Science.gov

Sample records for metal-poor dwarfs ii

  1. Herschel's View of LITTLE THINGS Metal-Poor Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Cigan, Phil; Young, Lisa; Cormier, Diane; Lebouteiller, Vianney; Hunter, Deidre Ann; Madden, Suzanne; Little Things

    2015-01-01

    Dwarf galaxies present interesting challenges for the studies of various galaxy properties, due in part to their faintness and their typically low metal content. Low metallicity can lead to quite different physical conditions in the ISM of these systems, which can affect star formation and other processes. To determine the structure of star-forming molecular clouds at low metallicity and moderate star formation rates, far infrared (FIR) fine-structure lines were mapped with Herschel in selected regions of five dwarf irregular galaxies with metal abundances ranging from 13% down to 5% of solar. Abundances of [C II] 158, [O I] 63, [N II] 122, and [O III] 88 microns - the major FIR cooling lines - help to probe the conditions in the gas, and allow us to put these dwarfs in context with spirals and other galaxy types. We report our integrated fluxes and line ratios, and discuss the results: [C II] is the dominant FIR coolant in these systems, and it mostly originates in PDRs instead of the more diffuse phase. Funding for this project was provided by NASA JPL RSA grant 1433776.

  2. Chemical Abundances of Metal-poor stars in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Venn, Kim A.; Jablonka, Pascale; Hill, Vanessa; Starkenburg, Else; Lemasle, Bertrand; Shetrone, Matthew; Irwin, Mike; Norris, John; Yong, David; Gilmore, Gerry; Salvadori, Stephania; Skuladottir, Asa; Tolstoy, Eline

    2016-08-01

    Stars in low-mass dwarf galaxies show a larger range in their chemical properties than those in the Milky Way halo. The slower star formation efficiency make dwarf galaxies ideal systems for testing nucleosynthetic yields. Not only are alpha-poor stars found at lower metallicities, and a higher fraction of carbon-enhanced stars, but we are also finding stars in dwarf galaxies that appear to be iron-rich. These are compared with yields from a variety of supernova predictions.

  3. The Extremely Metal-Poor Dwarf Galaxy AGC 198691

    NASA Astrophysics Data System (ADS)

    Hirschauer, Alec S.; Salzer, John Joseph; Cannon, John M.; Skillman, Evan D.; SHIELD II Team

    2016-01-01

    We present spectroscopic observations of the nearby dwarf irregular galaxy AGC 198691. This object is part of the Survey of HI in Extremely Low-Mass Dwarfs (SHIELD) sample, which consists of ultra-low HI mass galaxies discovered by the Arecibo Legacy Fast-Acting ALFA (ALFALFA) survey. SHIELD is a multi-configuration Expanded Very Large Array (EVLA) study of the neutral gas content and dynamics of galaxies with HI masses in the range of 106-107 M⊙. Our spectral data were obtained using the new high-throughput KPNO Ohio State Multi-Object Spectrograph (KOSMOS) on the Mayall 4-m telescope as part of a systematic study of the nebular abundances in the SHIELD galaxy sample. These observations enable measurement of the temperature sensitive [OIII]λ4363 line and hence the determination of a "direct" oxygen abundance for AGC 198691. We find this system to be an extremely metal-deficient (XMD) galaxy with an oxygen abundance comparable to such objects as I Zw 18, SBS 0335-052W, Leo P, and DDO 68 - the lowest metallicity star-forming systems known. It is worth noting that two of the five lowest-abundance galaxies currently recognized were discovered via the ALFALFA blind HI survey. These XMD galaxies are potential analogues to the first star-forming systems, which through hierarchical accretion processes built up the large galaxies we observe today in the local Universe. Detailed analysis of such XMD systems offers observational constraint to models of galactic evolution and star formation histories to allow a better understanding of the processes that govern the chemical evolution of low-mass galaxies.

  4. DETAILED ABUNDANCES OF TWO VERY METAL-POOR STARS IN DWARF GALAXIES

    SciTech Connect

    Kirby, Evan N.; Cohen, Judith G.

    2012-12-01

    The most metal-poor stars in dwarf spheroidal galaxies (dSphs) can show the nucleosynthetic patterns of one or a few supernovae (SNe). These SNe could have zero metallicity, making metal-poor dSph stars the closest surviving links to Population III stars. Metal-poor dSph stars also help to reveal the formation mechanism of the Milky Way (MW) halo. We present the detailed abundances from Keck/HIRES spectroscopy for two very metal-poor stars in two MW dSphs. One star, in the Sculptor dSph, has [Fe I/H] = -2.40. The other star, in the Ursa Minor dSph, has [Fe I/H] = -3.16. Both stars fall in the previously discovered low-metallicity, high-[{alpha}/Fe] plateau. Most abundance ratios of very metal-poor stars in these two dSphs are largely consistent with very metal-poor halo stars. However, the abundances of Na and some r-process elements lie at the lower end of the envelope defined by inner halo stars of similar metallicity. We propose that the metallicity dependence of SN yields is the cause. The earliest SNe in low-mass dSphs have less gas to pollute than the earliest SNe in massive halo progenitors. As a result, dSph stars at -3 < [Fe/H] < -2 sample SNe with [Fe/H] << -3, whereas halo stars in the same metallicity range sample SNe with [Fe/H] {approx} -3. Consequently, enhancements in [Na/Fe] and [r/Fe] were deferred to higher metallicity in dSphs than in the progenitors of the inner halo.

  5. Quantitative spectroscopy of blue supergiants in metal-poor dwarf galaxy NGC 3109

    SciTech Connect

    Hosek, Matthew W. Jr.; Kudritzki, Rolf-Peter; Bresolin, Fabio; Urbaneja, Miguel A.; Przybilla, Norbert; Evans, Christopher J.; Pietrzyński, Grzegorz; Gieren, Wolfgang; Carraro, Giovanni E-mail: kud@ifa.hawaii.edu E-mail: Miguel.Urbaneja-Perez@uibk.ac.at E-mail: chris.evans@stfc.ac.uk E-mail: wgieren@astro-udec.cl

    2014-04-20

    We present a quantitative analysis of the low-resolution (∼4.5 Å) spectra of 12 late-B and early-A blue supergiants (BSGs) in the metal-poor dwarf galaxy NGC 3109. A modified method of analysis is presented which does not require use of the Balmer jump as an independent T {sub eff} indicator, as used in previous studies. We determine stellar effective temperatures, gravities, metallicities, reddening, and luminosities, and combine our sample with the early-B-type BSGs analyzed by Evans et al. to derive the distance to NGC 3109 using the flux-weighted gravity-luminosity relation (FGLR). Using primarily Fe-group elements, we find an average metallicity of [ Z-bar ] = –0.67 ± 0.13, and no evidence of a metallicity gradient in the galaxy. Our metallicities are higher than those found by Evans et al. based on the oxygen abundances of early-B supergiants ([ Z-bar ] = –0.93 ± 0.07), suggesting a low α/Fe ratio for the galaxy. We adjust the position of NGC 3109 on the BSG-determined galaxy mass-metallicity relation accordingly and compare it to metallicity studies of H II regions in star-forming galaxies. We derive an FGLR distance modulus of 25.55 ± 0.09 (1.27 Mpc) that compares well with Cepheid and tip of the red giant branch distances. The FGLR itself is consistent with those found in other galaxies, demonstrating the reliability of this method as a measure of extragalactic distances.

  6. The Metal-poor Knee in the Fornax Dwarf Spheroidal Galaxy

    NASA Astrophysics Data System (ADS)

    Hendricks, Benjamin; Koch, Andreas; Lanfranchi, Gustavo A.; Boeche, Corrado; Walker, Matthew; Johnson, Christian I.; Peñarrubia, Jorge; Gilmore, Gerard

    2014-04-01

    We present α-element abundances of Mg, Si, and Ti for a large sample of field stars in two outer fields of the Fornax dwarf spheroidal (dSph) galaxy, obtained with Very Large Telescope/GIRAFFE (R ~ 16, 000). Due to the large fraction of metal-poor (MP) stars in our sample, we are able to follow the α-element evolution from [Fe/H] ≈ -2.5 continuously to [Fe/H] ≈ -0.7. For the first time we are able to resolve the turnover from the Type II supernovae (SNe) dominated, α-enhanced plateau down to subsolar [α/Fe] values, due to the onset of SNe Ia, and thus to trace the chemical enrichment efficiency of the galaxy. Our data support the general concept of an α-enhanced plateau at early epochs, followed by a well-defined "knee" caused by the onset of SNe Ia, and finally a second plateau with sub-solar [α/Fe] values. We find the position of this knee to be at [Fe/H] ≈ -1.9 and therefore significantly more MP than expected from comparison with other dSphs and standard evolutionary models. Surprisingly, this value is rather comparable to the knee in Sculptor, a dSph ~10 times less luminous than Fornax. Using chemical evolution models, we find that the position of the knee and the subsequent plateau at the sub-solar level can hardly be explained unless the galaxy experienced several discrete star formation (SF) events with a drastic variation in SF efficiency, while a uniform SF can be ruled out. One possible evolutionary scenario is that Fornax experienced one or several major accretion events from gas-rich systems in the past, so that its current stellar mass is not indicative of the chemical evolution environment at ancient times. If Fornax is the product of several smaller buildings blocks, this may also have implications for the understanding of the formation process of dSphs in general. This article is based on observations made with ESO Telescopes at the Paranal Observatory under program 082.B-0940(A).

  7. The metal-poor knee in the Fornax dwarf spheroidal galaxy

    SciTech Connect

    Hendricks, Benjamin; Koch, Andreas; Lanfranchi, Gustavo A.; Boeche, Corrado; Walker, Matthew; Johnson, Christian I.; Peñarrubia, Jorge; Gilmore, Gerard

    2014-04-20

    We present α-element abundances of Mg, Si, and Ti for a large sample of field stars in two outer fields of the Fornax dwarf spheroidal (dSph) galaxy, obtained with Very Large Telescope/GIRAFFE (R ∼ 16, 000). Due to the large fraction of metal-poor (MP) stars in our sample, we are able to follow the α-element evolution from [Fe/H] ≈ –2.5 continuously to [Fe/H] ≈ –0.7. For the first time we are able to resolve the turnover from the Type II supernovae (SNe) dominated, α-enhanced plateau down to subsolar [α/Fe] values, due to the onset of SNe Ia, and thus to trace the chemical enrichment efficiency of the galaxy. Our data support the general concept of an α-enhanced plateau at early epochs, followed by a well-defined 'knee' caused by the onset of SNe Ia, and finally a second plateau with sub-solar [α/Fe] values. We find the position of this knee to be at [Fe/H] ≈ –1.9 and therefore significantly more MP than expected from comparison with other dSphs and standard evolutionary models. Surprisingly, this value is rather comparable to the knee in Sculptor, a dSph ∼10 times less luminous than Fornax. Using chemical evolution models, we find that the position of the knee and the subsequent plateau at the sub-solar level can hardly be explained unless the galaxy experienced several discrete star formation (SF) events with a drastic variation in SF efficiency, while a uniform SF can be ruled out. One possible evolutionary scenario is that Fornax experienced one or several major accretion events from gas-rich systems in the past, so that its current stellar mass is not indicative of the chemical evolution environment at ancient times. If Fornax is the product of several smaller buildings blocks, this may also have implications for the understanding of the formation process of dSphs in general.

  8. Triangulum II: A Very Metal-poor and Dynamically Hot Stellar System

    NASA Astrophysics Data System (ADS)

    Martin, Nicolas F.; Ibata, Rodrigo A.; Collins, Michelle L. M.; Rich, R. Michael; Bell, Eric F.; Ferguson, Annette M. N.; Laevens, Benjamin P. M.; Rix, Hans-Walter; Chapman, Scott C.; Koch, Andreas

    2016-02-01

    We present a study of the recently discovered compact stellar system Triangulum II. From observations conducted with the DEIMOS spectrograph on Keck II, we obtained spectra for 13 member stars that follow the CMD features of this very faint stellar system and include two bright red giant branch stars. Tri II has a very negative radial velocity (< {v}{{r}}> =-{383.7}-3.3+3.0 {km} {{{s}}}-1) that translates to < {v}{{r},{gsr}}> ≃ -264 {km} {{{s}}}-1 and confirms it is a Milky Way satellite. We show that, despite the small data set, there is evidence that Tri II has complex internal kinematics. Its radial velocity dispersion increases from {4.4}-2.0+2.8 {km} {{{s}}}-1 in the central 2\\prime to {14.1}-4.2+5.8 {km} {{{s}}}-1 outwards. The velocity dispersion of the full sample is inferred to be {σ }{vr}={9.9}-2.2+3.2 {km} {{{s}}}-1. From the two bright RGB member stars we measure an average metallicity < {{[Fe/H]}}> =-2.6+/- 0.2, placing Tri II among the most metal-poor Milky Way dwarf galaxies. In addition, the spectra of the fainter member stars exhibit differences in their line widths that could be the indication of a metallicity dispersion in the system. All these properties paint a complex picture for Tri II, whose nature and current state are largely speculative. The inferred metallicity properties of the system however lead us to favor a scenario in which Tri II is a dwarf galaxy that is either disrupting or embedded in a stellar stream.

  9. Stellar Populations and Star Formation History of the Metal-poor Dwarf Galaxy DDO 68

    NASA Astrophysics Data System (ADS)

    Sacchi, E.; Annibali, F.; Cignoni, M.; Aloisi, A.; Sohn, T.; Tosi, M.; van der Marel, R. P.; Grocholski, A. J.; James, B.

    2016-10-01

    We present the star formation history (SFH) of the extremely metal-poor dwarf galaxy DDO 68, based on our photometry with the Advanced Camera for Surveys. With a metallicity of only 12+{log}({{O}}/{{H}})=7.15 and a very isolated location, DDO 68 is one of the most metal-poor galaxies known. It has been argued that DDO 68 is a young system that started forming stars only ∼0.15 Gyr ago. Our data provide a deep and uncontaminated optical color–magnitude diagram (CMD) that allows us to disprove this hypothesis since we find a population of at least ∼1 Gyr old stars. The star formation activity has been fairly continuous over all the look-back time. The current rate is quite low, and the highest activity occurred between 10 and 100 Myr ago. The average star formation rate over the whole Hubble time is ≃0.01 M ⊙ yr‑1, corresponding to a total astrated mass of ≃1.3 × 108 M ⊙. Our photometry allows us to infer the distance from the tip of the red giant branch, D = 12.08 ± 0.67 Mpc; however, to let our synthetic CMD reproduce the observed ones, we need a slightly higher distance, D = 12.65 Mpc, or (m ‑ M)0 = 30.51, still inside the errors of the previous determination, and we adopt the latter. DDO 68 shows a very interesting and complex history, with its quite disturbed shape and a long tail, probably due to tidal interactions. The SFH of the tail differs from that of the main body mainly for enhanced activity at recent epochs likely triggered by the interaction. Based on observations obtained with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy under NASA Contract NAS5-26555.

  10. The Kennicutt-Schmidt Relation in Extremely Metal-Poor Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Filho, M. E.; Sánchez Almeida, J.; Amorín, R.; Muñoz-Tuñón, C.; Elmegreen, B. G.; Elmegreen, D. M.

    2016-04-01

    The Kennicutt-Schmidt (KS) relation between the gas mass and star formation rate (SFR) describes the star formation regulation in disk galaxies. It is a function of gas metallicity, but the low-metallicity regime of the KS diagram is poorly sampled. We have analyzed data for a representative set of extremely metal-poor galaxies (XMPs), as well as auxiliary data, and compared these to empirical and theoretical predictions. The majority of the XMPs possess high specific SFRs, similar to high-redshift star-forming galaxies. On the KS plot, the XMP H i data occupy the same region as dwarfs and extend the relation for low surface brightness galaxies. Considering the H i gas alone, a considerable fraction of the XMPs already fall off the KS law. Significant quantities of “dark” H2 mass (i.e., not traced by CO) would imply that XMPs possess low star formation efficiencies (SFEgas). Low SFEgas in XMPs may be the result of the metal-poor nature of the H i gas. Alternatively, the H i reservoir may be largely inert, the star formation being dominated by cosmological accretion. Time lags between gas accretion and star formation may also reduce the apparent SFEgas, as may galaxy winds, which can expel most of the gas into the intergalactic medium. Hence, on global scales, XMPs could be H i-dominated, high-specific-SFR (≳10-10 yr-1), low-SFEgas (≲10-9 yr-1) systems, in which the total H i mass is likely not a good predictor of the total H2 mass, nor of the SFR.

  11. A very metal poor H II region in the outer disk of M101

    NASA Technical Reports Server (NTRS)

    Garnett, Donald R.; Kennicutt, Robert C., Jr.

    1994-01-01

    We present new spectroscopic observations of an H II region in the extreme outer disk of the spiral galaxy M101, more than 32 kpc from the nucleus, or 25% farther out than the well-studied giant H II region NGC 5471. From a derived (O III) electron temperature of 13,900 K, we derive log O/H = -4.1, only 10% of the solar value, and smaller than the abundance measured in NGC 5471. Log N/O = -1.49, similar to the values seen in metal-poor dwarf galaxies, while log S/O = -1.74, essentially identical to the solar value, confirming the trend of constant S/O observed in earlier studies. With the inclusion of this new object, the composition gradient in M101 from published spectroscopic observations shows no evidence for either a break in the gradient from 4 to 33 kpc, or a rise in the abundances in the outer parts of the disk.

  12. THE MOST METAL-POOR DAMPED Lyα SYSTEMS: AN INSIGHT INTO DWARF GALAXIES AT HIGH-REDSHIFT

    SciTech Connect

    Cooke, Ryan J.; Pettini, Max; Jorgenson, Regina A.

    2015-02-10

    In this paper we analyze the kinematics, chemistry, and physical properties of a sample of the most metal-poor damped Lyα systems (DLAs), to uncover their links to modern-day galaxies. We present evidence that the DLA population as a whole exhibits a ''knee'' in the relative abundances of the α-capture and Fe-peak elements when the metallicity is [Fe/H] ≅ –2.0, assuming that Zn traces the buildup of Fe-peak elements. In this respect, the chemical evolution of DLAs is clearly different from that experienced by Milky Way halo stars, but resembles that of dwarf spheroidal galaxies in the Local Group. We also find a close correspondence between the kinematics of Local Group dwarf galaxies and of high-redshift metal-poor DLAs, which further strengthens this connection. On the basis of such similarities, we propose that the most metal-poor DLAs provide us with a unique opportunity to directly study the dwarf galaxy population more than ten billion years in the past, at a time when many dwarf galaxies were forming the bulk of their stars. To this end, we have measured some of the key physical properties of the DLA gas, including their neutral gas mass, size, kinetic temperature, density, and turbulence. We find that metal-poor DLAs contain a warm neutral medium with T {sub gas} ≅ 9600 K predominantly held up by thermal pressure. Furthermore, all of the DLAs in our sample exhibit a subsonic turbulent Mach number, implying that the gas distribution is largely smooth. These results are among the first empirical descriptions of the environments where the first few generations of stars may have formed in the universe.

  13. DISCOVERY OF MIRA VARIABLE STARS IN THE METAL-POOR SEXTANS DWARF SPHEROIDAL GALAXY

    SciTech Connect

    Sakamoto, Tsuyoshi; Matsunaga, Noriyuki; Nakada, Yoshikazu; Hasegawa, Takashi

    2012-12-10

    We report the discovery of two Mira variable stars (Miras) toward the Sextans dwarf spheroidal galaxy (dSph). We performed optical long-term monitoring observations for two red stars in the Sextans dSph. The light curves of both stars in the I{sub c} band show large-amplitude (3.7 and 0.9 mag) and long-period (326 {+-} 15 and 122 {+-} 5 days) variations, suggesting that they are Miras. We combine our own infrared data with previously published data to estimate the mean infrared magnitudes. The distances obtained from the period-luminosity relation of the Miras (75.3{sup +12.8}{sub -10.9} and 79.8{sup +11.5}{sub -9.9} kpc, respectively), together with the radial velocities available, support memberships of the Sextans dSph (90.0 {+-} 10.0 kpc). These are the first Miras found in a stellar system with a metallicity as low as [Fe/H] {approx} -1.9 than any other known system with Miras.

  14. BOO-1137-AN EXTREMELY METAL-POOR STAR IN THE ULTRA-FAINT DWARF SPHEROIDAL GALAXY BOOeTES I

    SciTech Connect

    Norris, John E.; Yong, David; Gilmore, Gerard; Wyse, Rosemary F. G.

    2010-03-01

    We present high-resolution (R {approx} 40,000), high-signal-to-noise ratio (20-90) spectra of an extremely metal-poor giant star Boo-1137 in the 'ultra-faint' dwarf spheroidal galaxy (dSph) Booetes I, absolute magnitude M{sub V} {approx} -6.3. We derive an iron abundance of [Fe/H] = -3.7, making this the most metal-poor star as yet identified in an ultra-faint dSph. Our derived effective temperature and gravity are consistent with its identification as a red giant in Booetes I. Abundances for a further 15 elements have also been determined. Comparison of the relative abundances, [X/Fe], with those of the extremely metal-poor red giants of the Galactic halo shows that Boo-1137 is 'normal' with respect to C and N, the odd-Z elements Na and Al, the iron-peak elements, and the neutron-capture elements Sr and Ba, in comparison with the bulk of the Milky Way halo population having [Fe/H] {approx}<-3.0. The alpha-elements Mg, Si, Ca, and Ti are all higher by DELTA[X/Fe] {approx} 0.2 than the average halo values. Monte Carlo analysis indicates that DELTA[alpha/Fe] values this large are expected with a probability {approx}0.02. The elemental abundance pattern in Boo-1137 suggests inhomogeneous chemical evolution, consistent with the wide internal spread in iron abundances we previously reported. The similarity of most of the Boo-1137 relative abundances with respect to halo values, and the fact that the alpha-elements are all offset by a similar small amount from the halo averages, points to the same underlying galaxy-scale stellar initial mass function, but that Boo-1137 likely originated in a star-forming region where the abundances reflect either poor mixing of supernova (SN) ejecta, or poor sampling of the SN progenitor mass range, or both.

  15. Constraints on First-Stars Models From Observations of Local Low-Mass Dwarf Galaxies and Galactic Metal-Poor Halo Stars

    NASA Astrophysics Data System (ADS)

    Yung, Long Yan; Venkatesan, A.

    2014-01-01

    The first metal-free stars in the universe had hard ionizing photon spectra and unique element yields from their supernovae, leaving signatures in the reionization of the intergalactic medium and in the metal enrichment of gas in the early universe. Here, we examine the metal abundances in a variety of systems in the local universe, from very metal-poor Galactic halo stars to ultra-faint dwarf spheroidal galaxies, and compare them with the latest theoretical models of massive stars with and without rotation. We confirm the similar abundance patterns found in the ultra-faint dwarfs and metal-poor halo stars by recent studies, and find new trends of interest in a variety of individual elements spanning metallicity values of [Fe/H] from about -2 to -5. We also compare our results with the abundances found in the very metal-deficient nearby dwarf irregular galaxy Leo P, which was recently discovered in the Arecibo ALFALFA survey. We comment on the similarities and differences between abundance trends in gas-rich dwarf galaxy systems like Leo P versus gas-poor ones like the ultra-faint dwarf spheroidals, and on the possibility of such systems hosting populations of the first stars. This work has been supported by NSF grant AST-1211005 and by Research Corporation through the Cottrell College Science Award.

  16. THE MOST METAL-POOR STARS. II. CHEMICAL ABUNDANCES OF 190 METAL-POOR STARS INCLUDING 10 NEW STARS WITH [Fe/H] {<=} -3.5 , ,

    SciTech Connect

    Yong, David; Norris, John E.; Bessell, M. S.; Asplund, M.; Christlieb, N.; Beers, Timothy C.; Barklem, P. S.; Frebel, Anna; Ryan, S. G. E-mail: jen@mso.anu.edu.au E-mail: martin@mso.anu.edu.au E-mail: beers@pa.msu.edu E-mail: afrebel@mit.edu

    2013-01-01

    We present a homogeneous chemical abundance analysis of 16 elements in 190 metal-poor Galactic halo stars (38 program and 152 literature objects). The sample includes 171 stars with [Fe/H] {<=} -2.5, of which 86 are extremely metal poor, [Fe/H] {<=} -3.0. Our program stars include 10 new objects with [Fe/H] {<=} -3.5. We identify a sample of 'normal' metal-poor stars and measure the trends between [X/Fe] and [Fe/H], as well as the dispersion about the mean trend for this sample. Using this mean trend, we identify objects that are chemically peculiar relative to 'normal' stars at the same metallicity. These chemically unusual stars include CEMP-no objects, one star with high [Si/Fe], another with high [Ba/Sr], and one with unusually low [X/Fe] for all elements heavier than Na. The Sr and Ba abundances indicate that there may be two nucleosynthetic processes at lowest metallicity that are distinct from the main r-process. Finally, for many elements, we find a significant trend between [X/Fe] versus T {sub eff}, which likely reflects non-LTE and/or three-dimensional effects. Such trends demonstrate that care must be exercised when using abundance measurements in metal-poor stars to constrain chemical evolution and/or nucleosynthesis predictions.

  17. Spectroscopy of the Ca II Line in Metal-Poor Field Red Giants. II. Northern Hemisphere Observations

    NASA Astrophysics Data System (ADS)

    Dupree, A. K.; Smith, Graeme H.

    1995-07-01

    Echelle spectra of the Ca II K line (λ3933.7) for a sample of 53 metal-deficient field giants, including first-ascent red giant branch stars and asymptotic giant branch stars, demonstrate that chromospheres are ubiquitous among these objects. The atmospheres of the metal-deficient giants are found to be quite dynamic; motions in the deeper regions of the chromosphere appear to be irregular, and evidence for both outflows and infall has been found. An absolute magnitude of MV≍-1.7 corresponds to a critical brightness for metal-deficient giants; as stars evolve beyond this magnitude the atmospheric structure and dynamics affecting the Hα and Ca II K profiles undergo a change. Metal-poor giants brighter than this magnitude exhibit evidence of systematic outflows. However, no circumstellar component is seen in any of the spectra of the Ca II K line acquired in this project. The winds of bright Population II red giants are inferred to be hotter than those of Population I giants. The classic Wilson-Bappu effect is found to depend on metal abundance.

  18. High-Resolution Spectroscopy of Extremely Metal-Poor Stars from SDSS/SEGUE. II. Binary Fraction

    NASA Astrophysics Data System (ADS)

    Aoki, Wako; Suda, Takuma; Beers, Timothy C.; Honda, Satoshi

    2015-02-01

    The fraction of binary systems in various stellar populations of the Galaxy and the distribution of their orbital parameters are important but not well-determined factors in studies of star formation, stellar evolution, and Galactic chemical evolution. While observational studies have been carried out for a large sample of nearby stars, including some metal-poor Population II stars, almost no constraints on the binary nature for extremely metal-poor (EMP; [Fe/H] \\lt -3.0) stars have yet been obtained. Here we investigate the fraction of double-lined spectroscopic binaries and carbon-enhanced metal-poor (CEMP) stars, many of which could have formed as pairs of low-mass and intermediate-mass stars, to estimate the lower limit of the fraction of binary systems having short periods. The estimate is based on a sample of very metal-poor stars selected from the Sloan Digital Sky Survey and observed at high spectral resolution in a previous study by Aoki et al. That survey reported 3 double-lined spectroscopic binaries and 11 CEMP stars, which we consider along with a sample of EMP stars from the literature compiled in the SAGA database. We have conducted measurements of the velocity components for stacked absorption features of different spectral lines for each double-lined spectroscopic binary. Our estimate indicates that the fraction of binary stars having orbital periods shorter than 1000 days is at least 10%, and possibly as high as 20% if the majority of CEMP stars are formed in such short-period binaries. This result suggests that the period distribution of EMP binary systems is biased toward short periods, unless the binary fraction of low-mass EMP stars is significantly higher than that of other nearby stars.

  19. High-resolution spectroscopy of extremely metal-poor stars from SDSS/Segue. II. Binary fraction

    SciTech Connect

    Aoki, Wako; Suda, Takuma; Beers, Timothy C.; Honda, Satoshi E-mail: takuma.suda@nao.ac.jp E-mail: honda@nhao.jp

    2015-02-01

    The fraction of binary systems in various stellar populations of the Galaxy and the distribution of their orbital parameters are important but not well-determined factors in studies of star formation, stellar evolution, and Galactic chemical evolution. While observational studies have been carried out for a large sample of nearby stars, including some metal-poor Population II stars, almost no constraints on the binary nature for extremely metal-poor (EMP; [Fe/H] <−3.0) stars have yet been obtained. Here we investigate the fraction of double-lined spectroscopic binaries and carbon-enhanced metal-poor (CEMP) stars, many of which could have formed as pairs of low-mass and intermediate-mass stars, to estimate the lower limit of the fraction of binary systems having short periods. The estimate is based on a sample of very metal-poor stars selected from the Sloan Digital Sky Survey and observed at high spectral resolution in a previous study by Aoki et al. That survey reported 3 double-lined spectroscopic binaries and 11 CEMP stars, which we consider along with a sample of EMP stars from the literature compiled in the SAGA database. We have conducted measurements of the velocity components for stacked absorption features of different spectral lines for each double-lined spectroscopic binary. Our estimate indicates that the fraction of binary stars having orbital periods shorter than 1000 days is at least 10%, and possibly as high as 20% if the majority of CEMP stars are formed in such short-period binaries. This result suggests that the period distribution of EMP binary systems is biased toward short periods, unless the binary fraction of low-mass EMP stars is significantly higher than that of other nearby stars.

  20. The near-infrared Ca II triplet as a metallicity indicator - II. Extension to extremely metal-poor metallicity regimes

    NASA Astrophysics Data System (ADS)

    Carrera, R.; Pancino, E.; Gallart, C.; del Pino, A.

    2013-09-01

    We extend our previous calibration of the infrared Ca II triplet (CaT) as a metallicity indicator to the metal-poor regime by including observations of 55 field stars with [Fe/H] down to -4.0 dex. While we previously solved the saturation at high metallicity using a combination of a Lorentzian and a Gaussian to reproduce the line profiles, in this paper we address the non-linearity at low metallicity following the suggestion of Starkenburg et al. of adding two non-linear terms to the relation among the [Fe/H], luminosity and strength of the calcium triplet lines. Our calibration thus extends from -4.0 to +0.5 in metallicity and is presented using four different luminosity indicators: V - VHB, MV, MI and MK. The calibration obtained in this paper results in a tight correlation between [Fe/H] abundances measured from high-resolution spectra and [Fe/H] values derived from the CaT, over the whole metallicity range covered.

  1. A New View of the Dwarf Spheroidal Satellites of the Milky Way From VLT/FLAMES: Where are the Very Metal Poor Stars?

    SciTech Connect

    Helmi, Amina; Irwin, M.J.; Tolstoy, E.; Battaglia, G.; Hill, V.; Jablonka, P.; Venn, K.; Shetrone, M.; Letarte, B.; Arimoto, N.; Abel, T.; Francois, P.; Kaufer, A.; Primas, F.; Sadakane, K.; Szeifert, T.; /Kapteyn Astron. Inst., Groningen /Cambridge U., Inst. of Astron. /Meudon Observ. /LASTRO Observ. /Victoria U. /Texas U., McDonald Observ. /Tokyo, Astron. Observ. /KIPAC, Menlo Park /European Southern Obs., Chile /European Southern Observ. /Osaka Kyoiku U.

    2006-11-20

    As part of the Dwarf galaxies Abundances and Radial-velocities Team (DART) Programme, we have measured the metallicities of a large sample of stars in four nearby dwarf spheroidal galaxies (dSph): Sculptor, Sextans, Fornax and Carina. The low mean metal abundances and the presence of very old stellar populations in these galaxies have supported the view that they are fossils from the early Universe. However, contrary to naive expectations, we find a significant lack of stars with metallicities below [Fe/H] {approx} -3 dex in all four systems. This suggests that the gas that made up the stars in these systems had been uniformly enriched prior to their formation. Furthermore, the metal-poor tail of the dSph metallicity distribution is significantly different from that of the Galactic halo. These findings show that the progenitors of nearby dSph appear to have been fundamentally different from the building blocks of the Milky Way, even at the earliest epochs.

  2. On the properties of the interstellar medium in extremely metal-poor blue compact dwarf galaxies. A VIMOS-IFU study of the cometary galaxy and Ly α absorber Tol 65

    NASA Astrophysics Data System (ADS)

    Lagos, P.; Demarco, R.; Papaderos, P.; Telles, E.; Nigoche-Netro, A.; Humphrey, A.; Roche, N.; Gomes, J. M.

    2016-02-01

    In this study, we present high-resolution VIsible Multi-Object Spectrograph integral field unit spectroscopy (VIMOS-IFU) of the extremely metal-poor H II/blue compact dwarf (BCD) galaxy Tol 65. The optical appearance of this galaxy shows clearly a cometary morphology with a bright main body and an extended and diffuse stellar tail. We focus on the detection of metallicity gradients or inhomogeneities as expected if the ongoing star formation activity is sustained by the infall/accretion of metal-poor gas. No evidences of significant spatial variations of abundances were found within our uncertainties. However, our findings show a slight anticorrelation between gas metallicity and star formation rate at spaxel scales, in the sense that high star formation is found in regions of low metallicity, but the scatter in this relation indicates that the metals are almost fully diluted. Our observations show the presence of extended Hα emission in the stellar tail of the galaxy. We estimated that the mass of the ionized gas in the tail M(H II)tail ˜1.7 × 105 M⊙ corresponds with ˜24 per cent of the total mass of the ionized gas in the galaxy. We found that the Hα velocity dispersion of the main body and the tail of the galaxy are comparable with the one found in the neutral gas by previous studies. This suggests that the ionized gas still retains the kinematic memory of its parental cloud and likely a common origin. Finally, we suggest that the infall/accretion of cold gas from the outskirts of the galaxy and/or minor merger/interaction may have produced the almost flat abundance gradient and the cometary morphology in Tol 65.

  3. The HARPS search for southern extra-solar planets. XXXIX. HD 175607, the most metal-poor G dwarf with an orbiting sub-Neptune

    NASA Astrophysics Data System (ADS)

    Mortier, A.; Faria, J. P.; Santos, N. C.; Rajpaul, V.; Figueira, P.; Boisse, I.; Collier Cameron, A.; Dumusque, X.; Lo Curto, G.; Lovis, C.; Mayor, M.; Melo, C.; Pepe, F.; Queloz, D.; Santerne, A.; Ségransan, D.; Sousa, S. G.; Sozzetti, A.; Udry, S.

    2016-01-01

    Context. The presence of a small-mass planet (Mp < 0.1 MJup) seems, to date, not to depend on metallicity, however, theoretical simulations have shown that stars with subsolar metallicities may be favoured for harbouring smaller planets. A large, dedicated survey of metal-poor stars with the HARPS spectrograph has thus been carried out to search for Neptunes and super-Earths. Aims: In this paper, we present the analysis of HD 175607, an old G6 star with metallicity [Fe/H] =-0.62. We gathered 119 radial velocity measurements in 110 nights over a time span of more than nine years. Methods: The radial velocities were analysed using Lomb-Scargle periodograms, a genetic algorithm, a Markov chain Monte Carlo analysis, and a Gaussian processes analysis. The spectra were also used to derive stellar properties. Several activity indicators were analysed to study the effect of stellar activity on the radial velocities. Results: We find evidence for the presence of a small Neptune-mass planet (Mpsini = 8.98 ± 1.10 M⊕) orbiting this star with an orbital period P = 29.01 ± 0.02 days in a slightly eccentric orbit (e = 0.11 ± 0.08). The period of this Neptune is close to the estimated rotational period of the star. However, from a detailed analysis of the radial velocities together with the stellar activity, we conclude that the best explanation of the signal is indeed the presence of a planetary companion rather than stellar related. An additional longer period signal (P ~ 1400 d) is present in the data, for which more measurements are needed to constrain its nature and its properties. Conclusions: HD 175607 is the most metal-poor FGK dwarf with a detected low-mass planet amongst the currently known planet hosts. This discovery may thus have important consequences for planet formation and evolution theories. Based on observations taken with the HARPS spectrograph (ESO 3.6-m telescope at La Silla) under programmes 072.C-0488(E), 082.C-0212(B), 085.C-0063(A), 086.C-0284(A

  4. An in-depth spectroscopic examination of molecular bands from 3D hydrodynamical model atmospheres. I. Formation of the G-band in metal-poor dwarf stars

    NASA Astrophysics Data System (ADS)

    Gallagher, A. J.; Caffau, E.; Bonifacio, P.; Ludwig, H.-G.; Steffen, M.; Spite, M.

    2016-09-01

    Context. Recent developments in the three-dimensional (3D) spectral synthesis code Linfor3D have meant that for the first time, large spectral wavelength regions, such as molecular bands, can be synthesised with it in a short amount of time. Aims: A detailed spectral analysis of the synthetic G-band for several dwarf turn-off-type 3D atmospheres (5850 ≲ Teff [ K ] ≲ 6550, 4.0 ≤ log g ≤ 4.5, - 3.0 ≤ [Fe/H] ≤-1.0) was conducted, under the assumption of local thermodynamic equilibrium. We also examine carbon and oxygen molecule formation at various metallicity regimes and discuss the impact it has on the G-band. Methods: Using a qualitative approach, we describe the different behaviours between the 3D atmospheres and the traditional one-dimensional (1D) atmospheres and how the different physics involved inevitably leads to abundance corrections, which differ over varying metallicities. Spectra computed in 1D were fit to every 3D spectrum to determine the 3D abundance correction. Results: Early analysis revealed that the CH molecules that make up the G-band exhibited an oxygen abundance dependency; a higher oxygen abundance leads to weaker CH features. Nitrogen abundances showed zero impact to CH formation. The 3D corrections are also stronger at lower metallicity. Analysis of the 3D corrections to the G-band allows us to assign estimations of the 3D abundance correction to most dwarf stars presented in the literature. Conclusions: The 3D corrections suggest that A(C) in carbon-enhanced metal-poor (CEMP) stars with high A(C) would remain unchanged, but would decrease in CEMP stars with lower A(C). It was found that the C/O ratio is an important parameter to the G-band in 3D. Additional testing confirmed that the C/O ratio is an equally important parameter for OH transitions under 3D. This presents a clear interrelation between the carbon and oxygen abundances in 3D atmospheres through their molecular species, which is not seen in 1D.

  5. Search for Extremely Metal-poor Galaxies in the Sloan Digital Sky Survey. (II). High Electron Temperature Objects

    NASA Astrophysics Data System (ADS)

    Sánchez Almeida, J.; Pérez-Montero, E.; Morales-Luis, A. B.; Muñoz-Tuñón, C.; García-Benito, R.; Nuza, S. E.; Kitaura, F. S.

    2016-03-01

    Extremely metal-poor (XMP) galaxies are defined to have a gas-phase metallicity smaller than a tenth of the solar value (12+{log}[{{O/H}}]< 7.69). They are uncommon, chemically and possibly dynamically primitive, with physical conditions characteristic of earlier phases of the universe. We search for new XMPs in the Sloan Digital Sky Survey (SDSS) in a work that complements Paper I. This time, high electron temperature objects are selected; metals are a main coolant of the gas, so metal-poor objects contain high-temperature gas. Using the algorithm k-means, we classify 788,677 spectra to select 1281 galaxies that have particularly intense [O III]λ4363 with respect to [O III]λ5007, which is a proxy for high electron temperature. The metallicity of these candidates was computed using a hybrid technique consistent with the direct method, rendering 196 XMPs. A less restrictive noise constraint provides a larger set with 332 candidates. Both lists are provided in electronic format. The selected XMP sample has a mean stellar mass around {10}8 {M}⊙ , with the dust mass ∼ {10}3{M}⊙ for typical star-forming regions. In agreement with previous findings, XMPs show a tendency to be tadpole-like or cometary. Their underlying stellar continuum corresponds to a fairly young stellar population (< 1 {{Gyr}}), although young and aged stellar populations coexist at the low-metallicity starbursts. About 10% of the XMPs show large N/O. Based on their location in constrained cosmological numerical simulations, XMPs have a strong tendency to appear in voids and to avoid galaxy clusters. The puzzling 2%-solar low-metallicity threshold exhibited by XMPs remains.

  6. On the properties of the interstellar medium in extremely metal-poor blue compact dwarf galaxies. GMOS-IFU spectroscopy and SDSS photometry of the double-knot galaxy HS 2236+1344

    NASA Astrophysics Data System (ADS)

    Lagos, P.; Papaderos, P.; Gomes, J. M.; Smith Castelli, A. V.; Vega, L. R.

    2014-09-01

    Aims: The main goal of this study is to carry out a spatially resolved investigation of the warm interstellar medium (ISM) in the extremely metal-poor blue compact dwarf (BCD) galaxy HS 2236+1344. Special emphasis is laid on analysis of the spatial distribution of chemical abundances, emission-line ratios, and the kinematics of the ISM, and to the recent star-forming (SF) activity in this galaxy. Methods: This study is based on optical integral field unit spectroscopy data from Gemini Multi-Object Spectrograph (GMOS) at the Gemini North telescope and archival Sloan Digital Sky Survey (SDSS) images. The galaxy was observed at medium spectral resolution over the spectral range from ~4300 Å to 7300 Å. The data were obtained in two different positions across the galaxy, obtaining a total 4″ × 8″ field that encompasses most of its ISM. Results: Emission-line maps and broad-band images obtained in this study indicate that HS 2236+1344 hosts three giant H ii regions (GH iiRs). Our data also reveal some faint curved features in the BCD periphery that might be due to tidal perturbations or expanding ionized-gas shells. The ISM velocity field shows systematic gradients along the major axis of the BCD, with its southeastern and northwestern half differing by ~80 km s-1 in their recessional velocity over the field of view. The Hα and Hβ equivalent-width distribution in the central part of HS 2236+1344 is consistent with a very young (~3 Myr) burst. Our surface photometry analysis reveals an underlying low surface brightness component with moderately red colors, which suggest that the galaxy has undergone previous star formation. We derive an integrated oxygen abundance of 12 + log (O / H) = 7.53 ± 0.06 and a nitrogen-to-oxygen ratio of log (N / O) = -1.57 ± 0.19. Our results are consistent, within the uncertainties, with a homogeneous distribution of oxygen and nitrogen within the ISM of the galaxy. The high-ionization He ii λ4686 emission line is detected only in

  7. AN INFRARED CENSUS OF DUST IN NEARBY GALAXIES WITH SPITZER (DUSTiNGS). II. DISCOVERY OF METAL-POOR DUSTY AGB STARS

    SciTech Connect

    Boyer, Martha L.; Sonneborn, George; McQuinn, Kristen B. W.; Gehrz, Robert D.; Skillman, Evan; Barmby, Pauline; Bonanos, Alceste Z.; Gordon, Karl D.; Meixner, Margaret; Groenewegen, M. A. T.; Lagadec, Eric; Lennon, Daniel; Marengo, Massimo; McDonald, Iain; Zijlstra, Albert; Sloan, G. C.; Van Loon, Jacco Th.

