Li, Zhongmu; Deng, Yangyang

    2018-05-01

    The age of a southern globular cluster in Milky Way, NGC 1904, was shown to be larger than the typical age of the universe, around 13.7 Gyr, by some photometric studies which assumed all stars as single stars. Besides the uncertainties in photometry, isochrone and fitting technique, the neglect of binary stars possibly distorted the result. We study the effect of binary fraction on the color-magnitude diagram (CMD) of NGC 1904, via a new tool for CMD studies, Powerful CMD, which can determine binary fraction, age, metallicity, distance modulus, color excess, rotating star fraction and star formation history simultaneously. We finally obtain the youngest age of 14.1±2.1 Gyr with a zero-age binary fraction of 60 percent for cluster NGC 1904. The result is consistent with the age of the universe. Although our result suggests that binary fraction affects the determination of age slightly, it can improve the fitting to observed CMD, in particular blue stragglers. This suggests us to consider the effect of binaries in the studies of star clusters.

  7. EXTREMELY METAL-POOR STARS AND A HIERARCHICAL CHEMICAL EVOLUTION MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komiya, Yutaka

    2011-07-20

    Early phases of the chemical evolution of the Galaxy and formation history of extremely metal-poor (EMP) stars are investigated using hierarchical galaxy formation models. We build a merger tree of the Galaxy according to the extended Press-Schechter theory. We follow the chemical evolution along the tree and compare the model results to the metallicity distribution function and abundance ratio distribution of the Milky Way halo. We adopt three different initial mass functions (IMFs). In a previous study, we argued that the typical mass, M{sub md}, of EMP stars should be high, M{sub md} {approx} 10 M{sub sun}, based on studiesmore » of binary origin carbon-rich EMP stars. In this study, we show that only the high-mass IMF can explain an observed small number of EMP stars. For relative element abundances, the high-mass IMF and the Salpeter IMF predict similar distributions. We also investigate dependence on nucleosynthetic yields of supernovae (SNe). The theoretical SN yields by Kobayashi et al. and Chieffi and Limongi show reasonable agreement with observations for {alpha}-elements. Our model predicts a significant scatter of element abundances at [Fe/H] < -3. We adopted the stellar yields derived in the work of Francois et al., which produce the best agreement between the observational data and the one-zone chemical evolution model. Their yields well reproduce a trend of the averaged abundances of EMP stars but predict much larger scatter than do the observations. The model with hypernovae predicts Zn abundance, in agreement with the observations, but other models predict lower [Zn/Fe]. Ejecta from the hypernovae with large explosion energy is mixed in large mass and decreases the scatter of the element abundances.« less

  8. Stellar Archaeology: New Science with Old Stars

    NASA Astrophysics Data System (ADS)

    Frebel, Anna

    2011-01-01

    The early chemical evolution of the Galaxy and the Universe is vital to our understanding of a host of astrophysical phenomena. Since the most metal-poor Galactic stars are relics from the high-redshift Universe, they probe the chemical and dynamical conditions as the Milky Way began to form, the origin and evolution of the elements, and the physics of nucleosynthesis. They also provide constraints on the nature of the first stars, their associated supernovae and initial mass function, and early star and galaxy formation. I will present exemplary metal-poor stars with which these different topics can be addressed. Those are the most metal-poor stars in the Galaxy ([Fe/H] < -5.0), and metal-poor stars with strong overabundances of heavy elements, in particular uranium and thorium, which can be used to radioactively date the stars to be 13 Gyr old. I will then transition to recent discoveries of metal-poor ([Fe/H] -3.0) stars in the least luminous dwarf satellites orbiting the Milky Way. Their stellar chemical signatures support the concept that small systems, analogous to the surviving dwarf galaxies, were the building blocks of the Milky Way's low-metallicity halo. This opens a new window for studying galaxy formation through stellar chemistry.

  9. Abundances of carbon-enhanced metal-poor stars as constraints on their formation

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; Nordström, B.; Hansen, T. T.; Kennedy, C. R.; Placco, V. M.; Beers, T. C.; Andersen, J.; Cescutti, G.; Chiappini, C.

    2016-04-01

    Context. An increasing fraction of carbon-enhanced metal-poor (CEMP) stars is found as their iron abundance, [Fe/H], decreases below [Fe/H] =-2.0. The CEMP-s stars have the highest absolute carbon abundances, [C/H], and are thought to owe their enrichment in carbon and the slow neutron-capture (s-process) elements to mass transfer from a former asymptotic giant branch (AGB) binary companion. The most Fe-poor CEMP stars are normally single, exhibit somewhat lower [C/H] than CEMP-s stars, but show no s-process element enhancement (CEMP-no stars). Abundance determinations of CNO offer clues to their formation sites. Aims: Our aim is to use the medium-resolution spectrograph X-Shooter/VLT to determine stellar parameters and abundances for C, N, Sr, and Ba in several classes of CEMP stars in order to further classify and constrain the astrophysical formation sites of these stars. Methods: Atmospheric parameters for our programme stars were estimated from a combination of V-K photometry, model isochrone fits, and estimates from a modified version of the SDSS/SEGUE spectroscopic pipeline. We then used X-Shooter spectra in conjunction with the 1D local thermodynamic equilibrium spectrum synthesis code MOOG, 1D ATLAS9 atmosphere models to derive stellar abundances, and, where possible, isotopic 12C/13C ratios. Results: Abundances (or limits) of C, N, Sr, and Ba are derived for a sample of 27 faint metal-poor stars for which the X-Shooter spectra have sufficient signal-to-noise ratios (S/N). These moderate resolution, low S/N (~10-40) spectra prove sufficient to perform limited chemical tagging and enable assignment of these stars into the CEMP subclasses (CEMP-s and CEMP-no). According to the derived abundances, 17 of our sample stars are CEMP-s and 3 are CEMP-no, while the remaining 7 are carbon-normal. For four CEMP stars, the subclassification remains uncertain, and two of them may be pulsating AGB stars. Conclusions: The derived stellar abundances trace the formation processes and sites of our sample stars. The [C/N] abundance ratio is useful for identifying stars with chemical compositions unaffected by internal mixing, and the [Sr/Ba] abundance ratio allows us to distinguish between CEMP-s stars with AGB progenitors and the CEMP-no stars. Suggested formation sites for the latter include faint supernovae with mixing and fallback and/or primordial, rapidly-rotating, massive stars (spinstars). X-Shooter spectra have thus proved to be valuable tools in the continued search for their origin. Based on observations obtained at ESO Paranal Observatory, programmes 084.D-0117(A) and 085.D-0041(A).

  10. Chemical Abundances of Metal-poor RR Lyrae Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Haschke, Raoul; Grebel, Eva K.; Frebel, Anna; Duffau, Sonia; Hansen, Camilla J.; Koch, Andreas

    2012-09-01

    We present for the first time a detailed spectroscopic study of chemical element abundances of metal-poor RR Lyrae stars in the Large and Small Magellanic Cloud (LMC and SMC). Using the MagE echelle spectrograph at the 6.5 m Magellan telescopes, we obtain medium resolution (R ~ 2000-6000) spectra of six RR Lyrae stars in the LMC and three RR Lyrae stars in the SMC. These stars were chosen because their previously determined photometric metallicities were among the lowest metallicities found for stars belonging to the old populations in the Magellanic Clouds. We find the spectroscopic metallicities of these stars to be as low as [Fe/H]spec = -2.7 dex, the lowest metallicity yet measured for any star in the Magellanic Clouds. We confirm that for metal-poor stars, the photometric metallicities from the Fourier decomposition of the light curves are systematically too high compared to their spectroscopic counterparts. However, for even more metal-poor stars below [Fe/H]phot < -2.8 dex this trend is reversed and the spectroscopic metallicities are systematically higher than the photometric estimates. We are able to determine abundance ratios for 10 chemical elements (Fe, Na, Mg, Al, Ca, Sc, Ti, Cr, Sr, and Ba), which extend the abundance measurements of chemical elements for RR Lyrae stars in the Clouds beyond [Fe/H] for the first time. For the overall [α/Fe] ratio, we obtain an overabundance of 0.36 dex, which is in very good agreement with results from metal-poor stars in the Milky Way halo as well as from the metal-poor tail in dwarf spheroidal galaxies. Comparing the abundances with those of the stars in the Milky Way halo we find that the abundance ratios of stars of both populations are consistent with another. Therefore, we conclude that from a chemical point of view early contributions from Magellanic-type galaxies to the formation of the Galactic halo as claimed in cosmological models are plausible. This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.

  11. Eclipsing binary stars with a δ Scuti component

    NASA Astrophysics Data System (ADS)

    Kahraman Aliçavuş, F.; Soydugan, E.; Smalley, B.; Kubát, J.

    2017-09-01

    Eclipsing binaries with a δ Sct component are powerful tools to derive the fundamental parameters and probe the internal structure of stars. In this study, spectral analysis of six primary δ Sct components in eclipsing binaries has been performed. Values of Teff, v sin I, and metallicity for the stars have been derived from medium-resolution spectroscopy. Additionally, a revised list of δ Sct stars in eclipsing binaries is presented. In this list, we have only given the δ Sct stars in eclipsing binaries to show the effects of the secondary components and tidal-locking on the pulsations of primary δ Sct components. The stellar pulsation, atmospheric and fundamental parameters (e.g. mass, radius) of 92 δ Sct stars in eclipsing binaries have been gathered. Comparison of the properties of single and eclipsing binary member δ Sct stars has been made. We find that single δ Sct stars pulsate in longer periods and with higher amplitudes than the primary δ Sct components in eclipsing binaries. The v sin I of δ Sct components is found to be significantly lower than that of single δ Sct stars. Relationships between the pulsation periods, amplitudes and stellar parameters in our list have been examined. Significant correlations between the pulsation periods and the orbital periods, Teff, log g, radius, mass ratio, v sin I and the filling factor have been found.

  12. r-Process Nucleosynthesis in the Early Universe Through Fast Mergers of Compact Binaries in Triple Systems

    NASA Astrophysics Data System (ADS)

    Bonetti, Matteo; Perego, Albino; Capelo, Pedro R.; Dotti, Massimo; Miller, M. Coleman

    2018-05-01

    Surface abundance observations of halo stars hint at the occurrence of r-process nucleosynthesis at low metallicity ([Fe/H] < -3), possibly within the first 108 yr after the formation of the first stars. Possible loci of early-Universe r-process nucleosynthesis are the ejecta of either black hole-neutron star or neutron star-neutron star binary mergers. Here, we study the effect of the inclination-eccentricity oscillations raised by a tertiary (e.g. a star) on the coalescence time-scale of the inner compact object binaries. Our results are highly sensitive to the assumed initial distribution of the inner binary semi-major axes. Distributions with mostly wide compact object binaries are most affected by the third object, resulting in a strong increase (by more than a factor of 2) in the fraction of fast coalescences. If instead the distribution preferentially populates very close compact binaries, general relativistic precession prevents the third body from increasing the inner binary eccentricity to very high values. In this last case, the fraction of coalescing binaries is increased much less by tertiaries, but the fraction of binaries that would coalesce within 108 yr even without a third object is already high. Our results provide additional support to the compact-binary merger scenario for r-process nucleosynthesis.

  13. Binary properties of CH and carbon-enhanced metal-poor stars

    NASA Astrophysics Data System (ADS)

    Jorissen, A.; Van Eck, S.; Van Winckel, H.; Merle, T.; Boffin, H. M. J.; Andersen, J.; Nordström, B.; Udry, S.; Masseron, T.; Lenaerts, L.; Waelkens, C.

    2016-02-01

    The HERMES spectrograph installed on the 1.2-m Mercator telescope has been used to monitor the radial velocity of 13 low-metallicity carbon stars, among which seven carbon-enhanced metal-poor (CEMP) stars and six CH stars (including HIP 53522, a new member of the family, as revealed by a detailed abundance study). All stars but one show clear evidence for binarity. New orbits are obtained for eight systems. The sample covers an extended range in orbital periods, extending from 3.4 d (for the dwarf carbon star HE 0024-2523) to about 54 yr (for the CH star HD 26, the longest known among barium, CH, and extrinsic S stars). Three systems exhibit low-amplitude velocity variations with periods close to 1 yr superimposed on a long-term trend. In the absence of an accurate photometric monitoring of these systems, it is not clear yet whether these variations are the signature of a very low-mass companion or of regular envelope pulsations. The period - eccentricity (P - e) diagram for the 40 low-metallicity carbon stars with orbits now available shows no difference between CH and CEMP-s stars (the latter corresponding to those CEMP stars enriched in s-process elements, as are CH stars). We suggest that they must be considered as one and the same family and that their different names only stem from historical reasons. Indeed, these two families have as well very similar mass-function distributions, corresponding to companions with masses in the range 0.5-0.7 M⊙, indicative of white-dwarf companions, adopting 0.8-0.9 M⊙ for the primary component. This result confirms that CH and CEMP-s stars obey the same mass-transfer scenario as their higher-metallicity analogues, barium stars. The P - e diagrams of barium, CH, and CEMP-s stars are indeed very similar. They reveal two different groups of systems: one with short orbital periods (P< 1000 d) and mostly circular or almost circular orbits, and another with longer period and eccentric (e> 0.1) orbits. These two groups either trace different evolutionary channels during the mass-transfer episode responsible for the chemical peculiarities of the Ba/CH/CEMP-s stars, or result from the operation of tidal circularisation in a more recent past, when the current giant star was ascending the first giant branch. Individual radial velocities are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A158

  14. The Most Metal-poor Stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Schlaufman, Kevin C.

    2018-06-01

    The chemical abundances of the most metal-poor stars in a galaxy can be used to investigate the earliest stages of its formation and chemical evolution. Differences between the abundances of the most metal-poor stars in the Milky Way and in its satellite dwarf galaxies have been noted and provide the strongest available constraints on the earliest stages of general galactic chemical evolution models. However, the masses of the Milky Way and its satellite dwarf galaxies differ by four orders of magnitude, leaving a gap in our knowledge of the early chemical evolution of intermediate mass galaxies like the Magellanic Clouds. To close that gap, we have initiated a survey of the metal-poor stellar populations of the Magellanic Clouds using the mid-infrared metal-poor star selection of Schlaufman & Casey (2014). We have discovered the three most metal-poor giant stars known in the Large Magellanic Cloud (LMC) and reobserved the previous record holder. The stars have metallicities in the range -2.70 < [Fe/H] < -2.00 and three show r-process enhancement: one has [Eu II/Fe] = +1.65 and two others have [Eu II/Fe] = +0.65. The probability that four randomly selected very metal-poor stars in the halo of the Milky Way are as r-process enhanced is 0.0002. For that reason, the early chemical enrichment of the heaviest elements in the LMC and Milky Way were qualitatively different. It is also suggestive of a possible chemical link between the LMC and the ultra-faint dwarf galaxies nearby with evidence of r-process enhancement (e.g., Reticulum II and Tucana III). Like Reticulum II, the most metal-poor star in our LMC sample is the only one not enhanced in r-process elements.

  15. SPECTROSCOPIC ANALYSIS OF METAL-POOR STARS FROM LAMOST: EARLY RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hai-Ning; Zhao, Gang; Wang, Liang

    2015-01-10

    We report on early results from a pilot program searching for metal-poor stars with LAMOST and follow-up high-resolution observation acquired with the MIKE spectrograph attached to the Magellan II telescope. We performed detailed abundance analysis for eight objects with iron abundances [Fe/H] < -2.0, including five extremely metal-poor (EMP; [Fe/H] < -3.0) stars with two having [Fe/H] < -3.5. Among these objects, three are newly discovered EMP stars, one of which is confirmed for the first time with high-resolution spectral observations. Three program stars are regarded as carbon-enhanced metal-poor (CEMP) stars, including two stars with no enhancement in their neutron-capturemore » elements, which thus possibly belong to the class of CEMP-no stars; one of these objects also exhibits significant enhancement in nitrogen, and is thus a potential carbon and nitrogen-enhanced metal-poor star. The [X/Fe] ratios of the sample stars generally agree with those reported in the literature for other metal-poor stars in the same [Fe/H] range. We also compared the abundance patterns of individual program stars with the average abundance pattern of metal-poor stars and find only one chemically peculiar object with abundances of at least two elements (other than C and N) showing deviations larger than 0.5 dex. The distribution of [Sr/Ba] versus [Ba/H] agrees that an additional nucleosynthesis mechanism is needed aside from a single r-process. Two program stars with extremely low abundances of Sr and Ba support the prospect that both main and weak r-processes may have operated during the early phase of Galactic chemical evolution. The distribution of [C/N] shows that there are two groups of carbon-normal giants with different degrees of mixing. However, it is difficult to explain the observed behavior of the [C/N] of the nitrogen-enhanced unevolved stars based on current data.« less

  16. The R-process Alliance: First Release from the Southern Search for R-process-enhanced Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Hansen, Terese T.; Holmbeck, Erika M.; Beers, Timothy C.; Placco, Vinicius M.; Roederer, Ian U.; Frebel, Anna; Sakari, Charli M.; Simon, Joshua D.; Thompson, Ian B.

    2018-05-01

    The recent detection of a binary neutron star merger and the clear evidence of the decay of radioactive material observed in this event have, after 60 years of effort, provided an astrophysical site for the rapid neutron-capture (r-) process which is responsible for the production of the heaviest elements in our universe. However, observations of metal-poor stars with highly enhanced r-process elements have revealed abundance patterns suggesting that multiple sites may be involved. To address this issue, and to advance our understanding of the r-process, we have initiated an extensive search for bright (V < 13.5), very metal-poor ([Fe/H] < ‑2) stars in the Milky Way halo exhibiting strongly enhanced r-process signatures. This paper presents the first sample collected in the southern hemisphere using the echelle spectrograph on du Pont 2.5 m telescope at Las Campanas Observatory. We have observed and analyzed 107 stars with ‑3.13 < [Fe/H] < ‑0.79. Of those, 12 stars are strongly enhanced in heavy r-process elements (r-II), 42 stars show moderate enhancements of heavy r-process material (r-I), and 20 stars exhibit low abundances of the heavy r-process elements and higher abundances of the light r-process elements relative to the heavy ones (limited-r). This search is more successful at finding r-process-enhanced stars compared to previous searches, primarily due to a refined target selection procedure that focuses on red giants. This paper includes data gathered with the 2.5 m du Pont telescope located at Las Campanas Observatory, Chile.

  17. Combined Analysis of the Binary Lens Caustic-crossing Event MACHO 98-SMC-1

    NASA Astrophysics Data System (ADS)

    Afonso, C.; Alard, C.; Albert, J. N.; Andersen, J.; Ansari, R.; Aubourg, É.; Bareyre, P.; Bauer, F.; Beaulieu, J. P.; Bouquet, A.; Char, S.; Charlot, X.; Couchot, F.; Coutures, C.; Derue, F.; Ferlet, R.; Glicenstein, J. F.; Goldman, B.; Gould, A.; Graff, D.; Gros, M.; Haissinski, J.; Hamilton, J. C.; Hardin, D.; de Kat, J.; Kim, A.; Lasserre, T.; Lesquoy, É.; Loup, C.; Magneville, C.; Marquette, J. B.; Maurice, É.; Milsztajn, A.; Moniez, M.; Palanque-Delabrouille, N.; Perdereau, O.; Prévot, L.; Regnault, N.; Rich, J.; Spiro, M.; Vidal-Madjar, A.; Vigroux, L.; Zylberajch, S.; Alcock, C.; Allsman, R. A.; Alves, D.; Axelrod, T. S.; Becker, A. C.; Cook, K. H.; Drake, A. J.; Freeman, K. C.; Griest, K.; King, L. J.; Lehner, M. J.; Marshall, S. L.; Minniti, D.; Peterson, B. A.; Pratt, M. R.; Quinn, P. J.; Rodgers, A. W.; Stetson, P. B.; Stubbs, C. W.; Sutherland, W.; Tomaney, A.; Vandehei, T.; Rhie, S. H.; Bennett, D. P.; Fragile, P. C.; Johnson, B. R.; Quinn, J.; Udalski, A.; Kubiak, M.; Szymański, M.; Pietrzyński, G.; Woźniak, P.; Zebruń, K.; Albrow, M. D.; Caldwell, J. A. R.; DePoy, D. L.; Dominik, M.; Gaudi, B. S.; Greenhill, J.; Hill, K.; Kane, S.; Martin, R.; Menzies, J.; Naber, R. M.; Pogge, R. W.; Pollard, K. R.; Sackett, P. D.; Sahu, K. C.; Vermaak, P.; Watson, R.; Williams, A.

    2000-03-01

    We fit the data for the binary lens microlensing event MACHO 98-SMC-1 from five different microlensing collaborations and find two distinct solutions characterized by binary separation d and mass ratio q: (d,q)=(0.54,0.50) and (d,q)=(3.65,0.36), where d is in units of the Einstein radius. However, the relative proper motion of the lens is very similar in the two solutions, 1.30 km s-1 kpc-1 and 1.48 km s-1 kpc-1, thus confirming that the lens is in the Small Magellanic Cloud. The close binary can be either rotating or approximately static but the wide binary must be rotating at close to its maximum allowed rate to be consistent with all the data. We measure limb-darkening coefficients for five bands ranging from I to V. As expected, these progressively decrease with rising wavelength. This is the first measurement of limb darkening for a metal-poor A star.

  18. The best and brightest metal-poor stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlaufman, Kevin C.; Casey, Andrew R., E-mail: kschlauf@mit.edu, E-mail: arc@ast.cam.ac.uk

    2014-12-10

    The chemical abundances of large samples of extremely metal-poor (EMP) stars can be used to investigate metal-free stellar populations, supernovae, and nucleosynthesis as well as the formation and galactic chemical evolution of the Milky Way and its progenitor halos. However, current progress on the study of EMP stars is being limited by their faint apparent magnitudes. The acquisition of high signal-to-noise spectra for faint EMP stars requires a major telescope time commitment, making the construction of large samples of EMP star abundances prohibitively expensive. We have developed a new, efficient selection that uses only public, all-sky APASS optical, 2MASS near-infrared,more » and WISE mid-infrared photometry to identify bright metal-poor star candidates through their lack of molecular absorption near 4.6 microns. We have used our selection to identify 11,916 metal-poor star candidates with V < 14, increasing the number of publicly available candidates by more than a factor of five in this magnitude range. Their bright apparent magnitudes have greatly eased high-resolution follow-up observations that have identified seven previously unknown stars with [Fe/H] ≲ –3.0. Our follow-up campaign has revealed that 3.8{sub −1.1}{sup +1.3}% of our candidates have [Fe/H] ≲ –3.0 and 32.5{sub −2.9}{sup +3.0}% have –3.0 ≲ [Fe/H] ≲ –2.0. The bulge is the most likely location of any existing Galactic Population III stars, and an infrared-only variant of our selection is well suited to the identification of metal-poor stars in the bulge. Indeed, two of our confirmed metal-poor stars with [Fe/H] ≲ –2.7 are within about 2 kpc of the Galactic center. They are among the most metal-poor stars known in the bulge.« less

  19. Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way.

    PubMed

    Howes, L M; Casey, A R; Asplund, M; Keller, S C; Yong, D; Nataf, D M; Poleski, R; Lind, K; Kobayashi, C; Owen, C I; Ness, M; Bessell, M S; Da Costa, G S; Schmidt, B P; Tisserand, P; Udalski, A; Szymański, M K; Soszyński, I; Pietrzyński, G; Ulaczyk, K; Wyrzykowski, Ł; Pietrukowicz, P; Skowron, J; Kozłowski, S; Mróz, P

    2015-11-26

    The first stars are predicted to have formed within 200 million years after the Big Bang, initiating the cosmic dawn. A true first star has not yet been discovered, although stars with tiny amounts of elements heavier than helium ('metals') have been found in the outer regions ('halo') of the Milky Way. The first stars and their immediate successors should, however, preferentially be found today in the central regions ('bulges') of galaxies, because they formed in the largest over-densities that grew gravitationally with time. The Milky Way bulge underwent a rapid chemical enrichment during the first 1-2 billion years, leading to a dearth of early, metal-poor stars. Here we report observations of extremely metal-poor stars in the Milky Way bulge, including one star with an iron abundance about 10,000 times lower than the solar value without noticeable carbon enhancement. We confirm that most of the metal-poor bulge stars are on tight orbits around the Galactic Centre, rather than being halo stars passing through the bulge, as expected for stars formed at redshifts greater than 15. Their chemical compositions are in general similar to typical halo stars of the same metallicity although intriguing differences exist, including lower abundances of carbon.

  20. Observing metal-poor stars with X-Shooter

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Bonifacio, P.; Sbordone, L.; Monaco, L.; François; , P.

    The extremely metal-poor stars (EMP) hold in their atmospheres the fossil record of the chemical composition of the early phases of the Galactic evolution. The chemical analysis of such objects provides important constraints on these early phases. EMP stars are very rare objects; to dig them out large amounts of data have to be considered. With an automatic procedure, we analysed objects with colours of Turn-Off stars from the Sloan Digital Sky Survey to select a sample of good candidate EMP stars. During the French-Italian GTO of the spectrograph X-Shooter, we observed a sample of these candidates. We could confirm the low metallicity of our sample of stars, and we succeeded in finding a record metal-poor star.

  1. GRAVITATIONAL WAVE BACKGROUND FROM BINARY MERGERS AND METALLICITY EVOLUTION OF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakazato, Ken’ichiro; Sago, Norichika; Niino, Yuu, E-mail: nakazato@artsci.kyushu-u.ac.jp

    The cosmological evolution of the binary black hole (BH) merger rate and the energy density of the gravitational wave (GW) background are investigated. To evaluate the redshift dependence of the BH formation rate, BHs are assumed to originate from low-metallicity stars, and the relations between the star formation rate, metallicity and stellar mass of galaxies are combined with the stellar mass function at each redshift. As a result, it is found that when the energy density of the GW background is scaled with the merger rate at the local universe, the scaling factor does not depend on the critical metallicitymore » for the formation of BHs. Also taking into account the merger of binary neutron stars, a simple formula to express the energy spectrum of the GW background is constructed for the inspiral phase. The relation between the local merger rate and the energy density of the GW background will be examined by future GW observations.« less

  2. High-Resolution Spectroscopic Study of Extremely Metal-Poor Star Candidates from the SkyMapper Survey

    NASA Astrophysics Data System (ADS)

    Jacobson, Heather R.; Keller, Stefan; Frebel, Anna; Casey, Andrew R.; Asplund, Martin; Bessell, Michael S.; Da Costa, Gary S.; Lind, Karin; Marino, Anna F.; Norris, John E.; Peña, José M.; Schmidt, Brian P.; Tisserand, Patrick; Walsh, Jennifer M.; Yong, David; Yu, Qinsi

    2015-07-01

    The SkyMapper Southern Sky Survey is carrying out a search for the most metal-poor stars in the Galaxy. It identifies candidates by way of its unique filter set which allows for estimation of stellar atmospheric parameters. The set includes a narrow filter centered on the Ca ii K 3933 Å line, enabling a robust estimate of stellar metallicity. Promising candidates are then confirmed with spectroscopy. We present the analysis of Magellan Inamori Kyocera Echelle high-resolution spectroscopy of 122 metal-poor stars found by SkyMapper in the first two years of commissioning observations. Forty-one stars have [{Fe}/{{H}}]≤slant -3.0. Nine have [{Fe}/{{H}}]≤slant -3.5, with three at [{Fe}/{{H}}]∼ -4. A 1D LTE abundance analysis of the elements Li, C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, Ba, and Eu shows these stars have [X/Fe] ratios typical of other halo stars. One star with low [X/Fe] values appears to be “Fe-enhanced,” while another star has an extremely large [Sr/Ba] ratio: \\gt 2. Only one other star is known to have a comparable value. Seven stars are “CEMP-no” stars ([{{C}}/{Fe}]\\gt 0.7, [{Ba}/{Fe}]\\lt 0). 21 stars exhibit mild r-process element enhancements (0.3≤slant [{Eu}/{Fe}]\\lt 1.0), while four stars have [{Eu}/{Fe}]≥slant 1.0. These results demonstrate the ability to identify extremely metal-poor stars from SkyMapper photometry, pointing to increased sample sizes and a better characterization of the metal-poor tail of the halo metallicity distribution function in the future. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  3. Dynamical Formation of Low-mass Merging Black Hole Binaries like GW151226

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Sourav; Rodriguez, Carl L.; Kalogera, Vicky

    2017-02-20

    Using numerical models for star clusters spanning a wide range in ages and metallicities (Z) we study the masses of binary black holes (BBHs) produced dynamically and merging in the local universe ( z ≲ 0.2). After taking into account cosmological constraints on star formation rate and metallicity evolution, which realistically relate merger delay times obtained from models with merger redshifts, we show here for the first time that while old, metal-poor globular clusters can naturally produce merging BBHs with heavier components, as observed in GW150914, lower-mass BBHs like GW151226 are easily formed dynamically in younger, higher-metallicity clusters. More specifically,more » we show that the mass of GW151226 is well within 1 σ of the mass distribution obtained from our models for clusters with Z/Z{sub ⊙} ≳ 0.5. Indeed, dynamical formation of a system like GW151226 likely requires a cluster that is younger and has a higher metallicity than typical Galactic globular clusters. The LVT151012 system, if real, could have been created in any cluster with Z/Z{sub ⊙} ≲ 0.25. On the other hand, GW150914 is more massive (beyond 1 σ ) than typical BBHs from even the lowest-metallicity (Z/Z{sub ⊙} = 0.005) clusters we consider, but is within 2 σ of the intrinsic mass distribution from our cluster models with Z/Z{sub ⊙} ≲ 0.05; of course, detection biases also push the observed distributions toward higher masses.« less

  4. VERY METAL-POOR STARS IN THE OUTER GALACTIC BULGE FOUND BY THE APOGEE SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia Perez, Ana E.; Majewski, Steven R.; Hearty, Fred R.

    2013-04-10

    Despite its importance for understanding the nature of early stellar generations and for constraining Galactic bulge formation models, at present little is known about the metal-poor stellar content of the central Milky Way. This is a consequence of the great distances involved and intervening dust obscuration, which challenge optical studies. However, the Apache Point Observatory Galactic Evolution Experiment (APOGEE), a wide-area, multifiber, high-resolution spectroscopic survey within Sloan Digital Sky Survey III, is exploring the chemistry of all Galactic stellar populations at infrared wavelengths, with particular emphasis on the disk and the bulge. An automated spectral analysis of data on 2403more » giant stars in 12 fields in the bulge obtained during APOGEE commissioning yielded five stars with low metallicity ([Fe/H] {<=} -1.7), including two that are very metal-poor [Fe/H] {approx} -2.1 by bulge standards. Luminosity-based distance estimates place the 5 stars within the outer bulge, where 1246 of the other analyzed stars may reside. A manual reanalysis of the spectra verifies the low metallicities, and finds these stars to be enhanced in the {alpha}-elements O, Mg, and Si without significant {alpha}-pattern differences with other local halo or metal-weak thick-disk stars of similar metallicity, or even with other more metal-rich bulge stars. While neither the kinematics nor chemistry of these stars can yet definitively determine which, if any, are truly bulge members, rather than denizens of other populations co-located with the bulge, the newly identified stars reveal that the chemistry of metal-poor stars in the central Galaxy resembles that of metal-weak thick-disk stars at similar metallicity.« less

  5. A survey of the Local Group of galaxies for symbiotic binary stars - I. First detection of symbiotic stars in M33

    NASA Astrophysics Data System (ADS)

    Mikołajewska, Joanna; Shara, Michael M.; Caldwell, Nelson; Iłkiewicz, Krystian; Zurek, David

    2017-02-01

    We present and discuss initial selection criteria and first results in M33 from a systematic search for extragalactic symbiotic stars. We show that the presence of diffuse ionized gas (DIG) emission can significantly contaminate the spectra of symbiotic star candidates. This important effect forces upon us a more stringent working definition of an extragalactic symbiotic star. We report the first detections and spectroscopic characterization of 12 symbiotic binaries in M33. We found that four of our systems contain carbon-rich giants. In another two of them, the giant seems to be a Zr-enhanced MS star, while the remaining six objects host M-type giants. The high number ratio of C to M giants in these binaries is consistent with the low metallicity of M33. The spatial and radial velocity distributions of these new symbiotic binaries are consistent with a wide range of progenitor star ages.

  6. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range

    NASA Astrophysics Data System (ADS)

    Belczynski, Krzysztof; Holz, Daniel E.; Bulik, Tomasz; O'Shaughnessy, Richard

    2016-06-01

    The merger of two massive (about 30 solar masses) black holes has been detected in gravitational waves. This discovery validates recent predictions that massive binary black holes would constitute the first detection. Previous calculations, however, have not sampled the relevant binary-black-hole progenitors—massive, low-metallicity binary stars—with sufficient accuracy nor included sufficiently realistic physics to enable robust predictions to better than several orders of magnitude. Here we report high-precision numerical simulations of the formation of binary black holes via the evolution of isolated binary stars, providing a framework within which to interpret the first gravitational-wave source, GW150914, and to predict the properties of subsequent binary-black-hole gravitational-wave events. Our models imply that these events form in an environment in which the metallicity is less than ten per cent of solar metallicity, and involve stars with initial masses of 40-100 solar masses that interact through mass transfer and a common-envelope phase. These progenitor stars probably formed either about 2 billion years or, with a smaller probability, 11 billion years after the Big Bang. Most binary black holes form without supernova explosions, and their spins are nearly unchanged since birth, but do not have to be parallel. The classical field formation of binary black holes we propose, with low natal kicks (the velocity of the black hole at birth) and restricted common-envelope evolution, produces approximately 40 times more binary-black-holes mergers than do dynamical formation channels involving globular clusters; our predicted detection rate of these mergers is comparable to that from homogeneous evolution channels. Our calculations predict detections of about 1,000 black-hole mergers per year with total masses of 20-80 solar masses once second-generation ground-based gravitational-wave observatories reach full sensitivity.

  7. Chemical abundances of primary stars in the Sirius-like binary systems

    NASA Astrophysics Data System (ADS)

    Kong, X. M.; Zhao, G.; Zhao, J. K.; Shi, J. R.; Kumar, Y. Bharat; Wang, L.; Zhang, J. B.; Wang, Y.; Zhou, Y. T.

    2018-05-01

    Study of primary stars lying in Sirius-like systems with various masses of white dwarf (WD) companions and orbital separations is one of the key aspects to understand the origin and nature of barium (Ba) stars. In this paper, based on high-resolution and high-S/N spectra, we present systematic analysis of photospheric abundances for 18 FGK primary stars of Sirius-like systems including six giants and 12 dwarfs. Atmospheric parameters, stellar masses, and abundances of 24 elements (C, Na, Mg, Al, Si, S, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Ba, La, Ce, and Nd) are determined homogeneously. The abundance patterns in these sample stars show that most of the elements in our sample follow the behaviour of field stars with similar metallicity. As expected, s-process elements in four known Ba giants show overabundance. A weak correlation was found between anomalies of s-process elemental abundance and orbital separation, suggesting that the orbital separation of the binaries could not be the main constraint to differentiate strong Ba stars from mild Ba stars. Our study shows that the large mass (>0.51 M⊙) of a WD companion in a binary system is not a sufficient condition to form a Ba star, even if the separation between the two components is small. Although not sufficient, it seems to be a necessary condition since Ba stars with lower mass WDs in the observed sample were not found. Our results support that [s/Fe] and [hs/ls] ratios of Ba stars are anti-correlated with the metallicity. However, the different levels of s-process overabundance among Ba stars may not be dominated mainly by the metallicity.

  8. The Connection Between X-ray Binaries and Star Clusters in the Antennae

    NASA Astrophysics Data System (ADS)

    Rangelov, Blagoy; Chandar, R.; Prestwich, A.

    2011-05-01

    High Mass X-ray Binaries (HMXBs) are believed to form in massive, compact star clusters. However the correlation between these young binary star systems and properties of their parent clusters are still poorly known. We compare the locations of 82 X-ray binaries detected in the merging Antennae galaxies by Zezas et al. (2006) based on observations taken with the Chandra Space Telescope, with a catalog of optically selected star clusters presented recently by Whitmore et al. (2010) based on observations taken with the Hubble Space Telescope. We find 22 X-ray binaries coincident or nearly coincident with star clusters. The ages of the clusters were estimated by comparing their UBVIHα colors with predictions from stellar evolutionary models. We find that 14 of the 22 coincident sources (64%) are hosted by star clusters with ages of 6 Myr or less. At these very young ages, only stars initially more massive than M ≥ 30 Msun have evolved into compact remnants, almost certainly black holes. Therefore, these 14 sources are likely to be black hole binaries. Five of the XRBs are hosted by young clusters with ages τ 30-50 Myr, while three are hosted by intermediate age clusters with τ 100-300 Myr. We suggest that these older X-ray binaries likely have neutron stars as the compact object. We conclude that precision age-dating of star clusters, which are spatially coincident with XRBs in nearby star forming galaxies, is a powerful method of constraining the nature of the XRBs.

  9. Chemo-Dynamical Evolution of r-process Elements in the Local Group Galaxies

    NASA Astrophysics Data System (ADS)

    Hirai, Yutaka; Ishimaru, Yuhri; Saitoh, Takayuki R.; Fujii, Michiko S.; Hidaka, Jun; Kajino, Toshitaka

    The astrophysical site(s) of r-process is not yet identified over half a century. Astronomical high dispersion observations have shown that extremely metal-poor (EMP) stars in the Milky Way (MW) halo have large star-to-star dispersions in the abundance of r-process elements. Binary neutron star mergers (NSMs) are one of the most promising sites of r-process. However, several studies suggested that it is difficult to reproduce the dispersions by NSMs due to their long merger times and low rates. In this study, we performed a series of N-body/smoothed particle hydrodynamic simulations of dwarf galaxies. We show that NSMs can explain the dispersions with long merger times (˜100 Myr). We find that the metallicity of our simulated galaxies does not correlate with time in their early phase due to slow chemical enrichment. This slow chemical enrichment produces [Eu/Fe] distribution which is consistent with the observation. Our results suggest that stars in the MW halo formed with a low star formation rate of less than 10 - 3M ⊙ yr-1, which is common for typical dwarf galaxies in the MW. Our simulations support the scenario that early enrichment of the MW halo occurred in the framework of hierarchical structure formation.

  10. The formation efficiency of different generations of HMXBs in the low metallicity environment of the SMC

    NASA Astrophysics Data System (ADS)

    Antoniou, Vallia; Zezas, Andreas; Drake, Jeremy J.; Badenes, Carles; Hong, Jaesub; SMC XVP Collaboration

    2018-01-01

    Nearby star-forming galaxies offer a unique environment to study the populations of young (<100 Myr) X-ray binaries, which consist of a compact object - typically a neutron star or a black hole - powered by accretion from a companion star. These systems are tracers of past populations of massive stars that heavily affect their immediate environment and parent galaxies. The Small Magellanic Cloud (SMC) is the ideal environment for population studies of young X-ray binaries by providing us with what the Milky Way cannot: A complete sample of X-ray sources within a galaxy. Using a Chandra X-ray Visionary program, we investigate the young neutron-star binary population in this low-metallicity, nearby, star-forming galaxy by reaching quiescent X-ray luminosity levels (~few times 1032 erg/s). In this talk, I will present the first measurement of the formation efficiency of high-mass X-ray binaries (HMXBs) as a function of the age of their parent stellar populations. We use three indicators of the formation efficiency of young accreting binaries in the low SMC metallicity: the number ratio of the HMXBs, N(HMXBs), to the number of OB stars, to the star-formation rate (SFR), and to the stellar mass produced during the specific star-formation burst they are associated with, all as a function of the age of their parent stellar populations. In all cases, we find that the HMXB formation efficiency increases as a function of time up to ~40—60 Myr, and then gradually decreases. The peak formation efficiency N(HMXB)/SFR is in good agreement with previous estimates of the average formation efficiency in the broad ~20—60 Myr age range, and a factor of at least ~8 and ~4 higher than the formation efficiency in earlier (~10 Myr) and later (~260 Myr) epochs. I will also present the deepest luminosity function ever recorded for a galaxy, and discuss the X-ray properties of the largest sample of extragalactic accreting pulsars as well.

  11. The Fossil Record of Two-phase Galaxy Assembly: Kinematics and Metallicities in the Nearest S0 Galaxy

    NASA Astrophysics Data System (ADS)

    Arnold, Jacob A.; Romanowsky, Aaron J.; Brodie, Jean P.; Chomiuk, Laura; Spitler, Lee R.; Strader, Jay; Benson, Andrew J.; Forbes, Duncan A.

    2011-08-01

    We present a global analysis of kinematics and metallicity in the nearest S0 galaxy, NGC 3115, along with implications for its assembly history. The data include high-quality wide-field imaging from Suprime-Cam on the Subaru telescope, and multi-slit spectra of the field stars and globular clusters (GCs) obtained using Keck-DEIMOS/LRIS and Magellan-IMACS. Within two effective radii, the bulge (as traced by the stars and metal-rich GCs) is flattened and rotates rapidly (v/σ >~ 1.5). At larger radii, the rotation declines dramatically to v/σ ~ 0.7, but remains well aligned with the inner regions. The radial decrease in characteristic metallicity of both the metal-rich and metal-poor GC subpopulations produces strong gradients with power-law slopes of -0.17 ± 0.04 and -0.38 ± 0.06 dex dex-1, respectively. We argue that this pattern is not naturally explained by a binary major merger, but instead by a two-phase assembly process where the inner regions have formed in an early violent, dissipative phase, followed by the protracted growth of the outer parts via minor mergers with typical mass ratios of ~15-20:1.

  12. DISTINGUISHING COMPACT BINARY POPULATION SYNTHESIS MODELS USING GRAVITATIONAL WAVE OBSERVATIONS OF COALESCING BINARY BLACK HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, Simon; Ohme, Frank; Fairhurst, Stephen, E-mail: simon.stevenson@ligo.org

    2015-09-01

    The coalescence of compact binaries containing neutron stars or black holes is one of the most promising signals for advanced ground-based laser interferometer gravitational-wave (GW) detectors, with the first direct detections expected over the next few years. The rate of binary coalescences and the distribution of component masses is highly uncertain, and population synthesis models predict a wide range of plausible values. Poorly constrained parameters in population synthesis models correspond to poorly understood astrophysics at various stages in the evolution of massive binary stars, the progenitors of binary neutron star and binary black hole systems. These include effects such asmore » supernova kick velocities, parameters governing the energetics of common envelope evolution and the strength of stellar winds. Observing multiple binary black hole systems through GWs will allow us to infer details of the astrophysical mechanisms that lead to their formation. Here we simulate GW observations from a series of population synthesis models including the effects of known selection biases, measurement errors and cosmology. We compare the predictions arising from different models and show that we will be able to distinguish between them with observations (or the lack of them) from the early runs of the advanced LIGO and Virgo detectors. This will allow us to narrow down the large parameter space for binary evolution models.« less

  13. The Solar-Type Hard-Binary Frequency and Distributions of Orbital Parameters in the Open Cluster M37

    NASA Astrophysics Data System (ADS)

    Geller, Aaron M.; Meibom, Soren; Barnes, Sydney A.; Mathieu, Robert D.

    2014-02-01

    Binary stars, and particularly the short-period ``hard'' binaries, govern the dynamical evolution of star clusters and determine the formation rates and mechanisms for exotic stars like blue stragglers and X-ray sources. Understanding the near-primordial hard-binary population of star clusters is of primary importance for dynamical models of star clusters, which have the potential to greatly advance our understanding of star cluster evolution. Yet the binary frequencies and distributions of binary orbital parameters (period, eccentricity, etc.) for young coeval stellar populations are poorly known, due to a lack of necessary observations. The young (~540 Myr) open cluster M37 hosts a rich binary population that can be used to empirically define these initial conditions. Importantly, this cluster has been the target of a comprehensive WIYN/Hydra radial-velocity (RV) survey, from which we have already identified a nearly complete sample of 329 solar-type (1.5 <=M [M_⊙] <=1.0) members in M37. Of these stars, 82 show significant RV variability, indicative of a binary companion. We propose to build upon these data with a multi-epoch RV survey using WIYN/Hydra to derive kinematic orbital solutions for these 82 binaries in M37. This project was granted time in 2013B and scheduled for later this year. We anticipate that about half of the detected binaries in M37 will acquire enough RV measurements (>=10) in 2013B to begin searching for orbital solutions. With this proposal and perhaps one additional semester we should achieve >=10 RV measurements for the remaining binaries.

  14. Follow up observationes of extremely metal-poor stars identified from SDSS and LAMOST

    NASA Astrophysics Data System (ADS)

    Aguado, David; Allende Prieto, Carlos; González Hernández, Jonay I.; Rebolo, Rafael

    2017-06-01

    The most metal-poor stars in the Milky Way witnessed the early phases of formation of the Galaxy, and have chemical compositions close to the pristine mixture from Big Bang nucleosynthesis, polluted by one or very few supernovae. Here we present a program to search for and characterize new ultra metal-poor stars in the Galactic halo. These stars are extremely rare; despite significant efforts, only a handful of stars have been identified with a metallicity [Fe/H]< -5. We select candidates from SDSS and LAMOST. Dozens of them have already been observed with the ISIS spectrograph on the 4.2 m William Herschel Telescope. The most interesting objects have been confirmed with OSIRIS on the 10.4m-GTC and HRS on the 9.2 m HET. Our analysis is highly automated, and based on the FERRE code. We report the discovery of a new carbon-rich ultra metal-poor (CRUMP) dwarf star at [Fe/H]~ -5.8 with an extreme carbon over-abundance [C/Fe]~ +5.0.

  15. Abundances in the Very Metal Poor s-Process-rich Star CS 22183-015

    NASA Astrophysics Data System (ADS)

    Johnson, Jennifer A.; Bolte, Michael

    2002-11-01

    We report on the abundances for 13 elements in CS 22183-015, the most metal-poor, s-process-rich star yet discovered. We measure [Fe/H]=-3.12 and large overabundances compared to scaled solar values for 11 heavy elements with s-process origin. The low luminosity of the star suggests that it is a CH star, a giant that has accreted s-processed material from an evolved, very metal poor companion. We find a [Pb/Ba] value of 1.1 dex and, more generally, that the ratio of heavy to light s-process elements is larger than seen in the solar system. This result is consistent with theoretical expectations for the s-process in metal-poor stars. [Eu/La] is higher than predicted from the solar system s-process abundance ratios. We argue that the s-process in metal-poor stars is more efficient at producing Eu that in asymptotic giant branch stars of solar metallicity. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  16. Characterizing the X-ray Emission in Small Magellanic Cloud Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Man, Nicole; Auchettl, Katie; Lopez, Laura

    2018-01-01

    The Small Magellanic Cloud is a close, metal-poor galaxy with active star formation, and it has a diverse population of 24 supernova remnants (SNRs) that have been identified at several wavelengths. Past work has characterized the X-ray emission in these sources separately and aimed to constrain their explosive origins from observations with Chandra and XMM-Newton. Three SNRs have possible evidence for Type Ia explosions based on strong Fe-L emission in their X-ray spectra, although the environments and intermediate-mass element abundances are more consistent with those of core-collapse SNe. In this poster, we analyze the archival Chandra and XMM-Newton observations of the SMC SNR sample, and we model the sources' X-ray spectra in a systematic way to derive the plasma properties and to constrain the nature of the explosions. In one SNR, we note the presence of an X-ray binary near the source's geometric center, suggesting the compact object was produced in the SN explosion. As one of only three SNRs known in the Local Group to host a binary system, this source is worthy of follow-up investigations to probe explosions of massive stars in binary systems.

  17. Infrared colours and inferred masses of metal-poor giant stars in the Keplerfield

    NASA Astrophysics Data System (ADS)

    Casey, A. R.; Kennedy, G. M.; Hartle, T. R.; Schlaufman, Kevin C.

    2018-05-01

    Intrinsically luminous giant stars in the Milky Way are the only potential volume-complete tracers of the distant disk, bulge, and halo. The chemical abundances of metal-poor giants also reflect the compositions of the earliest star-forming regions, providing the initial conditions for the chemical evolution of the Galaxy. However, the intrinsic rarity of metal-poor giants combined with the difficulty of efficiently identifying them with broad-band optical photometry has made it difficult to exploit them for studies of the Milky Way. One long-standing problem is that photometric selections for giant and/or metal-poor stars frequently include a large fraction of metal-rich dwarf contaminants. We re-derive a giant star photometric selection using existing public g-band and narrow-band DDO51photometry obtained in the Keplerfield. Our selection is simple and yields a contamination rate of main-sequence stars of ≲1% and a completeness of about 80 % for giant stars with Teff ≲ 5250 K - subject to the selection function of the spectroscopic surveys used to estimate these rates, and the magnitude range considered (11 ≲ g ≲ 15). While the DDO51filter is known to be sensitive to stellar surface gravity, we further show that the mid-infrared colours of DDO51-selected giants are strongly correlated with spectroscopic metallicity. This extends the infrared metal-poor selection developed by Schlaufman & Casey, demonstrating that the principal contaminants in their selection can be efficiently removed by the photometric separation of dwarfs and giants. This implies that any similarly efficient dwarf/giant discriminant (e.g., Gaiaparallaxes) can be used in conjunction with WISEcolours to select samples of giant stars with high completeness and low contamination. We employ our photometric selection to identify three metal-poor giant candidates in the Keplerfield with global asteroseismic parameters and find that masses inferred for these three stars using standard asteroseismic scaling relations are systematically over-estimated by 20-175%. Taken at face value, this small sample size implies that standard asteroseismic scaling relations over-predict stellar masses for metal-poor giant stars.

  18. Carbon Stars Identified from LAMOST DR4 Using Machine Learning

    NASA Astrophysics Data System (ADS)

    Li, Yin-Bi; Luo, A.-Li; Du, Chang-De; Zuo, Fang; Wang, Meng-Xin; Zhao, Gang; Jiang, Bi-Wei; Zhang, Hua-Wei; Liu, Chao; Qin, Li; Wang, Rui; Du, Bing; Guo, Yan-Xin; Wang, Bo; Han, Zhan-Wen; Xiang, Mao-Sheng; Huang, Yang; Chen, Bing-Qiu; Chen, Jian-Jun; Kong, Xiao; Hou, Wen; Song, Yi-Han; Wang, You-Fen; Wu, Ke-Fei; Zhang, Jian-Nan; Zhang, Yong; Wang, Yue-Fei; Cao, Zi-Huang; Hou, Yong-Hui; Zhao, Yong-Heng

    2018-02-01

    In this work, we present a catalog of 2651 carbon stars from the fourth Data Release (DR4) of the Large Sky Area Multi-Object Fiber Spectroscopy Telescope (LAMOST). Using an efficient machine-learning algorithm, we find these stars from more than 7 million spectra. As a by-product, 17 carbon-enhanced metal-poor turnoff star candidates are also reported in this paper, and they are preliminarily identified by their atmospheric parameters. Except for 176 stars that could not be given spectral types, we classify the other 2475 carbon stars into five subtypes: 864 C-H, 226 C-R, 400 C-J, 266 C-N, and 719 barium stars based on a series of spectral features. Furthermore, we divide the C-J stars into three subtypes, C-J(H), C-J(R), and C-J(N), and about 90% of them are cool N-type stars as expected from previous literature. Besides spectroscopic classification, we also match these carbon stars to multiple broadband photometries. Using ultraviolet photometry data, we find that 25 carbon stars have FUV detections and that they are likely to be in binary systems with compact white dwarf companions.

  19. Normal and outlying populations of the Milky Way stellar halo at [Fe/H] <–2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, Judith G.; Christlieb, Norbert; Thompson, Ian

    2013-11-20

    From detailed abundance analysis of >100 Hamburg/ESO candidate extremely metal-poor (EMP) stars we find 45 with [Fe/H] < –3.0 dex. We identify a heretofore unidentified group: Ca-deficient stars with sub-solar [Ca/Fe] ratios and the lowest neutron-capture abundances; the Ca-deficient group comprises ∼10% of the sample, excluding Carbon stars. Our radial velocity distribution shows that the carbon-enhanced stars with no s-process enhancements, CEMP-no, and which do not show C{sub 2} bands are not preferentially binary systems. Ignoring Carbon stars, approximately 15% of our sample are strong (≥5σ) outliers in one or more elements between Mg and Ni; this rises to ∼19%more » if very strong (≥10σ) outliers for Sr and Ba are included. Examples include: HE0305–0554 with the lowest [Ba/H] known; HE1012–1540 and HE2323–0256, two (non-velocity variable) C-rich stars with very strong [Mg,Al/Fe] enhancements; and HE1226–1149, an extremely r-process rich star.« less

  20. Hot Subluminous Stars

    NASA Astrophysics Data System (ADS)

    Heber, U.

    2016-08-01

    Hot subluminous stars of spectral type B and O are core helium-burning stars at the blue end of the horizontal branch or have evolved even beyond that stage. Most hot subdwarf stars are chemically highly peculiar and provide a laboratory to study diffusion processes that cause these anomalies. The most obvious anomaly lies with helium, which may be a trace element in the atmosphere of some stars (sdB, sdO) while it may be the dominant species in others (He-sdB, He-sdO). Strikingly, the distribution in the Hertzsprung-Russell diagram of He-rich versus He-poor hot subdwarf stars of the globular clusters ω Cen and NGC 2808 differ from that of their field counterparts. The metal-abundance patterns of hot subdwarfs are typically characterized by strong deficiencies of some lighter elements as well as large enrichments of heavy elements. A large fraction of sdB stars are found in close binaries with white dwarf or very low-mass main sequence companions, which must have gone through a common-envelope (CE) phase of evolution. Because the binaries are detached they provide a clean-cut laboratory to study this important but yet poorly understood phase of stellar evolution. Hot subdwarf binaries with sufficiently massive white dwarf companions are viable candidate progenitors of type Ia supernovae both in the double degenerate as well as in the single degenerate scenario as helium donors for double detonation supernovae. The hyper-velocity He-sdO star US 708 may be the surviving donor of such a double detonation supernova. Substellar companions to sdB stars have also been found. For HW Vir systems the companion mass distribution extends from the stellar into the brown dwarf regime. A giant planet to the acoustic-mode pulsator V391 Peg was the first discovery of a planet that survived the red giant evolution of its host star. Evidence for Earth-size planets to two pulsating sdB stars have been reported and circumbinary giant planets or brown dwarfs have been found around HW Vir systems from eclipse timings. The high incidence of circumbinary substellar objects suggests that most of the planets are formed from the remaining CE material (second generation planets). Several types of pulsating star have been discovered among hot subdwarf stars, the most common are the gravity-mode sdB pulsators (V1093 Her) and their hotter siblings, the p-mode pulsating V361 Hya stars. Another class of multi-periodic pulsating hot subdwarfs has been found in the globular cluster ω Cen that is unmatched by any field star. Asteroseismology has advanced enormously thanks to the high-precision Kepler photometry and allowed stellar rotation rates to be determined, the interior structure of gravity-mode pulsators to be probed and stellar ages to be estimated. Rotation rates turned out to be unexpectedly slow calling for very efficient angular momentum loss on the red giant branch or during the helium core flash. The convective cores were found to be larger than predicted by standard stellar evolution models requiring very efficient angular momentum transport on the red giant branch. The masses of hot subdwarf stars, both single or in binaries, are the key to understand the stars’ evolution. A few pulsating sdB stars in eclipsing binaries have been found that allow both techniques to be applied for mass determination. The results, though few, are in good agreement with predictions from binary population synthesis calculations. New classes of binaries, hosting so-called extremely low mass (ELM) white dwarfs (M < 0.3 M ⊙), have recently been discovered, filling a gap in the mosaic of binary stellar evolution. Like most sdB stars the ELM white dwarfs are the stripped cores of red giants, the known companions are either white dwarfs, neutron stars (pulsars) or F- or A-type main sequence stars (“EL CVn” stars). In the near future, the Gaia mission will provide high-precision astrometry for a large sample of subdwarf stars to disentangle the different stellar populations in the field and to compare the field subdwarf population with the globular clusters’ hot subdwarfs. New fast-moving subdwarfs will allow the mass of the Galactic dark matter halo to be constrained and additional unbound hyper-velocity stars may be discovered. Subdwarf O/B stars and extremely low mass white dwarfs: atmospheric parameters and abundances, formation and evolution, binaries, planetary companions, pulsation, and kinematics.

  1. Abundance patterns of the light neutron-capture elements in very and extremely metal-poor stars

    NASA Astrophysics Data System (ADS)

    Spite, F.; Spite, M.; Barbuy, B.; Bonifacio, P.; Caffau, E.; François, P.

    2018-03-01

    Aims: The abundance patterns of the neutron-capture elements in metal-poor stars provide a unique record of the nucleosynthesis products of the earlier massive primitive objects. Methods: We measured new abundances of so-called light neutron-capture of first peak elements using local thermodynamic equilibrium (LTE) 1D analysis; this analysis resulted in a sample of 11 very metal-poor stars, from [Fe/H] = -2.5 to [Fe/H] = -3.4, and one carbon-rich star, CS 22949-037 with [Fe/H] = -4.0. The abundances were compared to those observed in two classical metal-poor stars: the typical r-rich star CS 31082-001 ([Eu/Fe] > +1.0) and the r-poor star HD 122563 ([Eu/Fe] < 0.0), which are known to present a strong enrichment of the first peak neutron-capture elements relative to the second peak. Results: Within the first peak, the abundances are well correlated in analogy to the well-known correlation inside the abundances of the second-peak elements. In contrast, there is no correlation between any first peak element with any second peak element. We show that the scatter of the ratio of the first peak abundance over second peak abundance increases when the mean abundance of the second peak elements decreases from r-rich to r-poor stars. We found two new r-poor stars that are very similar to HD 122563. A third r-poor star, CS 22897-008, is even more extreme; this star shows the most extreme example of first peak elements enrichment to date. On the contrary, another r-poor star (BD-18 5550) has a pattern of first peak elements that is similar to the typical r-rich stars CS 31082-001, however this star has some Mo enrichment. Conclusions: The distribution of the neutron-capture elements in our very metal-poor stars can be understood as the combination of at least two mechanisms: one that enriches the forming stars cloud homogeneously through the main r-process and leads to an element pattern similar to the r-rich stars, such as CS 31082-001; and another that forms mainly lighter, first peak elements. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 165.N-0276(A), (PI R.Cayrel).

  2. A spectroscopic survey of the WNL stars in the Large Magellanic Cloud: General properties and binary status

    NASA Astrophysics Data System (ADS)

    Schnurr, Olivier

    2008-09-01

    This thesis presents the results of an intense, spectroscopic survey of 41 of the 47 known, late-type, nitrogen-rich Wolf-Rayet (WR) stars in the Large Magellanic Cloud (LMC) which could be observed with ground-based, optical telescopes. For the study of the remaining 6 WNL located in the extremely dense central object of 30 Dor, R136, adaptive-optics assisted, near-infrared spectroscopy was required. The results of this study will be published elsewhere. Our survey concludes the decade-long effort of the Montreal Massive-Star Group to monitor all known WR stars in the Magellanic Clouds for radial-velocity (RV) variations due to binarity, a point which has been debated since the true, evolved nature of WR stars has been recognized in the late 1960s. From model calculations, it was expected that with decreasing metallicity, the binary frequency among WR stars increases, or otherwise the progenitor stars could not have turned into a WR star. Our survey set out to observationally test this assumption. After summarizing the general importance of massive stars, we describe the spectroscopic observations of our program stars. We then detail the data analysis process, which encompasses careful calibration and proper choice of RV standards. We also include publicly available, visible and X-ray photometric data in our analysis. We are able to identify four previously unknown binaries in our sample, bringing the total number of known WNL binaries in the LMC to only nine. As a direct result, we question the assumption that binarity is required to form WR stars at lower metallicity. At least some of the hydrogen-containing WNL stars in our sample seem not to be genuine, evolved, helium-burning WR stars, but rather unevolved, hydrogen- burning objects. There is ample evidence that some of these stars are the most massive stars known. As a second and most remarkable result, all but one of our nine binaries harbor such extreme objects; this greatly enlarges the sample of such known binaries, and paves the way for an independent mass determination via Keplerian orbits in further studies, some of which we have already initiated. The results of those studies will be crucial for calibrating stellar models. One of these binaries, R145, is then studied in greater detail, combining previously published and unpublished data with ours, to present, for the first time, a full set of orbital parameters for both components of the binary system. Since we also determine the orbital inclination angle, we are able to derive the absolute masses of this extreme object. It is found that R145 very likely harbors the most massive star known and properly "weighed" so far.

  3. Determinación de miembros, binaridad y metalicidad de gigantes rojas en el cúmulo abierto de edad intermedia NGC 2354

    NASA Astrophysics Data System (ADS)

    Clariá, J. J.; Mermilliod, J. C.; Piatti, A. E.

    We present new Coravel radial-velocity observations and photoelectric photometry in the UBV, DDO and Washington systems for a sample of red giant candidates in the field of the intermediate-age open cluster NGC 2354. Photometric membership probabilities show very good agrement with those obtained from Coravel radial velocities. The analysis of the photometric and kinematical data allow us to confirm cluster membership for 9 red giants, one of them being a spectroscopic binary, while 4 confirmed spectroscopic binaries appear to be probable members. We have also discovered 4 spectroscopic binaries not belonging to the cluster. A mean radial velocity of (33.40±0.27)km s-1 and a mean reddening E(B-V)= 0.13±0.03 were derived for the cluster giants. NGC 2354 has a mean ultraviolet excess <δ(U-B)>=-0.03±0.01, relative to the field K giants, and a mean new cyanogen anomaly ΔCN=-0.035±0.007, both implying [Fe/H]≈-0.3. The moderately metal-poor character of NGC 2354 is confirmed using five different metal abundance indicators of the Washington system. The cluster giant branch is formed by a well defined clump of 7 stars and 4 stars with high membership probabilities seem to define an ascending giant branch. The whole red giant locus cannot be reproduced by any theoretical track. This paper will appear in Astron. & Astrophys. Suppl. (1999).

  4. The effect of stellar evolution uncertainties on the rest-frame ultraviolet stellar lines of C IV and He II in high-redshift Lyman-break galaxies

    NASA Astrophysics Data System (ADS)

    Eldridge, John J.; Stanway, Elizabeth R.

    2012-01-01

    Young, massive stars dominate the rest-frame ultraviolet (UV) spectra of star-forming galaxies. At high redshifts (z > 2), these rest-frame UV features are shifted into the observed-frame optical and a combination of gravitational lensing, deep spectroscopy and spectral stacking analysis allows the stellar population characteristics of these sources to be investigated. We use our stellar population synthesis code Binary Population and Spectral Synthesis (BPASS) to fit two strong rest-frame UV spectral features in published Lyman-break galaxy spectra, taking into account the effects of binary evolution on the stellar spectrum. In particular, we consider the effects of quasi-homogeneous evolution (arising from the rotational mixing of rapidly rotating stars), metallicity and the relative abundance of carbon and oxygen on the observed strengths of He IIλ1640 Å and C IVλ1548, 1551 Å spectral lines. We find that Lyman-break galaxy spectra at z ˜ 2-3 are best fitted with moderately sub-solar metallicities, and with a depleted carbon-to-oxygen ratio. We also find that the spectra of the lowest metallicity sources are best fitted with model spectra in which the He II emission line is boosted by the inclusion of the effect of massive stars being spun-up during binary mass transfer so these rapidly rotating stars experience quasi-homogeneous evolution.

  5. Multiplicity of the Galactic Senior Citizens: A High-resolution Search for Cool Subdwarf Companions

    NASA Astrophysics Data System (ADS)

    Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Riddle, Reed L.; Fuchs, Joshua T.

    2015-05-01

    Cool subdwarfs are the oldest members of the low-mass stellar population. Mostly present in the galactic halo, subdwarfs are characterized by their low-metallicity. Measuring their binary fraction and comparing it to solar-metallicity stars could give key insights into the star formation process early in the Milky Way’s history. However, because of their low luminosity and relative rarity in the solar neighborhood, binarity surveys of cool subdwarfs have suffered from small sample sizes and incompleteness. Previous surveys have suggested that the binary fraction of red subdwarfs is much lower than for their main-sequence cousins. Using the highly efficient Robo-AO system, we present the largest high-resolution survey of subdwarfs, sensitive to angular separations (ρ ≥slant 0.″ 15) and contrast ratios ({Δ }{{m}i} ≤slant 6) invisible in past surveys. Of 344 target cool subdwarfs, 43 are in multiple systems, 19 of which are newly discovered, for a binary fraction of 12.5 ± 1.9%. We also discovered seven triple star systems for a triplet fraction of 2.0 ± 0.8%. Comparisons to similar surveys of solar-metallicity dwarf stars gives a ∼3σ disparity in luminosity between companion stars, with subdwarfs displaying a shortage of low-contrast companions. We also observe a lack of close subdwarf companions in comparison to similar-mass dwarf multiple systems.

  6. The age-velocity dispersion relation of the Galactic discs from LAMOST-Gaia data

    NASA Astrophysics Data System (ADS)

    Yu, Jincheng; Liu, Chao

    2018-03-01

    We present the age-velocity dispersion relation (AVR) in three dimensions in the solar neighbourhood using 3564 commonly observed sub-giant/red giant branch stars selected from The Large Sky Area Multi-Object Fiber Spectroscopic Telescope, which gives the age and radial velocity, and Gaia, which measures the distance and proper motion. The stars are separated into metal-poor ([Fe/H] < -0.2 dex and metal-rich ([Fe/H] > -0.2 dex) groups, so that the metal-rich stars are mostly α-poor, while the metal-poor group are mostly contributed by α-enhanced stars. Thus, the old and metal-poor stars likely belong to the chemically defined thick disc population, while the metal-rich sample is dominated by the thin disc. The AVR for the metal-poor sample shows an abrupt increase at ≳7 Gyr, which is contributed by the thick disc component. On the other hand, most of the thin disc stars with [Fe/H] > -0.2 dex display a power-law-like AVR with indices of about 0.3-0.4 and 0.5 for the in-plane and vertical dispersions, respectively. This is consistent with the scenario that the disc is gradually heated by the spiral arms and/or the giant molecular clouds. Moreover, the older thin disc stars (>7 Gyr) have a rounder velocity ellipsoid, i.e. σϕ/σz is close to 1.0, probably due to the more efficient heating in vertical direction. Particularly for the old metal-poor sample located with |z| > 270 pc, the vertical dispersion is even larger than its azimuthal counterpart. Finally, the vertex deviations and the tilt angles are plausibly around zero with large uncertainties.

  7. THE STELLAR INITIAL MASS FUNCTION OF ULTRA-FAINT DWARF GALAXIES: EVIDENCE FOR IMF VARIATIONS WITH GALACTIC ENVIRONMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geha, Marla; Brown, Thomas M.; Tumlinson, Jason

    2013-07-01

    We present constraints on the stellar initial mass function (IMF) in two ultra-faint dwarf (UFD) galaxies, Hercules and Leo IV, based on deep Hubble Space Telescope Advanced Camera for Surveys imaging. The Hercules and Leo IV galaxies are extremely low luminosity (M{sub V} = -6.2, -5.5), metal-poor (([Fe/H]) = -2.4, -2.5) systems that have old stellar populations (>11 Gyr). Because they have long relaxation times, we can directly measure the low-mass stellar IMF by counting stars below the main-sequence turnoff without correcting for dynamical evolution. Over the stellar mass range probed by our data, 0.52-0.77 M{sub Sun }, the IMFmore » is best fit by a power-law slope of {alpha}= 1.2{sub -0.5}{sup +0.4} for Hercules and {alpha} = 1.3 {+-} 0.8 for Leo IV. For Hercules, the IMF slope is more shallow than a Salpeter ({alpha} = 2.35) IMF at the 5.8{sigma} level, and a Kroupa ({alpha} = 2.3 above 0.5 M{sub Sun }) IMF slope at 5.4{sigma} level. We simultaneously fit for the binary fraction, f{sub binary}, finding f{sub binary}= 0.47{sup +0.16}{sub -0.14} for Hercules, and 0.47{sup +0.37}{sub -0.17} for Leo IV. The UFD binary fractions are consistent with that inferred for Milky Way stars in the same mass range, despite very different metallicities. In contrast, the IMF slopes in the UFDs are shallower than other galactic environments. In the mass range 0.5-0.8 M{sub Sun }, we see a trend across the handful of galaxies with directly measured IMFs such that the power-law slopes become shallower (more bottom-light) with decreasing galactic velocity dispersion and metallicity. This trend is qualitatively consistent with results in elliptical galaxies inferred via indirect methods and is direct evidence for IMF variations with galactic environment.« less

  8. Mining the Sloan Digital Sky Survey in Search of Extremely α-poor Stars in the Galaxy

    NASA Astrophysics Data System (ADS)

    Xing, Q. F.; Zhao, G.

    2014-07-01

    As we know, the majority of metal-poor Galactic halo stars appear to have chemical abundances that were enhanced by α-elements (e.g., O, Mg, Si, Ca, and Ti) during the early stage of the Galaxy. Observed metal-poor halo stars preserved this pattern by exhibiting abundance ratios [α/Fe] ~+0.4. A few striking exceptions that show severe departures from the general enhanced α-element chemical abundance trends of the halo have been discovered in recent years. They possess relatively low [α/Fe] compared to other comparable-metallicity stars, with abundance ratios over 0.5 dex lower. These stars may have a different chemical enrichment history from the majority of the halo. Similarly, low-α abundances are also displayed by satellite dwarf spheroidal (dSph) galaxies. We present a method to select extremely α-poor (EAP) stars from the SDSS/SEGUE survey. The method consists of a two-step approach. In the first step, we select suspected metal-poor ([Fe/H] <-0.5) and α-poor ([Mg/Fe] <0) stars as our targets. In the second step, we determine [Mg/Fe] from low-resolution (R = 2000) stellar spectra for our targets and select stars with [Mg/Fe] <-0.1 as candidate EAP stars. In a sample of 40,000 stars with atmospheric parameters in the range of T eff = [4500, 7000] K, log g = [1.0, 5.0], and [Fe/H] = [-4.0, +0.5], 14 candidate stars were identified. Three of these stars are found to have already been confirmed by other research.

  9. The RAVE Survey: Rich in Very Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Fulbright, Jon P.; Wyse, Rosemary F. G.; Ruchti, Gregory R.; Gilmore, G. F.; Grebel, Eva; Bienaymé, O.; Binney, J.; Bland-Hawthorn, J.; Campbell, R.; Freeman, K. C.; Gibson, B. K.; Helmi, A.; Munari, U.; Navarro, J. F.; Parker, Q. A.; Reid, W.; Seabroke, G. M.; Siebert, A.; Siviero, A.; Steinmetz, M.; Watson, F. G.; Williams, M.; Zwitter, T.

    2010-11-01

    Very metal-poor stars are of obvious importance for many problems in chemical evolution, star formation, and galaxy evolution. Finding complete samples of such stars which are also bright enough to allow high-precision individual analyses is of considerable interest. We demonstrate here that stars with iron abundances [Fe/H] <-2 dex, and down to below -4 dex, can be efficiently identified within the Radial Velocity Experiment (RAVE) survey of bright stars, without requiring additional confirmatory observations. We determine a calibration of the equivalent width of the calcium triplet lines measured from the RAVE spectra onto true [Fe/H], using high spectral resolution data for a subset of the stars. These RAVE iron abundances are accurate enough to obviate the need for confirmatory higher-resolution spectroscopy. Our initial study has identified 631 stars with [Fe/H] <=-2, from a RAVE database containing approximately 200,000 stars. This RAVE-based sample is complete for stars with [Fe/H] lsim-2.5, allowing statistical sample analysis. We identify three stars with [Fe/H] lsim-4. Of these, one was already known to be "ultra metal-poor," one is a known carbon-enhanced metal-poor star, but we obtain [Fe/H] = -4.0, rather than the published [Fe/H] = -3.3, and derive [C/Fe] = +0.9, and [N/Fe] = +3.2, and the third is at the limit of our signal-to-noise ratio. RAVE observations are ongoing and should prove to be a rich source of bright, easily studied, very metal-poor stars. Based in part on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile, in the framework of proposals 081.B-0900 and 080.B-0927.

  10. Merging black hole binaries: the effects of progenitor's metallicity, mass-loss rate and Eddington factor

    NASA Astrophysics Data System (ADS)

    Giacobbo, Nicola; Mapelli, Michela; Spera, Mario

    2018-03-01

    The first four gravitational wave events detected by LIGO were all interpreted as merging black hole binaries (BHBs), opening a new perspective on the study of such systems. Here we use our new population-synthesis code MOBSE, an upgraded version of BSE, to investigate the demography of merging BHBs. MOBSE includes metallicity-dependent prescriptions for mass-loss of massive hot stars. It also accounts for the impact of the electron-scattering Eddington factor on mass-loss. We perform >108 simulations of isolated massive binaries, with 12 different metallicities, to study the impact of mass-loss, core-collapse supernovae and common envelope on merging BHBs. Accounting for the dependence of stellar winds on the Eddington factor leads to the formation of black holes (BHs) with mass up to 65 M⊙ at metallicity Z ˜ 0.0002. However, most BHs in merging BHBs have masses ≲ 40 M⊙. We find merging BHBs with mass ratios in the 0.1-1.0 range, even if mass ratios >0.6 are more likely. We predict that systems like GW150914, GW170814 and GW170104 can form only from progenitors with metallicity Z ≤ 0.006, Z ≤ 0.008 and Z ≤ 0.012, respectively. Most merging BHBs have gone through a common envelope phase, but up to ˜17 per cent merging BHBs at low metallicity did not undergo any common envelope phase. We find a much higher number of mergers from metal-poor progenitors than from metal-rich ones: the number of BHB mergers per unit mass is ˜10-4 M_{⊙}^{-1} at low metallicity (Z = 0.0002-0.002) and drops to ˜10-7 M_{⊙}^{-1} at high metallicity (Z ˜ 0.02).

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuncarayakti, Hanindyo; Maeda, Keiichi; Doi, Mamoru

    Integral field spectroscopy of 11 Type Ib/Ic supernova (SN Ib/Ic) explosion sites in nearby galaxies has been obtained using UH88/SNIFS and Gemini-N/GMOS. The use of integral field spectroscopy enables us to obtain both spatial and spectral information about the explosion site, enabling the identification of the parent stellar population of the SN progenitor star. The spectrum of the parent population provides metallicity determination via strong-line method and age estimation obtained via comparison with simple stellar population models. We adopt this information as the metallicity and age of the SN progenitor, under the assumption that it was coeval with the parentmore » stellar population. The age of the star corresponds to its lifetime, which in turn gives the estimate of its initial mass. With this method we were able to determine both the metallicity and initial (zero-age main sequence) mass of the progenitor stars of SNe Ib and Ic. We found that on average SN Ic explosion sites are more metal-rich and younger than SN Ib sites. The initial mass of the progenitors derived from parent stellar population age suggests that SN Ic has more massive progenitors than SN Ib. In addition, we also found indication that some of our SN progenitors are less massive than {approx}25 M{sub Sun }, indicating that they may have been stars in a close binary system that have lost their outer envelope via binary interactions to produce SNe Ib/Ic, instead of single Wolf-Rayet stars. These findings support the current suggestions that both binary and single progenitor channels are in effect in producing SNe Ib/Ic. This work also demonstrates the power of integral field spectroscopy in investigating SN environments and active star-forming regions.« less

  12. Discovery of a Metal-poor, Luminous Post-AGB Star that Failed the Third Dredge-up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamath, D.; Winckel, H. Van; Wood, P. R.

    Post-asymptotic giant branch (post-AGB) stars are known to be chemically diverse. In this paper we present the first observational evidence of a star that has failed the third dredge-up (TDU). J005252.87-722842.9 is an A-type ( T {sub eff} = 8250 ± 250 K) luminous (8200 ± 700 L {sub ⊙}) metal-poor ([Fe/H] = −1.18 ± 0.10) low-mass ( M {sub initial} ≈ 1.5–2.0 M {sub ⊙}) post-AGB star in the Small Magellanic Cloud. Through a systematic abundance study, using high-resolution optical spectra from UVES, we found that this likely post-AGB object shows an intriguing photospheric composition with no confirmed carbon-enhancementmore » (upper limit of [C/Fe] < 0.50) nor enrichment of s -process elements. We derived an oxygen abundance of [O/Fe] = 0.29 ± 0.1. For Fe and O, we took the effects of nonlocal thermodynamic equilibrium into account. We could not derive an upper limit for the nitrogen abundance as there are no useful nitrogen lines within our spectral coverage. The chemical pattern displayed by this object has not been observed in single or binary post-AGBs. Based on its derived stellar parameters and inferred evolutionary state, single-star nucleosynthesis models predict that this star should have undergone TDU episodes while on the AGB, and it should be carbon enriched. However, our observations are in contrast with these predictions. We identify two possible Galactic analogs that are likely to be post-AGB stars, but the lack of accurate distances (hence luminosities) to these objects does not allow us to confirm their post-AGB status. If they have low luminosities, then they are likely to be dusty post-RGB stars. The discovery of J005252.87-722842.9 reveals a new stellar evolutionary channel whereby a star evolves without any TDU episodes.« less

  13. Detection of a Population of Carbon-enhanced Metal-poor Stars in the Sculptor Dwarf Spheroidal Galaxy

    NASA Astrophysics Data System (ADS)

    Chiti, Anirudh; Simon, Joshua D.; Frebel, Anna; Thompson, Ian B.; Shectman, Stephen A.; Mateo, Mario; Bailey, John I., III; Crane, Jeffrey D.; Walker, Matthew

    2018-04-01

    The study of the chemical abundances of metal-poor stars in dwarf galaxies provides a venue to constrain paradigms of chemical enrichment and galaxy formation. Here we present metallicity and carbon abundance measurements of 100 stars in Sculptor from medium-resolution (R ∼ 2000) spectra taken with the Magellan/Michigan Fiber System mounted on the Magellan-Clay 6.5 m telescope at Las Campanas Observatory. We identify 24 extremely metal-poor star candidates ([Fe/H] < ‑3.0) and 21 carbon-enhanced metal-poor (CEMP) star candidates. Eight carbon-enhanced stars are classified with at least 2σ confidence, and five are confirmed as such with follow-up R ∼ 6000 observations using the Magellan Echellette Spectrograph on the Magellan-Baade 6.5 m telescope. We measure a CEMP fraction of 36% for stars below [Fe/H] = ‑3.0, indicating that the prevalence of carbon-enhanced stars in Sculptor is similar to that of the halo (∼43%) after excluding likely CEMP-s and CEMP-r/s stars from our sample. However, we do not detect that any CEMP stars are strongly enhanced in carbon ([C/Fe] > 1.0). The existence of a large number of CEMP stars both in the halo and in Sculptor suggests that some halo CEMP stars may have originated from accreted early analogs of dwarf galaxies. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  14. WNL Stars - the Most Massive Stars in the Universe?

    NASA Astrophysics Data System (ADS)

    Schnurr, Olivier; Moffat, Anthony F. J.; St-Louis, Nicole; Skalkowski, Gwenael; Niemela, Virpi; Shara, Michael M.

    2001-08-01

    We propose to carry out an intensive and complete time-dependent spectroscopic study of all 47 known WNL stars in the LMC, an ideal laboratory to study the effect of lower ambient metallicity, Z, on stellar evolution. WNL stars are luminous, cooler WR stars of the nitrogen sequence. This will allow us to: 1) determine the binary frequency. The Roche-lobe overflow (RLOF) mechanism in close binaries is predicted to be responsible for the formation of a significant fraction of WR stars in low Z environments such as the LMC. 2) determine the masses. Since some of these stars (denoted WNL(h) or WNLh) are supposed to be hydrogen-burning and thus main-sequence stellar objects of the highest luminosity, they may be the most massive stars known. 3) study wind-wind collision (WWC) effects in WR+O binaries involving very luminous WNL stars with strong winds. Interesting in itself as a high-energy phenomenon, WWC is in competition with conservative RLOF (i.e. mass transfer to the secondary star), and therefore has to be taken into account in this context.

  15. WNLh Stars - The Most Massive Stars in the Universe?

    NASA Astrophysics Data System (ADS)

    Schnurr, Olivier; St-Louis, Nicole; Moffat, Anthony F. J.; Foellmi, Cedric

    2002-08-01

    We propose to conclude our intensive and complete time-dependent spectroscopic study of all 47 known WNL stars in the LMC, an ideal laboratory to study the effect of lower ambient metallicity, Z, on stellar evolution. WNL stars are luminous, cooler WR stars of the nitrogen sequence. This will allow us to: 1) determine the binary frequency. The Roche-lobe overflow (RLOF) mechanism in close binaries is predicted to be responsible for the formation of a significant fraction of WR stars in low Z environments such as the LMC. 2) determine the masses. Since some of these stars (denoted WNL(h) or WNLh) are supposed to be hydrogen-burning and thus main-sequence stellar objects of the highest luminosity, they may be the most massive stars known. 3) study wind-wind collision (WWC) effects in WR+O binaries involving very luminous WNL stars with strong winds. Interesting in itself as a high-energy phenomenon, WWC is in competition with conservative RLOF (i.e. mass transfer to the secondary star), and therefore has to be taken into account in this context.

  16. R-process Enrichment in Cosmological Zoom Simulation of a Milkyway Type Halo by Neutron Star Mergers; The Origin of the MP-R and CEMP-R Stars

    NASA Astrophysics Data System (ADS)

    Safarzadeh, Mohammadtaher; Scannapieco, Evan

    2018-06-01

    The history of r-process enrichment in our galaxy is modeled through a novel set of zoom cosmo- logical simulations on a MilkyWay type galaxy. r-process sources are assumed to be neutron star mergers with a distribution of natal kicks and merge time distribution. We model turbulent mixing to estimate the pristine gas fraction in each simulation cell which we use to determine the Pop III star formation with assigned Carbon rich ejecta when going off as SNe. We follow the formation of Carbon-Enhanced Metal-Poor (CEMP) stars and the statistics of different r-process enhanced class of stars. The simulation underpredict the frequency of CEMP/MP stars by a factor of 2-4. Likewise the MP-rI/MP and MP-rII/MP and CEMP-r/CEMP cumulative ratios are all under predicted by 1-2 orders of magnitude. Our results show that NS binaries by themselves fall too short to explain the observed frequency of r-process enhanced stars and other sources of r-process enrichment at high redshifts are needed to fill the gap.