    2015-02-10

    The DUSTiNGS survey (DUST in Nearby Galaxies with Spitzer) is a 3.6 and 4.5 μm imaging survey of 50 nearby dwarf galaxies designed to identify dust-producing asymptotic giant branch (AGB) stars and massive stars. Using two epochs, spaced approximately six months apart, we identify a total of 526 dusty variable AGB stars (sometimes called ''extreme'' or x-AGB stars; [3.6]-[4.5] > 0.1 mag). Of these, 111 are in galaxies with [Fe/H] < –1.5 and 12 are in galaxies with [Fe/H] < –2.0, making them the most metal-poor dust-producing AGB stars known. We compare these identifications to those in the literature and find that most are newly discovered large-amplitude variables, with the exception of ≈30 stars in NGC 185 and NGC 147, 1 star in IC 1613, and 1 star in Phoenix. The chemical abundances of the x-AGB variables are unknown, but the low metallicities suggest that they are more likely to be carbon-rich than oxygen-rich and comparisons with existing optical and near-IR photometry confirm that 70 of the x-AGB variables are confirmed or likely carbon stars. We see an increase in the pulsation amplitude with increased dust production, supporting previous studies suggesting that dust production and pulsation are linked. We find no strong evidence linking dust production with metallicity, indicating that dust can form in very metal-poor environments.

  8. Properties of the most metal-poor gas-rich LSB dwarf galaxies SDSS J0015+0104 and J2354-0005 residing in the Eridanus void

    NASA Astrophysics Data System (ADS)

    Pustilnik, S. A.; Martin, J.-M.; Lyamina, Y. A.; Kniazev, A. Y.

    2013-07-01

    SDSS J0015+0104 is the lowest metallicity low surface brightness dwarf (LSBD) galaxy known. The oxygen abundance in its H II region SDSS J001520.70+010436.9 (at ˜1.5 kpc from the galaxy centre) is 12+log (O/H) = 7.07 (Guseva et al.). This galaxy, at the distance of 28.4 Mpc, appears to reside deeply in the volume devoid of luminous massive galaxies, known as the Eridanus void. SDSS J235437.29-000501.6 is another Eridanus void LSBD galaxy, with parameter 12+log (O/H) = 7.36 (also Guseva et al.). We present the results of their H I observations with the Nançay Radio Telescope revealing their high ratios of M(H I)/LB ˜ 2.3. Based on the Sloan Digital Sky Survey images, we derived for both galaxies their radial surface brightness profiles and the main photometric parameters. Their colours and total magnitudes are used to estimate the galaxy stellar mass and ages. The related gas mass fractions, fg ˜ 0.98 and ˜0.97, and the extremely low metallicities (much lower than for their more typical counterparts with the same luminosity) indicate their unevolved status. We compare these Eridanus void LSBDs with several extreme LSBD galaxies residing in the nearby Lynx-Cancer void. Based on the combination of all their unusual properties, the two discussed LSBD galaxies are similar to the unusual LSBDs residing in the closer void. This finding presents additional evidence for the existence in voids of a sizeable fraction of low-mass unevolved galaxies. Their dedicated search might result in the substantial increase of the number of such objects in the local Universe and in the advancement of understanding their nature.

  9. VizieR Online Data Catalog: Abundances of 4 metal-poor red giants in BooII (Ji+, 2016)

    NASA Astrophysics Data System (ADS)

    Ji, A. P.; Frebel, A.; Simon, J. D.; Geha, M.

    2016-04-01

    A total of 16 Boo II member stars were identified with Keck/DEIMOS observations (M. Geha et al. 2015, in preparation). We selected the four brightest members on the red giant branch sample for high-resolution follow-up (see Figure 1). The four target stars were observed with the Magellan Inamori Kyocera Echelle (MIKE) spectrograph on the Clay telescope in the full optical wavelength range from 3500 to 9000Å in March 2010, 2011 and 2014 and in June 2015 (see table 1). (4 data files).

  10. IMPROVED V II log(gf) VALUES, HYPERFINE STRUCTURE CONSTANTS, AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937

    SciTech Connect

    Wood, M. P.; Lawler, J. E.; Den Hartog, E. A.; Sneden, C.; Cowan, J. J. E-mail: jelawler@wisc.edu E-mail: chris@verdi.as.utexas.edu

    2014-10-01

    New experimental absolute atomic transition probabilities are reported for 203 lines of V II. Branching fractions are measured from spectra recorded using a Fourier transform spectrometer and an echelle spectrometer. The branching fractions are normalized with radiative lifetime measurements to determine the new transition probabilities. Generally good agreement is found between this work and previously reported V II transition probabilities. Two spectrometers, independent radiometric calibration methods, and independent data analysis routines enable a reduction in systematic uncertainties, in particular those due to optical depth errors. In addition, new hyperfine structure constants are measured for selected levels by least squares fitting line profiles in the FTS spectra. The new V II data are applied to high resolution visible and UV spectra of the Sun and metal-poor star HD 84937 to determine new, more accurate V abundances. Lines covering a range of wavelength and excitation potential are used to search for non-LTE effects. Very good agreement is found between our new solar photospheric V abundance, log ε(V) = 3.95 from 15 V II lines, and the solar-system meteoritic value. In HD 84937, we derive [V/H] = –2.08 from 68 lines, leading to a value of [V/Fe] = 0.24.

  11. Improved log(gf) Values for Lines of V I and V II, New Vanadium Abundances in the Sun and the Metal-Poor Star HD 84937

    NASA Astrophysics Data System (ADS)

    Lawler, James E.; Wood, Michael P.; Den Hartog, Elizabeth; Feigenson, Thomas; Sneden, Chris; Cowan, John J.

    2015-01-01

    New emission branching fraction measurements for 836 lines of the first spectrum of vanadium (V I) and 203 lines of V II are determined from hollow cathode lamp spectra recorded with the National Solar Observatory 1m Fourier transform spectrometer (FTS) and a high resolution echelle spectrometer. The branching fractions are combined with new radiative lifetimes from laser induced fluorescence measurements to determine accurate absolute atomic transition probabilities for 1039 lines of V I and V II. The FTS data are also used to extract new hyperfine structure A coefficients for both spectra. These new laboratory data are applied to determine the V abundance in the Sun and metal-poor star HD 84937, yielding log ɛ(V) = 3.96 (σ = 0.04) based on 93 V I lines and log ɛ(V) = 1.89 (σ = 0.07) based on nine V I lines respectively, and yielding log ɛ(V) = 3.95 (σ = 0.05) based on 15 V II lines and log ɛ(V) = 1.87 (σ = 0.07) based on 68 V II lines respectively1-3.1. Wood et al., ApJS 214:18 (2014), 2. Den Hartog et al. ApJS in press (2014), 3. Lawler et al. ApJS submitted (2014). This work is supported by NASA grant NNX10AN93G (JEL), NSF AST-1211055 (EDH & JEL), and NSF AST-1211585 (CS).

  12. IMPROVED Ti II log(gf) VALUES AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937

    SciTech Connect

    Wood, M. P.; Lawler, J. E.; Sneden, C.; Cowan, J. J. E-mail: jelawler@wisc.edu E-mail: cowan@nhn.ou.edu

    2013-10-01

    Atomic transition probability measurements for 364 lines of Ti II in the UV through near-IR are reported. Branching fractions from data recorded using a Fourier transform spectrometer (FTS) and a new echelle spectrometer are combined with published radiative lifetimes to determine these transition probabilities. The new results are in generally good agreement with previously reported FTS measurements. Use of the new echelle spectrometer, independent radiometric calibration methods, and independent data analysis routines enables a reduction of systematic errors and overall improvement in transition probability accuracy over previous measurements. The new Ti II data are applied to high-resolution visible and UV spectra of the Sun and metal-poor star HD 84937 to derive new, more accurate Ti abundances. Lines covering a range of wavelength and excitation potential are used to search for non-LTE effects. The Ti abundances derived using Ti II for these two stars match those derived using Ti I and support the relative Ti/Fe abundance ratio versus metallicity seen in previous studies.

  13. Models of Metal-poor Stars with Gravitational Settling and Radiative Accelerations. II. The Age of the Oldest Stars

    NASA Astrophysics Data System (ADS)

    VandenBerg, Don A.; Richard, O.; Michaud, G.; Richer, J.

    2002-05-01

    Isochrones for ages between 12 and 18 Gyr have been derived from the evolutionary tracks presented in Paper I (Richard et al.) for masses from 0.5 to 1.0 Msolar and initial chemical abundances corresponding to (1) Y=0.2352, Z=1.69×10-4 ([Fe/H]=-2.31,[α/Fe]=0.3) and (2) Y=0.2370, Z=1.69×10-3 ([Fe/H=-1.31,[α/Fe]=0.3). These are the first models for Population II stars in which both gravitational settling and radiative accelerations have been taken into account. Allowance for these diffusive processes leads to a 10%-12% reduction in age at a given turnoff luminosity. However, in order for the diffusive models to satisfy the constraints from Li and Fe abundance data (see Paper I) and to reproduce the observed morphologies of globular cluster (GC) color-magnitude diagrams (CMDs) in a straightforward way, extra mixing just below the boundary of the convective envelope seems to be necessary. Indeed, when additional turbulent mixing is invoked, the resultant models are able to satisfy all of these constraints, as well as those provided by the CMDs of local subdwarfs, rather well. Moreover, they imply an age near 13.5 Gyr for M92, which is one of the most metal-deficient (and presumably one of the oldest) of the Galaxy's GCs, if the field subgiant HD 140283 is used to derive the cluster distance. Comparisons of field subdwarfs and subgiants with a recently published fiducial for M5 suggests that the cluster has [Fe/H]<~-1.4, in conflict with some estimates based on high-resolution spectroscopy, if the metallicities of the field stars are to be trusted. In addition, an age of ~11.5 Gyr is found for M5, irrespective of whether diffusive or nondiffusive isochrones are employed in the analysis. The implications of our results for the extragalactic distance scale and for the Hubble constant are briefly discussed in the context of the presently favored ΩM~0.35, ΩΛ~0.65 cosmological model.

  14. HAT-P-12b: A LOW-DENSITY SUB-SATURN MASS PLANET TRANSITING A METAL-POOR K DWARF

    SciTech Connect

    Hartman, J. D.; Bakos, G. A.; Torres, G.; Noyes, R. W.; Pal, A.; Latham, D. W.; Sipocz, B.; Esquerdo, G. A.; Sasselov, D. D.; Kovacs, Gabor; Stefanik, R. P.; Fernandez, J. M.; Kovacs, Geza; Fischer, D. A.; Johnson, J. A.; Marcy, G. W.; Howard, A. W.; Butler, R. P.; Lazar, J.; Papp, I.

    2009-11-20

    We report on the discovery of HAT-P-12b, a transiting extrasolar planet orbiting the moderately bright V approx 12.8 K4 dwarf GSC 03033 - 00706, with a period P = 3.2130598 +- 0.0000021 d, transit epoch T{sub c} = 2454419.19556 +- 0.00020 (BJD), and transit duration 0.0974 +- 0.0006 d. The host star has a mass of 0.73 +- 0.02 M{sub sun}, radius of 0.70{sup +0.02}{sub -0.01} R{sub sun}, effective temperature 4650 +- 60 K, and metallicity [Fe/H] = -0.29 +- 0.05. We find a slight correlation between the observed spectral line bisector spans and the radial velocity, so we consider, and rule out, various blend configurations including a blend with a background eclipsing binary, and hierarchical triple systems where the eclipsing body is a star or a planet. We conclude that a model consisting of a single star with a transiting planet best fits the observations, and show that a likely explanation for the apparent correlation is contamination from scattered moonlight. Based on this model, the planetary companion has a mass of 0.211 +- 0.012 M{sub J} and radius of 0.959{sup +0.029}{sub -0.021} R{sub J} yielding a mean density of 0.295 +- 0.025 g cm{sup -3}. Comparing these observations with recent theoretical models, we find that HAT-P-12b is consistent with a approx1-4.5 Gyr, mildly irradiated, H/He-dominated planet with a core mass M{sub C} approx< 10 M {sub +}. HAT-P-12b is thus the least massive H/He-dominated gas giant planet found to date. This record was previously held by Saturn.

  15. Uncovering multiple Wolf-Rayet star clusters and the ionized ISM in Mrk 178: the closest metal-poor Wolf-Rayet H II galaxy

    NASA Astrophysics Data System (ADS)

    Kehrig, C.; Pérez-Montero, E.; Vílchez, J. M.; Brinchmann, J.; Kunth, D.; García-Benito, R.; Crowther, P. A.; Hernández-Fernández, J.; Durret, F.; Contini, T.; Fernández-Martín, A.; James, B. L.

    2013-07-01

    New integral field spectroscopy (IFS) has been obtained for the nearby metal-poor Wolf-Rayet (WR) galaxy Mrk 178 to examine the spatial correlation between its WR stars and the neighbouring ionized interstellar medium (ISM). The strength of the broad WR features and its low metallicity make Mrk 178 an intriguing object. We have detected the blue and red WR bumps in different locations across the field of view (˜300 pc × 230 pc) in Mrk 178. The study of the WR content has been extended, for the first time, beyond its brightest star-forming knot uncovering new WR star clusters. Using Large/Small Magellanic Cloud-template WR stars, we empirically estimate a minimum of ˜20 WR stars within the region sampled. Maps of the spatial distribution of the emission lines and of the physical-chemical properties of the ionized ISM have been created and analysed. Here, we refine the statistical methodology by Pérez-Montero et al. (2011) to probe the presence of variations in the ISM properties. An error-weighted mean of 12+log(O/H) = 7.72 ± 0.01 is taken as the representative oxygen abundance for Mrk 178. A localized N and He enrichment, spatially correlated with WR stars, is suggested by this analysis. Nebular He II λ4686 emission is shown to be spatially extended reaching well beyond the location of the WR stars. This spatial offset between WRs and He II emission can be explained based on the mechanical energy input into the ISM by the WR star winds, and does not rule out WR stars as the He II ionization source. We study systematic aperture effects on the detection and measurement of the WR features, using Sloan Digital Sky Survey spectra combined with the power of IFS. In this regard, the importance of targeting low metallicity nearby systems is discussed.

  16. A chemical confirmation of the faint Boötes II dwarf spheroidal galaxy

    SciTech Connect

    Koch, Andreas; Rich, R. Michael

    2014-10-10

    We present a chemical abundance study of the brightest confirmed member star of the ultra-faint dwarf galaxy Boötes II from Keck/HIRES high-resolution spectroscopy at moderate signal-to-noise ratios. At [Fe/H] = –2.93 ± 0.03(stat.) ± 0.17(sys.), this star chemically resembles metal-poor halo field stars and the signatures of other faint dwarf spheroidal galaxies at the same metallicities in that it shows enhanced [α/Fe] ratios, Solar Fe-peak element abundances, and low upper limits on the neutron-capture element Ba. Moreover, this star shows no chemical peculiarities in any of the eight elements we were able to measure. This implies that the chemical outliers found in other systems remain outliers pertaining to the unusual enrichment histories of the respective environments, while Boo II appears to have experienced an enrichment history typical of its very low mass. We also re-calibrated previous measurements of the galaxy's metallicity from the calcium triplet (CaT) and find a much lower value than reported before. The resulting broad metallicity spread, in excess of one dex, the very metal-poor mean, and the chemical abundance patterns of the present star imply that Boötes II is a low-mass, old, metal-poor dwarf galaxy and not an overdensity associated with the Sagittarius Stream as has been previously suggested based on its sky position and kinematics. The low, mean CaT metallicity of –2.7 dex falls right on the luminosity-metallicity relation delineated over four orders of magnitude from the more luminous to the faintest galaxies. Thus Boötes II's chemical enrichment appears representative of the galaxy's original mass, while tidal stripping and other mass loss mechanisms were probably not significant as for other low-mass satellites.

  17. Stellar Kinematics and Metallicities in the Ultra-faint Dwarf Galaxy Reticulum II

    NASA Astrophysics Data System (ADS)

    Simon, J. D.; Drlica-Wagner, A.; Li, T. S.; Nord, B.; Geha, M.; Bechtol, K.; Balbinot, E.; Buckley-Geer, E.; Lin, H.; Marshall, J.; Santiago, B.; Strigari, L.; Wang, M.; Wechsler, R. H.; Yanny, B.; Abbott, T.; Bauer, A. H.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Dodelson, S.; Cunha, C. E.; Estrada, J.; Evrard, A. E.; Fausti Neto, A.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gaztanaga, E.; Gerdes, D.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; March, M.; Martini, P.; Miller, C. J.; Miquel, R.; Ogando, R.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Schubnell, M.; Sevilla, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Tucker, D.; Vikram, V.; Walker, A. R.; Wester, W.; DES Collaboration

    2015-07-01

    We present Magellan/M2FS, Very Large Telescope/GIRAFFE, and Gemini South/GMOS spectroscopy of the newly discovered Milky Way satellite Reticulum II. Based on the spectra of 25 Ret II member stars selected from Dark Energy Survey imaging, we measure a mean heliocentric velocity of 62.8+/- 0.5 {km} {{{s}}}-1 and a velocity dispersion of 3.3+/- 0.7 {km} {{{s}}}-1. The mass-to-light ratio of Ret II within its half-light radius is 470+/- 210 {M}⊙ /{L}⊙ , demonstrating that it is a strongly dark matter-dominated system. Despite its spatial proximity to the Magellanic Clouds, the radial velocity of Ret II differs from that of the LMC and SMC by 199 and 83 {km} {{{s}}}-1, respectively, suggesting that it is not gravitationally bound to the Magellanic system. The likely member stars of Ret II span 1.3 dex in metallicity, with a dispersion of 0.28 ± 0.09 dex, and we identify several extremely metal-poor stars with {{[Fe/H]}}\\lt -3. In combination with its luminosity, size, and ellipticity, these results confirm that Ret II is an ultra-faint dwarf galaxy. With a mean metallicity of {{[Fe/H]}}=-2.65+/- 0.07, Ret II matches Segue 1 as the most metal-poor galaxy known. Although Ret II is the third-closest dwarf galaxy to the Milky Way, the line-of-sight integral of the dark matter density squared is {{log}}10(J)=18.8+/- 0.6 {GeV}{ }2 {{cm}}-5 within 0.°2, indicating that the predicted gamma-ray flux from dark matter annihilation in Ret II is lower than that of several other dwarf galaxies. Based on data obtained from the ESO Science Archive Facility under request number 157689.

  18. Stellar kinematics and metallicities in the ultra-faint dwarf galaxy Reticulum II

    SciTech Connect

    Simon, J. D.

    2015-07-23

    With this study, we present Magellan/M2FS, Very Large Telescope/GIRAFFE, and Gemini South/GMOS spectroscopy of the newly discovered Milky Way satellite Reticulum II. Based on the spectra of 25 Ret II member stars selected from Dark Energy Survey imaging, we measure a mean heliocentric velocity of $62.8\\pm 0.5\\;\\mathrm{km}\\;{{\\rm{s}}}^{-1}$ and a velocity dispersion of $3.3\\pm 0.7\\;\\mathrm{km}\\;{{\\rm{s}}}^{-1}$. The mass-to-light ratio of Ret II within its half-light radius is $470\\pm 210\\ {M}_{\\odot }/{L}_{\\odot }$, demonstrating that it is a strongly dark matter-dominated system. Despite its spatial proximity to the Magellanic Clouds, the radial velocity of Ret II differs from that of the LMC and SMC by 199 and 83 $\\mathrm{km}\\ {{\\rm{s}}}^{-1}$, respectively, suggesting that it is not gravitationally bound to the Magellanic system. The likely member stars of Ret II span 1.3 dex in metallicity, with a dispersion of 0.28 ± 0.09 dex, and we identify several extremely metal-poor stars with ${\\rm{[Fe/H]}}\\lt -3$. In combination with its luminosity, size, and ellipticity, these results confirm that Ret II is an ultra-faint dwarf galaxy. With a mean metallicity of ${\\rm{[Fe/H]}}=-2.65\\pm 0.07$, Ret II matches Segue 1 as the most metal-poor galaxy known. Although Ret II is the third-closest dwarf galaxy to the Milky Way, the line-of-sight integral of the dark matter density squared is ${\\mathrm{log}}_{10}(J)=18.8\\pm 0.6\\;\\;\\mathrm{GeV}{\\;}^{2}\\;{\\mathrm{cm}}^{-5}\\;$ within 0fdg2, indicating that the predicted gamma-ray flux from dark matter annihilation in Ret II is lower than that of several other dwarf galaxies.

  19. Is the scatter in nitrogen/oxygen of metal-poor systems real? Do H II regions become significantly self-enriched in oxygen?

    NASA Astrophysics Data System (ADS)

    Nava, Aida Hortensia

    In this dissertation, I addressed two independent problems. Problem 1 was to determine the extent of intrinsic scatter in the log(N/O) versus 12+log(O/H) diagram of dwarf emission-line galaxies with 12+log(O/H) <= 8.1 (hereafter, metal-poor systems), where O/H (oxygen to hydrogen) and N/O (nitrogen to oxygen) are number density ratios derived from the global HII region-like spectra of these systems. In order to assess the extent of intrinsic scatter among these systems, I computed 24 single-star HII region (H IIR) simulations with CLOUDY, using input stellar spectra modeled by D. Casebeer and D. Jevremovic with PHOENIX. The advantages of these simulations are: use of state- of-the-art stellar spectra, log(N/O) and log(C/O) fixed at -1.46 and -0.7 (which are published means of these systems, respectively), self-consistent stellar and nebular chemical compositions, and O/H as low as solar/50, i.e. , lower than any past work. The analysis of the 24 models shows that: (a) the uncertainties in the log(O/H) and log(N/O) derived from collisionally excited forbidden lines are reduced if the temperatures T e (N + ) and T e (O + ), used for deriving N + /H + and O + /H + respectively, are independent parameterizations of T e (O +2 ) [in general, T e (N + ) = T e (O + ) is assumed, but I show that T e (N + ) and T e (O + ) significantly diverge at low metallicity]; and (b) that the ionization correction factor (ICF) for obtaining N/O from N + /O + , is [left angle bracket]ICF[right angle bracket] = 1.08 ± 0.09 (in general, N/O=N + /O + is assumed). Adopting T e (N + ) != T e (O + ), the above ICF, and published de-reddened emission-line strengths, I re-derived the O/H and N/O ratios for a carefully selected sample of 68 metal-poor systems. For these systems: (1) the largest group of objects forms the well- known N/O plateau, with a value for the mean (and its statistical error) of - 1.43 (+.0084/-.0085); (2) the objects are distributed within a range in log(N/ O) of -1.54 to

  20. THE MASSES OF POPULATION II WHITE DWARFS

    SciTech Connect

    Kalirai, Jason S.; Davis, D. Saul; Richer, Harvey B.; Bergeron, P.; Catelan, Marcio; Hansen, Brad M. S.; Michael Rich, R. E-mail: sdavis@astro.ubc.c E-mail: bergeron@astro.umontreal.c E-mail: hansen@astro.ucla.ed

    2009-11-01

    Globular star clusters are among the first stellar populations to have formed in the Milky Way, and thus only a small sliver of their initial spectrum of stellar types are still burning hydrogen on the main sequence today. Almost all of the stars born with more mass than 0.8 M{sub sun} have evolved to form the white dwarf cooling sequence of these systems, and the distribution and properties of these remnants uniquely holds clues related to the nature of the now evolved progenitor stars. With ultra-deep Hubble Space Telescope imaging observations, rich white dwarf populations of four nearby Milky Way globular clusters have recently been uncovered, and are found to extend impressive 5-8 mag in the faint-blue region of the Hertzsprung-Russell diagram. In this paper, we characterize the properties of these population II remnants by presenting the first direct mass measurements of individual white dwarfs near the tip of the cooling sequence in the nearest of the Milky Way globulars, M4. Based on Gemini/GMOS and Keck/LRIS multiobject spectroscopic observations, our results indicate that 0.8 M{sub sun} population II main-sequence stars evolving today form 0.53 +- 0.01 M{sub sun} white dwarfs. We discuss the implications of this result as it relates to our understanding of stellar structure and evolution of population II stars and for the age of the Galactic halo, as measured with white dwarf cooling theory.

  1. The GAPS programme with HARPS-N at TNG. II. No giant planets around the metal-poor star HIP 11952

    NASA Astrophysics Data System (ADS)

    Desidera, S.; Sozzetti, A.; Bonomo, A. S.; Gratton, R.; Poretti, E.; Claudi, R.; Latham, D. W.; Affer, L.; Cosentino, R.; Damasso, M.; Esposito, M.; Giacobbe, P.; Malavolta, L.; Nascimbeni, V.; Piotto, G.; Rainer, M.; Scardia, M.; Schmid, V. S.; Lanza, A. F.; Micela, G.; Pagano, I.; Bedin, L. R.; Biazzo, K.; Borsa, F.; Carolo, E.; Covino, E.; Faedi, F.; Hébrard, G.; Lovis, C.; Maggio, A.; Mancini, L.; Marzari, F.; Messina, S.; Molinari, E.; Munari, U.; Pepe, F.; Santos, N.; Scandariato, G.; Shkolnik, E.; Southworth, J.

    2013-06-01

    In the context of the programme Global Architecture of Planetary Systems (GAPS), we have performed radial velocity monitoring of the metal-poor star HIP 11952 on 35 nights during about 150 days using the newly installed high-resolution spectrograph HARPS-N at the TNG and HARPS at the ESO 3.6 m telescope. The radial velocities show a scatter of 7 m s-1, compatible with the measurement errors for such a moderately warm metal-poor star (Teff = 6040 ± 120 K; [Fe/H] = -1.9 ± 0.1). We exclude the presence of the two giant planets with periods of 6.95 ± 0.01 d and 290.0 ± 16.2 d and radial velocity semi-amplitudes of 100.3 ± 19.4 m s-1 and 105.2 ± 14.7 m s-1, respectively, which have recently been announced. This result is important because HIP 11952 was thought to be the most metal-poor star hosting a planetary systemwith giant planets, which challenged some models of planet formation. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundacion Galileo Galilei of the INAF at the Spanish Observatorio del Roque de los Muchachos of the IAC in the frame of the programme Global Architecture of Planetary Systems (GAPS). Based on observations collected at the La Silla Observatory, ESO (Chile): Program 185.D-0056.Table 1 is available in electronic form at http://www.aanda.org

  2. Metal-poor stars observed with the Magellan telescope. II. Discovery of four stars with [Fe/H] ≤ –3.5

    SciTech Connect

    Placco, Vinicius M.; Beers, Timothy C.; Frebel, Anna; Christlieb, Norbert; Lee, Young Sun; Kennedy, Catherine R.; Rossi, Silvia; Santucci, Rafael M.

    2014-01-20

    We report on the discovery of seven low-metallicity stars selected from the Hamburg/ESO Survey, six of which are extremely metal-poor (EMP, [Fe/H] ≤ –3.0), with four having [Fe/H] ≤ –3.5. Chemical abundances or upper limits are derived for these stars based on high-resolution (R ∼ 35,000) Magellan/MIKE spectroscopy, and are in general agreement with those of other very and extremely metal-poor stars reported in the literature. Accurate metallicities and abundance patterns for stars in this metallicity range are of particular importance for studies of the shape of the metallicity distribution function of the Milky Way's halo system, in particular for probing the nature of its low-metallicity tail. In addition, taking into account suggested evolutionary mixing effects, we find that six of the program stars (with [Fe/H] ≤ –3.35) possess atmospheres that were likely originally enriched in carbon, relative to iron, during their main-sequence phases. These stars do not exhibit overabundances of their s-process elements, and hence may be, within the error bars, additional examples of the so-called CEMP-no class of objects.

  3. Metal-poor Stars Observed with the Magellan Telescope. II. Discovery of Four Stars with [Fe/H] <= -3.5

    NASA Astrophysics Data System (ADS)

    Placco, Vinicius M.; Frebel, Anna; Beers, Timothy C.; Christlieb, Norbert; Lee, Young Sun; Kennedy, Catherine R.; Rossi, Silvia; Santucci, Rafael M.

    2014-01-01

    We report on the discovery of seven low-metallicity stars selected from the Hamburg/ESO Survey, six of which are extremely metal-poor (EMP, [Fe/H] <= -3.0), with four having [Fe/H] <= -3.5. Chemical abundances or upper limits are derived for these stars based on high-resolution (R ~ 35,000) Magellan/MIKE spectroscopy, and are in general agreement with those of other very and extremely metal-poor stars reported in the literature. Accurate metallicities and abundance patterns for stars in this metallicity range are of particular importance for studies of the shape of the metallicity distribution function of the Milky Way's halo system, in particular for probing the nature of its low-metallicity tail. In addition, taking into account suggested evolutionary mixing effects, we find that six of the program stars (with [Fe/H] <= -3.35) possess atmospheres that were likely originally enriched in carbon, relative to iron, during their main-sequence phases. These stars do not exhibit overabundances of their s-process elements, and hence may be, within the error bars, additional examples of the so-called CEMP-no class of objects. Based on observations gathered with: The 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile; the Southern Astrophysical Research (SOAR) telescope (SO2011B-002), which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU); and the New Technology Telescope (NTT) of the European Southern Observatory (088.D-0344A), La Silla, Chile.

  4. The role of binaries in the enrichment of the early Galactic halo. II. Carbon-enhanced metal-poor stars: CEMP-no stars

    NASA Astrophysics Data System (ADS)

    Hansen, T. T.; Andersen, J.; Nordström, B.; Beers, T. C.; Placco, V. M.; Yoon, J.; Buchhave, L. A.

    2016-02-01

    Context. The detailed composition of most metal-poor halo stars has been found to be very uniform. However, a fraction of 20-70% (increasing with decreasing metallicity) exhibit dramatic enhancements in their abundances of carbon; these are the so-called carbon-enhanced metal-poor (CEMP) stars. A key question for Galactic chemical evolution models is whether this non-standard composition reflects that of the stellar natal clouds or is due to local, post-birth mass transfer of chemically processed material from a binary companion; CEMP stars should then all be members of binary systems. Aims: Our aim is to determine the frequency and orbital parameters of binaries among CEMP stars with and without over-abundances of neutron-capture elements - CEMP-s and CEMP-no stars, respectively - as a test of this local mass-transfer scenario. This paper discusses a sample of 24 CEMP-no stars, while a subsequent paper will consider a similar sample of CEMP-s stars. Methods: High-resolution, low S/N spectra of the stars were obtained at roughly monthly intervals over a time span of up to eight years with the FIES spectrograph at the Nordic Optical Telescope. Radial velocities of ~100 m s-1 precision were determined by cross-correlation after each observing night, allowing immediate, systematic follow-up of any variable object. Results: Most programme stars exhibit no statistically significant radial-velocity variation over this period and appear to be single, while four are found to be binaries with orbital periods of 300-2000 days and normal eccentricity; the binary frequency for the sample is 17 ± 9%. The single stars mostly belong to the recently identified low-C band, while the binaries have higher absolute carbon abundances. Conclusions: We conclude that the nucleosynthetic process responsible for the strong carbon excess in these ancient stars is unrelated to their binary status; the carbon was imprinted on their natal molecular clouds in the early Galactic interstellar

  5. Evolution and nucleosynthesis of extremely metal-poor and metal-free low- and intermediate-mass stars. II. s-process nucleosynthesis during the core He flash

    NASA Astrophysics Data System (ADS)

    Campbell, S. W.; Lugaro, M.; Karakas, A. I.

    2010-11-01

    Context. Models of primordial and hyper-metal-poor stars that have masses similar to the Sun are known to experience an ingestion of protons into the hot core during the core helium flash phase at the end of their red giant branch evolution. This produces a concurrent secondary flash powered by hydrogen burning that gives rise to further nucleosynthesis in the core. Aims: We aim to model the nucleosynthesis occurring during the proton ingestion event to ascertain if any significant neutron-capture nucleosynthesis occurs. Methods: We perform post-process nucleosynthesis calculations on a one-dimensional stellar evolution calculation of a star with mass 1 M_⊙ and a metallicity of [Fe/H] = -6.5 that suffers a proton ingestion episode. Our network includes 320 nuclear species and 2366 reactions and treats mixing and burning simultaneously. Results: We find that the mixing and burning of protons into the hot convective core leads to the production of 13C, which then burns via the 13C(α, n)16O reaction, releasing a large number of free neutrons. During the first two years of neutron production the neutron poison 14N abundance is low, allowing the prodigious production of heavy elements such as strontium, barium, and lead via slow neutron captures (the s process). These nucleosynthetic products are later carried to the stellar surface and ejected via stellar winds. We compare our results with observations of the hyper-metal-poor halo star HE 1327-2326, which shows a strong Sr overabundance. Conclusions: Our model provides the possibility of self-consistently explaining the Sr overabundance in HE 1327-2326 together with its C, N, and O overabundances (all within a factor of ˜ ~4) if the material were heavily diluted, for example, via mass transfer in a wide binary system. The model produces at least 18 times too much Ba than observed, but this may be within the large modelling uncertainties. In this scenario, binary systems of low mass must have formed in the early

  6. Stellar kinematics and metallicities in the ultra-faint dwarf galaxy Reticulum II

    DOE PAGES

    Simon, J. D.

    2015-07-23

    With this study, we present Magellan/M2FS, Very Large Telescope/GIRAFFE, and Gemini South/GMOS spectroscopy of the newly discovered Milky Way satellite Reticulum II. Based on the spectra of 25 Ret II member stars selected from Dark Energy Survey imaging, we measure a mean heliocentric velocity ofmore » $$62.8\\pm 0.5\\;\\mathrm{km}\\;{{\\rm{s}}}^{-1}$$ and a velocity dispersion of $$3.3\\pm 0.7\\;\\mathrm{km}\\;{{\\rm{s}}}^{-1}$$. The mass-to-light ratio of Ret II within its half-light radius is $$470\\pm 210\\ {M}_{\\odot }/{L}_{\\odot }$$, demonstrating that it is a strongly dark matter-dominated system. Despite its spatial proximity to the Magellanic Clouds, the radial velocity of Ret II differs from that of the LMC and SMC by 199 and 83 $$\\mathrm{km}\\ {{\\rm{s}}}^{-1}$$, respectively, suggesting that it is not gravitationally bound to the Magellanic system. The likely member stars of Ret II span 1.3 dex in metallicity, with a dispersion of 0.28 ± 0.09 dex, and we identify several extremely metal-poor stars with $${\\rm{[Fe/H]}}\\lt -3$$. In combination with its luminosity, size, and ellipticity, these results confirm that Ret II is an ultra-faint dwarf galaxy. With a mean metallicity of $${\\rm{[Fe/H]}}=-2.65\\pm 0.07$$, Ret II matches Segue 1 as the most metal-poor galaxy known. Although Ret II is the third-closest dwarf galaxy to the Milky Way, the line-of-sight integral of the dark matter density squared is $${\\mathrm{log}}_{10}(J)=18.8\\pm 0.6\\;\\;\\mathrm{GeV}{\\;}^{2}\\;{\\mathrm{cm}}^{-5}\\;$$ within 0fdg2, indicating that the predicted gamma-ray flux from dark matter annihilation in Ret II is lower than that of several other dwarf galaxies.« less

  7. Carbon-enhanced metal-poor stars in SDSS/Segue. II. Comparison of CEMP-star frequencies with binary population-synthesis models

    SciTech Connect

    Lee, Young Sun; Suda, Takuma; Beers, Timothy C.; Stancliffe, Richard J.

    2014-06-20

    We present a comparison of the frequencies of carbon-enhanced metal-poor (CEMP) giant and main-sequence turnoff (MSTO) stars with predictions from binary population-synthesis models involving asymptotic giant-branch (AGB) mass transfer. The giant and MSTO stars are selected from the Sloan Digital Sky Survey and the Sloan Extension for Galactic Understanding and Exploration. We consider two initial mass functions (IMFs)—a Salpeter IMF, and a mass function with a characteristic mass of 10 M {sub ☉}. For giant stars, the comparison indicates a good agreement between the observed CEMP frequencies and the AGB binary model using a Salpeter IMF for [Fe/H] > – 1.5, and a characteristic mass of 10 M {sub ☉} for [Fe/H] < – 2.5. This result suggests that the IMF shifted from high- to low-mass dominated in the early history of the Milky Way, which appears to have occurred at a 'chemical time' between [Fe/H] =–2.5 and [Fe/H] =–1.5. The CEMP frequency for the turnoff stars with [Fe/H] < – 3.0 is much higher than the AGB model prediction from the high-mass IMF, supporting the previous assertion that one or more additional mechanisms, not associated with AGB stars, are required for the production of carbon-rich material below [Fe/H] =–3.0. We also discuss possible effects of first dredge-up and extra mixing in red giants and internal mixing in turnoff stars on the derived CEMP frequencies.

  8. Carbon-enhanced metal-poor stars: a window on AGB nucleosynthesis and binary evolution. II. Statistical analysis of a sample of 67 CEMP-s stars

    NASA Astrophysics Data System (ADS)

    Abate, C.; Pols, O. R.; Izzard, R. G.; Karakas, A. I.

    2015-09-01

    Many of the carbon-enhanced metal-poor (CEMP) stars that we observe in the Galactic halo are found in binary systems and show enhanced abundances of elements produced by the slow neutron-capture process (s-elements). The origin of the peculiar chemical abundances of these CEMP-s stars is believed to be accretion in the past of enriched material from a primary star in the asymptotic giant branch (AGB) phase of its evolution.We investigate the mechanism of mass transfer and the process of nucleosynthesis in low-metallicity AGB stars by modelling the binary systems in which the observed CEMP-s stars were formed.For this purpose we compare a sample of 67 CEMP-s stars with a grid of binary stars generated by our binary evolution and nucleosynthesis model. We classify our sample CEMP-s stars in three groups based on the observed abundance of europium. In CEMP-s/r stars the europium-to-iron ratio is more than ten times higher than in the Sun, whereas it is lower than this threshold in CEMP-s/nr stars. No measurement of europium is currently available for CEMP-s/ur stars.On average our models reproduce the abundances observed in CEMP-s/nr stars well, whereas in CEMP-s/r stars and CEMP-s/ur stars the abundances of the light-s elements (strontium, yttrium, zirconium) are systematically overpredicted by our models, and in CEMP-s/r stars the abundances of the heavy-s elements (barium, lanthanum) are underestimated. In all stars our modelled abundances of sodium overestimate the observations. This discrepancy is reduced only in models that underestimate the abundances of most of the s-elements. Furthermore, the abundance of lead is underpredicted in most of our model stars, independent of the metallicity. These results point to the limitations of our AGB nucleosynthesis model, particularly in the predictions of the element-to-element ratios. In our models CEMP-s stars are typically formed in wide systems with periods above 10 000 days, while most of the observed CEMP-s stars

  9. Carbon-enhanced metal-poor stars in different environments

    NASA Astrophysics Data System (ADS)

    Salvadori, S.; Skúladóttir, Á.; de Bennassuti, M.

    2016-09-01

    The origin of carbon-enhanced metal-poor (CEMP) stars and their possible connections with the chemical elements produced by the first stellar generations is still highly debated. We briefly review observations of CEMP stars in different environments (Galactic stellar halo, ultra-faint, and classical dwarf galaxies) and interpret their properties using cosmological chemical-evolution models for the formation of the Local Group. We discuss the implications of current observations for the properties of the first stars, clarify why the fraction of carbon-enhanced to carbon-normal stars varies in dwarf galaxies with different luminosity, and discuss the origin of the first CEMP(-no) star found in the Sculptor dwarf galaxy.

  10. Abundance anomalies in metal-poor stars from Population III supernova ejecta hydrodynamics

    NASA Astrophysics Data System (ADS)

    Sluder, Alan; Ritter, Jeremy S.; Safranek-Shrader, Chalence; Milosavljević, Miloš; Bromm, Volker

    2016-02-01

    We present a simulation of the long-term evolution of a Population III supernova remnant in a cosmological minihalo. Employing passive Lagrangian tracer particles, we investigate how chemical stratification and anisotropy in the explosion can affect the abundances of the first low-mass, metal-enriched stars. We find that reverse shock heating can leave the inner mass shells at entropies too high to cool, leading to carbon enhancement in the recollapsing gas. This hydrodynamic selection effect could explain the observed incidence of carbon-enhanced metal-poor stars at low metallicity. We further explore how anisotropic ejecta distributions, recently seen in direct numerical simulations of core-collapse explosions, may translate to abundances in metal-poor stars. We find that some of the observed scatter in the Population II abundance ratios can be explained by an incomplete mixing of supernova ejecta, even in the case of only one contributing enrichment event. We demonstrate that the customary hypothesis of fully mixed ejecta clearly fails if post-explosion hydrodynamics prefers the recycling of some nucleosynthetic products over others. Furthermore, to fully exploit the stellar-archaeological programme of constraining the Pop III initial mass function from the observed Pop II abundances, considering these hydrodynamical transport effects is crucial. We discuss applications to the rich chemical structure of ultrafaint dwarf satellite galaxies, to be probed in unprecedented detail with upcoming spectroscopic surveys.

  11. Very Metal-poor Stars Observed by the RAVE Survey

    NASA Astrophysics Data System (ADS)

    Matijevič, Gal

    2016-08-01

    Radial Velocity Experiment (RAVE) observed ~500,000 southern sky stars between 2003 and 2013 in the infra-red calcium triplet (CaII) spectral region. In this study we extended the analysis of RAVE very metal-poor stars ([Fe/H] < -2) presented by Fulbright et al. (2010). We employed a novel method for identifying the metal-poor stars and developed a tool for modeling CaII lines where we also modeled the background noise to avoid systematical biases in the equivalent width (EW) measurements. Final metallicity values were derived with a flexible calibration approach using only 2MASS photometric data and EW measurements obtained from the RAVE spectra.

  12. ALFALFA Discovery of the Most Metal-poor Gas-rich Galaxy Known: AGC 198691

    NASA Astrophysics Data System (ADS)

    Hirschauer, Alec S.; Salzer, John J.; Skillman, Evan D.; Berg, Danielle; McQuinn, Kristen B. W.; Cannon, John M.; Gordon, Alex J. R.; Haynes, Martha P.; Giovanelli, Riccardo; Adams, Elizabeth A. K.; Janowiecki, Steven; Rhode, Katherine L.; Pogge, Richard W.; Croxall, Kevin V.; Aver, Erik

    2016-05-01

    We present spectroscopic observations of the nearby dwarf galaxy AGC 198691. This object is part of the Survey of H i in Extremely Low-Mass Dwarfs project, which is a multi-wavelength study of galaxies with H i masses in the range of 106–107.2 M ⊙, discovered by the Arecibo Legacy Fast ALFA (ALFALFA) survey. We have obtained spectra of the lone H ii region in AGC 198691 with the new high-throughput KPNO Ohio State Multi-Object Spectrograph on the Mayall 4 m, as well as with the Blue Channel spectrograph on the MMT 6.5 m telescope. These observations enable the measurement of the temperature-sensitive [O iii]λ4363 line and hence the determination of a “direct” oxygen abundance for AGC 198691. We find this system to be an extremely metal-deficient (XMD) system with an oxygen abundance of 12+log(O/H) = 7.02 ± 0.03, making AGC 198691 the lowest-abundance star-forming galaxy known in the local universe. Two of the five lowest-abundance galaxies known have been discovered by the ALFALFA blind H i survey; this high yield of XMD galaxies represents a paradigm shift in the search for extremely metal-poor galaxies.

  13. AN EXTREMELY CARBON-RICH, EXTREMELY METAL-POOR STAR IN THE SEGUE 1 SYSTEM

    SciTech Connect

    Norris, John E.; Yong, David; Gilmore, Gerard; Wyse, Rosemary F. G.; Frebel, Anna

    2010-10-10

    We report the analysis of high-resolution, high signal-to-noise ratio, spectra of an extremely metal-poor, extremely C-rich red giant, Seg 1-7, in Segue 1-described in the literature alternatively as an unusually extended globular cluster or an ultra-faint dwarf galaxy. The radial velocity of Seg 1-7 coincides precisely with the systemic velocity of Segue 1, and its chemical abundance signature of [Fe/H] = -3.52, [C/Fe] = +2.3, [N/Fe] = +0.8, [Na/Fe] = +0.53, [Mg/Fe] = +0.94, [Al/Fe] = +0.23, and [Ba/Fe] < -1.0 is similar to that of the rare and enigmatic class of Galactic halo objects designated CEMP-no (carbon-rich, extremely metal-poor with no enhancement (over solar ratios) of heavy neutron-capture elements). This is the first star in a Milky Way 'satellite' that unambiguously lies on the metal-poor, C-rich branch of the Aoki et al. bimodal distribution of field halo stars in the ([C/Fe], [Fe/H])-plane. Available data permit us only to identify Seg 1-7 as a member of an ultra-faint dwarf galaxy or as debris from the Sgr dwarf spheroidal galaxy. In either case, this demonstrates that at extremely low abundance, [Fe/H ] <-3.0, star formation and associated chemical evolution proceeded similarly in the progenitors of both the field halo and satellite systems. By extension, this is consistent with other recent suggestions that the most metal-poor dwarf spheroidal and ultra-faint dwarf satellites were the building blocks of the Galaxy's outer halo.

  14. STELLAR KINEMATICS OF THE ANDROMEDA II DWARF SPHEROIDAL GALAXY

    SciTech Connect

    Ho, Nhung; Geha, M.; Tollerud, E.; Munoz, R. R.; Guhathakurta, P.; Gilbert, K. M.; Bullock, J.; Beaton, R. L.; Majewski, S. R. E-mail: marla.geha@yale.edu

    2012-10-20

    We present kinematical profiles and metallicity for the M31 dwarf spheroidal (dSph) satellite galaxy Andromeda II (And II) based on Keck DEIMOS spectroscopy of 531 red giant branch stars. Our kinematical sample is among the largest for any M31 satellite and extends out to two effective radii (r {sub eff} = 5.'3 = 1.1 kpc). We find a mean systemic velocity of -192.4 {+-} 0.5 km s{sup -1} and an average velocity dispersion of {sigma} {sub v} = 7.8 {+-} 1.1 km s{sup -1}. While the rotation velocity along the major axis of And II is nearly zero (<1 km s{sup -1}), the rotation along the minor axis is significant with a maximum rotational velocity of v {sub max} = 8.6 {+-} 1.8 km s{sup -1}. We find a kinematical major axis, with a maximum rotational velocity of v {sub max} = 10.9 {+-} 2.4 km s{sup -1}, misaligned by 67 Degree-Sign to the isophotal major axis. And II is thus the first dwarf galaxy with evidence for nearly prolate rotation with a v {sub max}/{sigma} {sub v} = 1.1, although given its ellipticity of {epsilon} = 0.10, this object may be triaxial. We measured metallicities for a subsample of our data, finding a mean metallicity of [Fe/H] = -1.39 {+-} 0.03 dex and an internal metallicity dispersion of 0.72 {+-} 0.03 dex. We find a radial metallicity gradient with metal-rich stars more centrally concentrated, but do not observe a significant difference in the dynamics of the two metallicity populations. And II is the only known dwarf galaxy to show minor axis rotation, making it a unique system whose existence offers important clues on the processes responsible for the formation of dSphs.

  15. HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS IN THE LEAST EVOLVED GALAXIES: LEO IV

    SciTech Connect

    Simon, Joshua D.; McWilliam, Andrew; Thompson, Ian B.; Frebel, Anna; Kirby, Evan N. E-mail: andy@ociw.ed E-mail: afrebel@cfa.harvard.ed

    2010-06-10

    We present high-resolution Magellan/MIKE spectroscopy of the brightest star in the ultra-faint dwarf galaxy Leo IV. We measure an iron abundance of [Fe/H] = -3.2, adding to the rapidly growing sample of extremely metal-poor (EMP) stars being identified in Milky Way satellite galaxies. The star is enhanced in the {alpha} elements Mg, Ca, and Ti by {approx}0.3 dex, very similar to the typical Milky Way halo abundance pattern. All of the light and iron-peak elements follow the trends established by EMP halo stars, but the neutron-capture elements Ba and Sr are significantly underabundant. These results are quite similar to those found for stars in the ultra-faint dwarfs Ursa Major II, Coma Berenices, Booetes I, and Hercules, suggesting that the chemical evolution of the lowest-luminosity galaxies may be universal. The abundance pattern we observe is consistent with predictions for nucleosynthesis from a Population III supernova explosion. The extremely low metallicity of this star also supports the idea that a significant fraction ({approx}>10%) of the stars in the faintest dwarfs have metallicities below [Fe/H] = -3.0.

  16. Binarity in carbon-enhanced metal-poor stars

    NASA Astrophysics Data System (ADS)

    Starkenburg, Else; Shetrone, Matthew D.; McConnachie, Alan W.; Venn, Kim A.

    2014-06-01

    A substantial fraction of the lowest metallicity stars show very high enhancements in carbon. It is debated whether these enhancements reflect the stars' birth composition, or if their atmospheres were subsequently polluted, most likely by accretion from an asymptotic giant branch binary companion. Here we investigate and compare the binary properties of three carbon-enhanced subclasses: The metal-poor CEMP-s stars that are additionally enhanced in barium; the higher metallicity (sg)CH- and Ba II stars also enhanced in barium; and the metal-poor CEMP-no stars, not enhanced in barium. Through comparison with simulations, we demonstrate that all barium-enhanced populations are best represented by a ˜100 per cent binary fraction with a shorter period distribution of at maximum ˜20 000 d. This result greatly strengthens the hypothesis that a similar binary mass transfer origin is responsible for their chemical patterns. For the CEMP-no group we present new radial velocity data from the Hobby-Eberly Telescope for 15 stars to supplement the scarce literature data. Two of these stars show indisputable signatures of binarity. The complete CEMP-no data set is clearly inconsistent with the binary properties of the CEMP-s class, thereby strongly indicating a different physical origin of their carbon enhancements. The CEMP-no binary fraction is still poorly constrained, but the population resembles more the binary properties in the solar neighbourhood.

  17. A Search for Coronal Activity Among Two Metal-poor Subdwarfs and One Subgiant

    NASA Astrophysics Data System (ADS)

    Smith, Graeme H.; Dupree, Andrea K.; Günther, Hans Moritz

    2016-08-01

    A search has been made using the XMM-Newton satellite for coronal soft X-ray emission from HD 19445, HD 25329, and HD 140283, three Population II stars in the Galactic halo having metallicities of {{[Fe/H]}}˜ -2. The program stars, consisting of two subdwarfs and one metal-poor subgiant, were pre-selected from ground-based observations to have He i λ10830 absorption lines with an equivalent width (EW) of 30 mÅ or more. If such stars follow a relation between He i EW and soft X-ray flux applicable to Population I dwarf stars, then they would be expected to have X-ray luminosities ˜ 5× {10}-7 times their bolometric luminosity, and as such would yield detectable sources in 20 ks exposures with the XMM-Newton EPIC-PN and MOS cameras. No detections were found in such exposures made with XMM-Newton. Upper limits to soft X-ray emission from the two program stars that have effective temperatures most similar to that of the Sun, namely HD 19445 and HD 140283, are comparable to the level of the quiet Sun. The star HD 25329, a cooler subdwarf, exhibits an upper limit similar to the Sun at maximum activity. These measurements suggest that coronal activity appears to decrease with age among the oldest G dwarfs, but K-M subdwarfs possibly have maintained a solar-like level of activity. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.

  18. Toward ab initio extremely metal poor stars

    NASA Astrophysics Data System (ADS)

    Ritter, Jeremy S.; Safranek-Shrader, Chalence; Milosavljević, Miloš; Bromm, Volker

    2016-09-01

    Extremely metal poor stars have been the focus of much recent attention owing to the expectation that their chemical abundances can shed light on the metal and dust yields of the earliest supernovae. We present our most realistic simulation to date of the astrophysical pathway to the first metal enriched stars. We simulate the radiative and supernova hydrodynamic feedback of a 60 M⊙ Population III star starting from cosmological initial conditions realizing Gaussian density fluctuations. We follow the gravitational hydrodynamics of the supernova remnant at high spatial resolution through its freely-expanding, adiabatic, and radiative phases, until gas, now metal-enriched, has resumed runaway gravitational collapse. Our findings are surprising: while the Population III progenitor exploded with a low energy of 1051 erg and injected an ample metal mass of 6 M⊙, the first cloud to collapse after the supernova explosion is a dense surviving primordial cloud on which the supernova blast wave deposited metals only superficially, in a thin, unresolved layer. The first metal-enriched stars can form at a very low metallicity, of only 2 - 5 × 10-4 Z⊙, and can inherit the parent cloud's highly elliptical, radially extended orbit in the dark matter gravitational potential.

  19. THE SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 SPECTROSCOPIC M DWARF CATALOG. II. STATISTICAL PARALLAX ANALYSIS

    SciTech Connect

    Bochanski, John J.; Hawley, Suzanne L.; West, Andrew A.

    2011-03-15

    We present a statistical parallax analysis of low-mass dwarfs from the Sloan Digital Sky Survey. We calculate absolute r-band magnitudes (M{sub r} ) as a function of color and spectral type and investigate changes in M{sub r} with location in the Milky Way. We find that magnetically active M dwarfs are intrinsically brighter in M{sub r} than their inactive counterparts at the same color or spectral type. Metallicity, as traced by the proxy {zeta}, also affects M{sub r} , with metal-poor stars having fainter absolute magnitudes than higher metallicity M dwarfs at the same color or spectral type. Additionally, we measure the velocity ellipsoid and solar reflex motion for each subsample of M dwarfs. We find good agreement between our measured solar peculiar motion and previous results for similar populations, as well as some evidence for differing motions of early and late M-type populations in U and W velocities that cannot be attributed to asymmetric drift. The reflex solar motion and the velocity dispersions both show that younger populations, as traced by magnetic activity and location near the Galactic plane, have experienced less dynamical heating. We introduce a new parameter, the independent position altitude (IPA), to investigate populations as a function of vertical height from the Galactic plane. M dwarfs at all types exhibit an increase in velocity dispersion when analyzed in comparable IPA subgroups.

  20. La and Eu Abundances in Metal-poor Halo Stars

    NASA Astrophysics Data System (ADS)

    Cardillo, Harrison; Burris, Debra L.

    2016-01-01

    Elements with atomic number greater than Z=26 (the Iron Peak) cannot be formed through fusion in a star's core; the majority of these elements are produced through one of two neutron-capture processes. Early in the history of the Galaxy, the rapid neutron-capture process (r-process) is believed to be responsible for the production of elements Z=56 and beyond. These elements require at least one generation of stars to have completed their life cycle in order to be synthesized. Therefore, if we observe the heavy metal abundances in what are called Population II stars (metal-poor stars), then we can begin to make inferences about the chemistry of the earliest stars in the Galaxy. To contribute to this picture of the early universe, the Lanthanum and Europium abundances of low-metallicity stars will be measured and trends in these abundances based on comparisons to existing related literature will be sought.

  1. THE MOST METAL-POOR STARS. III. THE METALLICITY DISTRIBUTION FUNCTION AND CARBON-ENHANCED METAL-POOR FRACTION , ,

    SciTech Connect

    Yong, David; Norris, John E.; Bessell, M. S.; Asplund, M.; Christlieb, N.; Beers, Timothy C.; Barklem, P. S.; Frebel, Anna; Ryan, S. G. E-mail: jen@mso.anu.edu.au E-mail: martin@mso.anu.edu.au E-mail: beers@pa.msu.edu E-mail: afrebel@mit.edu

    2013-01-01

    We examine the metallicity distribution function (MDF) and fraction of carbon-enhanced metal-poor (CEMP) stars in a sample that includes 86 stars with [Fe/H] {<=} -3.0, based on high-resolution, high signal-to-noise spectroscopy, of which some 32 objects lie below [Fe/H] = -3.5. After accounting for the completeness function, the 'corrected' MDF does not exhibit the sudden drop at [Fe/H] = -3.6 that was found in recent samples of dwarfs and giants from the Hamburg/ESO survey. Rather, the MDF decreases smoothly down to [Fe/H] = -4.1. Similar results are obtained from the 'raw' MDF. We find that the fraction of CEMP objects below [Fe/H] = -3.0 is 23% {+-} 6% and 32% {+-} 8% when adopting the Beers and Christlieb and Aoki et al. CEMP definitions, respectively. The former value is in fair agreement with some previous measurements, which adopt the Beers and Christlieb criterion.

  2. The lithium isotopic ratio in very metal-poor stars

    NASA Astrophysics Data System (ADS)

    Lind, K.; Melendez, J.; Asplund, M.; Collet, R.; Magic, Z.

    2013-06-01

    Context. Un-evolved, very metal-poor stars are the most important tracers of the cosmic abundance of lithium in the early universe. Combining the standard Big Bang nucleosynthesis model with Galactic production through cosmic ray spallation, these stars at [Fe / H] < - 2 are expected to show an undetectably small 6Li / 7Li isotopic signature. Evidence to the contrary may necessitate an additional pre-galactic production source or a revision of the standard model of Big Bang nucleosynthesis. It would also cast doubts on Li depletion from stellar atmospheres as an explanation for the factor 3-5 discrepancy between the predicted primordial 7Li from the Big Bang and the observed value in metal-poor dwarf/turn-off stars. Aims: We revisit the isotopic analysis of four halo stars, two with claimed 6Li-detections in the literature, to investigate the influence of improved model atmospheres and line formation treatment. Methods: For the first time, a combined 3D, non-local thermodynamic equilibrium (NLTE) modelling technique for Li, Na, and Ca lines is utilised to constrain the intrinsic line-broadening and to determine the Li isotopic ratio. We discuss the influence of 3D NLTE effects on line profile shapes and assess the realism of our modelling using the Ca excitation and ionisation balance. Results: By accounting for NLTE line formation in realistic 3D hydrodynamical model atmospheres, we can model the Li resonance line and other neutral lines with a consistency that is superior to LTE, with no need for additional line asymmetry caused by the presence of 6Li. Contrary to the results from 1D and 3D LTE modelling, no star in our sample has a significant (2σ) detection of the lighter isotope in NLTE. Over a large parameter space, NLTE modelling systematically reduces the best-fit Li isotopic ratios by up to five percentage points. As a bi-product, we also present the first ever 3D NLTE Ca and Na abundances of halo stars, which reveal significant departures from LTE

  3. Spatially resolved dust emission of extremely metal-poor galaxies*

    NASA Astrophysics Data System (ADS)

    Zhou, Luwenjia; Shi, Yong; Diaz-Santos, Taino; Armus, Lee; Helou, George; Stierwalt, Sabrina; Li, Aigen

    2016-05-01

    We present infrared (IR) spectral energy distributions (SEDs) of individual star-forming regions in four extremely metal-poor (EMP) galaxies with metallicity Z ≲ Z⊙/10 as observed by the Herschel Space Observatory. With the good wavelength coverage of the SED, it is found that these EMP star-forming regions show distinct SED shapes as compared to those of grand design Spirals and higher metallicity dwarfs: they have on average much higher f70μm/f160 μm ratios at a given f160 μm/f250 μm ratio; single modified blackbody (MBB) fittings to the SED at λ ≥ 100 μm still reveal higher dust temperatures and lower emissivity indices compared to that of Spirals, while two MBB fittings to the full SED with a fixed emissivity index (β = 2) show that even at 100 μm, about half of the emission comes from warm (50 K) dust, in contrast to the cold (˜20 K) dust component. Our spatially resolved images furthermore reveal that the far-IR colours including f70 μm/f160 μm, f160 μm/f250 μm and f250 μm/f350 μm are all related to the surface densities of young stars as traced by far-UV, 24 μm and star formation rates (SFRs), but not to the stellar mass surface densities. This suggests that the dust emitting at wavelengths from 70 to 350 μm is primarily heated by radiation from young stars.

  4. Li and Be depletion in metal-poor subgiants

    NASA Astrophysics Data System (ADS)

    García Pérez, A. E.; Primas, F.

    2006-02-01

    A sample of metal-poor subgiants has been observed with the UVES spectrograph at the Very Large Telescope and abundances of Li and Be have been determined. Typical signal-to-noise per spectral bin values for the co-added spectra are of the order of 500 for the ion{Li}{i} line (670.78 nm) and 100 for the ion{Be}{ii} doublet lines (313.04 nm). The spectral analysis of the observations was carried out using the Uppsala suite of codes and marcs (1D-LTE) model atmospheres with stellar parameters from photometry, parallaxes, isochrones and Fe ii lines. Abundance estimates of the light elements were corrected for departures from local thermodynamic equilibrium in the line formation. Effective temperatures and Li abundances seem to be correlated and Be abundances correlate with [O/H]. Standard models predict Li and Be abundances approximately one order of magnitude lower than main-sequence values which is in general agreement with the observations. On average, our observed depletions seem to be 0.1 dex smaller and between 0.2 and 0.4 dex larger (depending on which reference is taken) than those predicted for Li and Be, respectively. This is not surprising since the initial Li abundance, as derived from main-sequence stars on the Spite plateau, may be systematically in error by 0.1 dex or more, and uncertainties in the spectrum normalisation and continuum drawing may affect our Be abundances systematically.

  5. Surface Brightness Profiles of Dwarf Galaxies. II. Color Trends and Mass Profiles

    NASA Astrophysics Data System (ADS)

    Herrmann, Kimberly A.; Hunter, Deidre A.; Elmegreen, Bruce G.

    2016-06-01

    In this second paper of a series, we explore the B - V, U - B, and FUV-NUV radial color trends from a multi-wavelength sample of 141 dwarf disk galaxies. Like spirals, dwarf galaxies have three types of radial surface brightness profiles: (I) single exponential throughout the observed extent (the minority), (II) down-bending (the majority), and (III) up-bending. We find that the colors of (1) Type I dwarfs generally become redder with increasing radius, unlike spirals which have a blueing trend that flattens beyond ˜1.5 disk scale lengths, (2) Type II dwarfs come in six different “flavors,” one of which mimics the “U” shape of spirals, and (3) Type III dwarfs have a stretched “S” shape where the central colors are flattish, become steeply redder toward the surface brightness break, then remain roughly constant beyond, which is similar to spiral Type III color profiles, but without the central outward bluing. Faint (-9 > MB > -14) Type II dwarfs tend to have continuously red or “U” shaped colors and steeper color slopes than bright (-14 > MB > -19) Type II dwarfs, which additionally have colors that become bluer or remain constant with increasing radius. Sm dwarfs and BCDs tend to have at least some blue and red radial color trend, respectively. Additionally, we determine stellar surface mass density (Σ) profiles and use them to show that the break in Σ generally remains in Type II dwarfs (unlike Type II spirals) but generally disappears in Type III dwarfs (unlike Type III spirals). Moreover, the break in Σ is strong, intermediate, and weak in faint dwarfs, bright dwarfs, and spirals, respectively, indicating that Σ may straighten with increasing galaxy mass. Finally, the average stellar surface mass density at the surface brightness break is roughly 1-2 M⊙ pc-2 for Type II dwarfs but higher at 5.9 M⊙ pc-2 or 27 M⊙ pc-2 for Type III BCDs and dIms, respectively.

  6. IMPROVED Co i log(gf) VALUES AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937

    SciTech Connect

    Lawler, J. E.; Sneden, C.; Cowan, J. J. E-mail: chris@verdi.as.utexas.edu

    2015-09-15

    New emission branching fraction measurements for 898 lines of the first spectrum of cobalt (Co i) are determined from hollow cathode lamp spectra recorded with the National Solar Observatory 1 m Fourier transform spectrometer on Kitt Peak, AZ and a high-resolution echelle spectrometer. Published radiative lifetimes from laser induced fluorescence measurements are combined with the branching fractions to determine accurate absolute atomic transition probabilities for the 898 lines. Hyperfine structure (hfs) constants for levels of neutral Co in the literature are surveyed and selected values are used to generate complete hfs component patterns for 195 transitions of Co i. These new laboratory data are applied to determine the Co abundance in the Sun and metal-poor star HD 84937, yielding log ϵ(Co) = 4.955 ± 0.007 (σ = 0.059) based on 82 Co i lines and log ϵ(Co) = 2.785 ± 0.008 (σ = 0.065) based on 66 Co i lines, respectively. A Saha or ionization balance test on the photosphere of HD 84937 is performed using 16 UV lines of Co ii, and good agreement is found with the Co i result in this metal-poor ([Fe i/H] = −2.32, [Fe ii/H] = −2.32) dwarf star. The resulting value of [Co/Fe] = +0.14 supports a rise of Co/Fe at low metallicity that has been suggested in other studies.

  7. Improved Co I log(gf) Values and Abundance Determinations in the Photospheres of the Sun and Metal-poor Star HD 84937

    NASA Astrophysics Data System (ADS)

    Lawler, J. E.; Sneden, C.; Cowan, J. J.

    2015-09-01

    New emission branching fraction measurements for 898 lines of the first spectrum of cobalt (Co i) are determined from hollow cathode lamp spectra recorded with the National Solar Observatory 1 m Fourier transform spectrometer on Kitt Peak, AZ and a high-resolution echelle spectrometer. Published radiative lifetimes from laser induced fluorescence measurements are combined with the branching fractions to determine accurate absolute atomic transition probabilities for the 898 lines. Hyperfine structure (hfs) constants for levels of neutral Co in the literature are surveyed and selected values are used to generate complete hfs component patterns for 195 transitions of Co i. These new laboratory data are applied to determine the Co abundance in the Sun and metal-poor star HD 84937, yielding log ɛ(Co) = 4.955 ± 0.007 (σ = 0.059) based on 82 Co i lines and log ɛ(Co) = 2.785 ± 0.008 (σ = 0.065) based on 66 Co i lines, respectively. A Saha or ionization balance test on the photosphere of HD 84937 is performed using 16 UV lines of Co ii, and good agreement is found with the Co i result in this metal-poor ([Fe i/H] = -2.32, [Fe ii/H] = -2.32) dwarf star. The resulting value of [Co/Fe] = +0.14 supports a rise of Co/Fe at low metallicity that has been suggested in other studies.

  8. SYSTEMATIC SEARCH FOR EXTREMELY METAL-POOR GALAXIES IN THE SLOAN DIGITAL SKY SURVEY

    SciTech Connect

    Morales-Luis, A. B.; Sanchez Almeida, J.; Aguerri, J. A. L.; Munoz-Tunon, C. E-mail: jos@iac.es E-mail: jalfonso@iac.es

    2011-12-10

    We carry out a systematic search for extremely metal-poor (XMP) galaxies in the spectroscopic sample of Sloan Digital Sky Survey (SDSS) data release 7 (DR7). The XMP candidates are found by classifying all the galaxies according to the form of their spectra in a region 80 A wide around H{alpha}. Due to the data size, the method requires an automatic classification algorithm. We use k-means. Our systematic search renders 32 galaxies having negligible [N II] lines, as expected in XMP galaxy spectra. Twenty-one of them have been previously identified as XMP galaxies in the literature-the remaining 11 are new. This was established after a thorough bibliographic search that yielded only some 130 galaxies known to have an oxygen metallicity 10 times smaller than the Sun (explicitly, with 12 + log (O/H) {<=} 7.65). XMP galaxies are rare; they represent 0.01% of the galaxies with emission lines in SDSS/DR7. Although the final metallicity estimate of all candidates remains pending, strong-line empirical calibrations indicate a metallicity about one-tenth solar, with the oxygen metallicity of the 21 known targets being 12 + log (O/H) {approx_equal} 7.61 {+-} 0.19. Since the SDSS catalog is limited in apparent magnitude, we have been able to estimate the volume number density of XMP galaxies in the local universe, which turns out to be (1.32 {+-} 0.23) Multiplication-Sign 10{sup -4} Mpc{sup -3}. The XMP galaxies constitute 0.1% of the galaxies in the local volume, or {approx}0.2% considering only emission-line galaxies. All but four of our candidates are blue compact dwarf galaxies, and 24 of them have either cometary shape or are formed by chained knots.

  9. Improved Co I log(gf) & hfs data and Abundance Determinations in the Photospheres of the Sun & Metal-poor Star HD 84937

    NASA Astrophysics Data System (ADS)

    Lawler, James E.; Sneden, Chris; Cowan, John J.

    2016-01-01

    New emission branching fraction measurements for 898 lines of the first spectrum of cobalt (Co I) from hollow cathode lamp spectra recorded with a 1m Fourier transform spectrometer (FTS) and a high resolution echelle spectrometer are reported. Radiative lifetimes from laser induced fluorescence measurements are combined with the branching fractions to determine accurate log(gf)s for the 898 lines. Selected published hyperfine structure (hfs) constants for levels of neutral Co are used to generate complete hfs component patterns for 195 transitions of Co I. These new laboratory data are applied to determine the Co abundance in the Sun and metal-poor star HD 84937, yielding log eps(Co) = 4.955 ± 0.007 (sigma = 0.059) based on 82 Co I lines and log eps(Co) = 2.785 ± 0.008 (sigma = 0.065) based on 66 Co I lines respectively. A Saha balance test on the photosphere of HD 84937 is performed using 16 UV lines of Co II, and good agreement is found with the Co I result in this metal-poor ([Fe I /H] = -2.32, [Fe II /H] = -2.32) dwarf star. The resulting value of [Co/Fe] = +0.14 supports a rise of Co/Fe at low metallicity that has been suggested in other studies. These new Co I data are part of a continuing effort to explore the limits of 1D/LTE photospheric models in metal-poor stars and to determine the relative abundance of Fe-group elements at low metallicity. This work is supported in part by NASA grant NNX10AN93G (J.E.L.), by NSF grant AST-1211055 (J.E.L.), and by NSF grant AST-1211585 (C.S.).

  10. Ruprecht 106 - A young metal-poor Galactic globular cluster

    SciTech Connect

    Buonanno, R.; Buscema, G.; Fusi Pecci, F.; Richer, H.B.; Fahlman, G.G. Bologna Universita British Columbia Univ., Vancouver )

    1990-12-01

    The first CCD photometric survey in the Galactic globular cluster Ruprecht 106 has been performed. The results show that Ruprecht 106 is a metal-poor cluster with (Fe/H) about -2 located at about 25 kpc from the Galactic center. A sizable, high centrally concentrated population of blue stragglers was detected. Significant differences in the positions of the turnoffs in the color-magnitude diagram are found compared to those in metal-poor clusters. The cluster appears younger than other typical metal-poor Galactic globulars by about 4-5 Gyr; if true, this object would represent the first direct proof of the existence of a significant age spread among old, very metal-poor clusters. 51 refs.

  11. Exploring the early Universe with extremely metal-poor stars

    NASA Astrophysics Data System (ADS)

    Hansen, Terese T.; Christlieb, Norbert; Hansen, Camilla J.; Beers, Timothy C.

    2016-08-01

    The earliest phases of Galactical chemical evolution and nucleosynthesis can be investigated by studying the old metal-poor stars. It has been recognized that a large fraction of metal-poor stars possess significant over-abundances of carbon relative to iron. Here we present the results of a 23-star homogeneously analyzed sample of metal-poor candidates from the Hamburg/ESO survey. We have derived abundances for a large number of elements ranging from Li to Pb. The sample includes four ultra metal-poor stars ([Fe/H] < -4.0), six CEMP-no stars, five CEMP-s stars, two CEMP-r stars and two CEMP-r/s stars. This broad variety of the sample stars gives us an unique opportunity to explore different abundance patterns at low metallicity.

  12. Search for cold debris disks around M-dwarfs. II

    NASA Astrophysics Data System (ADS)

    Lestrade, J.-F.; Wyatt, M. C.; Bertoldi, F.; Menten, K. M.; Labaigt, G.

    2009-11-01

    Although 70% of the stars in the Galaxy are M-dwarfs, thermal emission searches for cold debris disks have been conducted mostly for A-type and solar-type stars. We report on new λ=1.2 mm continuum observations of thirty M-dwarfs, using the MAMBO-2 bolometer array camera at the IRAM 30 m telescope. For a statistical analysis, we combine these data with our prior SCUBA and MAMBO-2 observations of 20 other M-dwarfs. Our sample consists of M-dwarfs in moving groups, with relatively young ages, and of nearby M-dwarfs with unknown ages. Only one cold debris disk (GJ842.2) was detected significantly. We compare the implied disk abundance constraints with those found in two comparable submillimeter surveys of 10 to 190 Myr old A- and FGK-type stars. For the 19 youngest (ages less than 200 Myr) M-dwarfs in our sample, we derive a cold disk fraction of 5.3+10.5-5.0%, compared to 15+11.5-11.5% for FGK-stars and 22+33-20% for A-stars. Hence, for this age group, there is an apparent trend of fewer cold disks for later stellar types. Although its statistical significance is marginal, this trend is strengthened by the deeper observations of our M-dwarf sample. We derive a cold disk fraction of <10% for the older (likely a few Gyr) M-dwarfs in our sample. Finally, although inconclusively related to a debris disk, we present the complex millimeter structure found around the position of the M 1.5 dwarf GJ526 in our sample.

  13. ANDROMEDA DWARFS IN LIGHT OF MOND. II. TESTING PRIOR PREDICTIONS

    SciTech Connect

    McGaugh, Stacy; Milgrom, Mordehai

    2013-10-01

    We employ recently published measurements of the velocity dispersions in the newly discovered dwarf satellite galaxies of Andromeda to test our previously published predictions of this quantity. The data are in good agreement with our specific predictions for each dwarf made a priori with modified Newtonian dynamics (MOND), with reasonable stellar mass-to-light ratios, and no dark matter, while Newtonian dynamics point to quite large mass discrepancies in these systems. MOND distinguishes between regimes where the internal field of the dwarf, or the external field of the host, dominates. The data appear to recognize this distinction, which is a unique feature of MOND not explicable in ΛCDM.

  14. CARBON-RICH DUST PRODUCTION IN METAL-POOR GALAXIES IN THE LOCAL GROUP

    SciTech Connect

    Sloan, G. C.; Matsuura, M.; Lagadec, E.; Van Loon, J. Th.; Kraemer, K. E.; McDonald, I.; Zijlstra, A. A.; Groenewegen, M. A. T.; Wood, P. R.; Bernard-Salas, J.

    2012-06-20

    We have observed a sample of 19 carbon stars in the Sculptor, Carina, Fornax, and Leo I dwarf spheroidal galaxies with the Infrared Spectrograph on the Spitzer Space Telescope. The spectra show significant quantities of dust around the carbon stars in Sculptor, Fornax, and Leo I, but little in Carina. Previous comparisons of carbon stars with similar pulsation properties in the Galaxy and the Magellanic Clouds revealed no evidence that metallicity affected the production of dust by carbon stars. However, the more metal-poor stars in the current sample appear to be generating less dust. These data extend two known trends to lower metallicities. In more metal-poor samples, the SiC dust emission weakens, while the acetylene absorption strengthens. The bolometric magnitudes and infrared spectral properties of the carbon stars in Fornax are consistent with metallicities more similar to carbon stars in the Magellanic Clouds than in the other dwarf spheroidals in our sample. A study of the carbon budget in these stars reinforces previous considerations that the dredge-up of sufficient quantities of carbon from the stellar cores may trigger the final superwind phase, ending a star's lifetime on the asymptotic giant branch.

  15. NGC 1252: a high altitude, metal poor open cluster remnant

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, R.; de la Fuente Marcos, C.; Moni Bidin, C.; Carraro, G.; Costa, E.

    2013-09-01

    If stars form in clusters but most stars belong to the field, understanding the details of the transition from the former to the latter is imperative to explain the observational properties of the field. Aging open clusters are one of the sources of field stars. The disruption rate of open clusters slows down with age but, as an object gets older, the distinction between the remaining cluster or open cluster remnant (OCR) and the surrounding field becomes less and less obvious. As a result, finding good OCR candidates or confirming the OCR nature of some of the best candidates still remain elusive. One of these objects is NGC 1252, a scattered group of about 20 stars in Horologium. Here we use new wide-field photometry in the UBVI passbands, proper motions from the Yale/San Juan SPM 4.0 catalogue and high-resolution spectroscopy concurrently with results from N-body simulations to decipher NGC 1252's enigmatic character. Spectroscopy shows that most of the brightest stars in the studied area are chemically, kinematically and spatially unrelated to each other. However, after analysing proper motions, we find one relevant kinematic group. This sparse object is relatively close (˜1 kpc), metal poor and is probably not only one of the oldest clusters (3 Gyr) within 1.5 kpc from the Sun but also one of the clusters located farthest from the disc, at an altitude of nearly -900 pc. That makes NGC 1252 the first open cluster that can be truly considered a high Galactic altitude OCR: an unusual object that may hint at a star formation event induced on a high Galactic altitude gas cloud. We also conclude that the variable TW Horologii and the blue straggler candidate HD 20286 are unlikely to be part of NGC 1252. NGC 1252 17 is identified as an unrelated, Population II cannonball star moving at about 400 km s-1.

  16. A Photometric Method for Discovering Extremely Metal Poor Stars

    NASA Astrophysics Data System (ADS)

    Miller, Adam

    2015-01-01

    I present a new non-parametric machine-learning method for predicting stellar metallicity ([Fe/H]) based on photometric colors from the Sloan Digital Sky Survey (SDSS). The method is trained using a large sample of ~150k stars with SDSS spectra and atmospheric parameter estimates (Teff, log g, and [Fe/H]) from the SEGUE Stellar Parameters Pipeline (SSPP). For bright stars (g < 18 mag) with 4500 K < Teff < 7000 K and log g > 2, corresponding to the stars for which the SSPP estimates are most reliable, the method is capable of predicting [Fe/H] with a typical scatter of ~0.16 dex. This scatter is smaller than the typical uncertainty associated with [Fe/H] measurements from a low-resolution spectrum. The method is suitable for the discovery of extremely metal poor (EMP) stars ([Fe/H] < -3), as high purity (P > 50%), but low efficiency (E ~ 10%), samples of EMP star candidates can be generated from the sources with the lowest predicted [Fe/H]. To improve the efficiency of EMP star discovery, an alternative machine-learning model is constructed where the number of non-EMP stars is down-sampled in the training set, and a new regression model is fit. This alternate model improves the efficiency of EMP candidate selection by a factor of ~2. To test the efficacy of the model, I have obtained low-resolution spectra of 56 candidate EMP stars. I measure [Fe/H] for these stars using the well calibrated Ca II K line method, and compare our spectroscopic measurements to those from the machine learning model. Once applied to wide-field surveys, such as SDSS, Pan-STARRS, and LSST, the model will identify thousands of previously unknown EMP stars.

  17. Artificial neural network to search for metal-poor galaxies

    NASA Astrophysics Data System (ADS)

    Shi, Fei; Liu, Yu-Yan; Kong, Xu; Chen, Yang

    2014-02-01

    Aims: To find a fast and reliable method for selecting metal-poor galaxies (MPGs), especially in large surveys and huge databases, an artificial neural network (ANN) method is applied to a sample of star-forming galaxies from the Sloan Digital Sky Survey (SDSS) data release 9 (DR9) provided by the Max Planck Institute and the Johns Hopkins University (MPA/JHU). Methods: A two-step approach is adopted: (i) The ANN network must be trained with a subset of objects that are known to be either MPGs or metal rich galaxies (MRGs), treating the strong emission line flux measurements as input feature vectors in n-dimensional space, where n is the number of strong emission line flux ratios. (ii) After the network is trained on a sample of star-forming galaxies, the remaining galaxies are classified in the automatic test analysis as either MPGs or MRGs. We consider several random divisions of the data into training and testing sets; for instance, for our sample, a total of 70 percent of the data are involved in training the algorithm, 15 percent are involved in validating the algorithm, and the remaining 15 percent are used for blind testing the resulting classifier. Results: For target selection, we have achieved an acquisition rate for MPGs of 96 percent and 92 percent for an MPGs threshold of 12 + log (O/H) = 8.00 and 12 + log (O/H) = 8.39, respectively. Running the code takes minutes in most cases under the Matlab 2013a software environment. The ANN method can easily be extended to any MPGs target selection task when the physical property of the target can be expressed as a quantitative variable. The code in the paper is available on the web (http://fshi5388.blog.163.com).

  18. The temperatures of very metal-poor subdwarfs

    NASA Technical Reports Server (NTRS)

    Bell, R. A.

    1986-01-01

    The determination of ages for metal poor globular cluster stars using the relationship between stellar effective temperature and color, in order to transform isochrones from the L, Teff plane to the M(V), color plane is described. Estimates of the effective temperatures of metal-poor field subdwarfs deduced from the ratios of the integrated fluxes to the 12000 A fluxes of the 4 subdwarfs are in good agreement with published results. The stars are fainter than the models in the infrared, but the UV fluxes are in good agreement with model predictions.

  19. CHEMICAL ABUNDANCES OF METAL-POOR RR LYRAE STARS IN THE MAGELLANIC CLOUDS

    SciTech Connect

    Haschke, Raoul; Grebel, Eva K.; Duffau, Sonia; Frebel, Anna; Hansen, Camilla J.; Koch, Andreas

    2012-09-01

    We present for the first time a detailed spectroscopic study of chemical element abundances of metal-poor RR Lyrae stars in the Large and Small Magellanic Cloud (LMC and SMC). Using the MagE echelle spectrograph at the 6.5 m Magellan telescopes, we obtain medium resolution (R {approx} 2000-6000) spectra of six RR Lyrae stars in the LMC and three RR Lyrae stars in the SMC. These stars were chosen because their previously determined photometric metallicities were among the lowest metallicities found for stars belonging to the old populations in the Magellanic Clouds. We find the spectroscopic metallicities of these stars to be as low as [Fe/H]{sub spec} = -2.7 dex, the lowest metallicity yet measured for any star in the Magellanic Clouds. We confirm that for metal-poor stars, the photometric metallicities from the Fourier decomposition of the light curves are systematically too high compared to their spectroscopic counterparts. However, for even more metal-poor stars below [Fe/H]{sub phot} < -2.8 dex this trend is reversed and the spectroscopic metallicities are systematically higher than the photometric estimates. We are able to determine abundance ratios for 10 chemical elements (Fe, Na, Mg, Al, Ca, Sc, Ti, Cr, Sr, and Ba), which extend the abundance measurements of chemical elements for RR Lyrae stars in the Clouds beyond [Fe/H] for the first time. For the overall [{alpha}/Fe] ratio, we obtain an overabundance of 0.36 dex, which is in very good agreement with results from metal-poor stars in the Milky Way halo as well as from the metal-poor tail in dwarf spheroidal galaxies. Comparing the abundances with those of the stars in the Milky Way halo we find that the abundance ratios of stars of both populations are consistent with another. Therefore, we conclude that from a chemical point of view early contributions from Magellanic-type galaxies to the formation of the Galactic halo as claimed in cosmological models are plausible.

  20. Age determination of metal-poor halo stars using nucleochronometry

    NASA Astrophysics Data System (ADS)

    Christlieb, N.

    2016-09-01

    I describe the method of nucleochronometry for determining individual ages of stars, and report on results of the application of this method to old, metal-poor stars belonging to the Galactic halo population. I discuss uncertainties and caveats of this age determination method.

  1. The Best and Brightest Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Schlaufman, Kevin

    2015-01-01

    The chemical abundances of large samples of extremely metal-poor (EMP) stars can be used to investigate metal-free stellar populations, supernovae, and nucleosynthesis as well as the formation and galactic chemical evolution of the Milky Way and its progenitor halos. However, current progress on the study of EMP stars is being limited by their faint apparent magnitudes. We have developed a new, efficient selection that uses only public, all-sky APASS optical, 2MASS near-infrared, and WISE mid-infrared photometry to identify bright metal-poor star candidates through their lack of molecular absorption near 4.6 microns. High-resolution follow up has revealed that 3.8% of our candidates have [Fe/H] < -3.0 and 32.5% have -3.0 < [Fe/H] < -2.0. We are using the Automated Planet Finder, Gemini, and Magellan to follow up all of our metal-poor candidates with V < 12 in both hemispheres with the goal of collecting the most information-rich sample of metal-poor stars ever assembled.

  2. THE TERZAN 5 PUZZLE: DISCOVERY OF A THIRD, METAL-POOR COMPONENT

    SciTech Connect

    Origlia, L.; Massari, D.; Mucciarelli, A.; Ferraro, F. R.; Dalessandro, E.; Lanzoni, B.

    2013-12-10

    We report on the discovery of three metal-poor giant stars in Terzan 5, a complex stellar system in the Galactic bulge, known to have two populations at [Fe/H] = –0.25 and +0.3. For these three stars we present new echelle spectra obtained with NIRSPEC at Keck II, which confirm their radial velocity membership and provide an average [Fe/H] = –0.79 dex iron abundance and [α/Fe] = +0.36 dex enhancement. This new population extends the metallicity range of Terzan 5 to 0.5 dex more metal poor, and it has properties consistent with having formed from a gas polluted by core-collapse supernovae.

  3. EXPLAINING THE Sr AND Ba SCATTER IN EXTREMELY METAL-POOR STARS

    SciTech Connect

    Aoki, W.; Suda, T.; Boyd, R. N.; Kajino, T.; Famiano, M. A. E-mail: takuma.suda@nao.ac.jp E-mail: kajino@nao.ac.jp

    2013-03-20

    Compilations of abundances of strontium and barium in extremely metal-poor stars show that an apparent cutoff is observed for [Sr/Ba] at [Fe/H] < -3.6 and large fluctuations for [Fe/H] > -3.6 with a clear upper bound depending on metallicity. We study the factors that place upper limits on the logarithmic ratio [Sr/Ba]. A model is developed in which the collapses of type II supernovae are found to reproduce many of the features seen in the data. This model is consistent with galactic chemical evolution constraints of light-element enrichment in metal-poor stars. Effects of turbulence in an explosive site have also been simulated, and are found to be important in explaining the large scatter observed in the [Sr/Ba] data.

  4. THE EXTREME OVERABUNDANCE OF MOLYBDENUM IN TWO METAL-POOR STARS

    SciTech Connect

    Peterson, Ruth C.

    2011-11-20

    We report determinations of the molybdenum abundances in five mildly to extremely metal-poor turnoff stars using five Mo II lines near 2000 A. In two of the stars, the abundance of molybdenum is found to be extremely enhanced, as high or higher than the neighboring even-Z elements ruthenium and zirconium. Of the several nucleosynthesis scenarios envisioned for the production of nuclei in this mass range in the oldest stars, a high-entropy wind acting in a core-collapse supernova seems uniquely capable of the twin aspects of a high molybdenum overproduction confined to a narrow mass range. Whatever the details of the nucleosynthesis mechanism, however, this unusual excess suggests that very few individual nucleosynthesis events were responsible for the synthesis of the light trans-Fe heavy elements in these cases, an unexpected result given that both are only moderately metal-poor.