  17. The mass spectrum of the first stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susa, Hajime; Tominaga, Nozomu; Hasegawa, Kenji, E-mail: susa@konan-u.ac.jp

    2014-09-01

    We perform cosmological hydrodynamics simulations with non-equilibrium primordial chemistry to obtain 59 minihalos that host first stars. The obtained minihalos are used as the initial conditions of local three-dimensional radiation hydrodynamics simulations to investigate the formation of the first stars. We find that two-thirds of the minihalos host multiple stars, while the other third has single stars. The mass of the stars found in our simulations are in the range of 1 M {sub ☉} ≲ M ≲ 300 M {sub ☉}, peaking at several× 10 M {sub ☉}. Most of the very massive stars of ≳ 140 M {submore » ☉} are born as single stars, although not all of the single stars are very massive. We also find a few stars of ≲ 1 M {sub ☉} that are kicked by the gravitational three body interactions to the position distant from the center of mass. The frequency that a star forming minihalo contains a binary system is ∼50%. We also investigate the abundance pattern of the stellar remnants by summing up the contributions from the first stars in the simulations. Consequently, the pattern is compatible with that of the low metallicity damped Lyα systems or the extremely metal-poor (EMP) stars, if the mass spectrum obtained in our experiment is shifted to the low mass side by 0.2 dex. If we consider the case that an EMP star is born in the remnant of the individual minihalo without mixing with others, the chemical signature of the pair instability supernova is more prominent, because most of them are born as single stars.« less

  18. X-shooter Finds an Extremely Primitive Star

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Bonifacio, P.; François, P.; Sbordone, L.; Monaco, L.; Spite, M.; Spite, F.; Ludwig, H.-G.; Cayrel, R.; Zaggia, S.; Hammer, F.; Randich, S.; Molaro, P.; Hill, V.

    2011-12-01

    Low-mass extremely metal-poor (EMP) stars hold the fossil record of the chemical composition of the early phases of the Universe in their atmospheres. Chemical analysis of such objects provides important constraints on these early phases. EMP stars are rather rare objects: to dig them out, large amounts of data have to be considered. We have analysed stars from the Sloan Digital Sky Survey using an automatic procedure and selected a sample of good candidate EMP stars, which we observed with the spectrographs X-shooter and UVES. We could confirm the low metallicity of our sample of stars, and we succeeded in finding a record metal-poor star.

  19. High-redshift Galaxies and Black Holes Detectable with the JWST: A Population Synthesis Model from Infrared to X-Rays

    NASA Astrophysics Data System (ADS)

    Volonteri, Marta; Reines, Amy E.; Atek, Hakim; Stark, Daniel P.; Trebitsch, Maxime

    2017-11-01

    The first billion years of the Universe has been a pivotal time: stars, black holes (BHs), and galaxies formed and assembled, sowing the seeds of galaxies as we know them today. Detecting, identifying, and understanding the first galaxies and BHs is one of the current observational and theoretical challenges in galaxy formation. In this paper we present a population synthesis model aimed at galaxies, BHs, and active galactic nuclei (AGNs) at high redshift. The model builds a population based on empirical relations. The spectral energy distribution of galaxies is determined by age and metallicity, and that of AGNs by BH mass and accretion rate. We validate the model against observations, and predict properties of galaxies and AGN in other wavelength and/or luminosity ranges, estimating the contamination of stellar populations (normal stars and high-mass X-ray binaries) for AGN searches from the infrared to X-rays, and vice versa for galaxy searches. For high-redshift galaxies with stellar ages < 1 {Gyr}, we find that disentangling stellar and AGN emission is challenging at restframe UV/optical wavelengths, while high-mass X-ray binaries become more important sources of confusion in X-rays. We propose a color-color selection in the James Webb Space Telescope bands to separate AGN versus star-dominated galaxies in photometric observations. We also estimate the AGN contribution, with respect to massive, hot, and metal-poor stars, at driving high-ionization lines, such as C IV and He II. Finally, we test the influence of the minimum BH mass and occupation fraction of BHs in low-mass galaxies on the restframe UV/near-IR and X-ray AGN luminosity function.

  20. Quantitative spectral analysis of the sdB star HD 188112: A helium-core white dwarf progenitor

    NASA Astrophysics Data System (ADS)

    Latour, M.; Heber, U.; Irrgang, A.; Schaffenroth, V.; Geier, S.; Hillebrandt, W.; Röpke, F. K.; Taubenberger, S.; Kromer, M.; Fink, M.

    2016-01-01

    Context. HD 188112 is a bright (V = 10.2 mag) hot subdwarf B (sdB) star with a mass too low to ignite core helium burning and is therefore considered a pre-extremely low-mass (ELM) white dwarf (WD). ELM WDs (M ≲ 0.3 M⊙) are He-core objects produced by the evolution of compact binary systems. Aims: We present in this paper a detailed abundance analysis of HD 188112 based on high-resolution Hubble Space Telescope (HST) near- and far-ultraviolet spectroscopy. We also constrain the mass of the star's companion. Methods: We use hybrid non-LTE model atmospheres to fit the observed spectral lines, and to derive the abundances of more than a dozen elements and the rotational broadening of metallic lines. Results: We confirm the previous binary system parameters by combining radial velocities measured in our UV spectra with the previously published values. The system has a period of 0.60658584 days and a WD companion with M ≥ 0.70 M⊙. By assuming a tidally locked rotation combined with the projected rotational velocity (v sin I = 7.9 ± 0.3 km s-1), we constrain the companion mass to be between 0.9 and 1.3 M⊙. We further discuss the future evolution of the system as a potential progenitor of an underluminous type Ia supernova. We measure abundances for Mg, Al, Si, P, S, Ca, Ti, Cr, Mn, Fe, Ni, and Zn, and for the trans-iron elements Ga, Sn, and Pb. In addition, we derive upper limits for the C, N, O elements and find HD 188112 to be strongly depleted in carbon. We find evidence of non-LTE effects on the line strength of some ionic species such as Si II and Ni II. The metallic abundances indicate that the star is metal-poor, with an abundance pattern most likely produced by diffusion effects.

  1. CEMP Stars in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Thidemann Hansen, Terese

    2018-06-01

    Exploration of the metal-poor stellar halo population of the Milky Way over the past decades has revealed a large number of stars strongly enhanced in carbon (CEMP stars). However, these stars are not as commonly detected in the dwarf galaxy satellites of the Milky Way (MW). The present-day satellites are thought to be similar to systems from which the MW and in particular its halo was formed via hierarchical mergers. I will present the results of abundance analysis for new samples of extremely metal-poor stars in Sculptor and Carina exploring the fraction of CEMP stars at low metallicity in these systems. I will also present the detailed abundance analyses of six CEMP stars detected in the Carina dwarf spheroidal galaxy. Five of these stars also show enhancement in slow neutron-capture elements and can thus be classified as CEMP-s stars, while the most metal-poor star with [Fe/H]=-2.5 shows no such enhancement and belongs to the CEMP-no class. The detection of CEMP stars in dwarf galaxies supports the hierarchical assembly of the MW halo and by providing a birth environment, can help to further constrain the formation of these stars.

  2. PRIMORDIAL r-PROCESS DISPERSION IN METAL-POOR GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roederer, Ian U., E-mail: iur@obs.carnegiescience.edu

    Heavy elements, those produced by neutron-capture reactions, have traditionally shown no star-to-star dispersion in all but a handful of metal-poor globular clusters (GCs). Recent detections of low [Pb/Eu] ratios or upper limits in several metal-poor GCs indicate that the heavy elements in these GCs were produced exclusively by an r-process. Re-examining GC heavy element abundances from the literature, we find unmistakable correlations between the [La/Fe] and [Eu/Fe] ratios in four metal-poor GCs (M5, M15, M92, and NGC 3201), only two of which were known previously. This indicates that the total r-process abundances vary from star to star (by factors ofmore » 2-6) relative to Fe within each GC. We also identify potential dispersion in two other GCs (M3 and M13). Several GCs (M12, M80, and NGC 6752) show no evidence of r-process dispersion. The r-process dispersion is not correlated with the well-known light element dispersion, indicating that it was present in the gas throughout the duration of star formation. The observations available at present suggest that star-to-star r-process dispersion within metal-poor GCs may be a common but not ubiquitous phenomenon that is neither predicted by nor accounted for in current models of GC formation and evolution.« less

  3. PopIII-star siblings in IZw18 and metal-poor WR galaxies unveiled from integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Kehrig, C.; Vílchez, J. M.; Pérez-Montero, E.; Iglesias-Páramo, J.; Brinchmann, J.; Crowther, P. A.; Durret, F.; Kunth, D.

    Here, we highlight our recent results from the IFS study of Mrk178, the closest metal-poor WR galaxy, and of IZw18, the most metal-poor star-forming galaxy known in the local Universe. The IFS data of Mrk178 show the importance of aperture effects on the search for WR features, and the extent to which physical variations in the ISM properties can be detected. Our IFS data of IZw18 reveal its entire nebular HeIIλ4686-emitting region, and indicate for the very first time that peculiar, hot (nearly) metal-free ionizing stars (called here PopIII-star siblings) might hold the key to the HeII-ionization in IZw18.

  4. The HK-II Survey: Kinematics of Metal-Poor Stars in the Galaxy

    NASA Astrophysics Data System (ADS)

    Rhee, J.; Beers, T. C.

    2003-12-01

    The digitized HK-II survey (Rhee 2000, Ph.D. thesis, MSU) was originated as a follow-on to the HK-I survey of Beers and colleagues (e.g., Beers et al. 1992, AJ, 103, 1987). HK-I was based on visually-selected candidate metal-poor stars from objective-prism plates. Unfortunately, in the absence of color information, this selection technique introduced a rather severe temperature-related bias. As a result, the HK-I candidates do not include large numbers of metal-deficient giants. In HK-II, candidate metal-poor stars are quantitatively selected from digitized objective-prism spectra with JHK color information from the recently completeted 2MASS catalog. This approach eliminates much of the temperature bias. We have begun to survey candidate very metal-poor ([Fe/H] ≤ -2.0) giants from HK-II, over the magnitude range 11.0 ≤ B ≤ 16.0, covering some ˜7000 deg2 of intermediate to high Galactic-latitudes. Ongoing medium-resolution ( ˜ 1-2Å ) spectroscopic follow-up using NOAO observing facilities has allowed us to obtain, to date, some 1000 spectra (400, 450, and 150 spectra for red giants, subgiants near the main-sequence turnoff, and FHB/A stars, respectively) for the HK-II metal-poor star candidates. In particular, the detection rate of bona fide very metal-poor giants is about 45 %, which is quite encouraging. Most of the "mistakes" are slightly more metal-rich giants, with -2.0 < [Fe/H] < -1.0. Metallicities and radial velocities are determined from our spectroscopy, and proper motions for most of the program stars are obtained from the recently released UCAC2 astrometric survey catalog. Here we present an analysis of the full space motions for numerous metal-poor stars from the HK-II survey. A comparision of the chemical and kinematic properties between high- and low-halo populations (that is, giants vs. sub-giants) will aid us in understanding the formation history of the Milky Way. J.R. acknowledges partial support for this work by NASA through the AAS Small Research Grant Program. T.C.B. acknowledges partial support for this work from NSF grants AST 00-98508 and AST 00-98549.

  5. THE CHEMICAL ABUNDANCES OF STARS IN THE HALO (CASH) PROJECT. II. A SAMPLE OF 14 EXTREMELY METAL-POOR STARS ,

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollek, Julie K.; Sneden, Christopher; Shetrone, Matthew

    2011-11-20

    We present a comprehensive abundance analysis of 20 elements for 16 new low-metallicity stars from the Chemical Abundances of Stars in the Halo (CASH) project. The abundances have been derived from both Hobby-Eberly Telescope High Resolution Spectrograph snapshot spectra (R {approx}15, 000) and corresponding high-resolution (R {approx}35, 000) Magellan Inamori Kyocera Echelle spectra. The stars span a metallicity range from [Fe/H] from -2.9 to -3.9, including four new stars with [Fe/H] < -3.7. We find four stars to be carbon-enhanced metal-poor (CEMP) stars, confirming the trend of increasing [C/Fe] abundance ratios with decreasing metallicity. Two of these objects can bemore » classified as CEMP-no stars, adding to the growing number of these objects at [Fe/H]< - 3. We also find four neutron-capture-enhanced stars in the sample, one of which has [Eu/Fe] of 0.8 with clear r-process signatures. These pilot sample stars are the most metal-poor ([Fe/H] {approx}< -3.0) of the brightest stars included in CASH and are used to calibrate a newly developed, automated stellar parameter and abundance determination pipeline. This code will be used for the entire {approx}500 star CASH snapshot sample. We find that the pipeline results are statistically identical for snapshot spectra when compared to a traditional, manual analysis from a high-resolution spectrum.« less

  6. Are the Formation and Abundances of Metal-poor Stars the Result of Dust Dynamics?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, Philip F.; Conroy, Charlie, E-mail: phopkins@caltech.edu

    Large dust grains can fluctuate dramatically in their local density, relative to the gas, in neutral turbulent disks. Small, high-redshift galaxies (before reionization) represent ideal environments for this process. We show via simple arguments and simulations that order-of-magnitude fluctuations are expected in local abundances of large grains (>100 Å) under these conditions. This can have important consequences for star formation and stellar metal abundances in extremely metal-poor stars. Low-mass stars can form in dust-enhanced regions almost immediately after some dust forms even if the galaxy-average metallicity is too low for fragmentation to occur. We argue that the metal abundances ofmore » these “promoted” stars may contain interesting signatures as the CNO abundances (concentrated in large carbonaceous grains and ices) and Mg and Si (in large silicate grains) can be enhanced and/or fluctuate almost independently. Remarkably, the otherwise puzzling abundance patterns of some metal-poor stars can be well fit by standard IMF-averaged core-collapse SNe yields if we allow for fluctuating local dust-to-gas ratios. We also show that the observed log-normal distribution of enhancements in pure SNe yields, shows very large enhancements and variations up to factors of ≳100 as expected in the dust-promoted model, preferentially in the [C/Fe]-enhanced metal-poor stars. Together, this suggests that (1) dust exists in second-generation star formation, (2) local dust-to-gas ratio fluctuations occur in protogalaxies and can be important for star formation, and (3) the light element abundances of these stars may be affected by the local chemistry of dust where they formed, rather than directly tracing nucleosynthesis from earlier populations.« less

  7. Gas Accretion and Star Formation Rates

    NASA Astrophysics Data System (ADS)

    Sánchez Almeida, Jorge

    Cosmological numerical simulations of galaxy evolution show that accretion of metal-poor gas from the cosmic web drives the star formation in galaxy disks. Unfortunately, the observational support for this theoretical prediction is still indirect, and modeling and analysis are required to identify hints as actual signs of star formation feeding from metal-poor gas accretion. Thus, a meticulous interpretation of the observations is crucial, and this observational review begins with a simple theoretical description of the physical process and the key ingredients it involves, including the properties of the accreted gas and of the star formation that it induces. A number of observations pointing out the connection between metal-poor gas accretion and star formation are analyzed, specifically, the short gas-consumption time-scale compared to the age of the stellar populations, the fundamental metallicity relationship, the relationship between disk morphology and gas metallicity, the existence of metallicity drops in starbursts of star-forming galaxies, the so-called G dwarf problem, the existence of a minimum metallicity for the star-forming gas in the local universe, the origin of the α-enhanced gas forming stars in the local universe, the metallicity of the quiescent BCDs, and the direct measurements of gas accretion onto galaxies. A final section discusses intrinsic difficulties to obtain direct observational evidence, and points out alternative observational pathways to further consolidate the current ideas.

  8. A Photometric (griz) Metallicity Calibration for Cool Stars

    NASA Astrophysics Data System (ADS)

    West, Andrew A.; Davenport, James R. A.; Dhital, Saurav; Mann, Andrew; Massey, Angela P

    2014-06-01

    We present results from a study that uses wide pairs as tools for estimating and constraining the metal content of cool stars from their spectra and broad band colors. Specifically, we will present results that optimize the Mann et al. M dwarf metallicity calibrations (derived using wide binaries) for the optical regime covered by SDSS spectra. We will demonstrate the robustness of the new calibrations using a sample of wide, low-mass binaries for which both components have an SDSS spectrum. Using these new spectroscopic metallicity calibrations, we will present relations between the metallicities (from optical spectra) and the Sloan colors derived using more than 20,000 M dwarfs in the SDSS DR7 spectroscopic catalog. These relations have important ramifications for studies of Galactic chemical evolution, the search for exoplanets and subdwarfs, and are essential for surveys such as Pan-STARRS and LSST, which use griz photometry but have no spectroscopic component.

  9. Near-infrared Stellar Populations in the Metal-poor, Dwarf Irregular Galaxies Sextans A and Leo A

    NASA Astrophysics Data System (ADS)

    Jones, Olivia C.; Maclay, Matthew T.; Boyer, Martha L.; Meixner, Margaret; McDonald, Iain; Meskhidze, Helen

    2018-02-01

    We present JHK s observations of the metal-poor ([Fe/H] < ‑1.40) dwarf-irregular galaxies, Leo A and Sextans A, obtained with the WIYN High-resolution Infrared Camera at Kitt Peak. Their near-IR stellar populations are characterized by using a combination of color–magnitude diagrams and by identifying long-period variable stars. We detected red giant and asymptotic giant branch stars, consistent with membership of the galaxy’s intermediate-age populations (2–8 Gyr old). Matching our data to broadband optical and mid-IR photometry, we determine luminosities, temperatures, and dust-production rates (DPR) for each star. We identify 32 stars in Leo A and 101 stars in Sextans A with a DPR > {10}-11 {M}ȯ {yr}}-1, confirming that metal-poor stars can form substantial amounts of dust. We also find tentative evidence for oxygen-rich dust formation at low metallicity, contradicting previous models that suggest oxygen-rich dust production is inhibited in metal-poor environments. The total rates of dust injection into the interstellar medium of Leo A and Sextans A are (8.2+/- 1.8)× {10}-9 {M}ȯ {yr}}-1 and (6.2+/- 0.2)× {10}-7 {M}ȯ {yr}}-1, respectively. The majority of this dust is produced by a few very dusty evolved stars and does not vary strongly with metallicity.

  10. Normal and Outlying Populations of the Milky Way Stellar Halo at [Fe/H] <-2

    NASA Astrophysics Data System (ADS)

    Cohen, Judith G.; Christlieb, Norbert; Thompson, Ian; McWilliam, Andrew; Shectman, Stephen; Reimers, Dieter; Wisotzki, Lutz; Kirby, Evan

    2013-11-01

    From detailed abundance analysis of >100 Hamburg/ESO candidate extremely metal-poor (EMP) stars we find 45 with [Fe/H] < -3.0 dex. We identify a heretofore unidentified group: Ca-deficient stars with sub-solar [Ca/Fe] ratios and the lowest neutron-capture abundances; the Ca-deficient group comprises ~10% of the sample, excluding Carbon stars. Our radial velocity distribution shows that the carbon-enhanced stars with no s-process enhancements, CEMP-no, and which do not show C2 bands are not preferentially binary systems. Ignoring Carbon stars, approximately 15% of our sample are strong (>=5σ) outliers in one or more elements between Mg and Ni; this rises to ~19% if very strong (>=10σ) outliers for Sr and Ba are included. Examples include: HE0305-0554 with the lowest [Ba/H] known; HE1012-1540 and HE2323-0256, two (non-velocity variable) C-rich stars with very strong [Mg,Al/Fe] enhancements; and HE1226-1149, an extremely r-process rich star. Based in part on observations obtained in part at the W. M. Keck Observatory, which is operated jointly by the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration.

  11. A Study Of The Kinematics Of Stellar Sub-populations In M31's Disk And Spheroid Using PHAT And SPLASH Data

    NASA Astrophysics Data System (ADS)

    Guhathakurta, Puragra; Dorman, C.; Seth, A.; Dalcanton, J.; Gilbert, K.; Howley, K.; Johnson, L. C.; Kalirai, J.; Krause, T.; Lang, D.; Williams, B.; PHAT Team; SPLASH Collaboration

    2012-01-01

    We present a comparative study of the kinematics of different types of stars in the Andromeda galaxy (M31). Our fields of study span a range of projected radii from 2 to 15 kpc in the NE and SE quadrants of M31's disk and spheroid. The kinematical part of this study is based on radial velocity measurements of a few thousand stars obtained using the Keck II telescope and DEIMOS spectrograph as part of the SPLASH survey. The DEIMOS spectra have a spectral resolution of about 1.5 Angstrom (FWHM) and cover the wavelength range 6500-9000 Angstrom. The stellar populations part of this study - specifically, the division of stars into sub-populations - is based on high spatial resolution Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) and Wide-Field Camera 3 (WFC3) images and photometry in six filters: two ultraviolet bands (F275W and F336W), two optical bands (F475W and F814W), and two near-infrared bands (F110W and F160W). The stellar sub-populations we study include metal-rich, metal-intermediate, and metal-poor red giants, asymptotic giant branch stars, He-burning blue loop stars, massive main sequence stars, planetary nebulae, and X-ray binaries. Kinematical information allows us to measure the fraction of each sub-population that is associated with M31's disk versus its spheroid. The excellent synergy between HST and Keck provides insight into the relationship between the dynamical, star formation, and chemical enrichment histories of the structural sub-components of M31 and, by association, other large spiral galaxies. This research was supported by the National Science Foundation, NASA, and the Science Internship Program (SIP) at UCSC.

  12. Correlations between age, kinematics, and chemistry as seen by the RAVE survey

    NASA Astrophysics Data System (ADS)

    Wojno, Jennifer; Kordopatis, Georges; Steinmetz, Matthias; McMillan, Paul; Binney, James; Famaey, Benoit; Monari, Giacomo; Minchev, Ivan; Wyse, Rosemary F. G.; Antoja, Teresa; Siebert, Arnaud; Carrillo, Ismael; Bland-Hawthorn, Joss; Grebel, Eva K.; Zwitter, Tomaž; Bienaymé, Olivier; Gibson, Brad; Kunder, Andrea; Munari, Ulisse; Navarro, Julio; Parker, Quentin; Reid, Warren; Seabroke, George

    2018-07-01

    We explore the connections between stellar age, chemistry, and kinematics across a Galactocentric distance of 7.5 < R(kpc) < 9.0, using a sample of ˜12 000 intermediate-mass (FGK) turn-off stars observed with the RAdial Velocity Experiment (RAVE) survey. The kinematics of this sample are determined using radial velocity measurements from RAVE, and parallax and proper motion measurements from the Tycho-Gaia Astrometric Solution (TGAS). In addition, ages for RAVE stars are determined using a Bayesian method, taking TGAS parallaxes as a prior. We divide our sample into young (0 < τ < 3 Gyr) and old (8 < τ < 13 Gyr) populations, and then consider different metallicity bins for each of these age groups. We find significant differences in kinematic trends of young and old, metal-poor and metal-rich, stellar populations. In particular, we find a strong metallicity dependence in the mean Galactocentric radial velocity as a function of radius (partial {V_R}/partial R) for young stars, with metal-rich stars having a much steeper gradient than metal-poor stars. For partial {V_{φ }}/partial R, young, metal-rich stars significantly lag the LSR with a slightly positive gradient, while metal-poor stars show a negative gradient above the LSR. We interpret these findings as correlations between metallicity and the relative contributions of the non-axisymmetries in the Galactic gravitational potential (the spiral arms and the bar) to perturb stellar orbits.

  13. Correlations between age, kinematics, and chemistry as seen by the RAVE survey

    NASA Astrophysics Data System (ADS)

    Wojno, Jennifer; Kordopatis, Georges; Steinmetz, Matthias; McMillan, Paul; Binney, James; Famaey, Benoit; Monari, Giacomo; Minchev, Ivan; Wyse, Rosemary F. G.; Antoja, Teresa; Siebert, Arnaud; Carrillo, Ismael; Bland-Hawthorn, Joss; K Grebel, Eva; Zwitter, Tomaž; Bienaymé, Olivier; Gibson, Brad; Kunder, Andrea; Munari, Ulisse; Navarro, Julio; Parker, Quentin; Reid, Warren; Seabroke, George

    2018-04-01

    We explore the connections between stellar age, chemistry, and kinematics across a Galactocentric distance of 7.5 < R (kpc) < 9.0, using a sample of ˜12 000 intermediate-mass (FGK) turnoff stars observed with the RAdial Velocity Experiment (RAVE) survey. The kinematics of this sample are determined using radial velocity measurements from RAVE, and parallax and proper motion measurements from the Tycho-Gaia Astrometric Solution (TGAS). In addition, ages for RAVE stars are determined using a Bayesian method, taking TGAS parallaxes as a prior. We divide our sample into young (0 < τ < 3 Gyr) and old (8 < τ < 13 Gyr) populations, and then consider different metallicity bins for each of these age groups. We find significant differences in kinematic trends of young and old, metal-poor and metal-rich, stellar populations. In particular, we find a strong metallicity dependence in the mean Galactocentric radial velocity as a function of radius (∂VR/∂R) for young stars, with metal-rich stars having a much steeper gradient than metal-poor stars. For ∂Vϕ/∂R, young, metal-rich stars significantly lag the LSR with a slightly positive gradient, while metal-poor stars show a negative gradient above the LSR. We interpret these findings as correlations between metallicity and the relative contributions of the non-axisymmetries in the Galactic gravitational potential (the spiral arms and the bar) to perturb stellar orbits.

  14. Astronomy in Denver: Spectropolarimetric Observations of 5 Wolf-Rayet Binary Stars with SALT/RSS

    NASA Astrophysics Data System (ADS)

    Fullard, Andrew; Ansary, Zyed; Azancot Luchtan, Daniel; Gallegos, Hunter; Luepker, Martin; Hoffman, Jennifer L.; Nordsieck, Kenneth H.; SALT observation team

    2018-06-01

    Mass loss from massive stars is an important yet poorly understood factor in shaping their evolution. Wolf-Rayet (WR) stars are of particular interest due to their stellar winds, which create large regions of circumstellar material (CSM). They are also supernova and possible gamma-ray burst (GRB) progenitors. Like other massive stars, WR stars often occur in binaries, where interaction can affect their mass loss rates and provide the rapid rotation thought to be required for GRB production. The diagnostic tool of spectropolarimetry, along with the potentially eclipsing nature of a binary system, helps us to better characterize the CSM created by the stars’ colliding winds. Thus, we can determine mass loss rates and infer rapid rotation. We present spectropolarimetric results for five WR+O eclipsing binary systems, obtained with the Robert Stobie Spectrograph at the South African Large Telescope, between April 2017 and April 2018. The data allow us to map both continuum and emission line polarization variations with phase, which constrains where different CSM components scatter light in the systems. We discuss our initial findings and interpretations of the polarimetric variability in each binary system, and compare the systems.

  15. Testing Metal-Poor Stellar Models and Isochrones with HST Parallaxes of Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Chaboyer, B.; McArthur, B. E.; O'Malley, E.; Benedict, G. F.; Feiden, G. A.; Harrison, T. E.; McWilliam, A.; Nelan, E. P.; Patterson, R. J.; Sarajedini, A.

    2017-02-01

    Hubble Space Telescope (HST) fine guidance sensor observations were used to obtain parallaxes of eight metal-poor ([Fe/H] < -1.4) stars. The parallaxes of these stars determined by the new Hipparcos reduction average 17% accuracy, in contrast to our new HST parallaxes, which average 1% accuracy and have errors on the individual parallaxes ranging from 85 to 144 μas. These parallax data were combined with HST Advanced Camera for Surveys photometry in the F606W and F814W filters to obtain the absolute magnitudes of the stars with an accuracy of 0.02-0.03 mag. Six of these stars are on the main sequence (MS) (with -2.7 < [Fe/H] < -1.8) and are suitable for testing metal-poor stellar evolution models and determining the distances to metal-poor globular clusters (GCs). Using the abundances obtained by O’Malley et al., we find that standard stellar models using the VandenBerg & Clem color transformation do a reasonable job of matching five of the MS stars, with HD 54639 ([Fe/H] = -2.5) being anomalous in its location in the color-magnitude diagram. Stellar models and isochrones were generated using a Monte Carlo analysis to take into account uncertainties in the models. Isochrones that fit the parallax stars were used to determine the distances and ages of nine GCs (with -2.4 ≤ [Fe/H] ≤ -1.9). Averaging together the age of all nine clusters led to an absolute age of the oldest, most metal-poor GCs of 12.7 ± 1.0 Gyr, where the quoted uncertainty takes into account the known uncertainties in the stellar models and isochrones, along with the uncertainty in the distance and reddening of the clusters.

  16. THE INFRARED SPECTRAL PROPERTIES OF MAGELLANIC CARBON STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sloan, G. C.; Kraemer, K. E.; McDonald, I.

    2016-07-20

    The Infrared Spectrograph on the Spitzer Space Telescope observed 184 carbon stars in the Magellanic Clouds. This sample reveals that the dust-production rate (DPR) from carbon stars generally increases with the pulsation period of the star. The composition of the dust grains follows two condensation sequences, with more SiC condensing before amorphous carbon in metal-rich stars, and the order reversed in metal-poor stars. MgS dust condenses in optically thicker dust shells, and its condensation is delayed in more metal-poor stars. Metal-poor carbon stars also tend to have stronger absorption from C{sub 2}H{sub 2} at 7.5 μ m. The relation betweenmore » DPR and pulsation period shows significant apparent scatter, which results from the initial mass of the star, with more massive stars occupying a sequence parallel to lower-mass stars, but shifted to longer periods. Accounting for differences in the mass distribution between the carbon stars observed in the Small and Large Magellanic Clouds reveals a hint of a subtle decrease in the DPR at lower metallicities, but it is not statistically significant. The most deeply embedded carbon stars have lower variability amplitudes and show SiC in absorption. In some cases they have bluer colors at shorter wavelengths, suggesting that the central star is becoming visible. These deeply embedded stars may be evolving off of the asymptotic giant branch and/or they may have non-spherical dust geometries.« less

  17. The Pristine survey - I. Mining the Galaxy for the most metal-poor stars

    NASA Astrophysics Data System (ADS)

    Starkenburg, Else; Martin, Nicolas; Youakim, Kris; Aguado, David S.; Allende Prieto, Carlos; Arentsen, Anke; Bernard, Edouard J.; Bonifacio, Piercarlo; Caffau, Elisabetta; Carlberg, Raymond G.; Côté, Patrick; Fouesneau, Morgan; François, Patrick; Franke, Oliver; González Hernández, Jonay I.; Gwyn, Stephen D. J.; Hill, Vanessa; Ibata, Rodrigo A.; Jablonka, Pascale; Longeard, Nicolas; McConnachie, Alan W.; Navarro, Julio F.; Sánchez-Janssen, Rubén; Tolstoy, Eline; Venn, Kim A.

    2017-11-01

    We present the Pristine survey, a new narrow-band photometric survey focused on the metallicity-sensitive Ca H&K lines and conducted in the Northern hemisphere with the wide-field imager MegaCam on the Canada-France-Hawaii Telescope. This paper reviews our overall survey strategy and discusses the data processing and metallicity calibration. Additionally we review the application of these data to the main aims of the survey, which are to gather a large sample of the most metal-poor stars in the Galaxy, to further characterize the faintest Milky Way satellites, and to map the (metal-poor) substructure in the Galactic halo. The current Pristine footprint comprises over 1000 deg2 in the Galactic halo ranging from b ˜ 30° to ˜78° and covers many known stellar substructures. We demonstrate that, for Sloan Digital Sky Survey (SDSS) stellar objects, we can calibrate the photometry at the 0.02-mag level. The comparison with existing spectroscopic metallicities from SDSS/Sloan Extension for Galactic Understanding and Exploration (SEGUE) and Large Sky Area Multi-Object Fiber Spectroscopic Telescope shows that, when combined with SDSS broad-band g and I photometry, we can use the CaHK photometry to infer photometric metallicities with an accuracy of ˜0.2 dex from [Fe/H] = -0.5 down to the extremely metal-poor regime ([Fe/H] < -3.0). After the removal of various contaminants, we can efficiently select metal-poor stars and build a very complete sample with high purity. The success rate of uncovering [Fe/H]SEGUE < -3.0 stars among [Fe/H]Pristine < -3.0 selected stars is 24 per cent, and 85 per cent of the remaining candidates are still very metal poor ([Fe/H]<-2.0). We further demonstrate that Pristine is well suited to identify the very rare and pristine Galactic stars with [Fe/H] < -4.0, which can teach us valuable lessons about the early Universe.

  18. Gaia reveals a metal-rich in-situ component of the local stellar halo

    NASA Astrophysics Data System (ADS)

    Bonaca, Ana; Conroy, Charlie; Wetzel, Andrew; Hopkins, Philip; Keres, Dusan

    2018-01-01

    We use the first Gaia data release, combined with RAVE and APOGEE spectroscopic surveys, to investigate the origin of halo stars within ~3 kpc from the Sun. We identify halo stars kinematically, as moving with a relative speed of at least 220 km/s with respect to the local standard of rest. These stars are in general more metal-poor than the disk, but surprisingly, half of our halo sample is comprised of stars with [Fe/H]>-1. The orbital directions of these metal-rich halo stars are preferentially aligned with the disk rotation, in sharp contrast with the isotropic orbital distribution of the more metal-poor halo stars. We find similar properties in the Latte cosmological zoom-in simulation of a Milky Way-like galaxy from the FIRE project. In Latte, metal-rich halo stars formed primarily inside of the solar circle, while lower-metallicity halo stars preferentially formed at larger distances (extending beyond the virial radius). This suggests that metal-rich halo stars in the Solar neighborhood in fact formed in situ within the Galactic disk rather than having been accreted from satellite systems. These stars, currently on halo-like orbits, therefore have likely undergone substantial radial migration/heating.

  19. White dwarfs in the building blocks of the Galactic spheroid

    NASA Astrophysics Data System (ADS)

    van Oirschot, Pim; Nelemans, Gijs; Starkenburg, Else; Toonen, Silvia; Helmi, Amina; Zwart, Simon Portegies

    2017-11-01

    Aims: The Galactic halo likely grew over time in part by assembling smaller galaxies, the so-called building blocks (BBs). We investigate if the properties of these BBs are reflected in the halo white dwarf (WD) population in the solar neighbourhood. Furthermore, we compute the halo WD luminosity functions (WDLFs for four major BBs of five cosmologically motivated stellar haloes). We compare the sum of these to the observed WDLF of the Galactic halo, derived from selected halo WDs in the SuperCOSMOS Sky Survey, aiming to investigate if they match better than the WDLFs predicted by simpler models. Methods: We couple the SeBa binary population synthesis model to the Munich-Groningen semi-analytic galaxy formation model applied to the high-resolution Aquarius dark matter simulations. Although the semi-analytic model assumes an instantaneous recycling approximation, we model the evolution of zero-age main sequence stars to WDs, taking age and metallicity variations of the population into account. To be consistent with the observed stellar halo mass density in the solar neighbourhood (ρ0), we simulate the mass in WDs corresponding to this density, assuming a Chabrier initial mass function (IMF) and a binary fraction of 50%. We also normalize our WDLFs to ρ0. Results: Although the majority of halo stars are old and metal-poor and therefore the WDs in the different BBs have similar properties (including present-day luminosity), we find in our models that the WDs originating from BBs that have young and/or metal-rich stars can be distinguished from WDs that were born in other BBs. In practice, however, it will be hard to prove that these WDs really originate from different BBs, as the variations in the halo WD population due to binary WD mergers result in similar effects. The five joined stellar halo WD populations that we modelled result in WDLFs that are very similar to each other. We find that simple models with a Kroupa or Salpeter IMF fit the observed luminosity function slightly better, since the Chabrier IMF is more top-heavy, although this result is dependent on our choice of ρ0.

  20. Evolution of redback radio pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    Benvenuto, O. G.; De Vito, M. A.; Horvath, J. E.

    2017-02-01

    Context. We study the evolution of close binary systems composed of a normal, intermediate mass star and a neutron star considering a chemical composition typical of that present in globular clusters (Z = 0.001). Aims: We look for similarities and differences with respect to solar composition donor stars, which we have extensively studied in the past. As a definite example, we perform an application on one of the redbacks located in a globular cluster. Methods: We performed a detailed grid of models in order to find systems that represent the so-called redback binary radio pulsar systems with donor star masses between 0.6 and 2.0 solar masses and orbital periods in the range 0.2-0.9 d. Results: We find that the evolution of these binary systems is rather similar to those corresponding to solar composition objects, allowing us to account for the occurrence of redbacks in globular clusters, as the main physical ingredient is the irradiation feedback. Redback systems are in the quasi-RLOF state, that is, almost filling their corresponding Roche lobe. During the irradiation cycle the system alternates between semi-detached and detached states. While detached the system appears as a binary millisecond pulsar, called a redback. Circumstellar material, as seen in redbacks, is left behind after the previous semi-detached phase. Conclusions: The evolution of binary radio pulsar systems considering irradiation successfully accounts for, and provides a way for, the occurrence of redback pulsars in low-metallicity environments such as globular clusters. This is the case despite possible effects of the low metal content of the donor star that could drive systems away from redback configuration.

  1. The Eating Habits of Milky Way Mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars

    DOE PAGES

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.

    2016-04-01

    In this paper, we study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (M vir ~ 10 12.1 M ⊙) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with M star ~ 10 8–10 10M ⊙. Halos with more quiescent accretion histories tendmore » to have lower mass progenitors (10 8–10 9 M ⊙), and lower overall accreted stellar masses. Ultra-faint mass (M star < 10 5 M ⊙) dwarfs contribute a negligible amount (<<1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (~2%–5%) of the very metal-poor stars with [Fe/H] < -2. Dwarfs with masses 10 5 < M star/M ⊙ < 10 8 provide a substantial amount of the very metal-poor stellar material (~40%–80%), and even relatively metal-rich dwarfs with M star > 10 8 M ⊙ can contribute a considerable fraction (~20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. In conclusion, we suggest that the MW could be a "transient fossil"; a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.« less

  2. VizieR Online Data Catalog: KOI-1257 photometric and velocimetric data (Santerne+, 2014)

    NASA Astrophysics Data System (ADS)

    Santerne, A.; Hebrard, G.; Deleuil, M.; Havel, M.; Correia, A. C. M.; Almenara, J.-M.; Alonso, R.; Arnold, L.; Barros, S. C. C.; Behrend, R.; Bernasconi, L.; Boisse, I.; Bonomo, A. S.; Bouchy, F.; Bruno, G.; Damiani, C.; Diaz, R. F.; Gravallon, D.; Guillot, T.; Labrevoir, O.; Montagnier, G.; Moutou, C.; Rinner, C.; Santos, N. C.; Abe, L.; Audejean, M.; Bendjoya, P.; Gillier, C.; Gregorio, J.; Martinez, P.; Michelet, J.; Montaigut, R.; Poncy, R.; Rivet, J.-P.; Rousseau, G.; Roy, R.; Suarez, O.; Vanhuysse, M.; Verilhac, D.

    2014-11-01

    In this paper we report a new transiting warm giant planet: KOI-1257b. It was first detected in photometry as a planet-candidate by the Kepler space telescope and then validated thanks to a radial velocity follow-up with the SOPHIE spectrograph. It orbits its host star with a period of 86.647661d+/-3s and a high eccentricity of 0.772+/-0.045. The planet transits the main star of a metal-rich, relatively old binary system with stars of mass of 0.99+/-0.05M⊙ and 0.70+/-0.07M⊙ for the primary and secondary, respectively. This binary system is constrained thanks to a self-consistent modelling of the Kepler transit light curve, the SOPHIE radial velocities, line bisector and full-width half maximum (FWHM) variations, and the spectral energy distribution. However, future observations are needed to confirm it. The PASTIS fully-Bayesian software was used to validate the nature of the planet and to determine which star of the binary system is the transit host. By accounting for the dilution from the binary both in photometry and in radial velocity, we find that the planet has a mass of 1.45+/-0.35Mjup, and a radius of 0.94+/-0.12Rjup, and thus a bulk density of 2.1+/-1.2g/cm3. The planet has an equilibrium temperature of 511+/-50K, making it one of the few known members of the warm-Jupiter population. The HARPS-N spectrograph was also used to observe a transit of KOI-1257b, simultaneously with a joint amateur and professional photometric follow-up, with the aim of constraining the orbital obliquity of the planet. However, the Rossiter-McLaughlin effect was not clearly detected, resulting in poor constraints on the orbital obliquity of the planet. (3 data files).

  3. Winds of metal-poor OB stars: Updates from HST-COS UV spectroscopy

    NASA Astrophysics Data System (ADS)

    García, M.; Herrero, A.; Najarro, F.; Lennon, D. J.; Urbaneja, M. A.

    2015-01-01

    In the race to break the SMC frontier and reach metallicity conditions closer to the First Stars the information from UV spectroscopy is usually overlooked. New HST-COS observations of OB stars in the metal-poor galaxy IC1613, with oxygen content ~1/10 solar, have proved the important role of UV spectroscopy to characterize blue massive stars and their winds. The terminal velocities (υ∞) and abundances derived from the dataset have shed new light on the problem of metal-poor massive stars with strong winds. Furthermore, our results question the υ∞-υ esc and υ∞-Z scaling relations whose use in optical-only studies may introduce large uncertainties in the derived mass loss rates and wind-momenta. Finally, our results indicate that the detailed abundance pattern of each star may have a non-negligible impact on its wind properties, and scaling these as a function of one single metallicity parameter is probably too coarse an approximation. Considering, for instance, that the [α/Fe] ratio evolves with the star formation history of each galaxy, we may be in need of updating all our wind recipes.

  4. Clear Evidence for the Presence of Second-generation Asymptotic Giant Branch Stars in Metal-poor Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; Mészáros, Sz.; Monelli, M.; Cassisi, S.; Stetson, P. B.; Zamora, O.; Shetrone, M.; Lucatello, S.

    2015-12-01

    Galactic globular clusters (GCs) are known to host multiple stellar populations: a first generation (FG) with a chemical pattern typical of halo field stars and a second generation (SG) enriched in Na and Al and depleted in O and Mg. Both stellar generations are found at different evolutionary stages (e.g., the main-sequence turnoff, the subgiant branch, and the red giant branch (RGB)). The non detection of SG asymptotic giant branch (AGB) stars in several metal-poor ([Fe/H] < -1) GCs suggests that not all SG stars ascend the AGB phase, and that failed AGB stars may be very common in metal-poor GCs. This observation represents a serious problem for stellar evolution and GC formation/evolution theories. We report fourteen SG-AGB stars in four metal-poor GCs (M13, M5, M3, and M2) with different observational properties: horizontal branch (HB) morphology, metallicity, and age. By combining the H-band Al abundances obtained by the Apache Point Observatory Galactic Evolution Experiment survey with ground-based optical photometry, we identify SG Al-rich AGB stars in these four GCs and show that Al-rich RGB/AGB GC stars should be Na-rich. Our observations provide strong support for present, standard stellar models, i.e., without including a strong mass-loss efficiency, for low-mass HB stars. In fact, current empirical evidence is in agreement with the predicted distribution of FG and SG stars during the He-burning stages based on these standard stellar models.

  5. What the Most Metal-poor Stars Tell Us About the Early Universe

    NASA Astrophysics Data System (ADS)

    Frebel, Anna

    2008-05-01

    The chemical evolution of the Galaxy and the early Universe is a key topic in modern astrophysics. The most metal-poor Galactic halo stars are now frequently used in an attempt to reconstruct the onset of the chemical and dynamical formation processes of the Galaxy. These stars are an easily-accessible local equivalent of the high-redshift Universe, and can thus be used to carry out field-field cosmology. The discovery of two astrophysically very important metal-poor objects has recently lead to a significant advance in the field. One object is the most iron-poor star yet found (with [Fe/H]=-5.4). The other stars displays the strongest known overabundances of heavy neutron-capture elements, such as uranium, and nucleo-chronometry yields a stellar age of 13 Gyr. Both stars already serve as benchmark objects for various theoretical studies with regard to nucleosynthesis processes in the early Galaxy. I will discuss how the abundance patterns of these and other metal-poor stars solidify and advance our understanding of the early Universe, and provide constraints on the nature of the first stars, as well as their explosion mechanisms and corresponding supernova nucleosynthesis yields. Large samples of these old objects are also employed to test theoretical predictions about the formation of the very first low-mass stars. In the near future, the combined power of near-field cosmology results with those of the next-generation facilities (e.g., MWA, JWST, GMT) may yield exceptional details about the formation processes of the first generations of stars and galaxies.

  6. Identifying Bright X-Ray Beasts

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-10-01

    Ultraluminous X-ray sources (ULXs) are astronomical sources of X-rays that, while dimmer than active galactic nuclei, are nonetheless brighter than any known stellar process. What are these beasts and why do they shine so brightly?Exceeding the LimitFirst discovered in the 1980s, ULXs are rare sources that have nonetheless been found in all types of galaxies. Though the bright X-ray radiation seems likely to be coming from compact objects accreting gas, theres a problem with this theory: ULXs outshine the Eddington luminosity for stellar-mass compact objects. This means that a stellar-mass object couldnt emit this much radiation isotropically without blowing itself apart.There are two alternative explanations commonly proposed for ULXs:Rather than being accreting stellar-mass compact objects, they are accreting intermediate-mass black holes. A hypothetical black hole of 100 solar masses or more would have a much higher Eddington luminosity than a stellar-mass black hole, making the luminosities that we observe from ULXs feasible.An example of one of the common routes the authors find for a binary system to become a ULX. In this case, the binary begins as two main sequence stars. As one star evolves off the main sequence, the binary undergoes a common envelope phase and a stage of mass transfer. The star ends its life as a supernova, and the resulting neutron star then accretes matter from the main sequence star as a ULX. [Wiktorowicz et al. 2017]They are ordinary X-ray binaries (a stellar-mass compact object accreting matter from a companion star), but they are undergoing a short phase of extreme accretion. During this time, their emission is beamed into jets, making them appear brighter than the Eddington luminosity.Clues from a New DiscoveryA few years ago, a new discovery shed some light on ULXs: M82 X-2, a pulsing ULX. Two more pulsing ULXs have been discovered since then, demonstrating that at least some ULXs contain pulsars i.e., neutron stars as the accreting object. This provided strong support for the second model of ULXs as X-ray binaries with super-Eddington luminosity.But could this model in fact account for all ULXs? A team of authors led by Grzegorz Wiktorowicz (Kavli Institute for Theoretical Physics, UC Santa Barbara and Warsaw University, Poland) says yes.Time evolution of the number of ULXs since the beginning of star formation, for a star formation burst (left panels) and continuous star formation (right panels), and for solar-metallicity (top panels) and low-metallicity (bottom panels) environments. The heavy solid line shows ULXs with black-hole accretors, the dashed line ULXs with neutron-star accretors, and the solid line the total. [Wiktorowicz et al. 2017]No Exotic Objects NeededWiktorowicz and collaborators performed a massive suite of simulations made possible by donated computer time from the Universe@Home project to examine how 20 million binary systems evolve into X-ray binaries. They then determined the number and nature of the ones that could appear as ULXs to us. The authors results show that the vast majority of the observed population of ULXs can be accounted for with super-Eddington compact binaries, without needing to invoke intermediate-mass black holes.Wiktorowicz and collaborators demonstrate that in environments with short star-formation bursts, black-hole accretors are the most common ULX source in the early periods after the burst, but neutron-star accretors dominate the ULX population after a few 100 Myr. In the case of prolonged and continuous star formation, neutron-star accretors dominate ULXs if the environment is solar metallicity, whereas black-hole accretors dominate in low-metallicity environments.The authors results present very clear and testable relations between the companion and donor star evolutionary stage and the age of the system, which we will hopefully be able to use to test this model with future observations of ULXs.CitationGrzegorz Wiktorowicz et al 2017 ApJ 846 17. doi:10.3847/1538-4357/aa821d

  7. ZFIRE: using Hα equivalent widths to investigate the in situ initial mass function at z ˜ 2

    NASA Astrophysics Data System (ADS)

    Nanayakkara, Themiya; Glazebrook, Karl; Kacprzak, Glenn G.; Yuan, Tiantian; Fisher, David; Tran, Kim-Vy; Kewley, Lisa J.; Spitler, Lee; Alcorn, Leo; Cowley, Michael; Labbe, Ivo; Straatman, Caroline; Tomczak, Adam

    2017-07-01

    We use the ZFIRE (http://zfire.swinburne.edu.au) survey to investigate the high-mass slope of the initial mass function (IMF) for a mass-complete (log_{10({M}_*/M_{⊙})˜ 9.3}) sample of 102 star-forming galaxies at z ˜ 2 using their Hα equivalent widths (Hα EWs) and rest-frame optical colours. We compare dust-corrected Hα EW distributions with predictions of star formation histories (SFHs) from pegase.2 and starburst synthetic stellar population models. We find an excess of high Hα EW galaxies that are up to 0.3-0.5 dex above the model-predicted Salpeter IMF locus and the Hα EW distribution is much broader (10-500 Å) than can easily be explained by a simple monotonic SFH with a standard Salpeter-slope IMF. Though this discrepancy is somewhat alleviated when it is assumed that there is no relative attenuation difference between stars and nebular lines, the result is robust against observational biases, and no single IMF (I.e. non-Salpeter slope) can reproduce the data. We show using both spectral stacking and Monte Carlo simulations that starbursts cannot explain the EW distribution. We investigate other physical mechanisms including models with variations in stellar rotation, binary star evolution, metallicity and the IMF upper-mass cut-off. IMF variations and/or highly rotating extreme metal-poor stars (Z ˜ 0.1 Z⊙) with binary interactions are the most plausible explanations for our data. If the IMF varies, then the highest Hα EWs would require very shallow slopes (Γ > -1.0) with no one slope able to reproduce the data. Thus, the IMF would have to vary stochastically. We conclude that the stellar populations at z ≳ 2 show distinct differences from local populations and there is no simple physical model to explain the large variation in Hα EWs at z ˜ 2.

  8. Metallicity inhomogeneities in local star-forming galaxies as a sign of recent metal-poor gas accretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sánchez Almeida, J.; Morales-Luis, A. B.; Muñoz-Tuñón, C.

    2014-03-01

    We measure the oxygen metallicity of the ionized gas along the major axis of seven dwarf star-forming galaxies. Two of them, SDSSJ1647+21 and SDSSJ2238+14, show ≅0.5 dex metallicity decrements in inner regions with enhanced star formation activity. This behavior is similar to the metallicity drop observed in a number of local tadpole galaxies by Sánchez Almeida et al., and was interpreted as showing early stages of assembling in disk galaxies, with the star formation sustained by external metal-poor gas accretion. The agreement with tadpoles has several implications. (1) It proves that galaxies other than the local tadpoles present the samemore » unusual metallicity pattern. (2) Our metallicity inhomogeneities were inferred using the direct method, thus discarding systematic errors usually attributed to other methods. (3) Taken together with the tadpole data, our findings suggest a threshold around one-tenth the solar value for the metallicity drops to show up. Although galaxies with clear metallicity drops are rare, the physical mechanism responsible for them may sustain a significant part of the star formation activity in the local universe. We argue that the star formation dependence of the mass-metallicity relationship, as well as other general properties followed by most local disk galaxies, is naturally interpreted as side effects of pristine gas infall. Alternatives to the metal-poor gas accretion are examined as well.« less

  9. Nucleosynthesis in Primordial Hypernovae

    NASA Astrophysics Data System (ADS)

    Grimmett, J. J.; Heger, Alexander; Karakas, Amanda I.; Müller, Bernhard

    2018-06-01

    We investigate the relationship between explosion energy and nucleosynthesis in Population III supernovae and provide nucleosynthetic results for the explosions of stars with progenitor masses of 15 M⊙, 20 M⊙, 30 M⊙, 40 M⊙, 60 M⊙, and 80 M⊙, and explosion energies between approximately 1050 erg and 1053 erg. We find that the typical abundance pattern observed in metal-poor stars are best matched by supernovae with progenitor mass in the range 15 M⊙ - 30 M⊙, and explosion energy of ˜(5 - 10) × 1051 erg. In these models, a reverse shock caused by jumps in density between shells of different composition serves to decrease synthesis of chromium and manganese, which is favourable to matching the observed abundances in metal-poor stars. Spherically symmetric explosions of our models with progenitor mass ≥40 M⊙ do not provide yields that are compatible with the iron-peak abundances that are typically observed in metal-poor stars, however, by approximating the yields that we might expect from these models in highly aspherical explosions, we find indications that explosions of stars 40 M⊙ - 80 M⊙ with bipolar jets may be good candidates for the enrichment sources of metal-poor stars with enhanced carbon abundances.

  10. Modelling fully convective stars in eclipsing binaries: KOI-126 and CM Draconis

    NASA Astrophysics Data System (ADS)

    Spada, F.; Demarque, P.

    2012-05-01

    We present models of the components of the systems KOI-126 and CM Draconis, the two eclipsing binary systems known to date to contain stars with masses low enough to have fully convective interiors. We are able to model satisfactorily the system KOI-126, finding consistent solutions for the radii and surface temperatures of all three components, using a solar-like value of the mixing-length parameter α in the convection zone and PHOENIX NextGen 1D model atmospheres for the surface boundary conditions. Depending on the chemical composition, we estimate the age of the system to be in the range 3-5 Gyr. For CM Draconis, on the other hand, we cannot reconcile our models with the observed radii and Teff using the current metal-poor composition estimate based on kinematics. Higher metallicities lessen but do not remove the discrepancy. We then explore the effect of varying the mixing-length parameter α. As previously noted in the literature, a reduced α can be used as a simple measure of the lower convective efficiency due to rotation and induced magnetic fields. Our models show a sensitivity to α (for α < 1.0) sufficient to partially account for the radius discrepancies. It is, however, impossible to reconcile the models with the observations on the basis of the effect of the reduced α alone. We therefore suggest that the combined effects of high metallicity and α reduction could explain the observations of CM Draconis. For example, increasing the metallicity of the system towards super-solar values (i.e. Z= 2 Z⊙) yields an agreement within 2σ with α= 1.0.

  11. Intergalactic stellar populations in intermediate redshift clusters

    NASA Astrophysics Data System (ADS)

    Melnick, J.; Giraud, E.; Toledo, I.; Selman, F.; Quintana, H.

    2012-11-01

    A substantial fraction of the total stellar mass in rich clusters of galaxies resides in a diffuse intergalactic component usually referred to as the intracluster light (ICL). Theoretical models indicate that these intergalactic stars originate mostly from the tidal interaction of the cluster galaxies during the assembly history of the cluster, and that a significant fraction of these stars could have formed in situ from the late infall of cold metal-poor gas clouds on to the cluster. However, these models also overpredict the fraction of stellar mass in the ICL by a substantial margin, something that is still not well understood. The models also make predictions about the age distribution of the ICL stars, which may provide additional observational constraints. Here we present population synthesis models for the ICL of an intermediate redshift (z = 0.29) X-ray cluster that we have extensively studied in previous papers. The advantage of observing intermediate redshift clusters rather than nearby ones is that the former fit the field of view of multi-object spectrographs in 8-m telescopes and therefore permit us to encompass most of the ICL with only a few well-placed slits. In this paper we show that by stacking spectra at different locations within the ICL it is possible to reach sufficiently high signal-to-noise ratios to fit population synthesis models and derive meaningful results. The models provide ages and metallicities for the dominant populations at several different locations within the ICL and the brightest cluster galaxies (BCG) halo, as well as measures of the kinematics of the stars as a function of distance from the BCG. We thus find that the ICL in our cluster is dominated by old metal-rich stars, at odds with what has been found in nearby clusters where the stars that dominate the ICL are old and metal poor. While we see weak evidence of a young, metal-poor component, if real, these young stars would amount to less than 1 per cent of the total ICL mass, much less than the up to 30 per cent predicted by the models. We propose that the very metal-rich (i.e. 2.5× solar) stars in the ICL of our cluster, which comprise ˜40 per cent of the total mass, originate mostly from the central dumb-bell galaxy, while the remaining solar and metal-poor stars come from spiral, post-starburst (E+A) and metal-poor dwarf galaxies. About 16 per cent of the ICL stars are old and metal poor.

  12. The Spectrum analysis of three chromospherically active binary stars.

    NASA Astrophysics Data System (ADS)

    Gu, Shenghong; Tan, Huisong; Liu, Yuefu

    1999-12-01

    The authors present the research results on new CCD spectroscopic observations of three chromospherically active binary stars (BY Dra class), which were obtained by means of Coudé echelle spectrograph fed by the 2.16 m telescope at Beijing Astronomical Observatory. With the aid of stellar model atmosphere, the autors have analyzed these spectra and derived the average metal abundance and Li abundance of three systems. Using two special spectral lines, they have alsop discussed the chromospheric activity indicators of them.

  13. The Chemical Abundances of Stars in the Halo (CASH) Project. II. A Sample of 14 Extremely Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Hollek, Julie K.; Frebel, Anna; Roederer, Ian U.; Sneden, Christopher; Shetrone, Matthew; Beers, Timothy C.; Kang, Sung-ju; Thom, Christopher

    2011-11-01

    We present a comprehensive abundance analysis of 20 elements for 16 new low-metallicity stars from the Chemical Abundances of Stars in the Halo (CASH) project. The abundances have been derived from both Hobby-Eberly Telescope High Resolution Spectrograph snapshot spectra (R ~15, 000) and corresponding high-resolution (R ~35, 000) Magellan Inamori Kyocera Echelle spectra. The stars span a metallicity range from [Fe/H] from -2.9 to -3.9, including four new stars with [Fe/H] < -3.7. We find four stars to be carbon-enhanced metal-poor (CEMP) stars, confirming the trend of increasing [C/Fe] abundance ratios with decreasing metallicity. Two of these objects can be classified as CEMP-no stars, adding to the growing number of these objects at [Fe/H]< - 3. We also find four neutron-capture-enhanced stars in the sample, one of which has [Eu/Fe] of 0.8 with clear r-process signatures. These pilot sample stars are the most metal-poor ([Fe/H] <~ -3.0) of the brightest stars included in CASH and are used to calibrate a newly developed, automated stellar parameter and abundance determination pipeline. This code will be used for the entire ~500 star CASH snapshot sample. We find that the pipeline results are statistically identical for snapshot spectra when compared to a traditional, manual analysis from a high-resolution spectrum. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen. Based on observations gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  14. Inefficient star formation in extremely metal poor galaxies.

    PubMed

    Shi, Yong; Armus, Lee; Helou, George; Stierwalt, Sabrina; Gao, Yu; Wang, Junzhi; Zhang, Zhi-Yu; Gu, Qiusheng

    2014-10-16

    The first galaxies contain stars born out of gas with few or no 'metals' (that is, elements heavier than helium). The lack of metals is expected to inhibit efficient gas cooling and star formation, but this effect has yet to be observed in galaxies with an oxygen abundance (relative to hydrogen) below a tenth of that of the Sun. Extremely metal poor nearby galaxies may be our best local laboratories for studying in detail the conditions that prevailed in low metallicity galaxies at early epochs. Carbon monoxide emission is unreliable as a tracer of gas at low metallicities, and while dust has been used to trace gas in low-metallicity galaxies, low spatial resolution in the far-infrared has typically led to large uncertainties. Here we report spatially resolved infrared observations of two galaxies with oxygen abundances below ten per cent of the solar value, and show that stars formed very inefficiently in seven star-forming clumps in these galaxies. The efficiencies are less than a tenth of those found in normal, metal rich galaxies today, suggesting that star formation may have been very inefficient in the early Universe.

  15. A heavy-metal home

    NASA Image and Video Library

    2016-05-30

    This 10.5-billion-year-old globular cluster, NGC 6496, is home to heavy-metal stars of a celestial kind! The stars comprising this spectacular spherical cluster are enriched with much higher proportions of metals — elements heavier than hydrogen and helium, are in astronomy curiously known as metals — than stars found in similar clusters. A handful of these high-metallicity stars are also variable stars, meaning that their brightness fluctuates over time. NGC 6496 hosts a selection of long-period variables — giant pulsating stars whose brightness can take up to, and even over, a thousand days to change — and short-period eclipsing binaries, which dim when eclipsed by a stellar companion. The nature of the variability of these stars can reveal important information about their mass, radius, luminosity, temperature, composition, and evolution, providing astronomers with measurements that would be difficult or even impossible to obtain through other methods. NGC 6496 was discovered in 1826 by Scottish astronomer James Dunlop. The cluster resides at about 35 000 light-years away in the southern constellation of Scorpius (The Scorpion).

  16. An Infrared Census of DUST in Nearby Galaxies with Spitzer (DUSTiNGS). IV. Discovery of High-redshift AGB Analogs

    NASA Astrophysics Data System (ADS)

    Boyer, M. L.; McQuinn, K. B. W.; Groenewegen, M. A. T.; Zijlstra, A. A.; Whitelock, P. A.; van Loon, J. Th.; Sonneborn, G.; Sloan, G. C.; Skillman, E. D.; Meixner, M.; McDonald, I.; Jones, O. C.; Javadi, A.; Gehrz, R. D.; Britavskiy, N.; Bonanos, A. Z.

    2017-12-01

    The survey for DUST in Nearby Galaxies with Spitzer (DUSTiNGS) identified several candidate Asymptotic Giant Branch (AGB) stars in nearby dwarf galaxies and showed that dust can form even in very metal-poor systems ({\\boldsymbol{Z}}∼ 0.008 {Z}ȯ ). Here, we present a follow-up survey with WFC3/IR on the Hubble Space Telescope (HST), using filters that are capable of distinguishing carbon-rich (C-type) stars from oxygen-rich (M-type) stars: F127M, F139M, and F153M. We include six star-forming DUSTiNGS galaxies (NGC 147, IC 10, Pegasus dIrr, Sextans B, Sextans A, and Sag DIG), all more metal-poor than the Magellanic Clouds and spanning 1 dex in metallicity. We double the number of dusty AGB stars known in these galaxies and find that most are carbon rich. We also find 26 dusty M-type stars, mostly in IC 10. Given the large dust excess and tight spatial distribution of these M-type stars, they are most likely on the upper end of the AGB mass range (stars undergoing Hot Bottom Burning). Theoretical models do not predict significant dust production in metal-poor M-type stars, but we see evidence for dust excess around M-type stars even in the most metal-poor galaxies in our sample (12+{log}({{O}}/{{H}})=7.26{--}7.50). The low metallicities and inferred high stellar masses (up to ∼10 {M}ȯ ) suggest that AGB stars can produce dust very early in the evolution of galaxies (∼30 Myr after they form), and may contribute significantly to the dust reservoirs seen in high-redshift galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-14073.

  17. Imaging the elusive H-poor gas in planetary nebulae with large abundance discrepancy factors

    NASA Astrophysics Data System (ADS)

    García-Rojas, Jorge; Corradi, Romano L. M.; Boffin, Henri M. J.; Monteiro, Hektor; Jones, David; Wesson, Roger; Cabrera-Lavers, Antonio; Rodríguez-Gil, Pablo

    2017-10-01

    The discrepancy between abundances computed using optical recombination lines (ORLs) and collisionally excited lines (CELs) is a major, unresolved problem with significant implications for the determination of chemical abundances throughout the Universe. In planetary nebulae (PNe), the most common explanation for the discrepancy is that two different gas phases coexist: a hot component with standard metallicity, and a much colder plasma enhanced in heavy elements. This dual nature is not predicted by mass loss theories, and direct observational support for it is still weak. In this work, we present our recent findings that demonstrate that the largest abundance discrepancies are associated with close binary central stars. OSIRIS-GTC tunable filter imaging of the faint O ii ORLs and MUSE-VLT deep 2D spectrophotometry confirm that O ii ORL emission is more centrally concentrated than that of [Oiii] CELs and, therefore, that the abundance discrepancy may be closely linked to binary evolution.

  18. Common-envelope ejection in massive binary stars. Implications for the progenitors of GW150914 and GW151226

    NASA Astrophysics Data System (ADS)

    Kruckow, M. U.; Tauris, T. M.; Langer, N.; Szécsi, D.; Marchant, P.; Podsiadlowski, Ph.

    2016-11-01

    Context. The recently detected gravitational wave signals (GW150914 and GW151226) of the merger event of a pair of relatively massive stellar-mass black holes (BHs) calls for an investigation of the formation of such progenitor systems in general. Aims: We analyse the common-envelope (CE) stage of the traditional formation channel in binaries where the first-formed compact object undergoes an in-spiral inside the envelope of its evolved companion star and ejects the envelope in this process. Methods: We calculated envelope binding energies of donor stars with initial masses between 4 and 115M⊙ for metallicities of Z = ZMilky Way ≃ Z⊙/ 2 and Z = Z⊙/ 50, and derived minimum masses of in-spiralling objects needed to eject these envelopes. Results: In addition to producing double white dwarf and double neutron star binaries, CE evolution may also produce massive BH-BH systems with individual BH component masses of up to 50 - 60M⊙, in particular for donor stars evolved to giants beyond the Hertzsprung gap. However, the physics of envelope ejection of massive stars remains uncertain. We discuss the applicability of the energy-budget formalism, the location of the bifurcation point, the recombination energy, and the accretion energy during in-spiral as possible energy sources, and also comment on the effect of inflated helium cores. Conclusions: Massive stars in a wide range of metallicities and with initial masses of up to at least 115M⊙ may shed their envelopes and survive CE evolution, depending on their initial orbital parameters, similarly to the situation for intermediate- and low-mass stars with degenerate cores. In addition to being dependent on stellar radius, the envelope binding energies and λ-values also depend on the applied convective core-overshooting parameter, whereas these structure parameters are basically independent of metallicity for stars with initial masses below 60M⊙. Metal-rich stars ≳60M⊙ become luminous blue variables and do not evolve to reach the red giant stage. We conclude that based on stellar structure calculations, and in the view of the usual simple energy budget analysis, events like GW150914 and GW151226 might be produced by the CE channel. Calculations of post-CE orbital separations, however, and thus the estimated LIGO detection rates, remain highly uncertain.

  19. Binary-corrected velocity dispersions from single- and multi-epoch radial velocities: massive stars in R136 as a test case

    NASA Astrophysics Data System (ADS)

    Cottaar, M.; Hénault-Brunet, V.

    2014-02-01

    Orbital motions from binary stars can broaden the observed line-of-sight velocity distribution of a stellar system and artificially inflate the measured line-of-sight velocity dispersion, which can in turn lead to erroneous conclusions about the dynamical state of the system. Recently, a maximum-likelihood procedure was proposed to recover the intrinsic velocity dispersion of a resolved star cluster from a single epoch of radial velocity data of individual stars, which was achieved by simultaneously fitting the intrinsic velocity distribution of the single stars and the centers of mass of the binaries along with the velocity shifts caused by binary orbital motions. Assuming well-characterized binary properties, this procedure can accurately reproduce intrinsic velocity dispersions below 1 km s-1 for solar-type stars. Here we investigate the systematic offsets induced when the binary properties are uncertain and we show that two epochs of radial velocity data with an appropriate baseline can help to mitigate these systematic effects. We first test the method described above using Monte Carlo simulations, taking into account the large uncertainties in the binary properties of OB stars. We then apply it to radial velocity data in the young massive cluster R136 for which the intrinsic velocity dispersion of O-type stars is known from an intensive multi-epoch approach. For typical velocity dispersions of young massive clusters (≳4 km s-1) and with a single epoch of data, we demonstrate that the method can just about distinguish between a cluster in virial equilibrium and an unbound cluster. This is due to the higher spectroscopic binary fraction and more loosely constrained distributions of orbital parameters of OB stars compared to solar-type stars. By extending the maximum-likelihood method to multi-epoch data, we show that the accuracy on the fitted velocity dispersion can be improved by only a few percent by using only two epochs of radial velocities. This procedure offers a promising method of accurately measuring the intrinsic stellar velocity dispersion in other systems for which the binary properties are poorly constrained, for example, young clusters and associations whose luminosity is dominated by OB stars. Appendix A is available in electronic form at http://www.aanda.org

  20. Near-infrared variability study of the central 2.3 × 2.3 arcmin2 of the Galactic Centre - II. Identification of RR Lyrae stars in the Milky Way nuclear star cluster

    NASA Astrophysics Data System (ADS)

    Dong, Hui; Schödel, Rainer; Williams, Benjamin F.; Nogueras-Lara, Francisco; Gallego-Cano, Eulalia; Gallego-Calvente, Teresa; Wang, Q. Daniel; Rich, R. Michael; Morris, Mark R.; Do, Tuan; Ghez, Andrea

    2017-11-01

    Because of strong and spatially highly variable interstellar extinction and extreme source crowding, the faint (K ≥ 15) stellar population in the Milky Way's nuclear star cluster is still poorly studied. RR Lyrae stars provide us with a tool to estimate the mass of the oldest, relative dim stellar population. Recently, we analysed HST/WFC3/IR observations of the central 2.3 × 2.3 arcmin2 of the Milky Way and found 21 variable stars with periods between 0.2 and 1 d. Here, we present a further comprehensive analysis of these stars. The period-luminosity relationship of RR Lyrae is used to derive their extinctions and distances. Using multiple approaches, we classify our sample as 4 RRc stars, 4 RRab stars, 3 RRab candidates and 10 binaries. Especially, the four RRab stars show sawtooth light curves and fall exactly on to the Oosterhoff I division in the Bailey diagram. Compared to the RRab stars reported by Minniti et al., our new RRab stars have higher extinction (AK > 1.8) and should be closer to the Galactic Centre. The extinction and distance of one RRab stars match those for the Milky Way's nuclear star cluster given in previous works. We perform simulations and find that after correcting for incompleteness, there could be not more than 40 RRab stars within the Milky Way's nuclear star cluster and in our field of view. Through comparing with the known globular clusters of the Milky Way, we estimate that if there exists an old, metal-poor (-1.5 < [Fe/H] < -1) stellar population in the Milky Way nuclear star cluster on a scale of 5 × 5 pc, then it contributes at most 4.7 × 105 M⊙, I.e. ˜18 per cent of the stellar mass.

  1. Imprints of fast-rotating massive stars in the Galactic Bulge.

    PubMed

    Chiappini, Cristina; Frischknecht, Urs; Meynet, Georges; Hirschi, Raphael; Barbuy, Beatriz; Pignatari, Marco; Decressin, Thibaut; Maeder, André

    2011-04-28

    The first stars that formed after the Big Bang were probably massive, and they provided the Universe with the first elements heavier than helium ('metals'), which were incorporated into low-mass stars that have survived to the present. Eight stars in the oldest globular cluster in the Galaxy, NGC 6522, were found to have surface abundances consistent with the gas from which they formed being enriched by massive stars (that is, with higher α-element/Fe and Eu/Fe ratios than those of the Sun). However, the same stars have anomalously high abundances of Ba and La with respect to Fe, which usually arises through nucleosynthesis in low-mass stars (via the slow-neutron-capture process, or s-process). Recent theory suggests that metal-poor fast-rotating massive stars are able to boost the s-process yields by up to four orders of magnitude, which might provide a solution to this contradiction. Here we report a reanalysis of the earlier spectra, which reveals that Y and Sr are also overabundant with respect to Fe, showing a large scatter similar to that observed in extremely metal-poor stars, whereas C abundances are not enhanced. This pattern is best explained as originating in metal-poor fast-rotating massive stars, which might point to a common property of the first stellar generations and even of the 'first stars'.

  2. A Planetary System around the nearby M Dwarf GJ 667C with At Least One Super-Earth in Its Habitable Zone

    NASA Astrophysics Data System (ADS)

    Anglada-Escudé, Guillem; Arriagada, Pamela; Vogt, Steven S.; Rivera, Eugenio J.; Butler, R. Paul; Crane, Jeffrey D.; Shectman, Stephen A.; Thompson, Ian B.; Minniti, Dante; Haghighipour, Nader; Carter, Brad D.; Tinney, C. G.; Wittenmyer, Robert A.; Bailey, Jeremy A.; O'Toole, Simon J.; Jones, Hugh R. A.; Jenkins, James S.

    2012-05-01

    We re-analyze 4 years of HARPS spectra of the nearby M1.5 dwarf GJ 667C available through the European Southern Observatory public archive. The new radial velocity (RV) measurements were obtained using a new data analysis technique that derives the Doppler measurement and other instrumental effects using a least-squares approach. Combining these new 143 measurements with 41 additional RVs from the Magellan/Planet Finder Spectrograph and Keck/High Resolution Echelle Spectrometer spectrometers reveals three additional signals beyond the previously reported 7.2 day candidate, with periods of 28 days, 75 days, and a secular trend consistent with the presence of a gas giant (period ~10 years). The 28 day signal implies a planet candidate with a minimum mass of 4.5 M ⊕ orbiting well within the canonical definition of the star's liquid water habitable zone (HZ), that is, the region around the star at which an Earth-like planet could sustain liquid water on its surface. Still, the ultimate water supporting capability of this candidate depends on properties that are unknown such as its albedo, atmospheric composition, and interior dynamics. The 75 day signal is less certain, being significantly affected by aliasing interactions among a potential 91 day signal, and the likely rotation period of the star at 105 days detected in two activity indices. GJ 667C is the common proper motion companion to the GJ 667AB binary, which is metal-poor compared to the Sun. The presence of a super-Earth in the HZ of a metal-poor M dwarf in a triple star system supports the evidence that such worlds should be ubiquitous in the Galaxy.

  3. Chemodynamical modelling of the galactic bulge and bar

    NASA Astrophysics Data System (ADS)

    Portail, Matthieu; Wegg, Christopher; Gerhard, Ortwin; Ness, Melissa

    2017-09-01

    We present the first self-consistent chemodynamical model fitted to reproduce data for the galactic bulge, bar and inner disc. We extend the Made-to-Measure method to an augmented phase-space including the metallicity of stars, and show its first application to the bar region of the Milky Way. Using data from the ARGOS and APOGEE (DR12) surveys, we adapt the recent dynamical model from Portail et al. to reproduce the observed spatial and kinematic variations as a function of metallicity, thus allowing the detailed study of the 3D density distributions, kinematics and orbital structure of stars in different metallicity bins. We find that metal-rich stars with [Fe/H] ≥ -0.5 are strongly barred and have dynamical properties that are consistent with a common disc origin. Metal-poor stars with [Fe/H] ≤ -0.5 show strong kinematic variations with metallicity, indicating varying contributions from the underlying stellar populations. Outside the central kpc, metal-poor stars are found to have the density and kinematics of a thick disc while in the inner kpc, evidence for an extra concentration of metal-poor stars is found. Finally, the combined orbit distributions of all metallicities in the model naturally reproduce the observed vertex deviations in the bulge. This paper demonstrates the power of Made-to-Measure chemodynamical models, that when extended to other chemical dimensions will be very powerful tools to maximize the information obtained from large spectroscopic surveys such as APOGEE, GALAH and MOONS.

  4. A Physical Parameterization of the Evolution of X-ray Binary Emission

    NASA Astrophysics Data System (ADS)

    Gilbertson, Woodrow; Lehmer, Bret; Eufrasio, Rafael

    2018-01-01

    The Chandra Deep Field-South (CDF-S) and North (CDF-N) surveys, 7 Ms and 2 Ms respectively, contain measurements spanning a large redshift range of z = 0 to 7. These data-rich fields provide a unique window into the cosmic history of X-ray emission from normal galaxies (i.e., not dominated by AGN). Scaling relations between normal-galaxy X-ray luminosity and quantities, such as star formation rate (SFR) and stellar mass (M*), have been used to constrain the redshift evolution of the formation rates of low-mass X-ray binaries (LMXB) and high-mass X-ray binaries (HMXB). However, these measurements do not directly reveal the driving forces behind the redshift evolution of X-ray binaries (XRBs). We hypothesize that changes in the mean stellar age and metallicity of the Universe drive the evolution of LMXB and HMXB emission, respectively. We use star-formation histories, derived through fitting broad-band UV-to-far-IR spectra, to estimate the masses of stellar populations in various age bins for each galaxy. We then divide our galaxy samples into bins of metallicity, and use our star-formation history information and measured X-ray luminosities to determine for each metallicity bin a best model LX/M*(tage). We show that this physical model provides a more useful parameterization of the evolution of X-ray binary emission, as it can be extrapolated out to high redshifts with more sensible predictions. This meaningful relation can be used to better estimate the emission of XRBs in the early Universe, where XRBs are predicted to play an important role in heating the intergalactic medium.

  5. Hubble Friday - Heavy Metal Stars

    NASA Image and Video Library

    2017-12-08

    Hubble rocks out with heavy metal stars! This 10.5-billion-year-old globular cluster, NGC 6496, is home to heavy-metal stars of a celestial kind! The stars comprising this spectacular spherical cluster are enriched with much higher proportions of metals — elements heavier than hydrogen and helium are curiously known as metals in astronomy — than stars found in similar clusters. A handful of these high-metallicity stars are also variable stars, meaning that their brightness fluctuates over time. NGC 6496 hosts a selection of long-period variables — giant pulsating stars whose brightness can take up to, and even over, a thousand days to change — and short-period eclipsing binaries, which dim when eclipsed by a stellar companion. The nature of the variability of these stars can reveal important information about their mass, radius, luminosity, temperature, composition, and evolution, providing astronomers with measurements that would be difficult or even impossible to obtain through other methods. NGC 6496 was discovered in 1826 by Scottish astronomer James Dunlop. The cluster resides at about 35,000 light-years away in the southern constellation of Scorpius (The Scorpion). Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt Text credit: European Space Agency Read more: go.nasa.gov/1U2wqGW

  6. Far-ultraviolet energy distributions of the metal-poor A stars HD 109995 and HD 161817

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, E.

    1981-01-01

    Low-resolution IUE spectra at wavelengths between 1300 and 3400 A of the metal-poor stars HD 109995 (A1p) and HD 161817 (A4p) have been compared with model-atmosphere energy distributions computed by Kurucz (1979). Good overall agreement is found. Effective temperatures, metal abundances, and angular diameters could be determined. Assuming an absolute visual magnitude of 0.7, the previously determined gravity log = 3 yields masses of 0.5 solar masses for both stars. It is found that the theoretical UBV colors calculated earlier agree reaonably well with the ones observed for these stars.

  7. HE 0017+0055: A probable pulsating CEMP-rs star and long-period binary

    NASA Astrophysics Data System (ADS)

    Jorissen, A.; Hansen, T.; Van Eck, S.; Andersen, J.; Nordström, B.; Siess, L.; Torres, G.; Masseron, T.; Van Winckel, H.

    2016-02-01

    Context. A large fraction of the carbon-enhanced, extremely metal-poor halo giants ([Fe/H] < -2.5) are also strongly enriched in neutron-capture elements from the s process (CEMP-s stars). The conventional explanation for the properties of these stars is mass transfer from a nearby binary companion on the asymptotic giant branch (AGB). This scenario leads to a number of testable predictions in terms of the properties of the putative binary system and the resulting abundance pattern. Among the CEMP stars, some stars further exhibit overabundances in r-process elements on top of the s-process enrichment, and are tagged CEMP-rs stars. Although the nucleosynthesis process responsible for this kind of mixed abundance pattern is still under debate, CEMP-rs stars seem to belong to binary systems as do CEMP-s stars. Aims: Our aim is to present and analyse in detail our comprehensive data set of systematic radial-velocity measurements and high-resolution spectroscopy of the CEMP star HE 0017+0055. Methods: Our precise radial-velocity monitoring of HE 0017+0055 over 2940 days (8 yr) with the Nordic Optical Telescope and Mercator telescopes exhibits variability, with a period of 384 d and amplitude of 540 ± 27 m s-1 superimposed on a nearly linear long-term decline of ~1 m s-1 day-1. We used high-resolution HERMES/Mercator and Keck/HIRES spectra to derive elemental abundances with 1D LTE MARCS models. A metallicity of [Fe/H] ~ -2.4 is found, along with s-process overabundances of the order of 2 dex (with the exception of [Y/Fe] ~ + 0.5), and most notably overabundances of r-process elements like Sm, Eu, Dy, and Er in the range 0.9-2.0 dex. With [Ba/Fe] > 1.9 dex and [Eu/Fe] = 2.3 dex, HE 0017+0055 is a CEMP-rs star. We used the derived atmospheric parameters and abundances to infer HE 0017+0055 evolutionary status from a comparison with evolutionary tracks. Results: HE 0017+0055 appears to be a giant star below the tip of the red giant branch. The s-process pollution must therefore originate from mass transfer from a companion formerly on the AGB, which is now a carbon-oxygen white dwarf (WD). If the 384 d velocity variations are attributed to the WD companion, its orbit must be seen almost face-on, with I ~ 2.3°, because the mass function is very small: f(M1,M2) = (6.1 ± 1.1) × 10-6M⊙. Alternatively, the WD orbital motion could be responsible for the long-term velocity variations, with a period of several decades. The 384 d variations should then be attributed either to a low-mass inner companion (perhaps a brown dwarf, depending on the orbital inclination), or to stellar pulsations. The latter possibility is made likely by the fact that similar low-amplitude velocity variations, with periods close to 1 yr, have been reported for other CEMP stars in a companion paper. A definite conclusion about the origin of the 384 d velocity variations should however await the detection of synchronous low-amplitude photometric variations. Based on observations performed with the Mercator telescope and the Nordic Optical Telescope (NOT), operated by the Nordic Optical Telescope Scientific Association at the Roque de los Muchachos Observatory, La Palma, Spain, of the Instituto de Astrofïsica de Canarias.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.