  5. Spectroscopic Analysis of Metal-poor Stars from LAMOST: Early Results

    NASA Astrophysics Data System (ADS)

    Li, Hai-Ning; Zhao, Gang; Christlieb, Norbert; Wang, Liang; Wang, Wei; Zhang, Yong; Hou, Yonghui; Yuan, Hailong

    2015-01-01

    We report on early results from a pilot program searching for metal-poor stars with LAMOST and follow-up high-resolution observation acquired with the MIKE spectrograph attached to the Magellan II telescope. We performed detailed abundance analysis for eight objects with iron abundances [Fe/H] < -2.0, including five extremely metal-poor (EMP; [Fe/H] < -3.0) stars with two having [Fe/H] < -3.5. Among these objects, three are newly discovered EMP stars, one of which is confirmed for the first time with high-resolution spectral observations. Three program stars are regarded as carbon-enhanced metal-poor (CEMP) stars, including two stars with no enhancement in their neutron-capture elements, which thus possibly belong to the class of CEMP-no stars; one of these objects also exhibits significant enhancement in nitrogen, and is thus a potential carbon and nitrogen-enhanced metal-poor star. The [X/Fe] ratios of the sample stars generally agree with those reported in the literature for other metal-poor stars in the same [Fe/H] range. We also compared the abundance patterns of individual program stars with the average abundance pattern of metal-poor stars and find only one chemically peculiar object with abundances of at least two elements (other than C and N) showing deviations larger than 0.5 dex. The distribution of [Sr/Ba] versus [Ba/H] agrees that an additional nucleosynthesis mechanism is needed aside from a single r-process. Two program stars with extremely low abundances of Sr and Ba support the prospect that both main and weak r-processes may have operated during the early phase of Galactic chemical evolution. The distribution of [C/N] shows that there are two groups of carbon-normal giants with different degrees of mixing. However, it is difficult to explain the observed behavior of the [C/N] of the nitrogen-enhanced unevolved stars based on current data.

  6. SPECTROSCOPIC ANALYSIS OF METAL-POOR STARS FROM LAMOST: EARLY RESULTS

    SciTech Connect

    Li, Hai-Ning; Zhao, Gang; Wang, Liang; Wang, Wei; Yuan, Hailong; Christlieb, Norbert; Zhang, Yong; Hou, Yonghui E-mail: gzhao@nao.cas.cn

    2015-01-10

    We report on early results from a pilot program searching for metal-poor stars with LAMOST and follow-up high-resolution observation acquired with the MIKE spectrograph attached to the Magellan II telescope. We performed detailed abundance analysis for eight objects with iron abundances [Fe/H] < -2.0, including five extremely metal-poor (EMP; [Fe/H] < -3.0) stars with two having [Fe/H] < -3.5. Among these objects, three are newly discovered EMP stars, one of which is confirmed for the first time with high-resolution spectral observations. Three program stars are regarded as carbon-enhanced metal-poor (CEMP) stars, including two stars with no enhancement in their neutron-capture elements, which thus possibly belong to the class of CEMP-no stars; one of these objects also exhibits significant enhancement in nitrogen, and is thus a potential carbon and nitrogen-enhanced metal-poor star. The [X/Fe] ratios of the sample stars generally agree with those reported in the literature for other metal-poor stars in the same [Fe/H] range. We also compared the abundance patterns of individual program stars with the average abundance pattern of metal-poor stars and find only one chemically peculiar object with abundances of at least two elements (other than C and N) showing deviations larger than 0.5 dex. The distribution of [Sr/Ba] versus [Ba/H] agrees that an additional nucleosynthesis mechanism is needed aside from a single r-process. Two program stars with extremely low abundances of Sr and Ba support the prospect that both main and weak r-processes may have operated during the early phase of Galactic chemical evolution. The distribution of [C/N] shows that there are two groups of carbon-normal giants with different degrees of mixing. However, it is difficult to explain the observed behavior of the [C/N] of the nitrogen-enhanced unevolved stars based on current data.

  7. The Best and Brightest Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Schlaufman, Kevin C.; Casey, Andrew R.

    2014-12-01

    The chemical abundances of large samples of extremely metal-poor (EMP) stars can be used to investigate metal-free stellar populations, supernovae, and nucleosynthesis as well as the formation and galactic chemical evolution of the Milky Way and its progenitor halos. However, current progress on the study of EMP stars is being limited by their faint apparent magnitudes. The acquisition of high signal-to-noise spectra for faint EMP stars requires a major telescope time commitment, making the construction of large samples of EMP star abundances prohibitively expensive. We have developed a new, efficient selection that uses only public, all-sky APASS optical, 2MASS near-infrared, and WISE mid-infrared photometry to identify bright metal-poor star candidates through their lack of molecular absorption near 4.6 microns. We have used our selection to identify 11,916 metal-poor star candidates with V < 14, increasing the number of publicly available candidates by more than a factor of five in this magnitude range. Their bright apparent magnitudes have greatly eased high-resolution follow-up observations that have identified seven previously unknown stars with [Fe/H] <~ -3.0. Our follow-up campaign has revealed that 3.8+1.3-1.1% of our candidates have [Fe/H] <~ -3.0 and 32.5+3.0-2.9% have -3.0 <~ [Fe/H] <~ -2.0. The bulge is the most likely location of any existing Galactic Population III stars, and an infrared-only variant of our selection is well suited to the identification of metal-poor stars in the bulge. Indeed, two of our confirmed metal-poor stars with [Fe/H] <~ -2.7 are within about 2 kpc of the Galactic center. They are among the most metal-poor stars known in the bulge. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  8. The best and brightest metal-poor stars

    SciTech Connect

    Schlaufman, Kevin C.; Casey, Andrew R. E-mail: arc@ast.cam.ac.uk

    2014-12-10

    The chemical abundances of large samples of extremely metal-poor (EMP) stars can be used to investigate metal-free stellar populations, supernovae, and nucleosynthesis as well as the formation and galactic chemical evolution of the Milky Way and its progenitor halos. However, current progress on the study of EMP stars is being limited by their faint apparent magnitudes. The acquisition of high signal-to-noise spectra for faint EMP stars requires a major telescope time commitment, making the construction of large samples of EMP star abundances prohibitively expensive. We have developed a new, efficient selection that uses only public, all-sky APASS optical, 2MASS near-infrared, and WISE mid-infrared photometry to identify bright metal-poor star candidates through their lack of molecular absorption near 4.6 microns. We have used our selection to identify 11,916 metal-poor star candidates with V < 14, increasing the number of publicly available candidates by more than a factor of five in this magnitude range. Their bright apparent magnitudes have greatly eased high-resolution follow-up observations that have identified seven previously unknown stars with [Fe/H] ≲ –3.0. Our follow-up campaign has revealed that 3.8{sub −1.1}{sup +1.3}% of our candidates have [Fe/H] ≲ –3.0 and 32.5{sub −2.9}{sup +3.0}% have –3.0 ≲ [Fe/H] ≲ –2.0. The bulge is the most likely location of any existing Galactic Population III stars, and an infrared-only variant of our selection is well suited to the identification of metal-poor stars in the bulge. Indeed, two of our confirmed metal-poor stars with [Fe/H] ≲ –2.7 are within about 2 kpc of the Galactic center. They are among the most metal-poor stars known in the bulge.

  9. Spectroscopic Confirmation of the Dwarf Galaxies Hydra II and Pisces II and the Globular Cluster Laevens 1

    NASA Astrophysics Data System (ADS)

    Kirby, Evan N.; Simon, Joshua D.; Cohen, Judith G.

    2015-09-01

    We present Keck/DEIMOS spectroscopy of stars in the recently discovered Milky Way satellites Hydra II, Pisces II, and Laevens 1. We measured a velocity dispersion of {5.4}-2.4+3.6 km s‑1 for Pisces II, but we did not resolve the velocity dispersions of Hydra II or Laevens 1. We marginally resolved the metallicity dispersions of Hydra II and Pisces II but not Laevens 1. Furthermore, Hydra II and Pisces II obey the luminosity–metallicity relation for Milky Way dwarf galaxies (< [{Fe}/{{H}}]> =-2.02+/- 0.08 and -2.45+/- 0.07, respectively), whereas Laevens 1 does not (< [{Fe}/{{H}}]> =-1.68+/- 0.05). The kinematic and chemical properties suggest that Hydra II and Pisces II are dwarf galaxies, and Laevens 1 is a globular cluster. We determined that two of the previously observed blue stars near the center of Laevens 1 are not members of the cluster. A third blue star has ambiguous membership. Hydra II has a radial velocity < {v}{helio}> =303.1+/- 1.4 km s‑1, similar to the leading arm of the Magellanic stream. The mass-to-light ratio for Pisces II is {370}-240+310 {M}ȯ /{L}ȯ . It is not among the most dark matter-dominated dwarf galaxies, but it is still worthy of inclusion in the search for gamma-rays from dark matter self-annihilation. The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  10. Lightcurves of the Dominant Dust Producers in Metal-poor Environments

    NASA Astrophysics Data System (ADS)

    Boyer, Martha; Whitelock, P.; Sonneborn, G.; Sloan, G. C.; Skillman, E. D.; Meixner, M.; McQuinn, K. B. W.; McDonald, I.; Lagadec, E.; Javadi, A.; Groenewegen, M. A. T.; Gehrz, R. D.; Bonanos, A. Z.

    2014-12-01

    DUSTiNGS is a Spitzer Cycle 8 program that has provided the first complete spatially-resolved infrared census of evolved stars in a statistically significant sample of low metallicity, nearby (D<1.5 Mpc) dwarf galaxies. One of the main results of the program to date is the discovery of hundreds of dust-producing AGB stars up to ~1 dex more metal-poor than previously known examples, suggesting that dust forms efficiently at least down to [Fe/H] = -2.2 dex. This discovery not only has implications for our interpretation of the interstellar medium and star formation in nearby, resolved galaxies, but also for our understanding of the dust production and chemical evolution of galaxies in the metal-poor environment of the early Universe. Here, we propose new, multi-epoch IRAC observations of 10 DUSTiNGS galaxies to measure the amplitudes, periods, and dust excesses of the DUSTiNGS AGB stars and thereby gain insight into the basic properties of the underlying dust producing populations. These data will provide a foundation for understanding dust production by AGB stars in chemically un-evolved systems, as well as providing a target list of these enigmatic objects for James Webb Space Telescope (JWST) follow-up.

  11. THE RAVE SURVEY: RICH IN VERY METAL-POOR STARS

    SciTech Connect

    Fulbright, Jon P.; Wyse, Rosemary F. G.; Ruchti, Gregory R.; Gilmore, G. F.; Grebel, Eva; Bienayme, O.; Siebert, A.; Binney, J.; Bland-Hawthorn, J.; Campbell, R.; Freeman, K. C.; Gibson, B. K.; Helmi, A.; Munari, U.; Navarro, J. F.; Siviero, A.; Parker, Q. A.; Reid, W.; Seabroke, G. M.; Steinmetz, M.

    2010-11-20

    Very metal-poor stars are of obvious importance for many problems in chemical evolution, star formation, and galaxy evolution. Finding complete samples of such stars which are also bright enough to allow high-precision individual analyses is of considerable interest. We demonstrate here that stars with iron abundances [Fe/H] <-2 dex, and down to below -4 dex, can be efficiently identified within the Radial Velocity Experiment (RAVE) survey of bright stars, without requiring additional confirmatory observations. We determine a calibration of the equivalent width of the calcium triplet lines measured from the RAVE spectra onto true [Fe/H], using high spectral resolution data for a subset of the stars. These RAVE iron abundances are accurate enough to obviate the need for confirmatory higher-resolution spectroscopy. Our initial study has identified 631 stars with [Fe/H] {<=}-2, from a RAVE database containing approximately 200,000 stars. This RAVE-based sample is complete for stars with [Fe/H] {approx_lt}-2.5, allowing statistical sample analysis. We identify three stars with [Fe/H] {approx_lt}-4. Of these, one was already known to be 'ultra metal-poor', one is a known carbon-enhanced metal-poor star, but we obtain [Fe/H] = -4.0, rather than the published [Fe/H] = -3.3, and derive [C/Fe] = +0.9, and [N/Fe] = +3.2, and the third is at the limit of our signal-to-noise ratio. RAVE observations are ongoing and should prove to be a rich source of bright, easily studied, very metal-poor stars.

  12. LITHIUM ABUNDANCES IN CARBON-ENHANCED METAL-POOR STARS

    SciTech Connect

    Masseron, Thomas; Johnson, Jennifer A.; Lucatello, Sara; Karakas, Amanda; Plez, Bertrand; Beers, Timothy C.; Christlieb, Norbert E-mail: jaj@astronomy.ohio-state.edu

    2012-05-20

    Carbon-enhanced metal-poor (CEMP) stars are believed to show the chemical imprints of more massive stars (M {approx}> 0.8 M{sub Sun }) that are now extinct. In particular, it is expected that the observed abundance of Li should deviate in these stars from the standard Spite lithium plateau. We study here a sample of 11 metal-poor stars and a double-lined spectroscopic binary with -1.8 < [Fe/H] < -3.3 observed with the Very Large Telescope/UVES spectrograph. Among these 12 metal-poor stars, there are 8 CEMP stars for which we measure or constrain the Li abundance. In contrast to previous arguments, we demonstrate that an appropriate regime of dilution permits the existence of 'Li-Spite plateau and C-rich' stars, whereas some of the 'Li-depleted and C-rich' stars call for an unidentified additional depletion mechanism that cannot be explained by dilution alone. We find evidence that rotation is related to the Li depletion in some CEMP stars. Additionally, we report on a newly recognized double-lined spectroscopic binary star in our sample. For this star, we develop a new technique from which estimates of stellar parameters and luminosity ratios can be derived based on a high-resolution spectrum alone, without the need for input from evolutionary models.

  13. A Survey of Proper-Motion Stars. XIV. Spectroscopic Binaries among Metal-poor Field Blue Stragglers

    NASA Astrophysics Data System (ADS)

    Carney, Bruce W.; Latham, David W.; Laird, John B.; Grant, Catherine E.; Morse, Jon A.

    2001-12-01

    We summarize the results from a program of monitoring the radial velocities of 10 metal-poor, high-velocity field stars whose colors are 0.01 to 0.13 mag bluer than main-sequence turnoffs of comparable-metallicity globular clusters. Two of the candidate halo blue stragglers (BD +72 94 and BD +40 1166) show no signs of velocity variability, one (HD 84937) shows only weak signs of variability, one (BD +25 1981) appears to be a very long-period binary, and six (BD -12 2669, HD 97916, HD 106516, BD +51 1817, G66-30, and G202-65) are single-lined spectroscopic binaries, with periods ranging from 167 to 844 days. Velocity coverage for the four candidates without orbital solutions ranges from 15.9 to 19.0 years. The orbital eccentricities are all low, e<0.30 and =0.11. Five of the six binary orbits have very low eccentricities, with =0.07. We have reanalyzed the velocity data from Preston & Sneden and have derived orbital solutions similar to theirs for 10 of the spectroscopic binaries among their ``blue metal-poor'' stars with [Fe/H]<=-0.6. We confirm their conclusion that the binary frequency is high; we find 47+/-10% if we include only the definite binaries with [Fe/H]<=-0.6. Our orbital solutions for the seven binaries with periods longer than 20 days all have low eccentricities, with e<=0.26 and =0.11. These orbital characteristics are very similar to the Ba II, CH, subgiant CH, and dwarf carbon stars, suggesting that mass transfer has been involved in their formation. Of the five binary stars in our program with published abundances of lithium, all have been found to be deficient (and one in beryllium as well). In contrast, two of the three apparently single stars have published lithium abundances and show no deficiency. The mass functions for the six binaries in our program and seven similar systems studied by Preston & Sneden are consistent with their unseen companions all being white dwarfs with M~0.55 Msolar and random orbital inclinations. Taking all

  14. On The gamma-ray emission from Reticulum II and other dwarf galaxies

    SciTech Connect

    Hooper, Dan; Linden, Tim E-mail: trlinden@uchicago.edu

    2015-09-01

    The recent discovery of ten new dwarf galaxy candidates by the Dark Energy Survey (DES) and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) could increase the Fermi Gamma-Ray Space Telescope's sensitivity to annihilating dark matter particles, potentially enabling a definitive test of the dark matter interpretation of the long-standing Galactic Center gamma-ray excess. In this paper, we compare the previous analyses of Fermi data from the directions of the new dwarf candidates (including the relatively nearby Reticulum II) and perform our own analysis, with the goal of establishing the statistical significance of any gamma-ray signal from these sources. We confirm the presence of an excess from Reticulum II, with a spectral shape that is compatible with the Galactic Center signal. The significance of this emission is greater than that observed from 99.84% of randomly chosen high-latitude blank-sky locations, corresponding to a local detection significance of 3.2σ. We caution that any dark matter interpretation of this excess must be validated through observations of additional dwarf spheroidal galaxies, and improved calculations of the relative J-factor of dwarf spheroidal galaxies. We improve upon the standard blank-sky calibration approach through the use of multi-wavelength catalogs, which allow us to avoid regions that are likely to contain unresolved gamma-ray sources.

  15. A submillimetre search for pre- and proto-brown dwarfs in Chamaeleon II

    NASA Astrophysics Data System (ADS)

    de Gregorio-Monsalvo, I.; Barrado, D.; Bouy, H.; Bayo, A.; Palau, A.; Morales-Calderón, M.; Huélamo, N.; Morata, O.; Merín, B.; Eiroa, C.

    2016-05-01

    Context. The Chamaeleon II molecular cloud is an active star-forming region that offers an excellent opportunity to study the formation of brown dwarfs in the southern hemisphere. Aims: Our aims are to identify a population of pre- and proto-brown dwarfs (5σ mass limit threshold of ~0.015 M⊙) and provide information on the formation mechanisms of substellar objects. Methods: We performed high sensitivity observations at 870 μm using the LABOCA bolometer at the APEX telescope towards an active star-forming region in Chamaeleon II. The data are complemented by an extensive multiwavelength catalogue of sources, which covers the optical to the far-infrared, to study the nature of the LABOCA detections. Results: We detect 15 cores at 870 μm, and 11 of them show masses in the substellar regime. The most intense objects in the surveyed field correspond to the submillimetre counterparts of the well-known young stellar objects DK Cha and IRAS 12500-7658. We identify a possible proto-brown dwarf candidate (ChaII-APEX-L) with IRAC emission at 3.6 and 4.5 μm. Conclusions: Our analysis indicates that most of the spatially resolved cores are transient, and that the point-like starless cores in the substellar regime (with masses between 0.016 M⊙ and 0.066 M⊙) could be pre-brown dwarfs cores that are gravitationally unstable if they have radii less than 220 AU to 907 AU (1.2'' to 5'' at 178 pc), respectively, for different masses. ALMA observations will be key to revealing the energetic state of these pre-brown dwarfs candidates.

  16. Very metal-poor galaxies and the primordial helium abundance.

    NASA Astrophysics Data System (ADS)

    Terlevich, E.; Skillman, E.; Terlevich, R.

    Critical to the understanding of several fundamental problems in astronomy (among which the determination of the primordial helium is of foremost importance), extremely metal-poor galaxies have been almost impossible to find. In the past few years the authors have been successful in discovering them. They are embarked on a programme for obtaining with linear detectors, very high S/N spectra of these objects, in order to derive He abundances to better than the 5% per object needed to constrain the Big Bang model of the origin of the universe. The authors discuss some results and problems encountered in this quest.

  17. Behavior of sulfur in extremely metal-poor stars

    NASA Astrophysics Data System (ADS)

    Takada-Hidai, Masahide; Sargent, Wallace L. W.

    The LTE abundances of sulfur (S) were explored in the sample of 15 metal-poor stars with the metallicity range of -4<[Fe/H]<-1.5, based on the equivalent widths of the S I(1) 9212 and 9237 Å lines measured on high-resolution spectra, which were observed by the Keck I HIRES. Combining our results and those of Takada-Hidai et al. (2005), we found that the behavior of [S/Fe] against [Fe/H] shows a nearly flat trend in the range of metallicity down to [Fe/H]˜-4.

  18. LITHIUM ABUNDANCES OF EXTREMELY METAL-POOR TURNOFF STARS

    SciTech Connect

    Aoki, Wako; Inoue, Susumu; Barklem, Paul S.; Beers, Timothy C.; Christlieb, Norbert; Perez, Ana E. GarcIa; Norris, John E.; Carollo, Daniela E-mail: Paul.Barklem@physics.uu.se E-mail: N.Christlieb@lsw.uni-heidelberg.de E-mail: jen@mso.anu.edu.au E-mail: inoue@tap.scphys.kyoto-u.ac.jp

    2009-06-20

    We have determined Li abundances for eleven metal-poor turnoff stars, among which eight have [Fe/H] <-3, based on LTE analyses of high-resolution spectra obtained with the High Dispersion Spectrograph on the Subaru Telescope. The Li abundances for four of these eight stars are determined for the first time by this study. Effective temperatures are determined by a profile analysis of H{alpha} and H{beta}. While seven stars have Li abundances as high as the Spite Plateau value, the remaining four objects with [Fe/H] <-3 have A(Li) =log (Li/H)+ 12 {approx}< 2.0, confirming the existence of extremely metal-poor (EMP) turnoff stars having low Li abundances, as reported by previous work. The average of the Li abundances for stars with [Fe/H]<-3 is lower by 0.2 dex than that of the stars with higher metallicity. No clear constraint on the metallicity dependence or scatter of the Li abundances is derived from our measurements for the stars with [Fe/H]<-3. Correlations of the Li abundance with effective temperatures, with abundances of Na, Mg, and Sr, and with the kinematical properties are investigated, but no clear correlation is seen in the EMP star sample.

  19. Indication of Gamma-Ray Emission from the Newly Discovered Dwarf Galaxy Reticulum II.

    PubMed

    Geringer-Sameth, Alex; Walker, Matthew G; Koushiappas, Savvas M; Koposov, Sergey E; Belokurov, Vasily; Torrealba, Gabriel; Evans, N Wyn

    2015-08-21

    We present a search for γ-ray emission from the direction of the newly discovered dwarf galaxy Reticulum II. Using Fermi-LAT Collaboration data, we detect a signal that exceeds expected backgrounds between ∼2-10  GeV and is consistent with annihilation of dark matter for particle masses less than a few ×10^{2}  GeV. Modeling the background as a Poisson process based on Fermi-LAT diffuse models, and taking into account trial factors, we detect emission with p value less than 9.8×10^{-5} (>3.7σ). An alternative, model-independent treatment of the background reduces the significance, raising the p value to 9.7×10^{-3} (2.3σ). Even in this case, however, Reticulum II has the most significant γ-ray signal of any known dwarf galaxy. If Reticulum II has a dark-matter halo that is similar to those inferred for other nearby dwarfs, the signal is consistent with the s-wave relic abundance cross section for annihilation. PMID:26340176

  20. Indication of Gamma-Ray Emission from the Newly Discovered Dwarf Galaxy Reticulum II.

    PubMed

    Geringer-Sameth, Alex; Walker, Matthew G; Koushiappas, Savvas M; Koposov, Sergey E; Belokurov, Vasily; Torrealba, Gabriel; Evans, N Wyn

    2015-08-21

    We present a search for γ-ray emission from the direction of the newly discovered dwarf galaxy Reticulum II. Using Fermi-LAT Collaboration data, we detect a signal that exceeds expected backgrounds between ∼2-10  GeV and is consistent with annihilation of dark matter for particle masses less than a few ×10^{2}  GeV. Modeling the background as a Poisson process based on Fermi-LAT diffuse models, and taking into account trial factors, we detect emission with p value less than 9.8×10^{-5} (>3.7σ). An alternative, model-independent treatment of the background reduces the significance, raising the p value to 9.7×10^{-3} (2.3σ). Even in this case, however, Reticulum II has the most significant γ-ray signal of any known dwarf galaxy. If Reticulum II has a dark-matter halo that is similar to those inferred for other nearby dwarfs, the signal is consistent with the s-wave relic abundance cross section for annihilation.

  1. An age difference of two billion years between a metal-rich and a metal-poor globular cluster.

    PubMed

    Hansen, B M S; Kalirai, J S; Anderson, J; Dotter, A; Richer, H B; Rich, R M; Shara, M M; Fahlman, G G; Hurley, J R; King, I R; Reitzel, D; Stetson, P B

    2013-08-01

    Globular clusters trace the formation history of the spheroidal components of our Galaxy and other galaxies, which represent the bulk of star formation over the history of the Universe. The clusters exhibit a range of metallicities (abundances of elements heavier than helium), with metal-poor clusters dominating the stellar halo of the Galaxy, and higher-metallicity clusters found within the inner Galaxy, associated with the stellar bulge, or the thick disk. Age differences between these clusters can indicate the sequence in which the components of the Galaxy formed, and in particular which clusters were formed outside the Galaxy and were later engulfed along with their original host galaxies, and which were formed within it. Here we report an absolute age of 9.9 ± 0.7 billion years (at 95 per cent confidence) for the metal-rich globular cluster 47 Tucanae, determined by modelling the properties of the cluster's white-dwarf cooling sequence. This is about two billion years younger than has been inferred for the metal-poor cluster NGC 6397 from the same models, and provides quantitative evidence that metal-rich clusters like 47 Tucanae formed later than metal-poor halo clusters like NGC 6397.

  2. An age difference of two billion years between a metal-rich and a metal-poor globular cluster.

    PubMed

    Hansen, B M S; Kalirai, J S; Anderson, J; Dotter, A; Richer, H B; Rich, R M; Shara, M M; Fahlman, G G; Hurley, J R; King, I R; Reitzel, D; Stetson, P B

    2013-08-01

    Globular clusters trace the formation history of the spheroidal components of our Galaxy and other galaxies, which represent the bulk of star formation over the history of the Universe. The clusters exhibit a range of metallicities (abundances of elements heavier than helium), with metal-poor clusters dominating the stellar halo of the Galaxy, and higher-metallicity clusters found within the inner Galaxy, associated with the stellar bulge, or the thick disk. Age differences between these clusters can indicate the sequence in which the components of the Galaxy formed, and in particular which clusters were formed outside the Galaxy and were later engulfed along with their original host galaxies, and which were formed within it. Here we report an absolute age of 9.9 ± 0.7 billion years (at 95 per cent confidence) for the metal-rich globular cluster 47 Tucanae, determined by modelling the properties of the cluster's white-dwarf cooling sequence. This is about two billion years younger than has been inferred for the metal-poor cluster NGC 6397 from the same models, and provides quantitative evidence that metal-rich clusters like 47 Tucanae formed later than metal-poor halo clusters like NGC 6397. PMID:23903747

  3. Possible evidence for metal accretion onto the surfaces of metal-poor main-sequence stars

    SciTech Connect

    Hattori, Kohei; Yoshii, Yuzuru; Beers, Timothy C.; Carollo, Daniela; Lee, Young Sun

    2014-04-01

    The entire evolution of the Milky Way, including its mass-assembly and star-formation history, is imprinted onto the chemo-dynamical distribution function of its member stars, f(x, v, [X/H]), in the multi-dimensional phase space spanned by position, velocity, and elemental abundance ratios. In particular, the chemo-dynamical distribution functions for low-mass stars (e.g., G- or K-type dwarfs) are precious tracers of the earliest stages of the Milky Way's formation, since their main-sequence lifetimes approach or exceed the age of the universe. A basic tenet of essentially all previous analyses is that the stellar metallicity, usually parameterized as [Fe/H], is conserved over time for main-sequence stars (at least those that have not been polluted due to mass transfer from binary companions). If this holds true, any correlations between metallicity and kinematics for long-lived main-sequence stars of different masses, effective temperatures, or spectral types must strictly be the same, since they reflect the same mass-assembly and star-formation histories. By analyzing a sample of nearby metal-poor halo and thick-disk stars on the main sequence, taken from Data Release 8 of the Sloan Digital Sky Survey, we find that the median metallicity of G-type dwarfs is systematically higher (by about 0.2 dex) than that of K-type dwarfs having the same median rotational velocity about the Galactic center. If it can be confirmed, this finding may invalidate the long-accepted assumption that the atmospheric metallicities of long-lived stars are conserved over time.

  4. r-Process abundances in metal-poor Galactic halo stars

    NASA Astrophysics Data System (ADS)

    Siqueira-Mello, C.; Barbuy, B.; Spite, M.; Spite, F.; Caffau, E.; Hill, V.; Wanajo, S.; François, P.; Bonifacio, P.; Cayrel, R.

    The site of the r-process is not completely defined, and several models try to explain the origin of the trans-Fe elements. Observed abundances are the best clues to bring some light to this multiplicity of possible mechanisms, and the extremely metal-poor (EMP) Galactic halo stars have a special role in this problem. In this contribution we present the solution of a long-standing problem about the origin of the heavy elements in the metal-poor halo subgiant star HD 140283, and its correlation with the Truran's theory. Next, we describe the results obtained with the EMP r-II star CS 31082-001 in the frame of the ESO Large Program ``First Stars''. Using STIS/HST observations we provide abundances for elements never presented before in this stars, making CS 31082-001 the most complete r-II object studied, with a total of 37 detections of neutron-capture elements. Finally, we present the results obtained from a sample of seven r-I stars, showing how those objects can help us solving the heavy elements problem. Conclusions are also described.

  5. The Puzzlingly Large Ca II Triplet Absorption in Dwarf Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Michielsen, D.; De Rijcke, S.; Dejonghe, H.; Zeilinger, W. W.; Hau, G. K. T.

    2003-11-01

    We present central CaT, PaT, and CaT* indices for a sample of 15 dwarf elliptical galaxies (dE's). Twelve of these have CaT*~7 Å and extend the negative correlation between the CaT* index and the central velocity dispersion σ, which was derived for bright elliptical galaxies (E's), down to 20 km s-1 < σ < 55 km s-1. For five dE's, we have independent age and metallicity estimates. Four of these have CaT*~7 Å, much higher than expected from their low metallicities (-1.5<[Z/H]<-0.5). The observed anticorrelation of CaT* as a function of σ or Z is in flagrant disagreement with theory. We discuss some of the amendments that have been proposed to bring the theoretical predictions into agreement with the observed CaT* values of bright E's and how they can be extended to incorporate the observed CaT* values of dE's as well. Moreover, three dE's in our sample have CaT*~5 Å, as would be expected for metal-poor stellar systems. Any theory for dE evolution will have to be able to explain the coexistence of low-CaT* and high-CaT* dE's at a given mean metallicity. This could be the first direct evidence that the dE population is not homogeneous and that different evolutionary paths led to morphologically and kinematically similar but chemically distinct objects. Based on observations collected at the European Southern Observatory, Paranal, Chile (ESO Large Program 165.N 0115).

  6. Detailed Abundance Analysis of a Metal-poor Giant in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Ryde, N.; Fritz, T. K.; Rich, R. M.; Thorsbro, B.; Schultheis, M.; Origlia, L.; Chatzopoulos, S.

    2016-11-01

    We report the first results from our program to examine the metallicity distribution of the Milky Way nuclear star cluster connected to Sgr A*, with the goal of inferring the star formation and enrichment history of this system, as well as its connection and relationship with the central 100 pc of the bulge/bar system. We present the first high-resolution (R ∼ 24,000), detailed abundance analysis of a K = 10.2 metal-poor, alpha-enhanced red giant projected at 1.5 pc from the Galactic center, using NIRSPEC on Keck II. A careful analysis of the dynamics and color of the star locates it at about {26}-16+54 pc line-of-sight distance in front of the nuclear cluster. It probably belongs to one of the nuclear components (cluster or disk), not to the bar/bulge or classical disk. A detailed spectroscopic synthesis, using a new line list in the K band, finds [Fe/H] ∼ ‑1.0 and [α/Fe] ∼ +0.4, consistent with stars of similar metallicity in the bulge. As known giants with comparable [Fe/H] and alpha enhancement are old, we conclude that this star is most likely to be a representative of the ∼10 Gyr old population. This is also the most metal-poor-confirmed red giant yet discovered in the vicinity of the nuclear cluster of the Galactic center. We consider recent reports in the literature of a surprisingly large number of metal-poor giants in the Galactic center, but the reported gravity of {log}g∼ 4 for these stars calls into question their reported metallicities.

  7. Footprints of the weak s-process in the carbon-enhanced metal-poor star ET0097

    NASA Astrophysics Data System (ADS)

    Yang, Guochao; Li, Hongjie; Liu, Nian; Cui, Wenyuan; Liang, Yanchun; Zhang, Bo

    2016-09-01

    Historically, the weak s-process contribution to metal-poor stars is thought to be extremely small, due to the effect of the secondary-like nature of the neutron source 22Ne(α , n)25Mg in massive stars, which means that metal-poor "weak s-process stars" could not be found. ET0097 is the first observed carbon-enhanced metal-poor (CEMP) star in the Sculptor dwarf spheroidal galaxy. Because C is enriched and the elements heavier than Ba are not overabundant, ET0097 can be classified as a CEMP-no star. However, this star shows overabundances of lighter n-capture elements (i.e., Sr, Y and Zr). In this work, having adopted the abundance decomposition approach, we investigate the astrophysical origins of the elements in ET0097. We find that the light elements and iron-peak elements (from O to Zn) of the star mainly originate from the primary process of massive stars and the heavier n-capture elements (heavier than Ba) mainly come from the main r-process. However, the lighter n-capture elements such as Sr, Y and Zr should mainly come from the primary weak s-process. The contributed fractions of the primary weak s-process to the Sr, Y and Zr abundances of ET0097 are about 82 %, 84 % and 58 % respectively, suggesting that the CEMP star ET0097 should have the footprints of the weak s-process. The derived result should be a significant evidence that the weak s-process elements can be produced in metal-poor massive stars.

  8. Exploring the origin of lithium, carbon, strontium, and barium with four new ultra metal-poor stars

    SciTech Connect

    Hansen, T.; Hansen, C. J.; Christlieb, N. E-mail: cjhansen@lsw.uni-heidelberg.de; and others

    2014-06-01

    We present an elemental abundance analysis for four newly discovered ultra metal-poor stars from the Hamburg/ESO survey, with [Fe/H] ≤ –4. Based on high-resolution, high signal-to-noise spectra, we derive abundances for 17 elements in the range from Li to Ba. Three of the four stars exhibit moderate to large overabundances of carbon, but have no enhancements in their neutron-capture elements. The most metal-poor star in the sample, HE 0233–0343 ([Fe/H] = –4.68), is a subgiant with a carbon enhancement of [C/Fe] = +3.5, slightly above the carbon-enhancement plateau suggested by Spite et al. No carbon is detected in the spectrum of the fourth star, but the quality of its spectrum only allows for the determination of an upper limit on the carbon abundance ratio of [C/Fe] < +1.7. We detect lithium in the spectra of two of the carbon-enhanced stars, including HE 0233–0343. Both stars with Li detections are Li-depleted, with respect to the Li plateau for metal-poor dwarfs found by Spite and Spite. This suggests that whatever site(s) produced C either do not completely destroy lithium, or that Li has been astrated by early-generation stars and mixed with primordial Li in the gas that formed the stars observed at present. The derived abundances for the α elements and iron-peak elements of the four stars are similar to those found in previous large samples of extremely and ultra metal-poor stars. Finally, a large spread is found in the abundances of Sr and Ba for these stars, possibly influenced by enrichment from fast rotating stars in the early universe.

  9. Optically Thick Winds from Degenerate Dwarfs. I. Classical Novae of Populations I and II

    NASA Astrophysics Data System (ADS)

    Kato, Mariko

    1997-11-01

    Twenty-six sequences of optically thick wind solutions have been calculated that mimic time-dependent evolution of classical novae of Populations I and II. The peak of the new opacity around log T = 5.2 due to iron lines is found to be strong enough to accelerate the winds even when the iron abundance is very low such as Z = 0.001 for massive white dwarfs (>=0.8 M⊙). The old population novae show a slow light curve, a long X-ray turnoff time, a small expansion velocity, and a small wind mass-loss rate. The X-ray turnoff time is a good indicator of the white dwarf mass because of its strong dependence on the white dwarf mass and weak dependence on the populations. The white dwarf mass is estimated to be ~0.6 M⊙ for GQ Mus and ~1.0 M⊙ for V1974 Cyg. A systematic difference of the wind velocity is predicted between novae in globular clusters and in the galactic disk. Twenty-six tables are presented in computer-readable form on CD-ROM that consist of the optically thick wind solutions and the static solutions for the decay phase of classical novae with composition of X = 0.35, C = 0.1, and O = 0.2 and heavy element content Z = 0.001, 0.004, 0.02, 0.05, and 0.1 for white dwarf masses of 0.4, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, and 1.35 M⊙. These tables list characteristic values of the envelope such as the photospheric temperature, the velocity, the wind mass-loss rate, and fluxes of four wavelength bands. The updated OPAL opacity is used.

  10. Deep Imaging of Extremely Metal-Poor Galaxies

    NASA Astrophysics Data System (ADS)

    Corbin, Michael

    2006-07-01

    Conflicting evidence exists regarding whether the most metal-poor and actively star-forming galaxies in the local universe such as I Zw 18 contain evolved stars. We propose to help settle this issue by obtaining deep ACS/HRC U, narrow-V, I, and H-alpha images of nine nearby {z < 0.01} extremely metal-poor {12 + O/H < 7.65} galaxies selected from the Sloan Digital Sky Survey. These objects are only marginally resolved from the ground and appear uniformly blue, strongly motivating HST imaging. The continuum images will establish: 1.} If underlying populations of evolved stars are present, by revealing the objects' colors on scales 10 pc, and 2.} The presence of any faint tidal features, dust lanes, and globular or super star clusters, all of which constrain the objects' evolutionary states. The H-alpha images, in combination with ground-based echelle spectroscopy, will reveal 1.} Whether the objects are producing "superwinds" that are depleting them of their metals; ground-based images of some of them indeed show large halos of ionized gas, and 2.} The correspondence of their nebular and stellar emission on scales of a few parsecs, which is important for understanding the "feedback" process by which supernovae and stellar winds regulate star formation. One of the sample objects, CGCG 269-049, lies only 2 Mpc away, allowing the detection of individual red giant stars in it if any are present. We have recently obtained Spitzer images and spectra of this galaxy to determine its dust content and star formation history, which will complement the proposed HST observations. [NOTE: THIS PROPOSAL WAS REDUCED TO FIVE ORBITS, AND ONLY ONE OF THE ORIGINAL TARGETS, CGCG 269-049, AFTER THE PHASE I REVIEW

  11. FORMATION OF METAL-POOR GLOBULAR CLUSTERS IN Ly{alpha} EMITTING GALAXIES IN THE EARLY UNIVERSE

    SciTech Connect

    Elmegreen, Bruce G.; Malhotra, Sangeeta; Rhoads, James

    2012-09-20

    The size, mass, luminosity, and space density of Ly{alpha} emitting (LAE) galaxies observed at intermediate to high redshift agree with expectations for the properties of galaxies that formed metal-poor halo globular clusters (GCs). The low metallicity of these clusters is the result of their formation in low-mass galaxies. Metal-poor GCs could enter spiral galaxies along with their dwarf galaxy hosts, unlike metal-rich GCs, which form in the spirals themselves. Considering an initial GC mass larger than the current mass to account for multiple stellar populations, and considering the additional clusters that are likely to form with massive clusters, we estimate that each GC with a mass today greater than 2 Multiplication-Sign 10{sup 5} M{sub Sun} was likely to have formed among a total stellar mass {approx}> 3 Multiplication-Sign 10{sup 7} M{sub Sun }, a molecular mass {approx}> 10{sup 9} M{sub Sun }, and 10{sup 7} to 10{sup 9} M{sub Sun} of older stars, depending on the relative gas fraction. The star formation rate would have been several M{sub Sun} yr{sup -1} lasting for {approx}10{sup 7} yr, and the Ly{alpha} luminosity would have been {approx}> 10{sup 42} erg s{sup -1}. Integrating the LAE galaxy luminosity function above this minimum, considering the average escape probability for Ly{alpha} photons (25%), and then dividing by the probability that a dwarf galaxy is observed in the LAE phase (0.4%), we find agreement between the comoving space density of LAEs and the average space density of metal-poor GCs today. The local galaxy WLM, with its early starburst and old GC, could be an LAE remnant that did not get into a galaxy halo because of its remote location.

  12. Dust evolution in the dwarf galaxy Holmberg II

    NASA Astrophysics Data System (ADS)

    Wiebe, D. S.; Khramtsova, M. S.; Egorov, O. V.; Lozinskaya, T. A.

    2014-05-01

    A detailed photometric study of star-forming regions (SFRs) in the galaxy Holmberg II has been carried out using the archival observational data from the far infrared to the ultraviolet obtained with the GALEX, Spitzer, and Herschel telescopes. Spectroscopic observations with the 6-m BTA telescope (Special Astrophysical Observatory of the Russian Academy of Sciences) are used to estimate the ages and metallicities of SFRs. The ages of SFRs have been correlated for the first time with their emission parameters in a wide spectral range and with the physical parameters determined by fitting the observed spectra. It is shown that the fluxes at 8 and 24 µm characterizing the emission from polycyclic aromatic hydrocarbons (PAHs) and hot dust grains decrease with age, but their ratio increases. This implies that the relative contribution from PAHs to the total infrared flux increases with age. It is hypothesized that the detected increase in the ratio of the fluxes at 8 and 24 µm is related to the increase in the relative PAH fraction due to the destruction of larger grains.

  13. What Are These Blue Metal-Poor Stars?

    NASA Astrophysics Data System (ADS)

    Preston, George W.; Sneden, Christopher

    2000-08-01

    The radial velocity behavior and chemical compositions of sixty-two blue metal-poor (BMP) stars have been established from more than 1200 echelle spectra obtained at Las Campanas Observatory from 1992 through 1999. Analysis of survey spectra provides abundances for this sample, which we use to calibrate the K line versus B-V relation. Forty-four of the stars have [Fe/H]<-1, while eighteen lie on -1<[Fe/H]<0. One star, the SX Phe variable CS 22966-043, appears to be the most extreme example of a rare abundance class characterized by α-element deficiencies, high [Cr/Fe], [Mn/Fe], and [Ti/Fe], and extremely low [Sr/Fe] and [Ba/Fe]. Of the 62 stars, 17 appear to have constant radial velocities, while 42 are definite or probable members of binary systems. The binary fraction of BMP stars appears to be independent of chemical composition. The high binary fraction fBMP~0.6 of BMP stars compared with that found for the F- and G-type stars near the Sun, the systematically low mass functions of these binaries, and the paucity of double-lined binaries among them lead us to suggest that at least half of the BMP binaries are blue stragglers and that these blue stragglers are formed by McCrea mass transfer rather than by the various merger processes that are currently believed to produce most blue stragglers in globular clusters. This conclusion is supported by the abnormally high proportion of BMP binaries with long periods and small orbital eccentricities, properties these binaries share with McClure's carbon star binaries. The great majority of field blue stragglers (BSs) probably are created by Roche-lobe overflow during red giant branch evolution. Primaries of more widely separated binaries that survive this phase of stellar evolution may engage in mass transfer during subsequent asymptotic giant branch evolution to form s-process abundance enhanced carbon stars. Our result requires a major downward revision of the fraction of BMP stars attributed to a captured

  14. KECK ECHELLETTE SPECTROGRAPH AND IMAGER OBSERVATIONS OF METAL-POOR DAMPED Ly{alpha} SYSTEMS

    SciTech Connect

    Penprase, Bryan E.; Toro-Martinez, Irene; Beeler, Daniel J.; Prochaska, J. Xavier

    2010-09-20

    We present the first results from a survey of SDSS quasars selected for strong H I damped Ly{alpha} (DLA) absorption with corresponding low equivalent width absorption from strong low-ion transitions (e.g., C II {lambda}1334 and Si II {lambda}1260). These metal-poor DLA candidates were selected from the SDSS fifth release quasar spectroscopic database, and comprise a large new sample for probing low-metallicity galaxies. Medium-resolution echellette spectra from the Keck Echellette Spectrograph and Imager spectrograph for an initial sample of 35 systems were obtained to explore the metal-poor tail of the DLA distribution and to investigate the nucleosynthetic patterns at these metallicities. We have estimated saturation corrections for the moderately underresolved spectra, and systems with very narrow Doppler parameters (b {<=} 5 km s{sup -1}) will likely have underestimated abundances. For those systems with Doppler parameters b > 5 km s{sup -1}, we have measured low-metallicity DLA gas with [X/H] <-2.4 for at least one of C, O, Si, or Fe. Assuming non-saturated components, we estimate that several DLA systems have [X/H] <-2.8, including five DLA systems with both low equivalent widths and low metallicity in transitions of both C II and O I. All of the measured DLA metallicities, however, exceed or are consistent with a metallicity of at least 1/1000 of solar, regardless of the effects of saturation in our spectra. Our results indicate that the metal-poor tail of galaxies at z {approx} 3 drops exponentially at [X/H] {approx}<-3. If the distribution of metallicity is Gaussian, the probability of identifying interstellar medium gas with lower abundance is extremely small, and our results suggest that DLA systems with [X/H] < -4.0 are extremely rare, and could comprise only 8 x 10{sup -7} of DLA systems. The relative abundances of species within these low-metallicity DLA systems are compared with stellar nucleosynthesis models, and are consistent with stars having

  15. H ii REGIONS WITHIN A COMPACT HIGH VELOCITY CLOUD. A NEARLY STARLESS DWARF GALAXY?

    SciTech Connect

    Bellazzini, M.; Magrini, L.; Mucciarelli, A.; Fraternali, F.; Ibata, R.; Martin, N.; Battaglia, G.; Testa, V.; Fumana, M.; Marchetti, A.; Correnti, M.