    In this paper, we study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (M vir ~ 10 12.1 M ⊙) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with M star ~ 10 8–10 10M ⊙. Halos with more quiescent accretion histories tendmore » to have lower mass progenitors (10 8–10 9 M ⊙), and lower overall accreted stellar masses. Ultra-faint mass (M star < 10 5 M ⊙) dwarfs contribute a negligible amount (<<1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (~2%–5%) of the very metal-poor stars with [Fe/H] < -2. Dwarfs with masses 10 5 < M star/M ⊙ < 10 8 provide a substantial amount of the very metal-poor stellar material (~40%–80%), and even relatively metal-rich dwarfs with M star > 10 8 M ⊙ can contribute a considerable fraction (~20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. In conclusion, we suggest that the MW could be a "transient fossil"; a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.« less

  9. a UV Spectral Library of Metal-Poor Massive Stars

    NASA Astrophysics Data System (ADS)

    Robert, Carmelle

    1994-01-01

    We propose to use the FOS to build a snapshot library of UV spectra of a sample of about 50 metal-poor massive stars located in the Magellanic Clouds. The majority of libraries already existing contains spectra of hot stars with chemical abundances close to solar. The high spectral resolution achieves with the FOS will be a major factor for the uniqueness of this new library. UV spectral libraries represent fundamental tools for the study of the massive star populations of young star-forming regions. Massive stars, which are impossible to identify directly in the optical-IR part of a composite spectrum, display on the other hand key signatures in the UV region. These signatures are mainly broad, metallicity dependent spectral features formed in the hot star winds. They require a high spectral resolution (of the order of 200-300 km/s) for an adequate study. A spectral library of metal-poor massive stars represents also a unique source of data for a stellar atmosphere analysis. Within less then 10 min we will obtain a high signal-to-noise ratio of at least 30. Finally, since short exposure times are possible, this proposal makes extremely good use of the capabilities of HST. We designed an observing strategy which yields a maximum scientific return at a minimum cost of spacecraft time.

  10. Metal-poor Stars Observed with the Magellan Telescope. II. Discovery of Four Stars with [Fe/H] <= -3.5

    NASA Astrophysics Data System (ADS)

    Placco, Vinicius M.; Frebel, Anna; Beers, Timothy C.; Christlieb, Norbert; Lee, Young Sun; Kennedy, Catherine R.; Rossi, Silvia; Santucci, Rafael M.

    2014-01-01

    We report on the discovery of seven low-metallicity stars selected from the Hamburg/ESO Survey, six of which are extremely metal-poor (EMP, [Fe/H] <= -3.0), with four having [Fe/H] <= -3.5. Chemical abundances or upper limits are derived for these stars based on high-resolution (R ~ 35,000) Magellan/MIKE spectroscopy, and are in general agreement with those of other very and extremely metal-poor stars reported in the literature. Accurate metallicities and abundance patterns for stars in this metallicity range are of particular importance for studies of the shape of the metallicity distribution function of the Milky Way's halo system, in particular for probing the nature of its low-metallicity tail. In addition, taking into account suggested evolutionary mixing effects, we find that six of the program stars (with [Fe/H] <= -3.35) possess atmospheres that were likely originally enriched in carbon, relative to iron, during their main-sequence phases. These stars do not exhibit overabundances of their s-process elements, and hence may be, within the error bars, additional examples of the so-called CEMP-no class of objects. Based on observations gathered with: The 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile; the Southern Astrophysical Research (SOAR) telescope (SO2011B-002), which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU); and the New Technology Telescope (NTT) of the European Southern Observatory (088.D-0344A), La Silla, Chile.

  11. The Growth of Stellar Mass Black Hole Binaries Trapped in the Accretion Disks of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Yi, Shu-Xu; Cheng, K. S.; Taam, Ronald E.

    2018-06-01

    Among the four black hole (BH) binary merger events detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO), six progenitor BHs have masses greater than 20 M ⊙. The existence of such massive BHs suggests that extreme metal-poor stars are the progenitors. An alternative possibility, that a pair of stellar mass BHs each with mass ∼7 M ⊙ increases to >20 M ⊙ via accretion from a disk surrounding a supermassive BH (SMBH) in an active galactic nucleus (AGN), is considered. The growth of mass of the binary and the transfer of orbital angular momentum to the disk accelerates the merger. Based on the recent numerical work of Tang et al., it is found that, in the disk of a low-mass AGN with mass ∼106 M ⊙ and Eddington ratio >0.01, the mass of an individual BH in the binary can grow to >20 M ⊙ before coalescence, provided that accretion takes place at a rate more than 10 times the Eddington value. This mechanism predicts a new class of gravitational wave (GW) sources involving the merger of two extreme Kerr black holes associated with AGNs and a possible electromagnetic wave counterpart.

  12. Oxygen and iron abundances in two metal-poor dwarfs

    NASA Astrophysics Data System (ADS)

    Spiesman, William J.; Wallerstein, George

    1991-11-01

    Oxygen abundances from the O I line at 6300 A in two metal-poor K dwarfs, HD 25329 and HD 134440, are derived. The spectra were obtained with the KPNO 4-m echelle spectrograph and long camera, yielding a resolution of 32,000 and an S/N of about 125. Model atmospheres with Te of 4770 were appropriate to both stars, whose metallicities were found to be -1.74 and -1.43 for HD 25329 and HD 134440, respectively. These oxygen abundances are 0.3 and 0.4 for the two stars. From the resolution an S/N a 3(sigma) upper limit of 0.8 is derived for each star, which may be combined into an upper limit of O/Fe of 0.6 for a generic K dwarf with Fe/H of 1.6. These values are more in line with O/Fe as seen in similarly metal-poor red giant than those reported in metal-poor subdwarfs by Abia and Rebolo (1989).

  13. A Speckle survey of Southern Hipparcos Visual Doubles and Geneva-Copenhagen Spectroscopic Binaries

    NASA Astrophysics Data System (ADS)

    Mendez, R. A.; Tokovinin, A.; Horch, E.

    2018-01-01

    We present a speckle survey of Hipparcos visual doubles and spectroscopic binary stars identified by the Geneva-Copenhagen spectroscopic survey with the SOAR 4m telescope + HRCam. These systems represent our best chance to take advantage of Gaia parallaxes for the purpose of stellar mass determinations. Many of these systems already have mass fractions (although generally no spectroscopic orbit - an astrometric orbit will determine individual masses), metallicity information, and Hipparcos distances. They will be used to improve our knowledge of the mass-luminosity relation, particularly for lower-metallicity stars. Our survey will create the first all-sky, volume-limited, speckle archive for the two primary samples, complementing a similar effort that has been recently been completed at the WIYN 3.5-m telescope in the Northern Hemisphere. This extension to the Southern Hemisphere will fill out the picture for a wider metallicity range.

  14. The R-Process Alliance: 2MASS J09544277+5246414, the Most Actinide-enhanced R-II Star Known

    NASA Astrophysics Data System (ADS)

    Holmbeck, Erika M.; Beers, Timothy C.; Roederer, Ian U.; Placco, Vinicius M.; Hansen, Terese T.; Sakari, Charli M.; Sneden, Christopher; Liu, Chao; Lee, Young Sun; Cowan, John J.; Frebel, Anna

    2018-06-01

    We report the discovery of a new actinide-boost star, 2MASS J09544277+5246414, originally identified as a very bright (V = 10.1), extremely metal-poor ([Fe/H] = ‑2.99) K giant in the LAMOST survey, and found to be highly r-process-enhanced (r-II; [Eu/Fe] = +1.28]), during the snapshot phase of the R-Process Alliance (RPA). Based on a high signal-to-noise ratio (S/N), high-resolution spectrum obtained with the Harlan J. Smith 2.7 m telescope, this star is the first confirmed actinide-boost star found by RPA efforts. With an enhancement of [Th/Eu] = +0.37, 2MASS J09544277+5246414 is also the most actinide-enhanced r-II star yet discovered, and only the sixth metal-poor star with a measured uranium abundance ([U/Fe] = +1.40). Using the Th/U chronometer, we estimate an age of 13.0 ± 4.7 Gyr for this star. The unambiguous actinide-boost signature of this extremely metal-poor star, combined with additional r-process-enhanced and actinide-boost stars identified by the RPA, will provide strong constraints on the nature and origin of the r-process at early times.

  15. Using HMXBs to Probe Massive Binary Evolution

    NASA Astrophysics Data System (ADS)

    Garofali, Kristen

    2017-09-01

    We propose using deep archival Chandra data of M33 to characterize the distribution of physical parameters for the high-mass X-ray binary (HMXB) population from X-ray spectra, X-ray lightcurves, and identified optical counterparts coupled with ground-based spectroscopy. Our analysis will provide the largest clean sample of HMXBs in M33, including hardness, short- and long-term variability, luminosity, and ages. These measurements will be compared across M33 and to HMXB studies in other nearby galaxies to test correlations between HMXB population and host properties such as metallicity and star formation rate. Furthermore, our measurements will yield empirical constraints on prescriptions for models of the formation and evolution of massive stars in binaries.

  16. Follow-up observations of extremely metal-poor stars identified from SDSS

    NASA Astrophysics Data System (ADS)

    Aguado, D. S.; Allende Prieto, C.; González Hernández, J. I.; Carrera, R.; Rebolo, R.; Shetrone, M.; Lambert, D. L.; Fernández-Alvar, E.

    2016-08-01

    Context. The most metal-poor stars in the Milky Way witnessed the early phases of formation of the Galaxy, and have chemical compositions that are close to the pristine mixture from Big Bang nucleosynthesis, polluted by one or few supernovae. Aims: Only two dozen stars with ([Fe/H] < -4) are known, and they show a wide range of abundance patterns. It is therefore important to enlarge this sample. We present the first results of an effort to identify new extremely metal-poor stars in the Milky Way halo. Methods: Our targets have been selected from low-resolution spectra obtained as part of the Sloan Digital Sky Survey, and followed-up with medium resolution spectroscopy on the 4.2 m William Herschel Telescope and, in a few cases, at high resolution on the 9.2 m Hobby-Eberly Telescope. Stellar parameters and the abundances of magnesium, calcium, iron, and strontium have been inferred from the spectra using classical model atmospheres. We have also derived carbon abundances from the G band. Results: We find consistency between the metallicities estimated from SDSS and those from new data at the level of 0.3 dex. The analysis of medium resolution data obtained with ISIS on the WHT allows us to refine the metallicities and in some cases measure other elemental abundances. Our sample contains 11 new metal-poor stars with [Fe/H] < -3.0, one of them with an estimated metallicity of [Fe/H] ~ -4.0. We also discuss metallicity discrepancies of some stars in common with previous works in the literature. Only one of these stars is found to be C-enhanced at about [C/Fe] ~ + 1, whereas the other metal-poor stars show C abundances at the level of [C/Fe] ~ + 0.45. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.The reduced spectra as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/593/A10

  17. Using photometrically selected metal-poor stars to study dwarf galaxies and the Galactic stellar halo

    NASA Astrophysics Data System (ADS)

    Youakim, Kris; Starkenburg, Else; Martin, Nicolas; Pristine Team

    2018-06-01

    The Pristine survey is a narrow-band photometric survey designed to efficiently search for extremely metal-poor (EMP) stars. In the first three years of the survey, it has demonstrated great efficiency at finding EMP stars, and also great promise for increasing the current, small sample of the most metal-poor stars. The present sky coverage is ~2500 square degrees in the Northern Galactic Halo, including several individual fields targeting dwarf galaxies. By efficiently identifying member stars in the outskirts of known faint dwarf galaxies, the dynamical histories and chemical abundance patterns of these systems can be understood in greater detail. Additionally, with reliable photometric metallicities over a large sky coverage it is possible to perform a large scale clustering analysis in the Milky Way halo, and investigate the characteristic scale of substructure at different metallicities. This can reveal important details about the process of building up the halo through dwarf galaxy accretion, and offer insight into the connection between dwarf galaxies and the Milky Way halo. In this talk I will outline our results on the search for the most pristine stars, with a focus on how we are using this information to advance our understanding of dwarf galaxies and their contribution to the formation of the Galactic stellar halo.

  18. Ages and Heavy Element Abundances from Very Metal-poor Stars in the Sagittarius Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Hansen, Camilla Juul; El-Souri, Mariam; Monaco, Lorenzo; Villanova, Sandro; Bonifacio, Piercarlo; Caffau, Elisabetta; Sbordone, Luca

    2018-03-01

    Sagittarius (Sgr) is a massive disrupted dwarf spheroidal galaxy in the Milky Way halo that has undergone several stripping events. Previous chemical studies were restricted mainly to a few, metal-rich ([Fe/H] \\gtrapprox -1) stars that suggested a top-light initial mass function (IMF). Here we present the first high-resolution, very metal-poor ([Fe/H] =‑1 to ‑3) sample of 13 giant stars in the main body of Sgr. We derive abundances of 13 elements, namely C, Ca, Co, Fe, Sr, Ba, La, Ce, Nd, Eu, Dy, Pb, and Th, that challenge the interpretation based on previous studies. Our abundances from Sgr mimic those of the metal-poor halo, and our most metal-poor star ([Fe/H] ∼ -3) indicates a pure r-process pollution. Abundances of Sr, Pb, and Th are presented for the first time in Sgr, allowing for age determination using nuclear cosmochronology. We calculate ages of 9+/- 2.5 {Gyr}. Most of the sample stars have been enriched by a range of asymptotic giant branch (AGB) stars with masses between 1.3 and 5 M ⊙. Sgr J190651.47–320147.23 shows a large overabundance of Pb (2.05 dex) and a peculiar abundance pattern best fit by a 3 M ⊙ AGB star. Based on star-to-star scatter and observed abundance patterns, a mixture of low- and high-mass AGB stars and supernovae (15–25 M ⊙) is necessary to explain these patterns. The high level (0.29 ± 0.05 dex) of Ca indicates that massive supernovae must have existed and polluted the early ISM of Sgr before it lost its gas. This result is in contrast with a top-light IMF with no massive stars polluting Sgr. Based on data obtained UVES/VLT ID: 083.B-0774, 075.B-0127.

  19. DETECTION OF PHOSPHORUS, SULPHUR, AND ZINC IN THE CARBON-ENHANCED METAL-POOR STAR BD+44 493

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roederer, Ian U.; Placco, Vinicius M.; Beers, Timothy C., E-mail: iur@umich.edu

    2016-06-20

    The carbon-enhanced metal-poor star BD+44°493 ([Fe/H] = −3.9) has been proposed as a candidate second-generation star enriched by metals from a single Pop III star. We report the first detections of P and S and the second detection of Zn in any extremely metal-poor carbon-enhanced star, using new spectra of BD+44°493 collected by the Cosmic Origins Spectrograph on the Hubble Space Telescope . We derive [P/Fe] = −0.34 ± 0.21, [S/Fe] = +0.07 ± 0.41, and [Zn/Fe] = −0.10 ± 0.24. We increase by 10-fold the number of Si i lines detected in BD+44°493, yielding [Si/Fe] = +0.15 ± 0.22.more » The [S/Fe] and [Zn/Fe] ratios exclude the hypothesis that the abundance pattern in BD+44°493 results from depletion of refractory elements onto dust grains. Comparison with zero-metallicity supernova (SN) models suggests that the stellar progenitor that enriched BD+44°493 was massive and ejected much less than 0.07 M {sub ⊙} of {sup 56}Ni, characteristic of a faint SN.« less

  20. Using CETUS to study the first stars and first metals

    NASA Astrophysics Data System (ADS)

    Roederer, Ian; CETUS Team

    2018-01-01

    The nucleosynthetic signatures of the first stars and supernovae are imprinted in the compositions of the most metal-poor stars found today. Only a few tens of absorption lines are commonly found in the optical spectra of the second-generation stars, so only 5-10 elements are regularly detected. Many others (Be, B, Si, P, S, Sc, V, Cr, Mn, Co, Ni, Cu, and Zn) are expected to be present but are rarely detected, and the upper limits derived from their optical non-detections are often uninteresting. The UV part of the spectrum accessible to the high-resolution UV spectrograph on CETUS would enable all of these elements to be detected if present in the most metal-poor stars known. We illustrate some of the ground-breaking observations of these stars that could be made with this mission.

  1. TOPoS: chemical study of extremely metal-poor stars.

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Sbordone, L.; Bonifacio, P.; Cayrel, R.; Christlieb, N.; Clark, P.; François, P.; Glover, S.; Klessen, R.; Koch, A.; Ludwig, H.-G.; Monaco, L.; Plez, B.; Spite, F.; Spite, M.; Steffen, M.; Zaggia, S.

    The extremely metal-poor (EMP) stars hold in their atmospheres the fossil record of the chemical composition of the early phases of the Galactic evolution. The chemical analysis of such objects provides important constraints on these early phases. EMP stars are very rare objects; to dig them out, large amounts of data have to be processed. With an automatic procedure, we analysed objects with colours of Turn-Off stars from the Sloan Digital Sky Survey to select a sample of good candidate EMP stars. In the latest years, we observed a sample of these candidates with X-Shooter and UVES, and we have an ongoing ESO large programme to use these spectrographs to observe EMP stars. I will report here the results on metallicity and Strontium abundance. Based on observations obtained at ESO Paranal Observatory, programme 189.D-0165(A)

  2. Metal-poor star formation triggered by the feedback effects from Pop III stars

    NASA Astrophysics Data System (ADS)

    Chiaki, Gen; Susa, Hajime; Hirano, Shingo

    2018-04-01

    Metal enrichment by first-generation (Pop III) stars is the very first step of the matter cycle in structure formation and it is followed by the formation of extremely metal-poor (EMP) stars. To investigate the enrichment process by Pop III stars, we carry out a series of numerical simulations including the feedback effects of photoionization and supernovae (SNe) of Pop III stars with a range of masses of minihaloes (MHs), Mhalo, and Pop III stars, MPopIII. We find that the metal-rich ejecta reach neighbouring haloes and external enrichment (EE) occurs when the H II region expands before the SN explosion. The neighbouring haloes are only superficially enriched, and the metallicity of the clouds is [Fe/H] < -5. Otherwise, the SN ejecta fall back and recollapse to form an enriched cloud, i.e. an internal-enrichment (IE) process takes place. In the case where a Pop III star explodes as a core-collapse SN (CCSN), the MH undergoes IE, and the metallicity in the recollapsing region is -5 ≲ [Fe/H] ≲ -3 in most cases. We conclude that IE from a single CCSN can explain the formation of EMP stars. For pair-instability SNe (PISNe), EE takes place for all relevant mass ranges of MHs, consistent with the lack of observational signs of PISNe among EMP stars.

  3. The cosmic merger rate of stellar black hole binaries from the Illustris simulation

    NASA Astrophysics Data System (ADS)

    Mapelli, Michela; Giacobbo, Nicola; Ripamonti, Emanuele; Spera, Mario

    2017-12-01

    The cosmic merger rate density of black hole binaries (BHBs) can give us an essential clue to constraining the formation channels of BHBs, in light of current and forthcoming gravitational wave detections. Following a Monte Carlo approach, we couple new population-synthesis models of BHBs with the Illustris cosmological simulation, to study the cosmic history of BHB mergers. We explore six population-synthesis models, varying the prescriptions for supernovae, common envelope and natal kicks. In most considered models, the cosmic BHB merger rate follows the same trend as the cosmic star formation rate. The normalization of the cosmic BHB merger rate strongly depends on the treatment of common envelope and on the distribution of natal kicks. We find that most BHBs merging within LIGO's instrumental horizon come from relatively metal-poor progenitors (<0.2 Z⊙). The total masses of merging BHBs span a large range of values, from ∼6 to ∼82 M⊙. In our fiducial model, merging BHBs consistent with GW150914, GW151226 and GW170104 represent ∼6, 3 and 12 per cent of all BHBs merging within the LIGO horizon, respectively. The heavy systems, like GW150914, come from metal-poor progenitors (<0.15 Z⊙). Most GW150914-like systems merging in the local Universe appear to have formed at high redshift, with a long delay time. In contrast, GW151226-like systems form and merge all the way through the cosmic history, from progenitors with a broad range of metallicities. Future detections will be crucial to put constraints on common envelope, on natal kicks, and on the BHB mass function.

  4. A Spectroscopic Catalog of Nearby, High Proper Motion M subdwarfs

    NASA Astrophysics Data System (ADS)

    Hejazi, Neda; Lepine, Sebastien; Homeier, Derek

    2018-01-01

    We present a catalog of 350 metal-poor M subdwarfs, most of them likely from the local Galactic halo population, assembled from medium-resolution observations made at the MDM observatory. All objects are high proper motion stars, with 257 of them having proper motions > 0.4"/yr. We have identified the brightest prototypes for each bin of a grid of 14 spectral subtypes (M0, M0.5, M1, … M6.5) and 9 metallicity bins that go from the moderately metal-poor subdwarfs (sdM), to the more metal-poor extreme subdwarfs (esdM), to the most metal-poor ultra subdwarfs (usdM), each of which is subdivided into three finer metallicity subclasses. The spectral classification by subtype and metallicity class has been determined by a template-fit method, and confirmed by synthetic-model fitting using the BT-Settl spectral grid. We provide the list of the brightest prototypes for each subtype/subclass, as a guide for future high-resolution surveys of low-mass, metal-poor stars.

  5. AGB stars in Leo P and their use as metallicity probes

    NASA Astrophysics Data System (ADS)

    Lee, Chien-Hsiu

    2016-09-01

    Leo P is the most metal-poor yet star-forming galaxy in the local volume, and has the potential to serve as a local counterpart to interpret the properties of distant galaxies in the early universe. We present a comprehensive search of asymptotic giant branch (AGB) stars in Leo P using deep infrared imaging. AGB stars are the major dust contributors; the metal poor nature of Leo P can help to shed light on the dust formation process in very low-metallicity environments, similar to the early Universe. We select and classify oxygen-rich and carbon-rich candidate AGB stars using J - K versus K colour-magnitude diagram. To filter out contaminations from background galaxies, we exploit the high-resolution Hubble Space Telescope imaging and identify 9 oxygen-rich AGBs and 13 carbon-rich AGB stars in Leo P. We then use the ratio of carbon-rich and oxygen-rich AGB stars (C/M ratio) as an indicator of on-site metallicity and derive the global metallicity [Fe/H] = -1.8 dex for Leo P, in good agreement with previous studies using isochrone fitting. Follow-up observations of these Leo P AGB stars in the mid-infrared [e.g. Spitzer, James Webb Space Telescope (JWST)] will be invaluable to measure the dust formation rates using Spectral energy distribution (SED) fitting.

  6. The possible existence of Pop III NS-BH binary and its detectability

    NASA Astrophysics Data System (ADS)

    Kinugawa, Tomoya; Nakamura, Takashi; Nakano, Hiroyuki

    2017-02-01

    In the population synthesis simulations of Pop III stars, many BH (black hole)-BH binaries with merger time less than the age of the Universe (τH) are formed, while NS (neutron star)-BH binaries are not. The reason is that Pop III stars have no metal so that no mass loss is expected. Then, in the final supernova explosion to NS, much mass is lost so that the semimajor axis becomes too large for Pop III NS-BH binaries to merge within τH . However it is almost established that the kick velocity of the order of 200 ‑500  km s‑1 exists for NS from the observation of the proper motion of the pulsar. Therefore, the semimajor axis of the half of NS-BH binaries can be smaller than that of the previous argument for Pop III NS-BH binaries to decrease the merging time. We perform population synthesis Monte Carlo simulations of Pop III NS-BH binaries including the kick of NS and find that the event rate of Pop III NS-BH merger rate is 1  Gpc‑3 yr‑1 . This suggests that there is a good chance of detecting Pop III NS-BH mergers in O2 (Observation run 2) of Advanced LIGO and Advanced Virgo from this autumn.

  7. Pristine Survey : High-Resolution Spectral Analyses of New Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Venn, Kim; Starkenburg, Else; Martin, Nicolas; Kielty, Collin; Youakim, Kris; Arnetsen, Anke

    2018-06-01

    The Pristine survey (Starkenburg et al. 2017) is a new and very successful metal-poor star survey. Combining high-quality narrow-band CaHK CFHT/MegaCam photometry with existing broadband photometry from SDSS, then very metal-poor stars have been found as confirmed from low-resolution spectroscopy (Youakim et al. 2017). Furthermore, we have extended this survey towards the Galactic bulge in a pilot program to test the capabilities in the highly crowded and (inhomogeneously) extincted bulge (Arentsen et al. 2018). High resolution spectral follow-up analyses have been initiated at the CFHT with Espadons (V<15) and the Gemini/GRACES long optical fibre that also feeds the Espadons spectrograph (15

  8. Towards ab initio extremely metal-poor stars

    NASA Astrophysics Data System (ADS)

    Ritter, Jeremy S.; Safranek-Shrader, Chalence; Milosavljević, Miloš; Bromm, Volker

    2016-12-01

    Extremely metal-poor stars have been the focus of much recent attention owing to the expectation that their chemical abundances can shed light on the metal and dust yields of the earliest supernovae. We present our most realistic simulation to date of the astrophysical pathway to the first metal-enriched stars. We simulate the radiative and supernova hydrodynamic feedback of a 60 M⊙ Population III star starting from cosmological initial conditions realizing Gaussian density fluctuations. We follow the gravitational hydrodynamics of the supernova remnant at high spatial resolution through its freely expanding, adiabatic, and radiative phases, until gas, now metal-enriched, has resumed runaway gravitational collapse. Our findings are surprising: while the Population III progenitor exploded with a low energy of 1051 erg and injected an ample metal mass of 6 M⊙, the first cloud to collapse after the supernova explosion is a dense surviving primordial cloud on which the supernova blast wave deposited metals only superficially, in a thin, unresolved layer. The first metal-enriched stars can form at a very low metallicity, of only 2-5 × 10-4 Z⊙, and can inherit the parent cloud's highly elliptical, radially extended orbit in the dark matter gravitational potential.

  9. X-ray Emission from Early Universe Analog Galaxies

    NASA Astrophysics Data System (ADS)

    Brorby, Matthew; Kaaret, Philip; Prestwich, Andrea H.; Mirabel, I. Felix; Feng, Hua

    2016-01-01

    Around 300,000 years after the Big Bang, the Universe had cooled enough to combine and form neutral atoms. This signified the beginning of a time known as the Dark Ages. Neutral matter began to fall into the dark matter gravitational wells that were seeded after the initial moments of the Big Bang. As the first stars and galaxies formed within these gravitational wells, the surrounding baryonic matter was heated and started to ionize. The source of energetic photons that heated and reionized the early Universe remains uncertain. Early galaxies had low metallicity and recent population synthesis calculations suggest that the number and luminosity of high-mass X-ray binaries are enhanced in star-forming galaxies with low metallicity, offering a potentially important and previously overlooked source of heating and reionization. Here we examine two types of local galaxies that have been shown to be good analogs to the early galaxies in the Universe: Blue compact dwarf galaxies (BCDs) and Lyman Break Analogs (LBAs).A BCD is defined by its blue optical colors, low metallicities, and physically small size. This makes BCDs the best available local analogs for early star formation. We analyzed data from a sample of 25 metal-poor BCDs and compared our results with those of near-solar metallicity galaxies. Using a Bayesian approach, we showed that the X-ray luminosity function for the low-metallicity BCDs is significantly elevated relative to the XLF for near-solar metallicity galaxies.Larger, gas-rich galaxies may have formed shortly after these first galaxies. These larger galaxies would be similar in their properties to the high-redshift Lyman break galaxies (LBGs). LBAs provide the best local comparison to the LBGs. We studied a sample of 10 LBAs in order to measure the relation between star formation rate and X-ray luminosity for these galaxies. We found that for LBAs with intermediate sub-solar metallicities, there is enhanced X-ray emission relative to the expected value from near-solar metallicity galaxies.By incorporating our results into simulations used to predict the redshifted 21cm signal from the early Universe, unique and observable predictions could be made for future 21cm observations.

  10. Evidence for Unresolved Exoplanet-hosting Binaries in Gaia DR2

    NASA Astrophysics Data System (ADS)

    Evans, Daniel F.

    2018-05-01

    This note describes an effort to detect additional stellar sources in known transiting exoplanet (TEP) systems, which are unresolved or barely resolved in the Gaia Data Release 2 (DR2) catalogue. The presence of multiple unresolved stars in photometric and spectroscopic observations of a transiting planetary system biases measurements of the planet's radius, mass, and atmospheric conditions. In addition to the effect on individual planetary systems, the presence of unresolved stars across the sample of known exoplanets biases our overall understanding of planetary systems, due to the systematic underestimation of both masses and radii. This work uses the Astrometric Goodness of Fit in the Along-Scan direction (GOF_AL) and the Astrometric Excess Noise as indicators of poorly-resolved binaries. Many known close binaries in the exoplanet host star sample have highly significant GOF_AL and Astrometric Excess Noise values, such as WASP-20AB with Astrometric Excess Noise significant at $4720\\sigma$ and GOF_AL=124.

  11. A giant planet in the triple system HD 132563

    NASA Astrophysics Data System (ADS)

    Desidera, S.; Carolo, E.; Gratton, R.; Martinez Fiorenzano, A. F.; Endl, M.; Mesa, D.; Barbieri, M.; Bonavita, M.; Cecconi, M.; Claudi, R. U.; Cosentino, R.; Marzari, F.; Scuderi, S.

    2011-09-01

    As part of our radial velocity planet-search survey performed with SARG at TNG, we monitored the components of HD 132563 for ten years. It is a binary system formed by two rather similar solar type stars with a projected separation of 4.1 arcsec, which corresponds to 400 AU at the distance of 96 pc. The two components are moderately metal-poor ([Fe/H] = -0.19), and the age of the system is about 5 Gyr. We detected RV variations of HD 132563B with period of 1544 days and semi-amplitude of 26 m/s. From the star characteristics and line profile measurements, we infer their Keplerian origin. Therefore HD 132563B turns out to host a planet with a projected mass msini = 1.49 MJ at 2.6 AU with a moderately eccentric orbit (e = 0.22). The planet around HD 132563B is one of the few that are known in triple stellar systems, as we found that the primary HD 132563A is itself a spectroscopic binary with a period longer than 15 years and an eccentricity higher than 0.65. The spectroscopic component was not detected in adaptive-optics images taken with the instrument AdOpt mounted at the TNG, since it expected at a projected separation that was smaller than 0.2 arcsec at the time of our observations. A small excess in K band difference between the components with respect to the difference in V band is compatible with a companion of about 0.55 M⊙. A preliminary statistical analysis of when planets occur in triple systems indicate a similar frequency of planets around the isolated component in a triple system, components of wide binaries and single stars. There is no significant iron abundance difference between the components. The lack of stars in binary systems and open clusters showing strong enhancements of iron abundance, which are comparable to the typical metallicity difference between stars with and without giant planets, agrees with the idea that accretion of planetary material producing iron abundance anomalies over 0.1 dex is rare. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundacion Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.Tables 4 and 5 are available in electronic form at http://www.aanda.org and at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/533/A90

  12. Diversity of abundance patterns of neutron-capture elements in very metal-poor stars

    NASA Astrophysics Data System (ADS)

    Aoki, Misa; Aoki, Wako; Ishimaru, Yuhri; Wanajo, Shinya

    2014-05-01

    Observations of Very Metal-Poor stars indicate that there are at least two sites to r-process; "weak r-process" and "main r-process". A question is whether these two are well separated or there exists a variation in the r-process. We present the results of abundance analysis of neutron-capture elements in the two Very Metal-Poor stars HD107752 and HD110184 in the Milky Way halo observed with the Subaru Telescope HDS. The abundance patterns show overabundace at light n-capture elements (e.g. Sr, Y), inferring the element yielding of weak r-process, while heavy neutron-capture elements (e.g. Ba, Eu) are deficient; however, the overabundance of light ones is not as significant as that previously found in stars representing the weak r-process (e.g. HD122563; Honda et al. 2006). Our study show diversity in the abundance patterns from light to heavy neutron-capture elements in VMP stars, suggesting a variation in r-process, which may depend on electron fraction of environment.

  13. New Fe i Level Energies and Line Identifications from Stellar Spectra. II. Initial Results from New Ultraviolet Spectra of Metal-poor Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Ruth C.; Kurucz, Robert L.; Ayres, Thomas R., E-mail: peterson@ucolick.org

    2017-04-01

    The Fe i spectrum is critical to many areas of astrophysics, yet many of the high-lying levels remain uncharacterized. To remedy this deficiency, Peterson and Kurucz identified Fe i lines in archival ultraviolet and optical spectra of metal-poor stars, whose warm temperatures favor moderate Fe i excitation. Sixty-five new levels were recovered, with 1500 detectable lines, including several bound levels in the ionization continuum of Fe i. Here, we extend the previous work by identifying 59 additional levels, with 1400 detectable lines, by incorporating new high-resolution UV spectra of warm metal-poor stars recently obtained by the Hubble Space Telescope Imagingmore » Spectrograph. We provide gf values for these transitions, both computed as well as adjusted to fit the stellar spectra. We also expand our spectral calculations to the infrared, confirming three levels by matching high-quality spectra of the Sun and two cool stars in the H -band. The predicted gf values suggest that an additional 3700 Fe i lines should be detectable in existing solar infrared spectra. Extending the empirical line identification work to the infrared would help confirm additional Fe i levels, as would new high-resolution UV spectra of metal-poor turnoff stars below 1900 Å.« less

  14. New Fe I Level Energies and Line Identifications from Stellar Spectra. II. Initial Results from New Ultraviolet Spectra of Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Peterson, Ruth C.; Kurucz, Robert L.; Ayres, Thomas R.

    2017-04-01

    The Fe I spectrum is critical to many areas of astrophysics, yet many of the high-lying levels remain uncharacterized. To remedy this deficiency, Peterson & Kurucz identified Fe I lines in archival ultraviolet and optical spectra of metal-poor stars, whose warm temperatures favor moderate Fe I excitation. Sixty-five new levels were recovered, with 1500 detectable lines, including several bound levels in the ionization continuum of Fe I. Here, we extend the previous work by identifying 59 additional levels, with 1400 detectable lines, by incorporating new high-resolution UV spectra of warm metal-poor stars recently obtained by the Hubble Space Telescope Imaging Spectrograph. We provide gf values for these transitions, both computed as well as adjusted to fit the stellar spectra. We also expand our spectral calculations to the infrared, confirming three levels by matching high-quality spectra of the Sun and two cool stars in the H-band. The predicted gf values suggest that an additional 3700 Fe I lines should be detectable in existing solar infrared spectra. Extending the empirical line identification work to the infrared would help confirm additional Fe I levels, as would new high-resolution UV spectra of metal-poor turnoff stars below 1900 Å.

  15. Stellar Yields of Rotating First Stars. II. Pair-instability Supernovae and Comparison with Observations

    NASA Astrophysics Data System (ADS)

    Takahashi, Koh; Yoshida, Takashi; Umeda, Hideyuki

    2018-04-01

    Recent theory predicts that first stars are born with a massive initial mass of ≳100 M ⊙. Pair-instability supernova (PISN) is a common fate for such massive stars. Our final goal is to prove the existence of PISNe and thus the high-mass nature of the initial mass function in the early universe by conducting abundance profiling, in which properties of a hypothetical first star is constrained by metal-poor star abundances. In order to determine reliable and useful abundances, we investigate the PISN nucleosynthesis taking both rotating and nonrotating progenitors for the first time. We show that the initial and CO core mass ranges for PISNe depend on the envelope structures: nonmagnetic rotating models developing inflated envelopes have a lower shifted CO mass range of ∼70–125 M ⊙, while nonrotating and magnetic rotating models with deflated envelopes have a range of ∼80–135 M ⊙. However, we find no significant difference in explosive yields from rotating and nonrotating progenitors, except for large nitrogen production in nonmagnetic rotating models. Furthermore, we conduct the first systematic comparison between theoretical yields and a large sample of metal-poor star abundances. We find that the predicted low [Na/Mg] ∼ ‑1.5 and high [Ca/Mg] ∼0.5–1.3 abundance ratios are the most important to discriminate PISN signatures from normal metal-poor star abundances, and confirm that no currently observed metal-poor star matches with the PISN abundance. An extensive discussion on the nondetection is presented.

  16. Chemical Abundance Analysis of Three α-poor, Metal-poor Stars in the Ultrafaint Dwarf Galaxy Horologium I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagasawa, D. Q.; Marshall, J. L.; Li, T. S.

    We present chemical abundance measurements of three stars in the ultrafaint dwarf galaxy Horologium I, a Milky Way satellite discovered by the Dark Energy Survey. Using high-resolution spectroscopic observations, we measure the metallicity of the three stars, as well as abundance ratios of several α-elements, iron-peak elements, and neutron-capture elements. The abundance pattern is relatively consistent among all three stars, which have a low average metallicity of [Fe/H] ~ –2.6 and are not α-enhanced ([α/Fe] ~ 0.0). This result is unexpected when compared to other low-metallicity stars in the Galactic halo and other ultrafaint dwarfs and suggests the possibility ofmore » a different mechanism for the enrichment of Hor I compared to other satellites. Here, we discuss possible scenarios that could lead to this observed nucleosynthetic signature, including extended star formation, enrichment by a Population III supernova, and or an association with the Large Magellanic Cloud.« less

  17. Chemical Abundance Analysis of Three α-poor, Metal-poor Stars in the Ultrafaint Dwarf Galaxy Horologium I

    DOE PAGES

    Nagasawa, D. Q.; Marshall, J. L.; Li, T. S.; ...

    2018-01-11

    We present chemical abundance measurements of three stars in the ultrafaint dwarf galaxy Horologium I, a Milky Way satellite discovered by the Dark Energy Survey. Using high-resolution spectroscopic observations, we measure the metallicity of the three stars, as well as abundance ratios of several α-elements, iron-peak elements, and neutron-capture elements. The abundance pattern is relatively consistent among all three stars, which have a low average metallicity of [Fe/H] ~ –2.6 and are not α-enhanced ([α/Fe] ~ 0.0). This result is unexpected when compared to other low-metallicity stars in the Galactic halo and other ultrafaint dwarfs and suggests the possibility ofmore » a different mechanism for the enrichment of Hor I compared to other satellites. Here, we discuss possible scenarios that could lead to this observed nucleosynthetic signature, including extended star formation, enrichment by a Population III supernova, and or an association with the Large Magellanic Cloud.« less

  18. Constraints on the Progenitor System of SN 2016gkg from a Comprehensive Statistical Analysis

    NASA Astrophysics Data System (ADS)

    Sravan, Niharika; Marchant, Pablo; Kalogera, Vassiliki; Margutti, Raffaella

    2018-01-01

    Type IIb supernovae (SNe) present a unique opportunity for understanding the progenitors of stripped-envelope SNe because the stellar progenitor of several SNe IIb have been identified in pre-explosion images. In this paper, we use Bayesian inference and a large grid of non-rotating solar-metallicity single and binary stellar models to derive the associated probability distributions of single and binary progenitors of the SN IIb 2016gkg using existing observational constraints. We find that potential binary star progenitors have smaller pre-SN hydrogen-envelope and helium-core masses than potential single-star progenitors typically by 0.1 M ⊙ and 2 M ⊙, respectively. We find that, a binary companion, if present, is a main-sequence or red-giant star. Apart from this, we do not find strong constraints on the nature of the companion star. We demonstrate that the range of progenitor helium-core mass inferred from observations could help improve constraints on the progenitor. We find that the probability that the progenitor of SN 2016gkg was a binary is 22% when we use constraints only on the progenitor luminosity and effective temperature. Imposing the range of pre-SN progenitor hydrogen-envelope mass and radius inferred from SN light curves, the probability that the progenitor is a binary increases to 44%. However, there is no clear preference for a binary progenitor. This is in contrast to binaries being the currently favored formation channel for SNe IIb. Our analysis demonstrates the importance of statistical inference methods to constrain progenitor channels.

  19. The Epoch of the First Star Formation in the Closest Metal-Poor Blue Compact Dwarf Galaxy UGC 4483

    NASA Astrophysics Data System (ADS)

    Aloisi, Alessandra

    2017-08-01

    Metal-poor Blue Compact Dwarf (BCD) galaxies have been interpreted as nearby galaxies in formation. This view has been challenged by HST detection of Red Giant Branch (RGB) stars in all metal-poor BCDs where an RGB tip (TRGB, brightest RGB phase) has been searched for, impling the presence of stars at least 1 Gyr old. Due to the age-metallicity degeneracy, the RGB color provides little insight into the exact star formation history (SFH) beyond 1 Gyr. So, the first SF epoch may have occurred anywhere between 13 and 1 Gyr ago. To resolve this, it is necessary to reach features in the color-magnitude diagram (CMD) that are much fainter than the TRGB. Here we propose new WFC3/UVIS observations (with ACS/WFC in parallel) of the closest metal-poor BCD, UGC 4483. These data will yield an I vs. V-I CMD that goes 4 mag deeper than the TRGB allowing to detect red clump (RC) and horizontal branch (HB) stars. Variable stars of RR Lyrae type will also be detected. With their mere presence, these variables will indisputably prove the existence of a population at least 10 Gyr old. Apparent mag and width of RC, HB and RGB will independently constrain age and metallicity of the old/evolved stars, the presence of multiple SF episodes, their duration and metallicity spread. This deep crowded-field photometric project is only possible with HST. Due to UGC 4483 location in CVZ, it can be done in half the number of orbits that it would otherwise take. Since UGC 4483 is so close, it may be the only BCD for which these questions can be answered in the near future. It provides our best chance for learning about the true cosmological age and evolutionary state of these enigmatic galaxies.

  20. Neutron-Capture Elements in Very Metal-Poor Halo Stars

    NASA Astrophysics Data System (ADS)

    French, R. S.; Sneden, C.; Cowan, J. J.; Lawler, J. E.; Primas, F.; Beers, T. C.; Truran, J. W.

    2000-05-01

    Abundances of the most massive stable elements (Os -> Pb or 76 <= Z <= 82) in metal-poor stars can provide crucial information about the so-called ``third neutron-capture peak,'' and are critical to the radioactive-dating technique that uses unstable thorium and uranium as chronometers. As the relevant transitions occur in the UV and are inaccessable to ground-based telescopes, we have obtained high resolution (R ~= 30,000) UV spectra of 10 very metal-poor (--3.0 <= [Fe/H] <= --1.4) halo giants using the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope. Using iterative spectrum synthesis techniques, we derive abundances for some of these heavy elements. We compare our abundances to those predicted for very metal-poor stars based on a scaled solar system rapid-process (production in rapid neutron-capture synthesis events, such as occurs during supernovae explosions). This research is supported by NASA STScI grant GO-08342 and NSF grants AST-9618364 to C.S. and AST-9618332 to J.J.C.

  1. Metal-rich SX Phe stars in the Kepler field

    NASA Astrophysics Data System (ADS)

    Nemec, James M.; Balona, Luis A.; Murphy, Simon J.; Kinemuchi, Karen; Jeon, Young-Beom

    2017-04-01

    A spectroscopic and photometric analysis has been carried out for 32 candidate SX Phe variable blue straggler stars in the Kepler field. Radial velocities (RVs), space motions (U, V, W), projected rotation velocities (vsin I), spectral types and atmospheric characteristics (Teff, log g, [Fe/H], ξt, ζRT, etc.) are presented for 30 of the 32 stars. Although several stars are metal-weak with extreme halo orbits, the mean [Fe/H] of the sample is near-solar, thus the stars are more metal-rich than expected for a typical sample of Pop. II stars and more like halo metal-rich A-type stars. Two-thirds of the stars are fast rotators with vsin I > 50 km s-1, including four stars with vsin I > 200 km s-1. Three of the stars have (negative) RVs > 250 km s-1, five have retrograde space motions and 21 have total speeds (relative to the Local Standard of Rest) >400 km s-1. All but one of the 30 stars have positions in a Toomre diagram consistent with the kinematics of bona fide halo stars (the exception being a thick-disc star). Observed Rømer time delays, pulsation frequency modulations and light curves suggest that at least one-third of the stars are in binary (or triple) systems with orbital periods ranging from 2.3 d to more than four years.

  2. Exploring the Overabundance of ULXs in Metal- and Dust-Poor Local Lyman Break Analogs

    NASA Technical Reports Server (NTRS)

    Basu-Zych, Antara R.; Lehmer, Bret; Fragos, Tassos; Hornschemeier, Ann; Yukita, Mihoko; Zezas, Andreas; Ptak, Andy

    2016-01-01

    We have studied high-mass X-ray binary (HMXB) populations within two low-metallicity, starburst galaxies, Haro 11 and VV 114. These galaxies serve as analogs to high-redshift (z greater than 2) Lyman break galaxies and, within the larger sample of Lyman break analogs (LBAs), they are sufficiently nearby (less than 87 Mpc) to be spatially resolved by Chandra. Previous studies of the X-ray emission in LBAs have found that the 2-10 keV luminosity per star formation rate (SFR) in these galaxies is elevated, potentially because of their low metallicities (12 + log[O/H] = 8.3-8.4). Theoretically, the progenitors of XRBs forming in lower metallicity environments lose less mass from stellar winds over their lifetimes, producing more massive compact objects (i.e., neutron stars and black holes), and thus resulting in more numerous and luminous HMXBs per SFR. In this paper, we have performed an in-depth study of the only two LBAs that have spatially resolved 2-10 keV emission with Chandra to present the bright end of the X-ray luminosity distribution of HMXBs (L(sub X) approximately greater than 10(exp 39) erg s(exp -1); ultraluminous X-ray sources, ULXs) in these low-metallicity galaxies, based on eight detected ULXs. Compared with the star-forming galaxy X-ray luminosity function (XLF) presented by Mineo et al., Haro 11 and VV 114 host approximately equal to 4 times more L(sub X) greater than 10(exp 40) erg s(exp -1) sources than expected given their SFRs. We simulate the effects of source blending from crowded lower-luminosity HMXBs using the star-forming galaxy XLF and then vary the XLF normalizations and bright-end slopes until we reproduce the observed point source luminosity distributions. We find that these LBAs have a shallower bright-end slope (gamma(sub 2) = 1.90) than the standard XLF (gamma(sub 2) 2.73). If we conservatively assume that the brightest X-ray source from each galaxy is powered by an accreting supermassive black hole rather than an HMXB and eliminate these sources from consideration, the luminosity distribution becomes poorly constrained but does appear to be consistent with a standard XLF.

  3. HD 66051: the first eclipsing binary hosting an early-type magnetic star

    NASA Astrophysics Data System (ADS)

    Kochukhov, O.; Johnston, C.; Alecian, E.; Wade, G. A.

    2018-05-01

    Early-type magnetic stars are rarely found in close binary systems. No such objects were known in eclipsing binaries prior to this study. Here we investigated the eclipsing, spectroscopic double-lined binary HD 66051, which exhibits out-of-eclipse photometric variations suggestive of surface brightness inhomogeneities typical of early-type magnetic stars. Using a new set of high-resolution spectropolarimetric observations, we discovered a weak magnetic field on the primary and found intrinsic, element-dependent variability in its spectral lines. The magnetic field structure of the primary is dominated by a nearly axisymmetric dipolar component with a polar field strength Bd ≈ 600 G and an inclination with respect to the rotation axis of βd = 13°. A weaker quadrupolar component is also likely to be present. We combined the radial velocity measurements derived from our spectra with archival optical photometry to determine fundamental masses (3.16 and 1.75 M⊙) and radii (2.78 and 1.39 R⊙) with a 1-3% precision. We also obtained a refined estimate of the effective temperatures (13000 and 9000 K) and studied chemical abundances for both components with the help of disentangled spectra. We demonstrate that the primary component of HD 66051 is a typical late-B magnetic chemically peculiar star with a non-uniform surface chemical abundance distribution. It is not an HgMn-type star as suggested by recent studies. The secondary is a metallic-line star showing neither a strong, global magnetic field nor intrinsic spectral variability. Fundamental parameters provided by our work for this interesting system open unique possibilities for probing interior structure, studying atomic diffusion, and constraining binary star evolution.

  4. The Evolutionary Status of Be Stars: Results from a Photometric Study of Southern Open Clusters

    NASA Astrophysics Data System (ADS)

    McSwain, M. Virginia; Gies, Douglas R.

    2005-11-01

    Be stars are a class of rapidly rotating B stars with circumstellar disks that cause Balmer and other line emission. There are three possible reasons for the rapid rotation of Be stars: they may have been born as rapid rotators, spun up by binary mass transfer, or spun up during the main-sequence (MS) evolution of B stars. To test the various formation scenarios, we have conducted a photometric survey of 55 open clusters in the southern sky. Of these, five clusters are probably not physically associated groups and our results for two other clusters are not reliable, but we identify 52 definite Be stars and an additional 129 Be candidates in the remaining clusters. We use our results to examine the age and evolutionary dependence of the Be phenomenon. We find an overall increase in the fraction of Be stars with age until 100 Myr, and Be stars are most common among the brightest, most massive B-type stars above the zero-age main sequence (ZAMS). We show that a spin-up phase at the terminal-age main sequence (TAMS) cannot produce the observed distribution of Be stars, but up to 73% of the Be stars detected may have been spun-up by binary mass transfer. Most of the remaining Be stars were likely rapid rotators at birth. Previous studies have suggested that low metallicity and high cluster density may also favor Be star formation. Our results indicate a possible increase in the fraction of Be stars with increasing cluster distance from the Galactic center (in environments of decreasing metallicity). However, the trend is not significant and could be ruled out due to the intrinsic scatter in our data. We also find no relationship between the fraction of Be stars and cluster density.

  5. Empirical Determination of Dark Matter Velocities Using Metal-Poor Stars.

    PubMed

    Herzog-Arbeitman, Jonah; Lisanti, Mariangela; Madau, Piero; Necib, Lina

    2018-01-26

    The Milky Way dark matter halo is formed from the accretion of smaller subhalos. These sub-units also harbor stars-typically old and metal-poor-that are deposited in the Galactic inner regions by disruption events. In this Letter, we show that the dark matter and metal-poor stars in the Solar neighborhood share similar kinematics due to their common origin. Using the high-resolution eris simulation, which traces the evolution of both the dark matter and baryons in a realistic Milky Way analog galaxy, we demonstrate that metal-poor stars are indeed effective tracers for the local, virialized dark matter velocity distribution. The local dark matter velocities can therefore be inferred from observations of the stellar halo made by the Sloan Digital Sky Survey within 4 kpc of the Sun. This empirical distribution differs from the standard halo model in important ways and suggests that the bounds on the spin-independent scattering cross section may be weakened for dark matter masses below ∼10  GeV. Data from Gaia will allow us to further refine the expected distribution for the smooth dark matter component, and to test for the presence of local substructure.

  6. VizieR Online Data Catalog: Binary systems among nearby dwarfs searching (Khovritchev+, 2018)

    NASA Astrophysics Data System (ADS)

    Khovritchev, M. Yu.; Apetyan, A. A.; Roshchina, E. A.; Izmailov, I. S.; Bikulova, D. A.; Ershova, A. P.; Balyaev, I. A.; Kulikova, A. M.; Petjur, V. V.; Shumilov, A. A.; Oskina, K. I.; Maksimova, L. A.

    2018-03-01

    All results are collected in three tables: saturn1m-bc.dat, saturn1m-sdss-bc.dat and sdss-bc.dat. They have the same byte-by-byte description. The tables contain the estimates of spatial parameters of binaries (rho and d_m), relative ellipticity and asymmetry index. In addition, the positions, proper motions, photometric magnitudes, parallaxes and metallicities are presented. All stars listed in these tables are binary candidates. (3 data files).

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H., E-mail: adeason@stanford.edu

    We study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (M{sub vir} ∼ 10{sup 12.1} M{sub ⊙}) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with M{sub star} ∼ 10{sup 8}–10{sup 10}M{sub ⊙}. Halos with more quiescent accretion histories tend to have lower mass progenitors (10{sup 8}–10{sup 9} M{sub ⊙}), andmore » lower overall accreted stellar masses. Ultra-faint mass (M{sub star} < 10{sup 5} M{sub ⊙}) dwarfs contribute a negligible amount (≪1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (∼2%–5%) of the very metal-poor stars with [Fe/H] < −2. Dwarfs with masses 10{sup 5} < M{sub star}/M{sub ⊙} < 10{sup 8} provide a substantial amount of the very metal-poor stellar material (∼40%–80%), and even relatively metal-rich dwarfs with M{sub star} > 10{sup 8} M{sub ⊙} can contribute a considerable fraction (∼20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. We suggest that the MW could be a “transient fossil”; a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.« less

  8. The Evolution and Physical Parameters of WN3/O3s: A New Type of Wolf–Rayet Star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neugent, Kathryn F.; Massey, Philip; Hillier, D. John

    As part of a search for Wolf–Rayet (WR) stars in the Magellanic Clouds, we have discovered a new type of WR star in the Large Magellanic Cloud (LMC). These stars have both strong emission lines, as well as He ii and Balmer absorption lines and spectroscopically resemble a WN3 and O3V binary pair. However, they are visually too faint to be WN3+O3V binary systems. We have found nine of these WN3/O3s, making up ∼6% of the population of LMC WRs. Using cmfgen, we have successfully modeled their spectra as single stars and have compared the physical parameters with those ofmore » more typical LMC WNs. Their temperatures are around 100,000 K, a bit hotter than the majority of WN stars (by around 10,000 K), though a few hotter WNs are known. The abundances are what you would expect for CNO equilibrium. However, most anomalous are their mass-loss rates, which are more like that of an O-type star than a WN star. While their evolutionary status is uncertain, their low mass-loss rates and wind velocities suggest that they are not products of homogeneous evolution. It is possible instead that these stars represent an intermediate stage between O stars and WNs. Since WN3/O3 stars are unknown in the Milky Way, we suspect that their formation depends upon metallicity, and we are investigating this further by a deep survey in M33, which possesses a metallicity gradient.« less

  9. Searching for chemical classes among metal-poor stars using medium-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Cruz, Monique A.; Cogo-Moreira, Hugo; Rossi, Silvia

    2018-04-01

    Astronomy is in the era of large spectroscopy surveys, with the spectra of hundreds of thousands of stars in the Galaxy being collected. Although most of these surveys have low or medium resolution, which makes precise abundance measurements not possible, there is still important information to be extracted from the available data. Our aim is to identify chemically distinct classes among metal-poor stars, observed by the Sloan Digital Sky Survey, using line indices. The present work focused on carbon-enhanced metal-poor (CEMP) stars and their subclasses. We applied the latent profile analysis technique to line indices for carbon, barium, iron and europium, in order to separate the sample into classes with similar chemical signatures. This technique provides not only the number of possible groups but also the probability of each object to belong to each class. The method was able to distinguish at least two classes among the observed sample, with one of them being probable CEMP stars enriched in s-process elements. However, it was not able to separate CEMP-no stars from the rest of the sample. Latent profile analysis is a powerful model-based tool to be used in the identification of patterns in astrophysics. Our tests show the potential of the technique for the attainment of additional chemical information from `poor' data.

  10. Carbon-enhanced metal-poor stars: relics from the dark ages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooke, Ryan J.; Madau, Piero, E-mail: rcooke@ucolick.org

    2014-08-20

    We use detailed nucleosynthesis calculations and a realistic prescription for the environment of the first stars to explore the first episodes of chemical enrichment that occurred during the dark ages. Based on these calculations, we propose a novel explanation for the increased prevalence of carbon-enhanced metal-poor (CEMP) stars with decreasing Fe abundance: the observed chemistry for the most metal-poor Galactic halo stars is the result of an intimate link between the explosions of the first stars and their host minihalo's ability to retain its gas. Specifically, high-energy supernovae produce a near solar ratio of C/Fe, but are effective in evacuatingmore » the gas from their host minihalo, thereby suppressing the formation of a second generation of stars. On the other hand, minihalos that host low-energy supernovae are able to retain their gas and form a second stellar generation, but, as a result, the second stars are born with a supersolar ratio of C/Fe. Our models are able to accurately reproduce the observed distributions of [C/Fe] and [Fe/H], as well as the fraction of CEMP stars relative to non-CEMP stars as a function of [Fe/H] without any free parameters. We propose that the present lack of chemical evidence for very massive stars (≳ 140 M {sub ☉}) that ended their lives as a highly energetic pair-instability supernova does not imply that such stars were rare or did not exist; the chemical products of these very massive first stars may have been evacuated from their host minihalos and were never incorporated into subsequent generations of stars. Finally, our models suggest that the most Fe-poor stars currently known may have seen the enrichment from a small multiple of metal-free stars, and need not have been exclusively enriched by a solitary first star. These calculations also add further support to the possibility that some of the surviving dwarf satellite galaxies of the Milky Way are the relics of the first galaxies.« less

  11. WHT follow-up observations of extremely metal-poor stars identified from SDSS and LAMOST

    NASA Astrophysics Data System (ADS)

    Aguado, D. S.; González Hernández, J. I.; Allende Prieto, C.; Rebolo, R.

    2017-09-01

    Aims: We have identified several tens of extremely metal-poor star candidates from SDSS and LAMOST, which we follow up with the 4.2 m William Herschel Telescope (WHT) telescope to confirm their metallicity. Methods: We followed a robust two-step methodology. We first analyzed the SDSS and LAMOST spectra. A first set of stellar parameters was derived from these spectra with the FERRE code, taking advantage of the continuum shape to determine the atmospheric parameters, in particular, the effective temperature. Second, we selected interesting targets for follow-up observations, some of them with very low-quality SDSS or LAMOST data. We then obtained and analyzed higher-quality medium-resolution spectra obtained with the Intermediate dispersion Spectrograph and Imaging System (ISIS) on the WHT to arrive at a second more reliable set of atmospheric parameters. This allowed us to derive the metallicity with accuracy, and we confirm the extremely metal-poor nature in most cases. In this second step we also employed FERRE, but we took a running mean to normalize both the observed and the synthetic spectra, and therefore the final parameters do not rely on having an accurate flux calibration or continuum placement. We have analyzed with the same tools and following the same procedure six well-known metal-poor stars, five of them at [Fe/H] <-4 to verify our results. This showed that our methodology is able to derive accurate metallicity determinations down to [Fe/H] <-5.0. Results: The results for these six reference stars give us confidence on the metallicity scale for the rest of the sample. In addition, we present 12 new extremely metal-poor candidates: 2 stars at [Fe/H] ≃-4, 6 more in the range -4 < [Fe / H] < -3.5, and 4 more at -3.5 < [Fe / H] < -3.0. Conclusions: We conclude that we can reliably determine metallicities for extremely metal-poor stars with a precision of 0.2 dex from medium-resolution spectroscopy with our improved methodology. This provides a highly effective way of verifying candidates from lower quality data. Our model spectra and the details of the fitting algorithm are made public to facilitate the standardization of the analysis of spectra from the same or similar instruments. The model spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A40

  12. NEUTRINO-DRIVEN WINDS IN THE AFTERMATH OF A NEUTRON STAR MERGER: NUCLEOSYNTHESIS AND ELECTROMAGNETIC TRANSIENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, D.; Perego, A.; Arcones, A.

    2015-11-01

    We present a comprehensive nucleosynthesis study of the neutrino-driven wind in the aftermath of a binary neutron star merger. Our focus is the initial remnant phase when a massive central neutron star is present. Using tracers from a recent hydrodynamical simulation, we determine total masses and integrated abundances to characterize the composition of unbound matter. We find that the nucleosynthetic yields depend sensitively on both the life time of the massive neutron star and the polar angle. Matter in excess of up to 9 × 10{sup −3} M{sub ⊙} becomes unbound until ∼200 ms. Due to electron fractions of Y{submore » e} ≈ 0.2–0.4, mainly nuclei with mass numbers A < 130 are synthesized, complementing the yields from the earlier dynamic ejecta. Mixing scenarios with these two types of ejecta can explain the abundance pattern in r-process enriched metal-poor stars. Additionally, we calculate heating rates for the decay of the freshly produced radioactive isotopes. The resulting light curve peaks in the blue band after about 4 hr. Furthermore, high opacities due to heavy r-process nuclei in the dynamic ejecta lead to a second peak in the infrared after 3–4 days.« less

  13. Collaborative observations of HDE 332077

    NASA Technical Reports Server (NTRS)

    Ake, Thomas B., III

    1995-01-01

    IUE low dispersion observations were made of the T(sub c)-deficient peculiar red giant (PRG) star, HDE 332077, to test the hypothesis that T(sub c)-poor PRG's are formed as a result of mass transfer from a binary companion rather than from internal thermal pulsing while on the asymptotic red giant branch. Previous ground-based observations of this star indicated that it is a binary, but the secondary star was too massive for an expected white dwarf. A deep, short wavelength prime (SWP) exposure was needed to search for evidence of an A-type main-sequence companion. We obtained a 120 minute LWP exposure (LWP 23479), followed by a collaborative 1230 minute SWP exposure (SWP 45113). These observations were combined with our earlier IUE and optical data on this PRG star to model the spectral energy distribution of the system.

  14. Enormous Li Enhancement Preceding Red Giant Phases in Low-mass Stars in the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    Li, Haining; Aoki, Wako; Matsuno, Tadafumi; Bharat Kumar, Yerra; Shi, Jianrong; Suda, Takuma; Zhao, Gang

    2018-01-01

    Li abundances in the bulk of low-mass metal-poor stars are well reproduced by stellar evolution models adopting a constant initial abundance. However, a small number of stars have exceptionally high Li abundances, for which no convincing models have been established. We report on the discovery of 12 very metal-poor stars that have large excesses of Li, including an object having more than 100 times higher Li abundance than the values found in usual objects, which is the largest excess in metal-poor stars known to date. The sample is distributed over a wide range of evolutionary stages, including five unevolved stars, showing no clear abundance anomaly in other elements. The results indicate the existence of an efficient process to enrich Li in a small fraction of low-mass stars at the main-sequence or subgiant phase. The wide distribution of Li-rich stars along the red giant branch could be explained by the dilution of surface Li by mixing that occurs when the stars evolve into red giants. Our study narrows down the problem to be solved in order to understand the origins of Li excess found in low-mass stars, suggesting the presence of an unknown process that affects the surface abundances preceding red giant phases. This work is based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  15. A search for stars of very low metal abundance. VI. Detailed abundances of 313 metal-poor stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.

    2014-06-01

    We present radial velocities, equivalent widths, model atmosphere parameters, and abundances or upper limits for 53 species of 48 elements derived from high resolution optical spectroscopy of 313 metal-poor stars. A majority of these stars were selected from the metal-poor candidates of the HK Survey of Beers, Preston, and Shectman. We derive detailed abundances for 61% of these stars for the first time. Spectra were obtained during a 10 yr observing campaign using the Magellan Inamori Kyocera Echelle spectrograph on the Magellan Telescopes at Las Campanas Observatory, the Robert G. Tull Coudé Spectrograph on the Harlan J. Smith Telescope atmore » McDonald Observatory, and the High Resolution Spectrograph on the Hobby-Eberly Telescope at McDonald Observatory. We perform a standard LTE abundance analysis using MARCS model atmospheres, and we apply line-by-line statistical corrections to minimize systematic abundance differences arising when different sets of lines are available for analysis. We identify several abundance correlations with effective temperature. A comparison with previous abundance analyses reveals significant differences in stellar parameters, which we investigate in detail. Our metallicities are, on average, lower by ≈0.25 dex for red giants and ≈0.04 dex for subgiants. Our sample contains 19 stars with [Fe/H] ≤–3.5, 84 stars with [Fe/H] ≤–3.0, and 210 stars with [Fe/H] ≤–2.5. Detailed abundances are presented here or elsewhere for 91% of the 209 stars with [Fe/H] ≤–2.5 as estimated from medium resolution spectroscopy by Beers, Preston, and Shectman. We will discuss the interpretation of these abundances in subsequent papers.« less

  16. Forming short-period Wolf-Rayet X-ray binaries and double black holes through stable mass transfer

    NASA Astrophysics Data System (ADS)

    van den Heuvel, E. P. J.; Portegies Zwart, S. F.; de Mink, S. E.

    2017-11-01

    We show that black hole high-mass X-ray binaries (HMXBs) with O- or B-type donor stars and relatively short orbital periods, of order one week to several months may survive spiral-in, to then form Wolf-Rayet (WR) X-ray binaries with orbital periods of order a day to a few days; while in systems where the compact star is a neutron star, HMXBs with these orbital periods never survive spiral-in. We therefore predict that WR X-ray binaries can only harbour black holes. The reason why black hole HMXBs with these orbital periods may survive spiral-in is: the combination of a radiative envelope of the donor star and a high mass of the compact star. In this case, when the donor begins to overflow its Roche lobe, the systems are able to spiral in slowly with stable Roche lobe overflow, as is shown by the system SS433. In this case, the transferred mass is ejected from the vicinity of the compact star (so-called isotropic re-emission mass-loss mode, or SS433-like mass-loss), leading to gradual spiral-in. If the mass ratio of donor and black hole is ≳3.5, these systems will go into common-envelope evolution and are less likely to survive. If they survive, they produce WR X-ray binaries with orbital periods of a few hours to one day. Several of the well-known WR+O binaries in our Galaxy and the Magellanic Clouds, with orbital periods in the range between a week and several months, are expected to evolve into close WR-black hole binaries, which may later produce close double black holes. The galactic formation rate of double black holes resulting from such systems is still uncertain, as it depends on several poorly known factors in this evolutionary picture. It might possibly be as high as ˜10-5 yr-1.

  17. HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS IN THE LEAST EVOLVED GALAXIES: LEO IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Joshua D.; McWilliam, Andrew; Thompson, Ian B.

    2010-06-10

    We present high-resolution Magellan/MIKE spectroscopy of the brightest star in the ultra-faint dwarf galaxy Leo IV. We measure an iron abundance of [Fe/H] = -3.2, adding to the rapidly growing sample of extremely metal-poor (EMP) stars being identified in Milky Way satellite galaxies. The star is enhanced in the {alpha} elements Mg, Ca, and Ti by {approx}0.3 dex, very similar to the typical Milky Way halo abundance pattern. All of the light and iron-peak elements follow the trends established by EMP halo stars, but the neutron-capture elements Ba and Sr are significantly underabundant. These results are quite similar to thosemore » found for stars in the ultra-faint dwarfs Ursa Major II, Coma Berenices, Booetes I, and Hercules, suggesting that the chemical evolution of the lowest-luminosity galaxies may be universal. The abundance pattern we observe is consistent with predictions for nucleosynthesis from a Population III supernova explosion. The extremely low metallicity of this star also supports the idea that a significant fraction ({approx}>10%) of the stars in the faintest dwarfs have metallicities below [Fe/H] = -3.0.« less

  18. Metal-Poor, Strongly Star-Forming Galaxies in the DEEP2 Survey: The Relationship Between Stellar Mass, Temperature-Based Metallicity, and Star Formation Rate

    NASA Technical Reports Server (NTRS)

    Ly, Chun; Rigby, Jane R.; Cooper, Michael; Yan, Renbin

    2015-01-01

    We report on the discovery of 28 redshift (z) approximately 0.8 metal-poor galaxies in DEEP2. These galaxies were selected for their detection of the weak [O (sub III)] lambda 4363 emission line, which provides a "direct" measure of the gas-phase metallicity. A primary goal for identifying these rare galaxies is to examine whether the fundamental metallicity relation (FMR) between stellar mass, gas metallicity, and star formation rate (SFR) extends to low stellar mass and high SFR. The FMR suggests that higher SFR galaxies have lower metallicity (at fixed stellar mass). To test this trend, we combine spectroscopic measurements of metallicity and dust-corrected SFRs, with stellar mass estimates from modeling the optical photometry. We find that these galaxies are 1.05 plus or minus 0.61 decimal exponent (dex) above the redshift (z) approximately equal to 1 stellar mass-SFR relation, and 0.23 plus or minus 0.23 decimal exponent (dex) below the local mass-metallicity relation. Relative to the FMR, the latter offset is reduced to 0.01 decimal exponent (dex), but significant dispersion remains (0.29 decimal exponent (dex) with 0.16 decimal exponent (dex) due to measurement uncertainties). This dispersion suggests that gas accretion, star formation and chemical enrichment have not reached equilibrium in these galaxies. This is evident by their short stellar mass doubling timescale of approximately 100 (sup plus 310) (sub minus 75) million years that suggests stochastic star formation. Combining our sample with other redshift (z) of approximately 1 metal-poor galaxies, we find a weak positive SFR-metallicity dependence (at fixed stellar mass) that is significant at 97.3 percent confidence. We interpret this positive correlation as recent star formation that has enriched the gas, but has not had time to drive the metal-enriched gas out with feedback mechanisms.

  19. Metal-Poor, Strongly Star-Forming Galaxies in the DEEP2 Survey: The Relationship Between Stellar Mass, Temperature-Based Metallicity, and Star Formation Rate

    NASA Technical Reports Server (NTRS)

    Ly, Chun; Rigby, Jane R.; Cooper, Michael; Yan, Renbin

    2015-01-01

    We report on the discovery of 28 redshift (z) approximately equal to 0.8 metal-poor galaxies in DEEP2. These galaxies were selected for their detection of the weak [O (sub III)] lambda 4363 emission line, which provides a "direct" measure of the gas-phase metallicity. A primary goal for identifying these rare galaxies is to examine whether the fundamental metallicity relation (FMR) between stellar mass, gas metallicity, and star formation rate (SFR) holds for low stellar mass and high SFR galaxies. The FMR suggests that higher SFR galaxies have lower metallicity (at fixed stellar mass). To test this trend, we combine spectroscopic measurements of metallicity and dust-corrected SFR with stellar mass estimates from modeling the optical photometry. We find that these galaxies are 1.05 plus or minus 0.61 dex above the redshift (z) approximately 1 stellar mass-SFR relation and 0.23 plus or minus 0.23 dex below the local mass-metallicity relation. Relative to the FMR, the latter offset is reduced to 0.01 dex, but significant dispersion remains dex with 0.16 dex due to measurement uncertainties). This dispersion suggests that gas accretion, star formation, and chemical enrichment have not reached equilibrium in these galaxies. This is evident by their short stellar mass doubling timescale of approximately equal to 100 (sup plus 310) (sub minus 75) million years which suggests stochastic star formation. Combining our sample with other redshift (z) of approximately 1 metal-poor galaxies, we find a weak positive SFR-metallicity dependence (at fixed stellar mass) that is significant at 94.4 percent confidence. We interpret this positive correlation as recent star formation that has enriched the gas but has not had time to drive the metal-enriched gas out with feedback mechanisms.

  20. Red giants and yellow stragglers in the young open cluster NGC 2447

    NASA Astrophysics Data System (ADS)

    da Silveira, M. D.; Pereira, C. B.; Drake, N. A.

    2018-06-01

    In this work we analysed, using high-resolution spectroscopy, a sample of 12 single and 4 spectroscopic binary stars of the open cluster NGC 2447. For the single stars, we obtained atmospheric parameters and chemical abundances of Li, C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, Nd, Eu. Rotational velocities were obtained for all the stars. The abundances of the light elements and Eu and the rotational velocities were derived using spectral synthesis technique. We obtained a mean metallicity of [Fe/H] = -0.17 ± 0.05. We found that the abundances of all elements are similar to field giants and/or giants of open clusters, even for the s-process elements, which are enhanced as in other young open clusters. We show that the spectroscopic binaries NGC 2447-26, 38, and 42 are yellow-straggler stars, of which the primary is a giant star and the secondary a main-sequence A-type star.

  1. Winds of very low metallicity OB stars: crossing the frontier of the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Garcia, Miriam

    2011-10-01

    Very low metallicity massive stars are a key ingredient for our understanding of the early Universe because of their connection with the dominant conditions at that time, the reionization epoch and long-GRBs. In the studies of massive stars radiation driven winds play a crucial manifold role, being a chief agent of stellar evolution, altering the optical diagnostics for parameter determination and injecting radiative and mechanical energy into their surroundings. However, the theory of radiation driven winds has only be tested down to SMC metallicities and some important open questions remain: the existence of solar-metallicity stars with weak winds and very recent evidence of relatively strong winds in metal-poor stars.We have secured VLT optical spectra of a sample of early-type massive stars in IC 1613, a very metal poor { <0.1Zo} irregular galaxy of the Local Group that represents the next step towards low metallicities after the SMC. We request low resolution COS spectra {COS/FUV-G140L} of a sub-set of OB stars probing different wind regimes. The wind lines in the 1150-1800A range, together with the optical spectra, will allow us to derive consistently the photospheric and wind parameters of the sample. Results will be interpreted in the context of both evolutionary and radiatively driven winds theories, testing the current paradigm at unexplored low metallicities and increasing our knowledge of massive stars under conditions closer to those of the deep Universe.COS enhanced sensitivity will allow us to perform for the first time detailed studies of **resolved** OB stars in an environment with poorer metal content than the SMC.

  2. Combined ultraviolet studies of astronomical source

    NASA Technical Reports Server (NTRS)

    Dupress, A. K.; Baliunas, S. L.; Blair, W. P.; Hartmann, L. W.; Huchra, J. P.; Raymond, J. C.; Smith, G. H.; Soderblom, D. R.

    1985-01-01

    As part of its Ultraviolet Studies of Astronomical Sources the Smithsonian Astrophysical Observatory for the period 1 Feb. 1985 to 31 July 1985 observed the following: the Cygnus Loop; oxygen-rich supernova remnants in 1E0102-72; the Large Magellanic Cloud supernova remnants; P Cygni profiles in dwarf novae; soft X-ray photoionization of interstellar gas; spectral variations in AM Her stars; the mass of Feige 24; atmospheric inhomogeneities in Lambda Andromedae and FF Aquarii; photometric and spectroscopic observation of Capella; Alpha Orionis; metal deficient giant stars; M 67 giants; high-velocity winds from giant stars; accretion disk parameters in cataclysmic variables; chromospheric emission of late-type dwarfs in visual binaries; chromospheres and transient regions of stars in the Ursa Major group; and low-metallicity blue galaxies.

  3. Fluorine and Sodium in C-rich Low-metallicity Stars

    NASA Astrophysics Data System (ADS)

    Lucatello, Sara; Masseron, Thomas; Johnson, Jennifer A.; Pignatari, Marco; Herwig, Falk

    2011-03-01

    We present the N, O, F, and Na abundance and 12C/13C isotopic ratio measurements or upper limits for a sample of 10 C-rich, metal-poor giant stars: 8 enhanced in s-process (CEMP-s) elements and 2 poor in n-capture elements (CEMP-no). The abundances are derived from IR, K-band, high-resolution CRIRES@VLT obtained spectra. The metallicity of our sample ranges from [Fe/H] = -3.4 to -1.3. F abundance could be measured only in two CEMP-s stars. With [F/Fe] = 0.64, one is mildly F-overabundant, while the other is F-rich, at [F/Fe] = 1.44. For the remaining eight objects, including both CEMP-no stars in our sample, only upper limits on F abundance could be placed. Our measurements and upper limits show that there is a spread in the [F/C+N] ratio in CEMP-s stars as predicted by theory. Predictions from nucleosynthetic models for low-mass, low-metallicity asymptotic giant branch (AGB) stars account for the derived F abundances, while the upper limits on F content derived for most of the stars are lower than the predicted values. The measured Na content is accounted for by AGB models in the 1.25-1.75 M sun range, confirming that the stars responsible for the peculiar abundance pattern observed in CEMP-s stars are low-mass, low-metallicity AGB stars in agreement with the most accepted astrophysical scenario. We conclude that the mechanism of F production in current state-of-the-art low-metallicity low-mass AGB models needs further scrutiny and that F measurements in a larger number of metal-poor stars are needed to better constrain the models. Based on observations made with ESO Telescopes at Paranal Observatories under program ID 080.D-0606A. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, funded by the National Aeronautics and Space Administration and the National Science Foundation.

  4. The long-period binary central stars of the planetary nebulae NGC 1514 and LoTr 5

    NASA Astrophysics Data System (ADS)

    Jones, D.; Van Winckel, H.; Aller, A.; Exter, K.; De Marco, O.

    2017-04-01

    The importance of long-period binaries for the formation and evolution of planetary nebulae is still rather poorly understood, which in part is due to the lack of central star systems that are known to comprise such long-period binaries. Here, we report on the latest results from the on-going Mercator-HERMES survey for variability in the central stars of planetary nebulae. We present a study of the central stars of NGC 1514, BD+30°623, the spectrum of which shows features associated with a hot nebular progenitor as well as a possible A-type companion. Cross-correlation of high-resolution HERMES spectra against synthetic spectra shows the system to be a highly eccentric (e 0.5) double-lined binary with a period of 3300 days. Previous studies indicated that the cool component might be a horizontal branch star of mass 0.55 M⊙, but the observed radial velocity amplitudes rule out such a low mass. If we assume that the nebular symmetry axis and binary orbital plane are perpendicular, then the data are more consistent with a post-main-sequence star ascending towards the giant branch. We also present the continued monitoring of the central star of LoTr 5, HD 112313, which has now completed one full cycle, allowing the orbital period (P 2700 days) and eccentricity (e 0.3) to be derived. To date, the orbital periods of BD+30°623 and HD 112313 are the longest to have been measured spectroscopically in the central stars of planetary nebulae. Furthermore, these systems, along with BD+33°2642, comprise the only spectroscopic wide-binary central stars currently known. Based on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.The radial velocity data for both objects are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/L9

  5. The Na-O anticorrelation in horizontal branch stars. IV. M 22

    NASA Astrophysics Data System (ADS)

    Gratton, R. G.; Lucatello, S.; Sollima, A.; Carretta, E.; Bragaglia, A.; Momany, Y.; D'Orazi, V.; Cassisi, S.; Salaris, M.

    2014-03-01

    We obtained high-resolution spectra for 94 candidate stars belonging to the HB of M 22 with FLAMES. Previous works have indicated that this cluster has split subgiant (SGB) and red giant branches (RGB) and hosts two different stellar populations, differing in overall metal abundance and both exhibiting a Na-O anti-correlation. The HB stars we observed span a restricted temperature range (7800 < Teff < 11 000 K), where about 60% of the HB stars of M 22 are. Within our sample, we can distinguish three groups of stars segregated (though contiguous) in colours: Group 1 (49 stars) is metal-poor, N-normal, Na-poor, and O-rich: our abundances for this (cooler) group match those determined for the primordial group of RGB stars (a third of the total) from previous studies very well. Group 2 (23 stars) is still metal-poor, but it is N- and Na-rich, though only very mildly depleted in O. We can identify this intermediate group as the progeny of the metal-poor RGB stars that occupy an intermediate location along the Na-O anti-correlation and include about 10% of the RGB stars. The third group (20 stars) is metal-rich, Na-rich, and O-rich. This hotter group most likely corresponds to the most O-rich component of the previously found metal-rich RGB population (a quarter of the total). We did not observe any severely O-depleted stars and we think that the progeny of these stars falls on the hotter part of the HB. Furthermore, we found that the metal-rich population is also over-abundant in Sr, in agreement with results for corresponding RGB and SGB stars. However, we do not find any significant variation in the ratio between the sum of N and O abundances to Fe. We do not have C abundances for our stars. There is some evidence of an enhancement of He content for Groups 2 and 3 stars (Y = 0.338 ± 0.014 ± 0.05); the error bar due to systematics is large, but a consistent analysis of data for several GCs confirms that stars in these groups within M 22 are probably overabundant in He. We conclude that on the whole, our results agree with the proposition that chemical composition drives the location of stars along the HB of a GC. Furthermore, we found a number of fast rotators. They are concentrated in a restricted temperature range along the HB of M 22. Fast rotating stars might be slightly less massive and bluer than slowly rotating ones, but other interpretations are possible. Based on observations collected at ESO telescopes under programmes 087.D-0230 and 091.D-0151.Tables 3-6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/563/A13

  6. Which Type of Planets do We Expect to Observe in the Habitable Zone?

    PubMed

    Adibekyan, Vardan; Figueira, Pedro; Santos, Nuno C

    2016-11-01

    We used a sample of super-Earth-like planets detected by the Doppler spectroscopy and transit techniques to explore the dependence of orbital parameters of the planets on the metallicity of their host stars. We confirm the previous results (although still based on small samples of planets) that super-Earths orbiting around metal-rich stars are not observed to be as distant from their host stars as we observe their metal-poor counterparts to be. The orbits of these super-Earths with metal-rich hosts usually do not reach into the Habitable Zone (HZ), keeping them very hot and inhabitable. We found that most of the known planets in the HZ are orbiting their GK-type hosts which are metal-poor. The metal-poor nature of planets in the HZ suggests a high Mg abundance relative to Si and high Si abundance relative to Fe. These results lead us to speculate that HZ planets might be more frequent in the ancient Galaxy and had compositions different from that of our Earth.

  7. THE ORIGIN OF LOW [α/Fe] RATIOS IN EXTREMELY METAL-POOR STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Chiaki; Ishigaki, Miho N.; Tominaga, Nozomu

    2014-04-10

    We show that the low ratios of α elements (Mg, Si, and Ca) to Fe recently found for a small fraction of extremely metal-poor stars can be naturally explained with the nucleosynthesis yields of core-collapse supernovae, i.e., 13-25 M {sub ☉} supernovae, or hypernovae. For the case without carbon enhancement, the ejected iron mass is normal, consistent with observed light curves and spectra of nearby supernovae. On the other hand, the carbon enhancement requires much smaller iron production, and the low [α/Fe] of carbon-enhanced metal-poor stars can also be reproduced with 13-25 M {sub ☉} faint supernovae or faint hypernovae.more » Iron-peak element abundances, in particular Zn abundances, are important to put further constraints on the enrichment sources from galactic archaeology surveys.« less

  8. J0023+0307: A Mega Metal-poor Dwarf Star from SDSS/BOSS

    NASA Astrophysics Data System (ADS)

    Aguado, David S.; Allende Prieto, Carlos; González Hernández, Jonay I.; Rebolo, Rafael

    2018-02-01

    Only a handful of stars have been identified with an iron abundance [Fe/H] < ‑5, and only one at [Fe/H] < ‑7. These stars have very large carbon-to-iron ratios, with {\\boldsymbol{A}}({\\boldsymbol{C}}) ∼ 7.0, most likely due to fallback in core-collapse supernovae, which makes their total metallicity Z much higher than their iron abundances. The failure to find population III stars, those with no metals, has been interpreted, with support from theoretical modeling, as the result of a top-heavy initial mass function. With zero or very low metal abundance limiting radiative cooling, the formation of low-mass stars could be inhibited. Currently, the star SDSS J1029+1729 sets the potential metallicity threshold for the formation of low-mass stars at {log}Z/{Z}ȯ ∼ -5. In our quest to push down the metallicity threshold we have identified SDSS J0023+0307, a primitive star with T eff = 6188 ± 84 K, and {log}g=4.9+/- 0.5, an upper limit [Fe/H] < ‑6.6, and a carbon abundance A(C) < 6.3. We find J0023+0307 to be one of the two most iron-poor stars known, and it exhibits less carbon that most of the stars at [Fe/H] < ‑5. Based on observations made with William Herschel Telescope (WHT) and the Gran Telescopio de Canarias (GTC), at the Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in La Palma.

  9. The Ubiquity of the Rapid Neutron-capture Process

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Cowan, John J.; Karakas, Amanda I.; Kratz, Karl-Ludwig; Lugaro, Maria; Simmerer, Jennifer; Farouqi, Khalil; Sneden, Christopher

    2010-12-01

    To better characterize the abundance patterns produced by the r-process, we have derived new abundances or upper limits for the heavy elements zinc (Zn, Z= 30), yttrium (Y, Z= 39), lanthanum (La, Z= 57), europium (Eu, Z= 63), and lead (Pb, Z= 82). Our sample of 161 metal-poor stars includes new measurements from 88 high-resolution and high signal-to-noise spectra obtained with the Tull Spectrograph on the 2.7 m Smith Telescope at the McDonald Observatory, and other abundances are adopted from the literature. We use models of the s-process in asymptotic giant branch stars to characterize the high Pb/Eu ratios produced in the s-process at low metallicity, and our new observations then allow us to identify a sample of stars with no detectable s-process material. In these stars, we find no significant increase in the Pb/Eu ratios with increasing metallicity. This suggests that s-process material was not widely dispersed until the overall Galactic metallicity grew considerably, perhaps even as high as [Fe/H] =-1.4, in contrast with earlier studies that suggested a much lower mean metallicity. We identify a dispersion of at least 0.5 dex in [La/Eu] in metal-poor stars with [Eu/Fe] <+0.6 attributable to the r-process, suggesting that there is no unique "pure" r-process elemental ratio among pairs of rare earth elements. We confirm earlier detections of an anti-correlation between Y/Eu and Eu/Fe bookended by stars strongly enriched in the r-process (e.g., CS 22892-052) and those with deficiencies of the heavy elements (e.g., HD 122563). We can reproduce the range of Y/Eu ratios using simulations of high-entropy neutrino winds of core-collapse supernovae that include charged-particle and neutron-capture components of r-process nucleosynthesis. The heavy element abundance patterns in most metal-poor stars do not resemble that of CS 22892-052, but the presence of heavy elements such as Ba in nearly all metal-poor stars without s-process enrichment suggests that the r-process is a common phenomenon. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.

  10. Reconciling the Stellar and Nebular Spectra of High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Steidel, Charles C.; Strom, Allison L.; Pettini, Max; Rudie, Gwen C.; Reddy, Naveen A.; Trainor, Ryan F.

    2016-08-01

    We present a combined analysis of rest-frame far-UV (FUV; 1000-2000 Å) and rest-frame optical (3600-7000 Å) composite spectra formed from very deep Keck/LRIS and Keck/MOSFIRE observations of a sample of 30 star-forming galaxies with z=2.40+/- 0.11, selected to be broadly representative of the full KBSS-MOSFIRE spectroscopic survey. Since the same massive stars are responsible for the observed FUV continuum and for the excitation of the observed nebular emission, a self-consistent stellar population synthesis model should simultaneously match the details of the FUV stellar+nebular continuum and—when inserted as the excitation source in photoionization models—predict all observed nebular emission line ratios. We find that only models including massive star binaries, having low stellar metallicity ({Z}* /{Z}⊙ ≃ 0.1) but relatively high nebular (ionized gas-phase) abundances ({Z}{{neb}}/{Z}⊙ ≃ 0.5), can successfully match all of the observational constraints. We show that this apparent discrepancy is naturally explained by highly super-solar O/Fe (≃ 4{--}5 {({{O}}/{Fe})}⊙ ), expected for a gas whose enrichment is dominated by the products of core-collapse supernovae. While O dominates the physics of the ionized gas (and thus the nebular emission lines), Fe dominates the extreme-UV (EUV) and FUV opacity and controls the mass-loss rate from massive stars, resulting in particularly dramatic effects for massive stars in binary systems. This high nebular excitation—caused by the hard EUV spectra of Fe-poor massive stars—is much more common at high redshift (z≳ 2) than low redshift due to systematic differences in the star formation history of typical galaxies. Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W.M. Keck Foundation.

  11. Carbon-enhanced metal-poor stars: CEMP-s and CEMP-no subclasses in the halo system of the Milky Way

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carollo, Daniela; Freeman, Ken; Beers, Timothy C.

    2014-06-20

    We explore the kinematics and orbital properties of a sample of 323 very metal-poor stars in the halo system of the Milky Way, selected from the high-resolution spectroscopic follow-up studies of Aoki et al. and Yong et al. The combined sample contains a significant fraction of carbon-enhanced metal-poor (CEMP) stars (22% or 29%, depending on whether a strict or relaxed criterion is applied for this definition). Barium abundances (or upper limits) are available for the great majority of the CEMP stars, allowing for their separation into the CEMP-s and CEMP-no subclasses. A new method to assign membership to the inner-more » and outer-halo populations of the Milky Way is developed, making use of the integrals of motion, and applied to determine the relative fractions of CEMP stars in these two subclasses for each halo component. Although limited by small-number statistics, the data suggest that the inner halo of the Milky Way exhibits a somewhat higher relative number of CEMP-s stars than CEMP-no stars (57% versus 43%), while the outer halo possesses a clearly higher fraction of CEMP-no stars than CEMP-s stars (70% versus 30%). Although larger samples of CEMP stars with known Ba abundances are required, this result suggests that the dominant progenitors of CEMP stars in the two halo components were different; massive stars for the outer halo, and intermediate-mass stars in the case of the inner halo.« less

  12. Oxygen abundances in halo giants. I - Giants in the very metal-poor globular clusters M92 and M15 and the metal-poor halo field

    NASA Astrophysics Data System (ADS)

    Sneden, Christopher; Kraft, Robert P.; Prosser, Charles F.; Langer, G. E.

    1991-12-01

    Oxygen, iron, vanadium, and scandium abundances are derived for very metal-poor giants in the globular clusters M92 and M15, and giants of comparable metallicity in the local halo field. The forbidden O I line dublet (6300, 6363) and nearby metallic lines in spectra are analyzed using line analysis and spectral synthesis codes. The Fe/H abundance for M92 is estimated at -2.25 +/-0.02 based on nine giants with a range of 500 K in effective temperature. No evidence for star-to-star variations in the Fe/H abundance was found. O-rich and O-poor stars appear intermixed in the H-R diagram. O - N nuclear synthesis and mixing to the surface are proposed as the best explanation for the low-oxygen giants. The nitrogen abundances obtained earlier for nine of the ten halo field giants in this sample are incompatible with the very large nitrogen abundances expected of the O/Fe abundance of about + 1.2 in halo field subdwarfs, as found by Abia and Rebolo (1989), and not more than 0.6 in halo giants, as found in this and other studies.

  13. The Little Cub: Discovery of an Extremely Metal-poor Star-forming Galaxy in the Local Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsyu, Tiffany; Prochaska, J. Xavier; Bolte, Michael

    We report the discovery of the Little Cub, an extremely metal-poor star-forming galaxy in the local universe, found in the constellation Ursa Major (a.k.a. the Great Bear). We first identified the Little Cub as a candidate metal-poor galaxy based on its Sloan Digital Sky Survey photometric colors, combined with spectroscopy using the Kast spectrograph on the Shane 3 m telescope at Lick Observatory. In this Letter, we present high-quality spectroscopic data taken with the Low Resolution Imaging Spectrometer at Keck Observatory, which confirm the extremely metal-poor nature of this galaxy. Based on the weak [O iii] λ 4363 Å emissionmore » line, we estimate a direct oxygen abundance of 12 + log(O/H) = 7.13 ± 0.08, making the Little Cub one of the lowest-metallicity star-forming galaxies currently known in the local universe. The Little Cub appears to be a companion of the spiral galaxy NGC 3359 and shows evidence of gas stripping. We may therefore be witnessing the quenching of a near-pristine galaxy as it makes its first passage about a Milky Way–like galaxy.« less

  14. The Little Cub: Discovery of an Extremely Metal-poor Star-forming Galaxy in the Local Universe

    NASA Astrophysics Data System (ADS)

    Hsyu, Tiffany; Cooke, Ryan J.; Prochaska, J. Xavier; Bolte, Michael

    2017-08-01

    We report the discovery of the Little Cub, an extremely metal-poor star-forming galaxy in the local universe, found in the constellation Ursa Major (a.k.a. the Great Bear). We first identified the Little Cub as a candidate metal-poor galaxy based on its Sloan Digital Sky Survey photometric colors, combined with spectroscopy using the Kast spectrograph on the Shane 3 m telescope at Lick Observatory. In this Letter, we present high-quality spectroscopic data taken with the Low Resolution Imaging Spectrometer at Keck Observatory, which confirm the extremely metal-poor nature of this galaxy. Based on the weak [O III] λ4363 Å emission line, we estimate a direct oxygen abundance of 12 + log(O/H) = 7.13 ± 0.08, making the Little Cub one of the lowest-metallicity star-forming galaxies currently known in the local universe. The Little Cub appears to be a companion of the spiral galaxy NGC 3359 and shows evidence of gas stripping. We may therefore be witnessing the quenching of a near-pristine galaxy as it makes its first passage about a Milky Way-like galaxy.

  15. The INT Search for Metal-Poor Stars: Spectroscopic Observations and Classification via Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Allende Prieto, Carlos; Rebolo, Rafael; García López, Ramón J.; Serra-Ricart, Miquel; Beers, Timothy C.; Rossi, Silvia; Bonifacio, Piercarlo; Molaro, Paolo

    2000-09-01

    With the dual aims of enlarging the list of extremely metal-poor stars identified in the Galaxy and boosting the numbers of moderately metal-deficient stars in directions that sample the rotational properties of the thick disk, we have used the 2.5 m Isaac Newton Telescope and the Intermediate Dispersion Spectrograph to carry out a survey of brighter (primarily northern hemisphere) metal-poor candidates selected from the HK objective-prism-interference-filter survey of Beers and collaborators. Over the course of only three observing runs (15 nights) we have obtained medium-resolution (λ/δλ~=2000) spectra for 1203 objects (V~=11-15). Spectral absorption-line indices and radial velocities have been measured for all the candidates. Metallicities, quantified by [Fe/H], and intrinsic (B-V)0 colors have been estimated for 731 stars with effective temperatures cooler than roughly 6500 K by using artificial neural networks (ANNs) trained with spectral indices. We show that this method performs as well as a previously explored Ca II K calibration technique, yet it presents some practical advantages. Among the candidates in our sample we identify 195 stars with [Fe/H]<=-1.0, 67 stars with [Fe/H]<=-2.0, and 12 new stars with [Fe/H]<=-3.0. Although the effective yield of metal-poor stars in our sample is not as large as that in previous HK survey follow-up programs, the rate of discovery per unit of telescope time is quite high. Further development of the ANN technique, with the networks being fed the entire spectrum, rather than just the spectral indices, holds the promise to produce fast, accurate, multidimensional spectral classifications (with the associated physical parameter estimates), as is required to process the large data flow provided by present and future instrumentation. Based on observations made with the Isaac Newton Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.

  16. METAL-POOR LITHIUM-RICH GIANTS IN THE RADIAL VELOCITY EXPERIMENT SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruchti, Gregory R.; Fulbright, Jon P.; Wyse, Rosemary F. G.

    We report the discovery of eight lithium-rich field giants found in a high-resolution spectroscopic sample of over 700 metal-poor stars ([Fe/H] < -0.5) selected from the Radial Velocity Experiment survey. The majority of the Li-rich giants in our sample are very metal-poor ([Fe/H] {approx}< -1.9), and have a Li abundance (in the form of {sup 7}Li), A(Li) = log (n(Li)/n(H)) + 12, between 2.30 and 3.63, well above the typical upper red giant branch (RGB) limit, A(Li) < 0.5, while two stars, with A(Li) {approx} 1.7-1.8, show similar lithium abundances to normal giants at the same gravity. We further includedmore » two metal-poor, Li-rich globular cluster giants in our sample, namely the previously discovered M3-IV101 and newly discovered (in this work) M68-A96. This comprises the largest sample of metal-poor Li-rich giants to date. We performed a detailed abundance analysis of all stars, finding that the majority of our sample stars have elemental abundances similar to that of Li-normal halo giants. Although the evolutionary phase of each Li-rich giant cannot be definitively determined, the Li-rich phase is likely connected to extra mixing at the RGB bump or early asymptotic giant branch that triggers cool bottom processing in which the bottom of the outer convective envelope is connected to the H-burning shell in the star. The surface of a star becomes Li-enhanced as {sup 7}Be (which burns to {sup 7}Li) is transported to the stellar surface via the Cameron-Fowler mechanism. We discuss and discriminate among several models for the extra mixing that can cause Li production, given the detailed abundances of the Li-rich giants in our sample.« less

  17. Chemical Abundance Analysis of Moving Group W11450 (Latham 1)

    NASA Astrophysics Data System (ADS)

    O'Connell, Julia E.; Martens, Kylee; Frinchaboy, Peter M.

    2016-12-01

    We present elemental abundances for all seven stars in Moving Group W11450 (Latham 1) to determine if they may be chemically related. These stars appear to be both spatially and kinematically related, but no spectroscopic abundance analysis exists in literature. Abundances for eight elements were derived via equivalent width analyses of high-resolution (R ˜ 60,000), high-signal-to-noise ratio (< {{S}}/{{N}}> ˜ 100) spectra obtained with the Otto Struve 2.1 m telescope and the Sandiford Echelle Spectrograph at McDonald Observatory. The large star-to-star scatter in metallicity, -0.55 ≤ [Fe/H] ≤slant 0.06 dex (σ = 0.25), implies these stars were not produced from the same chemically homogeneous molecular cloud, and are therefore not part of a remnant or open cluster as previously proposed. Prior to this analysis, it was suggested that two stars in the group, W11449 and W11450, are possible wide binaries. The candidate wide binary pair show similar chemical abundance patterns with not only iron but with other elements analyzed in this study, suggesting the proposed connection between these two stars may be real.

  18. Linking dwarf galaxies to halo building blocks with the most metal-poor star in Sculptor.

    PubMed

    Frebel, Anna; Kirby, Evan N; Simon, Joshua D

    2010-03-04

    Current cosmological models indicate that the Milky Way's stellar halo was assembled from many smaller systems. On the basis of the apparent absence of the most metal-poor stars in present-day dwarf galaxies, recent studies claimed that the true Galactic building blocks must have been vastly different from the surviving dwarfs. The discovery of an extremely iron-poor star (S1020549) in the Sculptor dwarf galaxy based on a medium-resolution spectrum cast some doubt on this conclusion. Verification of the iron-deficiency, however, and measurements of additional elements, such as the alpha-element Mg, are necessary to demonstrate that the same type of stars produced the metals found in dwarf galaxies and the Galactic halo. Only then can dwarf galaxy stars be conclusively linked to early stellar halo assembly. Here we report high-resolution spectroscopic abundances for 11 elements in S1020549, confirming its iron abundance of less than 1/4,000th that of the Sun, and showing that the overall abundance pattern follows that seen in low-metallicity halo stars, including the alpha-elements. Such chemical similarity indicates that the systems destroyed to form the halo billions of years ago were not fundamentally different from the progenitors of present-day dwarfs, and suggests that the early chemical enrichment of all galaxies may be nearly identical.

  19. A precise measurement of the magnetic field in the corona of the black hole binary V404 Cygni.

    PubMed

    Dallilar, Yigit; Eikenberry, Stephen S; Garner, Alan; Stelter, Richard D; Gottlieb, Amy; Gandhi, Poshak; Casella, Piergiorgio; Dhillon, Vik S; Marsh, Tom R; Littlefair, Stuart P; Hardy, Liam; Fender, Rob; Mooley, Kunal; Walton, Dominic J; Fuerst, Felix; Bachetti, Matteo; Castro-Tirado, A J; Charcos, Miguel; Edwards, Michelle L; Lasso-Cabrera, Nestor M; Marin-Franch, Antonio; Raines, S Nicholas; Ackley, Kendall; Bennett, John G; Cenarro, A Javier; Chinn, Brian; Donoso, H Veronica; Frommeyer, Raymond; Hanna, Kevin; Herlevich, Michael D; Julian, Jeff; Miller, Paola; Mullin, Scott; Murphey, Charles H; Packham, Chris; Varosi, Frank; Vega, Claudia; Warner, Craig; Ramaprakash, A N; Burse, Mahesh; Punnadi, Sujit; Chordia, Pravin; Gerarts, Andreas; de Paz Martín, Héctor; Calero, María Martín; Scarpa, Riccardo; Acosta, Sergio Fernandez; Hernández Sánchez, William Miguel; Siegel, Benjamin; Pérez, Francisco Francisco; Viera Martín, Himar D; Rodríguez Losada, José A; Nuñez, Agustín; Tejero, Álvaro; Martín González, Carlos E; Rodríguez, César Cabrera; Molgó, Jordi; Rodriguez, J Esteban; Cáceres, J Israel Fernández; Rodríguez García, Luis A; Lopez, Manuel Huertas; Dominguez, Raul; Gaggstatter, Tim; Lavers, Antonio Cabrera; Geier, Stefan; Pessev, Peter; Sarajedini, Ata

    2017-12-08

    Observations of binary stars containing an accreting black hole or neutron star often show x-ray emission extending to high energies (>10 kilo--electron volts), which is ascribed to an accretion disk corona of energetic particles akin to those seen in the solar corona. Despite their ubiquity, the physical conditions in accretion disk coronae remain poorly constrained. Using simultaneous infrared, optical, x-ray, and radio observations of the Galactic black hole system V404 Cygni, showing a rapid synchrotron cooling event in its 2015 outburst, we present a precise 461 ± 12 gauss magnetic field measurement in the corona. This measurement is substantially lower than previous estimates for such systems, providing constraints on physical models of accretion physics in black hole and neutron star binary systems. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. Spectroscopy of hot subdwarf binaries

    NASA Astrophysics Data System (ADS)

    Kreuzer, Simon; Irrgang, Andreas; Heber, Ulrich

    2018-06-01

    We present a status report of our spectroscopic analysis of subdwarf binaries consisting of a subdwarf and a F/G/K-type main-sequence companion. These systems selected from SDSS photometry show significant excess in the (infra-)red which can not be explained by interstellar reddening. Inspection of SDSS spectra revealed that most of them are composite spectrum sdB binaries. Once their spectra are disentangled, a detailed spectral analysis can be carried out. It reveals Teff, log g and the metal abundance of each individual star. The cool companion is of particular interest, because its spectrum reveals the original chemical composition of the binary.

  1. Atomic diffusion in metal-poor stars. II. Predictions for the Spite plateau

    NASA Astrophysics Data System (ADS)

    Salaris, M.; Weiss, A.

    2001-09-01

    We have computed a grid of up-to-date stellar evolutionary models including atomic diffusion, in order to study the evolution with time of the surface Li abundance in low-mass metal-poor stars. We discuss in detail the dependence of the surface Li evolution on the initial metallicity and stellar mass, and compare the abundances obtained from our models with the available Li measurements in Pop II stars. While it is widely accepted that the existence of the Spite Li-plateau for these stars is a strong evidence that diffusion is inhibited, we show that, when taking into account observational errors, uncertainties in the Li abundance determinations, in the T_eff scale, and in particular the size of the observed samples of stars, the Spite plateau and the Li abundances in subgiant branch stars can be reproduced also by models including fully efficient diffusion, provided that the most metal-poor field halo objects are between 13.5 and 14 Gyr old. We provide the value of the minimum number of plateau stars to observe, for discriminating between efficient or inhibited diffusion. {From} our models with diffusion we derive that the average Li abundance along the Spite plateau is about a factor of 2 lower than the primordial one. As a consequence, the derived primordial Li abundance would be consistent with a high helium and low deuterium Big Bang Nucleosynthesis; this implies a high cosmological baryon density as inferred from the analyses of the cosmic microwave background.

  2. A New View of the Dwarf Spheroidal Satellites of the Milky Way From VLT/FLAMES: Where are the Very Metal Poor Stars?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmi, Amina; Irwin, M.J.; Tolstoy, E.

    As part of the Dwarf galaxies Abundances and Radial-velocities Team (DART) Programme, we have measured the metallicities of a large sample of stars in four nearby dwarf spheroidal galaxies (dSph): Sculptor, Sextans, Fornax and Carina. The low mean metal abundances and the presence of very old stellar populations in these galaxies have supported the view that they are fossils from the early Universe. However, contrary to naive expectations, we find a significant lack of stars with metallicities below [Fe/H] {approx} -3 dex in all four systems. This suggests that the gas that made up the stars in these systems hadmore » been uniformly enriched prior to their formation. Furthermore, the metal-poor tail of the dSph metallicity distribution is significantly different from that of the Galactic halo. These findings show that the progenitors of nearby dSph appear to have been fundamentally different from the building blocks of the Milky Way, even at the earliest epochs.« less

  3. Photometric Determination of Binary Mass Ratios in the WIYN Open Cluster Study (WOCS) Using Theoretical Isochrones

    NASA Astrophysics Data System (ADS)

    Cai, K.; Durisen, R. H.; Deliyannis, C. P.

    2003-05-01

    Binary stars in Galactic open clusters are difficult to detect without spectroscopic observations. However, from theoretical isochrones, we find that binary stars with different primary masses M1 and mass ratios q = M2/M1 have measurably different behaviors in various UBVRI color-magnitude and color-color diagrams. By using appropriate Yonsei-Yale Isochrones, in the best cases we can evaluate M1 and q to within about +/- 0.1Msun and +/- 0.1, respectively, for individual proper-motion members that have multiple WOCS UBVRI measurements of high quality. The cluster metallicity, reddening, and distance modulus and best-fit isochrones are determined self-consistently from the same WOCS data. This technique allows us to detect binaries and determine their mass ratios in open clusters without time-consuming spectrocopy, which is only sensitive to a limited range of binary separations. We will report results from this photometric technique for WOCS cluster M35 for M1 in the range of 1 to 4 Msun. For the lower main sequence, we used the empirical colors to reduce the error introduced by the problematic color transformations of Y2 Isochrones. In addition to other sources of uncertainty, we have considered effects of rapid rotation and pulsational instability. We plan to apply our method to other WOCS clusters in the future and explore differences in binary fractions and/or mass ratio distributions as a function of cluster age, metallicity, and other parameters.

  4. Atmospheric parameters and magnesium and calcium NLTE abundances for a sample of 16 ultra metal-poor stars

    NASA Astrophysics Data System (ADS)

    Sitnova, Tatyana; Mashonkina, Lyudmila; Ezzeddine, Rana; Frebel, Anna

    2018-06-01

    The most metal-poor stars provide important observational clues to the astrophysical objects that enriched the primordial gas with heavy elements. Accurate atmospheric parameters is a prerequisite of determination of accurate abundances. We present atmospheric parameters and abundances of calcium and magnesium for a sample of 16 ultra-metal poor (UMP) stars. In spectra of UMP stars, iron is represented only by lines of Fe I, while calcium is represented with lines of Ca I and Ca II, which can be used for determination/checking of effective temperature and surface gravity. Accurate calculations of synthetic spectra of UMP stars require non-local thermodynamic equilibrium (NLTE) treatment of line formation, since deviations from LTE grow with metallicity decreasing. The method of atmospheric parameter determination is based on NLTE analysis of lines of Ca I and Ca II, multi-band photometry, and isochrones. The method was tested in advance with the ultra metal-poor giant CD-38 245, where, in addition, trigonometric parallax measurements from Gaia DR1 and lines of Fe I and Fe II are available. Using photometric Teff = 4900 K and distance based log g = 2.0 for CD-38 245, we derived consistent within error bars NLTE abundances from Fe I and Fe II and Ca I and Ca II, while LTE leads to a discrepancy of 0.6 dex between Ca I and Ca II. We determined NLTE and LTE abundances of magnesium and calcium in 16 stars of the sample. For the majority of stars, as expected, [Ca/Mg] NLTE abundance ratios are close to 0, while LTE leads to systematically higher [Ca/Mg], by up to 0.3 dex, and larger spread of [Ca/Mg] for different stars. Three stars of our sample are strongly enhanced in magnesium, with [Mg/Ca] of 1.3 dex. It is worth noting that, for these three stars, we got very similar [Mg/Ca] of 1.30, 1.45, and 1.29, in contrast to the data from the literature, where, for the same stars, [Mg/Ca] vary from 0.7 to 1.4. Very similar [Mg/Ca] abundance ratios of these stars argue that their abundances originate from a similar nucleosynthetic event.

  5. VizieR Online Data Catalog: Abundance analysis of 9 very metal-poor stars (O'Malley+, 2017)

    NASA Astrophysics Data System (ADS)

    O'Malley, E. M.; McWilliam, A.; Chaboyer, B.; Thompson, I.

    2017-10-01

    We were awarded time on HST to obtain fine guidance sensor (FGS) parallaxes of nine very metal-poor stars with the goal of extending the range of metallicities below at least [Fe/H]=-2.3dex for stars with well-determined parallaxes. High-resolution spectroscopy of the nine target stars were obtained between 2008 and 2012 using the Magellan Inamori Kyocera Echelle (MIKE) double spectrograph on the 6.5m Magellan II Clay Telescope at Las Campanas Observatory, Chile (R=48000 for the red side and R=55000 for the blue side), and the High-Resolution Echelle Spectrometer (HiRES) on the twin telescopes at the W. M. Keck Observatory (R~70500). A log of the spectroscopic observations along with the HST F606W magnitudes and parallaxes appears in Table 1. (5 data files).

  6. Prospecting for Precious Metals in Ultra-Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    French, R. S.

    2000-05-01

    The chemical compositions of the most metal-poor halo stars are living records of the very early nucleosynthetic history of the Galaxy. Only a few prior generations, if not a single one, of element-donating supernovae could have been responsible for the heavy elements observed in ultra-metal-poor (UMP; [Fe/H] < --2.5) stars. Abundances of the heavy neutron-capture elements (Z > 30) can yield direct information about the supernova progenitors to UMP stars, and abundances of unstable thorium and uranium (Z = 90, 92) can potentially provide age estimates for the Galactic halo. Already, many studies have demonstrated that abundances of rare-earth elements (56 <= Z <= 72) in UMP stars are completely consistent with their production in rapid neutron-capture synthesis (r-process) events, usually believed to occur during supernovae explosions. Therefore, mapping the entire abundance pattern of UMP stars is of significant interest. In particular, abundances of the most massive stable elements (Os -> Pb or 76 <= Z <= 82) could provide crucial information about the so-called ``third r-process peak,'' and are critical to the radioactive-dating technique that uses unstable thorium as a chronometer. Until recently, abundance determinations for these elements have been virtually non-existent, as the strongest relevant transitions lay in the vacuum UV, inaccessible to ground-based observation. The availability of high-resolution space-based spectrometers has opened up new regions of spectral coverage, including precisely the range in wavelength needed to make these sensitive measurements. We have undertaken a study of about 10 metal-poor halo giants to determine the abundances of several of the heaviest neutron-capture elements including platinum, osmium, lead, and gold. Preliminary results indicate that the abundance pattern of heavy neutron-capture elements (56 <= Z <= 82) in UMP stars does mimic a scaled solar system r-process. Thus, the ability to estimate the initial abundances of thorium and uranium is greatly reinforced.

  7. Spectroscopic Validation of Low-metallicity Stars from RAVE

    NASA Astrophysics Data System (ADS)

    Placco, Vinicius M.; Beers, Timothy C.; Santucci, Rafael M.; Chanamé, Julio; Sepúlveda, María Paz; Coronado, Johanna; Points, Sean D.; Kaleida, Catherine C.; Rossi, Silvia; Kordopatis, Georges; Lee, Young Sun; Matijevič, Gal; Frebel, Anna; Hansen, Terese T.; Holmbeck, Erika M.; Rasmussen, Kaitlin C.; Roederer, Ian U.; Sakari, Charli M.; Whitten, Devin D.

    2018-06-01

    We present results from a medium-resolution (R ∼ 2000) spectroscopic follow-up campaign of 1694 bright (V < 13.5), very metal-poor star candidates from the RAdial Velocity Experiment (RAVE). Initial selection of the low-metallicity targets was based on the stellar parameters published in RAVE Data Releases 4 and 5. Follow up was accomplished with the Gemini-N and Gemini-S, the ESO/NTT, the KPNO/Mayall, and the SOAR telescopes. The wavelength coverage for most of the observed spectra allows for the determination of carbon and α-element abundances, which are crucial for considering the nature and frequency of the carbon-enhanced metal-poor (CEMP) stars in this sample. We find that 88% of the observed stars have [{Fe}/{{H}}] ≤ ‑1.0, 61% have [{Fe}/{{H}}] ≤ ‑2.0, and 3% have [{Fe}/{{H}}] ≤ ‑3.0 (with four stars at [{Fe}/{{H}}] ≤ ‑3.5). There are 306 CEMP star candidates in this sample, and we identify 169 CEMP Group I, 131 CEMP Group II, and 6 CEMP Group III stars from the A(C) versus [Fe/H] diagram. Inspection of the [α /{{C}}] abundance ratios reveals that five of the CEMP Group II stars can be classified as “mono-enriched second-generation” stars. Gaia DR1 matches were found for 734 stars, and we show that transverse velocities can be used as a confirmatory selection criteria for low-metallicity candidates. Selected stars from our validated list are being followed-up with high-resolution spectroscopy to reveal their full chemical-abundance patterns for further studies.

  8. Ionizing spectra of stars that lose their envelope through interaction with a binary companion: role of metallicity

    NASA Astrophysics Data System (ADS)

    Götberg, Y.; de Mink, S. E.; Groh, J. H.

    2017-11-01

    Understanding ionizing fluxes of stellar populations is crucial for various astrophysical problems including the epoch of reionization. Short-lived massive stars are generally considered as the main stellar sources. We examine the potential role of less massive stars that lose their envelope through interaction with a binary companion. Here, we focus on the role of metallicity (Z). For this purpose we used the evolutionary code MESA and created tailored atmosphere models with the radiative transfer code CMFGEN. We show that typical progenitors, with initial masses of 12 M⊙, produce hot and compact stars ( 4 M⊙, 60-80 kK, 1 R⊙). These stripped stars copiously produce ionizing photons, emitting 60-85% and 30-60% of their energy as HI and HeI ionizing radiation, for Z = 0.0001-0.02, respectively. Their output is comparable to what massive stars emit during their Wolf-Rayet phase, if we account for their longer lifetimes and the favorable slope of the initial mass function. Their relative importance for reionization may be further favored since they emit their photons with a time delay ( 20 Myr after birth in our fiducial model). This allows time for the dispersal of the birth clouds, allowing the ionizing photons to escape into the intergalactic medium. At low Z, we find that Roche stripping fails to fully remove the H-rich envelope, because of the reduced opacity in the subsurface layers. This is in sharp contrast with the assumption of complete stripping that is made in rapid population synthesis simulations, which are widely used to simulate the binary progenitors of supernovae and gravitational waves. Finally, we discuss the urgency to increase the observed sample of stripped stars to test these models and we discuss how our predictions can help to design efficient observational campaigns.

  9. Exploring the Early Chemical Evolution of the Milky Way with LAMOST and Subaru

    NASA Astrophysics Data System (ADS)

    Li, Haining; Aoki, Wako; Honda, Satoshi; Zhao, Gang; Suda, Takuma; Christlieb, Norbert

    Extremely Metal-Poor (EMP) stars ([Fe/H] < -3.0) provide fundamental evidence on the nucleosynthesis and enrichment of the first stars and supernovae. LAMOST will observe 6 million Galactic stars through a 5-year spectroscopic survey, and thus provide an unprecedented chance to enlarge the EMP star sample. In 2014, a joint project on EMP stars was initiated with the LAMOST survey and Subaru follow-up observation. So far, more than 70 EMP stars have been found and confirmed, including identifications of a number of chemically interesting objects: three UMP (ultra metal-poor) stars with [Fe/H] ˜ -4.0, including the second UMP turnoff star with Li detection; a super Li-rich (A(Li) = +3) EMP giant, which is the most extreme example of Li enhancement in red giants known to date; a few EMP stars showing extreme enhancements in neutron-capture elements. Statistics of a large sample of EMP stars will constrain formation of the Milky Way halo.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Myron A.; Shiao, Bernard; Bianchi, Luciana, E-mail: myronmeister@gmail.com, E-mail: shiao@stsci.edu, E-mail: bianchi@pha.jhu.edu

    We report on intriguing photometric properties of Galactic stars observed in the Galaxy Evolution Explorer (GALEX) satellite's far-UV (FUV) and near-UV (NUV) bandpasses, as well as from the ground-based Sloan Digital Sky Survey (SDSS) and the Kepler Input Catalog. The first property is that the (FUV – NUV) color distribution of stars in the Kepler field consists of two well-separated peaks. A second and more perplexing property is that for stars with spectral types G or later the mean (FUV – NUV) color becomes much bluer, contrary to expectation. Investigating this tendency further, we found in two samples of mid-Fmore » through K type stars that 17%-22% of them exhibit FUV excesses relative to their NUV fluxes and spectral types. A correction for FUV incompleteness of the FUV magnitude-limited star sample brings this ratio to 14%-18%. Nearly the same fractions are also discovered among members of the Kepler Eclipsing Binary Catalog and in the published list of Kepler Objects of Interest. These UV-excess ('UVe') colors are confirmed by the negative UV continuum slopes in GALEX spectra of members of the population. The SDSS spectra of some UVe stars exhibit metallic line weakening, especially in the blue. This suggests an enhanced contribution of UV flux relative to photospheric flux of a solar-type single star. We consider the possibility that the UV excesses originate from various types of hot stars, including white dwarf DA and sdB stars, binaries, and strong chromosphere stars that are young or in active binaries. The space density of compact stars is too low to explain the observed frequency of the UVe stars. Our model atmosphere-derived simulations of colors for binaries with main-sequence pairs with a hot secondary demonstrate that the color loci conflict with the observed sequence. As a preferred alternative we are left with the active chromospheres explanation, whether in active close binaries or young single stars, despite the expected paucity of young, chromospherically active stars in the field. We also address a third perplexing color property, namely, the presence of a prominent island of 'UV red' stars surrounded by 'UV blue' stars in the diagnostic (NUV–g), (g – i) color diagram. We find that the subpopulation composing this island is mainly horizontal branch stars. These objects do not exhibit UV excesses and therefore have UV colors typical for their spectral types. This subpopulation appears 'red' in the UV only because the stars' colors are not pulled to the blue by the inclusion of UVe stars.« less

  11. Characterizing the Cool KOIs. III. KOI 961: A Small Star with Large Proper Motion and Three Small Planets

    NASA Astrophysics Data System (ADS)

    Muirhead, Philip S.; Johnson, John Asher; Apps, Kevin; Carter, Joshua A.; Morton, Timothy D.; Fabrycky, Daniel C.; Pineda, John Sebastian; Bottom, Michael; Rojas-Ayala, Bárbara; Schlawin, Everett; Hamren, Katherine; Covey, Kevin R.; Crepp, Justin R.; Stassun, Keivan G.; Pepper, Joshua; Hebb, Leslie; Kirby, Evan N.; Howard, Andrew W.; Isaacson, Howard T.; Marcy, Geoffrey W.; Levitan, David; Diaz-Santos, Tanio; Armus, Lee; Lloyd, James P.

    2012-03-01

    We characterize the star KOI 961, an M dwarf with transit signals indicative of three short-period exoplanets discovered by the Kepler mission. We proceed by comparing KOI 961 to Barnard's Star, a nearby, well-characterized mid-M dwarf. We compare colors, optical and near-infrared spectra, and find remarkable agreement between the two, implying similar effective temperatures and metallicities. Both are metal-poor compared to the Solar neighborhood, have low projected rotational velocity, high absolute radial velocity, large proper motion, and no quiescent Hα emission—all of which are consistent with being old M dwarfs. We combine empirical measurements of Barnard's Star and expectations from evolutionary isochrones to estimate KOI 961's mass (0.13 ± 0.05 M ⊙), radius (0.17 ± 0.04 R ⊙), and luminosity (2.40 × 10-3.0 ± 0.3 L ⊙). We calculate KOI 961's distance (38.7 ± 6.3 pc) and space motions, which, like Barnard's Star, are consistent with a high scale-height population in the Milky Way. We perform an independent multi-transit fit to the public Kepler light curve and significantly revise the transit parameters for the three planets. We calculate the false-positive probability for each planet candidate, and find a less than 1% chance that any one of the transiting signals is due to a background or hierarchical eclipsing binary, validating the planetary nature of the transits. The best-fitting radii for all three planets are less than 1 R ⊕, with KOI 961.03 being Mars-sized (RP = 0.57 ± 0.18 R ⊕), and they represent some of the smallest exoplanets detected to date.

  12. DEPENDENCE OF THE Sr-TO-Ba AND Sr-TO-Eu RATIO ON THE NUCLEAR EQUATION OF STATE IN METAL-POOR HALO STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Famiano, M. A.; Kajino, T.; Aoki, W.

    A model is proposed in which the dependence on the equation of state (EOS) of the scatter of [Sr/Ba] in metal-poor stars is studied. Light r-process element enrichment in these stars has been explained via a truncated r-process, or “tr-process.” The truncation of the r-process from a generic core-collapse event followed by a collapse into an accretion-induced black hole is examined in the framework of a galactic chemical evolution model. The constraints on this model imposed by observations of extremely metal-poor stars are explained, and the upper limits in the [Sr/Ba] distributions are found to be related to the nuclearmore » EOS in a collapse scenario. The scatter in [Sr/Ba] and [Sr/Eu] as a function of metallicity has been found to be consistent with turbulent ejection in core-collapse supernovae. Adaptations of this model are evaluated to account for the scatter in isotopic observables. This is done by assuming mixing in ejecta in a supernova event. Stiff EOS are eliminated by this model.« less

  13. Evidence for accreted component in the Galactic discs

    NASA Astrophysics Data System (ADS)

    Xing, Q. F.; Zhao, G.

    2018-06-01

    We analyse the distribution of [Mg/Fe] abundance in the Galactic discs with F- and G-type dwarf stars selected from the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) archive. The sample stars are assigned into different stellar populations by using kinematic criteria. Our analysis reveals the chemical inhomogeneities in the Galactic thick disc. A few of metal-poor stars in the thick disc exhibit relatively low [Mg/Fe] abundance in respect to the standard thick-disc sample. The orbital eccentricities and maximum Galactocentric radii of low-α metal-poor stars are apparently greater than that of high-α thick-disc stars. The orbital parameters and chemical components of low-α stars in the thick disc suggest that they may have been formed in regions with low star formation rate that were located at large distances from the Galactic centre, such as infalling dwarf spheroidal galaxies.

  14. A giant planet around a metal-poor star of extragalactic origin.

    PubMed

    Setiawan, Johny; Klement, Rainer J; Henning, Thomas; Rix, Hans-Walter; Rochau, Boyke; Rodmann, Jens; Schulze-Hartung, Tim

    2010-12-17

    Stars in their late stage of evolution, such as horizontal branch stars, are still largely unexplored for planets. We detected a planetary companion around HIP 13044, a very metal-poor star on the red horizontal branch, on the basis of radial velocity observations with a high-resolution spectrograph at the 2.2-meter Max-Planck Gesellschaft-European Southern Observatory telescope. The star's periodic radial velocity variation of P = 16.2 days caused by the planet can be distinguished from the periods of the stellar activity indicators. The minimum mass of the planet is 1.25 times the mass of Jupiter and its orbital semimajor axis is 0.116 astronomical units. Because HIP 13044 belongs to a group of stars that have been accreted from a disrupted satellite galaxy of the Milky Way, the planet most likely has an extragalactic origin.

  15. Abundance Ratios in a Common Proper Motion Pair: Chemical Evidence of Accreted Substructure in the Halo Field?

    NASA Astrophysics Data System (ADS)

    King, Jeremy R.

    1997-06-01

    Elemental abundances are presented for the metal-poor ([Fe/H] =-1.50) common proper motion pair HD 134439 and HD 134440. The abundances for the two stars are in very good agreement, with the neutral species showing only a small difference (˜0.05 dex) which is well within the statistical and Teff uncertainties. The essentially identical abundances, kinematics, and parallaxes of the two stars indicate that they share a common history. This history, however, appears to be different than other metal-poor stars. Suggestions, based on kinematic evidence, that these two-stars are representative of a distinct accretion event are corroborated by our abundance ratios, which indicate [Mg/Fe], [Si/Fe], and [Ca/Fe] are consistently some ˜0.3 dex lower than the vast majority of metal-poor field stars. Such underabundances have been predicted in environments like dwarf Spheroidals and the Magellanic Clouds. Moreover, our abundance ratio deficiencies are consistent with those recently observed in the the anomalously young globular clusters Rup 106 and Pal 12, which have been alleged to have been accreted from the Magellanic Clouds. The [Fe/H] and retrograde motion of the common proper motion pair are characteristic of the subset of Galactic globular clusters suggested by Rodgers & Paltoglou [ApJ, 283, L5 (1984)] to have been coalesced from satellite galaxies. We also call attention to the metal-poor subgiant BD+03 740 as another possible representative of an accreted or chaotically formed member of the halo field. If recent Fe analyses of this star are correct, then [Mg/Fe] and [0/Fe] are 0.5 dex lower than in other metal-poor field stars. This star also has a relatively low photometrically inferred age; relative youth has been noted as a possible characteristic of accreted field populations, and is qualitatively consistent with the young ages of the purportedly accreted globular clusters Rup 106, Pal 12, Ter 7, and Arp 2. Additionally, the revised [O/Fe] ratio for BD+03 740 would suggest a large spread, perhaps 0.7 dex, in [0/Fe] of field stars of very low [Fe/H]; this itself might provide strong evidence of some degree of chaotic halo formation in independent fragments. If, on the other hand, earlier Fe analyses of this star are correct, [Mg/Fe] and [O/Fe] for this star are unremarkable; however, the low gravity estimates from earlier studies would then suggest that BD+03 740 is a ≤3 Gyr field star with [Fe/H] ˜-3. Further spectroscopic study of this interesting object is needed to determine if it may be similar to the metal-poor ([Fe/H] = - 3.1) high velocity star CS 22873-139, which Preston [M 108, 2267 (1994)] has argued is ≤8 Gyr in age. Finally, our abundance ratios for RD 134439 and RD 134440 suggest that low [αFe] may be a characteristic of accreted halo systems including the anomalously young globulars. However, as has been noted by others, the low α-element abundances apparently cannot explain differences between photometric and Ca II-based metallicity estimates for these clusters, nor the variation in these differences between Rup 106 and Pal 12.

  16. Accreting binary population synthesis and feedback prescriptions

    NASA Astrophysics Data System (ADS)

    Fragos, Tassos

    2016-04-01

    Studies of extagalactic X-ray binary populations have shown that the characteristics of these populations depend strongly on the characteristics of the host galaxy's parent stellar population (e.g. star-formation history and metallicity). These dependencies not only make X-ray binaries promising for aiding in the measurement of galaxy properties themselves, but they also have important astrophysical and cosmological implications. For example, due to the relatively young stellar ages and primordial metallicities in the early Universe (z > 3), it is predicted that X-ray binaries were more luminous than today. The more energetic X-ray photons, because of their long mean-free paths, can escape the galaxies where they are produced, and interact at long distances with the intergalactic medium. This could result in a smoother spatial distribution of ionized regions, and more importantly in an overall warmer intergalactic medium. The energetic X-ray photons emitted from X-ray binaries dominate the X-ray radiation field over active galactic nuclei at z > 6 - 8, and hence Χ-ray binary feedback can be a non-negligible contributor to the heating and reionization of the inter-galactic medium in the early universe. The spectral energy distribution shape of the XRB emission does not change significantly with redshift, suggesting that the same XRB subpopulation, namely black-hole XRBs in the high-soft state, dominates the cumulative emission at all times. On the contrary, the normalization of the spectral energy distribution does evolve with redshift. To zeroth order, this evolution is driven by the cosmic star-formation rate evolution. However, the metallicity evolution of the universe and the mean stellar population age are two important factors that affect the X-ray emission from high-mass and low-mass XRBs, respectively. In this talk, I will review recent studies on the potential feedback from accreting binary populations in galactic and cosmological scales. Furthermore, I will discuss which are the next steps towards a more physically realisitc modelling of accreting compact object populations in the early Universe.

  17. Westerlund 1 is a Galactic Treasure Chest: The Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Rosslowe, C. K.; Crowther, P. A.

    2015-01-01

    The Westerlund 1 Galactic cluster hosts an eclectic mix of coeval massive stars. At a modest distance of 4-5 kpc, it offers a unique opportunity to study the resolved stellar content of a young (~5 Myr) high mass (5.104 M ⊙) star cluster. With the aim of testing single-star evolutionary predictions, and revealing any signatures of binary evolution, we discuss on-going analyses of NTT/SOFI near-IR spectroscopy of Wolf-Rayet stars in Westerlund 1. We find that late WN stars are H-poor compared to their counterparts in the Milky Way field, and nearly all are less luminous than predicted by single-star Geneva isochrones at the age of Westerlund 1.

  18. The central star candidate of the planetary nebula Sh2-71: photometric and spectroscopic variability

    NASA Astrophysics Data System (ADS)

    Močnik, T.; Lloyd, M.; Pollacco, D.; Street, R. A.

    2015-07-01

    We present the analysis of several newly obtained and archived photometric and spectroscopic data sets of the intriguing and yet poorly understood 13.5 mag central star candidate of the bipolar planetary nebula Sh2-71. Photometric observations confirmed the previously determined quasi-sinusoidal light curve with a period of 68 d and also indicated periodic sharp brightness dips, possibly eclipses, with a period of 17.2 d. In addition, the comparison between U and V light curves revealed that the 68 d brightness variations are accompanied by a variable reddening effect of ΔE(U - V) = 0.38. Spectroscopic data sets demonstrated pronounced variations in spectral profiles of Balmer, helium and singly ionized metal lines and indicated that these variations occur on a time-scale of a few days. The most accurate verification to date revealed that spectral variability is not correlated with the 68 d brightness variations. The mean radial velocity of the observed star was measured to be ˜26 km s-1 with an amplitude of ±40 km s-1. The spectral type was determined to be B8V through spectral comparison with synthetic and standard spectra. The newly proposed model for the central star candidate is a Be binary with a misaligned precessing disc.

  19. Discovery of carbon-rich Miras in the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Matsunaga, Noriyuki; Menzies, John W.; Feast, Michael W.; Whitelock, Patricia A.; Onozato, Hiroki; Barway, Sudhanshu; Aydi, Elias

    2017-08-01

    Only one carbon-rich (C-rich, hereinafter) Mira variable has so far been suggested as a member of the Galactic bulge and this is in a symbiotic system. Here we describe a method for selecting C-rich candidates from an infrared colour-colour diagram, (J - Ks) versus ([9] - [18]). Follow-up low-resolution spectroscopy resulted in the detection of eight C-rich Mira variables from a sample of 36 candidates towards the Galactic bulge. Our near-infrared photometry indicates that two of these, including the known symbiotic, are closer than the main body of the bulge while a third is a known foreground object. Of the five bulge members, one shows He I and [O II] emission and is possibly another symbiotic star. Our method is useful for identifying rare C-rich stars in the Galactic bulge and elsewhere. The age of these C-rich stars and the evolutionary process which produced them remain uncertain. They could be old and the products of either binary mass transfer or mergers, I.e. the descendants of blue stragglers, but we cannot rule out the possibility that they belong to a small in situ population of metal-poor intermediate age (<5 Gyr) stars in the bulge or that they have been accreted from a dwarf galaxy.

  20. The Origin of the Relation between Metallicity and Size in Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Sánchez Almeida, J.; Dalla Vecchia, C.

    2018-06-01

    For the same stellar mass, physically smaller star-forming galaxies are also metal richer. What causes the relation remains unclear. The central star-forming galaxies in the EAGLE cosmological numerical simulation reproduce the observed trend. We use them to explore the origin of the relation assuming that the physical mechanism responsible for the anticorrelation between size and gas-phase metallicity is the same in the simulated and the observed galaxies. We consider the three most likely causes: (1) metal-poor gas inflows feeding the star formation (SF) process, (2) metal-rich gas outflows particularly efficient in shallow gravitational potentials, and (3) enhanced efficiency of the SF process in compact galaxies. Outflows (cause 2) and enhanced SF efficiency (cause 3) can be discarded. Metal-poor gas inflows (cause 1) produce the correlation in the simulated galaxies. Galaxies grow in size with time, so those that receive gas later are both metal poorer and larger, giving rise to the observed anticorrelation. As expected within this explanation, larger galaxies have younger stellar populations. We explore the variation with redshift of the relation, which is maintained up to, at least, redshift 8.

  1. A model for the massive binary V340 Muscae

    NASA Astrophysics Data System (ADS)

    Hauck, Norbert

    2016-02-01

    A synthetic light curve has been fitted to photometric data from the ASAS-3 database. The parameters of the best solution are well consistent with those derived from stellar models for both components for an initial metallicity Z=0.020 and a common age of 5 Myr. Therefore, we can reliably estimate the absolute dimensions of this close eclipsing binary system. Apparently, the O-type primary star has a mass of about 22.65 Msun and a radius of 10.35 Rsun. For the secondary star, likely a late B-type dwarf, we obtain about 3.1 Msun and 2.1 Rsun. Their mass ratio of about 0.138 might be the lowest found so far in O-type binaries. [English and German online-version of this paper available under www.bav-astro.eu/rb/rb2016-2/1.html].

  2. Cosmic stellar relics in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Salvadori, Stefania; Schneider, Raffaella; Ferrara, Andrea

    2007-10-01

    We study the stellar population history and chemical evolution of the Milky Way (MW) in a hierarchical Λ cold dark matter model for structure formation. Using a Monte Carlo method based on the semi-analytical extended Press & Schechter formalism, we develop a new code GALAXY MERGER TREE AND EVOLUTION (GAMETE) to reconstruct the merger tree of the Galaxy and follow the evolution of gas and stars along the hierarchical tree. Our approach allows us to compare the observational properties of the MW with model results, exploring different properties of primordial stars, such as their initial mass function and the critical metallicity for low-mass star formation, Zcr. In particular, by matching our predictions to the metallicity distribution function (MDF) of metal-poor stars in the Galactic halo we find that: (i) a strong supernova (SN) feedback is required to reproduce the observed properties of the MW; (ii) stars with [Fe/H] < -2.5 form in haloes accreting Galactic medium (GM) enriched by earlier SN explosions; (iii) the fiducial model (Zcr = 10-4Zsolar, mPopIII = 200 Msolar) provides an overall good fit to the MDF, but cannot account for the two hyper-metal-poor (HMP) stars with [Fe/H] < -5 the latter can be accommodated if Zcr <= 10-6 Zsolar but such model overpopulates the `metallicity desert', that is, the range -5.3 < [Fe/H] < -4 in which no stars have been detected; (iv) the current non-detection of metal-free stars robustly constrains either Zcr > 0 or the masses of the first stars mPopIII > 0.9 Msolar (v) the statistical impact of truly second-generation stars, that is, stars forming out of gas polluted only by metal-free stars, is negligible in current samples; and (vi) independent of Zcr, 60 per cent of metals in the GM are ejected through winds by haloes with masses M < 6 × 109 Msolar, thus showing that low-mass haloes are the dominant population contributing to cosmic metal enrichment. We discuss the limitations of our study and comparison with previous work.

  3. Before the Bar: Kinematic Detection of a Spheroidal Metal-poor Bulge Component

    NASA Astrophysics Data System (ADS)

    Kunder, Andrea; Rich, R. M.; Koch, A.; Storm, J.; Nataf, D. M.; De Propris, R.; Walker, A. R.; Bono, G.; Johnson, C. I.; Shen, Juntai; Li, Z.-Y.

    2016-04-01

    We present 947 radial velocities of RR Lyrae variable stars in four fields located toward the Galactic bulge, observed within the data from the ongoing Bulge RR Lyrae Radial Velocity Assay (BRAVA-RR). We show that these RR Lyrae stars (RRLs) exhibit hot kinematics and null or negligible rotation and are therefore members of a separate population from the bar/pseudobulge that currently dominates the mass and luminosity of the inner Galaxy. Our RRLs predate these structures and have metallicities, kinematics, and spatial distribution that are consistent with a “classical” bulge, although we cannot yet completely rule out the possibility that they are the metal-poor tail of a more metal-rich ([{Fe}/{{H}}]˜ -1 dex) halo-bulge population. The complete catalog of radial velocities for the BRAVA-RR stars is also published electronically.

  4. Gaia Reveals a Metal-rich, in situ Component of the Local Stellar Halo

    NASA Astrophysics Data System (ADS)

    Bonaca, Ana; Conroy, Charlie; Wetzel, Andrew; Hopkins, Philip F.; Kereš, Dušan

    2017-08-01

    We use the first Gaia data release, combined with the RAVE and APOGEE spectroscopic surveys, to investigate the origin of halo stars within ≲ 3 kpc from the Sun. We identify halo stars kinematically as moving at a relative speed of at least 220 km s-1 with respect to the local standard of rest. These stars are generally less metal-rich than the disk, but surprisingly, half of our halo sample is comprised of stars with [{Fe}/{{H}}]> -1. The orbital directions of these metal-rich halo stars are preferentially aligned with the disk rotation, in sharp contrast with the intrinsically isotropic orbital distribution of the metal-poor halo stars. We find similar properties in the Latte cosmological zoom-in simulation of a Milky Way-like galaxy from the FIRE project. In Latte, metal-rich halo stars formed primarily inside of the solar circle, whereas lower-metallicity halo stars preferentially formed at larger distances (extending beyond the virial radius). This suggests that metal-rich halo stars in the solar neighborhood actually formed in situ within the Galactic disk, rather than having been accreted from satellite systems. These stars, currently on halo-like orbits, therefore have likely undergone substantial radial migration/heating.

  5. High Energy Interactions in Massive Binaries: An Application to a Most Mysterious Binary

    NASA Technical Reports Server (NTRS)

    Corcoran, Michael

    2013-01-01

    Extremely massive stars (50M and above) are exceedingly rare in the local Universe but are believed to have composed the entire first generation of stars, which lived fast, died young and left behind the first generation of black holes and set the stage for the formation of lower mass stars suitable to support life. There are significant uncertainties about how this happened (and how it still happens), mostly due to our poor knowledge of how stars change mass as they evolve. Extremely massive stars give mass back to the ISM via strong radiatively-driven winds and sometimes through sporadic eruptions of the most massive and brightest stars. Such mass loss plays an important role in the chemical and dynamical evolution of the local interstellar medium prior to the supernova explosion. Below we discuss how high energy thermal (and, in some cases, non-thermal) emission, along with modern simulations in 2 and 3 dimensions, can be used to help determine a physically realistic picture of mass loss in a well-studied, mysterious system.

  6. Merging Black Hole Binaries in Galactic Nuclei: Implications for Advanced-LIGO Detections

    NASA Astrophysics Data System (ADS)

    Antonini, Fabio; Rasio, Frederic A.

    2016-11-01

    Motivated by the recent detection of gravitational waves from the black hole binary merger GW150914, we study the dynamical evolution of (stellar-mass) black holes in galactic nuclei, where massive star clusters reside. With masses of ˜ {10}7 {M}⊙ and sizes of only a few parsecs, nuclear star clusters (NSCs) are the densest stellar systems observed in the local universe and represent a robust environment where black hole binaries can dynamically form, harden, and merge. We show that due to their large escape speeds, NSCs can retain a large fraction of their merger remnants. Successive mergers can then lead to significant growth and produce black hole mergers of several tens of solar masses similar to GW150914 and up to a few hundreds of solar masses, without the need to invoke extremely low metallicity environments. We use a semi-analytical approach to describe the dynamics of black holes in massive star clusters. Our models give a black hole binary merger rate of ≈ 1.5 {{Gpc}}-3 {{yr}}-1 from NSCs, implying up to a few tens of possible detections per year with Advanced LIGO. Moreover, we find a local merger rate of ˜ 1 {{Gpc}}-3 {{yr}}-1 for high mass black hole binaries similar to GW150914; a merger rate comparable to or higher than that of similar binaries assembled dynamically in globular clusters (GCs). Finally, we show that if all black holes receive high natal kicks, ≳ 50 {km} {{{s}}}-1, then NSCs will dominate the local merger rate of binary black holes compared to either GCs or isolated binary evolution.

  7. Binary interaction dominates the evolution of massive stars.

    PubMed

    Sana, H; de Mink, S E; de Koter, A; Langer, N; Evans, C J; Gieles, M; Gosset, E; Izzard, R G; Le Bouquin, J-B; Schneider, F R N

    2012-07-27

    The presence of a nearby companion alters the evolution of massive stars in binary systems, leading to phenomena such as stellar mergers, x-ray binaries, and gamma-ray bursts. Unambiguous constraints on the fraction of massive stars affected by binary interaction were lacking. We simultaneously measured all relevant binary characteristics in a sample of Galactic massive O stars and quantified the frequency and nature of binary interactions. More than 70% of all massive stars will exchange mass with a companion, leading to a binary merger in one-third of the cases. These numbers greatly exceed previous estimates and imply that binary interaction dominates the evolution of massive stars, with implications for populations of massive stars and their supernovae.

  8. Explaining the Ba, Y, Sr, and Eu abundance scatter in metal-poor halo stars: constraints to the r-process

    NASA Astrophysics Data System (ADS)

    Cescutti, G.; Chiappini, C.

    2014-05-01

    Context. Thanks to the heroic observational campaigns carried out in recent years we now have large samples of metal-poor stars for which measurements of detailed abundances exist. In particular, large samples of stars with metallicities -5 < [Fe/H] <-1 and measured abundances of Sr, Ba, Y, and Eu are now available. These data hold important clues on the nature of the contribution of the first stellar generations to the enrichment of our Galaxy. Aims: We aim to explain the scatter in Sr, Ba, Y, and Eu abundance ratio diagrams unveiled by the metal-poor halo stars. Methods: We computed inhomogeneous chemical evolution models for the Galactic halo assuming different scenarios for the r-process site: the electron-capture (EC) supernovae and the magnetorotationally driven (MRD) supernovae scenarios. We also considered models with and without the contribution of fast-rotating massive stars (spinstars) to an early enrichment by the s-process. A detailed comparison with the now large sample of stars with measured abundances of Sr, Ba, Y, Eu, and Fe is provided (both in terms of scatter plots and number distributions for several abundance ratios). Results: The scatter observed in these abundance ratios of the very metal-poor stars (with [Fe/H] <-2.5) can be explained by combining the s-process production in spinstars, and the r-process contribution coming from massive stars. For the r-process we have developed models for both the EC and the MRD scenarios that match the observations. Conclusions: With the present observational and theoretical constraints we cannot distinguish between the EC and the MRD scenarios in the Galactic halo. Independently of the r-process scenarios adopted, the production of elements by an s-process in spinstars is needed to reproduce the spread in abundances of the light neutron capture elements (Sr and Y) over heavy neutron capture elements (Ba and Eu). We provide a way to test our suggestions by means of the distribution of the Ba isotopic ratios in a [Ba/Fe] or [Sr/Ba] vs. [Fe/H] diagram. Appendix A is available in electronic form at http://www.aanda.org

  9. Low-metallicity (sub-SMC) massive stars

    NASA Astrophysics Data System (ADS)

    Garcia, Miriam; Herrero, Artemio; Najarro, Francisco; Camacho, Inés; Lennon, Daniel J.; Urbaneja, Miguel A.; Castro, Norberto

    2017-11-01

    The double distance and metallicity frontier marked by the SMC has been finally broken with the aid of powerful multi-object spectrographs installed at 8-10m class telescopes. VLT, GTC and Keck have enabled studies of massive stars in dwarf irregular galaxies of the Local Group with poorer metal-content than the SMC. The community is working to test the predictions of evolutionary models in the low-metallicity regime, set the new standard for the metal-poor high-redshift Universe, and test the extrapolation of the physics of massive stars to environments of decreasing metallicity. In this paper, we review current knowledge on this topic.

  10. A Sample of Fast Moving M Dwarfs in the Milky Way

    NASA Astrophysics Data System (ADS)

    Favia, Andrej; West, Andrew A.

    2014-06-01

    In the past decade, several high-mass stars have been discovered to have high enough velocities to escape the Milky Way (dubbed hypervelocity stars), yet until recently, stars with similar velocities were not observed for Solar- and lower-mass stars. There has been an observational paucity of hypervelocity M dwarfs, which account for ~70% of the stars in the Milky Way. While some of the shortage of low-mass, high-velocity stars may be due to the specific mechanisms accelerating these stars, it is also possible that the M dwarfs have been overlooked due to their faint luminosities. We present results from a study that uses the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) M Dwarf Spectroscopic Catalog (70,841 M dwarfs) to identify and characterize several hundred M dwarfs with velocities greater than 400 km/s relative to the Galactic center. Our study marks the first step in demonstrating that there is a significant sample of low-mass, high-velocity stars. We examined the 3D kinematics of M dwarfs in the SDSS DR7 catalog with velocities > 400 km/s relative to the Galactic center. Stars with poor photometry or a SNR (near H-alpha) < 3 were excluded, as well as stars that were flagged in the original data set as being possible M dwarf-white dwarf binaries. We confirmed the radial velocities reported by West et al. (2011) by manually examining the remaining stars, specifically the locations of the sodium absorption lines (two at 5891/5897 Å, and two at 8185/8197 Å). We present the final catalog of high velocity candidates and a preliminary analysis of their spectroscopically derived properties, including 3D kinematics, magnetic activity and metallicity distributions.

  11. The r-process Pattern of a Bright, Highly r-process-enhanced Metal-poor Halo Star at [Fe/H] ∼ ‑2

    NASA Astrophysics Data System (ADS)

    Sakari, Charli M.; Placco, Vinicius M.; Hansen, Terese; Holmbeck, Erika M.; Beers, Timothy C.; Frebel, Anna; Roederer, Ian U.; Venn, Kim A.; Wallerstein, George; Davis, Christopher Evan; Farrell, Elizabeth M.; Yong, David

    2018-02-01

    A high-resolution spectroscopic analysis is presented for a new highly r-process-enhanced ([Eu/Fe] = 1.27, [Ba/Eu] = ‑0.65), very metal-poor ([Fe/H] = ‑2.09), retrograde halo star, RAVE J153830.9–180424, discovered as part of the R-Process Alliance survey. At V = 10.86, this is the brightest and most metal-rich r-II star known in the Milky Way halo. Its brightness enables high-S/N detections of a wide variety of chemical species that are mostly created by the r-process, including some infrequently detected lines from elements like Ru, Pd, Ag, Tm, Yb, Lu, Hf, and Th, with upper limits on Pb and U. This is the most complete r-process census in a very metal-poor r-II star. J1538–1804 shows no signs of s-process contamination, based on its low [Ba/Eu] and [Pb/Fe]. As with many other r-process-enhanced stars, J1538–1804's r-process pattern matches that of the Sun for elements between the first, second, and third peaks, and does not exhibit an actinide boost. Cosmo-chronometric age-dating reveals the r-process material to be quite old. This robust main r-process pattern is a necessary constraint for r-process formation scenarios (of particular interest in light of the recent neutron star merger, GW170817), and has important consequences for the origins of r-II stars. Additional r-I and r-II stars will be reported by the R-Process Alliance in the near future.

  12. The Chemical Evolution of the Bootes I Ultra-faint Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Frebel, Anna; Norris, John E.; Gilmore, Gerard; Wyse, Rosemary F. G.

    2016-08-01

    We present chemical abundance measurements of two metal-poor red giant stars in the ultra-faint dwarf galaxy Boötes I, based on Magellan/MIKE high-resolution spectra. For Boo-980, with {{[Fe/H]}}=-3.1, we present the first elemental abundance measurements, while Boo-127, with {{[Fe/H]}}=-2.0, shows abundances in good agreement with previous measurements. Light and iron-peak element abundance ratios in the two Boötes I stars, as well as those of most other Boötes I members, collected from the literature, closely resemble those of regular metal-poor halo stars. Neutron-capture element abundances Sr and Ba are systematically lower than the main halo trend and also show a significant abundance spread. Overall, this is similar to what has been found for other ultra-faint dwarf galaxies. We apply corrections to the carbon abundances (commensurate with stellar evolutionary status) of the entire sample and find 21% of stars to be carbon-enhanced metal-poor (CEMP) stars, compared to 13% without using the carbon correction. We reassess the metallicity distribution functions for the CEMP stars and non-CEMP stars, and confirm earlier claims that CEMP stars might belong to a different, earlier population. Applying a set of abundance criteria to test to what extent Boötes I could be a surviving first galaxy suggests that it is one of the earliest assembled systems that perhaps received gas from accretion from other clouds in the system, or from swallowing a first galaxy or building block type object. This resulted in the two stellar populations observable today. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  13. Beryllium and Boron abundances in population II stars

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The scientific focus of this program was to undertake UV spectroscopic abundance analyses of extremely metal poor stars with attention to determining abundances of light elements such as beryllium and boron. The abundances are likely to reflect primordial abundances within the early galaxy and help to constrain models for early galactic nucleosynthesis. The general metal abundances of these stars are also important for understanding stellar evolution.

  14. Close binary evolution. II. Impact of tides, wind magnetic braking, and internal angular momentum transport

    NASA Astrophysics Data System (ADS)

    Song, H. F.; Meynet, G.; Maeder, A.; Ekström, S.; Eggenberger, P.; Georgy, C.; Qin, Y.; Fragos, T.; Soerensen, M.; Barblan, F.; Wade, G. A.

    2018-01-01

    Context. Massive stars with solar metallicity lose important amounts of rotational angular momentum through their winds. When a magnetic field is present at the surface of a star, efficient angular momentum losses can still be achieved even when the mass-loss rate is very modest, at lower metallicities, or for lower-initial-mass stars. In a close binary system, the effect of wind magnetic braking also interacts with the influence of tides, resulting in a complex evolution of rotation. Aims: We study the interactions between the process of wind magnetic braking and tides in close binary systems. Methods: We discuss the evolution of a 10 M⊙ star in a close binary system with a 7 M⊙ companion using the Geneva stellar evolution code. The initial orbital period is 1.2 days. The 10 M⊙ star has a surface magnetic field of 1 kG. Various initial rotations are considered. We use two different approaches for the internal angular momentum transport. In one of them, angular momentum is transported by shear and meridional currents. In the other, a strong internal magnetic field imposes nearly perfect solid-body rotation. The evolution of the primary is computed until the first mass-transfer episode occurs. The cases of different values for the magnetic fields and for various orbital periods and mass ratios are briefly discussed. Results: We show that, independently of the initial rotation rate of the primary and the efficiency of the internal angular momentum transport, the surface rotation of the primary will converge, in a time that is short with respect to the main-sequence lifetime, towards a slowly evolving velocity that is different from the synchronization velocity. This "equilibrium angular velocity" is always inferior to the angular orbital velocity. In a given close binary system at this equilibrium stage, the difference between the spin and the orbital angular velocities becomes larger when the mass losses and/or the surface magnetic field increase. The treatment of the internal angular momentum transport has a strong impact on the evolutionary tracks in the Hertzsprung-Russell Diagram as well as on the changes of the surface abundances resulting from rotational mixing. Our modelling suggests that the presence of an undetected close companion might explain rapidly rotating stars with strong surface magnetic fields, having ages well above the magnetic braking timescale. Our models predict that the rotation of most stars of this type increases as a function of time, except for a first initial phase in spin-down systems. The measure of their surface abundances, together, when possible, with their mass-luminosity ratio, provide interesting constraints on the transport efficiencies of angular momentum and chemical species. Conclusions: Close binaries, when studied at phases predating any mass transfer, are key objects to probe the physics of rotation and magnetic fields in stars.

  15. The mass-ratio and eccentricity distributions of barium and S stars, and red giants in open clusters

    NASA Astrophysics Data System (ADS)

    Van der Swaelmen, M.; Boffin, H. M. J.; Jorissen, A.; Van Eck, S.

    2017-01-01

    Context. A complete set of orbital parameters for barium stars, including the longest orbits, has recently been obtained thanks to a radial-velocity monitoring with the HERMES spectrograph installed on the Flemish Mercator telescope. Barium stars are supposed to belong to post-mass-transfer systems. Aims: In order to identify diagnostics distinguishing between pre- and post-mass-transfer systems, the properties of barium stars (more precisely their mass-function distribution and their period-eccentricity (P-e) diagram) are compared to those of binary red giants in open clusters. As a side product, we aim to identify possible post-mass-transfer systems among the cluster giants from the presence of s-process overabundances. We investigate the relation between the s-process enrichment, the location in the (P-e) diagram, and the cluster metallicity and turn-off mass. Methods: To invert the mass-function distribution and derive the mass-ratio distribution, we used the method pioneered by Boffin et al. (1992) that relies on a Richardson-Lucy deconvolution algorithm. The derivation of s-process abundances in the open-cluster giants was performed through spectral synthesis with MARCS model atmospheres. Results: A fraction of 22% of post-mass-transfer systems is found among the cluster binary giants (with companion masses between 0.58 and 0.87 M⊙, typical for white dwarfs), and these systems occupy a wider area than barium stars in the (P-e) diagram. Barium stars have on average lower eccentricities at a given orbital period. When the sample of binary giant stars in clusters is restricted to the subsample of systems occupying the same locus as the barium stars in the (P-e) diagram, and with a mass function compatible with a WD companion, 33% (=4/12) show a chemical signature of mass transfer in the form of s-process overabundances (from rather moderate - about 0.3 dex - to more extreme - about 1 dex). The only strong barium star in our sample is found in the cluster with the lowest metallicity in the sample (I.e. star 173 in NGC 2420, with [Fe/H] = -0.26), whereas the barium stars with mild s-process abundance anomalies (from 0.25 to 0.6 dex) are found in the clusters with slightly subsolar metallicities. Our finding confirms the classical prediction that the s-process nucleosynthesis is more efficient at low metallicities, since the s-process overabundance is not clearly correlated with the cluster turn-off (TO) mass; such a correlation would instead hint at the importance of the dilution factor. We also find a mild barium star in NGC 2335, a cluster with a large TO mass of 4.3 M⊙, which implies that asymptotic giant branch stars that massive still operate the s-process and the third dredge-up. Based on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, and on observations made with the HARPS spectrograph installed on the 3.6 m telescope at the European Southern Observatory.

  16. The Chemical Signature of SNIax in the Stars of Ursa Minor?

    NASA Astrophysics Data System (ADS)

    Cescutti, Gabriele; Kobayashi, Chiaki

    2018-06-01

    Recently, a new class of supernovae Ia was discovered: the supernovae Iax; the increasing sample of these objects share common features as lower maximum-light velocities and typically lower peak magnitudes.In our scenario, the progenitors of the SNe Iax are very massive white dwarfs, possibly hybrid C+O+Ne white dwarfs; due to the accretion from a binary companion, they reach the Chandrasekhar mass and undergo a central carbon deflagration, but the deflagration is quenched when it reaches the outer O+Ne layer. This class of SNe Ia are expected to be rarer than standard SNe Ia and do not affect the chemical evolution in the solar neighbourhood; however, they have a short delay time and they could influence the evolution of metal-poor systems. Therefore, we have included in a stochastic chemical evolution model for the dwarf spheroidal galaxy Ursa minor the contribution of SNe Iax.The model predicts a spread in [Mn/Fe] in the ISM medium at low metallicity and - at the same time - a decrease of the [alpha/Fe] elements, as in the classical time delay model. This is in surprising agreement with the observed abundances in stars of Ursa minor and provide a strong indication to the origin of this new classes of SNIa.

  17. VizieR Online Data Catalog: Carbon-enhanced metal-poor (CEMP) star abundances (Yoon+, 2016)

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Beers, T. C.; Placco, V. M.; Rasmussen, K. C.; Carollo, D.; He, S.; Hansen, T. T.; Roederer, I. U.; Zeanah, J.

    2017-03-01

    We have endeavored to compile a list that is as complete as possible of carbon-enhanced metal-poor (CEMP); CEMP-s (and CEMP-r/s) and CEMP-no stars having [Fe/H]<-1.0 and [C/Fe]>=+0.7 with available high-resolution spectroscopic abundance information. We have only considered stars with claimed detections or lower limits for carbon, along with several critical elemental-abundance ratios, such as [Ba/Fe] and [Eu/Fe]. The great majority of our sample comes from the literature compilation of Placco+ (2014, J/ApJ/797/21). See section 2 for further details. (2 data files).

  18. THE SYNTHETIC-OVERSAMPLING METHOD: USING PHOTOMETRIC COLORS TO DISCOVER EXTREMELY METAL-POOR STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, A. A., E-mail: amiller@astro.caltech.edu

    2015-09-20

    Extremely metal-poor (EMP) stars ([Fe/H] ≤ −3.0 dex) provide a unique window into understanding the first generation of stars and early chemical enrichment of the universe. EMP stars are exceptionally rare, however, and the relatively small number of confirmed discoveries limits our ability to exploit these near-field probes of the first ∼500 Myr after the Big Bang. Here, a new method to photometrically estimate [Fe/H] from only broadband photometric colors is presented. I show that the method, which utilizes machine-learning algorithms and a training set of ∼170,000 stars with spectroscopically measured [Fe/H], produces a typical scatter of ∼0.29 dex. Thismore » performance is similar to what is achievable via low-resolution spectroscopy, and outperforms other photometric techniques, while also being more general. I further show that a slight alteration to the model, wherein synthetic EMP stars are added to the training set, yields the robust identification of EMP candidates. In particular, this synthetic-oversampling method recovers ∼20% of the EMP stars in the training set, at a precision of ∼0.05. Furthermore, ∼65% of the false positives from the model are very metal-poor stars ([Fe/H] ≤ −2.0 dex). The synthetic-oversampling method is biased toward the discovery of warm (∼F-type) stars, a consequence of the targeting bias from the Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding survey. This EMP selection method represents a significant improvement over alternative broadband optical selection techniques. The models are applied to >12 million stars, with an expected yield of ∼600 new EMP stars, which promises to open new avenues for exploring the early universe.« less

  19. NOEMA Observations of a Molecular Cloud in the Low-metallicity Galaxy Kiso 5639

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce G.; Herrera, Cinthya; Rubio, Monica; Elmegreen, Debra Meloy; Sánchez Almeida, Jorge; Muñoz-Tuñón, Casiana; Olmo-García, Amanda

    2018-06-01

    A giant star-forming region in a metal-poor dwarf galaxy has been observed in optical lines with the 10 m Gran Telescopio Canarias (GTC) and in the emission line of CO(1–0) with the Northern Extended Millimeter Array (NOEMA) mm-wave interferometer. The metallicity was determined to be 12+{log}({{O}}/{{H}})=7.83+/- 0.09, from which we estimate a conversion factor of α CO ∼ 100 M ⊙ pc‑2(K km s‑1)‑1 and a molecular cloud mass of ∼2.9 × 107 M ⊙. This is an enormous concentration of molecular mass at one end of a small galaxy, suggesting a recent accretion. The molecular cloud properties seem normal: the surface density, 120 M ⊙ pc‑2, is comparable to that of a standard giant molecular cloud; the cloud’s virial ratio of ∼1.8 is in the star formation range; and the gas consumption time, 0.5 Gyr, at the present star formation rate is typical for molecular regions. The low metallicity implies that the cloud has an average visual extinction of only 0.8 mag, which is close to the threshold for molecule formation. With such an extinction threshold, molecular clouds in metal-poor regions should have high surface densities and high internal pressures. If high pressure is associated with the formation of massive clusters, then metal-poor galaxies such as dwarfs in the early universe could have been the hosts of metal-poor globular clusters.

  20. EVIDENCE FOR ELEVATED X-RAY EMISSION IN LOCAL LYMAN BREAK GALAXY ANALOGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu-Zych, Antara R.; Lehmer, Bret D.; Hornschemeier, Ann E.

    2013-09-10

    Our knowledge of how X-ray emission scales with star formation at the earliest times in the universe relies on studies of very distant Lyman break galaxies (LBGs). In this paper, we study the relationship between the 2-10 keV X-ray luminosity (L{sub X}), assumed to originate from X-ray binaries (XRBs), and star formation rate (SFR) in ultraviolet (UV) selected z < 0.1 Lyman break analogs (LBAs). We present Chandra observations for four new Galaxy Evolution Explorer selected LBAs. Including previously studied LBAs, Haro 11 and VV 114, we find that LBAs demonstrate L{sub X}/SFR ratios that are elevated by {approx}1.5{sigma} comparedmore » to local galaxies, similar to the ratios found for stacked LBGs in the early universe (z > 2). Unlike some of the composite LBAs studied previously, we show that these LBAs are unlikely to harbor active galactic nuclei, based on their optical and X-ray spectra and the spatial distribution of the X-rays in three spatially extended cases. Instead, we expect that high-mass X-ray binaries (HMXBs) dominate the X-ray emission in these galaxies, based on their high specific SFRs (sSFRs {identical_to} SFR/M{sub *} {>=} 10{sup -9} yr{sup -1}), which suggest the prevalence of young stellar populations. Since both UV-selected populations (LBGs and LBAs) have lower dust attenuations and metallicities compared to similar samples of more typical local galaxies, we investigate the effects of dust extinction and metallicity on the L{sub X}/SFR for the broader population of galaxies with high sSFRs (>10{sup -10} yr{sup -1}). The estimated dust extinctions (corresponding to column densities of N{sub H} < 10{sup 22} cm{sup -2}) are expected to have insignificant effects on observed L{sub X}/SFR ratio for the majority of galaxy samples. We find that the observed relationship between L{sub X}/SFR and metallicity appears consistent with theoretical expectations from XRB population synthesis models. Therefore, we conclude that lower metallicities, related to more luminous HMXBs such as ultraluminous X-ray sources, drive the elevated L{sub X}/SFR observed in our sample of z < 0.1 LBAs. The relatively metal-poor, active mode of star formation in LBAs and distant z > 2 LBGs may yield higher total HMXB luminosity than found in typical galaxies in the local universe.« less

  1. The C and N abundances in disk stars

    NASA Astrophysics Data System (ADS)

    Shi, J. R.; Zhao, G.; Chen, Y. Q.

    2002-01-01

    Abundance analysis of carbon and nitrogen has been performed for a sample of 90 F and G type main-sequence disk stars with a metallicity range of -1.0 < [Fe/H] <+0.2 using the \\ion{C} i and N I lines. We confirm a moderate carbon excess in the most metal-poor disk dwarfs found in previous investigations. Our results suggest that carbon is enriched by superwinds of metal-rich massive stars at the beginning of the disk evolution, while a significant amount of carbon is contributed by low-mass stars in the late stage. The observed behavior of [N/Fe] is about solar in the disk stars, irrespective of the metallicity. This result suggests that nitrogen is produced mostly by intermediate-mass stars. Based on observations carried out at National Astrono- mical Observatories (Xinglong, China).

  2. Neutron-capture Nucleosynthesis in the First Stars

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Sneden, Christopher

    2014-04-01

    Recent studies suggest that metal-poor stars enhanced in carbon but containing low levels of neutron-capture elements may have been among the first to incorporate the nucleosynthesis products of the first generation of stars. We have observed 16 stars with enhanced carbon or nitrogen using the MIKE Spectrograph on the Magellan Telescopes at Las Campanas Observatory and the Tull Spectrograph on the Smith Telescope at McDonald Observatory. We present radial velocities, stellar parameters, and detailed abundance patterns for these stars. Strontium, yttrium, zirconium, barium, europium, ytterbium, and other heavy elements are detected. In four stars, these heavy elements appear to have originated in some form of r-process nucleosynthesis. In one star, a partial s-process origin is possible. The origin of the heavy elements in the rest of the sample cannot be determined unambiguously. The presence of elements heavier than the iron group offers further evidence that zero-metallicity rapidly rotating massive stars and pair instability supernovae did not contribute substantial amounts of neutron-capture elements to the regions where the stars in our sample formed. If the carbon- or nitrogen-enhanced metal-poor stars with low levels of neutron-capture elements were enriched by products of zero-metallicity supernovae only, then the presence of these heavy elements indicates that at least one form of neutron-capture reaction operated in some of the first stars. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, and The McDonald Observatory of The University of Texas at Austin.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokovinin, Andrei, E-mail: atokovinin@ctio.noao.edu

    Seven spectroscopic orbits in nearby solar-type multiple stars are presented. The primary of the chromospherically active star HIP 9642 is a 4.8 day double-lined pair; the outer 420 year visual orbit is updated, but remains poorly constrained. HIP 12780 is a quadruple system consisting of the resolved 6.7 year pair FIN 379 Aa,Ab, for which the combined orbit, masses, and orbital parallax are determined here, and the single-lined binary Ba,Bb with a period of 27.8 days. HIP 28790 is a young quintuple system composed of two close binaries, Aa,Ab and Ba,Bb, with periods of 221 and 13 days, respectively, and a singlemore » distant component C. Its subsystem Ba,Bb is peculiar, having a spectroscopic mass ratio of 0.89 but a magnitude difference of ∼2.2 mag. HIP 64478 also contains five stars: the A-component is a 29 year visual pair with a previously known 4 day twin subsystem, while the B-component is a contact binary with a period of 5.8 hr, seen nearly pole-on.« less

  4. Predicting the Presence of Companions for Stripped-envelope Supernovae: The Case of the Broad-lined Type Ic SN 2002ap

    NASA Astrophysics Data System (ADS)

    Zapartas, E.; de Mink, S. E.; Van Dyk, S. D.; Fox, O. D.; Smith, N.; Bostroem, K. A.; de Koter, A.; Filippenko, A. V.; Izzard, R. G.; Kelly, P. L.; Neijssel, C. J.; Renzo, M.; Ryder, S.

    2017-06-01

    Many young, massive stars are found in close binaries. Using population synthesis simulations we predict the likelihood of a companion star being present when these massive stars end their lives as core-collapse supernovae (SNe). We focus on stripped-envelope SNe, whose progenitors have lost their outer hydrogen and possibly helium layers before explosion. We use these results to interpret new Hubble Space Telescope observations of the site of the broad-lined Type Ic SN 2002ap, 14 years post-explosion. For a subsolar metallicity consistent with SN 2002ap, we expect a main-sequence (MS) companion present in about two thirds of all stripped-envelope SNe and a compact companion (likely a stripped helium star or a white dwarf/neutron star/black hole) in about 5% of cases. About a quarter of progenitors are single at explosion (originating from initially single stars, mergers, or disrupted systems). All of the latter scenarios require a massive progenitor, inconsistent with earlier studies of SN 2002ap. Our new, deeper upper limits exclude the presence of an MS companion star >8-10 {M}⊙ , ruling out about 40% of all stripped-envelope SN channels. The most likely scenario for SN 2002ap includes nonconservative binary interaction of a primary star initially ≲ 23 {M}⊙ . Although unlikely (<1% of the scenarios), we also discuss the possibility of an exotic reverse merger channel for broad-lined Type Ic events. Finally, we explore how our results depend on the metallicity and the model assumptions and discuss how additional searches for companions can constrain the physics that govern the evolution of SN progenitors.