    2015-02-10

    Within the SECCO survey we identified a candidate stellar counterpart to the Ultra Compact High Velocity Cloud (UCHVC) HVC274.68+74.70-123 that was suggested by Adams et al. to be a possible mini halo within the Local Group of galaxies. The spectroscopic follow-up of the brightest sources within the candidate reveals the presence of two H ii regions whose radial velocity is compatible with a physical association with the UVHVC. The available data do not allow us to give a definite answer on the nature of the newly identified system. A few alternative hypotheses are discussed. However, the most likely possibility is that we have found a new faint dwarf galaxy residing in the Virgo cluster of galaxies, which we name SECCO 1. Independently of its actual distance, SECCO 1 displays a ratio of neutral hydrogen mass to V luminosity of M{sub H} {sub I}/L{sub V}≳20, by far the largest among local dwarfs. Hence, it appears to be a nearly starless galaxy and it may be an example of the missing links between normal dwarfs and the dark mini halos that are predicted to exist in large numbers according to the currently accepted cosmological model.

  16. Is Draco II one of the faintest dwarf galaxies? First study from Keck/DEIMOS spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin, Nicolas F.; Geha, Marla; Ibata, Rodrigo A.; Collins, Michelle L. M.; Laevens, Benjamin P. M.; Bell, Eric F.; Rix, Hans-Walter; Ferguson, Annette M. N.; Chambers, Kenneth C.; Wainscoat, Richard J.; Waters, Christopher

    2016-05-01

    We present the first spectroscopic analysis of the faint and compact stellar system Draco II (Dra II, MV = -2.9 ± 0.8, r_h=19^{+8}_{-6} pc), recently discovered in the Panoramic Survey Telescope and Rapid Response System 1 3π survey. The observations, conducted with DEIMOS on the Keck II telescope, establish some of its basic characteristics: the velocity data reveal a narrow peak with nine member stars at a systemic heliocentric velocity < v_rrangle =-347.6^{+1.7}_{-1.8} km s^{-1}, thereby confirming Dra II is a satellite of the Milky Way; we infer a velocity dispersion with σvr = 2.9 ± 2.1 km s-1 (<8.4 km s-1 at the 95 per cent confidence level), which implies log _{10}(M_{1/2})=5.5^{+0.4}_{-0.6} and log _{10}(({M/L})_{1/2})=2.7^{+0.5}_{-0.8}, in Solar units; furthermore, very weak calcium triplet lines in the spectra of the high signal-to-noise member stars imply [Fe/H] < -2.1, whilst variations in the line strengths of two stars with similar colours and magnitudes suggest a metallicity spread in Dra II. These new data cannot clearly discriminate whether Draco II is a star cluster or amongst the faintest, most compact, and closest dwarf galaxies. However, the sum of the three - individually inconclusive - pieces of evidence presented here seems to favour the dwarf galaxy interpretation.

  17. Inefficient star formation in extremely metal poor galaxies.

    PubMed

    Shi, Yong; Armus, Lee; Helou, George; Stierwalt, Sabrina; Gao, Yu; Wang, Junzhi; Zhang, Zhi-Yu; Gu, Qiusheng

    2014-10-16

    The first galaxies contain stars born out of gas with few or no 'metals' (that is, elements heavier than helium). The lack of metals is expected to inhibit efficient gas cooling and star formation, but this effect has yet to be observed in galaxies with an oxygen abundance (relative to hydrogen) below a tenth of that of the Sun. Extremely metal poor nearby galaxies may be our best local laboratories for studying in detail the conditions that prevailed in low metallicity galaxies at early epochs. Carbon monoxide emission is unreliable as a tracer of gas at low metallicities, and while dust has been used to trace gas in low-metallicity galaxies, low spatial resolution in the far-infrared has typically led to large uncertainties. Here we report spatially resolved infrared observations of two galaxies with oxygen abundances below ten per cent of the solar value, and show that stars formed very inefficiently in seven star-forming clumps in these galaxies. The efficiencies are less than a tenth of those found in normal, metal rich galaxies today, suggesting that star formation may have been very inefficient in the early Universe.

  18. Searching for dust around hyper metal poor stars

    SciTech Connect

    Venn, Kim A.; Divell, Mike; Starkenburg, Else; Puzia, Thomas H.; Côté, Stephanie; Lambert, David L.

    2014-08-20

    We examine the mid-infrared fluxes and spectral energy distributions for stars with iron abundances [Fe/H] <–5, and other metal-poor stars, to eliminate the possibility that their low metallicities are related to the depletion of elements onto dust grains in the formation of a debris disk. Six out of seven stars examined here show no mid-IR excesses. These non-detections rule out many types of circumstellar disks, e.g., a warm debris disk (T ≤ 290 K), or debris disks with inner radii ≤1 AU, such as those associated with the chemically peculiar post-asymptotic giant branch spectroscopic binaries and RV Tau variables. However, we cannot rule out cooler debris disks, nor those with lower flux ratios to their host stars due to, e.g., a smaller disk mass, a larger inner disk radius, an absence of small grains, or even a multicomponent structure, as often found with the chemically peculiar Lambda Bootis stars. The only exception is HE0107-5240, for which a small mid-IR excess near 10 μm is detected at the 2σ level; if the excess is real and associated with this star, it may indicate the presence of (recent) dust-gas winnowing or a binary system.

  19. Inefficient star formation in extremely metal poor galaxies.

    PubMed

    Shi, Yong; Armus, Lee; Helou, George; Stierwalt, Sabrina; Gao, Yu; Wang, Junzhi; Zhang, Zhi-Yu; Gu, Qiusheng

    2014-10-16

    The first galaxies contain stars born out of gas with few or no 'metals' (that is, elements heavier than helium). The lack of metals is expected to inhibit efficient gas cooling and star formation, but this effect has yet to be observed in galaxies with an oxygen abundance (relative to hydrogen) below a tenth of that of the Sun. Extremely metal poor nearby galaxies may be our best local laboratories for studying in detail the conditions that prevailed in low metallicity galaxies at early epochs. Carbon monoxide emission is unreliable as a tracer of gas at low metallicities, and while dust has been used to trace gas in low-metallicity galaxies, low spatial resolution in the far-infrared has typically led to large uncertainties. Here we report spatially resolved infrared observations of two galaxies with oxygen abundances below ten per cent of the solar value, and show that stars formed very inefficiently in seven star-forming clumps in these galaxies. The efficiencies are less than a tenth of those found in normal, metal rich galaxies today, suggesting that star formation may have been very inefficient in the early Universe. PMID:25318522

  20. DUST-TO-GAS RATIO IN THE EXTREMELY METAL-POOR GALAXY I Zw 18

    SciTech Connect

    Herrera-Camus, Rodrigo; Fisher, David B.; Bolatto, Alberto D.; Leroy, Adam K.; Walter, Fabian; Gordon, Karl D.; Roman-Duval, Julia; Donaldson, Jessica; Melendez, Marcio; Cannon, John M.

    2012-06-20

    The blue compact dwarf galaxy I Zw 18 is one of the most metal-poor systems known in the local universe (12+log(O/H) = 7.17). In this work we study I Zw 18 using data from Spitzer, Herschel Space Telescope, and IRAM Plateau de Bure Interferometer. Our data set includes the most sensitive maps of I Zw 18, to date, in both the far-infrared and the CO J = 1 {yields} 0 transition. We use dust emission models to derive a dust mass upper limit of only M{sub dust} {<=} 1.1 Multiplication-Sign 10{sup 4} M{sub Sun} (3{sigma} limit). This upper limit is driven by the non-detection at 160 {mu}m, and it is a factor of 4-10 times smaller than previous estimates (depending on the model used). We also estimate an upper limit to the total dust-to-gas mass ratio of M{sub Dust}/M{sub gas} {<=} 5.0 Multiplication-Sign 10{sup -5}. If a linear correlation between the dust-to-gas mass ratio and metallicity (measured as O/H) were to hold, we would expect a ratio of 3.9 Multiplication-Sign 10{sup -4}. We also show that the infrared spectral energy distribution is similar to that of starbursting systems.

  1. Looking for imprints of the first stellar generations in metal-poor bulge field stars

    NASA Astrophysics Data System (ADS)

    Siqueira-Mello, C.; Chiappini, C.; Barbuy, B.; Freeman, K.; Ness, M.; Depagne, E.; Cantelli, E.; Pignatari, M.; Hirschi, R.; Frischknecht, U.; Meynet, G.; Maeder, A.

    2016-09-01

    Context. Efforts to look for signatures of the first stars have concentrated on metal-poor halo objects. However, the low end of the bulge metallicity distribution has been shown to host some of the oldest objects in the Milky Way and hence this Galactic component potentially offers interesting targets to look at imprints of the first stellar generations. As a pilot project, we selected bulge field stars already identified in the ARGOS survey as having [Fe/H] ≈-1 and oversolar [α/Fe] ratios, and we used FLAMES-UVES to obtain detailed abundances of key elements that are believed to reveal imprints of the first stellar generations. Aims: The main purpose of this study is to analyse selected ARGOS stars using new high-resolution (R ~ 45 000) and high-signal-to-noise (S/N> 100) spectra. We aim to derive their stellar parameters and elemental ratios, in particular the abundances of C, N, the α-elements O, Mg, Si, Ca, and Ti, the odd-Z elements Na and Al, the neutron-capture s-process dominated elements Y, Zr, La, and Ba, and the r-element Eu. Methods: High-resolution spectra of five field giant stars were obtained at the 8 m VLT UT2-Kueyen telescope with the UVES spectrograph in FLAMES-UVES configuration. Spectroscopic parameters were derived based on the excitation and ionization equilibrium of Fe i and Fe ii. The abundance analysis was performed with a MARCS LTE spherical model atmosphere grid and the Turbospectrum spectrum synthesis code. Results: We confirm that the analysed stars are moderately metal-poor (-1.04 ≤ [Fe/H] ≤-0.43), non-carbon-enhanced (non-CEMP) with [C/Fe] ≤ + 0.2, and α-enhanced. We find that our three most metal-poor stars are nitrogen enhanced. The α-enhancement suggests that these stars were formed from a gas enriched by core-collapse supernovae, and that the values are in agreement with results in the literature for bulge stars in the same metallicity range. No abundance anomalies (Na - O, Al - O, Al - Mg anti-correlations) were

  2. The remnant of a merger between two dwarf galaxies in Andromeda II.

    PubMed

    Amorisco, N C; Evans, N W; van de Ven, G

    2014-03-20

    Driven by gravity, massive structures like galaxies and clusters of galaxies are believed to grow continuously through hierarchical merging and accretion of smaller systems. Observational evidence of accretion events is provided by the coherent stellar streams crossing the outer haloes of massive galaxies, such as the Milky Way or Andromeda. At similar mass scales, around 10(11) solar masses in stars, further evidence of merging activity is also ample. Mergers of lower-mass galaxies are expected within the hierarchical process of galaxy formation, but have hitherto not been seen for galaxies with less than about 10(9) solar masses in stars. Here we report the kinematic detection of a stellar stream in one of the satellite galaxies of Andromeda, the dwarf spheroidal Andromeda II, which has a mass of only 10(7) solar masses in stars. The properties of the stream show that we are observing the remnant of a merger between two dwarf galaxies. This had a drastic influence on the dynamics of the remnant, which is now rotating around its projected major axis. The stellar stream in Andromeda II illustrates the scale-free character of the formation of galaxies, down to the lowest galactic mass scales.

  3. The remnant of a merger between two dwarf galaxies in Andromeda II.

    PubMed

    Amorisco, N C; Evans, N W; van de Ven, G

    2014-03-20

    Driven by gravity, massive structures like galaxies and clusters of galaxies are believed to grow continuously through hierarchical merging and accretion of smaller systems. Observational evidence of accretion events is provided by the coherent stellar streams crossing the outer haloes of massive galaxies, such as the Milky Way or Andromeda. At similar mass scales, around 10(11) solar masses in stars, further evidence of merging activity is also ample. Mergers of lower-mass galaxies are expected within the hierarchical process of galaxy formation, but have hitherto not been seen for galaxies with less than about 10(9) solar masses in stars. Here we report the kinematic detection of a stellar stream in one of the satellite galaxies of Andromeda, the dwarf spheroidal Andromeda II, which has a mass of only 10(7) solar masses in stars. The properties of the stream show that we are observing the remnant of a merger between two dwarf galaxies. This had a drastic influence on the dynamics of the remnant, which is now rotating around its projected major axis. The stellar stream in Andromeda II illustrates the scale-free character of the formation of galaxies, down to the lowest galactic mass scales. PMID:24572352

  4. Variable Stars in the Field of the Hydra II Ultra-Faint Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Vivas, Anna Katherina; Olsen, Knut A.; Blum, Robert D.; Nidever, David L.; Walker, Alistair R.; Martin, Nicolas; Besla, Gurtina; Gallart, Carme; Van Der Marel, Roeland P.; Majewski, Steven R.; Munoz, Ricardo; Kaleida, Catherine C.; Saha, Abhijit; Conn, Blair; Jin, Shoko

    2016-06-01

    We searched for variable stars in Hydra II, one of the recently discovered ultra-faint dwarf satellites of the Milky Way, using gri time-series obtained with the Dark Energy Camera (DECam) at Cerro Tololo Inter-American Observatory, Chile. We discovered one RR Lyrae star in the galaxy which was used to derive a distance of 154±8 kpc to this system and to re-calculate its absolute magnitude and half-light radius.A comparison with other RR Lyrae stars in ultra-faint systems indicates similar pulsational properties among them, which are different to those found among halo field stars and those in the largest of the Milky Way satellites. We also report the discovery of 31 additional short period variables in the field of view (RR Lyrae, SX Phe, eclipsing binaries, and a likely anomalous cepheid) which are likely not related with Hydra II.

  5. Dark Matter Annihilation and Decay Profiles for the Reticulum II Dwarf Spheroidal Galaxy

    NASA Astrophysics Data System (ADS)

    Bonnivard, Vincent; Combet, Céline; Maurin, David; Geringer-Sameth, Alex; Koushiappas, Savvas M.; Walker, Matthew G.; Mateo, Mario; Olszewski, Edward W.; Bailey, John I., III

    2015-08-01

    The dwarf spheroidal galaxies (dSph) of the Milky Way are among the most attractive targets for indirect searches of dark matter (DM). In this work, we reconstruct the DM annihilation (J-factor) and decay profiles for the newly discovered dSph Reticulum II. Using an optimized spherical Jeans analysis of kinematic data obtained from the Michigan/Magellan Fiber System, we find Reticulum II’s J-factor to be among the largest of any Milky Way dSph. We have checked the robustness of this result against several ingredients of the analysis. Unless it suffers from tidal disruption or significant inflation of its velocity dispersion from binary stars, Reticulum II may provide a unique window on DM particle properties.

  6. New detections of arsenic, selenium, and other heavy elements in two metal-poor stars

    SciTech Connect

    Roederer, Ian U.; Schatz, Hendrik; Beers, Timothy C.; Lawler, James E.; Cowan, John J.; Frebel, Anna; Ivans, Inese I.; Sneden, Christopher; Sobeck, Jennifer S.

    2014-08-10

    We use the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope to obtain new high-quality spectra covering the 1900 ≤λ ≤ 2360 Å wavelength range for two metal-poor stars, HD 108317 and HD 128279. We derive abundances of Cu II, Zn II, As I, Se I, Mo II, and Cd II, which have not been detected previously in either star. Abundances derived for Ge I, Te I, Os II, and Pt I confirm those derived from lines at longer wavelengths. We also derive upper limits from the non-detection of W II, Hg II, Pb II, and Bi I. The mean [As/Fe] ratio derived from these two stars and five others in the literature is unchanged over the metallicity range –2.8 < [Fe/H] <–0.6, ([As/Fe]) = +0.28 ± 0.14 (σ = 0.36 dex). The mean [Se/Fe] ratio derived from these two stars and six others in the literature is also constant, ([Se/Fe]) = +0.16 ± 0.09 (σ = 0.26 dex). The As and Se abundances are enhanced relative to a simple extrapolation of the iron-peak abundances to higher masses, suggesting that this mass region (75 ≤A ≤ 82) may be the point at which a different nucleosynthetic mechanism begins to dominate the quasi-equilibrium α-rich freezeout of the iron peak. ([Cu II/Cu I]) = +0.56 ± 0.23 in HD 108317 and HD 128279, and we infer that lines of Cu I may not be formed in local thermodynamic equilibrium in these stars. The [Zn/Fe], [Mo/Fe], [Cd/Fe], and [Os/Fe] ratios are also derived from neutral and ionized species, and each ratio pair agrees within the mutual uncertainties, which range from 0.15 to 0.52 dex.

  7. Origins of the thick disk of the Milky Way Galaxy as traced by the elemental abundances of metal-poor stars

    NASA Astrophysics Data System (ADS)

    Ruchti, Gregory Randal

    2010-12-01

    Understanding the formation and evolution of disks in galaxies in the early universe is very important for understanding the forms of galaxies today. Recent studies of the Milky Way Galaxy, an ideal galaxy for analyzing individual stars within its disk, indicate that the formation of the Galactic disk is very complex. Most of these studies, however, contain very few stars at low metallicities. Metal-poor stars are important, because they are potential survivors of the earliest star formation in the disk of the Milky Way Galaxy. I therefore measured elemental abundances of a statistically significant sample of metal-poor ([Fe/H] ≲ - 1.0) stars in the disk of the Galaxy, chosen from the RAVE survey in order to study the early formation history of the Galactic disk. I report on a sample of 214 red giant branch, 31 red clump/horizontal branch, and 74 dwarf/sub-giant metal-poor thick-disk candidate stars. I found that the [alpha/Fe] ratios are enhanced implying that enrichment proceeded by purely core-collapse supernovae. This requires that star formation in each star forming region had a short duration. The relative lack of scatter in the [alpha/Fe] ratios implies good mixing in the interstellar medium prior to star formation. In addition, the ratios resemble that of the halo, indicating that the halo and thick disk share a similar massive star initial mass function. I further looked for radial or vertical gradients in metallicity or alpha-enhancement for the metal-poor thick disk, never before done for such a sample. I found no radial gradient and a moderate vertical gradient in my derived iron abundance, and only minimal-amplitude gradients in [alpha/Fe]. In addition, I show that the distribution of orbital eccentricities for my metal-poor thick-disk stars requires that the thick disk was formed primarily in situ, with direct accretion being extremely minimal. I conclude that the alpha-enhancement of the metal-poor thick disk, and the lack of obvious radial or

  8. Variable Stars in the Field of the Hydra II Ultra-faint Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Vivas, A. Katherina; Olsen, Knut; Blum, Robert; Nidever, David L.; Walker, Alistair R.; Martin, Nicolas F.; Besla, Gurtina; Gallart, Carme; van der Marel, Roeland P.; Majewski, Steven R.; Kaleida, Catherine C.; Muñoz, Ricardo R.; Saha, Abhijit; Conn, Blair C.; Jin, Shoko

    2016-05-01

    We report the discovery of one RR Lyrae star in the ultra-faint satellite galaxy Hydra II based on time series photometry in the g, r and i bands obtained with the Dark Energy Camera at Cerro Tololo Inter-American Observatory, Chile. The association of the RR Lyrae star discovered here with Hydra II is clear because is located at 42\\prime\\prime from the center of the dwarf, well within its half-light radius of 102\\prime\\prime . The RR Lyrae star has a mean magnitude of i=21.30+/- 0.04 which is too faint to be a field halo star. This magnitude translates to a heliocentric distance of 151 ± 8 kpc for Hydra II; this value is ∼ 13% larger than the estimate from the discovery paper based on the average magnitude of several blue horizontal branch star candidates. The new distance implies a slightly larger half-light radius of {76}-10+12 pc and a brighter absolute magnitude of {M}V=-5.1+/- 0.3, which keeps this object within the realm of the dwarf galaxies. A comparison with other RR Lyrae stars in ultra-faint systems indicates similar pulsational properties among them, which are different to those found among halo field stars and those in the largest of the Milky Way satellites. We also report the discovery of 31 additional short period variables in the field of view (RR Lyrae, SX Phe, eclipsing binaries, and a likely anomalous cepheid) which are likely not related with Hydra II.

  9. Carbon-enhanced metal-poor stars: relics from the dark ages

    SciTech Connect

    Cooke, Ryan J.; Madau, Piero

    2014-08-20

    We use detailed nucleosynthesis calculations and a realistic prescription for the environment of the first stars to explore the first episodes of chemical enrichment that occurred during the dark ages. Based on these calculations, we propose a novel explanation for the increased prevalence of carbon-enhanced metal-poor (CEMP) stars with decreasing Fe abundance: the observed chemistry for the most metal-poor Galactic halo stars is the result of an intimate link between the explosions of the first stars and their host minihalo's ability to retain its gas. Specifically, high-energy supernovae produce a near solar ratio of C/Fe, but are effective in evacuating the gas from their host minihalo, thereby suppressing the formation of a second generation of stars. On the other hand, minihalos that host low-energy supernovae are able to retain their gas and form a second stellar generation, but, as a result, the second stars are born with a supersolar ratio of C/Fe. Our models are able to accurately reproduce the observed distributions of [C/Fe] and [Fe/H], as well as the fraction of CEMP stars relative to non-CEMP stars as a function of [Fe/H] without any free parameters. We propose that the present lack of chemical evidence for very massive stars (≳ 140 M {sub ☉}) that ended their lives as a highly energetic pair-instability supernova does not imply that such stars were rare or did not exist; the chemical products of these very massive first stars may have been evacuated from their host minihalos and were never incorporated into subsequent generations of stars. Finally, our models suggest that the most Fe-poor stars currently known may have seen the enrichment from a small multiple of metal-free stars, and need not have been exclusively enriched by a solitary first star. These calculations also add further support to the possibility that some of the surviving dwarf satellite galaxies of the Milky Way are the relics of the first galaxies.

  10. OBSERVATIONAL PROPERTIES OF THE METAL-POOR THICK DISK OF THE MILKY WAY AND INSIGHTS INTO ITS ORIGINS

    SciTech Connect

    Ruchti, Gregory R.; Fulbright, Jon P.; Wyse, Rosemary F. G.; Gilmore, Gerard F.; Bienayme, Olivier; Siebert, Arnaud; Bland-Hawthorn, Joss; Gibson, Brad K.; Grebel, Eva K.; Helmi, Amina; Munari, Ulisse; Navarro, Julio F.; Parker, Quentin A.; Reid, Warren; Seabroke, George M.; Siviero, Alessandro; Steinmetz, Matthias; Williams, Mary; Watson, Fred G.; Zwitter, Tomaz

    2011-08-10

    We have undertaken the study of the elemental abundances and kinematic properties of a metal-poor sample of candidate thick-disk stars selected from the Radial Velocity Experiment spectroscopic survey of bright stars to differentiate among the present scenarios of the formation of the thick disk. In this paper, we report on a sample of 214 red giant branch, 31 red clump/horizontal branch, and 74 main-sequence/sub-giant branch metal-poor stars, which serves to augment our previous sample of only giant stars. We find that the thick disk [{alpha}/Fe] ratios are enhanced and have little variation (<0.1 dex), in agreement with our previous study. The augmented sample further allows, for the first time, investigation of the gradients in the metal-poor thick disk. For stars with [Fe/H] < -1.2, the thick disk shows very small gradients, <0.03 {+-} 0.02 dex kpc{sup -1}, in {alpha}-enhancement, while we find a +0.01 {+-} 0.04 dex kpc{sup -1} radial gradient and a -0.09 {+-} 0.05 dex kpc{sup -1} vertical gradient in iron abundance. In addition, we show that the peak of the distribution of orbital eccentricities for our sample agrees better with models in which the stars that comprise the thick disk were formed primarily in the Galaxy, with direct accretion of stars contributing little. Our results thus disfavor direct accretion of stars from dwarf galaxies into the thick disk as a major contributor to the thick-disk population, but cannot discriminate between alternative models for the thick disk, such as those that invoke high-redshift (gas-rich) mergers, heating of a pre-existing thin stellar disk by a minor merger, or efficient radial migration of stars.

  11. HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS FROM SDSS/SEGUE. I. ATMOSPHERIC PARAMETERS AND CHEMICAL COMPOSITIONS

    SciTech Connect

    Aoki, Wako; Suda, Takuma; Beers, Timothy C.; Lee, Young Sun; Honda, Satoshi; Ito, Hiroko; Takada-Hidai, Masahide; Frebel, Anna; Fujimoto, Masayuki Y.; Carollo, Daniela; Sivarani, Thirupathi E-mail: takuma.suda@nao.ac.jp E-mail: lee@pa.msu.edu E-mail: hidai@apus.rh.u-tokai.ac.jp E-mail: fujimoto@astro1.sci.hokudai.ac.jp E-mail: sivarani@iiap.res.in

    2013-01-01

    Chemical compositions are determined based on high-resolution spectroscopy for 137 candidate extremely metal-poor (EMP) stars selected from the Sloan Digital Sky Survey (SDSS) and its first stellar extension, the Sloan Extension for Galactic Understanding and Exploration (SEGUE). High-resolution spectra with moderate signal-to-noise (S/N) ratios were obtained with the High Dispersion Spectrograph of the Subaru Telescope. Most of the sample (approximately 80%) are main-sequence turnoff stars, including dwarfs and subgiants. Four cool main-sequence stars, the most metal-deficient such stars known, are included in the remaining sample. Good agreement is found between effective temperatures estimated by the SEGUE stellar parameter pipeline, based on the SDSS/SEGUE medium-resolution spectra, and those estimated from the broadband (V - K){sub 0} and (g - r){sub 0} colors. Our abundance measurements reveal that 70 stars in our sample have [Fe/H] < -3, adding a significant number of EMP stars to the currently known sample. Our analyses determine the abundances of eight elements (C, Na, Mg, Ca, Ti, Cr, Sr, and Ba) in addition to Fe. The fraction of carbon-enhanced metal-poor stars ([C/Fe] > +0.7) among the 25 giants in our sample is as high as 36%, while only a lower limit on the fraction (9%) is estimated for turnoff stars. This paper is the first of a series of papers based on these observational results. The following papers in this series will discuss the higher-resolution and higher-S/N observations of a subset of this sample, the metallicity distribution function, binarity, and correlations between the chemical composition and kinematics of extremely metal-poor stars.

  12. H II Regions Within a Compact High Velocity Cloud. A Nearly Starless Dwarf Galaxy?

    NASA Astrophysics Data System (ADS)

    Bellazzini, M.; Magrini, L.; Mucciarelli, A.; Beccari, G.; Ibata, R.; Battaglia, G.; Martin, N.; Testa, V.; Fumana, M.; Marchetti, A.; Correnti, M.; Fraternali, F.

    2015-02-01

    Within the SECCO survey we identified a candidate stellar counterpart to the Ultra Compact High Velocity Cloud (UCHVC) HVC274.68+74.70-123 that was suggested by Adams et al. to be a possible mini halo within the Local Group of galaxies. The spectroscopic follow-up of the brightest sources within the candidate reveals the presence of two H ii regions whose radial velocity is compatible with a physical association with the UVHVC. The available data do not allow us to give a definite answer on the nature of the newly identified system. A few alternative hypotheses are discussed. However, the most likely possibility is that we have found a new faint dwarf galaxy residing in the Virgo cluster of galaxies, which we name SECCO 1. Independently of its actual distance, SECCO 1 displays a ratio of neutral hydrogen mass to V luminosity of {{M}H I}/{{L}V}≳ 20, by far the largest among local dwarfs. Hence, it appears to be a nearly starless galaxy and it may be an example of the missing links between normal dwarfs and the dark mini halos that are predicted to exist in large numbers according to the currently accepted cosmological model. Based on data acquired using the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University; and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia.

  13. J-Band Infrared Spectroscopy of a Sample of Brown Dwarfs Using NIRSPEC on Keck II.

    PubMed

    McLean; Wilcox; Becklin; Figer; Gilbert; Graham; Larkin; Levenson; Teplitz; Kirkpatrick

    2000-04-10

    Near-infrared spectroscopic observations of a sample of very cool, low-mass objects are presented with higher spectral resolution than in any previous studies. Six of the objects are L dwarfs, ranging in spectral class from L2 to L8/9, and the seventh is a methane or T dwarf. These new observations were obtained during commissioning of the near-infrared spectrometer (NIRSPEC), the first high-resolution near-infrared cryogenic spectrograph for the Keck II 10 m telescope on Mauna Kea, Hawaii. Spectra with a resolving power of R approximately 2500 from 1.135 to 1.360 µm (approximately J band) are presented for each source. At this resolution, a rich spectral structure is revealed, much of which is due to blending of unresolved molecular transitions. Strong lines due to neutral potassium (K i) and bands due to iron hydride (FeH) and steam (H2O) change significantly throughout the L sequence. Iron hydride disappears between L5 and L8, the steam bands deepen, and the K i lines gradually become weaker but wider because of pressure broadening. An unidentified feature occurs at 1.22 µm that has a temperature dependence like FeH but has no counterpart in the available FeH opacity data. Because these objects are 3-6 mag brighter in the near-infrared compared with the I band, spectral classification is efficient. One of the objects studied (2MASSW J1523+3014) is the coolest L dwarf discovered so far by the 2 Micron All-Sky Survey (2MASS), but its spectrum is still significantly different from the methane-dominated objects such as Gl 229B or SDSS 1624+0029. PMID:10727388

  14. J-Band Infrared Spectroscopy of a Sample of Brown Dwarfs Using NIRSPEC on Keck II.

    PubMed

    McLean; Wilcox; Becklin; Figer; Gilbert; Graham; Larkin; Levenson; Teplitz; Kirkpatrick

    2000-04-10

    Near-infrared spectroscopic observations of a sample of very cool, low-mass objects are presented with higher spectral resolution than in any previous studies. Six of the objects are L dwarfs, ranging in spectral class from L2 to L8/9, and the seventh is a methane or T dwarf. These new observations were obtained during commissioning of the near-infrared spectrometer (NIRSPEC), the first high-resolution near-infrared cryogenic spectrograph for the Keck II 10 m telescope on Mauna Kea, Hawaii. Spectra with a resolving power of R approximately 2500 from 1.135 to 1.360 µm (approximately J band) are presented for each source. At this resolution, a rich spectral structure is revealed, much of which is due to blending of unresolved molecular transitions. Strong lines due to neutral potassium (K i) and bands due to iron hydride (FeH) and steam (H2O) change significantly throughout the L sequence. Iron hydride disappears between L5 and L8, the steam bands deepen, and the K i lines gradually become weaker but wider because of pressure broadening. An unidentified feature occurs at 1.22 µm that has a temperature dependence like FeH but has no counterpart in the available FeH opacity data. Because these objects are 3-6 mag brighter in the near-infrared compared with the I band, spectral classification is efficient. One of the objects studied (2MASSW J1523+3014) is the coolest L dwarf discovered so far by the 2 Micron All-Sky Survey (2MASS), but its spectrum is still significantly different from the methane-dominated objects such as Gl 229B or SDSS 1624+0029.

  15. Metallicity inhomogeneities in local star-forming galaxies as a sign of recent metal-poor gas accretion

    SciTech Connect

    Sánchez Almeida, J.; Morales-Luis, A. B.; Muñoz-Tuñón, C.; Méndez-Abreu, J.; Elmegreen, D. M.; Elmegreen, B. G. E-mail: abml@iac.es E-mail: elmegreen@vassar.edu E-mail: jma20@st-andrews.ac.uk

    2014-03-01

    We measure the oxygen metallicity of the ionized gas along the major axis of seven dwarf star-forming galaxies. Two of them, SDSSJ1647+21 and SDSSJ2238+14, show ≅0.5 dex metallicity decrements in inner regions with enhanced star formation activity. This behavior is similar to the metallicity drop observed in a number of local tadpole galaxies by Sánchez Almeida et al., and was interpreted as showing early stages of assembling in disk galaxies, with the star formation sustained by external metal-poor gas accretion. The agreement with tadpoles has several implications. (1) It proves that galaxies other than the local tadpoles present the same unusual metallicity pattern. (2) Our metallicity inhomogeneities were inferred using the direct method, thus discarding systematic errors usually attributed to other methods. (3) Taken together with the tadpole data, our findings suggest a threshold around one-tenth the solar value for the metallicity drops to show up. Although galaxies with clear metallicity drops are rare, the physical mechanism responsible for them may sustain a significant part of the star formation activity in the local universe. We argue that the star formation dependence of the mass-metallicity relationship, as well as other general properties followed by most local disk galaxies, is naturally interpreted as side effects of pristine gas infall. Alternatives to the metal-poor gas accretion are examined as well.

  16. NEW HUBBLE SPACE TELESCOPE OBSERVATIONS OF HEAVY ELEMENTS IN FOUR METAL-POOR STARS

    SciTech Connect

    Roederer, Ian U.; Thompson, Ian B.; Lawler, James E.; Sobeck, Jennifer S.; Beers, Timothy C.; Cowan, John J.; Frebel, Anna; Ivans, Inese I.; Schatz, Hendrik; Sneden, Christopher

    2012-12-15

    Elements heavier than the iron group are found in nearly all halo stars. A substantial number of these elements, key to understanding neutron-capture nucleosynthesis mechanisms, can only be detected in the near-ultraviolet. We report the results of an observing campaign using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope to study the detailed heavy-element abundance patterns in four metal-poor stars. We derive abundances or upper limits from 27 absorption lines of 15 elements produced by neutron-capture reactions, including seven elements (germanium, cadmium, tellurium, lutetium, osmium, platinum, and gold) that can only be detected in the near-ultraviolet. We also examine 202 heavy-element absorption lines in ground-based optical spectra obtained with the Magellan Inamori Kyocera Echelle Spectrograph on the Magellan-Clay Telescope at Las Campanas Observatory and the High Resolution Echelle Spectrometer on the Keck I Telescope on Mauna Kea. We have detected up to 34 elements heavier than zinc. The bulk of the heavy elements in these four stars are produced by r-process nucleosynthesis. These observations affirm earlier results suggesting that the tellurium found in metal-poor halo stars with moderate amounts of r-process material scales with the rare earth and third r-process peak elements. Cadmium often follows the abundances of the neighboring elements palladium and silver. We identify several sources of systematic uncertainty that must be considered when comparing these abundances with theoretical predictions. We also present new isotope shift and hyperfine structure component patterns for Lu II and Pb I lines of astrophysical interest.

  17. Tracers of Chromospheric Structure. I. Observations of Ca II K and Hα in M Dwarfs

    NASA Astrophysics Data System (ADS)

    Walkowicz, Lucianne M.; Hawley, Suzanne L.

    2009-02-01

    We report on our observing program4This paper is based on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. to capture simultaneous spectra of Ca II and Balmer lines in a sample of nearby M3 dwarfs. Our goal is to investigate the chromospheric temperature structure required to produce these lines at the observed levels. We find a strong positive correlation between instantaneous measurements of Ca II K and the Balmer lines in active stars, although these lines may not be positively correlated in time-resolved measurements. The relationship between Hα and Ca II K remains ambiguous for weak and intermediate activity stars, with Hα absorption corresponding to a range of Ca II K emission. A similar relationship is also observed between Ca II K and the higher-order Balmer lines. As our sample consists of a single spectral type, correlations between these important chromospheric tracers cannot be ascribed to continuum effects, as suggested by other authors. These data confirm prior nonsimultaneous observations of the Hα line behavior with increasing activity, showing an initial increase in the Hα absorption with increasing Ca II K emission, prior to Hα filling in and eventually becoming a pure emission line in the most active stars. We also compare our optical measurements with archival UV and X-ray measurements, finding a positive correlation between the chromospheric and coronal emission for both high and intermediate activity stars. We compare our results with previous determinations of the active fraction of low-mass stars

  18. High-Resolution Spectroscopic Study of Extremely Metal-Poor Star Candidates from the SkyMapper Survey

    NASA Astrophysics Data System (ADS)

    Jacobson, Heather R.; Keller, Stefan; Frebel, Anna; Casey, Andrew R.; Asplund, Martin; Bessell, Michael S.; Da Costa, Gary S.; Lind, Karin; Marino, Anna F.; Norris, John E.; Peña, José M.; Schmidt, Brian P.; Tisserand, Patrick; Walsh, Jennifer M.; Yong, David; Yu, Qinsi

    2015-07-01

    The SkyMapper Southern Sky Survey is carrying out a search for the most metal-poor stars in the Galaxy. It identifies candidates by way of its unique filter set which allows for estimation of stellar atmospheric parameters. The set includes a narrow filter centered on the Ca ii K 3933 Å line, enabling a robust estimate of stellar metallicity. Promising candidates are then confirmed with spectroscopy. We present the analysis of Magellan Inamori Kyocera Echelle high-resolution spectroscopy of 122 metal-poor stars found by SkyMapper in the first two years of commissioning observations. Forty-one stars have [{Fe}/{{H}}]≤slant -3.0. Nine have [{Fe}/{{H}}]≤slant -3.5, with three at [{Fe}/{{H}}]∼ -4. A 1D LTE abundance analysis of the elements Li, C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, Ba, and Eu shows these stars have [X/Fe] ratios typical of other halo stars. One star with low [X/Fe] values appears to be “Fe-enhanced,” while another star has an extremely large [Sr/Ba] ratio: \\gt 2. Only one other star is known to have a comparable value. Seven stars are “CEMP-no” stars ([{{C}}/{Fe}]\\gt 0.7, [{Ba}/{Fe}]\\lt 0). 21 stars exhibit mild r-process element enhancements (0.3≤slant [{Eu}/{Fe}]\\lt 1.0), while four stars have [{Eu}/{Fe}]≥slant 1.0. These results demonstrate the ability to identify extremely metal-poor stars from SkyMapper photometry, pointing to increased sample sizes and a better characterization of the metal-poor tail of the halo metallicity distribution function in the future. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  19. The Frequency of Warm Carbon-Enhanced Metal-Poor Stars in SDSS-I DR-5

    NASA Astrophysics Data System (ADS)

    Marsteller, Brian E.; Beers, T. C.; Sivarani, T.; Rossi, S.; Knapp, J.; Plez, B.; Johnson, J.; Masseron, T.

    2006-12-01

    There exists current a debate concerning the frequency of stars with large enhancements of carbon ([C/Fe] > +1.0) among very metal-poor ([Fe/H] <-2.0) stars in the Galactic halo. Some authors, e.g., Marsteller et al. (2005) and Lucatello et al. (2006), have concluded that a rather high frequency, on the order of 20%-25% exists, while other authors (e.g., Cohen et al. 2005) have claimed lower frequencies. One of the difficulties in making a precise estimate is that many previous samples of stars are dominated by giants, which are subject to alteration of the surface carbon abundance due to evolutionary effects. Fortunately, there is now an attractive alternative. The publicly available stellar database from SDSS-I (DR-5) contains large numbers (more than 24,000) warm (Teff >= 5700 K), very metal-poor stars (many of which were selected as calibration objects during the course of SDSS-I) which are not expected to have evolved to the point where carbon can be diluted on their surfaces. An estimate of the frequency of carbon-enhanced stars from this sample should provide one of the best available estimates of the true value of this quantity. In order to obtain estimates of [Fe/H] and [C/Fe] for this large sample, I have developed an automated spectral synthesis technique, making use of Sneden's MOOG program. With reasonable first estimates of the atmospheric parameters for our sample (obtained by the SDSS/SEGUE spectroscopic pipeline discussed elsewhere in this meeting), this approach quickly converges to the best available combination of [Fe/H] and [C/Fe] required to fit the spectral regions around the CaII K and CH G-bands. I will discuss the resulting frequency of carbon-enhanced metal-poor stars among the very metal-poor stars in this sample.

  20. Chemical Abundances in NGC 5053: A Very Metal-poor and Dynamically Complex Globular Cluster

    NASA Astrophysics Data System (ADS)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico

    2015-05-01

    NGC 5053 provides a rich environment to test our understanding of the complex evolution of globular clusters (GCs). Recent studies have found that this cluster has interesting morphological features beyond the typical spherical distribution of GCs, suggesting that external tidal effects have played an important role in its evolution and current properties. Additionally, simulations have shown that NGC 5053 could be a likely candidate to belong to the Sagittarius dwarf galaxy (Sgr dSph) stream. Using the Wisconsin-Indiana-Yale-NOAO-Hydra multi-object spectrograph, we have collected high quality (signal-to-noise ratio ˜ 75-90), medium-resolution spectra for red giant branch stars in NGC 5053. Using these spectra we have measured the Fe, Ca, Ti, Ni, Ba, Na, and O abundances in the cluster. We measure an average cluster [Fe/H] abundance of -2.45 with a standard deviation of 0.04 dex, making NGC 5053 one of the most metal-poor GCs in the Milky Way (MW). The [Ca/Fe], [Ti/Fe], and [Ba/Fe] we measure are consistent with the abundances of MW halo stars at a similar metallicity, with alpha-enhanced ratios and slightly depleted [Ba/Fe]. The Na and O abundances show the Na-O anti-correlation found in most GCs. From our abundance analysis it appears that NGC 5053 is at least chemically similar to other GCs found in the MW. This does not, however, rule out NGC 5053 being associated with the Sgr dSph stream.