  5. Improved Co I log(gf) & hfs data and Abundance Determinations in the Photospheres of the Sun & Metal-poor Star HD 84937

    NASA Astrophysics Data System (ADS)

    Lawler, James E.; Sneden, Chris; Cowan, John J.

    2016-01-01

    New emission branching fraction measurements for 898 lines of the first spectrum of cobalt (Co I) from hollow cathode lamp spectra recorded with a 1m Fourier transform spectrometer (FTS) and a high resolution echelle spectrometer are reported. Radiative lifetimes from laser induced fluorescence measurements are combined with the branching fractions to determine accurate log(gf)s for the 898 lines. Selected published hyperfine structure (hfs) constants for levels of neutral Co are used to generate complete hfs component patterns for 195 transitions of Co I. These new laboratory data are applied to determine the Co abundance in the Sun and metal-poor star HD 84937, yielding log eps(Co) = 4.955 ± 0.007 (sigma = 0.059) based on 82 Co I lines and log eps(Co) = 2.785 ± 0.008 (sigma = 0.065) based on 66 Co I lines respectively. A Saha balance test on the photosphere of HD 84937 is performed using 16 UV lines of Co II, and good agreement is found with the Co I result in this metal-poor ([Fe I /H] = -2.32, [Fe II /H] = -2.32) dwarf star. The resulting value of [Co/Fe] = +0.14 supports a rise of Co/Fe at low metallicity that has been suggested in other studies. These new Co I data are part of a continuing effort to explore the limits of 1D/LTE photospheric models in metal-poor stars and to determine the relative abundance of Fe-group elements at low metallicity. This work is supported in part by NASA grant NNX10AN93G (J.E.L.), by NSF grant AST-1211055 (J.E.L.), and by NSF grant AST-1211585 (C.S.).

  6. The Universality of the Rapid Neutron-capture Process Revealed by a Possible Disrupted Dwarf Galaxy Star

    NASA Astrophysics Data System (ADS)

    Casey, Andrew R.; Schlaufman, Kevin C.

    2017-12-01

    The rapid neutron-capture or r-process is thought to produce the majority of the heavy elements (Z> 30) in extremely metal-poor stars. The same process is also responsible for a significant fraction of the heavy elements in the Sun. This universality of the r-process is one of its characteristic features, as well as one of the most important clues to its astrophysical origin. We report the discovery of an extremely metal-poor field giant with [{Sr},{Ba}/{{H}}]≈ -6.0 and [{Sr},{Ba}/{Fe}]≈ -3.0, the lowest abundances of strontium and barium relative to iron ever observed. Despite its low abundances, the star 2MASS J151113.24-213003.0 has [{Sr}/{Ba}]=-0.11+/- 0.14, therefore its neutron-capture abundances are consistent with the main solar r-process pattern that has [{Sr}/{Ba}]=-0.25. It has been suggested that extremely low neutron-capture abundances are a characteristic of dwarf galaxies, and we find that this star is on a highly eccentric orbit with an apocenter ≳100 kpc that lies in the disk of satellites in the halo of the Milky Way. We show that other extremely metal-poor stars with low [Sr, Ba/H] and [Sr, Ba/Fe] plus solar [Sr/Ba] tend to have orbits with large apocenters, consistent with a dwarf galaxy origin for this class of object. The nucleosynthesis event that produced the neutron-capture elements in 2MASS J151113.24-213003.0 must produce both strontium and barium together in the solar ratio. We exclude contributions from the s-process in intermediate-mass asymptotic giant branch or fast-rotating massive metal-poor stars, pair-instability supernovae, the weak r-process, and neutron-star mergers. We argue that the event was a Pop III or extreme Pop II core-collapse supernova explosion. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  7. The Initial Mass Function of the First Stars Inferred from Extremely Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Ishigaki, Miho N.; Tominaga, Nozomu; Kobayashi, Chiaki; Nomoto, Ken’ichi

    2018-04-01

    We compare the elemental abundance patterns of ∼200 extremely metal-poor (EMP; [Fe/H] < ‑3) stars to the supernova yields of metal-free stars, in order to obtain insights into the characteristic masses of the first (Population III or Pop III) stars in the universe. The supernova yields are prepared with nucleosynthesis calculations of metal-free stars with various initial masses (M = 13, 15, 25, 40 and 100 M ⊙) and explosion energies (E 51 = E/1051[erg] = 0.5–60), to include low-energy, normal-energy, and high-energy explosions. We adopt the mixing-fallback model, to take into account possible asymmetry in the supernova explosions, and the yields that best fit the observed abundance patterns of the EMP stars are searched by varying the model parameters. We find that the abundance patterns of the EMP stars are predominantly best-fitted by the supernova yields with initial masses M < 40 M ⊙, and that more than than half of the stars are best-fitted by the M = 25 M ⊙ hypernova (E 51 = 10) models. The results also indicate that the majority of the primordial supernovae have ejected 10‑2–10‑1 M ⊙ of 56Ni, leaving behind a compact remnant (either a neutron star or a black hole), with a mass in the range of ∼1.5–5 M ⊙. These results suggest that the masses of the first stars responsible for the first metal enrichment are predominantly <40 M ⊙. This implies that the higher-mass first stars were either less abundant, directly collapsed into a black hole without ejecting heavy elements, or a supernova explosion of a higher-mass first star inhibits the formation of the next generation of low-mass stars at [Fe/H] < ‑3.

  8. The occurrence of binary evolution pulsators in classical instability strip of RR Lyrae and Cepheid variables

    NASA Astrophysics Data System (ADS)

    Karczmarek, P.; Wiktorowicz, G.; Iłkiewicz, K.; Smolec, R.; Stępień, K.; Pietrzyński, G.; Gieren, W.; Belczynski, K.

    2017-04-01

    Single star evolution does not allow extremely low-mass stars to cross the classical instability strip (IS) during the Hubble time. However, within binary evolution framework low-mass stars can appear inside the IS once the mass transfer (MT) is taken into account. Triggered by a discovery of low-mass (0.26 M⊙) RR Lyrae-like variable in a binary system, OGLE-BLG-RRLYR-02792, we investigate the occurrence of similar binary components in the IS, which set up a new class of low-mass pulsators. They are referred to as binary evolution pulsators (BEPs) to underline the interaction between components, which is crucial for substantial mass-loss prior to the IS entrance. We simulate a population of 500 000 metal-rich binaries and report that 28 143 components of binary systems experience severe MT (losing up to 90 per cent of mass), followed by at least one IS crossing in luminosity range of RR Lyrae (RRL) or Cepheid variables. A half of these systems enter the IS before the age of 4 Gyr. BEPs display a variety of physical and orbital parameters, with the most important being the BEP mass in range 0.2-0.8 M⊙, and the orbital period in range 10-2 500 d. Based on the light curve only, BEPs can be misclassified as genuine classical pulsators, and as such they would contaminate genuine RRL and classical Cepheid variables at levels of 0.8 and 5 per cent, respectively. We state that the majority of BEPs will remain undetected and we discuss relevant detection limitations.

  9. LAMOST telescope reveals that Neptunian cousins of hot Jupiters are mostly single offspring of stars that are rich in heavy elements.

    PubMed

    Dong, Subo; Xie, Ji-Wei; Zhou, Ji-Lin; Zheng, Zheng; Luo, Ali

    2018-01-09

    We discover a population of short-period, Neptune-size planets sharing key similarities with hot Jupiters: both populations are preferentially hosted by metal-rich stars, and both are preferentially found in Kepler systems with single-transiting planets. We use accurate Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Data Release 4 (DR4) stellar parameters for main-sequence stars to study the distributions of short-period [Formula: see text] Kepler planets as a function of host star metallicity. The radius distribution of planets around metal-rich stars is more "puffed up" compared with that around metal-poor hosts. In two period-radius regimes, planets preferentially reside around metal-rich stars, while there are hardly any planets around metal-poor stars. One is the well-known hot Jupiters, and the other one is a population of Neptune-size planets ([Formula: see text]), dubbed "Hoptunes." Also like hot Jupiters, Hoptunes occur more frequently in systems with single-transiting planets although the fraction of Hoptunes occurring in multiples is larger than that of hot Jupiters. About [Formula: see text] of solar-type stars host Hoptunes, and the frequencies of Hoptunes and hot Jupiters increase with consistent trends as a function of [Fe/H]. In the planet radius distribution, hot Jupiters and Hoptunes are separated by a "valley" at approximately Saturn size (in the range of [Formula: see text]), and this "hot-Saturn valley" represents approximately an order-of-magnitude decrease in planet frequency compared with hot Jupiters and Hoptunes. The empirical "kinship" between Hoptunes and hot Jupiters suggests likely common processes (migration and/or formation) responsible for their existence.

  10. LAMOST telescope reveals that Neptunian cousins of hot Jupiters are mostly single offspring of stars that are rich in heavy elements

    NASA Astrophysics Data System (ADS)

    Dong, Subo; Xie, Ji-Wei; Zhou, Ji-Lin; Zheng, Zheng; Luo, Ali

    2018-01-01

    We discover a population of short-period, Neptune-size planets sharing key similarities with hot Jupiters: both populations are preferentially hosted by metal-rich stars, and both are preferentially found in Kepler systems with single-transiting planets. We use accurate Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Data Release 4 (DR4) stellar parameters for main-sequence stars to study the distributions of short-period 1d

  11. The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150Msolar stellar mass limit

    NASA Astrophysics Data System (ADS)

    Crowther, Paul A.; Schnurr, Olivier; Hirschi, Raphael; Yusof, Norhasliza; Parker, Richard J.; Goodwin, Simon P.; Kassim, Hasan Abu

    2010-10-01

    Spectroscopic analyses of hydrogen-rich WN5-6 stars within the young star clusters NGC3603 and R136 are presented, using archival Hubble Space Telescope and Very Large Telescope spectroscopy, and high spatial resolution near-IR photometry, including Multi-Conjugate Adaptive Optics Demonstrator (MAD) imaging of R136. We derive high stellar temperatures for the WN stars in NGC3603 (T* ~ 42 +/- 2kK) and R136 (T* ~ 53 +/- 3kK) plus clumping-corrected mass-loss rates of 2-5 × 10-5Msolaryr-1 which closely agree with theoretical predictions from Vink et al. These stars make a disproportionate contribution to the global ionizing and mechanical wind power budget of their host clusters. Indeed, R136a1 alone supplies ~7 per cent of the ionizing flux of the entire 30Doradus region. Comparisons with stellar models calculated for the main-sequence evolution of 85-500Msolar accounting for rotation suggest ages of ~1.5Myr and initial masses in the range 105-170Msolar for three systems in NGC3603, plus 165-320Msolar for four stars in R136. Our high stellar masses are supported by consistent spectroscopic and dynamical mass determinations for the components of NGC3603A1. We consider the predicted X-ray luminosity of the R136 stars if they were close, colliding wind binaries. R136c is consistent with a colliding wind binary system. However, short period, colliding wind systems are excluded for R136a WN stars if mass ratios are of order unity. Widely separated systems would have been expected to harden owing to early dynamical encounters with other massive stars within such a high-density environment. From simulated star clusters, whose constituents are randomly sampled from the Kroupa initial mass function, both NGC3603 and R136 are consistent with an tentative upper mass limit of ~300Msolar. The Arches cluster is either too old to be used to diagnose the upper mass limit, exhibits a deficiency of very massive stars, or more likely stellar masses have been underestimated - initial masses for the most luminous stars in the Arches cluster approach 200Msolar according to contemporary stellar and photometric results. The potential for stars greatly exceeding 150Msolar within metal-poor galaxies suggests that such pair-instability supernovae could occur within the local universe, as has been claimed for SN2007bi.

  12. Chemical Abundance Analysis of Three α-poor, Metal-poor Stars in the Ultrafaint Dwarf Galaxy Horologium I

    NASA Astrophysics Data System (ADS)

    Nagasawa, D. Q.; Marshall, J. L.; Li, T. S.; Hansen, T. T.; Simon, J. D.; Bernstein, R. A.; Balbinot, E.; Drlica-Wagner, A.; Pace, A. B.; Strigari, L. E.; Pellegrino, C. M.; DePoy, D. L.; Suntzeff, N. B.; Bechtol, K.; Walker, A. R.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; Davis, C.; Desai, S.; Doel, P.; Eifler, T. F.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Hartley, W. G.; Honscheid, K.; James, D. J.; Jeltema, T.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; March, M.; Miquel, R.; Nord, B.; Roodman, A.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D. L.; Wechsler, R. H.; Wolf, R. C.; Yanny, B.

    2018-01-01

    We present chemical abundance measurements of three stars in the ultrafaint dwarf galaxy Horologium I, a Milky Way satellite discovered by the Dark Energy Survey. Using high-resolution spectroscopic observations, we measure the metallicity of the three stars, as well as abundance ratios of several α-elements, iron-peak elements, and neutron-capture elements. The abundance pattern is relatively consistent among all three stars, which have a low average metallicity of [Fe/H] ∼ ‑2.6 and are not α-enhanced ([α/Fe] ∼ 0.0). This result is unexpected when compared to other low-metallicity stars in the Galactic halo and other ultrafaint dwarfs and suggests the possibility of a different mechanism for the enrichment of Hor I compared to other satellites. We discuss possible scenarios that could lead to this observed nucleosynthetic signature, including extended star formation, enrichment by a Population III supernova, and or an association with the Large Magellanic Cloud. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. This paper also includes data based on observations made with the ESO Very Large Telescope at Paranal Observatory, Chile (ID 096.D-0967(B); PI: E. Balbinot).

  13. First light - II. Emission line extinction, population III stars, and X-ray binaries

    NASA Astrophysics Data System (ADS)

    Barrow, Kirk S. S.; Wise, John H.; Aykutalp, Aycin; O'Shea, Brian W.; Norman, Michael L.; Xu, Hao

    2018-02-01

    We produce synthetic spectra and observations for metal-free stellar populations and high-mass X-ray binaries in the Renaissance Simulations at a redshift of 15. We extend our methodology from the first paper in the series by modelling the production and extinction of emission lines throughout a dusty and metal-enriched interstellar and circum-galactic media extracted from the simulation, using a Monte Carlo calculation. To capture the impact of high-energy photons, we include all frequencies from hard X-ray to far-infrared with enough frequency resolution to discern line emission and absorption profiles. The most common lines in our sample in order of their rate of occurrence are Ly α, the C IV λλ1548, 1551 doublet, H α, and the Ca II λλλ8498, 8542, 8662 triplet. The best scenario for a direct observation of a metal-free stellar population is a merger between two Population III Galaxies. In mergers between metal-enriched and metal-free stellar populations, some characteristics may be inferred indirectly. Single Population III galaxies are too dim to be observed photometrically at z = 15. Ly α emission is discernible by JWST as an increase in J200w - J277w colour off the intrinsic stellar tracks. Observations of metal-free stars will be difficult, though not impossible, with the next generation of space telescopes.

  14. First Light II: Emission Line Extinction, Population III Stars, and X-ray Binaries

    DOE PAGES

    Barrow, Kirk S. S.; Wise, John H.; Aykutalp, Aycin; ...

    2017-11-17

    Here, we produce synthetic spectra and observations for metal-free stellar populations and high-mass X-ray binaries in the Renaissance Simulations at a redshift of 15. We extend our methodology from the first paper in the series by modelling the production and extinction of emission lines throughout a dusty and metal-enriched interstellar and circum-galactic media extracted from the simulation, using a Monte Carlo calculation. To capture the impact of high-energy photons, we include all frequencies from hard X-ray to far-infrared with enough frequency resolution to discern line emission and absorption profiles. The most common lines in our sample in order of theirmore » rate of occurrence are Ly α, the C iv λλ1548, 1551 doublet, H α, and the Ca ii λλλ8498, 8542, 8662 triplet. The best scenario for a direct observation of a metal-free stellar population is a merger between two Population III Galaxies. In mergers between metal-enriched and metal-free stellar populations, some characteristics may be inferred indirectly. Single Population III galaxies are too dim to be observed photometrically at z = 15. Ly α emission is discernible by JWST as an increase in J200w – J277w colour off the intrinsic stellar tracks. Observations of metal-free stars will be difficult, though not impossible, with the next generation of space telescopes.« less

  15. First Light II: Emission Line Extinction, Population III Stars, and X-ray Binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrow, Kirk S. S.; Wise, John H.; Aykutalp, Aycin

    Here, we produce synthetic spectra and observations for metal-free stellar populations and high-mass X-ray binaries in the Renaissance Simulations at a redshift of 15. We extend our methodology from the first paper in the series by modelling the production and extinction of emission lines throughout a dusty and metal-enriched interstellar and circum-galactic media extracted from the simulation, using a Monte Carlo calculation. To capture the impact of high-energy photons, we include all frequencies from hard X-ray to far-infrared with enough frequency resolution to discern line emission and absorption profiles. The most common lines in our sample in order of theirmore » rate of occurrence are Ly α, the C iv λλ1548, 1551 doublet, H α, and the Ca ii λλλ8498, 8542, 8662 triplet. The best scenario for a direct observation of a metal-free stellar population is a merger between two Population III Galaxies. In mergers between metal-enriched and metal-free stellar populations, some characteristics may be inferred indirectly. Single Population III galaxies are too dim to be observed photometrically at z = 15. Ly α emission is discernible by JWST as an increase in J200w – J277w colour off the intrinsic stellar tracks. Observations of metal-free stars will be difficult, though not impossible, with the next generation of space telescopes.« less

  16. Deep Imaging of Extremely Metal-Poor Galaxies

    NASA Astrophysics Data System (ADS)

    Corbin, Michael

    2006-07-01

    Conflicting evidence exists regarding whether the most metal-poor and actively star-forming galaxies in the local universe such as I Zw 18 contain evolved stars. We propose to help settle this issue by obtaining deep ACS/HRC U, narrow-V, I, and H-alpha images of nine nearby {z < 0.01} extremely metal-poor {12 + O/H < 7.65} galaxies selected from the Sloan Digital Sky Survey. These objects are only marginally resolved from the ground and appear uniformly blue, strongly motivating HST imaging. The continuum images will establish: 1.} If underlying populations of evolved stars are present, by revealing the objects' colors on scales 10 pc, and 2.} The presence of any faint tidal features, dust lanes, and globular or super star clusters, all of which constrain the objects' evolutionary states. The H-alpha images, in combination with ground-based echelle spectroscopy, will reveal 1.} Whether the objects are producing "superwinds" that are depleting them of their metals; ground-based images of some of them indeed show large halos of ionized gas, and 2.} The correspondence of their nebular and stellar emission on scales of a few parsecs, which is important for understanding the "feedback" process by which supernovae and stellar winds regulate star formation. One of the sample objects, CGCG 269-049, lies only 2 Mpc away, allowing the detection of individual red giant stars in it if any are present. We have recently obtained Spitzer images and spectra of this galaxy to determine its dust content and star formation history, which will complement the proposed HST observations. [NOTE: THIS PROPOSAL WAS REDUCED TO FIVE ORBITS, AND ONLY ONE OF THE ORIGINAL TARGETS, CGCG 269-049, AFTER THE PHASE I REVIEW

  17. Local anticorrelation between star formation rate and gas-phase metallicity in disc galaxies

    NASA Astrophysics Data System (ADS)

    Sánchez Almeida, J.; Caon, N.; Muñoz-Tuñón, C.; Filho, M.; Cerviño, M.

    2018-06-01

    Using a representative sample of 14 star-forming dwarf galaxies in the local Universe, we show the existence of a spaxel-to-spaxel anticorrelation between the index N2 ≡ log ([N II]λ 6583/H α ) and the H α flux. These two quantities are commonly employed as proxies for gas-phase metallicity and star formation rate (SFR), respectively. Thus, the observed N2 to H α relation may reflect the existence of an anticorrelation between the metallicity of the gas forming stars and the SFR it induces. Such an anticorrelation is to be expected if variable external metal-poor gas fuels the star-formation process. Alternatively, it can result from the contamination of the star-forming gas by stellar winds and SNe, provided that intense outflows drive most of the metals out of the star-forming regions. We also explore the possibility that the observed anticorrelation is due to variations in the physical conditions of the emitting gas, other than metallicity. Using alternative methods to compute metallicity, as well as previous observations of H II regions and photoionization models, we conclude that this possibility is unlikely. The radial gradient of metallicity characterizing disc galaxies does not produce the correlation either.

  18. Subdwarf B Stars: Tracers Of Binary Evolution

    NASA Astrophysics Data System (ADS)

    Morales-Rueda, L.; Maxted, P. F. L.; Marsh, T. R.

    2007-08-01

    Subdwarf B stars are a superb stellar population to study binary evolution. In 2001, Maxted et al. (MNRAS, 326, 1391) found that 21 out of the 36 subdwarf B stars they studied were in short period binaries. These observations inspired new theoretical work that suggests that up to 90 per cent of subdwarf B stars are in binary systems with the remaining apparently single stars being the product of merging pairs. This high binary fraction added to the fact that they are detached binaries that have not changed significantly since they came out of the common envelope, make subdwarf B stars a perfect population to study binary evolution. By comparing the observed orbital period distribution of subdwarf B stars with that obtained from population synthesis calculations we can determine fundamental parameters of binary evolution such as the common envelope ejection efficiency. Here we give an overview of the fraction of short period binaries found from different surveys as well as the most up to date orbital period distribution determined observationally. We also present results from a recent search for subdwarf B stars in long period binaries.

  19. Introduction

    NASA Astrophysics Data System (ADS)

    Kirby, Evan N.

    2018-06-01

    Dwarf galaxies are excellent laboratories of chemical evolution. Many dwarf galaxies have simple star formation histories with very low average star formation rates. These conditions simplify models of chemical evolution and facilitate the identification of sites of nucleosynthesis. Dwarf galaxies also host extremely metal-poor stars, which sample the ejecta of the first generations of supernovae in the universe. This meeting-in-a-meeting, "Stellar Abundances in Dwarf Galasxies," will recognize the importance of dwarf galaxies in learning about the creation and evolution of the elements. Topics include: * the most metal-poor stars * the connection between dwarf galaxies and the Milky Way halo * dwarf galaxies as the paragons of r-process nucleosynthesis * modern techniques in stellar abundance measurements * recent advances in chemical evolution modelingI will give a very brief introduction to set the stage for the meeting.

  20. Terrestrial Planet Formation in Binary Star Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Quintana, Elisa V.; Chambers, John; Duncan, Martin J.; Adams, Fred

    2003-01-01

    Most stars reside in multiple star systems; however, virtually all models of planetary growth have assumed an isolated single star. Numerical simulations of the collapse of molecular cloud cores to form binary stars suggest that disks will form within such systems. Observations indirectly suggest disk material around one or both components within young binary star systems. If planets form at the right places within such circumstellar disks, they can remain in stable orbits within the binary star systems for eons. We are simulating the late stages of growth of terrestrial planets within binary star systems, using a new, ultrafast, symplectic integrator that we have developed for this purpose. We show that the late stages of terrestrial planet formation can indeed take place in a wide variety of binary systems and we have begun to delineate the range of parameter space for which this statement is true. Results of our initial simulations of planetary growth around each star in the alpha Centauri system and other 'wide' binary systems, as well as around both stars in very close binary systems, will be presented.

  1. Metallicities and Nucleosynthesis Patterns in Early Generation Halo Stars

    NASA Astrophysics Data System (ADS)

    Beers, T.

    2004-05-01

    I review our present knowledge of the Metallicity Distribution Function of stars in the low-metallicity tail of the halo population of the Galaxy, and the variety of observed elemental signatures that might be associated with particular astrophysical origins in the early Universe. Such signatures include stars that exhibit (a) highly and mildly enhanced r-process element ratios, as compared to the solar ratios, (b) highly s-process enriched stars, (c) stars showing large enrichments of both the r- and and s-process elements, and (d) stars that are greatly enhanced in the light element species, such as CNO, and (in some cases) the alpha elements. Because the stars in which these characteristics are observed all have metallicity [Fe/H] ≤ -2.5, they are inferred to have formed no more than 0.5-1 Gyrs after the Big Bang, prior to the final assemblage of the Milky Way. As such, they provide our best available probes of the nature of early element producers, such as Type II SN and hypernovae, as well as binaries that included (now deceased) stars of intermediate (1.5 - 3 Mo) masses. I outline ongoing and future plans for dramatically accelerating the pace of discovery of these rare, but clearly important, objects. Partial support for this work has been received from NSF grants AST 00-98508 and AST 00-98549, and from JINA, the Joint Institute for Nuclear Astrophysics, an NSF Physics Frontier Center.

  2. The Evolution and Physical Parameters of WN3/O3s: A New Type of Wolf-Rayet Star

    NASA Astrophysics Data System (ADS)

    Neugent, Kathryn F.; Massey, Philip; Hillier, D. John; Morrell, Nidia

    2017-05-01

    As part of a search for Wolf-Rayet (WR) stars in the Magellanic Clouds, we have discovered a new type of WR star in the Large Magellanic Cloud (LMC). These stars have both strong emission lines, as well as He II and Balmer absorption lines and spectroscopically resemble a WN3 and O3V binary pair. However, they are visually too faint to be WN3+O3V binary systems. We have found nine of these WN3/O3s, making up ˜6% of the population of LMC WRs. Using cmfgen, we have successfully modeled their spectra as single stars and have compared the physical parameters with those of more typical LMC WNs. Their temperatures are around 100,000 K, a bit hotter than the majority of WN stars (by around 10,000 K), though a few hotter WNs are known. The abundances are what you would expect for CNO equilibrium. However, most anomalous are their mass-loss rates, which are more like that of an O-type star than a WN star. While their evolutionary status is uncertain, their low mass-loss rates and wind velocities suggest that they are not products of homogeneous evolution. It is possible instead that these stars represent an intermediate stage between O stars and WNs. Since WN3/O3 stars are unknown in the Milky Way, we suspect that their formation depends upon metallicity, and we are investigating this further by a deep survey in M33, which possesses a metallicity gradient. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. It is additionally based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations were associated with program GO-13780.

  3. An extremely primitive star in the Galactic halo.

    PubMed

    Caffau, Elisabetta; Bonifacio, Piercarlo; François, Patrick; Sbordone, Luca; Monaco, Lorenzo; Spite, Monique; Spite, François; Ludwig, Hans-G; Cayrel, Roger; Zaggia, Simone; Hammer, François; Randich, Sofia; Molaro, Paolo; Hill, Vanessa

    2011-08-31

    The early Universe had a chemical composition consisting of hydrogen, helium and traces of lithium; almost all other elements were subsequently created in stars and supernovae. The mass fraction of elements more massive than helium, Z, is known as 'metallicity'. A number of very metal-poor stars has been found, some of which have a low iron abundance but are rich in carbon, nitrogen and oxygen. For theoretical reasons and because of an observed absence of stars with Z < 1.5 × 10(-5), it has been suggested that low-mass stars cannot form from the primitive interstellar medium until it has been enriched above a critical value of Z, estimated to lie in the range 1.5 × 10(-8) to 1.5 × 10(-6) (ref. 8), although competing theories claiming the contrary do exist. (We use 'low-mass' here to mean a stellar mass of less than 0.8 solar masses, the stars that survive to the present day.) Here we report the chemical composition of a star in the Galactic halo with a very low Z (≤ 6.9 × 10(-7), which is 4.5 × 10(-5) times that of the Sun) and a chemical pattern typical of classical extremely metal-poor stars--that is, without enrichment of carbon, nitrogen and oxygen. This shows that low-mass stars can be formed at very low metallicity, that is, below the critical value of Z. Lithium is not detected, suggesting a low-metallicity extension of the previously observed trend in lithium depletion. Such lithium depletion implies that the stellar material must have experienced temperatures above two million kelvin in its history, given that this is necessary to destroy lithium.

  4. High-resolution Spectroscopy of Extremely Metal-poor Stars from SDSS/SEGUE. III. Unevolved Stars with [Fe/H] ≲ -3.5

    NASA Astrophysics Data System (ADS)

    Matsuno, Tadafumi; Aoki, Wako; Beers, Timothy C.; Lee, Young Sun; Honda, Satoshi

    2017-08-01

    We present elemental abundances for eight unevolved extremely metal-poor (EMP) stars with {T}{eff}> 5500 {{K}}, among which seven have [{Fe}/{{H}}]< -3.5. The sample is selected from the Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding and Exploration (SDSS/SEGUE) and our previous high-resolution spectroscopic follow-up with the Subaru Telescope. Several methods to derive stellar parameters are compared, and no significant offset in the derived parameters is found in most cases. From an abundance analysis relative to the standard EMP star G64-12, an average Li abundance for stars with [{Fe}/{{H}}]< -3.5 is A({Li})=1.90, with a standard deviation of σ =0.10 dex. This result confirms that lower Li abundances are found at lower metallicity, as suggested by previous studies, and demonstrates that the star-to-star scatter is small. The small observed scatter could be a strong constraint on Li-depletion mechanisms proposed for explaining the low Li abundance at lower metallicity. Our analysis for other elements obtained the following results: (I) a statistically significant scatter in [{{X}}/{Fe}] for Na, Mg, Cr, Ti, Sr, and Ba, and an apparent bimodality in [{Na}/{Fe}] with a separation of ˜ 0.8 {dex}, (II) an absence of a sharp drop in the metallicity distribution, and (III) the existence of a CEMP-s star at [{Fe}/{{H}}]≃ -3.6 and possibly at [{Fe}/{{H}}]≃ -4.0, which may provide a constraint on the mixing efficiency of unevolved stars during their main-sequence phase. Based on data collected with the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  5. A chemical confirmation of the faint Boötes II dwarf spheroidal galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Andreas; Rich, R. Michael, E-mail: akoch@lsw.uni-heidelberg.de

    2014-10-10

    We present a chemical abundance study of the brightest confirmed member star of the ultra-faint dwarf galaxy Boötes II from Keck/HIRES high-resolution spectroscopy at moderate signal-to-noise ratios. At [Fe/H] = –2.93 ± 0.03(stat.) ± 0.17(sys.), this star chemically resembles metal-poor halo field stars and the signatures of other faint dwarf spheroidal galaxies at the same metallicities in that it shows enhanced [α/Fe] ratios, Solar Fe-peak element abundances, and low upper limits on the neutron-capture element Ba. Moreover, this star shows no chemical peculiarities in any of the eight elements we were able to measure. This implies that the chemical outliersmore » found in other systems remain outliers pertaining to the unusual enrichment histories of the respective environments, while Boo II appears to have experienced an enrichment history typical of its very low mass. We also re-calibrated previous measurements of the galaxy's metallicity from the calcium triplet (CaT) and find a much lower value than reported before. The resulting broad metallicity spread, in excess of one dex, the very metal-poor mean, and the chemical abundance patterns of the present star imply that Boötes II is a low-mass, old, metal-poor dwarf galaxy and not an overdensity associated with the Sagittarius Stream as has been previously suggested based on its sky position and kinematics. The low, mean CaT metallicity of –2.7 dex falls right on the luminosity-metallicity relation delineated over four orders of magnitude from the more luminous to the faintest galaxies. Thus Boötes II's chemical enrichment appears representative of the galaxy's original mass, while tidal stripping and other mass loss mechanisms were probably not significant as for other low-mass satellites.« less

  6. A Giant Planet Around a Metal-Poor Star of Extragalactic Origin

    NASA Astrophysics Data System (ADS)

    Setiawan, Johny; Klement, Rainer J.; Henning, Thomas; Rix, Hans-Walter; Rochau, Boyke; Rodmann, Jens; Schulze-Hartung, Tim

    2010-12-01

    Stars in their late stage of evolution, such as horizontal branch stars, are still largely unexplored for planets. We detected a planetary companion around HIP 13044, a very metal-poor star on the red horizontal branch, on the basis of radial velocity observations with a high-resolution spectrograph at the 2.2-meter Max-Planck Gesellschaft-European Southern Observatory telescope. The star’s periodic radial velocity variation of P = 16.2 days caused by the planet can be distinguished from the periods of the stellar activity indicators. The minimum mass of the planet is 1.25 times the mass of Jupiter and its orbital semimajor axis is 0.116 astronomical units. Because HIP 13044 belongs to a group of stars that have been accreted from a disrupted satellite galaxy of the Milky Way, the planet most likely has an extragalactic origin.

  7. VizieR Online Data Catalog: Abundances of bright metal-poor stars (Schlaufman+, 2014)

    NASA Astrophysics Data System (ADS)

    Schlaufman, K. C.; Casey, A. R.

    2016-11-01

    As input to our sample selection, we use the APASS DR6 Catalog, the 2MASS All-Sky Point Source Catalog, and the AllWISE Source Catalog (Henden+ 2012JAVSO..40..430H; Skrutskie+ 2006AJ....131.1163S; Wright+ 2010AJ....140.1868W; Mainzer+ 2011ApJ...731...53M). We followed up our metal-poor star candidates with the Mayall 4m/Echelle, Gemini South/GMOS-S, and Magellan/MIKE telescopes and spectrographs. We observed 98 stars with the Mayall 4m/Echelle on 2013 June 25-27. We observed 90 stars with Gemini South/GMOS-S in service mode from 2014 March to July (R~3700). We observed 416 stars with Magellan/MIKE on 2014 June 21-23 and July 8-10 (R~41000 in the blue and R~35000 in the red). (3 data files).

  8. A Planetary Companion around a Metal-Poor Star with Extragalactic Origin

    NASA Astrophysics Data System (ADS)

    Setiawan, Johny; Klement, Rainer; Henning, Thomas; Rix, Hans-Walter; Rochau, Boyke; Schulze-Hartung, Tim; Rodmann, Jens

    2011-03-01

    We report the detection of a planetary companion around HIP 13044, a metal-poor star on the red Horizontal Branch. The detection is based on radial velocity observations with FEROS, a high-resolution spectrograph at the 2.2-m MPG/ESO telescope, located at ESO La Silla observatory in Chile. The periodic radial velocity variation of P = 16.2 days can be distinguished from the periods of the stellar activity indicators. We computed a minimum planetary mass of 1.25 MJup and an orbital semi-major axis of 0.116 AU for the planet. This discovery is unique in three aspects: First, it is the first planet detection around a star with a metallicity much lower than few percent of the solar value; second, the planet host star resides in a stellar evolutionary stage that is still unexplored in the exoplanet surveys; third, the star HIP 13044 belongs to one of the most significant stellar halo streams in the solar neighborhood, implying an extragalactic origin of the planetary system HIP 13044 in a disrupted former satellite of the Milky Way.

  9. Synthetic Stromgren photometry for F dwarf stars

    NASA Technical Reports Server (NTRS)

    Bell, R. A.

    1988-01-01

    Recent synthetic spectrum and color calculations for cool dwarf star models are tested by comparison with observation. The accuracy of the computed dependence of the thermal colors B-V and b-y on effective temperature is examined, and H-beta indices are presented and compared with observed values. The accuracy of the predictions of the Stromgren uvby system metal-abundance indicator m1 and luminosity indicator c1 are tested. A new calibration of the c1, b-y diagram in terms of absolute magnitudes is given, making use of recent calculations of stellar isochrones. Observations of very metal-poor subdwarfs are used to study the accuracy of the isochrones. The c1, b-y diagram of the subdwarfs is compared with that of the turnoff-region stars in the very metal-poor globular cluster NGC 6397.

  10. Radio transients from newborn black holes

    NASA Astrophysics Data System (ADS)

    Kashiyama, Kazumi; Hotokezaka, Kenta; Murase, Kohta

    2018-05-01

    We consider radio emission from a newborn black hole (BH), which is accompanied by a mini-disk with a mass of ≲ M⊙. Such a disk can be formed from an outer edge of the progenitor's envelope, especially for metal-poor massive stars and/or massive stars in close binaries. The disk accretion rate is typically super-Eddington and an ultrafast outflow with a velocity of ˜0.1-0.3 c will be launched into the circumstellar medium. The outflow forms a collisionless shock, and electrons are accelerated and emit synchrotron emission in radio bands with a flux of ˜ 10^{26-30} erg s^{-1} Hz^{-1} days to decades after the BH formation. The model predicts not only a fast UV/optical transient but also quasi-simultaneous inverse-Compton X-ray emission ˜ a few days after the BH formation, and the discovery of the radio counterpart with coordinated searches will enable us to identify this type of transients. The occurrence rate can be 0.1 - 10 % of the core-collapse supernova rate, which makes them a promising target of dedicated radio observations such as the Jansky VLA Sky Survey.

  11. Multiple populations in more metal-rich galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Cordero, Maria J.

    In this thesis we present chemical abundances for bright stars in the intermediate metallicity globular cluster (GC) M5, and the relatively metal-rich GCs M71 and 47 Tuc with the goal of improving the understanding of chemical evolution in the metallicity regime sampled by these three GCs. The first chapter presents a brief historical overview in light element abundance variations in globular clusters. In the second chapter we present the results obtained for 47 Tuc, the most-metal rich cluster of my sample. 47 Tuc is an ideal target to study chemical evolution and GC formation in massive more metal-rich GCs since it is the closest massive GC. Chemical abundances for O, Na, Al, Si, Ca, Ti, Fe, Ni, La, and Eu were determined for 164 red giant branch (RGB) stars in 47 Tuc using spectra obtained with both the Hydra multi-fiber spectrograph at the Blanco 4-m telescope and the FLAMES multi-object spectrograph at the ESO Very Large Telescope. The average [Fe/H]= --0.79+/-0.09 dex is consistent with literature values, as well as over-abundances of alpha-elements ([alpha/Fe] ~ 0.3 dex). The n-capture process elements indicate that 47 Tuc is r-process dominated ([Eu/La]=+0.24), and the light elements O, Na, and Al exhibit star-to-star variations. The Na-O anti-correlation, a signature typically seen in Galactic GCs, is present in 47 Tuc, and extends to include a small number of stars with [O/Fe] ~ --0.5. Additionally, the [O/Na] ratios of our sample reveal that the cluster stars can be separated into three distinct populations. A KS-test demonstrates that the O-poor/Na-rich stars are more centrally concentrated than the O-rich/Na-poor stars. The observed number and radial distribution of 47 Tuc's stellar populations, as distinguished by their light element composition, agrees closely with the results obtained from photometric data. We do not find evidence supporting a strong Na-Al correlation in 47 Tuc, which is consistent with current models of AGB nucleosynthesis yields. Aluminum is the heaviest light element displaying large star-to-star variations in Galactic GCs. This element may provide additional insight into the origin of the multiple populations and the nature of the first-generation stars responsible for chemical inhomogeneities. We found that, unlike more metal-poor GCs, 47 Tuc did not exhibit a strong Na-Al correlation, which motivates a careful study of the similar metallicity but less massive GC M71. In chapter 3, we present chemical abundances of O, Na, Al, and Fe for 33 giants in M71 using spectra obtained with the WIYN-Hydra spectrograph. Our spectroscopic analysis finds that, similar to 47 Tuc and in contrast with more metal-poor GCs, M71 stars do not exhibit a strong Na-Al correlation and span a relatively narrow range in [Al/Fe]. Furthermore, these data suggest that only a small fraction of stars (29%) have an [Na/Fe] ratio similar to halo stars at this metallicity, which is a characteristic reproduced by GC formation and evolution models. In the fourth chapter we present chemical abundances for a sample of 61 red giants in the intermediate-metallicity GC M5. The data were obtained using the Hydra multi-fiber positioner and bench spectrograph on the WIYN telescope. We find that our abundance ratios for Na, Al, Si, Ca, Ti, Fe, Ni, La, and Eu agree with published values for this cluster. The scatter seen in Fe-peak, alpha, and neutron-capture elements is consistent with typical spectroscopic errors. However, we identified a star modestly enhanced in La by performing a careful comparison of stellar spectra with similar atmospheric parameters. La-enhanced stars are rare in GCs. For instance, we have found only one such star in each of M5 and 47 Tuc. M5 red giants exhibit a strong Na-Al correlation, which is absent in M71 and 47 Tuc. Furthermore, M5 is at the metallicity regime where GCs seem to transition from small to large [Al/Fe] scatter. Interestingly, this metallicity regime also separates metal-poor from metal-rich Galactic GCs. In the fifth chapter we present radial distributions, population fractions, detailed examination of behavior of Al in more metal-rich GCs in the context of cluster chemical evolution, and, finally, a kinematical study of the GC M13 using spectra acquired with the WIYN-Hydra spectrograph. We find a rotational signal and a kinematical difference between the intermediate and extreme generations. Specifically, we find that the extreme O-depleted population, which is also more centrally concentrated than the primordial and intermediate populations, has the highest rotational amplitude. (Abstract shortened by UMI.)

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, R. M.; Hankins, M. J.; Herter, T. L.

    Massive, evolved stars play a crucial role in the metal enrichment, dust budget, and energetics of the interstellar medium; however, the details of their evolution are uncertain because of their rarity and short lifetimes before exploding as supernovae. Discrepancies between theoretical predictions from single-star evolutionary models and observations of massive stars have evoked a shifting paradigm that implicates the importance of binary interaction. We present mid- to far-infrared observations from the Stratospheric Observatory for Infrared Astronomy of a conical “helix” of warm dust (∼180 K) that appears to extend from the Wolf–Rayet star WR102c. Our interpretation of the helix ismore » a precessing, collimated outflow that emerged from WR102c during a previous evolutionary phase as a rapidly rotating luminous blue variable. We attribute the precession of WR102c to gravitational interactions with an unseen compact binary companion whose orbital period can be constrained to 800 days < P < 1400 days from the inferred precession period, τ{sub p} ∼ 1.4 × 10{sup 4} yr, and limits imposed on the stellar and orbital parameters of the system. Our results concur with the range of orbital periods (P ≲ 1500 days) where spin-up via mass exchange is expected to occur for massive binary systems.« less

  13. A SURVEY OF THE HIGH ORDER MULTIPLICITY OF NEARBY SOLAR-TYPE BINARY STARS WITH Robo-AO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riddle, Reed L.; Bui, Khanh; Dekany, Richard G.

    2015-01-20

    We conducted a survey of nearby binary systems composed of main sequence stars of spectral types F and G in order to improve our understanding of the hierarchical nature of multiple star systems. Using Robo-AO, the first robotic adaptive optics instrument, we collected high angular resolution images with deep and well-defined detection limits in the Sloan Digital Sky Survey i' band. A total of 695 components belonging to 595 systems were observed. We prioritized observations of faint secondary components with separations over 10'' to quantify the still poorly constrained frequency of their subsystems. Of the 214 secondaries observed, 39 containmore » such subsystems; 19 of those were discovered with Robo-AO. The selection-corrected frequency of secondary subsystems with periods from 10{sup 3.5} to 10{sup 5} days is 0.12 ± 0.03, the same as the frequency of such companions to the primary. Half of the secondary pairs belong to quadruple systems where the primary is also a close pair, showing that the presence of subsystems in both components of the outer binary is correlated. The relatively large abundance of 2+2 quadruple systems is a new finding, and will require more exploration of the formation mechanism of multiple star systems. We also targeted close binaries with periods less than 100 yr, searching for their distant tertiary components, and discovered 17 certain and 2 potential new triples. In a subsample of 241 close binaries, 71 have additional outer companions. The overall frequency of tertiary components is not enhanced, compared to all (non-binary) targets, but in the range of outer periods from 10{sup 6} to 10{sup 7.5} days (separations on the order of 500 AU), the frequency of tertiary components is 0.16 ± 0.03, exceeding the frequency of similar systems among all targets (0.09) by almost a factor of two. Measurements of binary stars with Robo-AO allowed us to compute first orbits for 9 pairs and to improve orbits of another 11 pairs.« less

  14. The boron-to-beryllium ratio in halo stars - A signature of cosmic-ray nucleosynthesis in the early Galaxy

    NASA Technical Reports Server (NTRS)

    Walker, T. P.; Steigman, G.; Schramm, D. N.; Olive, K. A.; Fields, B.

    1993-01-01

    We discuss Galactic cosmic-ray (GCR) spallation production of Li, Be, and B in the early Galaxy with particular attention to the uncertainties in the predictions of this model. The observed correlation between the Be abundance and the metallicity in metal-poor Population II stars requires that Be was synthesized in the early Galaxy. We show that the observations and such Population II GCR synthesis of Be are quantitatively consistent with the big bang nucleosynthesis production of Li-7. We find that there is a nearly model independent lower bound to B/Be of about 7 for GCR synthesis. Recent measurements of B/Be about 10 in HD 140283 are in excellent agreement with the predictions of Population II GCR nucleosynthesis. Measurements of the boron abundance in additional metal-poor halo stars is a key diagnostic of the GCR spallation mechanism. We also show that Population II GCR synthesis can produce amounts of Li-6 which may be observed in the hottest halo stars.

  15. Abundance profiling of extremely metal-poor stars and supernova properties in the early universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tominaga, Nozomu; Iwamoto, Nobuyuki; Nomoto, Ken'ichi, E-mail: tominaga@konan-u.ac.jp, E-mail: iwamoto.nobuyuki@jaea.go.jp, E-mail: nomoto@astron.s.u-tokyo.ac.jp

    2014-04-20

    After the big bang nucleosynthesis, the first heavy element enrichment in the universe was made by a supernova (SN) explosion of a population (Pop) III star (Pop III SN). The abundance ratios of elements produced from Pop III SNe are recorded in abundance patterns of extremely metal-poor (EMP) stars. The observations of the increasing number of EMP stars have made it possible to statistically constrain the explosion properties of Pop III SNe. We present Pop III SN models whose nucleosynthesis yields well reproduce, individually, the abundance patterns of 48 such metal-poor stars as [Fe/H] ≲ – 3.5. We then derivemore » relations between the abundance ratios of EMP stars and certain explosion properties of Pop III SNe: the higher [(C + N)/Fe] and [(C + N)/Mg] ratios correspond to the smaller ejected Fe mass and the larger compact remnant mass, respectively. Using these relations, the distributions of the abundance ratios of EMP stars are converted to those of the explosion properties of Pop III SNe. Such distributions are compared with those of the explosion properties of present day SNe: the distribution of the ejected Fe mass of Pop III SNe has the same peak as that of the present day SNe but shows an extended tail down to ∼10{sup –2}-10{sup –5} M {sub ☉}, and the distribution of the mass of the compact remnant of Pop III SNe is as wide as that of the present-day, stellar-mass black holes. Our results demonstrate the importance of large samples of EMP stars obtained by ongoing and future EMP star surveys and subsequent high-dispersion spectroscopic observations in clarifying the nature of Pop III SNe in the early universe.« less

  16. The Evolutionary Status of WN3/O3 Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Neugent, Kathryn F.; Massey, Phil; Hillier, D. John; Morrell, Nidia I.

    2017-11-01

    As part of a multi-year survey for Wolf-Rayet stars in the Magellanic Clouds, we have discovered a new type of Wolf-Rayet star with both strong emission and absorption. While one might initially classify these stars as WN3+O3V binaries based on their spectra, such a pairing is unlikely given their faint visual magnitudes. Spectral modeling suggests effective temperatures and bolometric luminosities similar to those of other early-type LMC WNs but with mass-loss rates that are three to five times lower than expected. They additionally retain a significant amount of hydrogen, with nitrogen at its CNO-equilibrium value (10× enhanced). Their evolutionary status remains an open question. Here we discuss why these stars did not evolve through quasi-homogeneous evolution. Instead we suggest that based on a link with long-duration gamma ray bursts, they may form in lower metallicity environments. A new survey in M33, which has a large metallicity gradient, is underway.

  17. X-ray binary formation in low-metallicity blue compact dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Brorby, M.; Kaaret, P.; Prestwich, A.

    2014-07-01

    X-rays from binaries in small, metal-deficient galaxies may have contributed significantly to the heating and reionization of the early Universe. We investigate this claim by studying blue compact dwarfs (BCDs) as local analogues to these early galaxies. We constrain the relation of the X-ray luminosity function (XLF) to the star formation rate (SFR) using a Bayesian approach applied to a sample of 25 BCDs. The functional form of the XLF is fixed to that found for near-solar metallicity galaxies and is used to find the probability distribution of the normalization that relates X-ray luminosity to SFR. Our results suggest that the XLF normalization for low-metallicity BCDs (12+log(O/H) < 7.7) is not consistent with the XLF normalization for galaxies with near-solar metallicities, at a confidence level 1-5 × 10- 6. The XLF normalization for the BCDs is found to be 14.5± 4.8 ({M}_{⊙}^{-1} yr), a factor of 9.7 ± 3.2 higher than for near-solar metallicity galaxies. Simultaneous determination of the XLF normalization and power-law index result in estimates of q = 21.2^{+12.2}_{-8.8} ({M}_{⊙}^{-1} yr) and α = 1.89^{+0.41}_{-0.30}, respectively. Our results suggest a significant enhancement in the population of high-mass X-ray binaries in BCDs compared to the near-solar metallicity galaxies. This suggests that X-ray binaries could have been a significant source of heating in the early Universe.

  18. SIM Lite Detection of Habitable Planets in P-Type Binary-Planetary Systems

    NASA Technical Reports Server (NTRS)

    Pan, Xiaopei; Shao, Michael; Shaklan, Stuart; Goullioud, Renaud

    2010-01-01

    Close binary stars like spectroscopic binaries create a completely different environment than single stars for the evolution of a protoplanetary disk. Dynamical interactions between one star and protoplanets in such systems provide more challenges for theorists to model giant planet migration and formation of multiple planets. For habitable planets the majority of host stars are in binary star systems. So far only a small amount of Jupiter-size planets have been discovered in binary stars, whose minimum separations are 20 AU and the median value is about 1000 AU (because of difficulties in radial velocity measurements). The SIM Lite mission, a space-based astrometric observatory, has a unique capability to detect habitable planets in binary star systems. This work analyzed responses of the optical system to the field stop for companion stars and demonstrated that SIM Lite can observe exoplanets in visual binaries with small angular separations. In particular we investigated the issues for the search for terrestrial planets in P-type binary-planetary systems, where the planets move around both stars in a relatively distant orbit.

  19. Very Low Mass Stars with Extremely Low Metallicity in the Milky Way's Halo

    NASA Astrophysics Data System (ADS)

    Aoki, Wako; Beers, Timothy C.; Takuma, Suda; Honda, Satoshi; Lee, Young Sun

    2015-08-01

    Large surveys and follow-up spectroscopic studies in the past few decades have been providing chemical abundance data for a growing number of very metal-poor ([Fe/H] <-2) stars. Most of them are red giants or main-sequence turn-off stars having masses near 0.8 solar masses. Lower mass stars with extremely low metallicity ([Fe/H] <-3) have yet to be well explored. Our high-resolution spectroscopic study for very metal-poor stars found with SDSS has identified four cool main-sequence stars with [Fe/H] <-2.5 among 137 objects (Aoki et al. 2013, AJ, 145, 13). The effective temperatures of these stars are 4500--5000 K, corresponding to a mass of around 0.5 solar masses. Our standard analysis of the high-resolution spectra based on 1D-LTE model atmospheres have obtained self-consistent chemical abundances for these objects, assuming small values of micro-turbulent velocities compared with giants and turn-off stars. The low temperature of the atmospheres of these objects enables us to measure their detailed chemical abundances. Interestingly, two of the four stars have extreme chemical abundance patterns: one has the largest excesses of heavy neutron-capture elements associated with the r-process abundance pattern known to date (Aoki et al. 2010, ApJL 723, L201), and the other exhibits low abundances of the alpha-elements and odd-Z elements, suggested to be the signatures of the yields of very massive stars ( >100 solar masses; Aoki et al. 2014, Science 345, 912). Although the sample size is still small, these results indicate the potential of very low-mass stars as probes to study the early stages of the Milky Way's halo formation.

  20. Very Low-Mass Stars with Extremely Low Metallicity in the Milky Way's Halo

    NASA Astrophysics Data System (ADS)

    Aoki, Wako; Beers, Timothy C.; Suda, Takuma; Honda, Satoshi; Lee, Young Sun

    2016-08-01

    Large surveys and follow-up spectroscopic studies in the past few decades have been providing chemical abundance data for a growing number of very metal-poor ([Fe/H] <-2) stars. Most of them are red giants or main-sequence turn-off stars having masses near 0.8 solar masses. Lower mass stars with extremely low metallicity ([Fe/H] <-3) are yet to be explored. Our high-resolution spectroscopic study for very metal-poor stars found with SDSS has identified four cool main-sequence stars with [Fe/H] <-2.5 among 137 objects (Aoki et al. 2013). The effective temperatures of these stars are 4500-5000 K, corresponding to a mass of around 0.5 solar masses. Our standard analysis of the high-resolution spectra based on 1D-LTE model atmospheres has obtained self-consistent chemical abundances for these objects, assuming small values of micro-turbulent velocities compared with giants and turn-off stars. The low temperature of the atmospheres of these objects enables us to measure their detailed chemical abundances. Interestingly, two of the four stars have extreme chemical-abundance patterns: one has the largest excesses of heavy neutron-capture elements associated with the r-process abundance pattern known to date (Aoki et al. 2010), and the other exhibits low abundances of the α-elements and odd-Z elements, suggested to be signatures of the yields of very massive stars (> 100 solar masses; Aoki et al. 2014). Although the sample size is still small, these results indicate the potential of very low-mass stars as probes to study the early stages of the Milky Way's halo formation.

  1. Carbon monoxide in an extremely metal-poor galaxy.

    PubMed

    Shi, Yong; Wang, Junzhi; Zhang, Zhi-Yu; Gao, Yu; Hao, Cai-Na; Xia, Xiao-Yang; Gu, Qiusheng

    2016-12-09

    Extremely metal-poor galaxies with metallicity below 10% of the solar value in the local universe are the best analogues to investigating the interstellar medium at a quasi-primitive environment in the early universe. In spite of the ongoing formation of stars in these galaxies, the presence of molecular gas (which is known to provide the material reservoir for star formation in galaxies such as our Milky Way) remains unclear. Here we report the detection of carbon monoxide (CO), the primary tracer of molecular gas, in a galaxy with 7% solar metallicity, with additional detections in two galaxies at higher metallicities. Such detections offer direct evidence for the existence of molecular gas in these galaxies that contain few metals. Using archived infrared data, it is shown that the molecular gas mass per CO luminosity at extremely low metallicity is approximately one-thousand times the Milky Way value.

  2. Carbon monoxide in an extremely metal-poor galaxy

    PubMed Central

    Shi, Yong; Wang, Junzhi; Zhang, Zhi-Yu; Gao, Yu; Hao, Cai-Na; Xia, Xiao-Yang; Gu, Qiusheng

    2016-01-01

    Extremely metal-poor galaxies with metallicity below 10% of the solar value in the local universe are the best analogues to investigating the interstellar medium at a quasi-primitive environment in the early universe. In spite of the ongoing formation of stars in these galaxies, the presence of molecular gas (which is known to provide the material reservoir for star formation in galaxies such as our Milky Way) remains unclear. Here we report the detection of carbon monoxide (CO), the primary tracer of molecular gas, in a galaxy with 7% solar metallicity, with additional detections in two galaxies at higher metallicities. Such detections offer direct evidence for the existence of molecular gas in these galaxies that contain few metals. Using archived infrared data, it is shown that the molecular gas mass per CO luminosity at extremely low metallicity is approximately one-thousand times the Milky Way value. PMID:27934880

  3. Properties of the Open Cluster Tombaugh 1 from High-resolution Spectroscopy and uvbyCaHβ Photometry

    NASA Astrophysics Data System (ADS)

    Sales Silva, João V.; Carraro, Giovanni; Anthony-Twarog, Barbara J.; Moni Bidin, Christian; Costa, Edgardo; Twarog, Bruce A.

    2016-01-01

    Open clusters can be the key to deepening our knowledge on various issues involving the structure and evolution of the Galactic disk and details of stellar evolution because a cluster’s properties are applicable to all its members. However, the number of open clusters with detailed analysis from high-resolution spectroscopy or precision photometry imposes severe limitations on studies of these objects. To expand the number of open clusters with well-defined chemical abundances and fundamental parameters, we investigate the poorly studied, anticenter open cluster Tombaugh 1. Using precision uvbyCaHβ photometry and high-resolution spectroscopy, we derive the cluster’s reddening, obtain photometric metallicity estimates, and, for the first time, present a detailed abundance analysis of 10 potential cluster stars (nine clump stars and one Cepheid). Using the radial position from the cluster center and multiple color indices, we have isolated a sample of unevolved, probable single-star members of Tombaugh 1. From 51 stars, the cluster reddening is found to be E(b-y) = 0.221 ± 0.006 or E(B-V) = 0.303 ± 0.008, where the errors refer to the internal standard errors of the mean. The weighted photometric metallicity from m1 and hk is [Fe/H] = -0.10 ± 0.02, while a match to the Victoria-Regina Strömgren isochrones leads to an age of 0.95 ± 0.10 Gyr and an apparent modulus of (m-M) = 13.10 ± 0.10. Radial velocities identify six giants as probable cluster members, and the elemental abundances of Fe, Na, Mg, Al, Si, Ca, Ti, Cr, Ni, Y, Ba, Ce, and Nd have been derived for both the cluster and the field stars. Tombaugh 1 appears to be a typical inner thin disk, intermediate-age open cluster of slightly subsolar metallicity, located just beyond the solar circle, with solar elemental abundance ratios except for the heavy s-process elements, which are a factor of two above solar. Its metallicity is consistent with a steep metallicity gradient in the galactocentric region between 9.5 and 12 kpc. Our study also shows that Cepheid XZ CMa is not a member of Tombaugh 1 and reveals that this Cepheid presents signs of barium enrichment, making it a probable binary star. Based on observations carried out at Las Campanas Observatory (program ID: CN2009B-042) and Cerro Tololo Inter-American Observatory.

  4. Magnetic Inflation and Stellar Mass. I. Revised Parameters for the Component Stars of the Kepler Low-mass Eclipsing Binary T-Cyg1-12664

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Eunkyu; Muirhead, Philip S.; Swift, Jonathan J.

    Several low-mass eclipsing binary stars show larger than expected radii for their measured mass, metallicity, and age. One proposed mechanism for this radius inflation involves inhibited internal convection and starspots caused by strong magnetic fields. One particular eclipsing binary, T-Cyg1-12664, has proven confounding to this scenario. Çakırlı et al. measured a radius for the secondary component that is twice as large as model predictions for stars with the same mass and age, but a primary mass that is consistent with predictions. Iglesias-Marzoa et al. independently measured the radii and masses of the component stars and found that the radius ofmore » the secondary is not in fact inflated with respect to models, but that the primary is, which is consistent with the inhibited convection scenario. However, in their mass determinations, Iglesias-Marzoa et al. lacked independent radial velocity measurements for the secondary component due to the star’s faintness at optical wavelengths. The secondary component is especially interesting, as its purported mass is near the transition from partially convective to a fully convective interior. In this article, we independently determined the masses and radii of the component stars of T-Cyg1-12664 using archival Kepler data and radial velocity measurements of both component stars obtained with IGRINS on the Discovery Channel Telescope and NIRSPEC and HIRES on the Keck Telescopes. We show that neither of the component stars is inflated with respect to models. Our results are broadly consistent with modern stellar evolutionary models for main-sequence M dwarf stars and do not require inhibited convection by magnetic fields to account for the stellar radii.« less

  5. Truncation of the Binary Distribution Function in Globular Cluster Formation

    NASA Astrophysics Data System (ADS)

    Vesperini, E.; Chernoff, David F.

    1996-02-01

    We investigate a population of primordial binaries during the initial stage of evolution of a star cluster. For our calculations we assume that equal-mass stars form rapidly in a tidally truncated gas cloud, that ˜10% of the stars are in binaries, and that the resulting star cluster undergoes an epoch of violent relaxation. We study the collisional interaction of the binaries and single stars, in particular, the ionization of the binaries and the energy exchange between binaries and single stars. We find that for large N systems (N > 1000), even the most violent beginning leaves the binary distribution function largely intact. Hence, the binding energy originally tied up in the cloud's protostellar pairs is preserved during the relaxation process, and the binaries are available to interact at later times within the virialized cluster.

  6. A Comprehensive Stellar Astrophysical Study of the Old Open Cluster M67 with Kepler

    NASA Astrophysics Data System (ADS)

    Mathieu, Robert D.; Vanderburg, Andrew; K2 M67 Team

    2016-06-01

    M67 is among the best studied of all star clusters. Being at an age and metallicity very near solar, at an accessible distance of 850 pc with low reddening, and rich in content (over 1000 members including main-sequence dwarfs, a well populated subgiant branch and red giant branch, white dwarfs, blue stragglers, sub-subgiants, X-ray sources and CVs), M67 is a cornerstone of stellar astrophysics.The K2 mission (Campaign 5) has obtained long-cadence observations for 2373 stars, both within an optimized central superaperture and as specified targets outside the superaperture. 1,432 of these stars are likely cluster members based on kinematic and photometric criteria.We have extracted light curves and corrected for K2 roll systematics, producing light curves with noise characteristics qualitatively similar to Kepler light curves of stars of similar magnitudes. The data quality is slightly poorer than for field stars observed by K2 due to crowding near the cluster core, but the data are of sufficient quality to detect seismic oscillations, binary star eclipses, flares, and candidate transit events. We are in the process of uploading light curves and various diagnostic files to MAST; light curves and supporting data will also be made available on ExoFOP.Importantly, several investigators within the M67 K2 team are independently doing light curve extractions and analyses for confirmation of science results. We also are adding extensive ground-based supporting data, including APOGEE near-infrared spectra, TRES and WIYN optical spectra, LCOGT photometry, and more.Our science goals encompass asteroseismology and stellar evolution, alternative stellar evolution pathways in binary stars, stellar rotation and angular momentum evolution, stellar activity, eclipsing binaries and beaming, and exoplanets. We will present early science results as available by the time of the meeting, and certainly including asteroseismology, blue stragglers and sub-subgiants, and newly discovered eclipsing binaries.This work is supported by NASA grant NNX15AW24A to the University of Wisconsin - Madison.

  7. New developments in understanding the r-process from observations of metal-poor stars

    NASA Astrophysics Data System (ADS)

    Frebel, Anna

    2015-04-01

    In their atmospheres, old metal-poor Galactic stars retain detailed information about the chemical composition of the interstellar medium at the time of their birth. Extracting such stellar abundances enables us to reconstruct the beginning of the chemical evolution shortly after the Big Bang. About 5% of metal-poor stars with [Fe/H] < - 2 . 5 display in their spectrum a strong enhancement of neutron-capture elements associated with the rapid (r-) nucleosynthesis process that is responsible for the production of the heaviest elements in the Universe. This fortuity provides a unique opportunity of bringing together astrophysics and nuclear physics because these objects act as ``cosmic lab'' for both fields of study. The so-called r-process stars are thought to have formed from material enriched in heavy neutron-capture elements that were created during an r-process event in a previous generation supernova. It appears that the few stars known with this rare chemical signature all follow the scaled solar r-process pattern (for the heaviest elements with 56 <= Z <= 90 that is). This suggests that the r-process is universal - a surprising empirical finding and a solid result that can not be obtained from any laboratory on earth. While much research has been devoted to establishing this pattern, little attention has been given to the overall level of enhancement. New results will be presented on the full extent of r-process element enrichment as observed in metal-poor stars. The challenge lies in determining how the r-process material in the earliest gas clouds was mixed and diluted. Assuming individual r-process events to have contributed the observed r-process elements. We provide empirical estimates on the amount of r-process material produced. This should become a crucial constraint for theoretical nuclear physics models of heavy element nucleosynthesis.

  8. r-process enhanched metal-poor stars

    NASA Astrophysics Data System (ADS)

    Cowan, John; Sneden, Christopher; Lawler, James E.; Den Hartog, Elizabeth A.

    Abundance observations indicate the presence of rapid-neutron capture (i.e., r-process) elements in old Galactic halo and globular cluster stars. These observations provide insight into the nature of the earliest generations of stars in the Galaxy - the progenitors of the halo stars - responsible for neutron-capture synthesis of the heavy elements. The large star-to-star scatter observed in the abundances of neutron-capture element/iron ratios at low metallicities - which diminishes with in- creasing metallicity or [Fe/H] - suggests the formation of these heavy elements (presumably from certain types of supernovae) was rare in the early Galaxy. The stellar abundances also indicate a change from the r-process to the slow neutron capture (i.e., s-) process at higher metallicities in the Galaxy and provide insight into Galactic chemical evolution. Finally, the detection of thorium and uranium in halo and globular cluster stars offers an independent age-dating technique that can put lower limits on the age of the Galaxy, and hence the Universe.

  9. Empirical Determination of Dark Matter Velocities Using Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Herzog-Arbeitman, Jonah; Lisanti, Mariangela; Madau, Piero; Necib, Lina

    2018-01-01

    The Milky Way dark matter halo is formed from the accretion of smaller subhalos. These sub-units also harbor stars—typically old and metal-poor—that are deposited in the Galactic inner regions by disruption events. In this Letter, we show that the dark matter and metal-poor stars in the Solar neighborhood share similar kinematics due to their common origin. Using the high-resolution eris simulation, which traces the evolution of both the dark matter and baryons in a realistic Milky Way analog galaxy, we demonstrate that metal-poor stars are indeed effective tracers for the local, virialized dark matter velocity distribution. The local dark matter velocities can therefore be inferred from observations of the stellar halo made by the Sloan Digital Sky Survey within 4 kpc of the Sun. This empirical distribution differs from the standard halo model in important ways and suggests that the bounds on the spin-independent scattering cross section may be weakened for dark matter masses below ˜10 GeV . Data from Gaia will allow us to further refine the expected distribution for the smooth dark matter component, and to test for the presence of local substructure.

  10. Evolution of Dust in Primordial Supernova Remnants and Its Influence on the Elemental Composition of Hyper-Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Nozawa, Takaya; Kozasa, Takashi; Habe, Asao; Dwek, Eli; Umeda, Hideyuki; Tominaga, Nozomu; Maeda, Keiichi; Nomoto, Ken'ichi

    2008-05-01

    The calculations for the evolution of dust within Population III supernova remnants (SNRs) are presented, based on the models of dust formed in the unmixed ejecta of Type II SNe. We show that once dust grains collide with the reverse shock penetrating into the ejecta, their fates strongly depend on the initial radius aini. For SNRs expanding into the interstellar medium (ISM) with nH,0 = 1 cm-3, grains of aini<0.05 μm are trapped in the hot gas to be completely destroyed; grains of aini = 0.05-0.2 μm are piled up in the dense shell formed behind the forward shock; grains of aini>0.2 μm are injected into the ISM without being eroded significantly. The total mass of surviving dust is 0.01 to 0.8 Msolar for nH,0 = 10 to 0.1 cm-3. We also investigate the influence of the piled-up dust on the elemental abundances of the second-generation stars formed in the dense shell of Population III SNRs. The comparison of the calculated elemental abundances with those observed in hyper-metal-poor (HMP) and ultra-metal-poor (UMP) stars indicates that the transport of dust separated from metal-rich gas can be an important process in determining the abundance patterns of Mg and Si in HMP and UMP stars.

  11. THE EFFECT OF SECOND-GENERATION POPULATIONS ON THE INTEGRATED COLORS OF METAL-RICH GLOBULAR CLUSTERS IN EARLY-TYPE GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Chul; Lee, Sang-Yoon; Yoon, Suk-Jin

    2013-05-20

    The mean color of globular clusters (GCs) in early-type galaxies is in general bluer than the integrated color of halo field stars in host galaxies. Metal-rich GCs often appear more associated with field stars than metal-poor GCs, yet show bluer colors than their host galaxy light. Motivated by the discovery of multiple stellar populations in Milky Way GCs, we present a new scenario in which the presence of second-generation (SG) stars in GCs is responsible for the color discrepancy between metal-rich GCs and field stars. The model assumes that the SG populations have an enhanced helium abundance as evidenced bymore » observations, and it gives a good explanation of the bluer optical colors of metal-rich GCs than field stars as well as strong Balmer lines and blue UV colors of metal-rich GCs. Ours may be complementary to the recent scenario suggesting the difference in stellar mass functions (MFs) as an origin for the GC-to-star color offset. A quantitative comparison is given between the SG and MF models.« less

  12. Constraints on interquark interaction parameters with GW170817 in a binary strange star scenario

    NASA Astrophysics Data System (ADS)

    Zhou, En-Ping; Zhou, Xia; Li, Ang

    2018-04-01

    The LIGO/VIRGO detection of the gravitational waves from a binary merger system, GW170817, has put a clean and strong constraint on the tidal deformability of the merging objects. From this constraint, deep insights can be obtained in compact star equation of states, which has been one of the most puzzling problems for nuclear physicists and astrophysicists. Employing one of the most widely used quark star EOS models, we characterize the star properties by the strange quark mass (ms ), an effective bag constant (Beff), the perturbative QCD correction (a4), as well as the gap parameter (Δ ) when considering quark pairing, and investigate the dependences of the tidal deformablity on them. We find that the tidal deformability is dominated by Beff and insensitive to ms, a4. We discuss the correlation between the tidal deformability and the maximum mass (MTOV) of a static quark star, which allows the model possibility to rule out the existence of quark stars with future gravitational wave observations and mass measurements. The current tidal deformability measurement implies MTOV≤2.18 M⊙ (2.32 M⊙ when pairing is considered) for quark stars. Combining with two-solar-mass pulsar observations, we also make constraints on the poorly known gap parameter Δ for color-flavor-locked quark matter.

  13. Detailed Abundances in a Metal-Poor Stellar Stream

    NASA Astrophysics Data System (ADS)

    Roederer, I. U.; Sneden, C.; Thompson, I. B.; Preston, G. W.; Shectman, S. A.

    2010-10-01

    We present the results of a detailed abundance analysis of one of the confirmed building blocks of the Milky Way stellar halo, a kinematically-coherent metal-poor stellar stream. We have obtained high resolution and high S/N spectra of 8 confirmed and 4 rejected stream members using the MIKE spectrograph on the Magellan-Clay Telescope at Las Campanas Observatory and the 2dCoude spectrograph on the Smith Telescope at McDonald Observatory. We have derived abundances or upper limits for nearly 50 species of more than 40 elements in each of these stars. The stream members show a range of metallicity (-2.5 < [Fe/H] < -1.5) but are otherwise chemically homogeneous, with the same star-to-star chemical dispersion in [X/Fe] as halo stars. They show no evolution in the α or Fe-group elements over the range of metallicity. The stream does not resemble a globular cluster in that its members show a range of metallicities, and the small chemical dispersion and lack of chemical evolution demonstrate that it is also unlike the classical Milky Way dwarf spheroidal galaxies. Our results support the notion that a significant fraction of the Milky Way stellar halo was formed from accreted systems, and these systems likely did not resemble the present-day globular clusters or luminous dwarf galaxies. This stream is mildly enriched (in, e.g., [Eu/Fe]) by material produced by the main and weak components of the rapid neutron-capture process and shows no evidence for enrichment by the slow neutron-capture process. Except for the observed metallicity range of the stream stars, the enrichment pattern of the stream is nearly identical to that of the massive metal-poor globular cluster M15. The kinematics of M15 and the stream are also similar. It is possible that both systems may have originated from a common progenitor but not likely that the stream originated from M15.

  14. Investigation of a sample of carbon-enhanced metal-poor stars observed with FORS and GMOS

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Gallagher, A. J.; Bonifacio, P.; Spite, M.; Duffau, S.; Spite, F.; Monaco, L.; Sbordone, L.

    2018-06-01

    Aims: Carbon-enhanced metal-poor (CEMP) stars represent a sizeable fraction of all known metal-poor stars in the Galaxy. Their formation and composition remains a significant topic of investigation within the stellar astrophysics community. Methods: We analysed a sample of low-resolution spectra of 30 dwarf stars, obtained using the visual and near UV FOcal Reducer and low dispersion Spectrograph for the Very Large Telescope (FORS/VLT) of the European Southern Observatory (ESO) and the Gemini Multi-Object Spectrographs (GMOS) at the GEMINI telescope, to derive their metallicity and carbon abundance. Results: We derived C and Ca from all spectra, and Fe and Ba from the majority of the stars. Conclusions: We have extended the population statistics of CEMP stars and have confirmed that in general, stars with a high C abundance belonging to the high C band show a high Ba-content (CEMP-s or -r/s), while stars with a normal C abundance or that are C-rich, but belong to the low C band, are normal in Ba (CEMP-no). Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 099.D-0791.Based on observations obtained at the Gemini Observatory (processed using the Gemini IRAF package), which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).Tables 1 and 2 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A68

  15. Binary neutron stars with arbitrary spins in numerical relativity

    NASA Astrophysics Data System (ADS)

    Tacik, Nick; Foucart, Francois; Pfeiffer, Harald P.; Haas, Roland; Ossokine, Serguei; Kaplan, Jeff; Muhlberger, Curran; Duez, Matt D.; Kidder, Lawrence E.; Scheel, Mark A.; Szilágyi, Béla

    2015-12-01

    We present a code to construct initial data for binary neutron star systems in which the stars are rotating. Our code, based on a formalism developed by Tichy, allows for arbitrary rotation axes of the neutron stars and is able to achieve rotation rates near rotational breakup. We compute the neutron star angular momentum through quasilocal angular momentum integrals. When constructing irrotational binary neutron stars, we find a very small residual dimensionless spin of ˜2 ×10-4 . Evolutions of rotating neutron star binaries show that the magnitude of the stars' angular momentum is conserved, and that the spin and orbit precession of the stars is well described by post-Newtonian approximation. We demonstrate that orbital eccentricity of the binary neutron stars can be controlled to ˜0.1 % . The neutron stars show quasinormal mode oscillations at an amplitude which increases with the rotation rate of the stars.

  16. The CGM of Massive Galaxies: Where Cold Gas Goes to Die?

    NASA Astrophysics Data System (ADS)

    Howk, Jay

    2017-08-01

    We propose to survey the cold HI content and metallicity of the circumgalactic medium (CGM) around 50 (45 new, 5 archival) z 0.5 Luminous Red Galaxies (LRGs) to directly test a fundamental prediction of galaxy assembly models: that cold, metal-poor accretion does not survive to the inner halos of very massive galaxies. Accretion and feedback through the CGM play key roles in our models of the star formation dichotomy in galaxies. Low mass galaxies are thought to accrete gas in cold streams, while high mass galaxies host hot, dense halos that heat incoming gas and prevent its cooling, thereby quenching star formation. HST/COS has provided evidence for cold, metal-poor streams in the halos of star-forming galaxies (consistent with cold accretion). Observations have also demonstrated the presence of cool gas in the halos of passive galaxies, a potential challenge to the cold/hot accretion model. Our proposed observations will target the most massive galaxies and address the origin of the cool CGM gas by measuring the metallicity. This experiment is enabled by our novel approach to deriving metallicities, allowing the use of much fainter QSOs. It cannot be done with archival data, as these rare systems are not often probed along random sight lines. The H I column density (and metallicity) measurements require access to the UV. The large size of our survey is crucial to robustly assess whether the CGM in these galaxies is unique from that of star-forming systems, a comparison that provides the most stringent test of cold-mode accretion/quenching models to date. Conversely, widespread detections of metal-poor gas in these halos will seriously challenge the prevailing theory.

  17. Uncertainties in s-process nucleosynthesis in massive stars determined by Monte Carlo variations

    NASA Astrophysics Data System (ADS)

    Nishimura, N.; Hirschi, R.; Rauscher, T.; St. J. Murphy, A.; Cescutti, G.

    2017-08-01

    The s-process in massive stars produces the weak component of the s-process (nuclei up to A ˜ 90), in amounts that match solar abundances. For heavier isotopes, such as barium, production through neutron capture is significantly enhanced in very metal-poor stars with fast rotation. However, detailed theoretical predictions for the resulting final s-process abundances have important uncertainties caused both by the underlying uncertainties in the nuclear physics (principally neutron-capture reaction and β-decay rates) as well as by the stellar evolution modelling. In this work, we investigated the impact of nuclear-physics uncertainties relevant to the s-process in massive stars. Using a Monte Carlo based approach, we performed extensive nuclear reaction network calculations that include newly evaluated upper and lower limits for the individual temperature-dependent reaction rates. We found that most of the uncertainty in the final abundances is caused by uncertainties in the neutron-capture rates, while β-decay rate uncertainties affect only a few nuclei near s-process branchings. The s-process in rotating metal-poor stars shows quantitatively different uncertainties and key reactions, although the qualitative characteristics are similar. We confirmed that our results do not significantly change at different metallicities for fast rotating massive stars in the very low metallicity regime. We highlight which of the identified key reactions are realistic candidates for improved measurement by future experiments.

  18. J0815+4729: A Chemically Primitive Dwarf Star in the Galactic Halo Observed with Gran Telescopio Canarias

    NASA Astrophysics Data System (ADS)

    Aguado, David S.; González Hernández, Jonay I.; Allende Prieto, Carlos; Rebolo, Rafael

    2018-01-01

    We report the discovery of the carbon-rich hyper metal-poor unevolved star J0815+4729. This dwarf star was selected from SDSS/BOSS as a metal-poor candidate and follow-up spectroscopic observations at medium resolution were obtained with the Intermediate dispersion Spectrograph and Imaging System (ISIS) at William Herschel Telescope and the Optical System for Imaging and low-intermediate-Resolution Integrated Spectroscopy (OSIRIS) at Gran Telescopio de Canarias. We use the FERRE code to derive the main stellar parameters, {T}{eff}=6215+/- 82 K, and {log}g=4.7+/- 0.5, an upper limit to the metallicity of [Fe/H] ≤ ‑5.8, and a carbon abundance of [C/Fe] ≥ +5.0, while [α /{Fe}]=0.4 is assumed. The metallicity upper limit is based on the Ca II K line, which at the resolving power of the OSIRIS spectrograph cannot be resolved from possible interstellar calcium. The star could be the most iron-poor unevolved star known and also be among the ones with the largest overabundances of carbon. High-resolution spectroscopy of J0815+4729 will certainly help to derive other important elemental abundances, possibly providing new fundamental constraints on the early stages of the universe, the formation of the first stars, and the properties of the first supernovae. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma. Program ID GTC90-15B and the Discretionary Director Time GTC03-16ADDT and also based on observations made with the William Herschel Telescope (WHT).

  19. Integrated Light Chemical Abundance Analyses of 7 M31 Outer Halo Globular Clusters from the Pan-Andromeda Archaeological Survey

    NASA Astrophysics Data System (ADS)

    Sakari, Charli; Venn, Kim; Mackey, Dougal; Shetrone, Matthew D.; Dotter, Aaron L.; Wallerstein, George

    2015-01-01

    Detailed chemical abundances of globular clusters provide insight into the formation and evolution of galaxies and their globular cluster systems. This talk presents detailed chemical abundances for seven M31 outer halo globular clusters (with projected radii greater than 30 kpc), as derived from high resolution integrated light spectra. Five of these clusters were recently discovered in the Pan-Andromeda Archaeological Survey (PAndAS). The integrated abundances show that 4 of these clusters are metal-poor ([Fe/H] < -1.5) while the other 3 are more metal-rich. The most metal-poor globular clusters are α-enhanced, though 3 of the 4 are possibly less α-enhanced than MW stars (at the 1σ level). Other chemical abundance ratios ([Ba/Eu], [Eu/Ca], and [Ni/Fe]) are consistent with origins in low mass dwarf galaxies (similar to Fornax). The most metal-rich cluster ([Fe/H] ~ -1) stands out as being chemically distinct from Milky Way field stars of the same metallicity---its chemical abundance ratios agree best with the stars and clusters in the Large Magellanic Cloud (LMC) and the Sagittarius dwarf spheroidal (Sgr) than with the Milky Way field stars. The other metal-rich clusters, H10 and H23, look similar to the LMC and Milky Way field stars in all abundance ratios. These results indicate that M31's outer halo is being at least partially built up by the accretion of dwarf satellites, in agreement with previous observations.

  20. Stellar oxygen abundances. I - A resolution to the 7774 A O I abundance discrepancy

    NASA Astrophysics Data System (ADS)

    King, Jeremy R.

    1993-09-01

    We investigate the discrepancy between O/Fe abundance ratios of metal-poor stars derived from the 7774 A O I triplet and O/Fe ratios determined from other oxygen lines. We propose a possible resolution to this discrepancy which also eliminates the correlation of O/Fe and T(eff) found in a recent 7774 A O I analysis. The equivalent widths of Abia & Rebolo (1989) are found to be systematically too high by 25 percent. Arguments are presented that current temperature estimates for halo stars are 150-200 K too low. Using the guidance of both model atmospheres and other empirical color-T(eff) relations, we construct new color temperature relations for metal-poor stars. These relations are tied to the temperature scale of Saxner & Hammarback (1985) for metal-rich stars. We use (b-y) and (V-K) indices to redetermine values of T(eff) for a handful of halo stars. (B-V)-T(eff) relations which do not take into account the effects of metallicity are found to be inadequate. Revised O/Fe ratios are determined using the new temperature scale. The mean abundance ratio of the reanalyzed halo dwarfs is about +0.52. There is no trend of O/Fe with Fe/H or T(eff).

  1. Hydrodynamical processes in coalescing binary stars

    NASA Astrophysics Data System (ADS)

    Lai, Dong

    1994-01-01

    Coalescing neutron star binaries are considered to be the most promising sources of gravitational waves that could be detected by the planned laser-interferometer LIGO/VIRGO detectors. Extracting gravity wave signals from noisy data requires accurate theoretical waveforms in the frequency range 10-1000 Hz end detailed understanding of the dynamics of the binary orbits. We investigate the quasi-equilibrium and dynamical tidal interactions in coalescing binary stars, with particular focus on binary neutron stars. We develop a new formalism to study the equilibrium and dynamics of fluid stars in binary systems. The stars are modeled as compressible ellipsoids, and satisfy polytropic equation of state. The hydrodynamic equations are reduced to a set of ordinary differential equations for the evolution of the principal axes and other global quantities. The equilibrium binary structure is determined by a set of algebraic equations. We consider both synchronized and nonsynchronized systems, obtaining the generalizations to compressible fluid of the classical results for the ellipsoidal binary configurations. Our method can be applied to a wide variety of astrophysical binary systems containing neutron stars, white dwarfs, main-sequence stars and planets. We find that both secular and dynamical instabilities can develop in close binaries. The quasi-static (secular) orbital evolution, as well as the dynamical evolution of binaries driven by viscous dissipation and gravitational radiation reaction are studied. The development of the dynamical instability accelerates the binary coalescence at small separation, leading to appreciable radial infall velocity near contact. We also study resonant excitations of g-mode oscillations in coalescing binary neutron stars. A resonance occurs when the frequency of the tidal driving force equals one of the intrinsic g-mode frequencies. Using realistic microscopic nuclear equations of state, we determine the g-modes in a cold neutron atar. Resonant excitations of these g-modes during the last few minutes of the binary coalescence result in energy transfer and angular momentum transfer from the binary orbit to the neutron star. Because of the weak coupling between the g-modes and the tidal potential, the induced orbital phase errors due to resonances are small. However, resonant excitations of the g-modes play an important role in the tidal heating of binary neutron stars.

  2. Accurate effective temperatures of the metal-poor benchmark stars HD 140283, HD 122563, and HD 103095 from CHARA interferometry

    NASA Astrophysics Data System (ADS)

    Karovicova, I.; White, T. R.; Nordlander, T.; Lind, K.; Casagrande, L.; Ireland, M. J.; Huber, D.; Creevey, O.; Mourard, D.; Schaefer, G. H.; Gilmore, G.; Chiavassa, A.; Wittkowski, M.; Jofré, P.; Heiter, U.; Thévenin, F.; Asplund, M.

    2018-03-01

    Large stellar surveys of the Milky Way require validation with reference to a set of `benchmark' stars whose fundamental properties are well determined. For metal-poor benchmark stars, disagreement between spectroscopic and interferometric effective temperatures has called the reliability of the temperature scale into question. We present new interferometric measurements of three metal-poor benchmark stars, HD 140283, HD 122563, and HD 103095, from which we determine their effective temperatures. The angular sizes of all the stars were determined from observations with the PAVO beam combiner at visible wavelengths at the CHARA array, with additional observations of HD 103095 made with the VEGA instrument, also at the CHARA array. Together with photometrically derived bolometric fluxes, the angular diameters give a direct measurement of the effective temperature. For HD 140283, we find θLD = 0.324 ± 0.005 mas, Teff = 5787 ± 48 K; for HD 122563, θLD = 0.926 ± 0.011 mas, Teff = 4636 ± 37 K; and for HD 103095, θLD = 0.595 ± 0.007 mas, Teff = 5140 ± 49 K. Our temperatures for HD 140283 and HD 103095 are hotter than the previous interferometric measurements by 253 and 322 K, respectively. We find good agreement between our temperatures and recent spectroscopic and photometric estimates. We conclude some previous interferometric measurements have been affected by systematic uncertainties larger than their quoted errors.

  3. Infrared outbursts as potential tracers of common-envelope events in high-mass X-ray binary formation

    NASA Astrophysics Data System (ADS)

    Oskinova, Lidia M.; Bulik, Tomasz; Gómez-Morán, Ada Nebot

    2018-06-01

    Context. Classic massive binary evolutionary scenarios predict that a transitional common-envelope (CE) phase could be preceded as well as succeeded by the evolutionary stage when a binary consists of a compact object and a massive star, that is, a high-mass X-ray binary (HMXB). The observational manifestations of common envelope are poorly constrained. We speculate that its ejection might be observed in some cases as a transient event at mid-infrared (IR) wavelengths. Aims: We estimate the expected numbers of CE ejection events and HMXBs per star formation unit rate, and compare these theoretical estimates with observations. Methods: We compiled a list of 85 mid-IR transients of uncertain nature detected by the Spitzer Infrared Intensive Transients Survey and searched for their associations with X-ray, optical, and UV sources. Results: Confirming our theoretical estimates, we find that only one potential HMXB may be plausibly associated with an IR-transient and tentatively propose that X-ray source NGC 4490-X40 could be a precursor to the SPIRITS 16az event. Among other interesting sources, we suggest that the supernova remnant candidate [BWL2012] 063 might be associated with SPIRITS 16ajc. We also find that two SPIRITS events are likely associated with novae, and seven have potential optical counterparts. Conclusions: The massive binary evolutionary scenarios that involve CE events do not contradict currently available observations of IR transients and HMXBs in star-forming galaxies.

  4. Constraints on the yields of the first supernovae in the Universe

    NASA Astrophysics Data System (ADS)

    Cayrel, Roger

    The study of the chemical composition of the most primitive stars of the galactic halo has been made possible with the help of large surveys aimed at finding such stars, and by powerful new instruments, as the Keck telescopes, the Subaru telescope, and the ESO Very Large Telescope. The atmospheres of these primitive stars possess, per hydrogen atom, from 1/1000th to 1/10000th less supernovae-made elements than the Sun, and reflect the yields of the first supernovae. It was once expected that these yields would show a larger scatter than those in the more metal-rich Population II stars, which have been enriched by many more supernovae explosions than the earlier generations. If we leave aside one class of objects, the Carbon-Enhanced Metal-Poor (CEMP) stars, which is the topic of another talk at this conference, a rather well-defined set of abundance ratios emerge for C to Zn amongst the most primitive population, with a scatter that is surprisingly small. The quality of the high-resolution spectroscopic data is such that the observed level of scatter in the measured elemental abundances for these species is no longer limited by accuracy of the observations, nor by other errors inherent to the analysis of the data. By way of contrast, amongst the neutron-capture elements produced by the r-process, at a given metallicity a spread reaching a factor of over 1000 exists for elements such as Ba. The stable portion of the r-process pattern observed in such stars is the second peak (Z = 56 to 72), in which the relative abundances of these elements in very metal-poor stars are almost indistinguishable from their inferred proportions in solar-system material. Recent observations have permitted the determination of the abundances of uranium, tho- rium, and lead produced by the r-process in extremely metal-poor stars, and indicate that lead is mainly produced by radioactive decay of the actinides (as opposed to other direct channels). In addition, the observed U/Th ratio has been shown to be the best available radioactive cosmic chronometer, on timescales of interest to cosmology.

  5. Hubble space telescope near-ultraviolet spectroscopy of the bright cemp-no star BD+44°493

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Placco, Vinicius M.; Beers, Timothy C.; Smith, Verne V.

    2014-07-20

    We present an elemental-abundance analysis, in the near-ultraviolet (NUV) spectral range, for the extremely metal-poor star BD+44°493 a ninth magnitude subgiant with [Fe/H] =–3.8 and enhanced carbon, based on data acquired with the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. This star is the brightest example of a class of objects that, unlike the great majority of carbon-enhanced metal-poor (CEMP) stars, does not exhibit over-abundances of heavy neutron-capture elements (CEMP-no). In this paper, we validate the abundance determinations for a number of species that were previously studied in the optical region, and obtain strong upper limits for berylliummore » and boron, as well as for neutron-capture elements from zirconium to platinum, many of which are not accessible from ground-based spectra. The boron upper limit we obtain for BD+44°493, log ε (B) <–0.70, the first such measurement for a CEMP star, is the lowest yet found for very and extremely metal-poor stars. In addition, we obtain even lower upper limits on the abundances of beryllium, log ε (Be) <–2.3, and lead, log ε (Pb) <–0.23 ([Pb/Fe] <+1.90), than those reported by previous analyses in the optical range. Taken together with the previously measured low abundance of lithium, the very low upper limits on Be and B suggest that BD+44°493 was formed at a very early time, and that it could well be a bona-fide second-generation star. Finally, the Pb upper limit strengthens the argument for non-s-process production of the heavy-element abundance patterns in CEMP-no stars.« less

  6. The incidence of stellar mergers and mass gainers among massive stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Mink, S. E.; Sana, H.; Langer, N.

    2014-02-10

    Because the majority of massive stars are born as members of close binary systems, populations of massive main-sequence stars contain stellar mergers and products of binary mass transfer. We simulate populations of massive stars accounting for all major binary evolution effects based on the most recent binary parameter statistics and extensively evaluate the effect of model uncertainties. Assuming constant star formation, we find that 8{sub −4}{sup +9}% of a sample of early-type stars are the products of a merger resulting from a close binary system. In total we find that 30{sub −15}{sup +10}% of massive main-sequence stars are the productsmore » of binary interaction. We show that the commonly adopted approach to minimize the effects of binaries on an observed sample by excluding systems detected as binaries through radial velocity campaigns can be counterproductive. Systems with significant radial velocity variations are mostly pre-interaction systems. Excluding them substantially enhances the relative incidence of mergers and binary products in the non-radial velocity variable sample. This poses a challenge for testing single stellar evolutionary models. It also raises the question of whether certain peculiar classes of stars, such as magnetic O stars, are the result of binary interaction and it emphasizes the need to further study the effect of binarity on the diagnostics that are used to derive the fundamental properties (star-formation history, initial mass function, mass-to-light ratio) of stellar populations nearby and at high redshift.« less

  7. A ROSAT Survey of Contact Binary Stars

    NASA Astrophysics Data System (ADS)

    Geske, M. T.; Gettel, S. J.; McKay, T. A.

    2006-01-01

    Contact binary stars are common variable stars that are all believed to emit relatively large fluxes of X-rays. In this work we combine a large new sample of contact binary stars derived from the ROTSE-I telescope with X-ray data from the ROSAT All Sky Survey (RASS) to estimate the X-ray volume emissivity of contact binary stars in the Galaxy. We obtained X-ray fluxes for 140 contact binaries from the RASS, as well as two additional stars observed by the XMM-Newton observatory. From these data we confirm the emission of X-rays from all contact binary systems, with typical luminosities of approximately 1.0×1030 ergs s-1. Combining calculated luminosities with an estimated contact binary space density, we find that contact binaries do not have strong enough X-ray emission to account for a significant portion of the Galactic X-ray background.

  8. The Evolution of Compact Binary Star Systems.

    PubMed

    Postnov, Konstantin A; Yungelson, Lev R

    2006-01-01

    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars - compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.

  9. The Evolution of Compact Binary Star Systems.

    PubMed

    Postnov, Konstantin A; Yungelson, Lev R

    2014-01-01

    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW) astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

  10. The Age and Distance of the Kepler Open Cluster NGC 6811 from an Eclipsing Binary, Turnoff Star Pulsation, and Giant Asteroseismology

    NASA Astrophysics Data System (ADS)

    Sandquist, Eric L.; Jessen-Hansen, J.; Shetrone, Matthew D.; Brogaard, Karsten; Meibom, Søren; Leitner, Marika; Stello, Dennis; Bruntt, Hans; Antoci, Victoria; Orosz, Jerome A.; Grundahl, Frank; Frandsen, Søren

    2016-11-01

    We present the analysis of an eccentric, partially eclipsing long-period (P = 19.23 days) binary system KIC 9777062 that contains main-sequence stars near the turnoff of the intermediate-age open cluster NGC 6811. The primary is a metal-lined Am star with a possible convective blueshift to its radial velocities, and one star (probably the secondary) is likely to be a γ Dor pulsator. The component masses are 1.603 ± 0.006(stat.) ± 0.016(sys.) and 1.419 ± 0.003 ± 0.008 {M}⊙ , and the radii are 1.744 ± 0.004 ± 0.002 and 1.544 ± 0.002 ± 0.002 {R}⊙ . The isochrone ages of the stars are mildly inconsistent: the age from the mass-radius combination for the primary (1.05 ± 0.05 ± 0.09 Gyr, where the last quote was systematic uncertainty from models and metallicity) is smaller than that from the secondary (1.21 ± 0.05 ± 0.15 Gyr) and is consistent with the inference from the color-magnitude diagram (1.00 ± 0.05 Gyr). We have improved the measurements of the asteroseismic parameters Δν and ν max for helium-burning stars in the cluster. The masses of the stars appear to be larger (or alternately, the radii appear to be smaller) than predicted from isochrones using the ages derived from the eclipsing stars. The majority of stars near the cluster turnoff are pulsating stars: we identify a sample of 28 δ Sct, 15 γ Dor, and 5 hybrid types. We used the period-luminosity relation for high-amplitude δ Sct stars to fit the ensemble of the strongest frequencies for the cluster members, finding {(m-M)}V=10.37+/- 0.03. This is larger than most previous determinations, but smaller than values derived from the eclipsing binary (10.47 ± 0.05). Based on observations made with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen, and with the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias.

  11. Photometrically-derived properties of massive-star clusters obtained with different massive-star evolution tracks and deterministic models

    NASA Astrophysics Data System (ADS)

    Wofford, Aida; Charlot, Stéphane; Eldridge, John

    2015-08-01

    We compute libraries of stellar + nebular spectra of populations of coeval stars with ages of <100 Myr and metallicities of Z=0.001 to 0.040, using different sets of massive-star evolution tracks, i.e., new Padova tracks for single non-rotating stars, the Geneva tracks for single non-rotating and rotating stars, and the Auckland tracks for single non-rotating and binary stars. For the stellar component, we use population synthesis codes galaxev, starburst99, and BPASS, depending on the set of tracks. For the nebular component we use photoionization code cloudy. From these spectra, we obtain magnitudes in filters F275W, F336W, F438W, F547M, F555W, F657N, and F814W of the Hubble Space Telescope (HST) Wide Field Camera Three. We use i) our computed magnitudes, ii) new multi-band photometry of massive-star clusters in nearby (<11 Mpc) galaxies spanning the metallicity range 12+log(O/H)=7.2-9.2, observed as part of HST programs 13364 (PI Calzetti) and 13773 (PI Chandar), and iii) Bayesian inference to a) establish how well the different models are able to constrain the metallicities, extinctions, ages, and masses of the star clusters, b) quantify differences in the cluster properties obtained with the different models, and c) assess how properties of lower-mass clusters are affected by the stochastic sampling of the IMF. In our models, the stellar evolution tracks, stellar atmospheres, and nebulae have similar chemical compositions. Different metallicities are available with different sets of tracks and we compare results from models of similar metallicities. Our results have implications for studies of the formation and evolution of star clusters, the cluster age and mass functions, and the star formation histories of galaxies.

  12. A Differential Abundance Analysis of Very Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    O'Malley, Erin M.; McWilliam, Andrew; Chaboyer, Brian; Thompson, Ian

    2017-04-01

    We have performed a differential line-by-line chemical abundance analysis, ultimately relative to the Sun, of nine very metal-poor main-sequence (MS) halo stars, near [Fe/H] = -2 dex. Our abundances range from -2.66≤slant [{Fe}/{{H}}]≤slant -1.40 dex with conservative uncertainties of 0.07 dex. We find an average [α/Fe] = 0.34 ± 0.09 dex, typical of the Milky Way. While our spectroscopic atmosphere parameters provide good agreement with Hubble Space Telescope parallaxes, there is significant disagreement with temperature and gravity parameters indicated by observed colors and theoretical isochrones. Although a systematic underestimate of the stellar temperature by a few hundred degrees could explain this difference, it is not supported by current effective temperature studies and would create large uncertainties in the abundance determinations. Both 1D and < 3{{D}}> hydrodynamical models combined with separate 1D non-LTE effects do not yet account for the atmospheres of real metal-poor MS stars, but a fully 3D non-LTE treatment may be able to explain the ionization imbalance found in this work.

  13. Kinematics of Extremely Metal-poor Galaxies: Evidence for Stellar Feedback

    NASA Astrophysics Data System (ADS)

    Olmo-García, A.; Sánchez Almeida, J.; Muñoz-Tuñón, C.; Filho, M. E.; Elmegreen, B. G.; Elmegreen, D. M.; Pérez-Montero, E.; Méndez-Abreu, J.

    2017-01-01

    The extremely metal-poor (XMP) galaxies analyzed in a previous paper have large star-forming regions with a metallicity lower than the rest of the galaxy. Such a chemical inhomogeneity reveals the external origin of the metal-poor gas fueling star formation, possibly indicating accretion from the cosmic web. This paper studies the kinematic properties of the ionized gas in these galaxies. Most XMPs have a rotation velocity around a few tens of km s-1. The star-forming regions appear to move coherently. The velocity is constant within each region, and the velocity dispersion sometimes increases within the star-forming clump toward the galaxy midpoint, suggesting inspiral motion toward the galaxy center. Other regions present a local maximum in velocity dispersion at their center, suggesting a moderate global expansion. The Hα line wings show a number of faint emission features with amplitudes around a few per cent of the main Hα component, and wavelength shifts between 100 and 400 km s-1. The components are often paired, so that red and blue emission features with similar amplitudes and shifts appear simultaneously. Assuming the faint emission to be produced by expanding shell-like structures, the inferred mass loading factor (mass loss rate divided by star formation rate) exceeds 10. Since the expansion velocity far exceeds the rotational and turbulent velocities, the gas may eventually escape from the galaxy disk. The observed motions involve energies consistent with the kinetic energy released by individual core-collapse supernovae. Alternative explanations for the faint emission have been considered and discarded.

  14. KINEMATICS OF EXTREMELY METAL-POOR GALAXIES: EVIDENCE FOR STELLAR FEEDBACK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olmo-García, A.; Sánchez Almeida, J.; Muñoz-Tuñón, C.

    2017-01-10

    The extremely metal-poor (XMP) galaxies analyzed in a previous paper have large star-forming regions with a metallicity lower than the rest of the galaxy. Such a chemical inhomogeneity reveals the external origin of the metal-poor gas fueling star formation, possibly indicating accretion from the cosmic web. This paper studies the kinematic properties of the ionized gas in these galaxies. Most XMPs have a rotation velocity around a few tens of km s{sup −1}. The star-forming regions appear to move coherently. The velocity is constant within each region, and the velocity dispersion sometimes increases within the star-forming clump toward the galaxymore » midpoint, suggesting inspiral motion toward the galaxy center. Other regions present a local maximum in velocity dispersion at their center, suggesting a moderate global expansion. The H α line wings show a number of faint emission features with amplitudes around a few per cent of the main H α component, and wavelength shifts between 100 and 400 km s{sup −1}. The components are often paired, so that red and blue emission features with similar amplitudes and shifts appear simultaneously. Assuming the faint emission to be produced by expanding shell-like structures, the inferred mass loading factor (mass loss rate divided by star formation rate) exceeds 10. Since the expansion velocity far exceeds the rotational and turbulent velocities, the gas may eventually escape from the galaxy disk. The observed motions involve energies consistent with the kinetic energy released by individual core-collapse supernovae. Alternative explanations for the faint emission have been considered and discarded.« less

  15. Signatures of bulge triaxiality from kinematics in Baade's window

    NASA Astrophysics Data System (ADS)

    Zhao, Hongsheng; Spergel, David N.; Rich, R. Michael

    1994-12-01

    We study a sample of 62 Baade's Window, (l,b) = (1, -4)deg, K giants that have published proper motions, radial velocity, and metallicity. Using R0 = 8 kpc, we construct the velocity ellipsoids, namely the 3x3 velocity dispersion tensors, for the metal rich stars ((Fe/H) greater than or equal to 0) and metal poor stars ((Fe/H) less than or equal to -0.2). After diagonalizing the tensor, we find a vertex deviation characteristic of a nonaxisymmetric system. Eigenvalues for the two velocity ellipsoids (sigma1, sigma2, sigma3) are (126, 89, 65) +/- 13 km/s for the metal rich sample and (154, 77, 83) +/- 25 km/s for the metal poor sample with their long axes pointing to two nearly perpendicular directions (lv, bv) = (-65 +/- 9 deg, +14 +/- 9 deg) and (lv, bv) = (25 +/- 14 deg, -11 +/- 14 deg), respectively. The vertex deviations of the velocity ellipsoids cannot be consistently explained by any oblate model. We are able to reject the hypothesis that the metal poor and metal rich populations are drawn from the same distribution at better than the 97% confidence level. We populate orbits in a realistic bar potential with a Gaussian velocity distribution, allowing us to simulate and interpret observations. We conclude that the data are consistent with a triaxial bulge pointing towards (l,b) with l less than 0 deg and b = 0 deg as suggested by earlier work on gas dynamics and the observed light distribution. We also predict that low latitude (absolute value of b less than or equal to 4 deg) bulge fields should show the vertex deviation more strongly and would therefore be the best locations for future proper motion studies. In the classification scheme of Athanassoula et al. (1983) the metal rich stars appear to occupy the B-family orbits which rotate in the prograde sense in the rest frame and have boxy shapes that are aligned with and supporting the bar. The metal poor stars in the sample lag behind the metal rich bulge and appear to occupy R-family orbits which rotate in the retrograde sense in the rest frame. They have nearly round loop shapes and are aligned perpendicularly to the bar, hence limit the triaxiality of the bar potential. The correlations between the metallicity and the orbit families can develop if the bulge forms dissipatively on a sufficiently long time scale. However, it is difficult to explain such correlations if most stars in the inner Galaxy form during the violent relaxation phase.

  16. Frontiers of stellar evolution

    NASA Technical Reports Server (NTRS)

    Lambert, David L. (Editor)

    1991-01-01

    The present conference discusses theoretical and observational views of star formation, spectroscopic constraints on the evolution of massive stars, very low mass stars and brown dwarfs, asteroseismology, globular clusters as tests of stellar evolution, observational tests of stellar evolution, and mass loss from cool evolved giant stars. Also discussed are white dwarfs and hot subdwarfs, neutron stars and black holes, supernovae from single stars, close binaries with evolved components, accretion disks in interacting binaries, supernovae in binary systems, stellar evolution and galactic chemical evolution, and interacting binaries containing compact components.

  17. WFPC2 Observations of Astrophysically Important Visual Binaries

    NASA Astrophysics Data System (ADS)

    Bond, Howard

    1997-07-01

    We recently used WFPC2 images of Procyon A and B to measure an extremely accurate separation of the bright F star and its much fainter white-dwarf companion. Combined with ground-based astrometry of the bright star, our observation significantly revises downward the derived masses, and brings Procyon A into excellent agreement with theoretical evolutionary tracks for the first time. We now propose to begin a modest but long-term program of WFPC2 measurements of astrophysically important visual binaries, working in a regime of large magnitude differences and/or faint stars where ground-based speckle interferometry cannot compete. We have selected three systems: Procyon {P=40 yr}, for which continued monitoring will even further refine the very accurate masses; Mu Cas {P=21 yr}, a famous metal-deficient G dwarf for which accurate masses will lead to the star's helium content with cosmological implications; and G 107-70, a close double white dwarf {P=18 yr} that promises to add two accurate masses to the tiny handful of white-dwarf masses that are directly known from dynamical measurements.

  18. WFPC2 Observations of Astrophysically Important Visual Binaries - Continued

    NASA Astrophysics Data System (ADS)

    Bond, Howard

    1999-07-01

    We recently used WFPC2 images of Procyon A and B to measure an extremely accurate separation of the bright F star and its much fainter white-dwarf companion. Combined with ground-based astrometry of the bright star, our observation significantly revises downward the derived masses, and brings Procyon A into excellent agreement with theoretical evolutionary tracks for the first time. We now propose to begin a modest but long-term program of WFPC2 measurements of astrophysically important visual binaries, working in a regime of large magnitude differences and/or faint stars where ground-based speckle interferometry cannot compete. We have selected three systems: Procyon {P=40 yr}, for which continued monitoring will even further refine the very accurate masses; Mu Cas {P=21 yr}, a famous metal-deficient G dwarf for which accurate masses will lead to the star's helium content with cosmological implications; and G 107-70, a close double white dwarf {P=18 yr} that promises to add two accurate masses to the tiny handful of white-dwarf masses that are directly known from dynamical measurements.

  19. The impact of IUE on binary star studies

    NASA Technical Reports Server (NTRS)

    Plavec, M. J.

    1981-01-01

    The use of IUE observations in the investigation of binary stars is discussed. The results of data analysis of several classes of binary systems are briefly reviewed including zeta Aurigae and VV Cephei stars, mu Sagittarii, epsilon Aurigae, beta Lyrae and the W Serpentis stars, symbiotic stars, and the Algols.

  20. Formation environment of Pop II stars affected by the feedbacks from Pop III stars

    NASA Astrophysics Data System (ADS)

    Chiaki, G.; Susa, H.; Hirano, S.

    Stars with metallicities abH Fe < -3 are called extremely metal-poor (EMP) stars, and considered to be formed in clouds enriched with metal from a single or several supernovae (SNe) of the first-generation (Pop III) stars. To confirm this, we numerically follow the enrichment process of minihalos (MHs) which have hosted Pop III stars. During their main-sequence (MS), the ionizing photons can not or partly break the gas around the Pop III stars because the halo binding energy is marginally larger than the radiation energy. After SN explosions, the gas continues to accrete along filaments of the large-scale structures, and the gas collapses again in the MHs within ˜ 10 Myr for low-mass MHs (3E 5 M⊙) while ˜ 1 Myr for massive MHs (3E 6 M⊙). The metallicity in the recollapsing regions is 10-4-10-2 Z⊙ /SUB and 10-6-10-5 Z⊙, respectively. This indicates that EMP stars are formed in the clouds enriched by a single SN in low-mass MHs.

  1. Detecting a Hot Companion to the Progenitor of the Type Ic Supernova 1994I in M51

    NASA Astrophysics Data System (ADS)

    Van Dyk, Schuyler

    2013-10-01

    Core-collapse supernovae {SNe} are the endpoints of the lives of massive stars {with initial mass > 8 solar masses}. We are reasonably confident that the progenitor stars for most hydrogen-rich Type II SNe are red supergiants, based in part on direct identifications with HST. However, the progenitors of the stripped-envelope He-rich Type Ib and He-poor Type Ic SNe have yet to be directly identified. These SNe are thought to arise from either single, high-mass stars in the Wolf-Rayet phase or, alternatively, from lower-mass stars in interacting binary systems. Both models can account for the required extensive envelope stripping. Until a progenitor is identified for these SN types, our best hope of testing these progenitor models is to detect the companion star to the progenitor, if the binary model holds. This star is predicted to be a hot supergiant. Therefore, it is best detected in the ultraviolet. The only SN which is sufficiently nearby and experienced low enough reddening to be a viable target for this detection is the SN Ic 1994I in M51. Furthermore, the SN was imaged by HST when it was still bright, so we can pinpoint its location. We therefore propose, as part of the UV Initiative in Cycle 21, to image the site in F275W and F336W to levels deep enough to significantly detect a putative progenitor companion, if it exists. The proposed observations will provide an important test of the binary progenitor hypothesis.

  2. A PIONIER and Incisive Look at the Interacting Binary SS Lep

    NASA Astrophysics Data System (ADS)

    Blind, N.; Boffin, H. M. J.; Berger, J.-P.; Lebouquin, J.-B.; Mérand, A.

    2011-09-01

    Symbiotic stars are excellent laboratories to study a broad range of poorly understood physical processes, such as mass loss of red giants, accretion onto compact objects, and evolution of nova-like outbursts. As their evolution is strongly influenced by the mass transfer episodes, understanding the history of these systems requires foremost to determine which process is at play: Roche lobe overflow, stellar wind accretion, or some more complex mixture of both. We report here an interferometric study of the symbiotic system SS Leporis, performed with the unique PIONIER instrument. By determining the binary orbit and revisiting the parameters of the two stars, we show that the giant does not fill its Roche lobe, and that the mass transfer most likely occurs via the accretion of an important part of the giant's wind.

  3. An ultra-relativistic outflow from a neutron star accreting gas from a companion.

    PubMed

    Fender, Rob; Wu, Kinwah; Johnston, Helen; Tzioumis, Tasso; Jonker, Peter; Spencer, Ralph; Van Der Klis, Michiel

    2004-01-15

    Collimated relativistic outflows-also known as jets-are amongst the most energetic phenomena in the Universe. They are associated with supermassive black holes in distant active galactic nuclei, accreting stellar-mass black holes and neutron stars in binary systems and are believed to be responsible for gamma-ray bursts. The physics of these jets, however, remains something of a mystery in that their bulk velocities, compositions and energetics remain poorly determined. Here we report the discovery of an ultra-relativistic outflow from a neutron star accreting gas within a binary stellar system. The velocity of the outflow is comparable to the fastest-moving flows observed from active galactic nuclei, and its strength is modulated by the rate of accretion of material onto the neutron star. Shocks are energized further downstream in the flow, which are themselves moving at mildly relativistic bulk velocities and are the sites of the observed synchrotron emission from the jet. We conclude that the generation of highly relativistic outflows does not require properties that are unique to black holes, such as an event horizon.

  4. Massive stars in the Sagittarius Dwarf Irregular Galaxy

    NASA Astrophysics Data System (ADS)

    Garcia, Miriam

    2018-02-01

    Low metallicity massive stars hold the key to interpret numerous processes in the past Universe including re-ionization, starburst galaxies, high-redshift supernovae, and γ-ray bursts. The Sagittarius Dwarf Irregular Galaxy [SagDIG, 12+log(O/H) = 7.37] represents an important landmark in the quest for analogues accessible with 10-m class telescopes. This Letter presents low-resolution spectroscopy executed with the Gran Telescopio Canarias that confirms that SagDIG hosts massive stars. The observations unveiled three OBA-type stars and one red supergiant candidate. Pending confirmation from high-resolution follow-up studies, these could be the most metal-poor massive stars of the Local Group.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaskot, A. E.; Ravindranath, S.

    The increasing neutrality of the intergalactic medium at z  > 6 suppresses Ly α emission, and spectroscopic confirmation of galaxy redshifts requires the detection of alternative ultraviolet lines. The strong [C iii]  λ 1907+C iii]  λ 1909 doublet frequently observed in low-metallicity, actively star-forming galaxies is a promising emission feature. We present CLOUDY photoionization model predictions for C iii] equivalent widths (EWs) and line ratios as a function of starburst age, metallicity, and ionization parameter. Our models include a range of C/O abundances, dust content, and gas density. We also examine the effects of varying the nebular geometry and optical depth. Onlymore » the stellar models that incorporate binary interaction effects reproduce the highest observed C iii] EWs. The spectral energy distributions from the binary stellar population models also generate observable C iii] over a longer timescale relative to single-star models. We show that diagnostics using C iii] and nebular He ii  λ 1640 can separate star-forming regions from shock-ionized gas. We also find that density-bounded systems should exhibit weaker C iii] EWs at a given ionization parameter, and C iii] EWs could, therefore, select candidate Lyman continuum-leaking systems. In almost all models, C iii] is the next strongest line at <2700 Å after Ly α , and C iii] reaches detectable levels for a wide range of conditions at low metallicity. C iii] may therefore serve as an important diagnostic for characterizing galaxies at z  > 6.« less

  6. OB stars at the lowest Local Group metallicity. GTC-OSIRIS observations of Sextans A

    NASA Astrophysics Data System (ADS)

    Camacho, I.; Garcia, M.; Herrero, A.; Simón-Díaz, S.

    2016-01-01

    Context. Massive stars play an important role in the chemical and dynamical evolution of the Universe. The first metal-poor stars may have started the reionization of the Universe. To understand these early epochs it is necessary to know the behavior and the physical properties of massive stars in very metal-poor environments. We focus on the massive stellar content of the metal-poor irregular galaxy Sextans A. Aims: Our aim is to find and classify OB stars in Sextans A, so as to later determine accurate stellar parameters of these blue massive stars in this low-metallicity region (Z ~ 0.1 Z⊙). Methods: Using UBV photometry, the reddening-free index Q and GALEX imaging, we built a list of blue massive star candidates in Sextans A. We obtained low-resolution (R ~ 1000) GTC-OSIRIS spectra for a fraction of them and carried out spectral classification. For the confirmed O-stars, we derived preliminary stellar parameters. Results: The target selection criteria and observations were successful and have produced the first spectroscopic atlas of OB-type stars in Sextans A. From the whole sample of 18 observed stars, 12 were classified as early OB-types, including 5 O-stars. The radial velocities of all target stars are in agreement with their Sextans A membership, although three of them show significant deviations. We determined the stellar parameters of the O-type stars using the stellar atmosphere code FASTWIND and revisited the sub-SMC temperature scale. Two of the O-stars are consistent with relatively strong winds and enhanced helium abundances, although results are not conclusive. We discuss the position of the OB stars in the HRD. Initial stellar masses run from slightly below 20 up to 40 solar masses. Conclusions: The target selection method worked well for Sextans A. The stellar temperatures are consistent with findings in other galaxies. Some of the targets deserve follow-up spectroscopy because of indications of a runaway nature, an enhanced helium abundance, or a relatively strong wind. We observe a correlation between HI and OB associations similar to the irregular galaxy IC 1613, confirming the previous result that the most recent star formation of Sextans A is currently ongoing near the rim of the H I cavity. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma. Programme ID GTC59-12A.The data are available through the GTC archive: http://https://gtc.sdc.cab.inta-csic.es/gtc/jsp/searchres.jsp

  7. The Evolution of Pristine Gas: Implications for Milky Way Halo Stars

    NASA Astrophysics Data System (ADS)

    Sarmento, Richard J.; Scannapieco, Evan; Pan, Liubin

    2016-06-01

    We implement a new subgrid model for turbulent mixing to accurately follow the cosmological evolution of the first stars, the mixing of their supernova ejecta and the impact on the chemical composition of the Galactic Halo. Using the cosmological adaptive mesh refinement code RAMSES, we implement a model for the pollution of pristine gas as described in Pan et al. (2013). This allows us to account for the fraction of Z < Zcrit stars formed throughout the simulation volume, even in regions in which the average metallicity is well above Zcrit. Further, as a result of modeling the pristine fraction of gas, we also improve our modeling of the metallicity of the polluted fraction, fpol, of both the gas and stars.Additionally, we track the evolution of the “primordial metals” generated by Pop III supernovae. These metals are taken up by second-generation stars and are likely to lead to unique abundance signatures characteristic of carbon enhanced, metal poor (CEMP) stars. As an illustrative example, we associate primordial metals with abundance ratios used by Keller at al (2014) to explain the source of metals in the star SMSS J031300.36- 670839.3, finding good agreement with the observed [Fe/H], [C/H], [O/H] and [Mg/Ca] ratios in CEMP Milky Way (MW) halo stars.

  8. The Spite Lithium Plateau: Ultrathin but Postprimordial

    NASA Astrophysics Data System (ADS)

    Ryan, Sean G.; Norris, John E.; Beers, Timothy C.

    1999-10-01

    We have studied 23 very metal-poor field turnoff stars, specifically chosen to enable a precise measurement of the dispersion in the lithium abundance of the Spite Li plateau. We concentrated on stars having a narrow range of effective temperature and very low metallicities ([Fe/H]<~-2.5) to reduce the effects of systematic errors and have made particular efforts to minimize random errors. A typical statistical error for our abundances is 0.033 dex (1 σ), which represents a factor of 2 improvement on most previous studies. Our sample does not exhibit a trend with effective temperature, although the temperature range is limited. However, for -3.6<[Fe/H]<-2.3 we do recover a dependence on metallicity at dA(Li)/d[Fe/H]=0.118+/-0.023 (1 σ) dex per dex, almost the same level as discussed previously. Earlier claims for a lack of dependence of A(Li) on abundance are shown to have arisen probably from noisier estimates of effective temperatures and metallicities, which have erased the real trend. The dependence is concordant with theoretical predictions of Galactic chemical evolution (GCE) of Li (even in such metal-poor stars) and with the published level of 6Li in two of the stars of our sample, which we use to infer the GCE 7Li contribution. One of the 23 stars, G186-26, was known already to be strongly Li-depleted. Of the remaining 22 objects, 21 have abundances consistent with an observed spread about the metallicity trend of a mere 0.031 dex (1 σ). Because the formal errors are 0.033 dex, we conclude that the intrinsic spread is effectively zero at the very metal-poor halo turnoff. This is established at much higher precision than previous studies (~0.06-0.08 dex). The essentially zero intrinsic spread leads to the conclusion that either these stars have all changed their surface Li abundances very uniformly, or else they exhibit close to the primordial abundance sought for its cosmological significance. We cannot rule out a uniform depletion mechanism, but economy of hypothesis supports the latter interpretation. The lack of spread in the A(Li) abundances limits permissible depletion by rotationally induced mixing models to less than 0.1 dex. Correcting for the GCE contribution to both 6Li and 7Li, we infer a primordial abundance A(Li)p~=2.00 dex, with three systematic uncertainties of up to 0.1 dex each depending on uncertainties in the effective temperature scale, stellar atmosphere models, and correction for GCE. (This value rests on an effective-temperature zero-point set by Magain's and Bell & Oke's b-y calibrations of metal-poor stars and the model atmospheres without convective overshoot.) We predict that observations of Li in extremely low-metallicity stars, having [Fe/H]<-3, will yield smaller A(Li) values than the bulk of stars in this sample, consistent with a low primordial abundance. The difference between our field star observations and published M92 data suggests real field-to-cluster differences. This may indicate different angular momentum evolutionary histories, with interactions between protostellar disks in the dense globular cluster environments possibly being responsible. Further study of Li in globular clusters and in very metal-poor field samples is required to clarify the situation. Based on observations obtained with the University College London echelle spectrograph (UCLES) on the 3.9 m Anglo-Australian Telescope (AAT), the Double Beam Spectrograph (DBS) on the Australian National University 2.3 m telescope, and the Utrecht echelle spectrograph (UES) on the 4.2 m William Herschel Telescope (WHT).

  9. Radial velocity variability and stellar properties of FGK stars in the cores of NGC 2516 and NGC 2422

    NASA Astrophysics Data System (ADS)

    Bailey, John I.; Mateo, Mario; White, Russel J.; Shectman, Stephen A.; Crane, Jeffrey D.

    2018-04-01

    We present multi-epoch high-dispersion optical spectra obtained with the Michigan/Magellan Fibre System of 126 and 125 Sun-like stars in the young clusters NGC 2516 (141 Myr) and NGC 2422 (73 Myr). We determine stellar properties including radial velocity (RV), Teff, [Fe/H], [α/Fe] and the line-of-sight rotation rate, vrsin (i), from these spectra. Our median RV precision of 80 m s-1 on individual epochs that span a temporal baseline of 1.1 yr enables us to investigate membership and stellar binarity, and to search for sub-stellar companions. We determine membership probabilities and RV variability probabilities for our sample along with candidate companion orbital periods for a select subset of stars. In NGC 2516, we identified 81 RV members, 27 spectroscopic binaries (17 previously identified as photometric binaries) and 16 other stars that show significant RV variability after accounting for average stellar jitter at the 74 m s-1 level. In NGC 2422, we identify 57 members, 11 spectroscopic binaries and three other stars that show significant RV variability after accounting for an average jitter of 138 m s-1. We use Monte Carlo simulations to verify our stellar jitter measurements, determine the proportion of exoplanets and stellar companions to which we are sensitive, and estimate companion-mass limits for our targets. We also report mean cluster metallicity, velocity and velocity dispersion based on our member targets. We identify 58 non-member stars as RV variables, 24 of which have RV amplitudes that imply stellar or brown-dwarf mass companions. Finally, we note the discovery of a separate RV clustering of stars in our NGC 2422 sample.

  10. Fundmental Parameters of Low-Mass Stars, Brown Dwarfs, and Planets

    NASA Astrophysics Data System (ADS)

    Montet, Benjamin; Johnson, John A.; Bowler, Brendan; Shkolnik, Evgenya

    2016-01-01

    Despite advances in evolutionary models of low-mass stars and brown dwarfs, these models remain poorly constrained by observations. In order to test these predictions directly, masses of individual stars must be measured and combined with broadband photometry and medium-resolution spectroscopy to probe stellar atmospheres. I will present results from an astrometric and spectroscopic survey of low-mass pre-main sequence binary stars to measure individual dynamical masses and compare to model predictions. This is the first systematic test of a large number of stellar systems of intermediate age between young star-forming regions and old field stars. Stars in our sample are members of the Tuc-Hor, AB Doradus, and beta Pictoris moving groups, the last of which includes GJ 3305 AB, the wide binary companion to the imaged exoplanet host 51 Eri. I will also present results of Spitzer observations of secondary eclipses of LHS 6343 C, a T dwarf transiting one member of an M+M binary in the Kepler field. By combining these data with Kepler photometry and radial velocity observations, we can measure the luminosity, mass, and radius of the brown dwarf. This is the first non-inflated brown dwarf for which all three of these parameters have been measured, providing the first benchmark to test model predictions of the masses and radii of field T dwarfs. I will discuss these results in the context of K2 and TESS, which will find additional benchmark transiting brown dwarfs over the course of their missions, including a description of the first planet catalog developed from K2 data and a program to search for transiting planets around mid-M dwarfs.

  11. Hot subdwarf stars in close-up view. II. Rotational properties of single and wide binary subdwarf B stars

    NASA Astrophysics Data System (ADS)

    Geier, S.; Heber, U.

    2012-07-01

    Subluminous B stars (sdBs) form the extremely hot end of the horizontal branch and are therefore related to the blue horizontal branch (BHB) stars. While the rotational properties of BHB stars have been investigated extensively, studies of sdB stars have concentrated on close binaries that are influenced by tidal interactions between their components. Here we present a study of 105 sdB stars, which are either single stars or in wide binaries where tidal effects become negligible. The projected rotational velocities have been determined by measuring the broadening of metal lines using high-resolution optical spectra. All stars in our sample are slow rotators (vrotsini < 10 km s-1). Furthermore, the vrotsini-distributions of single sdBs are similar to those of hot subdwarfs in wide binaries with main-sequence companions as well as close binary systems with unseen companions and periods exceeding ≃1.2 d. We show that blue horizontal and extreme horizontal branch stars are also related in terms of surface rotation and angular momentum. Hot BHB stars (Teff > 11 500 K) with diffusion-dominated atmospheres are slow rotators like the hot subdwarf stars located on the extreme horizontal branch, which lost more envelope and therefore angular momentum in the red-giant phase. The uniform rotation distributions of single and wide binary sdBs pose a challenge to our understanding of hot subdwarf formation. Especially the high fraction of helium white dwarf mergers predicted by theory seems to be inconsistent with the results presented here. Based on observations at the Paranal Observatory of the European Southern Observatory for programmes number 165.H-0588(A), 167.D-0407(A), 071.D-0380(A) and 072.D-0487(A). Based on observations at the La Silla Observatory of the European Southern Observatory for programmes number 073.D-0495(A), 074.B-0455(A), 076.D-0355(A), 077.D-0515(A) and 078.D-0098(A). Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC). Some of the data presented here were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Based on data obtained with the Hobby-Eberly Telescope (HET), which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  12. Lithium-6: A probe of the early universe

    PubMed

    Jedamzik

    2000-04-10

    I consider the synthesis of 6Li due to the decay of relic particles, such as gravitinos or moduli, after the epoch of big bang nucleosynthesis. The synthesized 6Li/H ratio may be compared to 6Li/H in metal-poor stars which, in the absence of stellar depletion of 6Li, yields significantly stronger constraints on relic particle densities than the usual consideration of overproduction of 3He. Production of 6Li during such an era of nonthermal nucleosynthesis may also be regarded as a possible explanation for the relatively high 6Li/H ratios observed in metal-poor halo stars.

  13. Using binary statistics in Taurus-Auriga to distinguish between brown dwarf formation processes

    NASA Astrophysics Data System (ADS)

    Marks, M.; Martín, E. L.; Béjar, V. J. S.; Lodieu, N.; Kroupa, P.; Manjavacas, E.; Thies, I.; Rebolo López, R.; Velasco, S.

    2017-08-01

    Context. One of the key questions of the star formation problem is whether brown dwarfs (BDs) form in the manner of stars directly from the gravitational collapse of a molecular cloud core (star-like) or whether BDs and some very low-mass stars (VLMSs) constitute a separate population that forms alongside stars comparable to the population of planets, for example through circumstellar disk (peripheral) fragmentation. Aims: For young stars in Taurus-Auriga the binary fraction has been shown to be large with little dependence on primary mass above ≈ 0.2 M⊙, while for BDs the binary fraction is < 10%. Here we investigate a case in which BDs in Taurus formed dominantly, but not exclusively, through peripheral fragmentation, which naturally results in small binary fractions. The decline of the binary frequency in the transition region between star-like formation and peripheral formation is modelled. Methods: We employed a dynamical population synthesis model in which stellar binary formation is universal with a large binary fraction close to unity. Peripheral objects form separately in circumstellar disks with a distinctive initial mass function (IMF), their own orbital parameter distributions for binaries, and small binary fractions, according to observations and expectations from smoothed particle hydrodynamics (SPH) and grid-based computations. A small amount of dynamical processing of the stellar component was accounted for as appropriate for the low-density Taurus-Auriga embedded clusters. Results: The binary fraction declines strongly in the transition region between star-like and peripheral formation, exhibiting characteristic features. The location of these features and the steepness of this trend depend on the mass limits for star-like and peripheral formation. Such a trend might be unique to low density regions, such as Taurus, which host binary populations that are largely unprocessed dynamically in which the binary fraction is large for stars down to M-dwarfs and small for BDs. Conclusions: The existence of a strong decline in the binary fraction - primary mass diagram will become verifiable in future surveys on BD and VLMS binarity in the Taurus-Auriga star-forming region. The binary fraction - primary mass diagram is a diagnostic of the (non-)continuity of star formation along the mass scale, the separateness of the stellar and BD populations, and the dominant formation channel for BDs and BD binaries in regions of low stellar density hosting dynamically unprocessed populations.

  14. Commission 42: Close Binary Stars

    NASA Astrophysics Data System (ADS)

    Rucinski, Slavek M.; Ribas, Ignasi; Giménez, Alvaro; Harmanec, Petr; Hilditch, Ronald W.; Kaluzny, Janusz; Niarchos, Panayiotis; Nordström, Birgitta; Oláh, Katalin; Richards, Mercedes T.; Scarfe, Colin D.; Sion, Edward M.; Torres, Guillermo; Vrielmann, Sonja

    Two meetings of interest to close binaries took place during the reporting period: A full day session on short-period binary stars mostly CV's (Milone et al. 2008) during the 2006 AAS Spring meeting in Calgary and the very broadly designed IAU Symposium No. 240 on Binary Stars as Critical Tools and Tests in Contemporary Astrophysics in Prague, 2006, with many papers on close binaries [Hartkopf et al. 2007]. In addition, the book by Eggleton (2006), which is a comprehensive summary of evolutionary processes in binary and multiple stars, was published.

  15. Introduction & Overview to Symposium 240: Binary Stars as Critical Tools and Tests in Contemporary Astrophysics

    DTIC Science & Technology

    2006-01-01

    neutron stars and black holes properties of condensed matter Post CE Binaries V471 Tau (K2 V + wd) Symbiotic Binaries (M III + wd) X-ray Binaries CH...low-mass stars the respect they deserve, since these stars may be the dominant contributor to baryonic mass in the Universe. Ben Lane discussed recent

  16. Constraints on baryonic dark matter in the Galactic halo and Local Group

    NASA Technical Reports Server (NTRS)

    Richstone, Douglas; Gould, Andrew; Guhathakurta, Puragra; Flynn, Chris

    1992-01-01

    A four-color method and deep CCD data are used to search for very faint metal-poor stars in the direction of the south Galactic pole. The results make it possible to limit the contribution of ordinary old, metal-poor stars to the dynamical halo of the Galaxy or to the Local Group. The ratio of the mass of the halo to its ordinary starlight must be more than about 2000, unless the halo is very small. For the Local Group, this ratio is greater than about 400. If this local dark matter is baryonic, the process of compact-object formation must produce very few 'impurities' in the form of stars similar to those found in globular clusters. The expected number of unbound stars with MV not greater than 6 within 100 pc of the sun is less than 1 based on the present 90-percent upper limit to the Local Group starlight.

  17. Not All Stars Are the Sun: Empirical Calibration of the Mixing Length for Metal-poor Stars Using One-dimensional Stellar Evolution Models

    NASA Astrophysics Data System (ADS)

    Joyce, M.; Chaboyer, B.

    2018-03-01

    Theoretical stellar evolution models are constructed and tailored to the best known, observationally derived characteristics of metal-poor ([Fe/H] ∼ ‑2.3) stars representing a range of evolutionary phases: subgiant HD 140283, globular cluster M92, and four single, main sequence stars with well-determined parallaxes: HIP 46120, HIP 54639, HIP 106924, and WOLF 1137. It is found that the use of a solar-calibrated value of the mixing length parameter α MLT in models of these objects is ineffective at reproducing their observed properties. Empirically calibrated values of α MLT are presented for each object, accounting for uncertainties in the input physics employed in the models. It is advocated that the implementation of an adaptive mixing length is necessary in order for stellar evolution models to maintain fidelity in the era of high-precision observations.

  18. Detailed Abundances of Planet-hosting Wide Binaries. I. Did Planet Formation Imprint Chemical Signatures in the Atmospheres of HD 20782/81?

    NASA Astrophysics Data System (ADS)

    Mack, Claude E., III; Schuler, Simon C.; Stassun, Keivan G.; Norris, John

    2014-06-01

    Using high-resolution, high signal-to-noise echelle spectra obtained with Magellan/MIKE, we present a detailed chemical abundance analysis of both stars in the planet-hosting wide binary system HD 20782 + HD 20781. Both stars are G dwarfs, and presumably coeval, forming in the same molecular cloud. Therefore we expect that they should possess the same bulk metallicities. Furthermore, both stars also host giant planets on eccentric orbits with pericenters lsim0.2 AU. Here, we investigate if planets with such orbits could lead to the host stars ingesting material, which in turn may leave similar chemical imprints in their atmospheric abundances. We derived abundances of 15 elements spanning a range of condensation temperature, T C ≈ 40-1660 K. The two stars are found to have a mean element-to-element abundance difference of 0.04 ± 0.07 dex, which is consistent with both stars having identical bulk metallicities. In addition, for both stars, the refractory elements (T C >900 K) exhibit a positive correlation between abundance (relative to solar) and T C, with similar slopes of ≈1×10-4 dex K-1. The measured positive correlations are not perfect; both stars exhibit a scatter of ≈5×10-5 dex K-1 about the mean trend, and certain elements (Na, Al, Sc) are similarly deviant in both stars. These findings are discussed in the context of models for giant planet migration that predict the accretion of H-depleted rocky material by the host star. We show that a simple simulation of a solar-type star accreting material with Earth-like composition predicts a positive—but imperfect—correlation between refractory elemental abundances and T C. Our measured slopes are consistent with what is predicted for the ingestion of 10-20 Earths by each star in the system. In addition, the specific element-by-element scatter might be used to distinguish between planetary accretion and Galactic chemical evolution scenarios. The data presented herein were obtained at the Las Campanas Observatory with the Magellan/MIKE spectrograph.

  19. BINARY CENTRAL STARS OF PLANETARY NEBULAE DISCOVERED THROUGH PHOTOMETRIC VARIABILITY. IV. THE CENTRAL STARS OF HaTr 4 AND Hf 2-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillwig, Todd C.; Schaub, S. C.; Bond, Howard E.

    We explore the photometrically variable central stars of the planetary nebulae HaTr 4 and Hf 2-2. Both have been classified as close binary star systems previously based on their light curves alone. Here, we present additional arguments and data confirming the identification of both as close binaries with an irradiated cool companion to the hot central star. We include updated light curves, orbital periods, and preliminary binary modeling for both systems. We also identify for the first time the central star of HaTr 4 as an eclipsing binary. Neither system has been well studied in the past, but we utilizemore » the small amount of existing data to limit possible binary parameters, including system inclination. These parameters are then compared to nebular parameters to further our knowledge of the relationship between binary central stars of planetary nebulae and nebular shaping and ejection.« less

  20. A revised HRD for individual components of binary systems from BaSeL BVRI synthetic photometry. Influence of interstellar extinction and stellar rotation

    NASA Astrophysics Data System (ADS)

    Lastennet, E.; Fernandes, J.; Lejeune, Th.

    2002-06-01

    Johnson BVRI photometric data for individual components of binary systems have been provided by ten Brummelaar et al. (\\cite{Brummelaar}). This is essential because non-interacting binaries can be considered as two single stars and therefore play a critical role in testing and calibrating single-star stellar evolution sets of isochrones and the implicit theory. While they derived the effective temperature (T_eff) from their estimated spectral type, we infer metallicity-dependent T_eff from a minimizing method fitting the B-V, V-R and V-I colours. For this purpose, a grid of 621 600 flux distributions were computed from the Basel Stellar Library (BaSeL 2.2) of model-atmosphere spectra, and their theoretical colours compared with the observed photometry. The BaSeL colours show a very good agreement with the BVRI metallicity-dependent empirical calibrations of Alonso et al. (\\cite{Alonso}), with the temperatures being different by 3+/-3% in the range 4000-8000 K for dwarf stars. Before deriving the metallicity-dependent T_eff from the BaSeL models, we paid particular attention to the influence of reddening and stellar rotation. We inferred the reddening from two different methods: (i) the MExcessNg code v1.1 (Méndez & van Altena \\cite{Mendez}) and (ii) neutral hydrogen column density data. A comparison of both methods shows a good agreement for the sample located inside a local sphere of ~ 500 pc, but we point out a few directions where the MExcess model overestimates the E(B-V) colour excess. Influence of stellar rotation on the BVRI colours can be neglected except for 5 stars with large v sin i, the maximum effect on temperature being less than 5%. Our final determinations provide effective temperature estimates for each component. They are in good agreement with previous spectroscopic determinations available for a few primary components, and with ten Brummelaar et al. below ~ 10 000 K. Nevertheless, we obtain an increasing disagreement with their temperatures beyond 10 000 K. Finally, we provide a revised Hertzsprung-Russell diagram (HRD) for the systems with the more accurately determined temperatures.

  1. Flare Activity of Wide Binary Stars with Kepler

    NASA Astrophysics Data System (ADS)

    Clarke, Riley W.; Davenport, James R. A.; Covey, Kevin R.; Baranec, Christoph

    2018-01-01

    We present an analysis of flare activity in wide binary stars using a combination of value-added data sets from the NASA Kepler mission. The target list contains a set of previously discovered wide binary star systems identified by proper motions in the Kepler field. We cross-matched these systems with estimates of flare activity for ∼200,000 stars in the Kepler field, allowing us to compare relative flare luminosity between stars in coeval binaries. From a sample of 184 previously known wide binaries in the Kepler field, we find 58 with detectable flare activity in at least 1 component, 33 of which are similar in mass (q > 0.8). Of these 33 equal-mass binaries, the majority display similar (±1 dex) flare luminosity between both stars, as expected for stars of equal mass and age. However, we find two equal-mass pairs where the secondary (lower mass) star is more active than its counterpart, and two equal-mass pairs where the primary star is more active. The stellar rotation periods are also anomalously fast for stars with elevated flare activity. Pairs with discrepant rotation and activity qualitatively seem to have lower mass ratios. These outliers may be due to tidal spin-up, indicating these wide binaries could be hierarchical triple systems. We additionally present high-resolution adaptive optics images for two wide binary systems to test this hypothesis. The demographics of stellar rotation and magnetic activity between stars in wide binaries may be useful indicators for discerning the formation scenarios of these systems.

  2. The Late-type Eclipsing Binaries in the Large Magellanic Cloud: Catalog of Fundamental Physical Parameters

    NASA Astrophysics Data System (ADS)

    Graczyk, Dariusz; Pietrzyński, Grzegorz; Thompson, Ian B.; Gieren, Wolfgang; Pilecki, Bogumił; Konorski, Piotr; Villanova, Sandro; Górski, Marek; Suchomska, Ksenia; Karczmarek, Paulina; Stepień, Kazimierz; Storm, Jesper; Taormina, Mónica; Kołaczkowski, Zbigniew; Wielgórski, Piotr; Narloch, Weronika; Zgirski, Bartłomiej; Gallenne, Alexandre; Ostrowski, Jakub; Smolec, Radosław; Udalski, Andrzej; Soszyński, Igor; Kervella, Pierre; Nardetto, Nicolas; Szymański, Michał K.; Wyrzykowski, Łukasz; Ulaczyk, Krzysztof; Poleski, Radosław; Pietrukowicz, Paweł; Kozłowski, Szymon; Skowron, Jan; Mróz, Przemysław

    2018-06-01

    We present a determination of the precise fundamental physical parameters of 20 detached, double-lined, eclipsing binary stars in the Large Magellanic Cloud (LMC) containing G- or early K-type giant stars. Eleven are new systems; the remaining nine are systems already analyzed by our team for which we present updated parameters. The catalog results from our long-term survey of eclipsing binaries in the Magellanic Clouds suitable for high-precision determination of distances (the Araucaria Project). The V-band brightnesses of the systems range from 15.4 to 17.7 mag, and their orbital periods range from 49 to 773 days. Six systems have favorable geometry showing total eclipses. The absolute dimensions of all eclipsing binary components are calculated with a precision of better than 3%, and all systems are suitable for a precise distance determination. The measured stellar masses are in the range 1.4 to 4.6 M ⊙, and comparison with the MESA isochrones gives ages between 0.1 and 2.1 Gyr. The systems show an age–metallicity relation with no evolution of metallicity for systems older than 0.6 Gyr, followed by a rise to a metallicity maximum at age 0.5 Gyr and then a slow metallicity decrease until 0.1 Gyr. Two systems have components with very different masses: OGLE LMC-ECL-05430 and OGLE LMC-ECL-18365. Neither system can be fitted by a single stellar evolution isochrone, explained by a past mass transfer scenario in the case of ECL-18365 and a gravitational capture or hierarchical binary merger scenario in the case of ECL-05430. The longest-period system, OGLE LMC SC9_230659, shows a surprising apsidal motion that shifts the apparent position of the eclipses. This is a clear sign of a physical companion to the system; however, neither investigation of the spectra nor light-curve analysis indicates a third-light contribution larger than 2%–3%. In one spectrum of OGLE LMC-ECL-12669, we noted a peculiar dimming of one of the components by 65% well outside of the eclipses. We interpret this observation as arising from an extremely rare occultation event, as a foreground Galactic object covers only one component of an extragalactic eclipsing binary.

  3. VizieR Online Data Catalog: Properties of OB associations in IC 1613 (Garcia+, 2010)

    NASA Astrophysics Data System (ADS)

    Garcia, M.; Herrero, A.; Castro, N.; Corral, L.; Rosenberg, A.

    2014-06-01

    To understand the structure and evolution of massive stars, systematic surveys of the Local Group galaxies have been undertaken, to find these objects in environments of different chemical abundances. We focus on the metal-poor irregular galaxy IC 1613 to analyze the stellar and wind structure of its low-metallicity massive stars. We ultimately aim to study the metallicity-dependent driving mechanism of the winds of blue massive stars and use metal-poor massive stars of the Local Volume as a proxy for the stars in the early Universe. In a previous paper we produced a list of OB associations in IC 1613. Their properties are not only a powerful aid towards finding the most interesting candidate massive stars, but also reveal the structure and recent star formation history of the galaxy. We characterize these OB associations and study their connection with the galactic global properties. The reddening-free Q parameter is a powerful tool in the photometric analysis of young populations of massive stars, since it exhibits a smaller degree of degeneracy with OB spectral types than the B-V color. The color-magnitude diagram (Q vs. V) of the OB associations in IC 1613 is studied to determine their age and mass, and confirm the population of young massive stars. We identified more than 10 stars with M>=50M⊙. Spectral classification available for some of them confirm their massive nature, yet we find the common discrepancy with the spectroscopically derived masses. There is a general increasing trend of the mass of the most massive member with the number of members of each association, but not with the stellar density. The average diameter of the associations of this catalog is 40pc, half the historically considered typical size of OB associations. Size increases with the association population. The distribution of the groups strongly correlates with that of neutral and ionized hydrogen. We find the largest dispersion of association ages in the bubble region of the galaxy where hydrogen is abundant, implying that recent star formation has proceeded over a longer period of time than in the rest of the galaxy, and is still ongoing. Very young associations are found at the west of the galaxy far from the bubble region, traditionally considered the sole locus of star formation, but still rich in neutral hydrogen. The contrast in the stellar properties derived from photometry and spectroscopy (when the latter is available) shows that the Q pseudo-color is very useful for estimating the parameters of OB stars when only photometric observations exist. This work helped define an extensive pool of candidate OB stars for subsequent spectroscopic analyses designed to study the structure and winds of metal-poor massive stars. (2 data files).

  4. Planet Formation in Disks with Inclined Binary Companions: Can Primordial Spin-Orbit Misalignment be Produced?

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2018-04-01

    Many hot Jupiter (HJ) systems have been observed to have their stellar spin axis misaligned with the planet's orbital angular momentum axis. The origin of this spin-orbit misalignment and the formation mechanism of HJs remain poorly understood. A number of recent works have suggested that gravitational interactions between host stars, protoplanetary disks, and inclined binary companions may tilt the stellar spin axis with respect to the disk's angular angular momentum axis, producing planetary systems with misaligned orbits. These previous works considered idealized disk evolution models and neglected the gravitational influence of newly formed planets. In this paper, we explore how disk photoevaporation and planet formation and migration affect the inclination evolution of planet-star-disk-binary systems. We take into account planet-disk interactions and the gravitational spin-orbit coupling between the host star and the planet. We find that the rapid depletion of the inner disk via photoevaporation reduces the excitation of stellar obliquities. Depending on the formation and migration history of HJs, the spin-orbit coupling between the star and the planet may reduces and even completely suppress the excitation of stellar obliquities. Our work constrains the formation/migration history of HJs. On the other hand, planetary systems with "cold" Jupiters or close-in super-earths may experience excitation of stellar obliquities in the presence of distant inclined companions.

  5. Planet formation in discs with inclined binary companions: can primordial spin-orbit misalignment be produced?

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2018-07-01

    Many hot Jupiter (HJ) systems have been observed to have their stellar spin axis misaligned with the planet's orbital angular momentum axis. The origin of this spin-orbit misalignment and the formation mechanism of HJs remain poorly understood. A number of recent works have suggested that gravitational interactions between host stars, protoplanetary discs, and inclined binary companions may tilt the stellar spin axis with respect to the disc's angular angular momentum axis, producing planetary systems with misaligned orbits. These previous works considered idealized disc evolution models and neglected the gravitational influence of newly formed planets. In this paper, we explore how disc photoevaporation and planet formation and migration affect the inclination evolution of planet-star-disc-binary systems. We take into account planet-disc interactions and the gravitational spin-orbit coupling between the host star and the planet. We find that the rapid depletion of the inner disc via photoevaporation reduces the excitation of stellar obliquities. Depending on the formation and migration history of HJs, the spin-orbit coupling between the star and the planet may reduces and even completely suppress the excitation of stellar obliquities. Our work constrains the formation/migration history of HJs. On the other hand, planetary systems with `cold' Jupiters or close-in super-earths may experience excitation of stellar obliquities in the presence of distant inclined companions.

  6. An accessible echelle pipeline and its application to a binary star

    NASA Astrophysics Data System (ADS)

    Carmichael, Theron; Johnson, John Asher

    2018-01-01

    Nearly every star observed in the Galaxy has one or more companions that play an integral role in the evolution of the star. Whether it is a planet or another star, a companion opens up opportunities for unique forms of analysis to be done on a system. Some 2400 lightyears away, there is a 3-10 Myr old binary system called KH 15D, which not only includes two T Tauri K-type stars in a close orbit of 48 days, but also a truncated, coherently precessing warped disk in a circumbinary orbit.In binary systems, a double-lined spectroscopic binary may be observable in spectra. This is a spectrum that contains a mixture of each star's properties and manifests as two sets of spectral emission and absorption lines that correspond to each star. Slightly different is a single-lined spectroscopic binary, where only one set of spectral lines from one star is visible. The data of KH 15D are studied in the form of a double single-lined spectroscopic binary. This means that at two separate observing times, a single-lined spectroscopic binary is obtained from one of the stars of KH 15D. This is possible because of the circumbinary disk that blocks one star at a time from view.Here, we study this binary system with a combination of archival echelle data from the Keck Observatory and new echelle data from Las Campanas Observatory. This optical data is reduced with a new Python-based pipeline available on GitHub. The objective is to measure the mass function of the binary star and refine the current values of each star's properties.

  7. Chemical Analysis of a Carbon-enhanced Very Metal-poor Star: CD-27 14351

    NASA Astrophysics Data System (ADS)

    Karinkuzhi, Drisya; Goswami, Aruna; Masseron, Thomas

    2017-01-01

    We present, for the first time, an abundance analysis of a very metal-poor carbon-enhanced star CD-27 14351 based on a high-resolution (R ˜ 48,000) FEROS spectrum. Our abundance analysis performed using local thermodynamic equilibrium model atmospheres shows that the object is a cool star with stellar atmospheric parameters, effective temperature Teff = 4335 K, surface gravity log g = 0.5, microturbulence ξ = 2.42 km s-1, and metallicity [Fe/H] = -2.6. The star exhibits high carbon and nitrogen abundances with [C/Fe] = 2.89 and [N/Fe] = 1.89. Overabundances of neutron-capture elements are evident in Ba, La, Ce, and Nd, with estimated [X/Fe] > 1, the largest enhancement being seen in Ce with [Ce/Fe] = 2.63. While the first peak s-process elements Sr and Y are found to be enhanced with respect to Fe, ([Sr/Fe] = 1.73 and [Y/Fe] = 1.91), the third peak s-process element Pb could not be detected in our spectrum at the given resolution. Europium, primarily an r-process element also shows an enhancement with [Eu/Fe] = 1.65. With [Ba/Eu] = 0.12, the object CD-27 14351 satisfies the classification criterion for a CEMP-r/s star. The elemental abundance distributions observed in this star are discussed in light of the chemical abundances observed in other CEMP stars in the literature.

  8. Rotation, activity, and lithium abundance in cool binary stars

    NASA Astrophysics Data System (ADS)

    Strassmeier, K. G.; Weber, M.; Granzer, T.; Järvinen, S.

    2012-10-01

    We have used two robotic telescopes to obtain time-series high-resolution optical echelle spectroscopy and V I and/or by photometry for a sample of 60 active stars, mostly binaries. Orbital solutions are presented for 26 double-lined systems and for 19 single-lined systems, seven of them for the first time but all of them with unprecedented phase coverage and accuracy. Eighteen systems turned out to be single stars. The total of 6609 {R=55 000} échelle spectra are also used to systematically determine effective temperatures, gravities, metallicities, rotational velocities, lithium abundances and absolute Hα-core fluxes as a function of time. The photometry is used to infer unspotted brightness, {V-I} and/or b-y colors, spot-induced brightness amplitudes and precise rotation periods. An extra 22 radial-velocity standard stars were monitored throughout the science observations and yield a new barycentric zero point for our STELLA/SES robotic system. Our data are complemented by literature data and are used to determine rotation-temperature-activity relations for active binary components. We also relate lithium abundance to rotation and surface temperature. We find that 74 % of all known rapidly-rotating active binary stars are synchronized and in circular orbits but 26 % (61 systems) are rotating asynchronously of which half have {P_rot>P_orb} and {e>0}. Because rotational synchronization is predicted to occur before orbital circularization active binaries should undergo an extra spin-down besides tidal dissipation. We suspect this to be due to a magnetically channeled wind with its subsequent braking torque. We find a steep increase of rotation period with decreasing effective temperature for active stars, P_rot ∝ T_eff-7, for both single and binaries, main sequence and evolved. For inactive, single giants with {P_rot>100} d, the relation is much weaker, {P_rot ∝ T_eff-1.12}. Our data also indicate a period-activity relation for Hα of the form {R_Hα ∝ P_rot-0.24} for binaries and {R_Hα ∝ P_rot-0.14} for singles. Its power-law difference is possibly significant. Lithium abundances in our (field-star) sample generally increase with effective temperature and are paralleled with an increase of the dispersion. The dispersion for binaries can be 1-2 orders of magnitude larger than for singles, peaking at an absolute spread of 3 orders of magnitude near T_eff≈ 5000 K. On average, binaries of comparable effective temperature appear to exhibit 0.25 dex less surface lithium than singles, as expected if the depletion mechanism is rotation dependent. We also find a trend of increased Li abundance with rotational period of form log n (Li) ∝ -0.6 log P_rot but again with a dispersion of as large as 3-4 orders of magnitude. Based on data obtained with the STELLA robotic telescopes in Tenerife, an AIP facility jointly operated with IAC, and the Automatic Photoelectric Telescopes in Arizona, jointly operated with Fairborn Observatory.

  9. In what sense a neutron star-black hole binary is the holy grail for testing gravity?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagchi, Manjari; Torres, Diego F., E-mail: manjari.bagchi@icts.res.in, E-mail: dtorres@ieec.uab.es

    2014-08-01

    Pulsars in binary systems have been very successful to test the validity of general relativity in the strong field regime [1-4]. So far, such binaries include neutron star-white dwarf (NS-WD) and neutron star-neutron star (NS-NS) systems. It is commonly believed that a neutron star-black hole (NS-BH) binary will be much superior for this purpose. But in what sense is this true? Does it apply to all possible deviations?.

  10. DETECTION OF THE SECOND r-PROCESS PEAK ELEMENT TELLURIUM IN METAL-POOR STARS ,

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roederer, Ian U.; Lawler, James E.; Cowan, John J.

    2012-03-15

    Using near-ultraviolet spectra obtained with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope, we detect neutral tellurium in three metal-poor stars enriched by products of r-process nucleosynthesis, BD +17 3248, HD 108317, and HD 128279. Tellurium (Te, Z = 52) is found at the second r-process peak (A Almost-Equal-To 130) associated with the N = 82 neutron shell closure, and it has not been detected previously in Galactic halo stars. The derived tellurium abundances match the scaled solar system r-process distribution within the uncertainties, confirming the predicted second peak r-process residuals. These results suggest that tellurium ismore » predominantly produced in the main component of the r-process, along with the rare earth elements.« less

  11. Searching for intermediate-mass black holes in extremely-metal poor galaxies

    NASA Astrophysics Data System (ADS)

    Mezcua, Mar

    2016-09-01

    Extremely metal-poor dwarf galaxies (XMPs) are star-forming, low-mass galaxies with metallicites highly sub-solar. Their regions of star formation could be triggered by the accretion of pristine gas from the cosmic web and harbour Population III stars. XMPs are thus ideal laboratories for searching for the seed black holes or intermediate-mass black holes (IMBHs) that populated the early Universe. The combination of X-ray, radio and optical observations offer the best tool for detecting such IMBHs in the local Universe. We propose Chandra observations of a sample of XMPs whose optical spectra indicate the possible presence of an active black hole of 1e4 - 1e6 Msun. The Chandra data could confirm this and yield the first detection of an IMBH in these type of galaxies.

  12. Far-UV Spectroscopy of Two Extremely Hot, Helium-Rich White Dwarfs

    NASA Technical Reports Server (NTRS)

    Werner, K.; Rauch, T.; Kruk, J. W.

    2017-01-01

    A large proportion of hot post-asymptotic giant branch stars and white dwarfs (WDs) are hydrogen-deficient. Two distinct evolutionary sequences have been identified. One of them comprises stars of spectral type [WC] and PG1159, and it originates from a late helium-shell flash, creating helium-rich stellar atmospheres with significant admixtures of carbon (up to about 50, mass fraction). The other sequence comprises stars of spectral type O(He) and luminous subdwarf O stars which possibly are descendants of RCrB stars and extreme helium stars. Their carbon abundances are significantly lower (of the order of 1 or less) and it is thought that they originate from binary-star evolution (through merger or common-envelope evolution). Here we investigate two of the three hottest known helium-rich (DO) WDs (PG 1034+001 and PG 0038+199). They are the only ones for which spectra were recorded with the Far Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope, allowing a comprehensive ultraviolet spectral analysis. We find effective temperatures of T(eff) =115000 +/- 5000 K and 125000 +/- 5000 K, respectively, and a surface gravity of log g = 7 +/-0.5. In both stars, nitrogen is strongly oversolar while C and O are significantly subsolar. For all other assessed metals (Ne, Si, P, S, Ar, Fe, and Ni) we find abundances close to solar. We conclude that these WDs are immediate descendants of O(He) stars and, hence, result from close-binary evolution.

  13. Leo P: A very low-mass, extremely metal-poor, star-forming galaxy

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen B.; Leo P Team

    2017-01-01

    Leo P is a low-luminosity dwarf galaxy just outside the Local Group with properties that make it an ideal probe of galaxy evolution at the faint-end of the luminosity function. Using combined data from 2 Hubble Space Telescope (HST) observing campaigns, the Very Large Array, the Spitzer Space telescope, as well as ground based data, we have constructed a robust evolutionary picture of Leo P. Leo P is one the most metal-poor, gas-rich galaxies ever discovered, has a stellar mass of a 5x105 Msun, comparable gas mass, and a single HII region. The star formation history reconstructed from the resolved stellar populations in Leo P shows it is unquenched, despite its very low mass. Based on the star formation history and metallicity measurements, the galaxy has lost 95% of its oxygen produced via nucleosynthesis, presumably to outflows. The neutral gas in the galaxy shows signs of rotation, although the velocity dispersion is comparable to the rotation velocity. Thus, Leo P bridges the gap between more massive dwarf irregular and less massive dwarf spheroidals on the baryonic Tully-Fisher relation. Furthermore, the galaxy hosts several, extremely dusty AGB candidates which will be probed with new HST and Spitzer observations. If confirmed as AGB stars, these may be our best local proxies for studying chemically unevolved star formation and subsequent dust production in metallicity environments comparable to the early universe.

  14. Embedded binaries and their dense cores

    NASA Astrophysics Data System (ADS)

    Sadavoy, Sarah I.; Stahler, Steven W.

    2017-08-01

    We explore the relationship between young, embedded binaries and their parent cores, using observations within the Perseus Molecular Cloud. We combine recently published Very Large Array observations of young stars with core properties obtained from Submillimetre Common-User Bolometer Array 2 observations at 850 μm. Most embedded binary systems are found towards the centres of their parent cores, although several systems have components closer to the core edge. Wide binaries, defined as those systems with physical separations greater than 500 au, show a tendency to be aligned with the long axes of their parent cores, whereas tight binaries show no preferred orientation. We test a number of simple, evolutionary models to account for the observed populations of Class 0 and I sources, both single and binary. In the model that best explains the observations, all stars form initially as wide binaries. These binaries either break up into separate stars or else shrink into tighter orbits. Under the assumption that both stars remain embedded following binary break-up, we find a total star formation rate of 168 Myr-1. Alternatively, one star may be ejected from the dense core due to binary break-up. This latter assumption results in a star formation rate of 247 Myr-1. Both production rates are in satisfactory agreement with current estimates from other studies of Perseus. Future observations should be able to distinguish between these two possibilities. If our model continues to provide a good fit to other star-forming regions, then the mass fraction of dense cores that becomes stars is double what is currently believed.

  15. Calibrating the metallicity of M dwarfs in wide physical binaries with F-, G-, and K- primaries - I: High-resolution spectroscopy with HERMES: stellar parameters, abundances, and kinematics

    NASA Astrophysics Data System (ADS)

    Montes, D.; González-Peinado, R.; Tabernero, H. M.; Caballero, J. A.; Marfil, E.; Alonso-Floriano, F. J.; Cortés-Contreras, M.; González Hernández, J. I.; Klutsch, A.; Moreno-Jódar, C.

    2018-05-01

    We investigated almost 500 stars distributed among 193 binary or multiple systems made of late-F, G-, or early-K primaries and late-K or M dwarf companion candidates. For all of them, we compiled or measured coordinates, J-band magnitudes, spectral types, distances, and proper motions. With these data, we established a sample of 192 physically bound systems. In parallel, we carried out observations with HERMES/Mercator and obtained high-resolution spectra for the 192 primaries and five secondaries. We used these spectra and the automatic STEPAR code for deriving precise stellar atmospheric parameters: Teff, log g, ξ, and chemical abundances for 13 atomic species, including [Fe/H]. After computing Galactocentric space velocities for all the primary stars, we performed a kinematic analysis and classified them in different Galactic populations and stellar kinematic groups of very different ages, which match our own metallicity determinations and isochronal age estimations. In particular, we identified three systems in the halo and 33 systems in the young Local Association, Ursa Major and Castor moving groups, and IC 2391 and Hyades Superclusters. We finally studied the exoplanet-metallicity relation in our 193 primaries and made a list 13 M-dwarf companions with very high metallicity that can be the targets of new dedicated exoplanet surveys. All in all, our dataset will be of great help for future works on the accurate determination of metallicity of M dwarfs.

  16. The Development of Early Pulsation Theory, or, How Cepheids Are Like Steam Engines

    NASA Astrophysics Data System (ADS)

    Stanley, M.

    2012-06-01

    The pulsation theory of Cepheid variable stars was a major breakthrough of early twentieth-century astrophysics. At the beginning of that century, the basic physics of normal stars was very poorly understood, and variable stars were even more mysterious. Breaking with accepted explanations in terms of eclipsing binaries, Harlow Shapley and A. S. Eddington pioneered novel theories that considered Cepheids as pulsating spheres of gas. Surprisingly, the pulsation theory not only depended on novel developments in stellar physics, but the theory also drove many of those developments. In particular, models of stars in radiative balance and theories of stellar energy were heavily inspired and shaped by ideas about variable stars. Further, the success of the pulsation theory helped justify the new approaches to astrophysics being developed before World War II.

  17. Binary Orbits as the Driver of Gamma-Ray Emission and Mass Ejection in Classical Novae

    NASA Technical Reports Server (NTRS)

    Chomiuk, Laura; Linford, Justin D.; Yang, Jun; O'Brien, T. J.; Paragi, Zsolt; Mioduszewski, Amy J.; Beswick, R. J.; Cheung, C. C.; Mukai, Koji; Nelson, Thomas

    2014-01-01

    Classical novae are the most common astrophysical thermonuclear explosions, occurring on the surfaces of white dwarf stars accreting gas from companions in binary star systems. Novae typically expel about 10 (sup -4) solar masses of material at velocities exceeding 1,000 kilometers per second.However, the mechanism of mass ejection in novae is poorly understood, and could be dominated by the impulsive flash of thermonuclear energy, prolonged optically thick winds or binary interaction with the nova envelope. Classical novae are now routinely detected at giga-electronvolt gamma-ray wavelengths, suggesting that relativistic particles are accelerated by strong shocks in the ejecta. Here we report high-resolution radio imaging of the gamma-ray-emitting nova V959 Mon. We find that its ejecta were shaped by the motion of the binary system: some gas was expelled rapidly along the poles as a wind from the white dwarf, while denser material drifted out along the equatorial plane, propelled by orbital motion..At the interface between the equatorial and polar regions, we observe synchrotron emission indicative of shocks and relativistic particle acceleration, thereby pinpointing the location of gamma-ray production. Binary shaping of the nova ejecta and associated internal shocks are expected to be widespread among novae, explaining why many novae are gamma-ray emitters.

  18. Metallicities of Galaxies in the Local Universe

    NASA Astrophysics Data System (ADS)

    Hirschauer, Alec Seth

    2018-01-01

    The degree of heavy-element enrichment for star-forming galaxies in the universe is a fundamental astrophysical characteristic which traces the amount of stellar nucleosynthesis undertaken by the constituent population of stars. Estimating this quantity via the so-called "direct-method" is observationally challenging and requires measurement of intrinsically weak temperature-sensitive nebular emission lines, however these are typically not found for galaxies unless their emission lines are exceptionally bright. Metal abundances ("metallicities") must then therefore be estimated by empirical means utilizing ratios of strong emission lines, calibrated to sources of known abundance and/or theoretical models, which are measurable in essentially any nebular spectrum of a star-forming system. Relationships concerning metallicities in galaxies such as the luminosity-metallicity and mass-metallicity are critically dependent upon reliable estimations of abundances. Therefore, having a reliable observational constraint is paramount to developing models which accurately reflect the universe. This dissertation presentation explores metallicities for galaxies in the local universe through a variety of means. First, an attempt is made to improve calibrations of empirical relationships for estimating abundances for star-forming galaxies at high-metallicities, finding some intrinsic shortcomings but also revealing some interesting new findings regarding the computation of the electron gas of star-forming systems, as well as detecting some anomalously under-abundant, overly-luminous galaxies. Second, the development of a self-consistent scale for estimating metallicities allows for the creation of luminosity-metallicity and mass-metallicity relations for a statistically representative sample of star-forming galaxies in the local universe. Finally, a discovery is made of an extremely metal-poor star-forming galaxy, which opens the possibility to find more similar systems and to better understand star-formation in exceptionally low-abundance environments.

  19. Tracing the Metal-poor M31 Stellar Halo with Blue Horizontal Branch Stars

    NASA Astrophysics Data System (ADS)

    Williams, Benjamin F.; Dalcanton, Julianne J.; Bell, Eric F.; Gilbert, Karoline M.; Guhathakurta, Puragra; Dorman, Claire; Lauer, Tod R.; Seth, Anil C.; Kalirai, Jason S.; Rosenfield, Philip; Girardi, Leo

    2015-03-01

    We have analyzed new Hubble Space Telescope (HST)/Advanced Camera for Surveys and HST/WFC3 imaging in F475W and F814W of two previously unobserved fields along the M31 minor axis to confirm our previous constraints on the shape of M31's inner stellar halo. Both of these new data sets reach a depth of at least F814W <27 and clearly detect the blue horizontal branch (BHB) of the field as a distinct feature of the color-magnitude diagram. We measure the density of BHB stars and the ratio of BHB to red giant branch (RGB) stars in each field using techniques identical to our previous work. We find excellent agreement with our previous measurement of a power law for the 2D projected surface density with an index of 2.6-0.2+0.3 outside of 3 kpc, which flattens to α < 1.2 inside of 3 kpc. Our findings confirm our previous suggestion that the field BHB stars in M31 are part of the halo population. However, the total halo profile is now known to differ from this BHB profile, which suggests that we have isolated the metal-poor component. This component appears to have an unbroken power-law profile from 3-150 kpc but accounts for only about half of the total halo stellar mass. Discrepancies between the BHB density profile and other measurements of the inner halo are therefore likely due to the different profile of the metal-rich halo component, which is not only steeper than the profile of the metal-poor component, but also has a larger core radius. These profile differences also help to explain the large ratio of BHB/RGB stars in our observations.