  1. ALFALFA DISCOVERY OF THE NEARBY GAS-RICH DWARF GALAXY LEO P. II. OPTICAL IMAGING OBSERVATIONS

    SciTech Connect

    Rhode, Katherine L.; Salzer, John J.; Haurberg, Nathalie C.; Van Sistine, Angela; Young, Michael D.; Haynes, Martha P.; Giovanelli, Riccardo; Adams, Elizabeth A. K.; Cannon, John M.; Skillman, Evan D.; McQuinn, Kristen B. W. E-mail: slaz@astro.indiana.edu E-mail: haynes@astro.cornell.edu E-mail: jcannon@macalester.edu E-mail: kmcquinn@astro.umn.edu

    2013-06-15

    We present results from ground-based optical imaging of a low-mass dwarf galaxy discovered by the ALFALFA 21 cm H I survey. Broadband (BVR) data obtained with the WIYN 3.5 m telescope at Kitt Peak National Observatory (KPNO) are used to construct color-magnitude diagrams of the galaxy's stellar population down to V{sub o} {approx} 25. We also use narrowband H{alpha} imaging from the KPNO 2.1 m telescope to identify a H II region in the galaxy. We use these data to constrain the distance to the galaxy to be between 1.5 and 2.0 Mpc. This places Leo P within the Local Volume but beyond the Local Group. Its properties are extreme: it is the lowest-mass system known that contains significant amounts of gas and is currently forming stars.

  2. Binary properties of CH and carbon-enhanced metal-poor stars

    NASA Astrophysics Data System (ADS)

    Jorissen, A.; Van Eck, S.; Van Winckel, H.; Merle, T.; Boffin, H. M. J.; Andersen, J.; Nordström, B.; Udry, S.; Masseron, T.; Lenaerts, L.; Waelkens, C.

    2016-02-01

    The HERMES spectrograph installed on the 1.2-m Mercator telescope has been used to monitor the radial velocity of 13 low-metallicity carbon stars, among which seven carbon-enhanced metal-poor (CEMP) stars and six CH stars (including HIP 53522, a new member of the family, as revealed by a detailed abundance study). All stars but one show clear evidence for binarity. New orbits are obtained for eight systems. The sample covers an extended range in orbital periods, extending from 3.4 d (for the dwarf carbon star HE 0024-2523) to about 54 yr (for the CH star HD 26, the longest known among barium, CH, and extrinsic S stars). Three systems exhibit low-amplitude velocity variations with periods close to 1 yr superimposed on a long-term trend. In the absence of an accurate photometric monitoring of these systems, it is not clear yet whether these variations are the signature of a very low-mass companion or of regular envelope pulsations. The period - eccentricity (P - e) diagram for the 40 low-metallicity carbon stars with orbits now available shows no difference between CH and CEMP-s stars (the latter corresponding to those CEMP stars enriched in s-process elements, as are CH stars). We suggest that they must be considered as one and the same family and that their different names only stem from historical reasons. Indeed, these two families have as well very similar mass-function distributions, corresponding to companions with masses in the range 0.5-0.7 M⊙, indicative of white-dwarf companions, adopting 0.8-0.9 M⊙ for the primary component. This result confirms that CH and CEMP-s stars obey the same mass-transfer scenario as their higher-metallicity analogues, barium stars. The P - e diagrams of barium, CH, and CEMP-s stars are indeed very similar. They reveal two different groups of systems: one with short orbital periods (P< 1000 d) and mostly circular or almost circular orbits, and another with longer period and eccentric (e> 0.1) orbits. These two groups either

  3. Extremely metal-poor galaxies: The H I content

    NASA Astrophysics Data System (ADS)

    Filho, M. E.; Winkel, B.; Sánchez Almeida, J.; Aguerri, J. A.; Amorín, R.; Ascasibar, Y.; Elmegreen, B. G.; Elmegreen, D. M.; Gomes, J. M.; Humphrey, A.; Lagos, P.; Morales-Luis, A. B.; Muñoz-Tuñón, C.; Papaderos, P.; Vílchez, J. M.

    2013-10-01

    Context. Extremely metal-poor (XMP) galaxies are chemically, and possibly dynamically, primordial objects in the local Universe. Aims: Our objective is to characterize the H i content of the XMP galaxies as a class, using as a reference the list of 140 known local XMPs compiled by Morales-Luis et al. (2011). Methods: We have observed 29 XMPs, which had not been observed before at 21 cm, using the Effelsberg radio telescope. This information was complemented with H i data published in literature for a further 53 XMPs. In addition, optical data from the literature provided morphologies, stellar masses, star-formation rates and metallicities. Results: Effelsberg H i integrated flux densities are between 1 and 15 Jy km s-1, while line widths are between 20 and 120 km s-1. H i integrated flux densities and line widths from literature are in the range 0.1-200 Jy km s-1 and 15-150 km s-1, respectively. Of the 10 new Effelsberg detections, two sources show an asymmetric double-horn profile, while the remaining sources show either asymmetric (seven sources) or symmetric (one source) single-peak 21 cm line profiles. An asymmetry in the H i line profile is systematically accompanied by an asymmetry in the optical morphology. Typically, the g-band stellar mass-to-light ratios are ~0.1, whereas the H i gas mass-to-light ratios may be up to two orders of magnitude larger. Moreover, H i gas-to-stellar mass ratios fall typically between 10 and 20, denoting that XMPs are extremely gas-rich. We find an anti-correlation between the H i gas mass-to-light ratio and the luminosity, whereby fainter XMPs are more gas-rich than brighter XMPs, suggesting that brighter sources have converted a larger fraction of their H i gas into stars. The dynamical masses inferred from the H i line widths imply that the stellar mass does not exceed 5% of the dynamical mass, while the H i mass constitutes between 20 and 60% of the dynamical mass. Furthermore, the dark matter mass fraction spans a wide

  4. STELLAR ARCHAEOLOGY IN THE GALACTIC HALO WITH THE ULTRA-FAINT DWARFS. VI. URSA MAJOR II

    SciTech Connect

    Dall'Ora, M.; Ripepi, Vincenzo; Marconi, Marcella; Musella, Ilaria E-mail: ripepi@na.astro.it E-mail: ilaria@na.astro.it; and others

    2012-06-10

    We present a B, V color-magnitude diagram (CMD) of the Milky Way dwarf satellite Ursa Major II (UMa II), spanning the magnitude range from V {approx} 15 to V {approx} 23.5 mag and extending over an 18 Multiplication-Sign 18 arcmin{sup 2} area centered on the Galaxy. Our photometry goes down to about 2 mag below the Galaxy's main-sequence turnoff that we detected at V {approx} 21.5 mag. We have discovered a bona fide RR Lyrae variable star in UMa II, which we use to estimate a conservative dereddened distance modulus for the galaxy of (m - M){sub 0} = 17.70 {+-} 0.04 {+-} 0.12 mag, where the first error accounts for the uncertainties of the calibrated photometry, and the second reflects our lack of information on the metallicity of the star. The corresponding distance to UMa II is 34.7{sup +0.6}{sub -0.7}({sup +2.0}{sub -1.9}) kpc. Our photometry shows evidence of a spread in the Galaxy's subgiant branch, compatible with a spread in metal abundance in the range between Z = 0.0001 and Z = 0.001. Based on our estimate of the distance, a comparison of the fiducial lines of the Galactic globular clusters M68 and M5 ([Fe/H] = -2.27 {+-} 0.04 dex and -1.33 {+-} 0.02 dex, respectively), with the position on the CMD of spectroscopically confirmed Galaxy members, may suggest the existence of stellar populations of different metal abundance/age in the central region of UMa II.

  5. Massive Star Clusters in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Larsen, Soeren

    2015-08-01

    Dwarf galaxies are often characterized by very high globular cluster specific frequencies, in some cases exceeding that of the Milky Way by a factor of 100 or more. Moreover, the GCs are typically much more metal-poor than the bulk of the field stars, so that a substantial fraction (up to 20-25% or more) of all metal-poor stars in some dwarf galaxies are associated with GCs. The metal-poor components of these galaxies thus represent an extreme case of the "specific frequency problem". In this talk I will review the current status of our understanding of GC systems in dwarf galaxies. Particular emphasis will be placed on the implications of the high GC specific frequencies for the amount of mass loss the clusters could have experienced and the constraints this provides on theories for the origin of multiple populations in globular clusters.

  6. The rarity of dust in metal-poor galaxies.

    PubMed

    Fisher, David B; Bolatto, Alberto D; Herrera-Camus, Rodrigo; Draine, Bruce T; Donaldson, Jessica; Walter, Fabian; Sandstrom, Karin M; Leroy, Adam K; Cannon, John; Gordon, Karl

    2014-01-01

    Galaxies observed at redshift z > 6, when the Universe was less than a billion years old, thus far very rarely show evidence of the cold dust that accompanies star formation in the local Universe, where the dust-to-gas mass ratio is around one per cent. A prototypical example is the galaxy Himiko (z = 6.6), which--a mere 840 million years after the Big Bang--is forming stars at a rate of 30-100 solar masses per year, yielding a mass assembly time of about 150 × 10(6) years. Himiko is thought to have a low fraction (2-3 per cent of the Sun's) of elements heavier than helium (low metallicity), and although its gas mass cannot yet be determined its dust-to-stellar mass ratio is constrained to be less than 0.05 per cent. The local dwarf galaxy I Zwicky 18, which has a metallicity about 4 per cent that of the Sun's and is forming stars less rapidly (assembly time about 1.6 × 10(9) years) than Himiko but still vigorously for its mass, is also very dust deficient and is perhaps one of the best analogues of primitive galaxies accessible to detailed study. Here we report observations of dust emission from I Zw 18, from which we determine its dust mass to be 450-1,800 solar masses, yielding a dust-to-stellar mass ratio of about 10(-6) to 10(-5) and a dust-to-gas mass ratio of 3.2-13 × 10(-6). If I Zw 18 is a reasonable analogue of Himiko, then Himiko's dust mass must be around 50,000 solar masses, a factor of 100 below the current upper limit. These numbers are quite uncertain, but if most high-z galaxies are more like Himiko than like the very-high-dust-mass galaxy SDSS J114816.64 + 525150.3 at z ≈ 6, which hosts a quasar, then our prospects for detecting the gas and dust inside such galaxies are much poorer than hitherto anticipated.

  7. The rarity of dust in metal-poor galaxies.

    PubMed

    Fisher, David B; Bolatto, Alberto D; Herrera-Camus, Rodrigo; Draine, Bruce T; Donaldson, Jessica; Walter, Fabian; Sandstrom, Karin M; Leroy, Adam K; Cannon, John; Gordon, Karl

    2014-01-01

    Galaxies observed at redshift z > 6, when the Universe was less than a billion years old, thus far very rarely show evidence of the cold dust that accompanies star formation in the local Universe, where the dust-to-gas mass ratio is around one per cent. A prototypical example is the galaxy Himiko (z = 6.6), which--a mere 840 million years after the Big Bang--is forming stars at a rate of 30-100 solar masses per year, yielding a mass assembly time of about 150 × 10(6) years. Himiko is thought to have a low fraction (2-3 per cent of the Sun's) of elements heavier than helium (low metallicity), and although its gas mass cannot yet be determined its dust-to-stellar mass ratio is constrained to be less than 0.05 per cent. The local dwarf galaxy I Zwicky 18, which has a metallicity about 4 per cent that of the Sun's and is forming stars less rapidly (assembly time about 1.6 × 10(9) years) than Himiko but still vigorously for its mass, is also very dust deficient and is perhaps one of the best analogues of primitive galaxies accessible to detailed study. Here we report observations of dust emission from I Zw 18, from which we determine its dust mass to be 450-1,800 solar masses, yielding a dust-to-stellar mass ratio of about 10(-6) to 10(-5) and a dust-to-gas mass ratio of 3.2-13 × 10(-6). If I Zw 18 is a reasonable analogue of Himiko, then Himiko's dust mass must be around 50,000 solar masses, a factor of 100 below the current upper limit. These numbers are quite uncertain, but if most high-z galaxies are more like Himiko than like the very-high-dust-mass galaxy SDSS J114816.64 + 525150.3 at z ≈ 6, which hosts a quasar, then our prospects for detecting the gas and dust inside such galaxies are much poorer than hitherto anticipated. PMID:24317694

  8. WEATHER ON OTHER WORLDS. II. SURVEY RESULTS: SPOTS ARE UBIQUITOUS ON L AND T DWARFS

    SciTech Connect

    Metchev, Stanimir A.; Heinze, Aren; Apai, Dániel; Flateau, Davin; Radigan, Jacqueline; Burgasser, Adam; Marley, Mark S.; Artigau, Étienne; Plavchan, Peter; Goldman, Bertrand

    2015-02-01

    We present results from the Weather on Other Worlds Spitzer Exploration Science program to investigate photometric variability in L and T dwarfs, usually attributed to patchy clouds. We surveyed 44 L3-T8 dwarfs, spanning a range of J – K{sub s} colors and surface gravities. We find that 14/23 (61%{sub −20%}{sup +17%}, 95% confidence) of our single L3-L9.5 dwarfs are variable with peak-to-peak amplitudes between 0.2% and 1.5%, and 5/16 (31%{sub −17%}{sup +25%}) of our single T0-T8 dwarfs are variable with amplitudes between 0.8% and 4.6%. After correcting for sensitivity, we find that 80%{sub −27%}{sup +20%} of L dwarfs vary by ≥0.2%, and 36%{sub −17%}{sup +26%} of T dwarfs vary by ≥0.4%. Given viewing geometry considerations, we conclude that photospheric heterogeneities causing >0.2% 3-5 μm flux variations are present on virtually all L dwarfs, and probably on most T dwarfs. A third of L dwarf variables show irregular light curves, indicating that L dwarfs may have multiple spots that evolve over a single rotation. Also, approximately a third of the periodicities are on timescales >10 hr, suggesting that slowly rotating brown dwarfs may be common. We observe an increase in the maximum amplitudes over the entire spectral type range, revealing a potential for greater temperature contrasts in T dwarfs than in L dwarfs. We find a tentative association (92% confidence) between low surface gravity and high-amplitude variability among L3-L5.5 dwarfs. Although we can not confirm whether lower gravity is also correlated with a higher incidence of variables, the result is promising for the characterization of directly imaged young extrasolar planets through variability.

  9. SEARCHES FOR METAL-POOR STARS FROM THE HAMBURG/ESO SURVEY USING THE CH G BAND

    SciTech Connect

    Placco, Vinicius M.; Rossi, Silvia; Kennedy, Catherine R.; Beers, Timothy C.; Lee, Young Sun; Christlieb, Norbert; Sivarani, Thirupathi; Reimers, Dieter; Wisotzki, Lutz

    2011-12-15

    We describe a new method to search for metal-poor candidates from the Hamburg/ESO objective-prism survey (HES) based on identifying stars with apparently strong CH G-band strengths for their colors. The hypothesis we exploit is that large overabundances of carbon are common among metal-poor stars, as has been found by numerous studies over the past two decades. The selection was made by considering two line indices in the 4300 A region, applied directly to the low-resolution prism spectra. This work also extends a previously published method by adding bright sources to the sample. The spectra of these stars suffer from saturation effects, compromising the index calculations and leading to an undersampling of the brighter candidates. A simple numerical procedure, based on available photometry, was developed to correct the line indices and overcome this limitation. Visual inspection and classification of the spectra from the HES plates yielded a list of 5288 new metal-poor (and by selection, carbon-rich) candidates, which are presently being used as targets for medium-resolution spectroscopic follow-up. Estimates of the stellar atmospheric parameters, as well as carbon abundances, are now available for 117 of the first candidates, based on follow-up medium-resolution spectra obtained with the SOAR 4.1 m and Gemini 8 m telescopes. We demonstrate that our new method improves the metal-poor star fractions found by our pilot study by up to a factor of three in the same magnitude range, as compared with our pilot study based on only one CH G-band index. Our selection scheme obtained roughly a 40% success rate for identification of stars with [Fe/H] <-1.0; the primary contaminant is late-type stars with near-solar abundances and, often, emission line cores that filled in the Ca II K line on the prism spectrum. Because the selection is based on carbon, we greatly increase the numbers of known carbon-enhanced metal-poor stars from the HES with intermediate metallicities -2

  10. Uncovering Blue Diffuse Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    James, Bethan; Koposov, Sergey; Stark, Daniel; Belokurov, Vasily; Pettini, Max; Olszewski, Edward W.

    2015-01-01

    Extremely metal-poor galaxies (XMPs) and the star-formation within their chemically pristine environments are fundamental to our understanding of the galaxy formation process at early times. However, traditional emission-line surveys detect only the brightest metal-poor galaxies where star-formation occurs in compact, starbursting environments, and thereby give us only a partial view of the dwarf galaxy population. To avoid such biases, we have developed a new search algorithm based on the morphological, rather then spectral, properties of XMPs and have applied to the Sloan Digital Sky Survey database of images. Using this novel approach, we have discovered ~100 previously undetected, faint blue galaxies, each with isolated HII regions embedded in a diffuse continuum. In this talk I will present the first results from follow-up optical spectroscopy of this sample, which reveals these blue diffuse dwarfs (BDDs) to be young, very metal-poor and actively forming stars despite their intrinsically low luminosities. I will present evidence showing that BDDs appear to bridge the gap between quiescent dwarf irregular (dIrr) galaxies and blue compact galaxies (BCDs) and as such offer an ideal opportunity to assess how star-formation occurs in more `normal' metal-poor systems.

  11. The Potential of the Dwarf Galaxy Triangulum II for Dark Matter Indirect Detection

    NASA Astrophysics Data System (ADS)

    Genina, Anna; Fairbairn, Malcolm

    2016-09-01

    The recently discovered object Triangulum II appears to be an ultra faint dwarf spheroidal galaxy which may be one of the most dark matter dominated objects yet known. In this work we try to estimate the potential of this object for studies of the indirect detection of self-annihilating dark matter by obtaining its astrophysical J-factor. We perform a basic estimate of the velocity gradient to look for signs of the halo being tidally disrupted but show that the observed value is statistically compatible with zero velocity gradient. We solve the spherical Jeans equation using Markov Chain Monte Carlo (MCMC) engine GreAT and the Jeans analysis part of the CLUMPY package. We find the results point towards a very large J-factor, appearing to make Triangulum II one of the best targets in the search for dark matter. However we stress that the very small number of line of sight velocities currently available for this object make follow up studies essential.

  12. Star Formation in Extreme Environments: The Case of the Prototypical Blue Compact Dwarf Galaxy II Zw 40

    NASA Astrophysics Data System (ADS)

    Kepley, Amanda; Leroy, Adam; Johnson, Kelsey; Sandstrom, Karin; Chen, Rosie

    2015-08-01

    With their high star formation rate surface densities and low metallicities, blue compact dwarf galaxies represent one of the most extreme environments for star formation in the local universe: one more akin to that found in high redshift galaxies than in local spirals. Until the advent of ALMA, however, the molecular gas fueling the prodigious star formation in blue compact dwarfs was difficult to observe because these galaxies generally have weak CO emission. In this talk, I present the first detailed study of the molecular gas content (as traced by CO) in the prototypical nearby blue compact dwarf galaxy II Zw 40. Using the extraordinary resolution and sensitivity of our ALMA Cycle 1 observations, we have separated the molecular gas emission into discrete GMC-sized clumps and measured their properties. Surprisingly, we find that -- aside from their low CO luminosities -- the giant molecular clouds in this extreme galaxy have similar properties to clouds in normal spiral galaxies. This discovery suggests that giant molecular clouds share a similar set of properties, despite the differences in their surrounding galactic environment. We suggest that the observed clouds include a range of evolutionary states providing us with important clues about the eventual fate of II Zw 40. Finally, we also report on some of the first observations of dense gas tracers in a Local Group blue compact dwarf, giving a first look at the internal structure of molecular gas in these extreme galaxies.

  13. HST eclipse mapping of dwarf nova OY Carinae in quiescence: An 'Fe II curtain' with Mach approx. = 6 velocity dispersion veils the white dwarf

    NASA Technical Reports Server (NTRS)

    Horne, Keith; Marsh, T. R.; Cheng, F. H.; Hubeny, Ivan; Lanz, Theirry

    1994-01-01

    Hubble Space Telescope (HST) observations of the eclipsing dwarf nova OY Car in its quiescent state are used to isolate the ultraviolet spectrum (1150-2500 A at 9.2 A Full Width at Half Maximum (FWHM) resolution) of the white dwarf, the accretion disk, and the bright spot. The white dwarf spectrum has a Stark-broadened photospheric L(alpha) absorption, but is veiled by a forest of blended Fe II features that we attribute to absorption by intervening disk material. A fit gives T(sub w) approx. = 16.5 x 10(exp 3) K for the white dwarf with a solar-abundance, log g = 8 model atmosphere, and T approx. = 10(exp 4) K, n(sub e) approx. = 10(exp 13)/cu cm, N(sub H) approx. = 10(exp 22) sq cm, and velocity dispersion delta V approx. = 60 km/s for the veil of homogeneous solar-abundance local thermodynamic equilibrium (LTE) gas. The veil parameters probably measure characteristic physical conditions in the quiescent accretion disk or its chromosphere. The large velocity dispersion is essential for a good fit; it lowers (chi square)/778 from 22 to 4. Keplerian shear can produce the velocity dispersion if the veiling gas is located at R approx. = 5 R(sub W) with (delta R)/R approx. = 0.3, but this model leaves an unobscured view to the upper hemisphere of the white dwarf, incompatible with absorptions that are up to 80% deep. The veiling gas may be in the upper atmosphere of the disk near its outer rim, but we then require supersonic (Mach approx. = 6) but sub-Keplerian (delta V/V(sub Kep) approx. = 0.07) velocity disturbances in this region to produce both the observed radial velocity dispersion and vertical motions sufficient to elevate the gas to z/R = cos i = 0.12. Such motions might be driven by the gas stream, since it may take several Kepler periods to reestablish the disk's vertical hydrostatic equilibrium. The temperature and column density of the gas we see as Fe II absorption in the ultraviolet are similar to what is required to produce the strong Balmer jump and

  14. New Hubble Space Telescope Observations of Heavy Elements in Four Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Lawler, James E.; Sobeck, Jennifer S.; Beers, Timothy C.; Cowan, John J.; Frebel, Anna; Ivans, Inese I.; Schatz, Hendrik; Sneden, Christopher; Thompson, Ian B.

    2012-12-01

    Elements heavier than the iron group are found in nearly all halo stars. A substantial number of these elements, key to understanding neutron-capture nucleosynthesis mechanisms, can only be detected in the near-ultraviolet. We report the results of an observing campaign using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope to study the detailed heavy-element abundance patterns in four metal-poor stars. We derive abundances or upper limits from 27 absorption lines of 15 elements produced by neutron-capture reactions, including seven elements (germanium, cadmium, tellurium, lutetium, osmium, platinum, and gold) that can only be detected in the near-ultraviolet. We also examine 202 heavy-element absorption lines in ground-based optical spectra obtained with the Magellan Inamori Kyocera Echelle Spectrograph on the Magellan-Clay Telescope at Las Campanas Observatory and the High Resolution Echelle Spectrometer on the Keck I Telescope on Mauna Kea. We have detected up to 34 elements heavier than zinc. The bulk of the heavy elements in these four stars are produced by r-process nucleosynthesis. These observations affirm earlier results suggesting that the tellurium found in metal-poor halo stars with moderate amounts of r-process material scales with the rare earth and third r-process peak elements. Cadmium often follows the abundances of the neighboring elements palladium and silver. We identify several sources of systematic uncertainty that must be considered when comparing these abundances with theoretical predictions. We also present new isotope shift and hyperfine structure component patterns for Lu II and Pb I lines of astrophysical interest. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 8111 and

  15. THE SPLASH SURVEY: A SPECTROSCOPIC ANALYSIS OF THE METAL-POOR, LOW-LUMINOSITY M31 dSph SATELLITE ANDROMEDA X ,

    SciTech Connect

    Kalirai, Jason S.; Zucker, Daniel B.; Kniazev, Alexei Y.; MartInez-Delgado, David; Bell, Eric F.; Guhathakurta, Puragra; Grebel, Eva K.; Gilbert, Karoline M. E-mail: raja@ucolick.or E-mail: zucker@science.mq.edu.a E-mail: akniazev@saao.ac.z E-mail: grebel@ari.uni-heidelberg.d

    2009-11-01

    Andromeda X (And X) is a newly discovered low-luminosity M31 dwarf spheroidal galaxy (dSph) found by Zucker et al. in the Sloan Digital Sky Survey (SDSS; York et al.). In this paper, we present the first spectroscopic study of individual red giant branch stars in And X, as a part of the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) Survey. Using the Keck II telescope and multiobject DEIMOS spectrograph, we target two spectroscopic masks over the face of the galaxy and measure radial velocities for approx100 stars with a median accuracy of sigma {sub v} approx 3 km s{sup -1}. The velocity histogram for this field confirms three populations of stars along the sight line: foreground Milky Way dwarfs at small negative velocities, M31 halo red giants over a broad range of velocities, and a very cold velocity 'spike' consisting of 22 stars belonging to And X with v {sub rad} = -163.8 +- 1.2 km s{sup -1}. By carefully considering both the random and systematic velocity errors of these stars (e.g., through duplicate star measurements), we derive an intrinsic velocity dispersion of just sigma {sub v} = 3.9 +- 1.2 km s{sup -1} for And X, which for its size, implies a minimum mass-to-light ratio of M/L{sub V} = 37{sup +26} {sub -19} assuming that the mass traces the light. Based on the clean sample of member stars, we measure the median metallicity of And X to be [Fe/H] = -1.93 +- 0.11, with a slight radial metallicity gradient. The dispersion in metallicity is large, sigma([Fe/H]{sub phot}) = 0.48, possibly hinting that the galaxy retained much of its chemical enrichment products. And X has a total integrated luminosity (M{sub V} = -8.1 +- 0.5) that straddles the classical Local Group dSphs and the new SDSS ultra-low luminosity galaxies. The galaxy is among the most metal-poor dSphs known, especially relative to those with M{sub V} < -8, and has the second lowest intrinsic velocity dispersion of the entire sample. Our results suggest that And X

  16. A FIRST MEASUREMENT OF THE PROPER MOTION OF THE LEO II DWARF SPHEROIDAL GALAXY

    SciTech Connect

    Lepine, Sebastien; Koch, Andreas; Rich, R. Michael; Kuijken, Konrad

    2011-11-10

    We use 14 year baseline images obtained with the Wide Field and Planetary Camera 2 on board the Hubble Space Telescope (HST) to derive a proper motion for one of the Milky Way's most distant dwarf spheroidal companions, Leo II, relative to an extragalactic background reference frame. Astrometric measurements are performed in the effective point-spread function formalism using our own developed code. An astrometric reference grid is defined using 3224 stars that are members of Leo II and brighter than a magnitude of 25 in the F814W band. We identify 17 compact extragalactic sources, for which we measure a systemic proper motion relative to this stellar reference grid. We derive a proper motion [{mu}{sub {alpha},{mu}{delta}}] = [+104 {+-}113,-33 {+-} 151] {mu}as yr{sup -1} for Leo II in the heliocentric reference frame. Though marginally detected, the proper motion yields constraints on the orbit of Leo II. Given a distance of d {approx_equal} 230 kpc and a heliocentric radial velocity v{sub r} = +79 km s{sup -1}, and after subtraction of the solar motion, our measurement indicates a total orbital motion v{sub G} = 266.1 {+-} 128.7 km s{sup -1} in the Galactocentric reference frame, with a radial component v{sub r{sub G}}=21.5{+-}4.3 km s{sup -1} and tangential component v{sub t{sub G}} = 265.2 {+-} 129.4 km s{sup -1}. The small radial component indicates that Leo II either has a low-eccentricity orbit or is currently close to perigalacticon or apogalacticon distance. We see evidence for systematic errors in the astrometry of the extragalactic sources which, while close to being point sources, are slightly resolved in the HST images. We argue that more extensive observations at later epochs will be necessary to better constrain the proper motion of Leo II. We provide a detailed catalog of the stellar and extragalactic sources identified in the HST data which should provide a solid early-epoch reference for future astrometric measurements.

  17. High-dispersion spectroscopy of giants in metal-poor globular clusters. I - Iron abundances

    NASA Technical Reports Server (NTRS)

    Minniti, Dante; Geisler, Doug; Peterson, Ruth C.; Claria, Juan J.

    1993-01-01

    High-resolution, high-SNR CCD spectra have been obtained for 16 giants in eight metal-poor Galactic globular clusters. Fe abundances accurate to 0.15 dex have been determined by a fully consistent set of model atmospheres and spectrum synthesis techniques. A metallicity scale is presented for metal-poor clusters that should prove useful for calibrating a wide variety of photometric and low-resolution spectroscopic metallicity indicators.

  18. Population synthesis of accreting white dwarfs - II. X-ray and UV emission

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Liang; Woods, T. E.; Yungelson, L. R.; Gilfanov, M.; Han, Zhanwen

    2015-11-01

    Accreting white dwarfs (WDs) with non-degenerate companions are expected to emit in soft X-rays and the UV, if accreted H-rich material burns stably. They are an important component of the unresolved emission of elliptical galaxies, and their combined ionizing luminosity may significantly influence the optical line emission from warm interstellar medium (ISM). In an earlier paper, we modelled populations of accreting WDs, first generating WD with main-sequence, Hertzsprung gap and red giant companions with the population synthesis code BSE, and then following their evolution with a grid of evolutionary tracks computed with MESA. Now we use these results to estimate the soft X-ray (0.3-0.7 keV), H- and He II-ionizing luminosities of nuclear burning WDs and the number of supersoft X-ray sources for galaxies with different star formation histories. For the starburst case, these quantities peak at ˜1 Gyr and decline by ˜1-3 orders of magnitude by the age of 10 Gyr. For stellar ages of ˜10 Gyr, predictions of our model are consistent with soft X-ray luminosities observed by Chandra in nearby elliptical galaxies and He II 4686 Å/H β line ratio measured in stacked Sloan Digital Sky Survey spectra of retired galaxies, the latter characterizing the strength and hardness of the UV radiation field. However, the soft X-ray luminosity and He II 4686 Å/H β ratio are significantly overpredicted for stellar ages of ≲4-8 Gyr. We discuss various possibilities to resolve this discrepancy and tentatively conclude that it may be resolved by a modification of the typically used criteria of dynamically unstable mass-loss for giant stars.

  19. The EMBLA survey - metal-poor stars in the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Howes, Louise M.; Asplund, Martin; Keller, Stefan C.; Casey, Andrew R.; Yong, David; Lind, Karin; Frebel, Anna; Hays, Austin; Alves-Brito, Alan; Bessell, Michael S.; Casagrande, Luca; Marino, Anna F.; Nataf, David M.; Owen, Christopher I.; Da Costa, Gary S.; Schmidt, Brian P.; Tisserand, Patrick

    2016-07-01

    Cosmological models predict the oldest stars in the Galaxy should be found closest to the centre of the potential well, in the bulge. The Extremely Metal-poor BuLge stars with AAOmega survey (EMBLA) successfully searched for these old, metal-poor stars by making use of the distinctive SkyMapper photometric filters to discover candidate metal-poor stars in the bulge. Their metal-poor nature was then confirmed using the AAOmega spectrograph on the Anglo-Australian Telescope. Here we present an abundance analysis of 10 bulge stars with -2.8 < [Fe/H] < -1.7 from MIKE/Magellan observations, in total determining the abundances of 22 elements. Combining these results with our previous high-resolution data taken as part of the Gaia-ESO Survey, we have started to put together a picture of the chemical and kinematic nature of the most metal-poor stars in the bulge. The currently available kinematic data are consistent with the stars belonging to the bulge, although more accurate measurements are needed to constrain the stars' orbits. The chemistry of these bulge stars deviates from that found in halo stars of the same metallicity. Two notable differences are the absence of carbon-enhanced metal-poor bulge stars, and the α element abundances exhibit a large intrinsic scatter and include stars which are underabundant in these typically enhanced elements.

  20. High-resolution abundance analysis of very metal-poor r-I stars

    NASA Astrophysics Data System (ADS)

    Siqueira Mello, C.; Hill, V.; Barbuy, B.; Spite, M.; Spite, F.; Beers, T. C.; Caffau, E.; Bonifacio, P.; Cayrel, R.; François, P.; Schatz, H.; Wanajo, S.

    2014-05-01

    Context. Moderately r-process-enriched stars (r-I; +0.3 ≤ [Eu/Fe] ≤ +1.0) are at least four times as common as those that are greatly enriched in r-process elements (r-II; [Eu/Fe] > +1.0), and the abundances in their atmospheres are important tools for obtaining a better understanding of the nucleosynthesis processes responsible for the origin of the elements beyond the iron peak. Aims: The main aim of this work is to derive abundances for a sample of seven metal-poor stars with -3.4 ≤ [Fe/H] ≤ -2.4 classified as r-I stars, to understand the role of these stars for constraining the astrophysical nucleosynthesis event(s) that is (are) responsible for the production of the r-process, and to investigate whether they differ, in any significant way, from the r-II stars. Methods: We carried out a detailed abundance analysis based on high-resolution spectra obtained with the VLT/UVES spectrograph, using spectra in the wavelength ranges 3400-4500 Å, 6800-8200 Å, and 8700-10 000 Å, with resolving power R ~ 40 000 (blue arm) and R ~ 55 000 (red arm). The OSMARCS LTE 1D model atmosphere grid was employed, along with the spectrum synthesis code Turbospectrum. Results: We have derived abundances of the light elements Li, C, and N, the α-elements Mg, Si, S, Ca, and Ti, the odd-Z elements Al, K, and Sc, the iron-peak elements V, Cr, Mn, Fe, Co, and Ni, and the trans-iron elements from the first peak (Sr, Y, Zr, Mo, Ru, and Pd), the second peak (Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb), the third peak (Os and Ir, as upper limits), and the actinides (Th) regions. The results are compared with values for these elements for r-II and "normal" very and extremely metal-poor stars reported in the literature, ages based on radioactive chronometry are explored using different models, and a number of conclusions about the r-process and the r-I stars are presented. Hydrodynamical models were used for some elements, and general behaviors for the 3D corrections

  1. ON THE USE OF THE INDEX N2 TO DERIVE THE METALLICITY IN METAL-POOR GALAXIES

    SciTech Connect

    Morales-Luis, A. B.; Almeida, J. Sánchez; Muñoz-Tuñón, C.; Pérez-Montero, E. E-mail: cmt@iac.es E-mail: epm@iaa.es

    2014-12-20

    The N2 index ([N II] λ6584/Hα) is used to determine emission line galaxy metallicities at all redshifts, including high redshift, where galaxies tend to be metal-poor. The initial aim of this work was to improve the calibrations used to infer oxygen abundance from N2 by employing updated low-metallicity galaxy databases. We compare N2 and the metallicity determined using the direct method for the set of extremely metal-poor galaxies compiled by Morales-Luis et al. To our surprise, the oxygen abundance presents a tendency to be constant with N2, with a very large scatter. Consequently, we find that the existing N2 calibrators overestimate the oxygen abundance for most low-metallicity galaxies, and can therefore only be used to set upper limits to the true metallicity in low-metallicity galaxies. An explicit expression for this limit is given. In addition, we try to explain the observed scatter using photoionization models. It is mostly due to the different evolutionary state of the H II regions producing the emission lines, but it also arises due to differences in N/O among the galaxies.

  2. THE ACS NEARBY GALAXY SURVEY TREASURY. IX. CONSTRAINING ASYMPTOTIC GIANT BRANCH EVOLUTION WITH OLD METAL-POOR GALAXIES

    SciTech Connect

    Girardi, Leo; Williams, Benjamin F.; Gilbert, Karoline M.; Rosenfield, Philip; Dalcanton, Julianne J.; Marigo, Paola; Boyer, Martha L.; Dolphin, Andrew; Weisz, Daniel R.; Skillman, Evan; Melbourne, Jason; Olsen, Knut A. G.; Seth, Anil C.

    2010-12-01

    In an attempt to constrain evolutionary models of the asymptotic giant branch (AGB) phase at the limit of low masses and low metallicities, we have examined the luminosity functions and number ratios between AGB and red giant branch (RGB) stars from a sample of resolved galaxies from the ACS Nearby Galaxy Survey Treasury. This database provides Hubble Space Telescope optical photometry together with maps of completeness, photometric errors, and star formation histories for dozens of galaxies within 4 Mpc. We select 12 galaxies characterized by predominantly metal-poor populations as indicated by a very steep and blue RGB, and which do not present any indication of recent star formation in their color-magnitude diagrams. Thousands of AGB stars brighter than the tip of the RGB (TRGB) are present in the sample (between 60 and 400 per galaxy), hence, the Poisson noise has little impact in our measurements of the AGB/RGB ratio. We model the photometric data with a few sets of thermally pulsing AGB (TP-AGB) evolutionary models with different prescriptions for the mass loss. This technique allows us to set stringent constraints on the TP-AGB models of low-mass, metal-poor stars (with M < 1.5 M{sub sun}, [Fe/H]{approx}< -1.0). Indeed, those which satisfactorily reproduce the observed AGB/RGB ratios have TP-AGB lifetimes between 1.2 and 1.8 Myr, and finish their nuclear burning lives with masses between 0.51 and 0.55 M{sub sun}. This is also in good agreement with recent observations of white dwarf masses in the M4 old globular cluster. These constraints can be added to those already derived from Magellanic Cloud star clusters as important mileposts in the arduous process of calibrating AGB evolutionary models.

  3. Star Formation in Extreme Environments: The Case of the Prototypical Blue Compact Dwarf Galaxy II Zw 40

    NASA Astrophysics Data System (ADS)

    Kepley, Amanda A.; Leroy, Adam; Johnson, Kelsey E.; Sandstrom, Karin; Chen, C.-H. Rosie

    2016-01-01

    With their high star formation rate surface densities and low metallicities, blue compact dwarf galaxies represent one of the most extreme environments for star formation in the local universe: one more akin to that found in high redshift galaxies than in local spirals. Until the advent of ALMA, however, the molecular gas fueling the prodigious star formation in blue compact dwarfs was difficult to observe because these galaxies generally have weak CO emission. In this talk, I present the first detailed study of the dust and molecular gas content (as traced by CO) in the prototypical nearby blue compact dwarf galaxy II Zw 40. Using the extraordinary resolution and sensitivity of our ALMA Cycle 1 observations, we have separated the molecular gas emission into discrete GMC-sized clumps and measured their properties. The clouds within II Zw 40 have high linewidths for their size, reflecting the greater turbulence within II Zw40. However, despite their large linewidths, these clouds are largely still in virial equilibrium. Comparing the virial masses of the clouds to their CO luminosities, we find that the CO to molecular gas conversion factor within this galaxy is at least 5 times that of the Milky Way and possibly as high as 35 times. Even with the maximum CO-to-molecular gas conversion factor for this galaxy, we find that the star formation efficiency is still at least a factor of 3 higher than solar metallicity systems.

  4. Stellar Dust Production in Chemically Primitive Environments: Infrared Lightcurves and Mass Loss in Extremely Metal-poor AGB Stars

    NASA Astrophysics Data System (ADS)

    Sonneborn, George

    In their final stage of evolution, asymptotic giant branch (AGB) stars inject a substantial amount of dust into the surrounding interstellar medium, potentially dominating the total stellar dust budgets of their host galaxies. However, stellar models conflict over whether metal-poor AGB stars can condense enough dust to drive a strong stellar wind, so it is unclear what role AGB stars play in the early Universe compared to other dust sources, e.g., in high-redshift quasars that show evidence for massive dust reservoirs. Empirically, AGB stars that are massive enough to contribute in the early Universe are only well studied in the Milky Way and the nearby Magellanic Clouds; all three environments are relatively metal-rich and thus unlikely to be representative of high-redshift AGB stars. This lack of observations of metal-poor AGB stars motivated the survey of DUST in Nearby Galaxies with Spitzer (DUSTiNGS), which imaged 50 nearby dwarf galaxies in the infrared and identified 526 dusty "extreme" AGB stars. The DUSTiNGS stars confirm that dust can form at metallicities as low as 0.008 solar, more than an order of magnitude lower than had been previously observed. However, very little is known about the DUSTiNGS stars; among the unknowns are the photospheric chemistries, stellar masses, temperatures, luminosities, pulsation periods and amplitudes, dust-production rates, and even their statuses as bona fide AGB stars. To eliminate these unknowns, we were awarded 56 hours of Priority 1 observing time in Spitzer's cycle 11 to obtain 6 new epochs of imaging for a subset of the DUSTiNGS variables over an 18 month baseline. These will be the first infrared light curves of metal-poor, dust-producing AGB stars, allowing us to study the influence of metallicity on pulsation and dust production. Combined with additional archival data, our cycle-11 Spitzer program will allow estimates of all of the parameters listed above, enabling the first direct comparisons to models of AGB

  5. METALLICITY DISTRIBUTION FUNCTIONS OF FOUR LOCAL GROUP DWARF GALAXIES

    SciTech Connect

    Ross, Teresa L.; Holtzman, Jon; Saha, Abhijit; Anthony-Twarog, Barbara J. E-mail: holtz@nmsu.edu

    2015-06-15

    We present stellar metallicities in Leo I, Leo II, IC 1613, and Phoenix dwarf galaxies derived from medium (F390M) and broad (F555W, F814W) band photometry using the Wide Field Camera 3 instrument on board the Hubble Space Telescope. We measured metallicity distribution functions (MDFs) in two ways, (1) matching stars to isochrones in color–color diagrams and (2) solving for the best linear combination of synthetic populations to match the observed color–color diagram. The synthetic technique reduces the effect of photometric scatter and produces MDFs 30%–50% narrower than the MDFs produced from individually matched stars. We fit the synthetic and individual MDFs to analytical chemical evolution models (CEMs) to quantify the enrichment and the effect of gas flows within the galaxies. Additionally, we measure stellar metallicity gradients in Leo I and II. For IC 1613 and Phoenix our data do not have the radial extent to confirm a metallicity gradient for either galaxy. We find the MDF of Leo I (dwarf spheroidal) to be very peaked with a steep metal-rich cutoff and an extended metal-poor tail, while Leo II (dwarf spheroidal), Phoenix (dwarf transition), and IC 1613 (dwarf irregular) have wider, less peaked MDFs than Leo I. A simple CEM is not the best fit for any of our galaxies; therefore we also fit the “Best Accretion Model” of Lynden-Bell. For Leo II, IC 1613, and Phoenix we find similar accretion parameters for the CEM even though they all have different effective yields, masses, star formation histories, and morphologies. We suggest that the dynamical history of a galaxy is reflected in the MDF, where broad MDFs are seen in galaxies that have chemically evolved in relative isolation and narrowly peaked MDFs are seen in galaxies that have experienced more complicated dynamical interactions concurrent with their chemical evolution.

  6. A DIFFERENTIAL CHEMICAL ELEMENT ANALYSIS OF THE METAL-POOR GLOBULAR CLUSTER NGC 6397

    SciTech Connect

    Koch, Andreas; McWilliam, Andrew E-mail: andy@obs.carnegiescience.edu

    2011-08-15

    We present chemical abundances in three red giants and two turnoff (TO) stars in the metal-poor Galactic globular cluster (GC) NGC 6397 based on spectroscopy obtained with the Magellan Inamori Kyocera Echelle high-resolution spectrograph on the Magellan 6.5 m Clay telescope. Our results are based on a line-by-line differential abundance analysis relative to the well-studied red giant Arcturus and the Galactic halo field star Hip 66815. At a mean of -2.10 {+-} 0.02 (stat.) {+-}0.07 (sys.), the differential iron abundance is in good agreement with other studies in the literature based on gf-values. As in previous differential works we find a distinct departure from ionization equilibrium in that the abundances of Fe I and Fe II differ by {approx}0.1 dex, with opposite signs for the red giant branch (RGB) and TO stars. The {alpha}-element ratios are enhanced to 0.4 (RGB) and 0.3 dex (TO), respectively, and we also confirm strong variations in the O, Na, and Al/Fe abundance ratios. Accordingly, the light-element abundance patterns in one of the red giants can be attributed to pollution by an early generation of massive Type II supernovae. TO and RGB abundances are not significantly different, with the possible exception of Mg and Ti, which are, however, amplified by the patterns in one TO star additionally belonging to this early generation of GC stars. We discuss interrelations of these light elements as a function of the GC metallicity.