  20. Baseline metal enrichment from Population III star formation in cosmological volume simulations

    NASA Astrophysics Data System (ADS)

    Jaacks, Jason; Thompson, Robert; Finkelstein, Steven L.; Bromm, Volker

    2018-04-01

    We utilize the hydrodynamic and N-body code GIZMO coupled with our newly developed sub-grid Population III (Pop III) Legacy model, designed specifically for cosmological volume simulations, to study the baseline metal enrichment from Pop III star formation at z > 7. In this idealized numerical experiment, we only consider Pop III star formation. We find that our model Pop III star formation rate density (SFRD), which peaks at ˜ 10- 3 M⊙ yr- 1 Mpc- 1 near z ˜ 10, agrees well with previous numerical studies and is consistent with the observed estimates for Pop II SFRDs. The mean Pop III metallicity rises smoothly from z = 25 to 7, but does not reach the critical metallicity value, Zcrit = 10-4 Z⊙, required for the Pop III to Pop II transition in star formation mode until z ≃ 7. This suggests that, while individual haloes can suppress in situ Pop III star formation, the external enrichment is insufficient to globally terminate Pop III star formation. The maximum enrichment from Pop III star formation in star-forming dark matter haloes is Z ˜ 10-2 Z⊙, whereas the minimum found in externally enriched haloes is Z ≳ 10-7 Z⊙. Finally, mock observations of our simulated IGM enriched with Pop III metals produce equivalent widths similar to observations of an extremely metal-poor damped Lyman alpha system at z = 7.04, which is thought to be enriched by Pop III star formation only.

  1. Abundances in the Uranium-rich Star CS 31082-001

    NASA Astrophysics Data System (ADS)

    Qian, Y.-Z.; Wasserburg, G. J.

    2001-05-01

    The recent discovery by Cayrel et al. of U in CS 31082-001 along with Os and Ir at greatly enhanced abundances but with [Fe/H]=-2.9 strongly reinforces the argument that there are at least two kinds of Type II supernova (SN II) sources for r-nuclei. One source is the high-frequency H events responsible for heavy r-nuclei (A>135) but not Fe. The H-yields calculated from data on other ultra-metal-poor stars and the Sun provide a template for quantitatively predicting the abundances of all other r-elements. In CS 31082-001 these should show a significant deficiency at A<135 relative to the solar r-pattern. It is proposed that CS 31082-001 should have had a companion that exploded as an SN II H event. If the binary survived the explosion, this star should now have a compact companion, most likely a stellar-mass black hole. Comparison of abundance data with predicted values and a search for a compact companion should provide a stringent test of the proposed r-process model. The U-Th age determined by Cayrel et al. for CS 31082-001 is, to within substantial uncertainties, in accord with the r-process age determined from solar system data. The time gap between the big bang and the onset of normal star formation allows r-process chronometers to provide only a lower limit on the age of the universe.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brewer, Lauren N.; Sandquist, Eric L.; Jeffries, Mark W. Jr.

    As part of our study of the old (∼2.5 Gyr) open cluster NGC 6819 in the Kepler field, we present photometric (Kepler and ground-based BVR{sub C}I{sub C}) and spectroscopic observations of the detached eclipsing binary WOCS 24009 (Auner 665; KIC 5023948) with a short orbital period of 3.6 days. WOCS 24009 is a triple-lined system, and we verify that the brightest star is physically orbiting the eclipsing binary using radial velocities and eclipse timing variations. The eclipsing binary components have masses M{sub B} = 1.090 ± 0.010 M{sub ⊙} and M{sub C} = 1.075 ± 0.013 M{sub ⊙}, and radii R{sub B} = 1.099 ± 0.006 ± 0.005 R{sub ⊙} and R{sub C} = 1.069 ± 0.006 ± 0.013 R{submore » ⊙}. The bright non-eclipsing star resides at the cluster turnoff, and ultimately its mass will directly constrain the turnoff mass: our preliminary determination is M{sub A} = 1.251 ± 0.057 M{sub ⊙}. A careful examination of the light curves indicates that the fainter star in the eclipsing binary undergoes a very brief period of total eclipse, which enables us to precisely decompose the light of the three stars and place them in the color–magnitude diagram (CMD). We also present improved analysis of two previously discussed detached eclipsing stars in NGC 6819 (WOCS 40007 and WOCS 23009) en route to a combined determination of the cluster’s distance modulus (m − M){sub V} = 12.38 ± 0.04. Because this paper significantly increases the number of measured stars in the cluster, we can better constrain the age of the CMD to be 2.21 ± 0.10 ± 0.20 Gyr. Additionally, using all measured eclipsing binary star masses and radii, we constrain the age to 2.38 ± 0.05 ± 0.22 Gyr. The quoted uncertainties are estimates of measurement and systematic uncertainties (due to model physics differences and metal content), respectively.« less

  3. Terrestrial Planet Formation Around Close Binary Stars

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Quintana, Elisa V.

    2003-01-01

    Most stars reside in multiple star systems; however, virtually all models of planetary growth have assumed an isolated single star. Numerical simulations of the collapse of molecular cloud cores to form binary stars suggest that disks will form within such systems. Observations indirectly suggest disk material around one or both components within young binary star systems. If planets form at the right places within such circumstellar disks, they can remain in stable orbits within the binary star systems for eons. We are simulating the late stages of growth of terrestrial planets around close binary stars, using a new, ultrafast, symplectic integrator that we have developed for this purpose. The sum of the masses of the two stars is one solar mass, and the initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and in the Alpha Centauri wide binary star system. Giant planets &are included in the simulations, as they are in most simulations of the late stages of terrestrial planet accumulation in our Solar System. When the stars travel on a circular orbit with semimajor axis of up to 0.1 AU about their mutual center of mass, the planetary embryos grow into a system of terrestrial planets that is statistically identical to those formed about single stars, but a larger semimajor axis and/or a significantly eccentric binary orbit can lead to significantly more dynamically hot terrestrial planet systems.

  4. Exploring the SDSS Data Set with Linked Scatter Plots. I. EMP, CEMP, and CV Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbon, Duane F.; Henze, Christopher; Nelson, Bron C., E-mail: Duane.F.Carbon@nasa.gov

    We present the results of a search for extremely metal-poor (EMP), carbon-enhanced metal-poor (CEMP), and cataclysmic variable (CV) stars using a new exploration tool based on linked scatter plots (LSPs). Our approach is especially designed to work with very large spectrum data sets such as the SDSS, LAMOST, RAVE, and Gaia data sets, and it can be applied to stellar, galaxy, and quasar spectra. As a demonstration, we conduct our search using the SDSS DR10 data set. We first created a 3326-dimensional phase space containing nearly 2 billion measures of the strengths of over 1600 spectral features in 569,738 SDSSmore » stars. These measures capture essentially all the stellar atomic and molecular species visible at the resolution of SDSS spectra. We show how LSPs can be used to quickly isolate and examine interesting portions of this phase space. To illustrate, we use LSPs coupled with cuts in selected portions of phase space to extract EMP stars, CEMP stars, and CV stars. We present identifications for 59 previously unrecognized candidate EMP stars and 11 previously unrecognized candidate CEMP stars. We also call attention to 2 candidate He ii emission CV stars found by the LSP approach that have not yet been discussed in the literature.« less

  5. VizieR Online Data Catalog: Exploring the SDSS data set. I. EMP & CV stars (Carbon+, 2017)

    NASA Astrophysics Data System (ADS)

    Carbon, D. F.; Henze, C.; Nelson, B. C.

    2017-08-01

    We present the results of a search for extremely metal-poor (EMP), carbon-enhanced metal-poor (CEMP), and cataclysmic variable (CV) stars using a new exploration tool based on linked scatter plots (LSPs). Our approach is especially designed to work with very large spectrum data sets such as the SDSS, LAMOST, RAVE, and Gaia data sets, and it can be applied to stellar, galaxy, and quasar spectra. As a demonstration, we conduct our search using the SDSS DR10 data set. We first created a 3326-dimensional phase space containing nearly 2 billion measures of the strengths of over 1600 spectral features in 569738 SDSS stars. These measures capture essentially all the stellar atomic and molecular species visible at the resolution of SDSS spectra. We show how LSPs can be used to quickly isolate and examine interesting portions of this phase space. To illustrate, we use LSPs coupled with cuts in selected portions of phase space to extract EMP stars, CEMP stars, and CV stars. We present identifications for 59 previously unrecognized candidate EMP stars and 11 previously unrecognized candidate CEMP stars. We also call attention to 2 candidate He II emission CV stars found by the LSP approach that have not yet been discussed in the literature. (3 data files).

  6. Exploring the SDSS Data Set with Linked Scatter Plots. I. EMP, CEMP, and CV Stars

    NASA Astrophysics Data System (ADS)

    Carbon, Duane F.; Henze, Christopher; Nelson, Bron C.

    2017-02-01

    We present the results of a search for extremely metal-poor (EMP), carbon-enhanced metal-poor (CEMP), and cataclysmic variable (CV) stars using a new exploration tool based on linked scatter plots (LSPs). Our approach is especially designed to work with very large spectrum data sets such as the SDSS, LAMOST, RAVE, and Gaia data sets, and it can be applied to stellar, galaxy, and quasar spectra. As a demonstration, we conduct our search using the SDSS DR10 data set. We first created a 3326-dimensional phase space containing nearly 2 billion measures of the strengths of over 1600 spectral features in 569,738 SDSS stars. These measures capture essentially all the stellar atomic and molecular species visible at the resolution of SDSS spectra. We show how LSPs can be used to quickly isolate and examine interesting portions of this phase space. To illustrate, we use LSPs coupled with cuts in selected portions of phase space to extract EMP stars, CEMP stars, and CV stars. We present identifications for 59 previously unrecognized candidate EMP stars and 11 previously unrecognized candidate CEMP stars. We also call attention to 2 candidate He II emission CV stars found by the LSP approach that have not yet been discussed in the literature.

  7. Galactic evolution of oxygen. OH lines in 3D hydrodynamical model atmospheres

    NASA Astrophysics Data System (ADS)

    González Hernández, J. I.; Bonifacio, P.; Ludwig, H.-G.; Caffau, E.; Behara, N. T.; Freytag, B.

    2010-09-01

    Context. Oxygen is the third most common element in the Universe. The measurement of oxygen lines in metal-poor unevolved stars, in particular near-UV OH lines, can provide invaluable information about the properties of the Early Galaxy. Aims: Near-UV OH lines constitute an important tool to derive oxygen abundances in metal-poor dwarf stars. Therefore, it is important to correctly model the line formation of OH lines, especially in metal-poor stars, where 3D hydrodynamical models commonly predict cooler temperatures than plane-parallel hydrostatic models in the upper photosphere. Methods: We have made use of a grid of 52 3D hydrodynamical model atmospheres for dwarf stars computed with the code CO5BOLD, extracted from the more extended CIFIST grid. The 52 models cover the effective temperature range 5000-6500 K, the surface gravity range 3.5-4.5 and the metallicity range -3 < [Fe/H] < 0. Results: We determine 3D-LTE abundance corrections in all 52 3D models for several OH lines and ion{Fe}{i} lines of different excitation potentials. These 3D-LTE corrections are generally negative and reach values of roughly -1 dex (for the OH 3167 with excitation potential of approximately 1 eV) for the higher temperatures and surface gravities. Conclusions: We apply these 3D-LTE corrections to the individual O abundances derived from OH lines of a sample the metal-poor dwarf stars reported in Israelian et al. (1998, ApJ, 507, 805), Israelian et al. (2001, ApJ, 551, 833) and Boesgaard et al. (1999, AJ, 117, 492) by interpolating the stellar parameters of the dwarfs in the grid of 3D-LTE corrections. The new 3D-LTE [O/Fe] ratio still keeps a similar trend as the 1D-LTE, i.e., increasing towards lower [Fe/H] values. We applied 1D-NLTE corrections to 3D ion{Fe}{i} abundances and still see an increasing [O/Fe] ratio towards lower metallicites. However, the Galactic [O/Fe] ratio must be revisited once 3D-NLTE corrections become available for OH and Fe lines for a grid of 3D hydrodynamical model atmospheres.

  8. The NIR Ca ii triplet at low metallicity. Searching for extremely low-metallicity stars in classical dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Starkenburg, E.; Hill, V.; Tolstoy, E.; González Hernández, J. I.; Irwin, M.; Helmi, A.; Battaglia, G.; Jablonka, P.; Tafelmeyer, M.; Shetrone, M.; Venn, K.; de Boer, T.

    2010-04-01

    The NIR Ca ii triplet absorption lines have proven to be an important tool for quantitative spectroscopy of individual red giant branch stars in the Local Group, providing a better understanding of metallicities of stars in the Milky Way and dwarf galaxies and thereby an opportunity to constrain their chemical evolution processes. An interesting puzzle in this field is the significant lack of extremely metal-poor stars, below [Fe/H] = -3, found in classical dwarf galaxies around the Milky Way using this technique. The question arises whether these stars are really absent, or if the empirical Ca ii triplet method used to study these systems is biased in the low-metallicity regime. Here we present results of synthetic spectral analysis of the Ca ii triplet, that is focused on a better understanding of spectroscopic measurements of low-metallicity giant stars. Our results start to deviate strongly from the widely-used and linear empirical calibrations at [Fe/H] < -2. We provide a new calibration for Ca ii triplet studies which is valid for -0.5 ≥ [Fe/H] ≥ -4. We subsequently apply this new calibration to current data sets and suggest that the classical dwarf galaxies are not so devoid of extremely low-metallicity stars as was previously thought. Using observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile proposal 171.B-0588.

  9. Enhanced X-ray Emission from Early Universe Analog Galaxies

    NASA Astrophysics Data System (ADS)

    Brorby, Matthew; Kaaret, Philip; Prestwich, Andrea H.; Mirabel, I. Felix; Feng, Hua

    2016-04-01

    X-rays from binaries containing compact objects may have played an important role in heating the early Universe. Here we discuss our findings from X-ray studies of blue compact dwarf galaxies (BCDs), Lyman break analogs (LBAs), and Green Pea galaxies (GP), all of which are considered local analogs to high redshift galaxies. We find enhanced X-ray emission per unit star-formation rate which strongly correlates with decreasing metallicity. We find evidence for the existence of a L_X-SFR-Metallicity plane for star-forming galaxies. The exact properties of X-ray emission in the early Universe affects the timing and morphology of reionization, both being observable properties of current and future radio observations of the redshifted 21cm signal from neutral hydrogen.

  10. Binary Star Fractions from the LAMOST DR4

    NASA Astrophysics Data System (ADS)

    Tian, Zhi-Jia; Liu, Xiao-Wei; Yuan, Hai-Bo; Chen, Bing-Qiu; Xiang, Mao-Sheng; Huang, Yang; Wang, Chun; Zhang, Hua-Wei; Guo, Jin-Cheng; Ren, Juan-Juan; Huo, Zhi-Ying; Yang, Yong; Zhang, Meng; Bi, Shao-Lan; Yang, Wu-Ming; Liu, Kang; Zhang, Xian-Fei; Li, Tan-Da; Wu, Ya-Qian; Zhang, Jing-Hua

    2018-05-01

    Stellar systems composed of single, double, triple or higher-order systems are rightfully regarded as the fundamental building blocks of the Milky Way. Binary stars play an important role in formation and evolution of the Galaxy. Through comparing the radial velocity variations from multi-epoch observations, we analyze the binary fraction of dwarf stars observed with LAMOST. Effects of different model assumptions, such as orbital period distributions on the estimate of binary fractions, are investigated. The results based on log-normal distribution of orbital periods reproduce the previous complete analyses better than the power-law distribution. We find that the binary fraction increases with T eff and decreases with [Fe/H]. We first investigate the relation between α-elements and binary fraction in such a large sample as provided by LAMOST. The old stars with high [α/Fe] dominate with a higher binary fraction than young stars with low [α/Fe]. At the same mass, earlier forming stars possess a higher binary fraction than newly forming ones, which may be related with evolution of the Galaxy.

  11. Optical/Infrared properties of Be stars in X-ray Binary systems

    NASA Astrophysics Data System (ADS)

    Naik, Sachindra

    2018-04-01

    Be/X-ray binaries, consisting of a Be star and a compact object (neutron star), form the largest subclass of High Mass X-ray Binaries. The orbit of the compact object around the Be star is wide and highly eccentric. Neutron stars in the Be/X-ray binaries are generally quiescent in X-ray emission. Transient X-ray outbursts seen in these objects are thought to be due to the interaction between the compact object and the circumstellar disk of the Be star at the periastron passage. Optical/infrared observations of the companion Be star during these outbursts show that the increase in the X-ray intensity of the neutron star is coupled with the decrease in the optical/infrared flux of the companion star. Apart from the change in optical/infrared flux, dramatic changes in the Be star emission line profiles are also seen during X-ray outbursts. Observational evidences of changes in the emission line profiles and optical/infrared continuum flux along with associated X-ray outbursts from the neutron stars in several Be/X-ray binaries are presented in this paper.

  12. The Evolution of the Multiplicity of Embedded Protostars. II. Binary Separation Distribution and Analysis

    NASA Astrophysics Data System (ADS)

    Connelley, Michael S.; Reipurth, Bo; Tokunaga, Alan T.

    2008-06-01

    We present the Class I protostellar binary separation distribution based on the data tabulated in a companion paper. We verify the excess of Class I binary stars over solar-type main-sequence stars in the separation range from 500 AU to 4500 AU. Although our sources are in nearby star-forming regions distributed across the entire sky (including Orion), none of our objects are in a high stellar density environment. A log-normal function, used by previous authors to fit the main-sequence and T Tauri binary separation distributions, poorly fits our data, and we determine that a log-uniform function is a better fit. Our observations show that the binary separation distribution changes significantly during the Class I phase, and that the binary frequency at separations greater than 1000 AU declines steadily with respect to spectral index. Despite these changes, the binary frequency remains constant until the end of the Class I phase, when it drops sharply. We propose a scenario to account for the changes in the Class I binary separation distribution. This scenario postulates that a large number of companions with a separation greater than ~1000 AU were ejected during the Class 0 phase, but remain gravitationally bound due to the significant mass of the Class I envelope. As the envelope dissipates, these companions become unbound and the binary frequency at wide separations declines. Circumstellar and circumbinary disks are expected to play an important role in the orbital evolution at closer separations. This scenario predicts that a large number of Class 0 objects should be non-hierarchical multiple systems, and that many Class I young stellar objects (YSOs) with a widely separated companion should also have a very close companion. We also find that Class I protostars are not dynamically pristine, but have experienced dynamical evolution before they are visible as Class I objects. Our analysis shows that the Class I binary frequency and the binary separation distribution strongly depend on the star-forming environment. The Infrared Telescope Facility is operated by the University of Hawaii under Cooperative Agreement no. NCC 5-538 with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. The United Kingdom Infrared Telescope is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the U.K. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  13. The Galah Survey: Classification and Diagnostics with t-SNE Reduction of Spectral Information

    NASA Astrophysics Data System (ADS)

    Traven, G.; Matijevič, G.; Zwitter, T.; Žerjal, M.; Kos, J.; Asplund, M.; Bland-Hawthorn, J.; Casey, A. R.; De Silva, G.; Freeman, K.; Lin, J.; Martell, S. L.; Schlesinger, K. J.; Sharma, S.; Simpson, J. D.; Zucker, D. B.; Anguiano, B.; Da Costa, G.; Duong, L.; Horner, J.; Hyde, E. A.; Kafle, P. R.; Munari, U.; Nataf, D.; Navin, C. A.; Reid, W.; Ting, Y.-S.

    2017-02-01

    Galah is an ongoing high-resolution spectroscopic survey with the goal of disentangling the formation history of the Milky Way using the fossil remnants of disrupted star formation sites that are now dispersed around the Galaxy. It is targeting a randomly selected magnitude-limited (V ≤ 14) sample of stars, with the goal of observing one million objects. To date, 300,000 spectra have been obtained. Not all of them are correctly processed by parameter estimation pipelines, and we need to know about them. We present a semi-automated classification scheme that identifies different types of peculiar spectral morphologies in an effort to discover and flag potentially problematic spectra and thus help to preserve the integrity of the survey results. To this end, we employ the recently developed dimensionality reduction technique t-SNE (t-distributed stochastic neighbor embedding), which enables us to represent the complex spectral morphology in a two-dimensional projection map while still preserving the properties of the local neighborhoods of spectra. We find that the majority (178,483) of the 209,533 Galah spectra considered in this study represents normal single stars, whereas 31,050 peculiar and problematic spectra with very diverse spectral features pertaining to 28,579 stars are distributed into 10 classification categories: hot stars, cool metal-poor giants, molecular absorption bands, binary stars, Hα/Hβ emission, Hα/Hβ emission superimposed on absorption, Hα/Hβ P-Cygni, Hα/Hβ inverted P-Cygni, lithium absorption, and problematic. Classified spectra with supplementary information are presented in the catalog, indicating candidates for follow-up observations and population studies of the short-lived phases of stellar evolution.

  14. The Galah Survey: Classification and Diagnostics with t-SNE Reduction of Spectral Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traven, G.; Zwitter, T.; Žerjal, M.

    Galah is an ongoing high-resolution spectroscopic survey with the goal of disentangling the formation history of the Milky Way using the fossil remnants of disrupted star formation sites that are now dispersed around the Galaxy. It is targeting a randomly selected magnitude-limited ( V ≤ 14) sample of stars, with the goal of observing one million objects. To date, 300,000 spectra have been obtained. Not all of them are correctly processed by parameter estimation pipelines, and we need to know about them. We present a semi-automated classification scheme that identifies different types of peculiar spectral morphologies in an effort tomore » discover and flag potentially problematic spectra and thus help to preserve the integrity of the survey results. To this end, we employ the recently developed dimensionality reduction technique t-SNE ( t -distributed stochastic neighbor embedding), which enables us to represent the complex spectral morphology in a two-dimensional projection map while still preserving the properties of the local neighborhoods of spectra. We find that the majority (178,483) of the 209,533 Galah spectra considered in this study represents normal single stars, whereas 31,050 peculiar and problematic spectra with very diverse spectral features pertaining to 28,579 stars are distributed into 10 classification categories: hot stars, cool metal-poor giants, molecular absorption bands, binary stars, H α /H β emission, H α /H β emission superimposed on absorption, H α /H β P-Cygni, H α /H β inverted P-Cygni, lithium absorption, and problematic. Classified spectra with supplementary information are presented in the catalog, indicating candidates for follow-up observations and population studies of the short-lived phases of stellar evolution.« less

  15. Fast transient X-rays from flare stars and RS CVn binaries

    NASA Astrophysics Data System (ADS)

    Rao, A. R.; Vahia, M. N.

    1987-12-01

    The authors have studied the fast transient X-ray (FTX) observations of the Ariel V satellite. They find that the FTX have characteristics very similar to the stellar flares detected in flare stars and RS CVn binaries by other satellites. It is found that, of the possible candidate objects, only the flare stars and RS CVn binaries can be associated with the Ariel V observations. 11 new flare stars and RS CVn binaries are associated with the FTX. This brings the total number of identifications with the flare stars and RS CVn binaries to 17. The authors further study the flare properties and correlate the peak X-ray luminosity of these Ariel V sources with the bolometric luminosity of the candidate stars. They discuss a solar flare model and show that the observed correlation can be explained under the assumption of constant temperature loops of binary sizes.

  16. Binary black hole mergers from globular clusters: Masses, merger rates, and the impact of stellar evolution

    NASA Astrophysics Data System (ADS)

    Rodriguez, Carl L.; Chatterjee, Sourav; Rasio, Frederic A.

    2016-04-01

    The recent discovery of GW150914, the binary black hole merger detected by Advanced LIGO, has the potential to revolutionize observational astrophysics. But to fully utilize this new window into the Universe, we must compare these new observations to detailed models of binary black hole formation throughout cosmic time. Expanding upon our previous work [C. L. Rodriguez, M. Morscher, B. Pattabiraman, S. Chatterjee, C.-J. Haster, and F. A. Rasio, Phys. Rev. Lett. 115, 051101 (2015).], we study merging binary black holes formed in globular clusters using our Monte Carlo approach to stellar dynamics. We have created a new set of 52 cluster models with different masses, metallicities, and radii to fully characterize the binary black hole merger rate. These models include all the relevant dynamical processes (such as two-body relaxation, strong encounters, and three-body binary formation) and agree well with detailed direct N -body simulations. In addition, we have enhanced our stellar evolution algorithms with updated metallicity-dependent stellar wind and supernova prescriptions, allowing us to compare our results directly to the most recent population synthesis predictions for merger rates from isolated binary evolution. We explore the relationship between a cluster's global properties and the population of binary black holes that it produces. In particular, we derive a numerically calibrated relationship between the merger times of ejected black hole binaries and a cluster's mass and radius. With our improved treatment of stellar evolution, we find that globular clusters can produce a significant population of massive black hole binaries that merge in the local Universe. We explore the masses and mass ratios of these binaries as a function of redshift, and find a merger rate of ˜5 Gpc-3yr-1 in the local Universe, with 80% of sources having total masses from 32 M⊙ to 64 M⊙. Under standard assumptions, approximately one out of every seven binary black hole mergers in the local Universe will have originated in a globular cluster, but we also explore the sensitivity of this result to different assumptions for binary stellar evolution. If black holes were born with significant natal kicks, comparable to those of neutron stars, then the merger rate of binary black holes from globular clusters would be comparable to that from the field, with approximately 1 /2 of mergers originating in clusters. Finally we point out that population synthesis results for the field may also be modified by dynamical interactions of binaries taking place in dense star clusters which, unlike globular clusters, dissolved before the present day.

  17. Europium s-process Signature at Close-to-solar Metallicity in Stardust SiC Grains from Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Ávila, Janaína N.; Ireland, Trevor R.; Lugaro, Maria; Gyngard, Frank; Zinner, Ernst; Cristallo, Sergio; Holden, Peter; Rauscher, Thomas

    2013-05-01

    Individual mainstream stardust silicon carbide (SiC) grains and a SiC-enriched bulk sample from the Murchison carbonaceous meteorite have been analyzed by the Sensitive High Resolution Ion Microprobe-Reverse Geometry for Eu isotopes. The mainstream grains are believed to have condensed in the outflows of ~1.5-3 M ⊙ carbon-rich asymptotic giant branch (AGB) stars with close-to-solar metallicity. The 151Eu fractions [fr(151Eu) = 151Eu/(151Eu+153Eu)] derived from our measurements are compared with previous astronomical observations of carbon-enhanced metal-poor stars enriched in elements made by slow neutron captures (the s-process). Despite the difference in metallicity between the parent stars of the grains and the metal-poor stars, the fr(151Eu) values derived from our measurements agree well with fr(151Eu) values derived from astronomical observations. We have also compared the SiC data with theoretical predictions of the evolution of Eu isotopic ratios in the envelope of AGB stars. Because of the low Eu abundances in the SiC grains, the fr(151Eu) values derived from our measurements show large uncertainties, in most cases being larger than the difference between solar and predicted fr(151Eu) values. The SiC aggregate yields a fr(151Eu) value within the range observed in the single grains and provides a more precise result (fr(151Eu) = 0.54 ± 0.03, 95% conf.), but is approximately 12% higher than current s-process predictions. The AGB models can match the SiC data if we use an improved formalism to evaluate the contribution of excited nuclear states in the calculation of the 151Sm(n, γ) stellar reaction rate.

  18. Formation and Evolution of X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Shao, Y.

    2017-07-01

    X-ray binaries are a class of binary systems, in which the accretor is a compact star (i.e., black hole, neutron star, or white dwarf). They are one of the most important objects in the universe, which can be used to study not only binary evolution but also accretion disks and compact stars. Statistical investigations of these binaries help to understand the formation and evolution of galaxies, and sometimes provide useful constraints on the cosmological models. The goal of this thesis is to investigate the formation and evolution processes of X-ray binaries including Be/X-ray binaries, low-mass X-ray binaries (LMXBs), ultraluminous X-ray sources (ULXs), and cataclysmic variables. In Chapter 1 we give a brief review on the basic knowledge of the binary evolution. In Chapter 2 we discuss the formation of Be stars through binary interaction. In this chapter we investigate the formation of Be stars resulting from mass transfer in binaries in the Galaxy. Using binary evolution and population synthesis calculations, we find that in Be/neutron star binaries the Be stars have a lower limit of mass ˜ 8 M⊙ if they are formed by a stable (i.e., without the occurrence of common envelope evolution) and nonconservative mass transfer. We demonstrate that the isolated Be stars may originate from both mergers of two main-sequence stars and disrupted Be binaries during the supernova explosions of the primary stars, but mergers seem to play a much more important role. Finally the fraction of Be stars produced by binary interactions in all B type stars can be as high as ˜ 13%-30% , implying that most of Be stars may result from binary interaction. In Chapter 3 we show the evolution of intermediate- and low-mass X-ray binaries (I/LMXBs) and the formation of millisecond pulsars. Comparing the calculated results with the observations of binary radio pulsars, we report the following results: (1) The allowed parameter space for forming binary pulsars in the initial orbital period-donor mass plane increases with the increasing neutron star mass. This may help to explain why some millisecond pulsars with orbital periods longer than ˜ 60 d seem to have less massive white dwarfs than expected. Alternatively, some of these wide binary pulsars may be formed through mass transfer driven by planet/brown dwarf-involved common envelope evolution; (2) Some of the pulsars in compact binaries might have evolved from intermediate-mass X-ray binaries with an anomalous magnetic braking; (3) The equilibrium spin periods of neutron stars in low-mass X-ray binaries are in general shorter than the observed spin periods of binary pulsars by more than one order of magnitude, suggesting that either the simple equilibrium spin model does not apply, or there are other mechanisms/processes spinning down the neutron stars. In Chapter 4, angular momentum loss mechanisms in the cataclysmic variables below the period gap are presented. By considering several kinds of consequential angular momentum loss mechanisms, we find that neither isotropic wind from the white dwarf nor outflow from the L1 point can explain the extra angular momentum loss rate, while an ouflow from the L2 point or a circumbinary disk can effectively extract the angular momentum provided that ˜ 15%-45% of the transferred mass is lost from the binary. A more promising mechanism is a circumbinary disk exerting a gravitational torque on the binary. In this case the mass loss fraction can be as low as ≲ 10-3. In Chapter 5 we present a study on the population of ultraluminous X-ray sources with an accreting neutron star. Most ULXs are believed to be X-ray binary systems, but previous observational and theoretical studies tend to prefer a black hole rather than a neutron star accretor. The recent discovery of 1.37 s pulsations from the ULX M82 X-2 has established its nature as a magnetized neutron star. In this chapter we model the formation history of neutron star ULXs in an M82- or Milky Way-like galaxy, by use of both binary population synthesis and detailed binary evolution calculations. We find that the birthrate is around 10-4 yr-1 for the incipient X-ray binaries in both cases. We demonstrate the distribution of the ULX population in the donor mass - orbital period plane. Our results suggest that, compared with black hole X-ray binaries, neutron star X-ray binaries may significantly contribute to the ULX population, and high/intermediate-mass X-ray binaries dominate the neutron star ULX population in M82/Milky Way-like galaxies, respectively. In Chapter 6, the population of intermediate- and low-mass X-ray binaries in the Galaxy is explored. We investigate the formation and evolutionary sequences of Galactic intermediate- and low-mass X-ray binaries by combining binary population synthesis (BPS) and detailed stellar evolutionary calculations. Using an updated BPS code we compute the evolution of massive binaries that leads to the formation of incipient I/LMXBs, and present their distribution in the initial donor mass vs. initial orbital period diagram. We then follow the evolution of I/LMXBs until the formation of binary millisecond pulsars (BMSPs). We show that during the evolution of I/LMXBs they are likely to be observed as relatively compact binaries. The resultant BMSPs have orbital periods ranging from about 1 day to a few hundred days. These features are consistent with observations of LMXBs and BMSPs. We also confirm the discrepancies between theoretical predictions and observations mentioned in the literature, that is, the theoretical average mass transfer rates of LMXBs are considerably lower than observed, and the number of BMSPs with orbital periods ˜ 0.1-1 \\unit{d} is severely underestimated. Both imply that something is missing in the modeling of LMXBs, which is likely to be related to the mechanisms of the orbital angular momentum loss. Finally in Chapter 7 we summarize our results and give the prospects for the future work.

  19. Progenitor constraints for core-collapse supernovae from Chandra X-ray observations

    NASA Astrophysics Data System (ADS)

    Heikkilä, T.; Tsygankov, S.; Mattila, S.; Eldridge, J. J.; Fraser, M.; Poutanen, J.

    2016-03-01

    The progenitors of hydrogen-poor core-collapse supernovae (SNe) of Types Ib, Ic and IIb are believed to have shed their outer hydrogen envelopes either by extremely strong stellar winds, characteristic of classical Wolf-Rayet stars, or by binary interaction with a close companion star. The exact nature of the progenitors and the relative importance of these processes are still open questions. One relatively unexplored method to constrain the progenitors is to search for high-mass X-ray binaries (HMXBs) at SN locations in pre-explosion X-ray observations. In an HMXB, one star has already exploded as a core-collapse SN, producing a neutron star or a stellar mass black hole. It is likely that the second star in the system will also explode as an SN, which should cause a detectable long-term change in the system's X-ray luminosity. In particular, a pre-explosion detection of an HMXB coincident with an SN could be informative about the progenitor's nature. In this paper, we analyse pre-explosion ACIS observations of 18 nearby Type Ib, Ic and IIb SNe from the Chandra X-ray observatory public archive. Two sources that could potentially be associated with the SN are identified in the sample. Additionally we make similar post-explosion measurements for 46 SNe. Although our modelling indicates that progenitor systems with compact binary companions are probably quite rare, studies of this type can in the future provide more stringent constraints as the number of discovered nearby SNe and suitable pre-explosion X-ray data are both increasing.

  20. Follow Up of GW170817 and Its Electromagnetic Counterpart by Australian-Led Observing Programmes

    NASA Astrophysics Data System (ADS)

    Andreoni, I.; Ackley, K.; Cooke, J.; Acharyya, A.; Allison, J. R.; Anderson, G. E.; Ashley, M. C. B.; Baade, D.; Bailes, M.; Bannister, K.; Beardsley, A.; Bessell, M. S.; Bian, F.; Bland, P. A.; Boer, M.; Booler, T.; Brandeker, A.; Brown, I. S.; Buckley, D. A. H.; Chang, S.-W.; Coward, D. M.; Crawford, S.; Crisp, H.; Crosse, B.; Cucchiara, A.; Cupák, M.; de Gois, J. S.; Deller, A.; Devillepoix, H. A. R.; Dobie, D.; Elmer, E.; Emrich, D.; Farah, W.; Farrell, T. J.; Franzen, T.; Gaensler, B. M.; Galloway, D. K.; Gendre, B.; Giblin, T.; Goobar, A.; Green, J.; Hancock, P. J.; Hartig, B. A. D.; Howell, E. J.; Horsley, L.; Hotan, A.; Howie, R. M.; Hu, L.; Hu, Y.; James, C. W.; Johnston, S.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasliwal, M.; Keane, E. F.; Kenney, D.; Klotz, A.; Lau, R.; Laugier, R.; Lenc, E.; Li, X.; Liang, E.; Lidman, C.; Luvaul, L. C.; Lynch, C.; Ma, B.; Macpherson, D.; Mao, J.; McClelland, D. E.; McCully, C.; Möller, A.; Morales, M. F.; Morris, D.; Murphy, T.; Noysena, K.; Onken, C. A.; Orange, N. B.; Osłowski, S.; Pallot, D.; Paxman, J.; Potter, S. B.; Pritchard, T.; Raja, W.; Ridden-Harper, R.; Romero-Colmenero, E.; Sadler, E. M.; Sansom, E. K.; Scalzo, R. A.; Schmidt, B. P.; Scott, S. M.; Seghouani, N.; Shang, Z.; Shannon, R. M.; Shao, L.; Shara, M. M.; Sharp, R.; Sokolowski, M.; Sollerman, J.; Staff, J.; Steele, K.; Sun, T.; Suntzeff, N. B.; Tao, C.; Tingay, S.; Towner, M. C.; Thierry, P.; Trott, C.; Tucker, B. E.; Väisänen, P.; Krishnan, V. Venkatraman; Walker, M.; Wang, L.; Wang, X.; Wayth, R.; Whiting, M.; Williams, A.; Williams, T.; Wolf, C.; Wu, C.; Wu, X.; Yang, J.; Yuan, X.; Zhang, H.; Zhou, J.; Zovaro, H.

    2017-12-01

    The discovery of the first electromagnetic counterpart to a gravitational wave signal has generated follow-up observations by over 50 facilities world-wide, ushering in the new era of multi-messenger astronomy. In this paper, we present follow-up observations of the gravitational wave event GW170817 and its electromagnetic counterpart SSS17a/DLT17ck (IAU label AT2017gfo) by 14 Australian telescopes and partner observatories as part of Australian-based and Australian-led research programs. We report early- to late-time multi-wavelength observations, including optical imaging and spectroscopy, mid-infrared imaging, radio imaging, and searches for fast radio bursts. Our optical spectra reveal that the transient source emission cooled from approximately 6 400 K to 2 100 K over a 7-d period and produced no significant optical emission lines. The spectral profiles, cooling rate, and photometric light curves are consistent with the expected outburst and subsequent processes of a binary neutron star merger. Star formation in the host galaxy probably ceased at least a Gyr ago, although there is evidence for a galaxy merger. Binary pulsars with short (100 Myr) decay times are therefore unlikely progenitors, but pulsars like PSR B1534+12 with its 2.7 Gyr coalescence time could produce such a merger. The displacement ( 2.2 kpc) of the binary star system from the centre of the main galaxy is not unusual for stars in the host galaxy or stars originating in the merging galaxy, and therefore any constraints on the kick velocity imparted to the progenitor are poor.

  1. Uncovering multiple Wolf-Rayet star clusters and the ionized ISM in Mrk 178: the closest metal-poor Wolf-Rayet H II galaxy

    NASA Astrophysics Data System (ADS)

    Kehrig, C.; Pérez-Montero, E.; Vílchez, J. M.; Brinchmann, J.; Kunth, D.; García-Benito, R.; Crowther, P. A.; Hernández-Fernández, J.; Durret, F.; Contini, T.; Fernández-Martín, A.; James, B. L.

    2013-07-01

    New integral field spectroscopy (IFS) has been obtained for the nearby metal-poor Wolf-Rayet (WR) galaxy Mrk 178 to examine the spatial correlation between its WR stars and the neighbouring ionized interstellar medium (ISM). The strength of the broad WR features and its low metallicity make Mrk 178 an intriguing object. We have detected the blue and red WR bumps in different locations across the field of view (˜300 pc × 230 pc) in Mrk 178. The study of the WR content has been extended, for the first time, beyond its brightest star-forming knot uncovering new WR star clusters. Using Large/Small Magellanic Cloud-template WR stars, we empirically estimate a minimum of ˜20 WR stars within the region sampled. Maps of the spatial distribution of the emission lines and of the physical-chemical properties of the ionized ISM have been created and analysed. Here, we refine the statistical methodology by Pérez-Montero et al. (2011) to probe the presence of variations in the ISM properties. An error-weighted mean of 12+log(O/H) = 7.72 ± 0.01 is taken as the representative oxygen abundance for Mrk 178. A localized N and He enrichment, spatially correlated with WR stars, is suggested by this analysis. Nebular He II λ4686 emission is shown to be spatially extended reaching well beyond the location of the WR stars. This spatial offset between WRs and He II emission can be explained based on the mechanical energy input into the ISM by the WR star winds, and does not rule out WR stars as the He II ionization source. We study systematic aperture effects on the detection and measurement of the WR features, using Sloan Digital Sky Survey spectra combined with the power of IFS. In this regard, the importance of targeting low metallicity nearby systems is discussed.

  2. Following the Cosmic Evolution of Pristine Gas. I. Implications for Milky Way Halo Stars

    NASA Astrophysics Data System (ADS)

    Sarmento, Richard; Scannapieco, Evan; Pan, Liubin

    2017-01-01

    We make use of a new subgrid model of turbulent mixing to accurately follow the cosmological evolution of the first stars, the mixing of their supernova (SN) ejecta, and the impact on the chemical composition of the Galactic Halo. Using the cosmological adaptive mesh refinement code ramses, we implement a model for the pollution of pristine gas as described in Pan et al. Tracking the metallicity of Pop III stars with metallicities below a critical value allows us to account for the fraction of Z< {Z}{crit} stars formed even in regions in which the gas’s average metallicity is well above {Z}{crit}. We demonstrate that such partially mixed regions account for 0.5 to 0.7 of all Pop III stars formed up to z = 5. Additionally, we track the creation and transport of “primordial metals” (PM) generated by Pop III SNe. These neutron-capture deficient metals are taken up by second-generation stars and likely lead to unique abundance signatures characteristic of carbon-enhanced, metal-poor (CEMP-no) stars. As an illustrative example, we associate primordial metals with abundance ratios used by Keller et al. to explain the source of metals in the star SMSS J031300.36-670839.3, finding good agreement with the observed [Fe/H], [C/H], [O/H], and [Mg/Ca] ratios in CEMP-no Milky Way halo stars. Similar future simulations will aid in further constraining the properties of Pop III stars using CEMP observations, as well as improve predictions of the spatial distribution of Pop III stars, as will be explored by the next generation of ground- and space-based telescopes.

  3. The stellar content of the Hamburg/ESO survey. IV. Selection of candidate metal-poor stars

    NASA Astrophysics Data System (ADS)

    Christlieb, N.; Schörck, T.; Frebel, A.; Beers, T. C.; Wisotzki, L.; Reimers, D.

    2008-06-01

    We present the quantitative methods used for selecting candidate metal-poor stars in the Hamburg/ESO objective-prism survey (HES). The selection is based on the strength of the Ca II K line, B-V colors (both measured directly from the digital HES spectra), as well as J-K colors from the 2 Micron All Sky Survey. The KP index for Ca II K can be measured from the HES spectra with an accuracy of 1.0 Å, and a calibration of the HES B-V colors, using CCD photometry, yields a 1-σ uncertainty of 0.07 mag for stars in the color range 0.3 < B-V < 1.4. These accuracies make it possible to reliably reject stars with [Fe/H] > -2.0 without sacrificing completeness at the lowest metallicities. A test of the selection using 1121 stars of the HK survey of Beers, Preston, and Shectman present on HES plates suggests that the completeness at [Fe/H] < -3.5 is close to 100% and that, at the same time, the contamination of the candidate sample with false positives is low: 50% of all stars with [Fe/H] > -2.5 and 97% of all stars with [Fe/H] > -2.0 are rejected. The selection was applied to 379 HES fields, covering a nominal area of 8853 deg2 of the southern high Galactic latitude sky. The candidate sample consists of 20 271 stars in the magnitude range 10 ≲ B ≲ 18. A comparison of the magnitude distribution with that of the HK survey shows that the magnitude limit of the HES sample is about 2 mag fainter. Taking the overlap of the sky areas covered by both surveys into account, it follows that the survey volume for metal-poor stars has been increased by the HES by about a factor of 10 with respect to the HK survey. We have already identified several very rare objects with the HES, including, e.g., the three most heavy-element deficient stars currently known. Based on observations collected at the European Southern Observatory, Chile (Proposal ID 145.B-0009). Tables A.1 and A.2 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/484/721

  4. Magnetic massive stars as progenitors of `heavy' stellar-mass black holes

    NASA Astrophysics Data System (ADS)

    Petit, V.; Keszthelyi, Z.; MacInnis, R.; Cohen, D. H.; Townsend, R. H. D.; Wade, G. A.; Thomas, S. L.; Owocki, S. P.; Puls, J.; ud-Doula, A.

    2017-04-01

    The groundbreaking detection of gravitational waves produced by the inspiralling and coalescence of the black hole (BH) binary GW150914 confirms the existence of 'heavy' stellar-mass BHs with masses >25 M⊙. Initial characterization of the system by Abbott et al. supposes that the formation of BHs with such large masses from the evolution of single massive stars is only feasible if the wind mass-loss rates of the progenitors were greatly reduced relative to the mass-loss rates of massive stars in the Galaxy, concluding that heavy BHs must form in low-metallicity (Z ≲ 0.25-0.5 Z⊙) environments. However, strong surface magnetic fields also provide a powerful mechanism for modifying mass-loss and rotation of massive stars, independent of environmental metallicity. In this paper, we explore the hypothesis that some heavy BHs, with masses >25 M⊙ such as those inferred to compose GW150914, could be the natural end-point of evolution of magnetic massive stars in a solar-metallicity environment. Using the MESA code, we developed a new grid of single, non-rotating, solar-metallicity evolutionary models for initial zero-age main sequence masses from 40 to 80 M⊙ that include, for the first time, the quenching of the mass-loss due to a realistic dipolar surface magnetic field. The new models predict terminal-age main-sequence (TAMS) masses that are significantly greater than those from equivalent non-magnetic models, reducing the total mass lost by a strongly magnetized 80 M⊙ star during its main-sequence evolution by 20 M⊙. This corresponds approximately to the mass-loss reduction expected from an environment with metallicity Z = 1/30 Z⊙.

  5. Photometric and Spectroscopic Analysis for the Determination of Physical Parameters of an Eclipsing Binary Star System

    NASA Astrophysics Data System (ADS)

    Reid, Piper

    2013-01-01

    A binary star system is a pair of stars that are bound together by gravity. Most of the stars that we see in the night sky are members of multiple star systems. A system of stars where one star passes in front of the other (as observed from Earth) on a periodic basis is called an eclipsing binary. Eclipsing binaries can have very short rotational periods and in all cases these pairs of stars are so far away that they can only be resolved from Earth as a single point of light. The interaction of the two stars serves to produce physical phenomena that can be observed and used to study stellar properties. By careful data collection and analysis is it possible for an amateur astronomer using commercial, low cost equipment (including a home built spectroscope) to gather photometric (brightness versus time) and spectroscopic (brightness versus wavelength) data, analyze the data, and calculate the physical properties of a binary star system? Using a CCD camera, tracking mount and telescope photometric data of BB Pegasi was collected and a light curve produced. 57 Cygni was also studied using a spectroscope, tracking mount and telescope to prove that Doppler shift of Hydrogen Balmer absorption lines can be used to determine radial velocity. The orbital period, orbital velocity, radius of each star, separation of the two stars and mass of each star was calculated for the eclipsing binary BB Pegasi using photometric and spectroscopic data and Kepler’s 3rd Law. These data were then compared to published data. By careful use of consumer grade astronomical equipment it is possible for an amateur astronomer to determine an array of physical parameters of a distant binary star system from a suburban setting.

  6. 6Li detection in metal-poor stars: can 3D model atmospheres solve the second lithium problem?

    NASA Astrophysics Data System (ADS)

    Steffen, M.; Cayrel, R.; Caffau, E.; Bonifacio, P.; Ludwig, H.-G.; Spite, M.

    The presence of 6Li in the atmospheres of metal-poor halo stars is usually inferred from the detection of a subtle extra depression in the red wing of the 7Li doublet line at 670.8 nm. However, as pointed out recently by \\cite{Cayrel2007}, the intrinsic line asymmetry caused by convective flows in the photospheres of cool stars is almost indistinguishable from the asymmetry produced by a weak 6Li blend on a (presumed) symmetric 7Li profile. Previous determinations of the 6Li/ 7Li isotopic ratio based on 1D model atmospheres, ignoring the convection-induced line asymmetry, must therefore be considered as upper limits. By comparing synthetic 1D LTE and 3D non-LTE line profiles of the iLi 670.8 nm feature, we quantify the differential effect of the convective line asymmetry on the derived 6Li abundance as a function of effective temperature, gravity, and metallicity. As expected, we find that the asymmetry effect systematically reduces the resulting 6Li/7Li ratios. Depending on the stellar parameters, the 3D-1D offset in 6Li/7Li ranges between -0.005 and -0.020. When this purely theoretical correction is taken into account for the \\cite{A2006} sample of stars, the number of significant 6Li detections decreases from 9 to 5 (2sigma criterion), or from 5 to 2 (3sigma criterion). We also present preliminary results of a re-analysis of high-resolution, high S/N spectra of individual metal-poor turn-off stars, to see whether the second Lithium problem actually disappears when accounting properly for convection and non-LTE line formation in 3D stellar atmospheres. Out of 8 stars, HD 84937 seems to be the only significant (2sigma ) detection of 6Li. In view of our results, the existence of a 6Li plateau appears questionable.

  7. Peanut-shaped metallicity distributions in bulges of edge-on galaxies: the case of NGC 4710

    NASA Astrophysics Data System (ADS)

    Gonzalez, Oscar A.; Debattista, Victor P.; Ness, Melissa; Erwin, Peter; Gadotti, Dimitri A.

    2017-03-01

    Bulges of edge-on galaxies are often boxy/peanut-shaped (B/PS), and unsharp masks reveal the presence of an X shape. Simulations show that these shapes can be produced by dynamical processes driven by a bar which vertically thickens the centre. In the Milky Way, which contains such a B/PS bulge, the X-shaped structure is traced by the metal-rich stars but not by the metal-poor ones. Recently, Debattista et al. interpreted this property as a result of the varying effect of the bar on stellar populations with different starting kinematics. This kinematic fractionation model predicts that cooler populations at the time of bar formation go on to trace the X shape, whereas hotter populations are more uniformly distributed. As this prediction is not specific to the Milky Way, we test it with Multi Unit Spectroscopic Explorer (MUSE) observations of the B/PS bulge in the nearby galaxy NGC 4710. We show that the metallicity map is more peanut-shaped than the density distribution itself, in good agreement with the prediction. This result indicates that the X-shaped structure in B/PS bulges is formed of relatively metal-rich stars that have been vertically redistributed by the bar, whereas the metal-poor stars have a more uniform, box-shaped distribution.

  8. Search for Gravitational Waves from Low Mass Compact Binary Coalescence in LIGO's Sixth Science Run and Virgo's Science Runs 2 and 3

    NASA Technical Reports Server (NTRS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; hide

    2012-01-01

    We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20. 2010. We searched for signals from binaries with total mass between 2 and 25 Stellar Mass; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass. including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3 x 10(exp -4), 3.1 x 10(exp -5), and 6.4 x 10(exp -6)/cu Mpc/yr, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.

  9. Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3

    NASA Astrophysics Data System (ADS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; DiGuglielmo, J.; Donovan, F.; Dooley, K. L.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Farr, W.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P. J.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Ganija, M. R.; Garcia, J.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Hardt, A.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kamaretsos, I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B.; Kim, C.; Kim, D.; Kim, H.; Kim, K.; Kim, N.; Kim, Y.-M.; King, P. J.; Kinsey, M.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee, H. M.; Leindecker, N.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menendez, D.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Moesta, P.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Nawrodt, R.; Necula, V.; Nelson, J.; Newton, G.; Nishizawa, A.; Nocera, F.; Nolting, D.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Peiris, P.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Phelps, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C. R.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Ryll, H.; Sainathan, P.; Sakosky, M.; Salemi, F.; Samblowski, A.; Sammut, L.; Sancho de la Jordana, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schlamminger, S.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Smith, R. J. E.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Tseng, K.; Tucker, E.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, X.; Wang, Z.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zadroźny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhang, W.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.

    2012-04-01

    We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20, 2010. We searched for signals from binaries with total mass between 2 and 25M⊙; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass, including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3×10-4, 3.1×10-5, and 6.4×10-6Mpc-3yr-1, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.

  10. Chemical abundances and kinematics of TYC 5619-109-1

    NASA Astrophysics Data System (ADS)

    Pereira, C. B.; Smith, V. V.; Drake, N. A.; Roig, F.; Hasselquist, S.; Cunha, K.; Jilinski, E.

    2017-07-01

    Previous determinations of chemical abundances of the metal-poor red giant TYC 5619-109-1, derived via high-resolution near-infrared spectra from the Apache Point Observatory Galactic Evolution Experiment survey, indicate that this star is strongly enriched in the elements N and Al. Here, we obtain and analyse high-resolution optical spectra of TYC 5619-109-1 to verify these large N and Al overabundances and to measure abundances of a wider range of chemical elements. Our analysis confirms the N- and Al-rich nature of this star, and shows that the abundances of the s-process elements are also strongly enhanced, particularly in the heavy second s-process peak elements (Ba, La, Ce, Nd). Lighter s-process elements (Y, Zr) show smaller overabundances, and the ratio of the light-to-heavy s-process elements is consistent with the 13C(α, n)16O neutron source operating in a low-metallicity environment. The lack of Tc I lines and the abundance of Nb compared to Zr indicate that this red giant is probably not a thermally pulsing asymptotic giant branch (TP-AGB) star. Mass transfer from a former s-process-rich TP-AGB companion may produce the observed overabundances, but our radial velocity analysis provides no evidence that TYC 5619-109-1 is a binary with a white dwarf companion. We suggest that TYC 5619-109-1 formed from gas already strongly enriched in s-process elements, as found in many dwarf galaxies and globular clusters. A dynamical analysis reveals that there is only a small probability that TYC 5619-109-1 is an escaped member of a globular cluster, and in this case the most likely candidate would be ω Cen.

  11. From K giants to G dwarfs: stellar lifetime effects on metallicity distributions derived from red giants

    NASA Astrophysics Data System (ADS)

    Manning, Ellen M.; Cole, Andrew A.

    2017-11-01

    We examine the biases inherent to chemical abundance distributions when targets are selected from the red giant branch (RGB), using simulated giant branches created from isochrones. We find that even when stars are chosen from the entire colour range of RGB stars and over a broad range of magnitudes, the relative numbers of stars of different ages and metallicities, integrated over all stellar types, are not accurately represented in the giant branch sample. The result is that metallicity distribution functions derived from RGB star samples require a correction before they can be fitted by chemical evolution models. We derive simple correction factors for over- and under-represented populations for the limiting cases of single-age populations with a broad range of metallicities and of continuous star formation at constant metallicity; an important general conclusion is that intermediate-age populations (≈1-4 Gyr) are over-represented in RGB samples. We apply our models to the case of the Large Magellanic Cloud bar and show that the observed metallicity distribution underestimates the true number of metal-poor stars by more than 25 per cent; as a result, the inferred importance of gas flows in chemical evolution models could potentially be overestimated. The age- and metallicity-dependences of RGB lifetimes require careful modelling if they are not to lead to spurious conclusions about the chemical enrichment history of galaxies.

  12. Properties of six short-period massive binaries: A study of the effects of binarity on surface chemical abundances

    NASA Astrophysics Data System (ADS)

    Martins, F.; Mahy, L.; Hervé, A.

    2017-11-01

    Context. A significant percentage of massive stars are found in multiple systems. The effect of binarity on stellar evolution is poorly constrained. In particular, the role of tides and mass transfer on surface chemical abundances is not constrained observationally. Aims: The aim of this study is to investigate the effect of binarity on the stellar properties and surface abundances of massive binaries. Methods: We performed a spectroscopic analysis of six Galactic massive binaries. We obtained the spectra of individual components via a spectral disentangling method and subsequently analyzed these spectra by means of atmosphere models. The stellar parameters and CNO surface abundances were determined. Results: Most of these six systems are comprised of main-sequence stars. Three systems are detached, two are in contact, and no information is available for the sixth system. For 11 out of the 12 stars studied, the surface abundances are only mildly affected by stellar evolution and mixing. The surface abundances are not different from those of single stars within the uncertainties. The secondary of XZ Cep is strongly chemically enriched. Considering previous determinations of surface abundances in massive binary systems suggests that the effect of tides on chemical mixing is limited, whereas the mass transfer and removal of outer layers of the mass donor leads to the appearance of chemically processed material at the surface, although this is not systematic. The evolutionary masses of the components of our six systems are on average 16.5% higher than the dynamical masses. Some systems seem to have reached synchronization, while others may still be in a transitory phase. Based on observations made with the SOPHIE spectrograph on the 1.93 m telescope at Observatoire de Haute-Provence (OHP, CNRS/AMU), France.

  13. The dusty Universe: astronomy at infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Hunt, L. K.

    The last twenty years have shown ever more convincingly that most of the star formation activity in the universe is enshrouded in dust. Half of the energy and most of the photons pervading intergalactic space come from the infrared (IR) spectral region. In this review, I describe briefly what has been discovered with IRAS, ISO, and now Spitzer, and look ahead toward the recently launched IR satellite, Herschel, and the future JWST. The focus is extragalactic, mainly star-forming galaxies, and on diagnostics to distinguish them from galaxies hosting active nuclei. I will illustrate the importance of IR wavelengths for probing dust-enshrouded starbursts, quantifying physical processes in the interstellar medium, and measuring star-formation density across cosmic time. Particular attention will be paid to trends with metal abundance; studying how stars form in nearby metal-poor galaxies can help understand the transition between primordial star formation in metal-free environments and the chemically evolved starbursts in the Local Universe.

  14. Hα imaging for BeXRBs in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Maravelias, G.; Zezas, A.; Antoniou, V.; Hatzidimitriou, D.; Haberl, F.

    2017-11-01

    The Small Magellanic Cloud (SMC) hosts a large number of high-mass X-ray binaries, and in particular of Be/X-ray Binaries (BeXRBs; neutron stars orbiting OBe-type stars), offering a unique laboratory to address the effect of metalicity. One key property of their optical companion is Hα in emission, which makes them bright sources when observed through a narrow-band Hα filter. We performed a survey of the SMC Bar and Wing regions using wide-field cameras (WFI@MPG/ESO and MOSAIC@CTIO/Blanco) in order to identify the counterparts of the sources detected in our XMM-Newton survey of the same area. We obtained broad-band R and narrow-band Hα photometry, and identified ~10000 Hα emission sources down to a sensitivity limit of 18.7 mag (equivalent to ~B8 type Main Sequence stars). We find the fraction of OBe/OB stars to be 13% down to this limit, and by investigating this fraction as a function of the brightness of the stars we deduce that Hα excess peaks at the O9-B2 spectral range. Using the most up-to-date numbers of SMC BeXRBs we find their fraction over their parent population to be ~0.002 - 0.025 BeXRBs/OBe, a direct measurement of their formation rate.

  15. The double-degenerate, super-Chandrasekhar nucleus of the planetary nebula Henize 2-428.

    PubMed

    Santander-García, M; Rodríguez-Gil, P; Corradi, R L M; Jones, D; Miszalski, B; Boffin, H M J; Rubio-Díez, M M; Kotze, M M

    2015-03-05

    The planetary nebula stage is the ultimate fate of stars with masses one to eight times that of the Sun (M(⊙)). The origin of their complex morphologies is poorly understood, although several mechanisms involving binary interaction have been proposed. In close binary systems, the orbital separation is short enough for the primary star to overfill its Roche lobe as the star expands during the asymptotic giant branch phase. The excess gas eventually forms a common envelope surrounding both stars. Drag forces then result in the envelope being ejected into a bipolar planetary nebula whose equator is coincident with the orbital plane of the system. Systems in which both stars have ejected their envelopes and are evolving towards the white dwarf stage are said to be double degenerate. Here we report that Henize 2-428 has a double-degenerate core with a combined mass of ∼1.76M(⊙), which is above the Chandrasekhar limit (the maximum mass of a stable white dwarf) of 1.4M(⊙). This, together with its short orbital period (4.2 hours), suggests that the system should merge in 700 million years, triggering a type Ia supernova event. This supports the hypothesis of the double-degenerate, super-Chandrasekhar evolutionary pathway for the formation of type Ia supernovae.

  16. Pop III i-process nucleosynthesis and the elemental abundances of SMSS J0313-6708 and the most iron-poor stars

    NASA Astrophysics Data System (ADS)

    Clarkson, O.; Herwig, F.; Pignatari, M.

    2018-02-01

    We have investigated a highly energetic H-ingestion event during shell He burning leading to H-burning luminosities of log (LH/L⊙) ˜ 13 in a 45 M⊙ Pop III massive stellar model. In order to track the nucleosynthesis which may occur in such an event, we run a series of single-zone nucleosynthesis models for typical conditions found in the stellar evolution model. Such nucleosynthesis conditions may lead to i-process neutron densities of up to ˜1013 cm-3. The resulting simulation abundance pattern, where Mg comes from He burning and Ca from the i process, agrees with the general observed pattern of the most iron-poor star currently known, SMSS J031300.36-670839.3. However, Na is also efficiently produced in these i-process conditions, and the prediction exceeds observations by ˜2.5 dex. While this probably rules out this model for SMSS J031300.36-670839.3, the typical i-process signature of combined He burning and i process of higher than solar [Na/Mg], [Mg/Al], and low [Ca/Mg] is reproducing abundance features of the two next most iron-poor stars HE 1017-5240 and HE 1327-2326 very well. The i process does not reach Fe which would have to come from a low level of additional enrichment. i process in hyper-metal-poor or Pop III massive stars may be able to explain certain abundance patterns observed in some of the most metal-poor CEMP-no stars.

  17. KEPLER ECLIPSING BINARIES WITH STELLAR COMPANIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gies, D. R.; Matson, R. A.; Guo, Z.

    2015-12-15

    Many short-period binary stars have distant orbiting companions that have played a role in driving the binary components into close separation. Indirect detection of a tertiary star is possible by measuring apparent changes in eclipse times of eclipsing binaries as the binary orbits the common center of mass. Here we present an analysis of the eclipse timings of 41 eclipsing binaries observed throughout the NASA Kepler mission of long duration and precise photometry. This subset of binaries is characterized by relatively deep and frequent eclipses of both stellar components. We present preliminary orbital elements for seven probable triple stars amongmore » this sample, and we discuss apparent period changes in seven additional eclipsing binaries that may be related to motion about a tertiary in a long period orbit. The results will be used in ongoing investigations of the spectra and light curves of these binaries for further evidence of the presence of third stars.« less

  18. HOW MANY NUCLEOSYNTHESIS PROCESSES EXIST AT LOW METALLICITY?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, C. J.; Montes, F.; Arcones, A., E-mail: cjhansen@lsw.uni-heidelberg.de, E-mail: cjhansen@dark-cosmology.dk, E-mail: montes@nscl.msu.edu, E-mail: almudena.arcones@physik.tu-darmstadt.de

    Abundances of low-metallicity stars offer a unique opportunity to understand the contribution and conditions of the different processes that synthesize heavy elements. Many old, metal-poor stars show a robust abundance pattern for elements heavier than Ba, and a less robust pattern between Sr and Ag. Here we probe if two nucleosynthesis processes are sufficient to explain the stellar abundances at low metallicity, and we carry out a site independent approach to separate the contribution from these two processes or components to the total observationally derived abundances. Our approach provides a method to determine the contribution of each process to themore » production of elements such as Sr, Zr, Ba, and Eu. We explore the observed star-to-star abundance scatter as a function of metallicity that each process leads to. Moreover, we use the deduced abundance pattern of one of the nucleosynthesis components to constrain the astrophysical conditions of neutrino-driven winds from core-collapse supernovae.« less

  19. Chemical Evolution of Binary Stars

    NASA Astrophysics Data System (ADS)

    Izzard, R. G.

    2013-02-01

    Energy generation by nuclear fusion is the fundamental process that prevents stars from collapsing under their own gravity. Fusion in the core of a star converts hydrogen to heavier elements from helium to uranium. The signature of this nucleosynthesis is often visible in a single star only for a very short time, for example while the star is a red giant or, in massive stars, when it explodes. Contrarily, in a binary system nuclear-processed matter can captured by a secondary star which remains chemically polluted long after its more massive companion star has evolved and died. By probing old, low-mass stars we gain vital insight into the complex nucleosynthesis that occurred when our Galaxy was much younger than it is today. Stellar evolution itself is also affected by the presence of a companion star. Thermonuclear novae and type Ia supernovae result from mass transfer in binary stars, but big questions still surround the nature of their progenitors. Stars may even merge and one of the challenges for the future of stellar astrophysics is to quantitatively understand what happens in such extreme systems. Binary stars offer unique insights into stellar, galactic and extragalactic astrophysics through their plethora of exciting phenomena. Understanding the chemical evolution of binary stars is thus of high priority in modern astrophysics.

  20. The metal-poor stellar halo in RAVE-TGAS and its implications for the velocity distribution of dark matter

    NASA Astrophysics Data System (ADS)

    Herzog-Arbeitman, Jonah; Lisanti, Mariangela; Necib, Lina

    2018-04-01

    The local velocity distribution of dark matter plays an integral role in interpreting the results from direct detection experiments. We previously showed that metal-poor halo stars serve as excellent tracers of the virialized dark matter velocity distribution using a high-resolution hydrodynamic simulation of a Milky Way-like halo. In this paper, we take advantage of the first Gaia data release, coupled with spectroscopic measurements from the RAdial Velocity Experiment (RAVE), to study the kinematics of stars belonging to the metal-poor halo within an average distance of ~5 kpc of the Sun. We study stars with iron abundances [Fe/H] < ‑1.5 and ‑1.8 that are located more than 1.5 kpc from the Galactic plane. Using a Gaussian mixture model analysis, we identify the stars that belong to the halo population, as well as some kinematic outliers. We find that both metallicity samples have similar velocity distributions for the halo component, within uncertainties. Assuming that the stellar halo velocities adequately trace the virialized dark matter, we study the implications for direct detection experiments. The Standard Halo Model, which is typically assumed for dark matter, is discrepant with the empirical distribution by ~6σ, predicts fewer high-speed particles, and is anisotropic. As a result, the Standard Halo Model overpredicts the nuclear scattering rate for dark matter masses below ~10 GeV. The kinematic outliers that we identify may potentially be correlated with dark matter substructure, though further study is needed to establish this correspondence.

  1. Orbital Circularization of Hot and Cool Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Van Eylen, Vincent; Winn, Joshua N.; Albrecht, Simon

    2016-06-01

    The rate of tidal circularization is predicted to be faster for relatively cool stars with convective outer layers, compared to hotter stars with radiative outer layers. Observing this effect is challenging because it requires large and well-characterized samples that include both hot and cool stars. Here we seek evidence of the predicted dependence of circularization upon stellar type, using a sample of 945 eclipsing binaries observed by Kepler. This sample complements earlier studies of this effect, which employed smaller samples of better-characterized stars. For each Kepler binary we measure e cos ω based on the relative timing of the primary and secondary eclipses. We examine the distribution of e cos ω as a function of period for binaries composed of hot stars, cool stars, and mixtures of the two types. At the shortest periods, hot-hot binaries are most likely to be eccentric; for periods shorter than four days, significant eccentricities occur frequently for hot-hot binaries, but not for hot-cool or cool-cool binaries. This is in qualitative agreement with theoretical expectations based on the slower dissipation rates of hot stars. However, the interpretation of our results is complicated by the largely unknown ages and evolutionary states of the stars in our sample.

  2. ORBITAL CIRCULARIZATION OF HOT AND COOL KEPLER ECLIPSING BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eylen, Vincent Van; Albrecht, Simon; Winn, Joshua N., E-mail: vincent@phys.au.dk

    The rate of tidal circularization is predicted to be faster for relatively cool stars with convective outer layers, compared to hotter stars with radiative outer layers. Observing this effect is challenging because it requires large and well-characterized samples that include both hot and cool stars. Here we seek evidence of the predicted dependence of circularization upon stellar type, using a sample of 945 eclipsing binaries observed by Kepler . This sample complements earlier studies of this effect, which employed smaller samples of better-characterized stars. For each Kepler binary we measure e cos ω based on the relative timing of themore » primary and secondary eclipses. We examine the distribution of e cos ω as a function of period for binaries composed of hot stars, cool stars, and mixtures of the two types. At the shortest periods, hot–hot binaries are most likely to be eccentric; for periods shorter than four days, significant eccentricities occur frequently for hot–hot binaries, but not for hot–cool or cool–cool binaries. This is in qualitative agreement with theoretical expectations based on the slower dissipation rates of hot stars. However, the interpretation of our results is complicated by the largely unknown ages and evolutionary states of the stars in our sample.« less

  3. Very massive runaway stars from three-body encounters

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii V.; Gualandris, Alessia

    2011-01-01

    Very massive stars preferentially reside in the cores of their parent clusters and form binary or multiple systems. We study the role of tight very massive binaries in the origin of the field population of very massive stars. We performed numerical simulations of dynamical encounters between single (massive) stars and a very massive binary with parameters similar to those of the most massive known Galactic binaries, WR 20a and NGC 3603-A1. We found that these three-body encounters could be responsible for the origin of high peculiar velocities (≥70 km s-1) observed for some very massive (≥60-70 M⊙) runaway stars in the Milky Way and the Large Magellanic Cloud (e.g. λ Cep, BD+43°3654, Sk -67°22, BI 237, 30 Dor 016), which can hardly be explained within the framework of the binary-supernova scenario. The production of high-velocity massive stars via three-body encounters is accompanied by the recoil of the binary in the opposite direction to the ejected star. We show that the relative position of the very massive binary R145 and the runaway early B-type star Sk-69°206 on the sky is consistent with the possibility that both objects were ejected from the central cluster, R136, of the star-forming region 30 Doradus via the same dynamical event - a three-body encounter.

  4. Condition for dust evacuation from the first galaxies

    NASA Astrophysics Data System (ADS)

    Fukushima, Hajime; Yajima, Hidenobu; Omukai, Kazuyuki

    2018-06-01

    Dust enables low-mass stars to form from low-metallicity gas by inducing fragmentation of clouds via cooling by thermal emission. Dust may, however, be evacuated from star-forming clouds due to the radiation force from massive stars. We study here the condition for dust evacuation by comparing the dust evacuation time with the time of cloud destruction due to either expansion of H II regions or supernovae. The cloud destruction time has a weak dependence on cloud radius, while the dust evacuation time is shorter for a cloud with a smaller radius. Dust evacuation, thus, occurs in compact star-forming clouds whose column density is NH ≃ 1024-1026 cm-2. The critical halo mass above which dust evacuation occurs is lower for higher formation red shift, e.g. ˜109 M⊙ at red shift z ˜ 3 and ˜107 M⊙ at z ˜ 9. In addition, the metallicity of the gas should be less than ˜10-2 Z⊙, otherwise attenuation by dust reduces the radiation force significantly. From the dust-evacuated gas, massive stars are likely to form, even with a metallicity above ˜10-5 Z⊙, the critical value for low-mass star formation due to dust cooling. This can explain the dearth of ultra-metal-poor stars with a metallicity lower than ˜10-4 Z⊙.

  5. Terrestrial Planet Formation in Binary Star Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.; Quintana, E. V.; Adams, F. C.; Chambers, J. E.

    2006-01-01

    Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around one or both components of various young close binary star systems. If planets form at the right places within such disks, they can remain dynamically stable for very long times. We have simulated the late stages of growth of terrestrial planets in both circumbinary disks around 'close' binary star systems with stellar separations ($a_B$) in the range 0.05 AU $\\le a_B \\le$ 0.4 AU and binary eccentricities in the range $0 \\le e \\le 0.8$ and circumstellar disks around individual stars with binary separations of tens of AU. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and around individual stars in the Alpha Centauri system (Quintana et al. 2002, A.J., 576, 982); giant planets analogous to Jupiter and Saturn are included if their orbits are stable. The planetary systems formed around close binaries with stellar apastron distances less than or equal to 0.2 AU with small stellar eccentricities are very similar to those formed in the Sun-Jupiter-Saturn, whereas planetary systems formed around binaries with larger maximum separations tend to be sparser, with fewer planets, especially interior to 1 AU. Likewise, when the binary periastron exceeds 10 AU, terrestrial planets can form over essentially the entire range of orbits allowed for single stars with Jupiter-like planets, although fewer terrestrial planets tend to form within high eccentricity binary systems. As the binary periastron decreases, the radial extent of the terrestrial planet systems is reduced accordingly. When the periastron is 5 AU, the formation of Earth-like planets near 1 AU is compromised.

  6. Magnetospheric Accretion in Close Pre-main-sequence Binaries

    NASA Astrophysics Data System (ADS)

    Ardila, David R.; Jonhs-Krull, Christopher; Herczeg, Gregory J.; Mathieu, Robert D.; Quijano-Vodniza, Alberto

    2015-10-01

    The transfer of matter between a circumbinary disk and a young binary system remains poorly understood, obscuring the interpretation of accretion indicators. To explore the behavior of these indicators in multiple systems, we have performed the first systematic time-domain study of young binaries in the ultraviolet. We obtained far- and near-ultraviolet HST/COS spectra of the young spectroscopic binaries DQ Tau and UZ Tau E. Here we focus on the continuum from 2800 to 3200 Å and on the C iv doublet (λλ1548.19, 1550.77 Å) as accretion diagnostics. Each system was observed over three or four consecutive binary orbits, at phases ∼0, 0.2, 0.5, and 0.7. Those observations are complemented by ground-based U-band measurements. Contrary to model predictions, we do not detect any clear correlation between accretion luminosity and phase. Further, we do not detect any correlation between C iv flux and phase. For both stars the appearance of the C iv line is similar to that of single Classical T Tauri Stars (CTTSs), despite the lack of stable long-lived circumstellar disks. However, unlike the case in single CTTSs, the narrow and broad components of the C iv lines are uncorrelated, and we argue that the narrow component is powered by processes other than accretion, such as flares in the stellar magnetospheres and/or enhanced activity in the upper atmosphere. We find that both stars contribute equally to the narrow component C iv flux in DQ Tau, but the primary dominates the narrow component C iv emission in UZ Tau E. The C iv broad component flux is correlated with other accretion indicators, suggesting an accretion origin. However, the line is blueshifted, which is inconsistent with its origin in an infall flow close to the star. It is possible that the complicated geometry of the region, as well as turbulence in the shock region, are responsible for the blueshifted line profiles.

  7. Habitability in Binary Systems: The Role of UV Reduction and Magnetic Protection

    NASA Astrophysics Data System (ADS)

    Clark, Joni; Mason, P. A.; Zuluaga, J. I.; Cuartas, P. A.; Bustamonte, S.

    2013-06-01

    The number of planets found in binary systems is growing rapidly and the discovery of many more planets in binary systems appears inevitable. We use the newly refined and more restrictive, single star habitable zone (HZ) models of Kopparapu et al. (2013) and include planetary magnetic protection calculations in order to investigate binary star habitability. Here we present results on circumstellar or S-type planets, which are planets orbiting a single star member of a binary. P-type planets, on the other hand, orbit the center of mass of the binary. Stable planetary orbits exist in HZs for both types of binaries as long as the semi-major axis of the planet is either greater than (P-type) or less than (S-type) a few times the semi-major axis of the binary. We define two types of S-type binaries for this investigation. The SA-type is a circumstellar planet orbiting the binary’s primary star. In this case, the limits of habitability are dominated by the primary being only slightly affected by the presence of the lower mass companion. Thus, the SA-type planets have habitability characteristics, including magnetic protection, similar to single stars of the same type. The SB-type is a circumstellar planet orbiting the secondary star in a wide binary. An SB-type planet needs to orbit slightly outside the secondary’s single star HZ and remain within the primary’s single star HZ at all times. We explore the parameter space for which this is possible. We have found that planets lying in the combined HZ of SB binaries can be magnetically protected against the effects of stellar winds from both primary and secondary stars in a limited number of cases. We conclude that habitable conditions exist for a subset of SA-type, and a smaller subset of SB-type binaries. However, circumbinary planets (P-types) provide the most intriguing possibilities for the existence of complex life due to the effect of synchronization of binaries with periods in the 20-30 day range which allows for planets with significant magnetic protection.

  8. The multiplicity of T Tauri stars in the star forming regions Taurus-Auriga and Ophiuchus-Scorpius: A 2.2 micron speckle imaging survey

    NASA Technical Reports Server (NTRS)

    Ghez, A. M.; Neugebauer, G.; Matthews, K.

    1993-01-01

    We present the results of a magnitude limited (K less than = 8.5 mag) speckle imaging survey of 69 T Tauri stars in the star forming regions Taurus-Auriga and Ophiuchus-Scorpius. Thirty-three companion stars were found with separations ranging from 0.07 sec to 2.5 sec, nine are new detections. This survey reveals a distinction between the classical T Tauri stars (CTTS) and the weak-lined T Tauri stars (WTTS) based on the binary star frequency as a function of separation: the WTTS binary star distribution is enhanced at the closer separations (less than 50 AU) relative to the CTTS binary star distribution. We suggest that the nearby companion stars shorten the accretion time scale in multiple star systems, thereby accounting for the presence of WTTS that are coeval with many CTTS. The binary star frequency in the projected linear separation range 16 to 252 AU for T Tauri stars (60 (+/- 17)%) is a factor of 4 greater than that of the solar-type main-sequence stars (16(+/- 3)%). Given the limited separation range of this survey, the rate at which binaries are detected suggests that most, if not all, T Tauri stars have companions. We propose that the observed overabundance of companions of T Tauri stars is an evolutionary effect, in which triple and higher order T Tauri stars are disrupted by close encounters with another star or system of stars.

  9. Finding binaries from phase modulation of pulsating stars with Kepler

    NASA Astrophysics Data System (ADS)

    Shibahashi, Hiromoto; Murphy, Simon; Bedding, Tim

    2017-09-01

    Binary orbital motion causes a periodic variation in the path length travelled by light emitted from a star towards us. Hence, if the star is pulsating, the observed phase of the pulsation varies over the orbit. Conversely, once we have observed such phase variation, we can extract information about the binary orbit from photometry alone. Continuous and precise space-based photometry has made it possible to measure these light travel time effects on the pulsating stars in binary systems. This opens up a new way of finding unseen brown dwarfs, planets, or massive compact stellar remnants: neutron stars and black holes.

  10. Absolute Ages and Distances of 22 GCs Using Monte Carlo Main-sequence Fitting

    NASA Astrophysics Data System (ADS)

    O'Malley, Erin M.; Gilligan, Christina; Chaboyer, Brian

    2017-04-01

    The recent Gaia Data Release 1 of stellar parallaxes provides ample opportunity to find metal-poor main-sequence stars with precise parallaxes. We select 21 such stars with parallax uncertainties better than σ π /π ≤ 0.10 and accurate abundance determinations suitable for testing metal-poor stellar evolution models and determining the distance to Galactic globular clusters (GCs). A Monte Carlo analysis was used, taking into account uncertainties in the model construction parameters, to generate stellar models and isochrones to fit to the calibration stars. The isochrones that fit the calibration stars best were then used to determine the distances and ages of 22 GCs with metallicities ranging from -2.4 dex to -0.7 dex. We find distances with an average uncertainty of 0.15 mag and absolute ages ranging from 10.8 to 13.6 Gyr with an average uncertainty of 1.6 Gyr. Using literature proper motion data, we calculate orbits for the clusters, finding six that reside within the Galactic disk/bulge, while the rest are considered halo clusters. We find no strong evidence for a relationship between age and Galactocentric distance, but we do find a decreasing age-[Fe/H] relation.

  11. Connecting the First Galaxies with Ultrafaint Dwarfs in the Local Group: Chemical Signatures of Population III Stars

    NASA Astrophysics Data System (ADS)

    Jeon, Myoungwon; Besla, Gurtina; Bromm, Volker

    2017-10-01

    We investigate the star formation history (SFH) and chemical evolution of isolated analogs of Local Group (LG) ultrafaint dwarf galaxies (UFDs; stellar mass range of {10}2 {M}⊙ < {M}* < {10}5 {M}⊙ ) and gas-rich, low-mass dwarfs (Leo P analogs; stellar mass range of {10}5 {M}⊙ < {M}* < {10}6 {M}⊙ ). We perform a suite of cosmological hydrodynamic zoom-in simulations to follow their evolution from the era of the first generation of stars down to z = 0. We confirm that reionization, combined with supernova (SN) feedback, is primarily responsible for the truncated star formation in UFDs. Specifically, halos with a virial mass of {M}{vir}≲ 2× {10}9 {M}⊙ form ≳ 90 % of stars prior to reionization. Our work further demonstrates the importance of Population III stars, with their intrinsically high [{{C}}/{Fe}] yields and the associated external metal enrichment, in producing low-metallicity stars ([{Fe}/{{H}}]≲ -4) and carbon-enhanced metal-poor (CEMP) stars. We find that UFDs are composite systems, assembled from multiple progenitor halos, some of which hosted only Population II stars formed in environments externally enriched by SNe in neighboring halos, naturally producing extremely low metallicity Population II stars. We illustrate how the simulated chemical enrichment may be used to constrain the SFHs of true observed UFDs. We find that Leo P analogs can form in halos with {M}{vir}˜ 4× {10}9 {M}⊙ (z = 0). Such systems are less affected by reionization and continue to form stars until z = 0, causing higher-metallicity tails. Finally, we predict the existence of extremely low metallicity stars in LG UFD galaxies that preserve the pure chemical signatures of Population III nucleosynthesis.

  12. Carbon and nitrogen abundances in F- and G-type stars

    NASA Technical Reports Server (NTRS)

    Clegg, R. E. S.

    1977-01-01

    Carbon and nitrogen abundances have been obtained for a sample of 11-F- and G-type dwarfs covering a range in Fe/H abundance ratio from -0.8 to +0.3. Model atmospheres, which included the effects of convection and line blanketing, were used to calculate synthetic spectra of the CH, CN, and NH molecular bands. Effective oscillator strengths for the bands studied were found by matching synthetic spectra calculated from a model solar atmosphere with the observed solar bands. Many of the metal-poor stars, and particularly the high-velocity stars, were found to have substantial nitrogen over-deficiencies, suggesting that N is manufactured mostly in a secondary manner. The carbon-to-iron ratios were similar to the solar ratio, although there may be slight C over-deficiencies in metal-poor stars. However, the variation in C/Fe is not as marked as that found recently by Hearnshaw (1974). A comprehensive discussion of the theoretical errors is given, and some applications to Galactic evolution are noted.

  13. Binary Neutron Stars with Arbitrary Spins in Numerical Relativity

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Harald; Tacik, Nick; Foucart, Francois; Haas, Roland; Kaplan, Jeffrey; Muhlberger, Curran; Duez, Matt; Kidder, Lawrence; Scheel, Mark; Szilagyi, Bela

    2015-04-01

    We present a code to construct initial data for binary neutron star where the stars are rotating. Our code, based on the formalism developed by Tichy, allows for arbitrary rotation axes of the neutron stars and is able to achieve rotation rates near rotational breakup. We demonstrate that orbital eccentricity of the binary neutron stars can be controlled to ~ 0 . 1 % . Preliminary evolutions show that spin- and orbit-precession of Neutron stars is well described by post-Newtonian approximation. The neutron stars show quasi-normal mode oscillations at an amplitude which increases with the rotation rate of the stars.