  7. SPECTROSCOPIC STUDIES OF EXTREMELY METAL-POOR STARS WITH THE SUBARU HIGH DISPERSION SPECTROGRAPH. V. THE Zn-ENHANCED METAL-POOR STAR BS 16920-017

    SciTech Connect

    Honda, Satoshi; Aoki, Wako; Beers, Timothy C.; Takada-Hidai, Masahide E-mail: aoki.wako@nao.ac.jp E-mail: hidai@apus.rh.u-tokai.ac.jp

    2011-04-01

    We report Zn abundances for 18 very metal-poor stars studied in our previous work, covering the metallicity range -3.2< [Fe/H] <-2.5. The [Zn/Fe] values of most stars show an increasing trend with decreasing [Fe/H] in this metallicity range, confirming the results found by previous studies. However, the extremely metal-poor star BS 16920-017([Fe/H] =-3.2) exhibits a significantly high [Zn/Fe] ratio ([Zn/Fe] = +1.0). Comparison of the chemical abundances of this object with HD 4306, which has similar atmospheric parameters to BS 16920-017, clearly demonstrates a deficiency of {alpha} elements and neutron-capture elements in this star, along with enhancements of Mn and Ni, as well as Zn. The association with a hypernova explosion that has been proposed to explain the high Zn abundance ratios found in extremely metal-poor stars is a possible explanation, although further studies are required to fully interpret the abundance pattern of this object.

  8. A CROSS-MATCH OF 2MASS AND SDSS. II. PECULIAR L DWARFS, UNRESOLVED BINARIES, AND THE SPACE DENSITY OF T DWARF SECONDARIES

    SciTech Connect

    Geissler, Kerstin; Metchev, Stanimir; Kirkpatrick, J. Davy; Berriman, G. Bruce; Looper, Dagny

    2011-05-01

    We present the completion of a program to cross-correlate the Sloan Digital Sky Survey Data Release 1 (SDSS DR1) and Two-Micron All-Sky Survey (2MASS) Point Source Catalog in search for extremely red L and T dwarfs. The program was initiated by Metchev and collaborators, who presented the findings on all newly identified T dwarfs in SDSS DR1 and estimated the space density of isolated T0-T8 dwarfs in the solar neighborhood. In the current work, we present most of the L dwarf discoveries. Our red-sensitive (z - J {>=} 2.75 mag) cross-match proves to be efficient in detecting peculiarly red L dwarfs, adding two new ones, including one of the reddest known L dwarfs. Our search also nets a new peculiarly blue L7 dwarf and, surprisingly, two M8 dwarfs. We further broaden our analysis to detect unresolved binary L or T dwarfs through spectral template fitting to all L and T dwarfs presented here and in the earlier work by Metchev and collaborators. We identify nine probable binaries, six of which are new and eight harbor likely T dwarf secondaries. We combine this result with current knowledge of the mass ratio distribution and frequency of substellar companions to estimate an overall space density of 0.005-0.05 pc{sup -3} for individual T0-T8 dwarfs.

  9. MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. II. CATALOG OF STARS IN MILKY WAY DWARF SATELLITE GALAXIES

    SciTech Connect

    Kirby, Evan N.; Cohen, Judith G.; Guhathakurta, Puragra; Rockosi, Constance M.; Geha, Marla C.; Sneden, Christopher; Sohn, Sangmo Tony; Majewski, Steven R.; Siegel, Michael

    2010-12-15

    We present a catalog of Fe, Mg, Si, Ca, and Ti abundances for 2961 stars in eight dwarf satellite galaxies of the Milky Way (MW): Sculptor, Fornax, Leo I, Sextans, Leo II, Canes Venatici I, Ursa Minor, and Draco. For the purposes of validating our measurements, we also observed 445 red giants in MW globular clusters and 21 field red giants in the MW halo. The measurements are based on Keck/DEIMOS medium-resolution spectroscopy (MRS) combined with spectral synthesis. We estimate uncertainties in [Fe/H] by quantifying the dispersion of [Fe/H] measurements in a sample of stars in monometallic globular clusters (GCs). We estimate uncertainties in Mg, Si, Ca, and Ti abundances by comparing to high-resolution spectroscopic abundances of the same stars. For this purpose, a sample of 132 stars with published high-resolution spectroscopy in GCs, the MW halo field, and dwarf galaxies has been observed with MRS. The standard deviations of the differences in [Fe/H] and ([{alpha}/Fe]) (the average of [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe]) between the two samples is 0.15 and 0.16, respectively. This catalog represents the largest sample of multi-element abundances in dwarf galaxies to date. The next papers in this series draw conclusions on the chemical evolution, gas dynamics, and star formation histories from the catalog presented here. The wide range of dwarf galaxy luminosity reveals the dependence of dwarf galaxy chemical evolution on galaxy stellar mass.

  10. Large-scale environmental dependence of gas-phase metallicity in dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Douglass, Kelly; Vogeley, Michael S.

    2016-01-01

    We study how the cosmic environment affects galaxy evolution in the Universe by comparing the metallicities of dwarf galaxies in voids with dwarf galaxies in more dense regions. Ratios of the fluxes of emission lines, particularly those of the forbidden [O III] and [S II] transitions, provide estimates of a region's electron temperature and number density. From these two quantities and the emission line fluxes [O II] λ3727, [O III] λ4363, and [O III] λλ4959,5007, we estimate the abundance of oxygen with the Direct Te method. We estimate the metallicity of 37 void dwarf galaxies and 71 dwarf galaxies in more dense regions using spectroscopic observations from the Sloan Digital Sky Survey Data Release 7, as re-processed in the MPA-JHU value-added catalog. We find very little difference between the two sets of galaxies, indicating little influence from the large-scale environment on their stellar evolution. Of particular interest are a number of extremely metal-poor dwarf galaxies that are equally abundant in both voids and denser regions.

  11. VAMDC FP7 project and STARK-B database: C II Stark broadening parameters for white dwarf atmospheres research

    SciTech Connect

    Larbi-Terzi, Neila; Ben Nessib, Nebil; Sahal-Brechot, Sylvie; Dimitrijevic, Milan S.

    2010-11-23

    Stark broadening parameters of C II lines were determined within 3s-np spectral series within the semiclassical perturbation method. The atomic energy levels needed for calculations were taken from TOPBASE as well as the oscillator strengths, calculated additionally using the Coulomb approximation (the method of Bates and Damgaard). The both results were compared and the disagreement is found only in one case where the configuration mixing allows a forbidden transition to a close perturbing energy level. Calculations were performed for plasma conditions relevant for atmospheres of DQ white dwarfs and for a new type of white dwarfs, with surface composed mostly of carbon, discovered in 2007 by Dufour et al.. The aim of this work is to provide accurate C II Stark broadening data, which are crucial for this type of white dwarf atmosphere modellisation. Obtained results will be included in STARK-B database (http://stark-b.obspm.fr/), entering in the FP7 project of European Virtual Atomic and Molecular Data Center VAMDC aiming at building an interoperable e-Infrastructure for the exchange of atomic and molecular data (http://www.vamdc.org/).

  12. Study of Neutron-Capture Element Abundances in Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Li, Hongjie; Shen, Xiaojing; Liang, Shuai; Cui, Wenyuan; Zhang, Bo

    2013-02-01

    This work describes a study of elemental abundances for 30 metal-poor stars whose chemical abundances provide excellent information for setting constraints on models of neutron-capture processes. Based on the abundances of main r- and weak r-process stars, the abundance patterns of main r-process and weak r-process are obtained. The two r-process component coefficients are defined to determine the relative contributions from individual neutron-capture process to abundances of metal-poor stars. Based on the component coefficients, we find that metal-poor stars BD+42621 and HD 4306 are also weak r-process stars, which means that the abundance pattern produced by weak r-process is stable. All metal-poor star abundances contain the contributions of both main r-process and weak r-process. The elements produced by weak r-process have increased along with Fe over the polluted history. Most of the metal-poor star abundances do not follow the pattern observed in the solar system, but there is a small fraction that do. For the low-[Sr/Fe] star BD-185550 ([Sr/Fe] lsim -1), neutron-capture element abundances can be explained by the mixture of two r-process components. Since lighter elements in this star cannot be fitted by the two components, the abundance pattern of P-component is estimated from those abundances.

  13. Lithium abundance in the metal-poor open cluster NGC 2243

    NASA Astrophysics Data System (ADS)

    François, P.; Pasquini, L.; Biazzo, K.; Bonifacio, P.; Palsa, R.

    2013-04-01

    Context. Lithium is a fundamental element for studying the mixing mechanisms acting in the stellar interiors, for understanding the chemical evolution of the Galaxy and the Big Bang nucleosynthesis. The study of Li in stars of open clusters (OC) allows a detailed comparison with stellar evolutionary models and permits us to trace its galactic evolution. The OC NGC 2243 is particularly interesting because of its low metallicity ([Fe/H] = -0.54 ± 0.10 dex). Aims: We measure the iron and lithium abundance in stars of the metal-poor OC NGC 2243. The first aim is to determine whether the Li dip extends to such low metallicities, the second is to compare the results of our Li analysis in this OC with those present in 47 Tuc, a globular cluster of similar metallicity. Methods: We performed a detailed analysis of high-resolution spectra obtained with the multi-object facility FLAMES at the ESO VLT 8.2 m telescope. Lithium abundance was derived through line equivalent widths and the OSMARCS atmosphere models. Iron abundances from Fe i and Fe ii lines have also been measured and used to check the atmospheric model parameters. Results: The Li line is detected in 27 stars confirmed as likely cluster members by repeated radial velocity measurements. We determine a Li dip center of 1.06 M⊙, which is much smaller than that observed in solar metallicity and metal-rich clusters. This finding confirms and strengthens the conclusion that the mass of the stars in the Li dip strongly depends on stellar metallicity. The mean Li abundance of the cluster is log n(Li) = 2.70 dex, which is substantially higher than that observed in 47 Tuc. We estimated an iron abundance of [Fe/H] = -0.54 ± 0.10 dex for NGC 2243, which is similar (within the errors) to previous findings. The [α/Fe] content ranges from 0.00 ± 0.14 for Ca to 0.20 ± 0.22 for Ti, which is low when compared to thick disk stars and to Pop II stars, but compatible with thin disk objects. We found a mean radial velocity of 61

  14. Simulating extremely metal-poor gas and DLA metal content at redshift z ≃ 7

    NASA Astrophysics Data System (ADS)

    Maio, Umberto; Ciardi, Benedetta; Müller, Volker

    2013-10-01

    We present the first theoretical study of metals in damped-Lyα (DLA) systems at redshift z ≃ 7. The features of cold, primordial gas are studied by means of N-body, hydro, chemistry simulations, including atomic and molecular non-equilibrium chemistry, cooling, star formation for Population III and Population II-I regimes, stellar evolution, cosmic metal spreading according to proper yields (for He, C, O, Si, Fe, Mg, S, etc.) and lifetimes and feedback effects. Theoretical expectations are then compared to recently available constraints from DLA observations. We find that DLA galaxies at z ≃ 7 account for ˜10 per cent of the whole galaxy population and for most of the metal-poor galaxies at these epochs. About 7 per cent of these DLA galaxies contain purely pristine material and ˜34 per cent of them consist of very weakly polluted gas, being, therefore, suitable candidates as Population III sites. The remaining ˜59 per cent are enriched above ˜10-4 Z⊙. Additionally, DLA candidates appear to have: gas masses ≲ 2 × 108 M⊙; very low star formation rate, ˜ 10- 3 - 10- 2 M⊙ yr- 1 (significantly weaker than late-time counterparts); mean molecular fractions covering a fairly wide range, xmol ˜ 10- 3-10- 6; typical metallicities Z ≲ 10-3 Z⊙ and H I column densities N_{H I}≳ 3× 10^{20} cm^{-2} (in agreement with recent observations). They present no or weak correlations between their gas mass and Z, N_{H I}, or xmol; a moderate correlation between xmol and Z, linked to the ongoing molecular-driven star formation and metal pollution processes; a mild anticorrelation between N_{H I} and xmol, due to H depletion into molecules; and a chemical content that is subject to environmental dependences.

  15. Deriving Stellar Effective Temperatures of Metal-poor Stars with the Excitation Potential Method

    NASA Astrophysics Data System (ADS)

    Frebel, Anna; Casey, Andrew R.; Jacobson, Heather R.; Yu, Qinsi

    2013-05-01

    It is well established that stellar effective temperatures determined from photometry and spectroscopy yield systematically different results. We describe a new, simple method to correct spectroscopically derived temperatures ("excitation temperatures") of metal-poor stars based on a literature sample with -3.3 < [Fe/H] < -2.5. Excitation temperatures were determined from Fe I line abundances in high-resolution optical spectra in the wavelength range of ~3700-~7000 Å, although shorter wavelength ranges, up to 4750-6800 Å, can also be employed, and compared with photometric literature temperatures. Our adjustment scheme increases the temperatures up to several hundred degrees for cool red giants, while leaving the near-main-sequence stars mostly unchanged. Hence, it brings the excitation temperatures in good agreement with photometrically derived values. The modified temperature also influences other stellar parameters, as the Fe I-Fe II ionization balance is simultaneously used to determine the surface gravity, while also forcing no abundance trend on the absorption line strengths to obtain the microturbulent velocity. As a result of increasing the temperature, the often too low gravities and too high microturbulent velocities in red giants become higher and lower, respectively. Our adjustment scheme thus continues to build on the advantage of deriving temperatures from spectroscopy alone, independent of reddening, while at the same time producing stellar chemical abundances that are more straightforwardly comparable to studies based on photometrically derived temperatures. Hence, our method may prove beneficial for comparing different studies in the literature as well as the many high-resolution stellar spectroscopic surveys that are or will be carried out in the next few years. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  16. DERIVING STELLAR EFFECTIVE TEMPERATURES OF METAL-POOR STARS WITH THE EXCITATION POTENTIAL METHOD

    SciTech Connect

    Frebel, Anna; Casey, Andrew R.; Jacobson, Heather R.; Yu Qinsi

    2013-05-20

    It is well established that stellar effective temperatures determined from photometry and spectroscopy yield systematically different results. We describe a new, simple method to correct spectroscopically derived temperatures (''excitation temperatures'') of metal-poor stars based on a literature sample with -3.3 < [Fe/H] < -2.5. Excitation temperatures were determined from Fe I line abundances in high-resolution optical spectra in the wavelength range of {approx}3700-{approx}7000 A, although shorter wavelength ranges, up to 4750-6800 A, can also be employed, and compared with photometric literature temperatures. Our adjustment scheme increases the temperatures up to several hundred degrees for cool red giants, while leaving the near-main-sequence stars mostly unchanged. Hence, it brings the excitation temperatures in good agreement with photometrically derived values. The modified temperature also influences other stellar parameters, as the Fe I-Fe II ionization balance is simultaneously used to determine the surface gravity, while also forcing no abundance trend on the absorption line strengths to obtain the microturbulent velocity. As a result of increasing the temperature, the often too low gravities and too high microturbulent velocities in red giants become higher and lower, respectively. Our adjustment scheme thus continues to build on the advantage of deriving temperatures from spectroscopy alone, independent of reddening, while at the same time producing stellar chemical abundances that are more straightforwardly comparable to studies based on photometrically derived temperatures. Hence, our method may prove beneficial for comparing different studies in the literature as well as the many high-resolution stellar spectroscopic surveys that are or will be carried out in the next few years.

  17. A support vector machine to search for metal-poor galaxies

    NASA Astrophysics Data System (ADS)

    Shi, Fei; Liu, Yu-Yan; Kong, Xu; Chen, Yang; Li, Zhong-Hua; Zhi, Shu-Teng

    2014-10-01

    To develop a fast and reliable method for selecting metal-poor galaxies (MPGs), especially in large surveys and huge data bases, a support vector machine (SVM) supervized learning algorithms is applied to a sample of star-forming galaxies from the Sloan Digital Sky Survey data release 9 provided by the Max Planck Institute and the Johns Hopkins University (http://www.sdss3.org/dr9/spectro/spectroaccess.php). A two-step approach is adopted: (i) the SVM must be trained with a subset of objects that are known to be either MPGs or metal-rich galaxies (MRGs), treating the strong emission line flux measurements as input feature vectors in n-dimensional space, where n is the number of strong emission line flux ratios. (ii) After training on a sample of star-forming galaxies, the remaining galaxies are classified in the automatic test analysis as either MPGs or MRGs using a 10-fold cross-validation technique. For target selection, we have achieved an acquisition accuracy for MPGs of ˜96 and ˜95 per cent for an MPG threshold of 12 + log(O/H) = 8.00 and 12 + log(O/H) = 8.39, respectively. Running the code takes minutes in most cases under the MATLAB 2013a software environment. The code in the Letter is available on the web (http://fshi5388.blog.163.com). The SVM method can easily be extended to any MPGs target selection task and can be regarded as an efficient classification method particularly suitable for modern large surveys.

  18. EXTREMELY METAL-POOR STARS IN THE MILKY WAY: A SECOND GENERATION FORMED AFTER REIONIZATION

    SciTech Connect

    Trenti, Michele; Shull, J. Michael E-mail: michael.shull@colorado.ed

    2010-03-20

    Cosmological simulations of Population III star formation suggest an initial mass function (IMF) biased toward very massive stars (M {approx}> 100 M{sub sun}) formed in minihalos at redshift z {approx}> 20, when the cooling is driven by molecular hydrogen. However, this result conflicts with observations of extremely metal-poor (EMP) stars in the Milky Way (MW) halo, whose r-process elemental abundances appear to be incompatible with those expected from very massive Population III progenitors. We propose a new solution to the problem in which the IMF of second-generation stars formed at z {approx}> 10, before reionization, is deficient in sub-solar mass stars, owing to the high cosmic microwave background temperature floor. The observed EMP stars are formed preferentially at z {approx}< 10 in pockets of gas enriched to metallicity Z {approx}> 10{sup -3.5} Z{sub sun} by winds from Population II stars. Our cosmological simulations of dark matter halos like the MW show that current samples of EMP stars can only constrain the IMF of late-time Population III stars, formed at z {approx}< 13 in halos with virial temperature T{sub vir} {approx} 10{sup 4} K. This suggests that pair instability supernovae were not produced primarily by this population. To begin probing the IMF of Population III stars formed at higher redshift will require a large survey, with at least 500 and probably several thousand EMP stars of metallicities Z {approx} 10{sup -3.5} Z{sub sun}.

  19. AN ELEMENTAL ASSAY OF VERY, EXTREMELY, AND ULTRA-METAL-POOR STARS

    SciTech Connect

    Hansen, T.; Christlieb, N.; Hansen, C. J.; Beers, T. C.; Placco, V. M.; Yong, D.; Bessell, M. S.; Norris, J. E.; Asplund, M.; Frebel, A.; Pérez, A. E. García

    2015-07-10

    We present a high-resolution elemental-abundance analysis for a sample of 23 very metal-poor ([Fe/H] < −2.0) stars, 12 of which are extremely metal-poor ([Fe/H] < −3.0), and 4 of which are ultra-metal-poor ([Fe/H] < −4.0). These stars were targeted to explore differences in the abundance ratios for elements that constrain the possible astrophysical sites of element production, including Li, C, N, O, the α-elements, the iron-peak elements, and a number of neutron-capture elements. This sample substantially increases the number of known carbon-enhanced metal-poor (CEMP) and nitrogen-enhanced metal-poor (NEMP) stars—our program stars include eight that are considered “normal” metal-poor stars, six CEMP-no stars, five CEMP-s stars, two CEMP-r stars, and two CEMP-r/s stars. One of the CEMP-r stars and one of the CEMP-r/s stars are possible NEMP stars. We detect lithium for three of the six CEMP-no stars, all of which are Li depleted with respect to the Spite plateau. The majority of the CEMP stars have [C/N] > 0. The stars with [C/N] < 0 suggest a larger degree of mixing; the few CEMP-no stars that exhibit this signature are only found at [Fe/H] < −3.4, a metallicity below which we also find the CEMP-no stars with large enhancements in Na, Mg, and Al. We confirm the existence of two plateaus in the absolute carbon abundances of CEMP stars, as suggested by Spite et al. We also present evidence for a “floor” in the absolute Ba abundances of CEMP-no stars at A(Ba) ∼ −2.0.

  20. An Elemental Assay of Very, Extremely, and Ultra-metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Hansen, T.; Hansen, C. J.; Christlieb, N.; Beers, T. C.; Yong, D.; Bessell, M. S.; Frebel, A.; García Pérez, A. E.; Placco, V. M.; Norris, J. E.; Asplund, M.

    2015-07-01

    We present a high-resolution elemental-abundance analysis for a sample of 23 very metal-poor ([Fe/H] < ‑2.0) stars, 12 of which are extremely metal-poor ([Fe/H] < ‑3.0), and 4 of which are ultra-metal-poor ([Fe/H] < ‑4.0). These stars were targeted to explore differences in the abundance ratios for elements that constrain the possible astrophysical sites of element production, including Li, C, N, O, the α-elements, the iron-peak elements, and a number of neutron-capture elements. This sample substantially increases the number of known carbon-enhanced metal-poor (CEMP) and nitrogen-enhanced metal-poor (NEMP) stars—our program stars include eight that are considered “normal” metal-poor stars, six CEMP-no stars, five CEMP-s stars, two CEMP-r stars, and two CEMP-r/s stars. One of the CEMP-r stars and one of the CEMP-r/s stars are possible NEMP stars. We detect lithium for three of the six CEMP-no stars, all of which are Li depleted with respect to the Spite plateau. The majority of the CEMP stars have [C/N] > 0. The stars with [C/N] < 0 suggest a larger degree of mixing; the few CEMP-no stars that exhibit this signature are only found at [Fe/H] < ‑3.4, a metallicity below which we also find the CEMP-no stars with large enhancements in Na, Mg, and Al. We confirm the existence of two plateaus in the absolute carbon abundances of CEMP stars, as suggested by Spite et al. We also present evidence for a “floor” in the absolute Ba abundances of CEMP-no stars at A(Ba) ∼ ‑2.0. Based on observations made with the European Southern Observatory telescopes.

  1. Discovery of a strongly r-process enhanced extremely metal-poor star LAMOST J110901.22+075441.8

    NASA Astrophysics Data System (ADS)

    Li, Hai-Ning; Aoki, Wako; Honda, Satoshi; Zhao, Gang; Christlieb, Norbert; Suda, Takuma

    2015-08-01

    We report the discovery of an extremely metal-poor (EMP) giant, LAMOST J110901.22+075441.8, which exhibits a large excess of r-process elements with [Eu/Fe] ˜ +1.16. The star is one of the newly discovered EMP stars identified from the LAMOST low-resolution spectroscopic survey and a high-resolution follow-up observation with the Subaru Telescope. Stellar parameters and elemental abundances have been determined from the Subaru spectrum. Accurate abundances for a total of 23 elements including 11 neutron-capture elements from Sr through Dy have been derived for LAMOST J110901.22+075441.8. The abundance pattern of LAMOST J110901.22+075441.8 in the range of C through Zn is in line with the “normal” population of EMP halo stars, except that it shows a notable underabundance in carbon. The heavy element abundance pattern of LAMOST J110901.22+075441.8 is in agreement with other well studied cool r-II metal-poor giants such as CS 22892-052 and CS 31082-001. The abundances of elements in the range from Ba through Dy match the scaled solar r-process pattern well. LAMOST J110901.22+075441.8 provides the first detailed measurements of neutron-capture elements among r-II stars at such low metallicity with [Fe/H] ≲ -3.4, and exhibits similar behavior as other r-II stars in the abundance ratio of Zr/Eu as well as Sr/Eu and Ba/Eu.

  2. TURNING THE TIDES ON THE ULTRA-FAINT DWARF SPHEROIDAL GALAXIES: COMA BERENICES AND URSA MAJOR II

    SciTech Connect

    Munoz, Ricardo R.; Geha, Maria; Willman, Beth E-mail: marla.geha@yale.ed

    2010-07-15

    We present deep CFHT/MegaCam photometry of the ultra-faint Milky Way satellite galaxies: Coma Berenices (ComBer) and Ursa Major II (UMa II). These data extend to r {approx} 25, corresponding to 3 mag below the main-sequence turn-offs in these galaxies. We robustly calculate a total luminosity of M{sub V} = -3.8 {+-} 0.6 for ComBer and M{sub V} = -3.9 {+-} 0.5 for UMa II, in agreement with previous results and confirming that these galaxies are among the faintest of the known dwarf satellites of the Milky Way. ComBer shows a fairly regular morphology with no signs of active tidal stripping down to a surface brightness limit of 32.4 mag arcsec{sup -2}. Using a maximum likelihood analysis, we calculate the half-light radius of ComBer to be r{sub half} = 74 {+-} 4 pc (5.8 {+-} 0.'3) and its ellipticity {epsilon} = 0.36 {+-} 0.04. In contrast, UMa II shows signs of ongoing disruption. We map its morphology down to {mu}{sub V} = 32.6 mag arcsec{sup -2} and found that UMa II is larger than previously determined, extending at least {approx}600 pc (1.{sup 0}1 on the sky) and it is also quite elongated with an overall ellipticity of {epsilon} = 0.50 {+-} 0.2. However, our estimate for the half-light radius, 123 {+-} 3 pc (14.1 {+-} 0.'3) is similar to previous results. We discuss the implications of these findings in the context of potential indirect dark matter detections and galaxy formation. We conclude that while ComBer appears to be a stable dwarf galaxy, UMa II shows signs of ongoing tidal interaction.

  3. PRIMORDIAL r-PROCESS DISPERSION IN METAL-POOR GLOBULAR CLUSTERS

    SciTech Connect

    Roederer, Ian U.

    2011-05-01

    Heavy elements, those produced by neutron-capture reactions, have traditionally shown no star-to-star dispersion in all but a handful of metal-poor globular clusters (GCs). Recent detections of low [Pb/Eu] ratios or upper limits in several metal-poor GCs indicate that the heavy elements in these GCs were produced exclusively by an r-process. Re-examining GC heavy element abundances from the literature, we find unmistakable correlations between the [La/Fe] and [Eu/Fe] ratios in four metal-poor GCs (M5, M15, M92, and NGC 3201), only two of which were known previously. This indicates that the total r-process abundances vary from star to star (by factors of 2-6) relative to Fe within each GC. We also identify potential dispersion in two other GCs (M3 and M13). Several GCs (M12, M80, and NGC 6752) show no evidence of r-process dispersion. The r-process dispersion is not correlated with the well-known light element dispersion, indicating that it was present in the gas throughout the duration of star formation. The observations available at present suggest that star-to-star r-process dispersion within metal-poor GCs may be a common but not ubiquitous phenomenon that is neither predicted by nor accounted for in current models of GC formation and evolution.

  4. Metal-poor Stars Observed with the Magellan Telescope. III. New Extremely and Ultra Metal-poor Stars from SDSS/SEGUE and Insights on the Formation of Ultra Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Placco, Vinicius M.; Frebel, Anna; Lee, Young Sun; Jacobson, Heather R.; Beers, Timothy C.; Pena, Jose M.; Chan, Conrad; Heger, Alexander

    2015-08-01

    We report the discovery of one extremely metal-poor (EMP; [{Fe}/{{H}}] \\lt -3) and one ultra metal-poor (UMP; [{Fe}/{{H}}] \\lt -4) star selected from the Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding and Exploration survey. These stars were identified as EMP candidates based on their medium-resolution (R ˜ 2000) spectra, and were followed up with high-resolution (R ˜ 35,000) spectroscopy with the Magellan/Clay Telescope. Their derived chemical abundances exhibit good agreement with those of stars with similar metallicities. We also provide new insights on the formation of the UMP stars, based on comparisons with a new set of theoretical models of supernovae (SNe) nucleosynthesis. The models were matched with 20 UMP stars found in the literature, together with one of the program stars (SDSS J1204+1201), with [{Fe}/{{H}}]=-4.34. From fitting their abundances, we find that the SNe progenitors, for stars where carbon and nitrogen are measured, had masses ranging from 20.5 {M}⊙ to 28 {M}⊙ and explosion energies from 0.3 to 0.9× {10}51 {erg}. These results are highly sensitive to the carbon and nitrogen abundance determinations, which is one of the main drivers for a future high-resolution follow-up of UMP candidates. In addition, we are able to reproduce the different CNO abundance patterns found in UMP stars with a single progenitor type by varying its mass and explosion energy. Magellan Telescopes located at Las Campanas Observatory, Chile.

  5. High-resolution spectroscopic studies of ultra metal-poor stars found in the LAMOST survey

    NASA Astrophysics Data System (ADS)

    Li, Haining; Aoki, Wako; Zhao, Gang; Honda, Satoshi; Christlieb, Norbert; Suda, Takuma

    2015-10-01

    We report on the observations of two ultra metal-poor (UMP) stars with [Fe/H] ˜ -4.0, including one new discovery. The two stars are studied in the on-going and quite efficient project to search for extremely metal-poor (EMP) stars with LAMOST and Subaru. Detailed abundances or upper limits of abundances have been derived for 15 elements from Li to Eu based on high-resolution spectra obtained with the High Dispersion Spectrograph (HDS) mounted in the Subaru Telescope. The abundance patterns of both UMP stars are consistent with the "normal population" among the low-metallicity stars. Both of the two program stars show carbon-enhancement without any excess of heavy neutron-capture elements, indicating that they belong to the subclass of (carbon-enhanced metal-poor) CEMP-no stars, as is the case of most UMP stars previously studied. The [Sr/Ba] ratios of both CEMP-no UMP stars are above [Sr/Ba] ˜ -0.4, suggesting the origin of the carbon-excess is not compatible with the mass transfer from an asymptotic giant branch companion where the s-process has operated. Lithium abundance is measured in the newly discovered UMP star LAMOST J125346.09+075343.1, making it the second UMP turnoff star with Li detection. The Li abundance of LAMOST J125346.09+075343.1 is slightly lower than the values obtained for less metal-poor stars with similar temperatures, and provides a unique data point at [Fe/H] ˜ -4.2 to support the "meltdown" of the Li Spite plateau at extremely low metallicity. Comparison with the other two UMP and HMP (hyper metal-poor, with [Fe/H] < -5.0) turnoff stars suggests that the difference in lighter elements such as CNO and Na might cause notable difference in lithium abundances among CEMP-no stars.

  6. BERYLLIUM AND ALPHA-ELEMENT ABUNDANCES IN A LARGE SAMPLE OF METAL-POOR STARS

    SciTech Connect

    Boesgaard, Ann Merchant; Rich, Jeffrey A.; Levesque, Emily M.; Bowler, Brendan P. E-mail: jrich@ifa.hawaii.edu E-mail: bpbowler@ifa.hawaii.edu

    2011-12-20

    The light elements, Li, Be, and B, provide tracers for many aspects of astronomy including stellar structure, Galactic evolution, and cosmology. We have made observations of Be in 117 metal-poor stars ranging in metallicity from [Fe/H] = -0.5 to -3.5 with Keck I/HIRES. Our spectra are high resolution ({approx}42,000) and high signal to noise (the median is 106 per pixel). We have determined the stellar parameters spectroscopically from lines of Fe I, Fe II, Ti I, and Ti II. The abundances of Be and O were derived by spectrum synthesis techniques, while abundances of Fe, Ti, and Mg were found from many spectral line measurements. There is a linear relationship between [Fe/H] and A(Be) with a slope of +0.88 {+-} 0.03 over three orders of magnitude in [Fe/H]. We find that Be is enhanced relative to Fe; [Be/Fe] is +0.40 near [Fe/H] {approx}-3.3 and drops to 0.0 near [Fe/H] {approx}-1.7. For the relationship between A(Be) and [O/H], we find a gradual change in slope from 0.69 {+-} 0.13 for the Be-poor/O-poor stars to 1.13 {+-} 0.10 for the Be-rich/O-rich stars. Inasmuch as the relationship between [Fe/H] and [O/H] seems robustly linear (slope = +0.75 {+-} 0.03), we conclude that the slope change in Be versus O is due to the Be abundance. Much of the Be would have been formed in the vicinity of Type II supernova (SN II) in the early history of the Galaxy and by Galactic cosmic-ray (GCR) spallation in the later eras. Although Be is a by-product of CNO, we have used Ti and Mg abundances as alpha-element surrogates for O in part because O abundances are rather sensitive to both stellar temperature and surface gravity. We find that A(Be) tracks [Ti/H] very well with a slope of 1.00 {+-} 0.04. It also tracks [Mg/H] very well with a slope of 0.88 {+-} 0.03. We have kinematic information on 114 stars in our sample and they divide equally into dissipative and accretive stars. Almost the full range of [Fe/H] and [O/H] is covered in each group. There are distinct differences in

  7. THE OXYGEN ABUNDANCE OF THE ULTRA-METAL-POOR STAR HE 0557-4840

    SciTech Connect

    Norris, John E.; Bessell, M. S.; Asplund, M.; Christlieb, N.; Eriksson, K.; Korn, A. J.

    2012-07-10

    We present a high-resolution ultraviolet (UV) spectrum of the ultra-metal-poor (UMP) carbon-enhanced red giant HE 0557-4840 (T{sub eff}/log g/[Fe/H] = 4900/2.2/-4.8). Combining these data with earlier observations, the radial velocity is 212.0 {+-} 0.4 km s{sup -1}, with no evidence of variability during 2006 February to 2007 December. One-dimensional (1D) LTE model-atmosphere analysis of UV Fe and CH lines confirms the iron and carbon abundances obtained previously ([Fe/H] = -4.8 and [C/Fe]{sub 1D} = +1.7), and places a more stringent limit on nitrogen abundance of [N/Fe]{sub 1D} < +1.0. Analysis of the UV OH lines yields [O/Fe]{sub 1D} = +2.3 {+-} 0.4. When corrections are made for three-dimensional (3D) effects we obtain [C/Fe]{sub 3D} = +1.1, [N/Fe]{sub 3D} < +0.1, and [O/Fe]{sub 3D} +1.4. Comparison of the abundances of HE 0557-4840 with those of supernova models of Nomoto et al. and Joggerst et al. suggests that none is able to explain fully the observed abundance pattern. For HE 0557-4840, the Frebel et al. transition discriminant D{sub trans}(log(10{sup [C/H]} + 0.3 Multiplication-Sign 10{sup [O/H]}) = -3.4 {+-} 0.2, consistent with fine-structure transitions of C II and O I being a major cooling mechanism of star-forming regions at the earliest times. Of the four stars known to have [Fe/H] {approx}< -4.3, three are strongly carbon and oxygen enhanced. If the suggestion by Caffau et al. that SDSS J102915+172927 ([Fe/H] = -4.7) does not belong to the class of C-rich, O-rich, UMP stars is supported by future similar discoveries, one will need to consider multiple channels for the production of stars having [Fe/H] {approx}< -4.3.

  8. Mass-loss predictions for evolved very metal-poor massive stars

    NASA Astrophysics Data System (ADS)

    Muijres, L.; Vink, J. S.; de Koter, A.; Hirschi, R.; Langer, N.; Yoon, S.-C.

    2012-10-01

    Context. The first couple of stellar generations may have been massive, of order 100 M⊙, and to have played a dominant role in galaxy formation and the chemical enrichment of the early Universe. Some fraction of these objects may have died as pair-instability supernovae or gamma-ray bursts. The winds of these stars may have played an important role in determining these outcomes. As the winds are driven by radiation pressure on spectral lines, their strengths are expected to vary with metallicity. Until now, most mass-loss predictions for metal-poor O-type stars have assumed a scaled-down solar-abundance pattern. However, Population III evolutionary tracks show significant surface enrichment through rotational mixing of CNO-processed material, because even metal-poor stars switch to CNO-burning early on. Aims: We address the question of whether the CNO surface enhanced self-enrichment in the first few generations of stars could impact their mass-loss properties. Methods: We employ Monte Carlo simulations to establish the local line-force and solve for the momentum equation of the stellar outflow, testing whether an outflow can actually be established by assessing the net acceleration at the sonic point of the flow. Stellar evolution models of rotating metal-poor stars are used to specify the surface chemical composition, focussing on the phases of early enrichment. Results: We find that the mass-loss rates of CNO enhanced metal-poor stars are higher than those of non-enriched stars, but they are much lower than those rates where the CNO abundance is included in the total abundance Z. Metal-poor stars hotter than ~50 000 K, in the metallicity range investigated here (with an initial metallicity Z ≲ 10-4) are found to have no wind, as the high-ionization species of the CNO elements have too few strong lines to drive an outflow. We present a heuristic formula that provides mass-loss estimates for CNO-dominated winds in relation to scaled-down solar abundances

  9. Brown dwarfs in the Pleiades cluster. II. J, H and K photometry.

    NASA Astrophysics Data System (ADS)

    Zapatero Osorio, M. R.; Martin, E. L.; Rebolo, R.

    1997-07-01

    We have obtained near-infrared observations of some of the faintest objects so far known towards the Pleiades young stellar cluster, with the purpose of investigating the sequence that connects cluster very low-mass stars with substellar objects. We find that infrared data combined with optical magnitudes are a useful tool to discriminate cluster members from foreground and background late-type field stars contaminating optical surveys. The bottom of the Pleiades sequence is clearly defined by the faint HHJ objects as the very low-mass stars approaching the substellar limit, by the transition object PPl 15, which will barely ignite its hydrogen content, and by the two brown dwarfs Calar 3 and Teide 1. Binarity amongst cluster members could account for the large dispersion observed in the faint end of the infrared colour-magnitude diagrams. Two objects in our sample, namely HHJ 6 and PPl 15, are overluminous compared to other members, suggesting a probable binary nature. We have reproduced the photometric measurements of both of them by combining the magnitudes of cluster very low-mass stars and brown dwarfs and using the most recent theoretical evolutionary tracks. The likely masses of the components are slightly above the substellar limit for HHJ 6, while they are 0.080 and 0.045+/-0.010Msun_ for PPl 15. These masses are consistent with the constraints imposed by the published lithium observations of these Pleiads. We find a single object infrared sequence in the Pleiades cluster connecting very low-mass stars and brown dwarfs. We propose that the substellar mass limit (~0.075Msun_) in the Pleiades (~120Myr) takes place at absolute magnitudes M_I_=12.4, M_J_=10.1, M_H_=9.4 and M_K_=9.0 (spectral type M7). Cluster members fainter by 0.2mag in the I-band and 0.1mag in the K-band should be proper brown dwarfs. The star-brown dwarf frontier in the Hyades cluster (600Myr) would be located at M_I_=15.0, M_J_=11.6, M_H_=10.8 and M_K_=10.4 (spectral type around M9). For

  10. THE ORIGIN OF LOW [α/Fe] RATIOS IN EXTREMELY METAL-POOR STARS

    SciTech Connect

    Kobayashi, Chiaki; Ishigaki, Miho N.; Tominaga, Nozomu; Nomoto, Ken'ichi

    2014-04-10

    We show that the low ratios of α elements (Mg, Si, and Ca) to Fe recently found for a small fraction of extremely metal-poor stars can be naturally explained with the nucleosynthesis yields of core-collapse supernovae, i.e., 13-25 M {sub ☉} supernovae, or hypernovae. For the case without carbon enhancement, the ejected iron mass is normal, consistent with observed light curves and spectra of nearby supernovae. On the other hand, the carbon enhancement requires much smaller iron production, and the low [α/Fe] of carbon-enhanced metal-poor stars can also be reproduced with 13-25 M {sub ☉} faint supernovae or faint hypernovae. Iron-peak element abundances, in particular Zn abundances, are important to put further constraints on the enrichment sources from galactic archaeology surveys.

  11. Heavy-elements in metal-poor stars: an UV perspective

    NASA Astrophysics Data System (ADS)

    Siqueira-Mello, C.; Barbuy, B.

    2014-11-01

    The site(s) of the r-process(es) is(are) not completely defined, and several models have been proposed. Observed abundances are the best clues to bring some light to this field, especially the study of the extremely metal-poor (EMP) Galactic halo stars. Many elements can be measured using ground-based facilities already available, but the ultraviolet window also presents a rich opportunity in terms of chemical abundances of heavy elements. In fact, for some elements only the UV transitions are strong enough to be useful. Focusing on the project of the Cassegrain U-Band Brazilian Spectrograph (CUBES), we discuss the science case for heavy elements in metal-poor stars, describing the useful lines of trans-Fe elements present in the UV region. Lines in the far UV are also discussed.

  12. Hot, Massive Stars in the Extremely Metal-Poor Galaxy, I Zw 18

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Malumuth, Eliot M.

    2010-01-01

    The extremely metal-poor galaxy I Zw 18, is the Rosetta Stone for understanding z=7-8 galaxies now being discovered by Hubb|e's Wide Field Camera 3 (HST/WFC3). Using HST/STIS images and recently obtained HST/COS ultraviolet spectra, we derive information about the hot, massive stars in this galaxy including stellar abundances, constraints on the stellar IMF and mass distribution of young clusters containing hot, massive stars.

  13. METAL-POOR LITHIUM-RICH GIANTS IN THE RADIAL VELOCITY EXPERIMENT SURVEY

    SciTech Connect

    Ruchti, Gregory R.; Fulbright, Jon P.; Wyse, Rosemary F. G.; Gilmore, Gerard F.; Grebel, Eva K.; Bienayme, Olivier; Siebert, Arnaud; Bland-Hawthorn, Joss; Freeman, Ken C.; Gibson, Brad K.; Munari, Ulisse; Navarro, Julio F.; Parker, Quentin A.; Watson, Fred G.; Reid, Warren; Seabroke, George M.; Siviero, Alessandro; Steinmetz, Matthias; Williams, Mary; Zwitter, Tomaz

    2011-12-20

    We report the discovery of eight lithium-rich field giants found in a high-resolution spectroscopic sample of over 700 metal-poor stars ([Fe/H] < -0.5) selected from the Radial Velocity Experiment survey. The majority of the Li-rich giants in our sample are very metal-poor ([Fe/H] {approx}< -1.9), and have a Li abundance (in the form of {sup 7}Li), A(Li) = log (n(Li)/n(H)) + 12, between 2.30 and 3.63, well above the typical upper red giant branch (RGB) limit, A(Li) < 0.5, while two stars, with A(Li) {approx} 1.7-1.8, show similar lithium abundances to normal giants at the same gravity. We further included two metal-poor, Li-rich globular cluster giants in our sample, namely the previously discovered M3-IV101 and newly discovered (in this work) M68-A96. This comprises the largest sample of metal-poor Li-rich giants to date. We performed a detailed abundance analysis of all stars, finding that the majority of our sample stars have elemental abundances similar to that of Li-normal halo giants. Although the evolutionary phase of each Li-rich giant cannot be definitively determined, the Li-rich phase is likely connected to extra mixing at the RGB bump or early asymptotic giant branch that triggers cool bottom processing in which the bottom of the outer convective envelope is connected to the H-burning shell in the star. The surface of a star becomes Li-enhanced as {sup 7}Be (which burns to {sup 7}Li) is transported to the stellar surface via the Cameron-Fowler mechanism. We discuss and discriminate among several models for the extra mixing that can cause Li production, given the detailed abundances of the Li-rich giants in our sample.