  14. Impact of Lyman alpha pressure on metal-poor dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Kimm, Taysun; Haehnelt, Martin; Blaizot, Jérémy; Katz, Harley; Michel-Dansac, Léo; Garel, Thibault; Rosdahl, Joakim; Teyssier, Romain

    2018-04-01

    Understanding the origin of strong galactic outflows and the suppression of star formation in dwarf galaxies is a key problem in galaxy formation. Using a set of radiation-hydrodynamic simulations of an isolated dwarf galaxy embedded in a 1010 M⊙ halo, we show that the momentum transferred from resonantly scattered Lyman-α (Lyα) photons is an important source of stellar feedback which can shape the evolution of galaxies. We find that Lyα feedback suppresses star formation by a factor of two in metal-poor galaxies by regulating the dynamics of star-forming clouds before the onset of supernova explosions (SNe). This is possible because each Lyα photon resonantly scatters and imparts ˜10-300 times greater momentum than in the single scattering limit. Consequently, the number of star clusters predicted in the simulations is reduced by a factor of ˜5, compared to the model without the early feedback. More importantly, we find that galactic outflows become weaker in the presence of strong Lyα radiation feedback, as star formation and associated SNe become less bursty. We also examine a model in which radiation field is arbitrarily enhanced by a factor of up to 10, and reach the same conclusion. The typical mass-loading factors in our metal-poor dwarf system are estimated to be ˜5-10 near the mid-plane, while it is reduced to ˜1 at larger radii. Finally, we find that the escape of ionizing radiation and hence the reionization history of the Universe is unlikely to be strongly affected by Lyα feedback.

  15. The Eclipsing Central Stars of the Planetary Nebulae Lo 16 and PHR J1040-5417

    NASA Astrophysics Data System (ADS)

    Hillwig, Todd C.; Frew, David; Jones, David; Crispo, Danielle

    2017-01-01

    Binary central stars of planetary nebula are a valuable tool in understanding common envelope evolution. In these cases both the resulting close binary system and the expanding envelope (the planetary nebula) can be studied directly. In order to compare observed systems with common envelope evolution models we need to determine precise physical parameters of the binaries and the nebulae. Eclipsing central stars provide us with the best opportunity to determine high precision values for mass, radius, and temperature of the component stars in these close binaries. We present photometry and spectroscopy for two of these eclipsing systems; the central stars of Lo 16 and PHR 1040-5417. Using light curves and radial velocity curves along with binary modeling we provide physical parameters for the stars in both of these systems.

  16. Wolf-Rayet spin at low metallicity and its implication for black hole formation channels

    NASA Astrophysics Data System (ADS)

    Vink, Jorick S.; Harries, Tim J.

    2017-07-01

    Context. The spin of Wolf-Rayet (WR) stars at low metallicity (Z) is most relevant for our understanding of gravitational wave sources, such as GW 150914, and of the incidence of long-duration gamma-ray bursts (GRBs). Two scenarios have been suggested for both phenomena: one of them involves rapid rotation and quasi-chemical homogeneous evolution (CHE) and the other invokes classical evolution through mass loss in single and binary systems. Aims: The stellar spin of WR stars might enable us to test these two scenarios. In order to obtain empirical constraints on black hole progenitor spin we infer wind asymmetries in all 12 known WR stars in the Small Magellanic Cloud (SMC) at Z = 1 / 5 Z⊙ and within a significantly enlarged sample of single and binary WR stars in the Large Magellanic Cloud (LMC at Z = 1 / 2 Z⊙), thereby tripling the sample of Vink from 2007. This brings the total LMC sample to 39, making it appropriate for comparison to the Galactic sample. Methods: We measured WR wind asymmetries with VLT-FORS linear spectropolarimetry, a tool that is uniquely poised to perform such tasks in extragalactic environments. Results: We report the detection of new line effects in the LMC WN star BAT99-43 and the WC star BAT99-70, along with the well-known WR LBV HD 5980 in the SMC, which might be undergoing a chemically homogeneous evolution. With the previous reported line effects in the late-type WNL (Ofpe/WN9) objects BAT99-22 and BAT99-33, this brings the total LMC WR sample to four, I.e. a frequency of 10%. Perhaps surprisingly, the incidence of line effects amongst low Z WR stars is not found to be any higher than amongst the Galactic WR sample, challenging the rotationally induced CHE model. Conclusions: As WR mass loss is likely Z-dependent, our Magellanic Cloud line-effect WR stars may maintain their surface rotation and fulfill the basic conditions for producing long GRBs, both via the classical post-red supergiant or luminous blue variable channel, or resulting from CHE due to physics specific to very massive stars.

  17. SX Phoenecis Stars in the Extremely Metal-Poor Globular Clusters NGC 5053

    NASA Astrophysics Data System (ADS)

    Nemec, James M.; Mateo, Mario; Burke, Morgan; Olszewski, Edward W.

    1995-09-01

    The results of a major search for photometrically variable blue straggler stars (BSs) in the extremely metal-poor globular cluster NGC 5053 are presented. The survey is based on photometry of over 200 CCD frames (BVI passbands) taken on 18 nights between 1985 and 1994. Five of the 16 BSs monitored for variability are identified as SX Phe stars and their photometric characteristics derived. These five stars are among the shortest-period (49

  18. SLoWPoKES-II: 100,000 WIDE BINARIES IDENTIFIED IN SDSS WITHOUT PROPER MOTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhital, Saurav; West, Andrew A.; Schluns, Kyle J.

    2015-08-15

    We present the Sloan Low-mass Wide Pairs of Kinematically Equivalent Stars (SLoWPoKES)-II catalog of low-mass visual binaries identified from the Sloan Digital Sky Survey (SDSS) by matching photometric distances. The candidate pairs are vetted by comparing the stellar information. The candidate pairs are vetted by comparing the stellar density at their respective Galactic positions to Monte Carlo realizations of a simulated Milky Way. In this way, we are able to identify large numbers of bona fide wide binaries without the need for proper motions. Here, 105,537 visual binaries with angular separations of ∼1–20″ were identified, each with a probability ofmore » chance alignment of ≤5%. This is the largest catalog of bona fide wide binaries to date, and it contains a diversity of systems—in mass, mass ratios, binary separations, metallicity, and evolutionary states—that should facilitate follow-up studies to characterize the properties of M dwarfs and white dwarfs. There is a subtle but definitive suggestion of multiple populations in the physical separation distribution, supporting earlier findings. We suggest that wide binaries are composed of multiple populations, most likely representing different formation modes. There are 141 M7 or later wide binary candidates, representing a seven-fold increase over the number currently known. These binaries are too wide to have been formed via the ejection mechanism. Finally, we found that 6% of spectroscopically confirmed M dwarfs are not included in the SDSS STAR catalog; they are misclassified as extended sources due to the presence of a nearby or partially resolved companion. The SLoWPoKES-II catalog is publicly available to the entire community on the World Wide Web via the Filtergraph data visualization portal.« less

  19. Evolution of black holes in the galaxy

    NASA Astrophysics Data System (ADS)

    Brown, G. E.; Lee, C.-H.; Wijers, R. A. M. J.; Bethe, H. A.

    2000-08-01

    In this article we consider the formation and evolution of black holes, especially those in binary stars where radiation from the matter falling on them can be seen. We consider a number of effects introduced by some of us, which are not traditionally included in binary evolution of massive stars. These are (i) hypercritical accretion, which allows neutron stars to accrete enough matter to collapse to a black hole during their spiral-in into another star. (ii) The strong mass loss of helium stars, which causes their evolution to differ from that of the helium core of a massive star. (iii) The direct formation of low-mass black holes (M~2Msolar) from single stars, a consequence of a significant strange-matter content of the nuclear-matter equation of state at high density. We discuss these processes here, and then review how they affect various populations of binaries with black holes and neutron stars. We have found that hypercritical accretion changes the standard scenario for the evolution of binary neutron stars: it now usually gives a black-hole, neutron-star (BH-NS) binary, because the first-born neutron star collapses to a low-mass black hole in the course of the evolution. A less probable double helium star scenario has to be introduced in order to form neutron-star binaries. The result is that low-mass black-hole, neutron star (LBH-NS) binaries dominate the rate of detectable gravity-wave events, say, by LIGO, by a factor /~20 over the binary neutron stars. The formation of high-mass black holes is suppressed somewhat due to the influence of mass loss on the cores of massive stars, raising the minimum mass for a star to form a massive BH to perhaps 80Msolar. Still, inclusion of high-mass black-hole, neutron-star (HBH-NS) binaries increases the predicted LIGO detection rate by another /~30% lowering of the mass loss rates of Wolf-Rayet stars may lower the HBH mass limit, and thereby further increase the merger rate. We predict that /~33 mergers per year will be observed with LIGO once the advanced detectors planned to begin in 2004 are in place. Black holes are also considered as progenitors for gamma ray bursters (GRB). Due to their rapid spin, potentially high magnetic fields, and relatively clean environment, mergers of black-hole, neutron-star binaries may be especially suitable. Combined with their 10 times greater formation rate than binary neutron stars this makes them attractive candidates for GRB progenitors, although the strong concentration of GRBs towards host galaxies may favor massive star progenitors or helium-star, black-hole mergers. We also consider binaries with a low-mass companion, and study the evolution of the very large number of black-hole transients, consisting of a black hole of mass ~7Msolar accompanied by a K or M main-sequence star (except for two cases with a somewhat more massive subgiant donor). We show that common envelope evolution must take place in the supergiant stage of the massive progenitor of the black hole, giving an explanation of why the donor masses are so small. We predict that there are about 22 times more binaries than observed, in which the main-sequence star, somewhat more massive than a K- or M-star, sits quietly inside its Roche Lobe, and will only become an X-ray source when the companion evolves off the main sequence. We briefly discuss the evolution of low-mass X-ray binaries into millisecond pulsars. We point out that in the usual scenario for forming millisecond pulsars with He white-dwarf companions, the long period of stable mass transfer will usually lead to the collapse of the neutron star into a black hole. We then discuss Van den Heuvel's ``Hercules X-1 scenario'' for forming low-mass X-ray binaries, commenting on the differences in accretion onto the compact object by radiative or semiconvective donors, rather than the deeply convective donors used in the earlier part of our review. In Appendix /A we describe the evolution of Cyg X-3, finding the compact object to be a black hole of ~3Msolar, together with an ~10Msolar He star. In Appendix /B we do the accounting for gravitational mergers and in Appendix /C we show low-mass black-hole, neutron-star binaries to be good progenitors for gamma ray bursters.

  20. A Search for Black Holes and Neutron Stars in the Kepler Field

    NASA Astrophysics Data System (ADS)

    Orosz, Jerome; Short, Donald; Welsh, William; Windmiller, Gur; Dabney, David

    2018-01-01

    Black holes and neutron stars represent the final evolutionary stages of the most massive stars. In addition to their use as probes into the evolution of massive stars, black holes and neutron stars are ideal laboratories to test General Relativity in the strong field limit. The number of neutron stars and black holes in the Milky Way is not precisely known, but there are an estimated one billion neutron stars in the galaxy based on the observed numbers of radio pulsars. The number of black holes is about 100 million, based on the behavior of the Initial Mass Function at high stellar masses.All of the known steller-mass black holes (and a fair number of neutron stars) are in ``X-ray binaries'' that were discovered because of their luminous X-ray emission. The requirement to be in an X-ray-emitting binary places a strong observational bias on the discovery of stellar-mass black holes. Thus the 21 known black hole binaries represent only the very uppermost tip of the population iceberg.We have conducted an optical survey using Kepler data designed to uncover black holes and neutron stars in both ``quiescent'' X-ray binaries and ``pre-contact'' X-ray binaries. We discuss how the search was conducted, including how potentially interesting light curves were classified and the how variability types were identified. Although we did not find any convincing candidate neutron star or black hole systems, we did find a few noteworthy binary systems, including two binaries that contain low-mass stars with unusually low albedos.

  1. A New Binary Star System of EW Type in Draco: GSC 03905-01870

    NASA Astrophysics Data System (ADS)

    Barquin, S.

    2018-05-01

    Discovery of a new binary star system (GSC 03905-01870 = USNO-B1.0 1431-0327922 = UCAC4 716-059522) in the Draco constellation is presented. It was discovered during a search for previously unreported eclipsing binary stars through the ASAS-SN database. The shape of the light curve and its characteristics (period of 0.428988+-0.000001 d, amplitude of 0.34+-0.02 V Mag, primary minimum epoch HJD 2457994.2756+-0.0002) indicates that the new variable star is an eclipsing binary of W Ursae Majoris type. I registered this variable star in The International Variable Star Index (VSX), its AAVSO UID is 000-BMP-891.

  2. Far-UV spectroscopy of two extremely hot, helium-rich white dwarfs

    NASA Astrophysics Data System (ADS)

    Werner, K.; Rauch, T.; Kruk, J. W.

    2017-05-01

    A large proportion of hot post-asymptotic giant branch stars and white dwarfs (WDs) are hydrogen-deficient. Two distinct evolutionary sequences have been identified. One of them comprises stars of spectral type [WC] and PG1159, and it originates from a late helium-shell flash, creating helium-rich stellar atmospheres with significant admixtures of carbon (up to about 50%, mass fraction). The other sequence comprises stars of spectral type O(He) and luminous subdwarf O stars which possibly are descendants of RCrB stars and extreme helium stars. Their carbon abundances are significantly lower (of the order of 1% or less) and it is thought that they originate from binary-star evolution (through merger or common-envelope evolution). Here we investigate two of the three hottest known helium-rich (DO) WDs (PG 1034+001 and PG 0038+199). They are the only ones for which spectra were recorded with the Far Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope, allowing a comprehensive ultraviolet spectral analysis. We find effective temperatures of Teff = 115 000 ± 5000 K and 125 000 ± 5000 K, respectively, and a surface gravity of log g= 7 ± 0.5. In both stars, nitrogen is strongly oversolar while C and O are significantly subsolar. For all other assessed metals (Ne, Si, P, S, Ar, Fe, and Ni) we find abundances close to solar. We conclude that these WDs are immediate descendants of O(He) stars and, hence, result from close-binary evolution. Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer.

  3. No Place to Hide: Missing Primitive Stars Outside Milky Way Uncovered

    NASA Astrophysics Data System (ADS)

    2010-02-01

    After years of successful concealment, the most primitive stars outside our Milky Way galaxy have finally been unmasked. New observations using ESO's Very Large Telescope have been used to solve an important astrophysical puzzle concerning the oldest stars in our galactic neighbourhood - which is crucial for our understanding of the earliest stars in the Universe. "We have, in effect, found a flaw in the forensic methods used until now," says Else Starkenburg, lead author of the paper reporting the study. "Our improved approach allows us to uncover the primitive stars hidden among all the other, more common stars." Primitive stars are thought to have formed from material forged shortly after the Big Bang, 13.7 billion years ago. They typically have less than one thousandth the amount of chemical elements heavier than hydrogen and helium found in the Sun and are called "extremely metal-poor stars" [1]. They belong to one of the first generations of stars in the nearby Universe. Such stars are extremely rare and mainly observed in the Milky Way. Cosmologists think that larger galaxies like the Milky Way formed from the merger of smaller galaxies. Our Milky Way's population of extremely metal-poor or "primitive" stars should already have been present in the dwarf galaxies from which it formed, and similar populations should be present in other dwarf galaxies. "So far, evidence for them has been scarce," says co-author Giuseppina Battaglia. "Large surveys conducted in the last few years kept showing that the most ancient populations of stars in the Milky Way and dwarf galaxies did not match, which was not at all expected from cosmological models." Element abundances are measured from spectra, which provide the chemical fingerprints of stars [2]. The Dwarf galaxies Abundances and Radial-velocities Team [3] used the FLAMES instrument on ESO's Very Large Telescope to measure the spectra of over 2000 individual giant stars in four of our galactic neighbours, the Fornax, Sculptor, Sextans and Carina dwarf galaxies. Since the dwarf galaxies are typically 300 000 light years away - which is about three times the size of our Milky Way - only strong features in the spectrum could be measured, like a vague, smeared fingerprint. The team found that none of their large collection of spectral fingerprints actually seemed to belong to the class of stars they were after, the rare, extremely metal-poor stars found in the Milky Way. The team of astronomers around Starkenburg has now shed new light on the problem through careful comparison of spectra to computer-based models. They found that only subtle differences distinguish the chemical fingerprint of a normal metal-poor star from that of an extremely metal-poor star, explaining why previous methods did not succeed in making the identification. The astronomers also confirmed the almost pristine status of several extremely metal-poor stars thanks to much more detailed spectra obtained with the UVES instrument on ESO's Very Large Telescope. "Compared to the vague fingerprints we had before, this would be as if we looked at the fingerprint through a microscope," explains team member Vanessa Hill. "Unfortunately, just a small number of stars can be observed this way because it is very time consuming." "Among the new extremely metal-poor stars discovered in these dwarf galaxies, three have a relative amount of heavy chemical elements between only 1/3000 and 1/10 000 of what is observed in our Sun, including the current record holder of the most primitive star found outside the Milky Way," says team member Martin Tafelmeyer. "Not only has our work revealed some of the very interesting, first stars in these galaxies, but it also provides a new, powerful technique to uncover more such stars," concludes Starkenburg. "From now on there is no place left to hide!" Notes [1] According to the definition used in astronomy, "metals" are all the elements other than hydrogen and helium. Such metals, except for a very few minor light chemical elements, have all been created by the various generations of stars. [2] As every rainbow demonstrates, white light can be split up into different colours. Astronomers artificially split up the light they receive from distant objects into its different colours (or wavelengths). However, where we distinguish seven rainbow colours, astronomers map hundreds of finely nuanced colours, producing a spectrum - a record of the different amounts of light the object emits in each narrow colour band. The details of the spectrum - more light emitted at some colours, less light at others - provide tell-tale signs about the chemical composition of the matter producing the light. [3] The Dwarf galaxies Abundances and Radial-velocities Team (DART) has members from institutes in nine different countries. More information This research was presented in a paper to appear in Astronomy and Astrophysics ("The NIR Ca II triplet at low metallicity", E. Starkenburg et al.). Another paper is also in preparation (Tafelmeyer et al.) that presents the UVES measurements of several primitive stars. The team is composed of Else Starkenburg, Eline Tolstoy, Amina Helmi, and Thomas de Boer (Kapteyn Astronomical Institute, University of Groningen, the Netherlands), Vanessa Hill (Laboratoire Cassiopée, Université de Nice Sophia Antipolis, Observatoire de la Côte d'Azur, CNRS, France), Jonay I. González Hernández (Observatoire de Paris, CNRS, Meudon, France and Universidad Complutense de Madrid, Spain), Mike Irwin (University of Cambridge, UK), Giuseppina Battaglia (ESO), Pascale Jablonka and Martin Tafelmeyer (Université de Genève, Ecole Polytechnique Fédérale de Lausanne, Switzerland), Matthew Shetrone (University of Texas, McDonald Observatory, USA), and Kim Venn (University of Victoria, Canada). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  4. Evidence for halo kinematics among cool carbon-rich dwarfs

    NASA Astrophysics Data System (ADS)

    Farihi, J.; Arendt, A. R.; Machado, H. S.; Whitehouse, L. J.

    2018-07-01

    This paper reports preliminary, yet compelling, kinematical inferences for N≳ 600 carbon-rich dwarf stars that demonstrate around 30-60 per cent are members of the Galactic halo. The study uses a spectroscopically and non-kinematically selected sample of stars from the SDSS, and cross-correlates these data with three proper motion catalogues based on Gaia DR1 astrometry to generate estimates of their 3D space velocities. The fraction of stars with halo-like kinematics is roughly 30 per cent for distances based on a limited number of parallax measurements, with the remainder dominated by the thick disc, but close to 60 per cent of the sample lies below an old, metal-poor disc isochrone in reduced proper motion. An ancient population is consistent with an extrinsic origin for C/O >1 in cool dwarfs, where a fixed mass of carbon pollution more readily surmounts lower oxygen abundance and with a lack of detectable ultraviolet-blue flux from younger white dwarf companions. For an initial stellar mass function that favours low-mass stars as in the Galactic disc, the dC stars are likely to be the dominant source of carbon-enhanced, metal-poor stars in the Galaxy.

  5. Evidence for halo kinematics among cool carbon-rich dwarfs

    NASA Astrophysics Data System (ADS)

    Farihi, J.; Arendt, A. R.; Machado, H. S.; Whitehouse, L. J.

    2018-04-01

    This paper reports preliminary yet compelling kinematical inferences for N ≳ 600 carbon-rich dwarf stars that demonstrate around 30% to 60% are members of the Galactic halo. The study uses a spectroscopically and non-kinematically selected sample of stars from the SDSS, and cross-correlates these data with three proper motion catalogs based on Gaia DR1 astrometry to generate estimates of their 3-D space velocities. The fraction of stars with halo-like kinematics is roughly 30% for distances based on a limited number of parallax measurements, with the remainder dominated by the thick disk, but close to 60% of the sample lie below an old, metal-poor disk isochrone in reduced proper motion. An ancient population is consistent with an extrinsic origin for C/O >1 in cool dwarfs, where a fixed mass of carbon pollution more readily surmounts lower oxygen abundances, and with a lack of detectable ultraviolet-blue flux from younger white dwarf companions. For an initial stellar mass function that favors low-mass stars as in the Galactic disk, the dC stars are likely to be the dominant source of carbon-enhanced, metal-poor stars in the Galaxy.

  6. Tidal dissipation in rotating low-mass stars and implications for the orbital evolution of close-in massive planets. II. Effect of stellar metallicity

    NASA Astrophysics Data System (ADS)

    Bolmont, E.; Gallet, F.; Mathis, S.; Charbonnel, C.; Amard, L.; Alibert, Y.

    2017-08-01

    Observations of hot-Jupiter exoplanets suggest that their orbital period distribution depends on the metallicity of the host stars. We investigate here whether the impact of the stellar metallicity on the evolution of the tidal dissipation inside the convective envelope of rotating stars and its resulting effect on the planetary migration might be a possible explanation for this observed statistical trend. We use a frequency-averaged tidal dissipation formalism coupled to an orbital evolution code and to rotating stellar evolution models in order to estimate the effect of a change of stellar metallicity on the evolution of close-in planets. We consider here two different stellar masses: 0.4 M⊙ and 1.0 M⊙ evolving from the early pre-main sequence phase up to the red-giant branch. We show that the metallicity of a star has a strong effect on the stellar parameters, which in turn strongly influence the tidal dissipation in the convective region. While on the pre-main sequence, the dissipation of a metal-poor Sun-like star is higher than the dissipation of a metal-rich Sun-like star; on the main sequence it is the opposite. However, for the 0.4 M⊙ star, the dependence of the dissipation with metallicity is much less visible. Using an orbital evolution model, we show that changing the metallicity leads to different orbital evolutions (e.g., planets migrate farther out from an initially fast-rotating metal-rich star). Using this model, we qualitatively reproduced the observational trends of the population of hot Jupiters with the metallicity of their host stars. However, more steps are needed to improve our model to try to quantitatively fit our results to the observations. Specifically, we need to improve the treatment of the rotation evolution in the orbital evolution model, and ultimately we need to consistently couple the orbital model to the stellar evolution model.

  7. Using Photometric Variability to Detect Binarity in the Central Stars of Four Planetary Nebulae, A 43, A 74, NGC 6720, and NGC 6853

    NASA Astrophysics Data System (ADS)

    Smith, Alexander; De Marco, O.

    2007-12-01

    Recent observational evidence and theoretical models are challenging the classical paradigm of single star planetary nebula (PN) evolution, suggesting instead that binary stars play a significant role in the process of PN formation. In order to shape the 90% of PN that are non-spherical, the central star must be rotating and have a magnetic field; the most-likely source of the angular momentum needed to sustain magnetic fields is a binary companion. More observational evidence is needed to confirm that the fraction of PN with close binary central stars is indeed higher than the currently known value of 10-15%. As part of an international effort to detect binary central stars (PLAN-B - Panetary Nebula Binaries), we are carrying out a new photometric survey to look for close binary central stars of PN. Here we present the findings for 4 objects: A 43, A 74, NGC 6720, and NGC 6853. NGC 6720 and NGC 6853 show evidence of periodic variability, the former of which might even show one eclipse. Once completed, the survey will assess the binarity of about 100 central stars of PN.

  8. Chromospherically Active Stars. XXV. HD 144110=EV Draconis, a Double-lined Dwarf Binary

    NASA Astrophysics Data System (ADS)

    Fekel, Francis C.; Henry, Gregory W.; Lewis, Ceteka

    2005-08-01

    New spectroscopic and photometric observations of HD 144110 have been used to obtain an improved orbital element solution and determine some basic properties of the system. This chromospherically active, double-lined spectroscopic binary has an orbital period of 1.6714012 days and a circular orbit. We classify the components as G5 V and K0 V and suggest that they are slightly metal-rich. The photometric observations indicate that the rotation of HD 144110 is synchronous with the orbital period. Despite the short orbital period, no evidence of eclipses is seen in our photometry.

  9. Mass-Luminosity Relations for Rapid and Slow Rotators.

    NASA Astrophysics Data System (ADS)

    Malkov, O. Yu.

    2006-08-01

    Comparing the radii of eclipsing binaries components and single stars we have found a noticeable difference between observational parameters of B0V-G0V components of eclipsing binaries and those of single stars of the corresponding spectral type. This difference was confirmed by re-analysing the results of independent investigations published in the literature. Larger radii and higher temperatures of A-F eclipsing binaries can be explained by synchronization of such stars in close systems that prevents them to rotate rapidly. So, we have found that the mass-luminosity relation based on eclipsing binary data cannot be used to derive the initial mass function of single stars. While our current knowledge of the empirical mass-luminosity relation for intermediate-mass (1.5 to 10 m[*]) stars is based exclusively on data from eclipsing binaries, knowledge of the mass-luminosity relation should come from dynamical mass determinations of visual binaries, combined with spatially resolved precise photometry. Then the initial mass function should be revised for m>1.5m[*]. Data were collected on fundamental parameters of stars with masses m > 1.5.m [*]). They are components of binaries with P > 15^d and consequently are not synchronised with the orbital periods and presumably are rapid rotators. These stars are believed to evolve similarly with single stars, so these data allow us to construct mass-luminosity and other relations that can more confidently be used for statistical and astrophysical investigations of single stars than so called standard relations, based on data on detached main-sequence double-lined short-period eclipsing binaries. Mass-luminosity, mass-temperature and mass-radius relations of single stars are presented, as well as their HR diagram.

  10. Spectroscopic study of the strontium AM binaries HD 434 and 41 Sex A

    NASA Astrophysics Data System (ADS)

    Sreedhar Rao, S.; Abhyankar, K. D.

    1992-10-01

    Improved spectroscopic orbital elements of the single-line Am binary HD 434 are presented, and cover large gaps in the radial velocity curve obtained earlier by Hube and Gulliver (1985). The MK morphology of the spectrum of HD 434 is examined, and the classification of its metallic line types in the violet and blue regions, along with its revised K- and H-line spectral types, are given for the first time. The strontium anomaly in its spectrum is discussed. 41 Sex A is found to be a prototype of an Am star exhibiting transitional characteristics, forming an evolutionary link between Ap and Am groups of CP stars. Its spectroscopic orbital elements are confirmed using our own velocities. The MK morphology of its spectrum and its spectral line behavior, especially that of the Sr II 4077 line, are briefly discussed.

  11. The Gaia-ESO Survey: Exploring the complex nature and origins of the Galactic bulge populations

    NASA Astrophysics Data System (ADS)

    Rojas-Arriagada, A.; Recio-Blanco, A.; de Laverny, P.; Mikolaitis, Š.; Matteucci, F.; Spitoni, E.; Schultheis, M.; Hayden, M.; Hill, V.; Zoccali, M.; Minniti, D.; Gonzalez, O. A.; Gilmore, G.; Randich, S.; Feltzing, S.; Alfaro, E. J.; Babusiaux, C.; Bensby, T.; Bragaglia, A.; Flaccomio, E.; Koposov, S. E.; Pancino, E.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Damiani, F.; Donati, P.; Franciosini, E.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Lind, K.; Magrini, L.; Morbidelli, L.; Sacco, G. G.; Worley, C. C.; Zaggia, S.

    2017-05-01

    Context. As observational evidence steadily accumulates, the nature of the Galactic bulge has proven to be rather complex: the structural, kinematic, and chemical analyses often lead to contradictory conclusions. The nature of the metal-rich bulge - and especially of the metal-poor bulge - and their relation with other Galactic components, still need to be firmly defined on the basis of statistically significant high-quality data samples. Aims: We used the fourth internal data release of the Gaia-ESO survey to characterize the bulge metallicity distribution function (MDF), magnesium abundance, spatial distribution, and correlation of these properties with kinematics. Moreover, the homogeneous sampling of the different Galactic populations provided by the Gaia-ESO survey allowed us to perform a comparison between the bulge, thin disk, and thick disk sequences in the [Mg/Fe] vs. [Fe/H] plane in order to constrain the extent of their eventual chemical similarities. Methods: We obtained spectroscopic data for 2500 red clump stars in 11 bulge fields, sampling the area -10° ≤ l ≤ + 8° and -10° ≤ b ≤ -4° from the fourth internal data release of the Gaia-ESO survey. A sample of 6300 disk stars was also selected for comparison. Spectrophotometric distances computed via isochrone fitting allowed us to define a sample of stars likely located in the bulge region. Results: From a Gaussian mixture models (GMM) analysis, the bulge MDF is confirmed to be bimodal across the whole sampled area. The relative ratio between the two modes of the MDF changes as a function of b, with metal-poor stars dominating at high latitudes. The metal-rich stars exhibit bar-like kinematics and display a bimodality in their magnitude distribution, a feature which is tightly associated with the X-shape bulge. They overlap with the metal-rich end of the thin disk sequence in the [Mg/Fe] vs. [Fe/H] plane. On the other hand, metal-poor bulge stars have a more isotropic hot kinematics and do not participate in the X-shape bulge. Their Mg enhancement level and general shape in the [Mg/Fe] vs. [Fe/H] plane is comparable to that of the thick disk sequence. The position at which [Mg/Fe] starts to decrease with [Fe/H], called the "knee", is observed in the metal-poor bulge at [Fe/H] knee = -0.37 ± 0.09, being 0.06 dex higher than that of the thick disk. Although this difference is inside the error bars, it suggest a higher star formation rate (SFR) for the bulge than for the thick disk. We estimate an upper limit for this difference of Δ [Fe/H] knee = 0.24 dex. Finally, we present a chemical evolution model that suitably fits the whole bulge sequence by assuming a fast (<1 Gyr) intense burst of stellar formation that takes place at early epochs. Conclusions: We associate metal-rich stars with the bar boxy/peanut bulge formed as the product of secular evolution of the early thin disk. On the other hand, the metal-poor subpopulation might be the product of an early prompt dissipative collapse dominated by massive stars. Nevertheless, our results do not allow us to firmly rule out the possibility that these stars come from the secular evolution of the early thick disk. This is the first time that an analysis of the bulge MDF and α-abundances has been performed in a large area on the basis of a homogeneous, fully spectroscopic analysis of high-resolution, high S/N data. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 188.B-3002. These data products have been processed by the Cambridge Astronomy Survey Unit (CASU) at the Institute of Astronomy, University of Cambridge, and by the FLAMES/UVES reduction team at INAF/Osservatorio Astrofisico di Arcetri. These data have been obtained from the Gaia-ESO Survey Data Archive, prepared and hosted by the Wide Field Astronomy Unit, Institute for Astronomy, University of Edinburgh, which is funded by the UK Science and Technology Facilities Council.

  12. Colliding Winds in Massive Binaries

    NASA Astrophysics Data System (ADS)

    Thaller, M. L.

    1998-12-01

    In close binary systems of massive stars, the individual stellar winds will collide and form a bow shock between the stars, which may have significant impact on the mass-loss and evolution of the system. The existence of such a shock can be established through orbital-phase related variations in the UV resonance lines and optical emission lines. High density regions near the shock will produce Hα and Helium I emission which can be used to map the mass-flow structure of the system. The shock front between the stars may influence the balance of mass-loss versus mass-transfer in massive binary evolution, as matter lost to one star due to Roche lobe overflow may hit the shock and be deflected before it can accrete onto the surface of the other star. I have completed a high-resolution spectroscopic survey of 37 massive binaries, and compared the incidence and strength of emission to an independent survey of single massive stars. Binary stars show a statistically significant overabundance of optical emission, especially when one of the binary stars is in either a giant or supergiant phase of evolution. Seven systems in my survey exhibited clear signs of orbital phase related emission, and for three of the stars (HD 149404, HD 152248, and HD 163181), I present qualitative models of the mass-flow dynamics of the systems.

  13. HST spectrum and timing of the ultracompact X-ray binary candidate 47 Tuc X9

    NASA Astrophysics Data System (ADS)

    Tudor, V.; Miller-Jones, J. C. A.; Knigge, C.; Maccarone, T. J.; Tauris, T. M.; Bahramian, A.; Chomiuk, L.; Heinke, C. O.; Sivakoff, G. R.; Strader, J.; Plotkin, R. M.; Soria, R.; Albrow, M. D.; Anderson, G. E.; van den Berg, M.; Bernardini, F.; Bogdanov, S.; Britt, C. T.; Russell, D. M.; Zurek, D. R.

    2018-05-01

    To confirm the nature of the donor star in the ultracompact X-ray binary candidate 47 Tuc X9, we obtained optical spectra (3000-10 000 Å) with the Hubble Space Telescope / Space Telescope Imaging Spectrograph. We find no strong emission or absorption features in the spectrum of X9. In particular, we place 3σ upper limits on the H α and He II λ4686 emission line equivalent widths - EWH α ≲ 14 Å and -EW_{He {II}} ≲ 9 Å, respectively. This is much lower than seen for typical X-ray binaries at a similar X-ray luminosity (which, for L_2-10 keV ≈ 10^{33}-10^{34} erg s-1 is typically - EWH α ˜ 50 Å). This supports our previous suggestion, by Bahramian et al., of an H-poor donor in X9. We perform timing analysis on archival far-ultraviolet, V- and I-band data to search for periodicities. In the optical bands, we recover the 7-d superorbital period initially discovered in X-rays, but we do not recover the orbital period. In the far-ultraviolet, we find evidence for a 27.2 min period (shorter than the 28.2 min period seen in X-rays). We find that either a neutron star or black hole could explain the observed properties of X9. We also perform binary evolution calculations, showing that the formation of an initial black hole/ He-star binary early in the life of a globular cluster could evolve into a present-day system such as X9 (should the compact object in this system indeed be a black hole) via mass-transfer driven by gravitational wave radiation.

  14. CEMP Stars in the Halo and Their Origin in Ultra-Faint Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Beers, Timothy C.

    2018-06-01

    The very metal-poor (VMP; [Fe/H] < –2.0) and extremely metal-poor (EMP; [Fe/H] < –3.0) stars provide a direct view of Galactic chemical and dynamical evolution; detailed spectroscopic studies of these objects are the best way to identify and distinguish between various scenarios for the enrichment of early star-forming gas clouds soon after the Big Bang. It has been recognized that a large fraction of VMP (15-20%) and EMP stars (30-40%) possess significant over-abundances of carbon relative to iron, [C/Fe] > +0.7. This fraction rises to at least 80% for stars with [Fe/H] < –4.0. Recent studies show that the majority of CEMP stars with [Fe/H] < –3.0 belong to the CEMP-no sub-class, characterized by the lack of strong enhancements in the neutron-capture elements (e.g., [Ba/Fe] < 0.0). The CEMP-no abundance signature is commonly observed among stars ultra-faint dwarf spheroidal galaxies such as SEGUE-1. In addition, kinematic studies of CEMP-no stars strongly suggest an association with the outer-halo population of the Galaxy, which was likely formed from the accretion of low-mass mini-halos. These observations, and other lines of evidence, indicate that the CEMP-no stars of the Milky Way were born in low-mass dwarf galaxies, and later subsumed into the halo.

  15. Chemical composition of the metal-poor carbon star HD 187216.

    NASA Astrophysics Data System (ADS)

    Kipper, T.; Jorgensen, U. G.

    1994-10-01

    We have derived C, N and metal abundances for the metal-deficient late-type (C3,3CH) CH giant HD 187216 (α_2000.0_=19h24m18.6s, δ_2000.0_=+85deg21'56.5"). The oxygen abundance was fixed at logA(O)=7.0, assuming that it follows the trend of oxygen overabundance relative to iron found in halo stars in general. New model atmospheres of metal-poor carbon stars were calculated with continuum opacity sources and molecular lines of CO, CN, C_2_, HCN, C_2_H_2_ and C_3_. Numerical experiments with various assumed input parameters, such as effective temperature, T_eff_, surface gravity, logg, microturbulent velocity, ξ_t_, and dissociation energy of the CN molecule, D_0_(CN), were performed when constructing the model atmospheres and calculating the synthetic spectra. The atmospheric model with T_eff_=3500K, logg=0.4, ξ_t_=3km/s, ^12^C/^13^C=8 and D_0_(CN)=7.9eV was adopted for abundance analysis. The star was found to be extremely metal-deficient, [Fe/H]=-2.48. The carbon abundance is logA(C)=7.33, the nitrogen abundance is logA(N)=5.60 corresponding to [C/Fe]=+1.3, [N/Fe]=+0.2, and [N/C]=-1.1. The carbon isotopic abundance ratio is ^12^C/^13^C=7.0. The abundances of heavy elements produced in the s-process are larger than in early-type CH stars. The ratio of overabundance of heavier s-process elements to that of lighter ones, [hs/ls]=1.0, points to a very high neutron exposure in a single irradiation event. Search for binarity of HD 187216 has failed, and the star can be an intrinsic asymptotic giant branch (AGB) carbon star with some similarities to the C stars in the dwarf galaxies. If the CH characteristics are due to mass transfer it is most likely oxygen-rich material that has been donated. The star possesses both a low nitrogen abundance and a low ^12^C/^13^C ratio, in conflict with the standard stellar evolution theory.

  16. Star formation history and chemical enrichment in the early Universe: clues from the rest-optical and rest-UV spectra of z~2-3 star-forming galaxies in the Keck Baryonic Structure Survey

    NASA Astrophysics Data System (ADS)

    Strom, Allison L.

    2017-01-01

    Galaxies at the peak of cosmic star formation (z~2-3) exhibit significantly higher star formation rates and gas fractions at fixed stellar mass than nearby galaxies. These z~2-3 galaxies are also distinct in terms of their nebular spectra, reflecting important differences not only in the physical conditions of their interstellar medium (e.g., electron density and gas-phase metallicity), but also in the details of their massive stellar populations, especially their ionizing radiation fields. Jointly observing galaxies' HII regions, at rest-UV and rest-optical wavelengths, and massive stars, at rest-UV wavelengths, is central to constructing a framework for understanding the differences between z~2-3 and z~0 star-forming galaxies and for self-consistently explaining the trends observed in the high-redshift population. My thesis is based on data from the Keck Baryonic Structure Survey (KBSS), which uniquely combines observations of individual galaxies in these two bandpasses. In total, the near-infrared component of the KBSS includes spectra of >700 z~2-3 galaxies obtained with Keck/MOSFIRE. I will present these results along with a detailed analysis of the full rest-optical (3600-7000 Ang) nebular spectra of ~400 galaxies, showing that high-redshift galaxies exhibit uniformly high degrees of ionization and excitation with respect to most z~0 galaxies. Combined with observations of the same galaxies' rest-UV spectra (obtained with Keck/LRIS) and photoionization model predictions, these results suggest that the disparity arises from differences in the shape of the ionizing radiation field at fixed gas-phase oxygen abundance, most likely due to the effects of Fe-poor massive binary stars. My comprehensive spectroscopic study of an unprecedentedly large sample of z~2-3 galaxies offers compelling evidence that the distinct chemical abundance patterns observed in these galaxies are the result of systematic differences in their star formation histories.

  17. Benchmark cool companions: ages and abundances for the PZ Telescopii system

    NASA Astrophysics Data System (ADS)

    Jenkins, J. S.; Pavlenko, Y. V.; Ivanyuk, O.; Gallardo, J.; Jones, M. I.; Day-Jones, A. C.; Jones, H. R. A.; Ruiz, M. T.; Pinfield, D. J.; Yakovina, L.

    2012-03-01

    We present new ages and abundance measurements for the pre-main-sequence star PZ Telescopii (more commonly known as PZ Tel). PZ Tel was recently found to host a young and low-mass companion. Such companions, whether they are brown dwarfs or planetary systems, can attain benchmark status by detailed study of the properties of the primary, and then evolutionary and bulk characteristics can be inferred for the companion. Using Fibre-fed Extended Range Optical Spectrograph spectra, we have measured atomic abundances (e.g. Fe and Li) and chromospheric activity for PZ Tel and used these to obtain the metallicity and age estimates for the companion. We have also determined the age independently using the latest evolutionary models. We find PZ Tel A to be a rapidly rotating (v sin i= 73 ± 5 km s-1), approximately solar metallicity star [log N(Fe) =-4.37 ± 0.06 dex or [Fe/H] = 0.05 ± 0.20 dex]. We measure a non-local thermodynamic equilibrium lithium abundance of log N(Li) = 3.1 ± 0.1 dex, which from depletion models gives rise to an age of 7? Myr for the system. Our measured chromospheric activity (? of -4.12) returns an age of 26 ± 2 Myr, as does fitting pre-main-sequence evolutionary tracks (τevol= 22 ± 3 Myr), both of these are in disagreement with the lithium age. We speculate on reasons for this difference and introduce new models for lithium depletion that incorporate both rotation and magnetic field effects. We also synthesize solar, metal-poor and metal-rich substellar evolutionary models to better determine the bulk properties of PZ Tel B, showing that PZ Tel B is probably more massive than previous estimates, meaning the companion is not a giant exoplanet, even though a planetary-like formation origin can go some way to describing the distribution of benchmark binaries currently known. We show how PZ Tel B compares to other currently known age and metallicity benchmark systems and try to empirically test the effects of dust opacity as a function of metallicity on the near-infrared colours of brown dwarfs. Current models suggest that in the near-infrared observations are more sensitive to low-mass companions orbiting more metal rich stars. We also look for trends between infrared photometry and metallicity amongst a growing population of substellar benchmark objects, and identify the need for more data in mass-age-metallicity parameter space.

  18. Close encounters of the third-body kind. [intruding bodies in binary star systems

    NASA Technical Reports Server (NTRS)

    Davies, M. B.; Benz, W.; Hills, J. G.

    1994-01-01

    We simulated encounters involving binaries of two eccentricities: e = 0 (i.e., circular binaries) and e = 0.5. In both cases the binary contained a point mass of 1.4 solar masses (i.e., a neutron star) and a 0.8 solar masses main-sequence star modeled as a polytrope. The semimajor axes of both binaries were set to 60 solar radii (0.28 AU). We considered intruders of three masses: 1.4 solar masses (a neutron star), 0.8 solar masses (a main-sequence star or a higher mass white dwarf), and 0.64 solar masses (a more typical mass white dwarf). Our strategy was to perform a large number (40,000) of encounters using a three-body code, then to rerun a small number of cases with a three-dimensional smoothed particle hydrodynamics (SPH) code to determine the importance of hydrodynamical effects. Using the results of the three-body runs, we computed the exchange across sections, sigma(sub ex). From the results of the SPH runs, we computed the cross sections for clean exchange, denoted by sigma(sub cx); the formation of a triple system, denoted by sigma(sub trp); and the formation of a merged binary with an object formed from the merger of two of the stars left in orbit around the third star, denoted by sigma(sub mb). For encounters between either binary and a 1.4 solar masses neutron star, sigma(sub cx) approx. 0.7 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 0.3 sigma(sub ex). For encounters between either binary and the 0.8 solar masses main-sequence star, sigma(sub cx) approx. 0.50 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 1.0 sigma(sub ex). If the main sequence star is replaced by a main-sequence star of the same mass, we have sigma(sub cx) approx. 0.5 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 1.6 sigma(sub ex). Although the exchange cross section is a sensitive function of intruder mass, we see that the cross section to produce merged binaries is roughly independent of intruder mass. The merged binaries produced have semi-major axes much larger than either those of the original binaries or those of binaries produced in clean exchanges. Coupled with their lower kick velocities, received from the encounters, their larger size will enhance their cross section, shortening the waiting time to a subsequent encounter with another single star.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mink, S. E. de; Belczynski, K., E-mail: S.E.deMink@uva.nl, E-mail: kbelczyn@astrouw.edu.pl

    The initial mass function (IMF), binary fraction, and distributions of binary parameters (mass ratios, separations, and eccentricities) are indispensable inputs for simulations of stellar populations. It is often claimed that these are poorly constrained, significantly affecting evolutionary predictions. Recently, dedicated observing campaigns have provided new constraints on the initial conditions for massive stars. Findings include a larger close binary fraction and a stronger preference for very tight systems. We investigate the impact on the predicted merger rates of neutron stars and black holes. Despite the changes with previous assumptions, we only find an increase of less than a factor ofmore » 2 (insignificant compared with evolutionary uncertainties of typically a factor of 10–100). We further show that the uncertainties in the new initial binary properties do not significantly affect (within a factor of 2) our predictions of double compact object merger rates. An exception is the uncertainty in IMF (variations by a factor of 6 up and down). No significant changes in the distributions of final component masses, mass ratios, chirp masses, and delay times are found. We conclude that the predictions are, for practical purposes, robust against uncertainties in the initial conditions concerning binary parameters, with the exception of the IMF. This eliminates an important layer of the many uncertain assumptions affecting the predictions of merger detection rates with the gravitational wave detectors aLIGO/aVirgo.« less

  20. Cosmic evolution and metal aversion in superluminous supernova host galaxies

    NASA Astrophysics Data System (ADS)

    Schulze, S.; Krühler, T.; Leloudas, G.; Gorosabel, J.; Mehner, A.; Buchner, J.; Kim, S.; Ibar, E.; Amorín, R.; Herrero-Illana, R.; Anderson, J. P.; Bauer, F. E.; Christensen, L.; de Pasquale, M.; de Ugarte Postigo, A.; Gallazzi, A.; Hjorth, J.; Morrell, N.; Malesani, D.; Sparre, M.; Stalder, B.; Stark, A. A.; Thöne, C. C.; Wheeler, J. C.

    2018-01-01

    The SUperluminous Supernova Host galaxIES survey aims to provide strong new constraints on the progenitors of superluminous supernovae (SLSNe) by understanding the relationship to their host galaxies. We present the photometric properties of 53 H-poor and 16 H-rich SLSN host galaxies out to z ∼ 4. We model their spectral energy distributions to derive physical properties, which we compare with other galaxy populations. At low redshift, H-poor SLSNe are preferentially found in very blue, low-mass galaxies with high average specific star formation rates. As redshift increases, the host population follows the general evolution of star-forming galaxies towards more luminous galaxies. After accounting for secular evolution, we find evidence for differential evolution in galaxy mass, but not in the B band and the far-ultraviolet luminosity (3σ confidence). Most remarkable is the scarcity of hosts with stellar masses above 1010 M⊙ for both classes of SLSNe. In case of H-poor SLSNe, we attribute this to a stifled production efficiency above ∼0.4 solar metallicity. However, we argue that, in addition to low metallicity, a short-lived stellar population is also required to regulate the SLSN production. H-rich SLSNe are found in a very diverse population of star-forming galaxies. Still, the scarcity of massive hosts suggests a stifled production efficiency above ∼0.8 solar metallicity. The large dispersion of the H-rich SLSNe host properties is in stark contrast to those of gamma-ray burst, regular core-collapse SN, and H-poor SLSNe host galaxies. We propose that multiple progenitor channels give rise to this subclass.

  1. Wide- and contact-binary formation in substructured young stellar clusters

    NASA Astrophysics Data System (ADS)

    Dorval, J.; Boily, C. M.; Moraux, E.; Roos, O.

    2017-02-01

    We explore with collisional gravitational N-body models the evolution of binary stars in initially fragmented and globally subvirial clusters of stars. Binaries are inserted in the (initially) clumpy configurations so as to match the observed distributions of the field-binary-stars' semimajor axes a and binary fraction versus primary mass. The dissolution rate of wide binaries is very high at the start of the simulations, and is much reduced once the clumps are eroded by the global infall. The transition between the two regimes is sharper as the number of stars N is increased, from N = 1.5 k up to 80 k. The fraction of dissolved binary stars increases only mildly with N, from ≈15 per cent to ≈25 per cent for the same range in N. We repeated the calculation for two initial system mean number densities of 6 per pc3 (low) and 400 per pc3 (high). We found that the longer free-fall time of the low-density runs allows for prolonged binary-binary interactions inside clumps and the formation of very tight (a ≈ 0.01 au) binaries by exchange collisions. This is an indication that the statistics of such compact binaries bear a direct link to their environment at birth. We also explore the formation of wide (a ≳ 5 × 104 au) binaries and find a low (≈0.01 per cent) fraction mildly bound to the central star cluster. The high-precision astrometric mission Gaia could identify them as outflowing shells or streams.

  2. DISCOVERY OF SUPER-Li-RICH RED GIANTS IN DWARF SPHEROIDAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby, Evan N.; Fu, Xiaoting; Deng, Licai

    2012-06-10

    Stars destroy lithium (Li) in their normal evolution. The convective envelopes of evolved red giants reach temperatures of millions of kelvin, hot enough for the {sup 7}Li(p, {alpha}){sup 4}He reaction to burn Li efficiently. Only about 1% of first-ascent red giants more luminous than the luminosity function bump in the red giant branch exhibit A(Li) > 1.5. Nonetheless, Li-rich red giants do exist. We present 15 Li-rich red giants-14 of which are new discoveries-among a sample of 2054 red giants in Milky Way dwarf satellite galaxies. Our sample more than doubles the number of low-mass, metal-poor ([Fe/H] {approx}< -0.7) Li-richmore » red giants, and it includes the most-metal-poor Li-enhanced star known ([Fe/H] = -2.82, A(Li){sub NLTE} = 3.15). Because most of the stars have Li abundances larger than the universe's primordial value, the Li in these stars must have been created rather than saved from destruction. These Li-rich stars appear like other stars in the same galaxies in every measurable regard other than Li abundance. We consider the possibility that Li enrichment is a universal phase of evolution that affects all stars, and it seems rare only because it is brief.« less

  3. Hypervelocity stars from young stellar clusters in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Fragione, G.; Capuzzo-Dolcetta, R.; Kroupa, P.

    2017-05-01

    The enormous velocities of the so-called hypervelocity stars (HVSs) derive, likely, from close interactions with massive black holes, binary stars encounters or supernova explosions. In this paper, we investigate the origin of HVSs as consequence of the close interaction between the Milky Way central massive black hole and a passing-by young stellar cluster. We found that both single and binary HVSs may be generated in a burst-like event, as the cluster passes near the orbital pericentre. High-velocity stars will move close to the initial cluster orbital plane and in the direction of the cluster orbital motion at the pericentre. The binary fraction of these HVS jets depends on the primordial binary fraction in the young cluster. The level of initial mass segregation determines the value of the average mass of the ejected stars. Some binary stars will merge, continuing their travel across and out of the Galaxy as blue stragglers.

  4. Eclipsing binary stars in the era of massive surveys First results and future prospects

    NASA Astrophysics Data System (ADS)

    Papageorgiou, Athanasios; Catelan, Márcio; Ramos, Rodrigo Contreras; Drake, Andrew J.

    2017-09-01

    Our thinking about eclipsing binary stars has undergone a tremendous change in the last decade. Eclipsing binary stars are one of nature's best laboratories for determining the fundamental physical properties of stars and thus for testing the predictions of theoretical models. Some of the largest ongoing variable star surveys include the Catalina Real-time Transient Survey (CRTS) and the VISTA Variables in the Vía Láctea survey (VVV). They both contain a large amount of photometric data and plenty of information about eclipsing binaries that wait to be extracted and exploited. Here we briefly describe our efforts in this direction.

  5. New prospects for observing and cataloguing exoplanets in well-detached binaries

    NASA Astrophysics Data System (ADS)

    Schwarz, R.; Funk, B.; Zechner, R.; Bazsó, Á.

    2016-08-01

    This paper is devoted to study the circumstances favourable to detect circumstellar and circumbinary planets in well-detached binary-star systems using eclipse timing variations (ETVs). We investigated the dynamics of well-detached binary star systems with a star separation from 0.5 to 3 au, to determine the probability of the detection of such variations with ground-based telescopes and space telescopes (like former missions CoRoT and Kepler and future space missions Plato, Tess and Cheops). For the chosen star separations both dynamical configurations (circumstellar and circumbinary) may be observable. We performed numerical simulations by using the full three-body problem as dynamical model. The dynamical stability and the ETVs are investigated by computing ETV maps for different masses of the secondary star and the exoplanet (Earth, Neptune and Jupiter size). In addition we changed the planet's and binary's eccentricities. We conclude that many amplitudes of ETVs are large enough to detect exoplanets in binary-star systems. As an application, we prepared statistics of the catalogue of exoplanets in binary star systems which we introduce in this article and compared the statistics with our parameter-space which we used for our calculations. In addition to these statistics of the catalogue we enlarged them by the investigation of well-detached binary star systems from several catalogues and discussed the possibility of further candidates.

  6. On the kinematics of a runaway Be star population

    NASA Astrophysics Data System (ADS)

    Boubert, D.; Evans, N. W.

    2018-07-01

    We explore the hypothesis that B-type emission-line stars (Be stars) have their origin in mass-transfer binaries by measuring the fraction of runaway Be stars. We assemble the largest-to-date catalogue of 632 Be stars with 6D kinematics, exploiting the precise astrometry of the Tycho-Gaia Astrometric Solution from the first Gaia data release. Using binary stellar evolution simulations, we make predictions for the runaway and equatorial rotation velocities of a runaway Be star population. Accounting for observational biases, we calculate that if all classical Be stars originated through mass transfer in binaries, then 17.5 per cent of the Be stars in our catalogue should be runaways. The remaining 82.5 per cent should be in binaries with subdwarfs, white dwarfs, or neutron stars, because those systems either remained bound post-supernova or avoided the supernova entirely. Using a Bayesian methodology, we compare the hypothesis that each Be star in our catalogue is a runaway to the null hypothesis that it is a member of the Milky Way disc. We find that 13.1^{+2.6}_{-2.4} per cent of the Be stars in our catalogue are runaways and identify a subset of 40 high-probability runaways. We argue that deficiencies in our understanding of binary stellar evolution, as well as the degeneracy between velocity dispersion and number of runaway stars, can explain the slightly lower runaway fraction. We thus conclude that all Be stars could be explained by an origin in mass-transfer binaries. This conclusion is testable with the second Gaia data release (DR2).

  7. On the kinematics of a runaway Be star population

    NASA Astrophysics Data System (ADS)

    Boubert, D.; Evans, N. W.

    2018-04-01

    We explore the hypothesis that B type emission-line stars (Be stars) have their origin in mass-transfer binaries by measuring the fraction of runaway Be stars. We assemble the largest-to-date catalogue of 632 Be stars with 6D kinematics, exploiting the precise astrometry of the Tycho-Gaia Astrometric Solution (TGAS) from the first Gaia Data Release. Using binary stellar evolution simulations, we make predictions for the runaway and equatorial rotation velocities of a runaway Be star population. Accounting for observational biases, we calculate that if all classical Be stars originated through mass transfer in binaries, then 17.5% of the Be stars in our catalogue should be runaways. The remaining 82.5% should be in binaries with subdwarfs, white dwarfs or neutron stars, because those systems either remained bound post-supernova or avoided the supernova entirely. Using a Bayesian methodology, we compare the hypothesis that each Be star in our catalogue is a runaway to the null hypothesis that it is a member of the Milky Way disc. We find that 13.1^{+2.6}_{-2.4}% of the Be stars in our catalogue are runaways, and identify a subset of 40 high-probability runaways. We argue that deficiencies in our understanding of binary stellar evolution, as well as the degeneracy between velocity dispersion and number of runaway stars, can explain the slightly lower runaway fraction. We thus conclude that all Be stars could be explained by an origin in mass-transfer binaries. This conclusion is testable with the second Gaia data release (DR2).

  8. Relaxation near Supermassive Black Holes Driven by Nuclear Spiral Arms: Anisotropic Hypervelocity Stars, S-stars, and Tidal Disruption Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamers, Adrian S.; Perets, Hagai B., E-mail: hamers@ias.edu

    Nuclear spiral arms are small-scale transient spiral structures found in the centers of galaxies. Similarly to their galactic-scale counterparts, nuclear spiral arms can perturb the orbits of stars. In the case of the Galactic center (GC), these perturbations can affect the orbits of stars and binaries in a region extending to several hundred parsecs around the supermassive black hole (SMBH), causing diffusion in orbital energy and angular momentum. This diffusion process can drive stars and binaries to close approaches with the SMBH, disrupting single stars in tidal disruption events (TDEs), or disrupting binaries, leaving a star tightly bound to themore » SMBH and an unbound star escaping the galaxy, i.e., a hypervelocity star (HVS). Here, we consider diffusion by nuclear spiral arms in galactic nuclei, specifically the Milky Way GC. We determine nuclear-spiral-arm-driven diffusion rates using test-particle integrations and compute disruption rates. Our TDE rates are up to 20% higher compared to relaxation by single stars. For binaries, the enhancement is up to a factor of ∼100, and our rates are comparable to the observed numbers of HVSs and S-stars. Our scenario is complementary to relaxation driven by massive perturbers. In addition, our rates depend on the inclination of the binary with respect to the Galactic plane. Therefore, our scenario provides a novel potential source for the observed anisotropic distribution of HVSs. Nuclear spiral arms may also be important for accelerating the coalescence of binary SMBHs and for supplying nuclear star clusters with stars and gas.« less

  9. THE TWO CENTRAL STARS OF NGC 1514: CAN THEY ACTUALLY BE RELATED?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Méndez, Roberto H.; Kudritzki, Rolf-Peter; Urbaneja, Miguel A., E-mail: mendez@ifa.hawaii.edu

    The central star of the planetary nebula NGC 1514 is among the visually brightest central stars in the sky ( V = 9.5). It has long been known to show a composite spectrum, consisting of an A-type star and a much hotter star responsible for the ionization of the surrounding nebula. These two stars have always been assumed to form a binary system. High-resolution spectrograms obtained with Espadons at the Canada–France–Hawaii Telescope on Maunakea have allowed us to measure good radial velocities for both stars: they differ by 13 ± 2 km s{sup −1}. The stellar velocities were unchanged aftermore » 500 days. We have also estimated the metallicity of the cooler star. Combining these data with other information available in the literature, we conclude that, unless all the published nebular radial velocities are systematically wrong, the cooler star is just a chance alignment, and the two stars are not orbiting each other. The cooler star cannot have played any role in the formation of NGC 1514.« less

  10. Triangulum II. Not Especially Dense After All

    NASA Astrophysics Data System (ADS)

    Kirby, Evan N.; Cohen, Judith G.; Simon, Joshua D.; Guhathakurta, Puragra; Thygesen, Anders O.; Duggan, Gina E.

    2017-04-01

    Among the Milky Way satellites discovered in the past three years, Triangulum II has presented the most difficulty in revealing its dynamical status. Kirby et al. identified it as the most dark-matter-dominated galaxy known, with a mass-to-light ratio within the half-light radius of {3600}-2100+3500 {M}⊙ {L}⊙ -1. On the other hand, Martin et al. measured an outer velocity dispersion that is 3.5 ± 2.1 times larger than the central velocity dispersion, suggesting that the system might not be in equilibrium. From new multi-epoch Keck/DEIMOS measurements of 13 member stars in Triangulum II, we constrain the velocity dispersion to be {σ }v< 3.4 km s-1 (90% C.L.). Our previous measurement of {σ }v, based on six stars, was inflated by the presence of a binary star with variable radial velocity. We find no evidence that the velocity dispersion increases with radius. The stars display a wide range of metallicities, indicating that Triangulum II retained supernova ejecta and therefore possesses, or once possessed, a massive dark matter halo. However, the detection of a metallicity dispersion hinges on the membership of the two most metal-rich stars. The stellar mass is lower than galaxies of similar mean stellar metallicity, which might indicate that Triangulum II is either a star cluster or a tidally stripped dwarf galaxy. Detailed abundances of one star show heavily depressed neutron-capture abundances, similar to stars in most other ultra-faint dwarf galaxies but unlike stars in globular clusters. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  11. X-Ray Binaries in Local Analogs to the First Galaxies

    NASA Astrophysics Data System (ADS)

    Brorby, Matthew G.

    2017-02-01

    The focus of this dissertation is to investigate the effect of metallicity on high-mass X-ray binary (HMXB) formation and evolution as a means to understand the evolution of the early Universe (z > 6). Understanding the population and X-ray output of HMXBs are vital to modelling the heating and ionization morphology of the intergalactic medium during the epoch of reionization. Current X-ray instruments are unable to directly detect very high redshift HMXBs, making it impossible to constrain population sizes in this way. Instead certain local galaxies may be used as analogs to infer the properties of galaxies in the early Universe. These local analogs should have properties consistent with those expected for the first galaxies, such as low-metallicity, compact morphology, and intense recent star formation. I present an X-ray population study of 25 blue compact dwarf galaxies (BCD), using multiwavelength data and Bayesian analysis techniques. We find a significant enhancement of the HMXB population in low-metallicity environments and suggest the same may be true in the early Universe. I continue the investigation of HMXB populations in a sample of 10 moderate metallicity (Z ≥ 0.3, Z solar masses), local star-forming galaxies known as Lyman Break Analogs (LBAs). I find evidence of a LX-SFR-metallicity plane in the combined sample of BCDs, LBAs, and regular star-forming galaxies. Then I study a third type of local analog to early Universe galaxies, the Green Pea galaxies. These are a subclass of luminous compact galaxies (LCGs) which show strong [OIII]lambda5007A emission indicative of extreme, recent star-formation. This pilot study was carried out to look, for the first time in X-rays, at this recently established class of galaxies and use them to test the LX-SFR-metallicity plane. Determining the spectral properties of bright HMXBs in low-metallicity environments also has important implications for models of X-ray heating leading up to the Epoch of Reionization. I examined the X-ray spectra of VII Zwicky 403, one of the nearby BCD galaxies from the first study and contrast this with the only other low-metallicity BCD with high-quality spectra, I Zw 18. In the high flux state, the spectrum of VII Zw 403 is hard but drops off exponentially at higher energies (E > 5 keV). This lies in contrast with the softer blackbody accretion disk spectrum seen from I Zw 18 in its high flux state. I conclude with a brief summary of the thesis and discuss recent relevant theory and simulation work done by other groups.

  12. Spectroscopy of Hot Horizontal Branch Stars in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Moni-Bidin, C. M.

    2006-06-01

    We will present our latest results on spectroscopy of hot horizontal branch stars in globular clusters. This class of stars still presents many puzzling features, and many aspects of their formation and evolution are still unclear. Extreme Horizontal Branch (EHB) stars, also known as Subdwarf B (sdB) stars, are post-He flash stars with a He-burning core and high effective temperature (T_{eff} ≥ 20000 K). They originate from stars of low initial mass that during their evolution have lost great part of their external envelope. Many channel for the formation of these stars have been studied in literature. The scenarios involving dynamical interactions inside close binary systems, deeply investigated by Han et al. (2003, MNRAS, 341, 669), have been recently preferred, since between field sdB stars many close binary systems have been detected. (Morales-Rueda et al. 2003, MNRAS, 338, 752). Maxted et al. (2001, MNRAS, 326, 1391) estimated that 69+/-9% of field sdB stars are close binary systems. Latest results indicates that also this scenario presents some problems (Lisker et al. 2005, A&A, 430, 223), and Napiwotzki et al. (2004) found a lower fraction of binaries among their sample (42%). Moni Bidin et al. (2005, A&A, submitted) recently showed that in globular cluster NGC6752 the binary fraction among EHB stars is sensibly lower than what observed among field sdBs, estimating an upper limit of 20%. This difference between field and cluster sdBs is quite surprising. We are performing further investigation of these stars extending our search for close binary systems to other two clusters with a rich population of EHB stars. This will allow us to tell if the results on NGC6752 indicate a pecular cluster or the lack of binaries is a common trend of EHB stars in globular clusters. Moreover, with a larger sample we will be able to better estimate the binary fraction, or an upper limit for it. With our contribution we are going to show our results on this investigation that at the moment is still a work in progress.

  13. Low-Metallicity Star Formation: From the First Stars to Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Hunt, Leslie K.; Madden, Suzanne C.; Schneider, Raffaella

    2008-12-01

    Preface; SOC and LOC; Participants; Life at the conference; Conference photo; Session I. Population III and Metal-Free Star Formation: 1. Open questions in the study of population III star formation S. C. O. Glover, P. C. Clark, T. H. Greif, J. L. Johnson, V. Bromm, R. S. Klessen and A. Stacy; 2. Protostar formation in the early universe Naoki Yoshida; 3. Population III.1 stars: formation, feedback and evolution of the IMF Jonathan C. Tan; 4. The formation of the first galaxies and the transition to low-mass star formation T. H. Greif, D. R. G. Schleicher, J. L. Johnson, A.-K. Jappsen, R. S. Klessen, P. C. Clark, S. C. O. Glover, A. Stacy and V. Bromm; 5. Low-metallicity star formation: the characteristic mass and upper mass limit Kazuyuki Omukai; 6. Dark stars: dark matter in the first stars leads to a new phase of stellar evolution Katherine Freese, Douglas Spolyar, Anthony Aguirre, Peter Bodenheimer, Paolo Gondolo, J. A. Sellwood and Naoki Yoshida; 7. Effects of dark matter annihilation on the first stars F. Iocco, A. Bressan, E. Ripamonti, R. Schneider, A. Ferrara and P. Marigo; 8. Searching for Pop III stars and galaxies at high redshift Daniel Schaerer; 9. The search for population III stars Sperello di Serego Alighieri, Jaron Kurk, Benedetta Ciardi, Andrea Cimatti, Emanuele Daddi and Andrea Ferrara; 10. Observational search for population III stars in high-redshift galaxies Tohru Nagao; Session II. Metal Enrichment, Chemical Evolution, and Feedback: 11. Cosmic metal enrichment Andrea Ferrara; 12. Insights into the origin of the galaxy mass-metallicity relation Henry Lee, Eric F. Bell and Rachel S. Somerville; 13. LSD and AMAZE: the mass-metallicity relation at z > 3 F. Mannucci and R. Maiolino; 14. Three modes of metal-enriched star formation at high redshift Britton D. Smith, Matthew J. Turk, Steinn Sigurdsson, Brian W. O'Shea and Michael L. Norman; 15. Primordial supernovae and the assembly of the first galaxies Daniel Whalen, Bob Van Veelen, Brian W. O'Shea and Michael L. Norman; 16. Damped Lyα systems as probes of chemical evolution over cosmological timescales Miroslava Dessauges-Zavadsky; 17. Connecting high-redshift galaxy populations through observations of local damped Lyman alpha dwarf galaxies Regina E. Schulte-Ladbeck; 18. Chemical enrichment and feedback in low metallicity environments: constraints on galaxy formation Francesca Matteucci; 19. Effects of reionization on dwarf galaxy formation Massimo Ricotti; 20. The importance of following the evolution of the dust in galaxies on their SEDs A. Schurer, F. Calura, L. Silva, A. Pipino, G. L. Granato, F. Matteucci and R. Maiolino; 21. About the chemical evolution of dSphs (and the peculiar globular cluster ωCen) Andrea Marcolini and Annibale D'Ercole; 22. Young star clusters in the small Magellanic cloud: impact of local and global conditions on star formation Elena Sabbi, Linda J. Smith, Lynn R. Carlson, Antonella Nota, Monca Tosi, Michele Cignoni, Jay S. Gallagher III, Marco Sirianni and Margaret Meixner; 23. Modeling the ISM properties of metal-poor galaxies and gamma-ray burst hosts Emily M. Levesque, Lisa J. Kewley, Kirsten Larson and Leonie Snijders; 24. Dwarf galaxies and the magnetisation of the IGM Uli Klein; Session III. Explosive Events in Low-Metallicity Environments: 25. Supernovae and their evolution in a low metallicity ISM Roger A. Chevalier; 26. First stars - type Ib supernovae connection Ken'ichi Nomoto, Masaomi Tanaka, Yasuomi Kamiya, Nozomu Tominaga and Keiichi Maeda; 27. Supernova nucleosynthesis in the early universe Nozomu Tominaga, Hideyuki Umeda, Keiichi Maeda, Ken'ichi Nomoto and Nobuyuki Iwamoto; 28. Powerful explosions at Z = 0? Sylvia Ekström, Georges Meynet, Raphael Hirschi and André Maeder; 29. Wind anisotropy and stellar evolution Cyril Georgy, Georges Meynet and André Maeder; 30. Low-mass and metal-poor gamma-ray burst

  14. Building an Unusual White-Dwarf Duo

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    A new study has examined how the puzzling wide binary system HS 2220+2146 which consists of two white dwarfs orbiting each other might have formed. This system may be an example of a new evolutionary pathway for wide white-dwarf binaries.Evolution of a BinaryMore than 100 stellar systems have been discovered consisting of two white dwarfs in a wide orbit around each other. How do these binaries form? In the traditional picture, the system begins as a binary consisting of two main-sequence stars. Due to the large separation between the stars, the stars evolve independently, each passing through the main-sequence and giant branches and ending their lives as white dwarfs.An illustration of a hierarchical triple star system, in which two stars orbit each other, and a third star orbits the pair. [NASA/JPL-Caltech]Because more massive stars evolve more quickly, the most massive of the two stars in a binary pair should be the first to evolve into a white dwarf. Consequently, when we observe a double-white-dwarf binary, its usually a safe bet that the more massive of the two white dwarfs will also be the older and cooler of the pair, since it should have formed first.But in the case of the double-white-dwarf binary HS 2220+2146, the opposite is true: the more massive of the two white dwarfs appears to be the younger and hotter of the pair. If it wasnt created in the traditional way, then how did this system form?Two From Three?Led by Jeff Andrews (Foundation for Research and Technology-Hellas, Greece and Columbia University), a team of scientists recently examined this system more carefully, analyzing its spectra to confirm our understanding of the white dwarfs temperatures and masses.Based on their observations, Andrews and collaborators determined that there are no hidden additional companions that could have caused the unusual evolution of this system. Instead, the team proposed that this unusual binary might be an example of an evolutionary channel that involves three stars.The authors proposed formation scenario for H220+2146. In this picture, the inner binary merges to form a blue straggler. This star and the remaining main-sequence star then evolve independently into white dwarfs, forming the system observed today. [Andrews et al. 2016]An Early MergerIn the model the authors propose for HS 2220+2146, the binary system began as a hierarchical triple system of main-sequence stars. The innermost binary then merged to form a large star known as a blue straggler a star that, due to the merger, will evolve more slowly than its larger mass implies it should.The blue straggler and the remaining main-sequence star, still in a wide orbit, then continued to evolve independently of each other. The smaller star ended its main-sequence lifetime and became a white dwarf first, followed by the more massive but slowly evolving blue straggler thus forming the system we observe today.If the authors model is correct, then HS 2220+2146 would be the first binary double white dwarf known to have formed through this channel. ESAs Gaia mission, currently underway, is expected to discover up to a million new white dwarfs, many of which will likely be in wide binary systems. Among these, we may well find many other systems like HS 2220+2146 that formed in the same way.CitationJeff J. Andrews et al 2016 ApJ 828 38. doi:10.3847/0004-637X/828/1/38

  15. Nucleosynthesis in the first massive stars

    NASA Astrophysics Data System (ADS)

    Choplin, Arthur; Meynet, Georges; Maeder, André; Hirschi, Raphael; Chiappini, Cristina

    2018-01-01

    The nucleosynthesis in the first massive stars may be constrained by observing the surface composition of long-lived very iron-poor stars born around 10 billion years ago from material enriched by their ejecta. Many interesting clues on physical processes having occurred in the first stars can be obtained based on nuclear aspects. First, in these first massive stars, mixing must have occurred between the H-burning and the He-burning zone during their nuclear lifetimes; Second, only the outer layers of these massive stars have enriched the material from which the very iron-poor stars, observed today in the halo of the MilkyWay, have formed. These two basic requirements can be obtained by rotating stellar models at very low metallicity. In the present paper, we discuss the arguments supporting this view and illustrate the sensitivity of the results concerning the [Mg/Al] ratio on the rate of the reaction 23Na(p,γ)24Mg.

  16. A YOUNG ECLIPSING BINARY AND ITS LUMINOUS NEIGHBORS IN THE EMBEDDED STAR CLUSTER Sh 2-252E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lester, Kathryn V.; Gies, Douglas R.; Guo, Zhao, E-mail: lester@chara.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: guo@chara.gsu.edu

    We present a photometric and light curve analysis of an eccentric eclipsing binary in the K2 Campaign 0 field, which resides in Sh 2-252E, a young star cluster embedded in an H ii region. We describe a spectroscopic investigation of the three brightest stars in the crowded aperture to identify which is the binary system. We find that none of these stars are components of the eclipsing binary system, which must be one of the fainter nearby stars. These bright cluster members all have remarkable spectra: Sh 2-252a (EPIC 202062176) is a B0.5 V star with razor sharp absorption lines, Sh 2-252b is amore » Herbig A0 star with disk-like emission lines, and Sh 2-252c is a pre-main-sequence star with very red color.« less

  17. Binaries discovered by the SPY survey. VI. Discovery of a low mass companion to the hot subluminous planetary nebula central star EGB 5 - a recently ejected common envelope?

    NASA Astrophysics Data System (ADS)

    Geier, S.; Napiwotzki, R.; Heber, U.; Nelemans, G.

    2011-04-01

    Hot subdwarf B stars (sdBs) in close binary systems are assumed to be formed via common envelope ejection. According to theoretical models, the amount of energy and angular momentum deposited in the common envelope scales with the mass of the companion. That low mass companions near or below the core hydrogen-burning limit are able to trigger the ejection of this envelope is well known. The currently known systems have very short periods ≃0.1-0.3 d. Here we report the discovery of a low mass companion (M2 > 0.14 M⊙) orbiting the sdB star and central star of a planetary nebula EGB 5 with an orbital period of 16.5 d at a minimum separation of 23 R⊙. Its long period is only just consistent with the energy balance prescription of the common envelope. The marked difference between the short and long period systems will provide strong constraints on the common envelope phase, in particular if the masses of the sdB stars can be measured accurately. Due to selection effects, the fraction of sdBs with low mass companions and similar or longer periods may be quite high. Low mass stellar and substellar companions may therefore play a significant role for the still unclear formation of hot subdwarf stars. Furthermore, the nebula around EGB 5 may be the remnant of the ejected common envelope making this binary a unique system to study this short und poorly understood phase of binary evolution. Based on observations at the Paranal Observatory of the European Southern Observatory for programmes No. 167.H-0407(A) and 71.D-0383(A). Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC). Some of the data used in this work were obtained at the William Herschel Telescope (WHT) operated by the Isaac Newton Group of Telescopes (ING).

  18. Automated Selection of Metal-Poor Stars in the Galaxy

    NASA Astrophysics Data System (ADS)

    Rhee, Jaehyon

    2000-08-01

    In this thesis I have developed algorithms for the efficient reduction and analysis of a large set of objective-prism data, and for the reliable selection of extremely metal-poor candidate stars in the Galaxy. Automated computer scans of the 308 photographic plates in the HK objective-prism / interference-filter survey of Beers and colleagues have been carried out with the Automatic Plate Measuring (APM) machine in Cambridge, England. Highly automated software tools have been developed in order to identify useful spectra and remove unusable spectra, to locate the positions of the Ca II H (3969 Å) and K (3933 Å) absorption lines, and to construct approximate continua. Equivalent widths of the Ca II H and K lines were then measured directly from these reduced spectra. A subset of 294,039 spectra from 87 of the HK survey plates (located within approximately 30 degrees of the South Galactic Pole) were extracted. Of these, 221,670 (75.4%) proved to be useful for subsequent analysis. I have explored new methodology, making use of an Artificial Neural Network (ANN) analysis approach, in order to select extremely metal-poor star candidates with high efficiency. The ANNs were trained to predict metallicity, [Fe/H], and to classify stars into 6 groups separated by temperature and metal abundance, based on two accurately measured parameters -- the de-reddened broadband (B-V)0 color for known HK survey stars with available photometric information, and the equivalent width of the Ca II K line in an 18 Å band, the K18 index, as measured from follow-up medium-resolution spectroscopy taken during the course of the HK survey. When provided with accurate input data, the trained networks were able to estimate [Fe/H] and to determine the class with high accuracy (with a robust estimated one-sigma scatter of SBI = 0.13 dex, and an overall correction rate of 91%). The ANN approach was then used in order to recover information on the K18 index and (B-V)0 color directly from the APM-extracted spectra. Trained networks fed with known colors, measured peak fluxes, and the raw fluxes of the low-resolution digital spectra were able to predict the K18 index with a one-sigma scatter in the range 1.2 < SBI < 1.4 Å, depending on the color and strength of the line. By feeding on calibrated, multiple-band, photographic measurements of apparent magnitudes, peak fluxes, and the fluxes of estimated continua of the extracted APM spectra, the trained networks were able to estimate (B-V)0 colors with a scatter in the range 0.13 < SBI < 0.16 magnitudes. From an application of the ANN approach, using the less accurate information obtained from the calibrated estimates of K18 and (B-V)0 colors, it still proved possible to obtain metal abundance estimates with a scatter of SBI = 0.78 dex, and to carry out classifications with an overall correction rate of 40%. By comparison with a large sample of known metal-poor stars, on the order of 60% of the candidates predicted to have a metallicity [Fe/H] < -2.0 indeed fell in this region of abundance (representing a three-fold improvement over the visual selection criteria previously employed in the HK survey). The recovery rate indicated that at least 30% of all such stars in our sample would be identified in a blind sampling, limited, for the most part, by the lack of accurate color information. Finally we report 481 extremely metal-poor star candidates in 10 plates of the HK survey, selected by our newly developed methodology.

  19. VizieR Online Data Catalog: Chemical abundances of 8 metal-poor stars (Ishigaki+, 2014)

    NASA Astrophysics Data System (ADS)

    Ishigaki, M. N.; Aoki, W.; Arimoto, N.; Okamoto, S.

    2014-01-01

    Equivalent widths and chemical abundances of the six giant stars in Bootes I dwarf spheroidal galaxy (Boo-009, Boo-094, Boo-117, Boo-121, Boo-127, Boo-911) and the two Milky Way halo stars (HD216143, HD85773) are presented. For each spectral line, excitation potential, loggf values, measured equivalent widths and abundances are given. (2 data files).

  20. Kinematics of Metal-poor Stars in the Galaxy. III. Formation of the Stellar Halo and Thick Disk as Revealed from a Large Sample of Nonkinematically Selected Stars

    NASA Astrophysics Data System (ADS)

    Chiba, Masashi; Beers, Timothy C.

    2000-06-01

    We present a detailed analysis of the space motions of 1203 solar-neighborhood stars with metal abundances [Fe/H]<=-0.6, on the basis of a catalog, of metal-poor stars selected without kinematic bias recently revised and supplemented by Beers et al. This sample, having available proper motions, radial velocities, and distance estimates for stars with a wide range of metal abundances, is by far the largest such catalog to be assembled to date. We show that the stars in our sample with [Fe/H]<=-2.2, which likely represent a ``pure'' halo component, are characterized by a radially elongated velocity ellipsoid (σU,σV,σW)=(141+/-11, 106+/-9, 94+/-8) km s-1 and small prograde rotation =30 to 50 km s-1, consistent with previous analysis of this sample by Beers and Sommer-Larsen based on radial velocity information alone. In contrast to the previous analysis, we find a decrease in with increasing distance from the Galactic plane for stars that are likely to be members of the halo population (Δ/Δ|Z|=-52+/-6 km s-1 kpc-1), which may represent the signature of a dissipatively formed flattened inner halo. Unlike essentially all previous kinematically selected catalogs, the metal-poor stars in our sample exhibit a diverse distribution of orbital eccentricities, e, with no apparent correlation between [Fe/H] and e. This demonstrates, clearly and convincingly, that the evidence offered in 1962 by Eggen, Lynden-Bell, & Sandage for a rapid collapse of the Galaxy, an apparent correlation between the orbital eccentricity of halo stars with metallicity, is basically the result of their proper-motion selection bias. However, even in our nonkinematically selected sample, we have identified a small concentration of high-e stars at [Fe/H]~-1.7, which may originate, in part, from infalling gas during the early formation of the Galaxy. We find no evidence for an additional thick disk component for stellar abundances [Fe/H]<=-2.2. The kinematics of the intermediate-abundance stars close to the Galactic plane are, in part, affected by the presence of a rapidly rotating thick disk component with ~=200 km s-1 (with a vertical velocity gradient on the order of Δ/Δ|Z|=-30+/-3 km s-1 kpc-1) and velocity ellipsoid (σU, σV, σW)=(46+/-4, 50+/-4, 35+/-3) km s-1. The fraction of low-metallicity stars in the solar neighborhood that are members of the thick disk population is estimated as ~10% for -2.2<[Fe/H]<=-1.7 and ~30% for -1.7<[Fe/H]<=-1. We obtain an estimate of the radial scale length of the metal-weak thick disk of 4.5+/-0.6 kpc. We also analyze the global kinematics of the stars constituting the halo component of the Galaxy. The outer part of the halo, which we take to be represented by local stars on orbits reaching more than 5 kpc from the Galactic plane, exhibits no systematic rotation. In particular, we show that previous suggestions of the presence of a ``counter-rotating high halo'' are not supported by our analysis. The density distribution of the outer halo is nearly spherical and exhibits a power-law profile that is accurately described as ρ~R-3.55+/-0.13. The inner part of the halo is characterized by a prograde rotation and a highly flattened density distribution. We find no distinct boundary between the inner and outer halo. We confirm the clumping in angular-momentum phase space of a small number of local metal-poor stars noted in 1999 by Helmi et al. We also identify an additional elongated feature in angular-momentum phase space extending from the clump to regions with high azimuthal rotation. The number of members in the detected clump is not significantly increased from that reported by Helmi et al., even though the total number of the sample stars we consider is almost triple that of the previous investigation. We conclude that the fraction of halo stars that may have arisen from the precursor object of this clump may be smaller than 10% of the present Galactic halo, as previously suggested. The implications of our results for the formation of the Galaxy are discussed, in particular in the context of the currently favored cold dark matter theory of hierarchical galaxy formation.

Top