  14. Near-Infrared Imaging of the Central Regions of Metal-Poor Inner Spheroid Globular Clusters

    NASA Astrophysics Data System (ADS)

    Davidge, T. J.

    2001-06-01

    JHK images obtained with the Canada-France-Hawaii Telescope adaptive optics bonnette are used to investigate the near-infrared photometric properties of red giant branch (RGB) and horizontal-branch (HB) stars in eight metal-poor globular clusters with RGC<=2 kpc. The slope of the RGB on the (K, J-K) CMDs confirms the metal-poor nature of these clusters, four of which (NGC 6287, 6293, 6333, and 6355) are found to have metallicities that are comparable to M92. The luminosity functions of RGB stars in inner spheroid and outer halo clusters have similar slopes, although there is a tendency for core-collapsed clusters to have slightly flatter luminosity functions than noncollapsed clusters. The distribution of red HB stars on the (K, J-K) CMDs of inner spheroid clusters with [Fe/H]~-1.5 is very different from that of clusters with [Fe/H]~-2.2, suggesting that metallicity is the main parameter defining HB content among these objects. The RGB bump is detected in four of the inner spheroid clusters, and this feature is used to compute distances to these objects. Finally, the specific frequency of globular clusters in the inner Galaxy is discussed in the context of the early evolution of the bulge. Based on the ratio of metal-poor to metal-rich clusters in the inner Galaxy it is suggested that the metal-poor clusters formed during an early intense burst of star formation. It is also demonstrated that if the globular cluster formation efficiency for the inner Galaxy is similar to that measured in other spheroidal systems, then the main body of the bulge could have formed from gas that was chemically enriched in situ; hence, material from a separate pre-enriched reservoir, such as the disk or outer halo, may not be required to form the bulge.

  15. The Gaia-ESO Survey: Detailed abundances in the metal-poor globular cluster NGC 4372

    NASA Astrophysics Data System (ADS)

    San Roman, I.; Muñoz, C.; Geisler, D.; Villanova, S.; Kacharov, N.; Koch, A.; Carraro, G.; Tautvaišiene, G.; Vallenari, A.; Alfaro, E. J.; Bensby, T.; Flaccomio, E.; Francois, P.; Korn, A. J.; Pancino, E.; Recio-Blanco, A.; Smiljanic, R.; Bergemann, M.; Costado, M. T.; Damiani, F.; Heiter, U.; Hourihane, A.; Jofré, P.; Lardo, C.; de Laverny, P.; Masseron, T.; Morbidelli, L.; Sbordone, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2015-07-01

    We present the abundance analysis for a sample of 7 red giant branch stars in the metal-poor globular cluster NGC 4372 based on UVES spectra acquired as part of the Gaia-ESO Survey. This is the first extensive study of this cluster from high-resolution spectroscopy. We derive abundances of O, Na, Mg, Al, Si, Ca, Sc, Ti, Fe, Cr, Ni, Y, Ba, and La. We find a metallicity of [Fe/H] = -2.19 ± 0.03 and find no evidence of any metallicity spread. This metallicity makes NGC 4372 one of the most metal-poor Galactic globular clusters. We also find an α-enhancement typical of halo globular clusters at this metallicity. Significant spreads are observed in the abundances of light elements. In particular, we find a Na-O anticorrelation. Abundances of O are relatively high compared with other globular clusters. This could indicate that NGC 4372 was formed in an environment with high O for its metallicity. A Mg-Al spread is also present that spans a range of more than 0.5 dex in Al abundances. Na is correlated with Al and Mgabundances at a lower significance level. This pattern suggests that the Mg-Al burning cycle is active. This behavior can also be seen in giant stars of other massive, metal-poor clusters. A relation between light and heavy s-process elements has been identified.

  16. Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way.

    PubMed

    Howes, L M; Casey, A R; Asplund, M; Keller, S C; Yong, D; Nataf, D M; Poleski, R; Lind, K; Kobayashi, C; Owen, C I; Ness, M; Bessell, M S; Da Costa, G S; Schmidt, B P; Tisserand, P; Udalski, A; Szymański, M K; Soszyński, I; Pietrzyński, G; Ulaczyk, K; Wyrzykowski, Ł; Pietrukowicz, P; Skowron, J; Kozłowski, S; Mróz, P

    2015-11-26

    The first stars are predicted to have formed within 200 million years after the Big Bang, initiating the cosmic dawn. A true first star has not yet been discovered, although stars with tiny amounts of elements heavier than helium ('metals') have been found in the outer regions ('halo') of the Milky Way. The first stars and their immediate successors should, however, preferentially be found today in the central regions ('bulges') of galaxies, because they formed in the largest over-densities that grew gravitationally with time. The Milky Way bulge underwent a rapid chemical enrichment during the first 1-2 billion years, leading to a dearth of early, metal-poor stars. Here we report observations of extremely metal-poor stars in the Milky Way bulge, including one star with an iron abundance about 10,000 times lower than the solar value without noticeable carbon enhancement. We confirm that most of the metal-poor bulge stars are on tight orbits around the Galactic Centre, rather than being halo stars passing through the bulge, as expected for stars formed at redshifts greater than 15. Their chemical compositions are in general similar to typical halo stars of the same metallicity although intriguing differences exist, including lower abundances of carbon.

  17. Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way.

    PubMed

    Howes, L M; Casey, A R; Asplund, M; Keller, S C; Yong, D; Nataf, D M; Poleski, R; Lind, K; Kobayashi, C; Owen, C I; Ness, M; Bessell, M S; Da Costa, G S; Schmidt, B P; Tisserand, P; Udalski, A; Szymański, M K; Soszyński, I; Pietrzyński, G; Ulaczyk, K; Wyrzykowski, Ł; Pietrukowicz, P; Skowron, J; Kozłowski, S; Mróz, P

    2015-11-26

    The first stars are predicted to have formed within 200 million years after the Big Bang, initiating the cosmic dawn. A true first star has not yet been discovered, although stars with tiny amounts of elements heavier than helium ('metals') have been found in the outer regions ('halo') of the Milky Way. The first stars and their immediate successors should, however, preferentially be found today in the central regions ('bulges') of galaxies, because they formed in the largest over-densities that grew gravitationally with time. The Milky Way bulge underwent a rapid chemical enrichment during the first 1-2 billion years, leading to a dearth of early, metal-poor stars. Here we report observations of extremely metal-poor stars in the Milky Way bulge, including one star with an iron abundance about 10,000 times lower than the solar value without noticeable carbon enhancement. We confirm that most of the metal-poor bulge stars are on tight orbits around the Galactic Centre, rather than being halo stars passing through the bulge, as expected for stars formed at redshifts greater than 15. Their chemical compositions are in general similar to typical halo stars of the same metallicity although intriguing differences exist, including lower abundances of carbon. PMID:26560034

  18. VizieR Online Data Catalog: Dwarf galaxies surface brightness profiles. II. (Herrmann+, 2016)

    NASA Astrophysics Data System (ADS)

    Herrmann, K. A.; Hunter, D. A.; Elmegreen, B. G.

    2016-07-01

    Our galaxy sample (see Table1) is derived from the survey of nearby (>30Mpc) late-type galaxies conducted by Hunter & Elmegreen 2006 (cat. J/ApJS/162/49). The full survey includes 94 dwarf Irregulars (dIms), 26 Blue Compact Dwarfs (BCDs), and 20 Magellanic-type spirals (Sms). The 141 dwarf sample presented in the first paper of the present series (Paper I; Herrmann et al. 2013, Cat. J/AJ/146/104) contains one fewer Sm galaxy and two additional dIm systems than the original survey. A multi-wavelength data set has been assembled for these galaxies. The data include Hα images (129 galaxies with detections) to trace star formation over the past 10Myr (Hunter & Elmegreen 2004, Cat. J/AJ/128/2170) and satellite UV images (61 galaxies observed) obtained with the Galaxy Evolution Explorer (GALEX) to trace star formation over the past ~200Myr. The GALEX data include images from two passbands with effective wavelengths of 1516Å (FUV) and 2267Å (NUV) and resolutions of 4'' and 5.6'', respectively. Three of the galaxies in our sample with NUV data do not have FUV data. To trace older stars we have UBV images, which are sensitive to stars formed over the past 1Gyr for on-going star formation, and images in at least one band of JHK for 40 galaxies in the sample, which integrates the star formation over the galaxy's lifetime. Note that nine dwarfs are missing UB data and three more are missing U-band data. In addition we made use of 3.6μm images (39 galaxies) obtained with the Infrared Array Camera (IRAC) in the Spitzer archives also to probe old stars. (3 data files).

  19. CHARACTERIZING THE COOL KOIs. II. THE M DWARF KOI-254 AND ITS HOT JUPITER

    SciTech Connect

    Johnson, John Asher; Muirhead, Philip S.; Crepp, Justin R.; Morton, Timothy D.; Gazak, J. Zachary; Apps, Kevin; Crossfield, Ian J. M.; Tabetha Boyajian; Von Braun, Kaspar; Rojas-Ayala, Barbara; Howard, Andrew W.; Marcy, Geoffrey W.; Covey, Kevin R.; Schlawin, Everett; Lloyd, James P.; Hamren, Katherine

    2012-05-15

    We report the confirmation and characterization of a transiting gas giant planet orbiting the M dwarf KOI-254 every 2.455239 days, which was originally discovered by the Kepler mission. We use radial velocity measurements, adaptive optics imaging, and near-infrared spectroscopy to confirm the planetary nature of the transit events. KOI-254 b is the first hot Jupiter discovered around an M-type dwarf star. We also present a new model-independent method of using broadband photometry to estimate the mass and metallicity of an M dwarf without relying on a direct distance measurement. Included in this methodology is a new photometric metallicity calibration based on J - K colors. We use this technique to measure the physical properties of KOI-254 and its planet. We measure a planet mass of M{sub P} = 0.505 M{sub Jup}, radius R{sub P} = 0.96 R{sub Jup}, and semimajor axis a = 0.030 AU, based on our measured stellar mass M{sub *} = 0.59 M{sub Sun} and radius R{sub *} = 0.55 R{sub Sun }. We also find that the host star is metal-rich, which is consistent with the sample of M-type stars known to harbor giant planets.

  20. An extrasolar extreme-ultraviolet object. II - The nature of HZ 43. [hot white dwarf star

    NASA Technical Reports Server (NTRS)

    Margon, B.; Liebert, J.; Lampton, M.; Spinrad, H.; Bowyer, S.; Gatewood, G.

    1976-01-01

    A variety of data are presented concerning the spectrum, distance, temperature, and evolutionary state of the hot white dwarf HZ 43, the first extrasolar object to be detected in the EUV band. The data include spectrophotometry of the star and its red dwarf companion (HZ 43B), a trigonometric parallax for the star, its tangential velocity, and results of soft X-ray and EUV observations. The main conclusions are that: (1) the spectrum of HZ 43A is that of a hot DAwk star, (2) HZ 43B is a dM3.5e star, (3) the distance of the system is about 65 pc, (4) the tangential velocity is not atypical of white dwarfs, and (5) the stellar energy distribution of HZ 43A is well fitted by a black body with an effective temperature of approximately 110,000 K. Evolutionary implications of the existence of an object as hot as HZ 43A are briefly considered, and it is suggested that the progenitors of hot DA stars must include objects hotter than spectral type sdB, with logical possibilities being nuclei of planetary nebulae and sdO stars.

  1. High resolution radio and optical observations of the central starburst in the low-metallicity dwarf galaxy II Zw 40

    SciTech Connect

    Kepley, Amanda A.; Reines, Amy E.; Johnson, Kelsey E.; Walker, Lisa May E-mail: areines@nrao.edu E-mail: lisamay@virginia.edu

    2014-02-01

    The extent to which star formation varies in galaxies with low masses, low metallicities, and high star formation rate surface densities is not well constrained. To gain insight into star formation under these physical conditions, this paper estimates the ionizing photon fluxes, masses, and ages for young massive clusters in the central region of II Zw 40—the prototypical low-metallicity dwarf starburst galaxy—from radio continuum and optical observations. Discrete, cluster-sized sources only account for half the total radio continuum emission; the remainder is diffuse. The young (≲ 5 Myr) central burst has a star formation rate surface density that significantly exceeds that of the Milky Way. Three of the 13 sources have ionizing photon fluxes (and thus masses) greater than R136 in 30 Doradus. Although isolating the effects of galaxy mass and metallicity is difficult, the H II region luminosity function and the internal extinction in the center of II Zw 40 appear to be primarily driven by a merger-related starburst. The relatively flat H II region luminosity function may be the result of an increase in interstellar medium pressure during the merger and the internal extinction is similar to that generated by the clumpy and porous dust in other starburst galaxies.

  2. Chromospheric MG II H and K emissions free of interstellar contamination - Velocity structure in late-type dwarfs and giants

    NASA Astrophysics Data System (ADS)

    Vladilo, G.; Molaro, P.; Crivellari, L.; Foing, B. H.; Beckman, J. E.; Genova, R.

    1987-10-01

    The authors have used high resolution IUE spectra from their own studies and from the archive to examine the Mg II h and k chromospheric emission cores of a sample of late-type dwarfs and giants. Sharp photospheric absorptions were used to provide a velocity rest-frame with respect to each stellar photosphere with the IUE-limited precision of ±4 km s-1. The knowledge of the kinematics of the local interstellar medium (LISM) could then be used to identify cases where either the cores or the wings, or in best circumstances both features of the chromospheric lines were uncontaminated by LISM absorption. The authors derive, using only LISM-free emission wings, accurate Wilson-Bappu relations for both the h and k line, characterized by a slope higher than in previous determinations.

  3. THE NATURE OF STARBURSTS. II. THE DURATION OF STARBURSTS IN DWARF GALAXIES

    SciTech Connect

    McQuinn, Kristen B. W.; Skillman, Evan D.; Stark, David; Weisz, Daniel; Cannon, John M.; Dalcanton, Julianne; Williams, Benjamin; Dolphin, Andrew; Hidalgo-RodrIguez, Sebastian

    2010-11-20

    The starburst phenomenon can shape the evolution of the host galaxy and the surrounding intergalactic medium. The extent of the evolutionary impact is partly determined by the duration of the starburst, which has a direct correlation with both the amount of stellar feedback and the development of galactic winds, particularly for smaller mass dwarf systems. We measure the duration of starbursts in twenty nearby, ongoing, and 'fossil' starbursts in dwarf galaxies based on the recent star formation histories derived from resolved stellar population data obtained with the Hubble Space Telescope. Contrary to the shorter times of 3-10 Myr often cited, the starburst durations we measure range from 450to650 Myr in fifteen of the dwarf galaxies and up to 1.3 Gyr in four galaxies; these longer durations are comparable to or longer than the dynamical timescales for each system. The same feedback from massive stars that may quench the flickering star formation does not disrupt the overall burst event in our sample of galaxies. While five galaxies present fossil bursts, fifteen galaxies show ongoing bursts and thus the final durations may be longer than we report here for these systems. One galaxy shows a burst that has been ongoing for only 20 Myr; we are likely seeing the beginning of a burst event in this system. Using the duration of the starbursts, we calculate that the bursts deposited 10{sup 53.9}-10{sup 57.2} erg of energy into the interstellar medium through stellar winds and supernovae, and produced 3%-26% of the host galaxy's mass.

  4. THE WIRED SURVEY. II. INFRARED EXCESSES IN THE SDSS DR7 WHITE DWARF CATALOG

    SciTech Connect

    Debes, John H.; Leisawitz, David T.; Hoard, D. W.; Wachter, Stefanie; Cohen, Martin

    2011-12-01

    With the launch of the Wide-field Infrared Survey Explorer (WISE), a new era of detecting planetary debris and brown dwarfs (BDs) around white dwarfs (WDs) has begun with the WISE InfraRed Excesses around Degenerates (WIRED) Survey. The WIRED Survey is sensitive to substellar objects and dusty debris around WDs out to distances exceeding 100 pc, well beyond the completeness level of local WDs. In this paper, we present a cross-correlation of the preliminary Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) WD catalog between the WISE, Two-Micron All Sky Survey (2MASS), UKIRT Infrared Deep Sky Survey (UKIDSS), and SDSS DR7 photometric catalogs. From {approx}18,000 input targets, there are WISE detections comprising 344 'naked' WDs (detection of the WD photosphere only), 1020 candidate WD+M dwarf binaries, 42 candidate WD+BD systems, 52 candidate WD+dust disk systems, and 69 targets with indeterminate infrared excess. We classified all of the detected targets through spectral energy distribution model fitting of the merged optical, near-IR, and WISE photometry. Some of these detections could be the result of contaminating sources within the large ( Almost-Equal-To 6'') WISE point-spread function; we make a preliminary estimate for the rates of contamination for our WD+BD and WD+disk candidates and provide notes for each target of interest. Each candidate presented here should be confirmed with higher angular resolution infrared imaging or infrared spectroscopy. We also present an overview of the observational characteristics of the detected WDs in the WISE photometric bands, including the relative frequencies of candidate WD+M, WD+BD, and WD+disk systems.

  5. The Nature of Starbursts. II. The Duration of Starbursts in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Cannon, John M.; Dalcanton, Julianne; Dolphin, Andrew; Hidalgo-Rodríguez, Sebastian; Holtzman, Jon; Stark, David; Weisz, Daniel; Williams, Benjamin

    2010-11-01

    The starburst phenomenon can shape the evolution of the host galaxy and the surrounding intergalactic medium. The extent of the evolutionary impact is partly determined by the duration of the starburst, which has a direct correlation with both the amount of stellar feedback and the development of galactic winds, particularly for smaller mass dwarf systems. We measure the duration of starbursts in twenty nearby, ongoing, and "fossil" starbursts in dwarf galaxies based on the recent star formation histories derived from resolved stellar population data obtained with the Hubble Space Telescope. Contrary to the shorter times of 3-10 Myr often cited, the starburst durations we measure range from 450to650 Myr in fifteen of the dwarf galaxies and up to 1.3 Gyr in four galaxies; these longer durations are comparable to or longer than the dynamical timescales for each system. The same feedback from massive stars that may quench the flickering star formation does not disrupt the overall burst event in our sample of galaxies. While five galaxies present fossil bursts, fifteen galaxies show ongoing bursts and thus the final durations may be longer than we report here for these systems. One galaxy shows a burst that has been ongoing for only 20 Myr we are likely seeing the beginning of a burst event in this system. Using the duration of the starbursts, we calculate that the bursts deposited 1053.9-1057.2 erg of energy into the interstellar medium through stellar winds and supernovae, and produced 3%-26% of the host galaxy's mass. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  6. FORMATION HISTORY OF METAL-POOR HALO STARS WITH THE HIERARCHICAL MODEL AND THE EFFECT OF INTERSTELLAR MATTER ACCRETION ON THE MOST METAL-POOR STARS

    SciTech Connect

    Komiya, Yutaka; Habe, Asao; Suda, Takuma; Fujimoto, Masayuki Y.

    2010-07-01

    We investigate star formation and chemical evolution in the early universe by considering the merging history of the Galaxy in the {Lambda} cold dark matter scenario according to the extended Press-Schechter theory. We give some possible constraints from comparisons with observation of extremely metal-poor (EMP) stars, made available by the recent large-scale surveys and by the follow-up high-resolution spectroscopy. We demonstrate that (1) the hierarchical structure formation can explain the characteristics of the observed metallicity distribution function including a break around [Fe/H] = -4; (2) a high-mass initial mass function (IMF) of peak mass {approx}10 M{sub sun} with the contribution of binaries, derived from the statistics of carbon-enhanced EMP stars, predicts the frequency of low-mass survivors consistent with the number of EMP stars observed for -4 {approx_lt} [Fe/H] {approx_lt} -2.5; (3) the stars formed from primordial gas before the first supernova (SN) explosions in their host mini-halos are assigned to the hyper metal-poor (HMP) stars with [Fe/H] {approx} -5; and (4) there is no indication of significant changes in the IMF and the binary contribution at metallicities -4 {approx_gt} [Fe/H] {approx_gt} -2.5, or even larger, as far as the field stars of the Galactic halo are concerned. We further study the effects of surface pollution through the accretion of interstellar matter (ISM) along the chemical and dynamical evolution of the Galaxy for low-mass Population III and EMP survivors. Because of the shallower potential of smaller halos, the accretion of ISM in the mini-halos in which these stars were born dominates the surface metal pollution. This can account for the surface iron abundances as observed for the HMP stars if the cooling and concentration of gas in their birth mini-halos are taken into account. We also study the feedback effect from the very massive Population III stars. The metal pre-pollution by pair-instability SNe is shown to be

  7. Viscous effects in rapidly rotating stars with application to white-dwarf models. I, II.

    NASA Technical Reports Server (NTRS)

    Durisen, R. H.

    1973-01-01

    A general approximate numerical technique is proposed for constructing evolutionary sequences of rapidly rotating axisymmetric barytropic equilibrium configurations, with allowance for angular momentum transfer by a nonconstant isotropic viscosity. The principal physical assumption involved is the constancy of the angular momentum per unit mass on cylinders about the axis of rotation. Rapidly rotating nonmagnetic white-dwarf models with a zero-temperature degenerate-electron equation of state are considered as a particular application. The viscosity used in the analysis is that of the degenerate electrons.

  8. VERY METAL-POOR STARS IN THE OUTER GALACTIC BULGE FOUND BY THE APOGEE SURVEY

    SciTech Connect

    Garcia Perez, Ana E.; Majewski, Steven R.; Hearty, Fred R.; Cunha, Katia; Shetrone, Matthew; Johnson, Jennifer A.; Zasowski, Gail; Smith, Verne V.; Beers, Timothy C.; Schiavon, Ricardo P.; Holtzman, Jon; Nidever, David; Allende Prieto, Carlos; Bizyaev, Dmitry; Ebelke, Garrett; Malanushenko, Elena; Malanushenko, Viktor; Eisenstein, Daniel J.; Frinchaboy, Peter M.; Girardi, Leo; and others

    2013-04-10

    Despite its importance for understanding the nature of early stellar generations and for constraining Galactic bulge formation models, at present little is known about the metal-poor stellar content of the central Milky Way. This is a consequence of the great distances involved and intervening dust obscuration, which challenge optical studies. However, the Apache Point Observatory Galactic Evolution Experiment (APOGEE), a wide-area, multifiber, high-resolution spectroscopic survey within Sloan Digital Sky Survey III, is exploring the chemistry of all Galactic stellar populations at infrared wavelengths, with particular emphasis on the disk and the bulge. An automated spectral analysis of data on 2403 giant stars in 12 fields in the bulge obtained during APOGEE commissioning yielded five stars with low metallicity ([Fe/H] {<=} -1.7), including two that are very metal-poor [Fe/H] {approx} -2.1 by bulge standards. Luminosity-based distance estimates place the 5 stars within the outer bulge, where 1246 of the other analyzed stars may reside. A manual reanalysis of the spectra verifies the low metallicities, and finds these stars to be enhanced in the {alpha}-elements O, Mg, and Si without significant {alpha}-pattern differences with other local halo or metal-weak thick-disk stars of similar metallicity, or even with other more metal-rich bulge stars. While neither the kinematics nor chemistry of these stars can yet definitively determine which, if any, are truly bulge members, rather than denizens of other populations co-located with the bulge, the newly identified stars reveal that the chemistry of metal-poor stars in the central Galaxy resembles that of metal-weak thick-disk stars at similar metallicity.

  9. Identifying Bright Carbon-Enhanced Metal-Poor Stars in the RAVE Catalog

    NASA Astrophysics Data System (ADS)

    Placco, Vinicius; Beers, Timothy C.

    2016-01-01

    Bright metal-poor stars are of great importance for high-resolution spectroscopic follow-up, since their brightness allows for detailed studies of the chemical compositions of their atmospheres, obtainable with short integration times on 4m-8m class telescopes. We have carried out a medium-resolution spectroscopic follow-up survey of very metal-poor ([Fe/H] < -2.0) stars selected from the RAVE catalog.Over the course of four semesters we observed over 1,200 stars with the Gemini North, Gemini South, SOAR, KPNO/Mayall, and ESO/NTT telescopes. These spectra are used to confirm the estimated atmospheric parameters from RAVE, as well as to determine [C/Fe], using our spectroscopic analysis pipeline. This information has already enabled the identification of many new carbon-enhanced metal-poor (CEMP) stars, including representatives of the inner- and outer-halo populations of the Milky Way, for which high-resolution spectroscopy is in progress from the ground with the Magellan/Clay Telescope and with the South African Large Telescope (SALT). The most interesting stars from the high-resolution follow-up will be observed from space with HST/STIS or COS. In this talk I will present the results of the medium-resolution follow-up, and preliminary results from the high-resolution effort.We acknowledge partial support from the grant PHY 14-30152; Physics Frontier Center/JINA Center for the Evolution of the Elements (JINA-CEE), awarded by the US National Science Foundation.

  10. Hot, Massive Stars in the Extremely Metal-Poor Galaxy, I Zw 18

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Malumuth, Eliot M.

    2010-01-01

    The carbon-enhanced metal-poor galaxy, I Zw 18, is the Rosetta Stone for understanding galaxies in the early universe by providing constraints on the IMF of massive stars, the role of galaxies in reionization of the universe, mixing of newly synthesized material in the ISM, and gamma-ray bursts at low metallicity, and on the earliest generations of stars producing the observed abundance pattern. We describe these constraints as derived from analyses of HST/COS spectra of I Zw 18 including stellar atmosphere analysis and photo-ionization modeling of both the emission and absorption spectra of the nebular material and interstellar medium.

  11. First high-precision differential abundance analysis of extremely metal-poor stars

    NASA Astrophysics Data System (ADS)

    Reggiani, Henrique; Meléndez, Jorge; Yong, David; Ramírez, Ivan; Asplund, Martin

    2016-02-01

    Context. Studies of extremely metal-poor stars indicate that chemical abundance ratios [X/Fe] have a root mean square scatter as low as 0.05 dex (12%). It remains unclear whether this reflects observational uncertainties or intrinsic astrophysical scatter arising from physical conditions in the interstellar medium at early times. Aims: We measure differential chemical abundance ratios in extremely metal-poor stars to investigate the limits of precision and to understand whether cosmic scatter or observational errors are dominant. Methods: We used high-resolution (R ~ 95 000) and high signal-to-noise (S/N = 700 at 5000 Å) HIRES/Keck spectra to determine high-precision differential abundances between two extremely metal-poor stars through a line-by-line differential approach. We determined stellar parameters for the star G64-37 with respect to the standard star G64-12. We performed EW measurements for the two stars for the lines recognized in both stars and performed spectral synthesis to study the carbon abundances. Results: The differential approach allowed us to obtain errors of σ(Teff) = 27 K, σ(log g) = 0.06 dex, σ( [Fe/H] ) = 0.02 dex and σ(vt) = 0.06 km s-1. We estimated relative chemical abundances with a precision as low as σ([X/Fe]) ≈ 0.01 dex. The small uncertainties demonstrate that there are genuine abundance differences larger than the measurement errors. The observed Li difference cannot be explained by the difference in mass because the less massive star has more Li. Conclusions: It is possible to achieve an abundance precision around ≈ 0.01-0.05 dex for extremely metal-poor stars, which opens new windows on the study of the early chemical evolution of the Galaxy. Table A.1 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A67

  12. Follow-up observations of extremely metal-poor stars identified from SDSS

    NASA Astrophysics Data System (ADS)

    Aguado, D. S.; Allende Prieto, C.; González Hernández, J. I.; Carrera, R.; Rebolo, R.; Shetrone, M.; Lambert, D. L.; Fernández-Alvar, E.

    2016-08-01

    Context. The most metal-poor stars in the Milky Way witnessed the early phases of formation of the Galaxy, and have chemical compositions that are close to the pristine mixture from Big Bang nucleosynthesis, polluted by one or few supernovae. Aims: Only two dozen stars with ([Fe/H] < -4) are known, and they show a wide range of abundance patterns. It is therefore important to enlarge this sample. We present the first results of an effort to identify new extremely metal-poor stars in the Milky Way halo. Methods: Our targets have been selected from low-resolution spectra obtained as part of the Sloan Digital Sky Survey, and followed-up with medium resolution spectroscopy on the 4.2 m William Herschel Telescope and, in a few cases, at high resolution on the 9.2 m Hobby-Eberly Telescope. Stellar parameters and the abundances of magnesium, calcium, iron, and strontium have been inferred from the spectra using classical model atmospheres. We have also derived carbon abundances from the G band. Results: We find consistency between the metallicities estimated from SDSS and those from new data at the level of 0.3 dex. The analysis of medium resolution data obtained with ISIS on the WHT allows us to refine the metallicities and in some cases measure other elemental abundances. Our sample contains 11 new metal-poor stars with [Fe/H] < -3.0, one of them with an estimated metallicity of [Fe/H] ~ -4.0. We also discuss metallicity discrepancies of some stars in common with previous works in the literature. Only one of these stars is found to be C-enhanced at about [C/Fe] ~ + 1, whereas the other metal-poor stars show C abundances at the level of [C/Fe] ~ + 0.45. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.The reduced spectra as FITS files are only available at

  13. R-Process Abundances and Chronometers in Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Cowan, John J.; Pfeiffer, B.; Kratz, K.-L.; Thielemann, F.-K.; Sneden, Christopher; Burles, Scott; Tytler, David; Beers, Timothy C.

    1999-08-01

    Rapid neutron-capture (i.e., r-process) nucleosynthesis calculations, employing internally consistent and physically realistic nuclear physics input (quasi-particle random-phase approximation [QRPA] β-decay properties and the recent extended Thomas-Fermi with Strutinsky integral and quenching (ETFSI-Q) nuclear mass model), have been performed. These theoretical computations assume the classical waiting-point approximation of (n,γ)⇄(γ,n) equilibrium. The calculations reproduce the solar isotopic r-abundances in detail, including the heaviest stable Pb and Bi isotopes. These calculations are then compared with ground-based and Hubble Space Telescope observations of neutron-capture elements in the metal-poor halo stars CS 22892-052, HD 115444, HD 122563, and HD 126238. The elemental abundances in all four metal-poor stars are consistent with the solar r-process elemental distribution for the elements Z>=56. These results strongly suggest, at least for those elements, that the relative elemental r-process abundances have not changed over the history of the Galaxy. This indicates also that it is unlikely that the solar r-process abundances resulted from a random superposition of varying abundance patterns from different r-process nucleosynthesis sites. This further suggests that there is one r-process site in the Galaxy, at least for elements Z>=56. Employing the observed stellar abundances of stable elements, in conjunction with the solar r-process abundances to constrain the calculations, we present predictions for the zero decay-age abundances of the radioactive elements Th and U. We compare these predictions (obtained with the mass model ETFSI-Q, which reproduces solar r-abundances best) with newly derived observational values in three very metal-poor halo stars: HD 115444, CS 22892-052, and HD 122563. Within the observational errors the ratio of [Th/Eu] is the same in both CS 22892-052 and HD 115444. Comparing with the theoretical ratio suggests an average age

  14. Effects of high ambient temperatures on the metabolism of West African dwarf goats. II

    NASA Astrophysics Data System (ADS)

    Montsma, G.; Luiting, P.; Verstegen, M. W. A.; van der Hel, W.; Hofs, P.; Zijlker, J. W.

    1985-03-01

    32 West African dwarf goats were exposed in respiration chambers to temperature treatments of 20, 25, 30, 35, 35, 35, 30, 25, 20°C. Each treatment lasted three days. 16 goats were kept in individual pens (“I”); the others in two group pens of eight animals each (“G”). During each treatment, heat production and activity were recorded continuously over 48 hours. In addition, feed and water intake, rectal temperature, skin temperature and respiratory rate were measured during each treatment. Compared to 20°C, at 35°C rectal temperature increased from 39.0°C to 39.9°C, respiratory rate from 30 to 260 times. min-1 and skin temperature from 37.1°C to 39.5°C. Hay intake decreased by 40%; concentrates (30 g. kg-0.75. d-1) were always completely consumed. Heat production was higher for the “G” animals at 20°C and higher for the “I” animals at 35°C. These differences in heat production between the two groups were reflected in differences in rectal and skin temperature and in respiratory rate but only very slightly in differences in hay intake. Tissue insulation was 0.014 K. m2. W-1 at 30°C and 35°C and 0.022 K. m2. W-1 at 20°C. It is concluded that the reactions of these dwarf goats to high ambient temperatures are not different in principle from those of other domestic ruminants and that they do not exhibit a specific suitability or unsuitability for ambient temperatures as prevailing in West Africa.

  15. Extended study of the Surface Heterogeneity of candidate dwarf-planets (II)

    NASA Astrophysics Data System (ADS)

    Pinilla-Alonso, Noemi; Emery, Joshua; Cruikshank, Dale P.

    2016-08-01

    We propose to continue with our investigation of the volatile activity and migration of volatiles on dwarf-planets (DP) and some candidates to dwarf-planets (CDP). We also extend this study to cover the list of targets for the Kuiper Extended Mission (KEM, second phase of New horizons mission submitted by the New Horizons Team to NASA for extension, and yet to be approved) and extend our continuous monitoring of Pluto's surface. Surface heterogeneity on these bodies can be indicative of the presence of an atmosphere, and active collisional history, or even cometary activity. In cycle 12 we were awarded with ~ 38hr to study three DPs and three CDPs. Five of these objects have been announced in 2016 as targets of the KEM. On cycle 13 we ask for 145.5 hours to study 11 CDP plus five targets of the KEM (one object belongs to both lists but will be observed only once) plus Pluto. By using the proven capability of Spitzer to detect and map the presence of volatile ices, complex organics and silicates on the surface of these distant bodies, we will 1) test the hypothesis that KBOs on the scale of >450 km in diameter could retain a higher content of volatiles than the smaller and more abundant KBOs; 2) characterize the distribution of silicates/organics/ices on the surface of these bodies. These points are key to understanding chemical and dynamical history of the outer Solar System, which acts as a model for the new systems discovered around other stars. Our study will be be of special interest in the eve of James Webb Telescope operation, in 2019 and will pave the road for a detailed characterization of the targets of the Kuiper Extended Mission (if approved).

  16. Diversity of abundance patterns of neutron-capture elements in very metal-poor stars

    SciTech Connect

    Aoki, Misa; Ishimaru, Yuhri; Aoki, Wako; Wanajo, Shinya

    2014-05-02

    Observations of Very Metal-Poor stars indicate that there are at least two sites to r-process; “weak r-process” and “main r-process”. A question is whether these two are well separated or there exists a variation in the r-process. We present the results of abundance analysis of neutron-capture elements in the two Very Metal-Poor stars HD107752 and HD110184 in the Milky Way halo observed with the Subaru Telescope HDS. The abundance patterns show overabundace at light n-capture elements (e.g. Sr, Y), inferring the element yielding of weak r-process, while heavy neutron-capture elements (e.g. Ba, Eu) are deficient; however, the overabundance of light ones is not as significant as that previously found in stars representing the weak r-process (e.g. HD122563; Honda et al. 2006). Our study show diversity in the abundance patterns from light to heavy neutron-capture elements in VMP stars, suggesting a variation in r-process, which may depend on electron fraction of environment.

  17. HIERARCHICAL FORMATION OF THE GALACTIC HALO AND THE ORIGIN OF HYPER METAL-POOR STARS

    SciTech Connect

    Komiya, Yutaka; Habe, Asao; Suda, Takuma; Fujimoto, Masayuki Y.

    2009-05-01

    Extremely metal-poor (EMP) stars in the Galactic halo are unique probes into the early universe and the first stars. We construct a new program to calculate the formation history of EMP stars in the early universe with the chemical evolution, based on the merging history of the Galaxy. We show that the hierarchical structure formation model reproduces the observed metallicity distribution function and also the total number of observed EMP stars, when we take into account the high-mass initial mass function and the contribution of binaries, as proposed by Komiya et al. The low-mass survivors divide into two groups of those born before and after the mini-halos are polluted by their own first supernovae. The former has observational counterparts in the hyper metal-poor (HMP) stars below [Fe/H] < -4, while the latter represents the majority of EMP stars with {approx}<[Fe/H]> - 4. In this Letter, we focus on the origin of the extremely small iron abundances of HMP stars. We compute the change in the surface abundances of individual stars through the accretion of the metal-enriched interstellar gas along with the dynamical and chemical evolution of the Galaxy, to demonstrate that after-birth pollution of Population III stars is sufficiently effective to explain the observed abundances of HMP stars. Metal pre-enrichment by possible pair instability supernovae is also discussed, to derive constraints on their roles and on the formation of the first low-mass stars.

  18. The helium abundance in the metal-poor globular clusters M30 and NGC 6397

    SciTech Connect

    Mucciarelli, A.; Lovisi, L.; Lanzoni, B.; Ferraro, F. R.

    2014-05-01

    We present the helium abundance of the two metal-poor clusters M30 and NGC 6397. Helium estimates have been obtained by using the high-resolution spectrograph FLAMES at the European Southern Observatory Very Large Telescope and by measuring the He I line at 4471 Å in 24 and 35 horizontal branch (HB) stars in M30 and NGC 6397, respectively. This sample represents the largest data set of He abundances collected so far in metal-poor clusters. The He mass fraction turns out to be Y = 0.252 ± 0.003 (σ = 0.021) for M30 and Y = 0.241 ± 0.004 (σ = 0.023) for NGC 6397. These values are fully compatible with the cosmological abundance, thus suggesting that the HB stars are not strongly enriched in He. The small spread of the Y distributions are compatible with those expected from the observed main sequence splitting. Finally, we find a hint of a weak anticorrelation between Y and [O/Fe] in NGC 6397 in agreement with the prediction that O-poor stars are formed by (He-enriched) gas polluted by the products of hot proton-capture reactions.

  19. Armchair cartography - A map of the Galactic halo based on observations of local, metal-poor stars

    NASA Astrophysics Data System (ADS)

    Sommer-Larsen, Jesper; Zhen, Chen

    1990-01-01

    The velocity distribution of metal-poor halo stars in the solar neighborhood is studied to extract data on the global spatial and kinematic properties of the Galactic stellar halo. A global model of the solar neighborhood stars is constructed from observed positions and three-dimensional velocity of local, metal-poor halo stars in terms of a discrete sum of orbits. The characteristics of the reconstructed halo are examined and used to study the evolution of the halo subsystems.

  20. Photometric brown-dwarf classification. II. A homogeneous sample of 1361 L and T dwarfs brighter than J = 17.5 with accurate spectral types

    NASA Astrophysics Data System (ADS)

    Skrzypek, N.; Warren, S. J.; Faherty, J. K.

    2016-05-01

    We present a homogeneous sample of 1361 L and T dwarfs brighter than J = 17.5 (of which 998 are new), from an effective area of 3070 deg2, classified by the photo-type method to an accuracy of one spectral sub-type using izYJHKW1W2 photometry from SDSS+UKIDSS+WISE. Other than a small bias in the early L types, the sample is shown to be effectively complete to the magnitude limit, for all spectral types L0 to T8. The nature of the bias is an incompleteness estimated at 3% because peculiar blue L dwarfs of type L4 and earlier are classified late M. There is a corresponding overcompleteness because peculiar red (likely young) late M dwarfs are classified early L. Contamination of the sample is confirmed to be small: so far spectroscopy has been obtained for 19 sources in the catalogue and all are confirmed to be ultracool dwarfs. We provide coordinates and izYJHKW1W2 photometry of all sources. We identify an apparent discontinuity, Δm ~ 0.4 mag, in the Y - K colour between spectral types L7 and L8. We present near-infrared spectra of nine sources identified by photo-type as peculiar, including a new low-gravity source ULAS J005505.68+013436.0, with spectroscopic classification L2γ. We provide revised izYJHKW1W2 template colours for late M dwarfs, types M7 to M9. The catalogue is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A49

  1. Chromospheric Variability in Sloan Digital Sky Survey M Dwarfs. II. Short-timescale Hα Variability

    NASA Astrophysics Data System (ADS)

    Kruse, E. A.; Berger, E.; Knapp, G. R.; Laskar, T.; Gunn, J. E.; Loomis, C. P.; Lupton, R. H.; Schlegel, D. J.

    2010-10-01

    We present the first comprehensive study of short-timescale chromospheric Hα variability in M dwarfs using the individual 15 minute spectroscopic exposures for 52, 392 objects from the Sloan Digital Sky Survey. Our sample contains about 103-104 objects per spectral type bin in the range M0-M9, with a typical number of three exposures per object (ranging up to a maximum of 30 exposures). Using this extensive data set, we find that about 16% of the sources exhibit Hα emission in at least one exposure, and of those about 45% exhibit Hα emission in all of the available exposures. As in previous studies of Hα activity (L Hα/L bol), we find a rapid increase in the fraction of active objects from M0-M6. However, we find a subsequent decline in later spectral types that we attribute to our use of the individual spectra. Similarly, we find saturated activity at a level of L Hα/L bol ≈ 10-3.6 for spectral types M0-M5 followed by a decline to about 10-4.3 in the range M7-M9. Within the sample of objects with Hα emission, only 26% are consistent with non-variable emission, independent of spectral type. The Hα variability, quantified in terms of the ratio of maximum to minimum Hα equivalent width (R EW), exhibits a rapid rise from M0 to M5, followed by a plateau and a possible decline in M9 objects. In particular, variability with R EW >~ 10 is only observed in objects later than M5, and survival analysis indicates a probability of lsim0.1% that the R EW values for M0-M4 and M5-M9 are drawn from the same distribution. We further find that for an exponential distribution, the R EW values follow N(R EW) vprop exp[ - (R EW - 1)/2.3] for M0-M4 and vpropexp[ - (R EW - 1)/2.9] for M5-M9. Finally, comparing objects with persistent and intermittent Hα emission, we find that the latter exhibit greater variability. Based on these results, we conclude that Hα variability in M dwarfs on timescales of 15 minutes to 1 hr increases with later spectral type, and that the

  2. THE FATE OF DWARF GALAXIES IN CLUSTERS AND THE ORIGIN OF INTRACLUSTER STARS. II. COSMOLOGICAL SIMULATIONS

    SciTech Connect

    Martel, Hugo; Barai, Paramita; Brito, William

    2012-09-20

    We combine an N-body simulation algorithm with a subgrid treatment of galaxy formation, mergers, and tidal destruction, and an observed conditional luminosity function {Phi}(L|M), to study the origin and evolution of galactic and extragalactic light inside a cosmological volume of size (100 Mpc){sup 3}, in a concordance {Lambda}CDM model. This algorithm simulates the growth of large-scale structures and the formation of clusters, the evolution of the galaxy population in clusters, the destruction of galaxies by mergers and tides, and the evolution of the intracluster light (ICL). We find that destruction of galaxies by mergers dominates over destruction by tides by about an order of magnitude at all redshifts. However, tidal destruction is sufficient to produce ICL fractions f{sub ICL} that are sufficiently high to match observations. Our simulation produces 18 massive clusters (M{sub cl} > 10{sup 14} M{sub Sun }) with values of f{sub ICL} ranging from 1% to 58% at z = 0. There is a weak trend of f{sub ICL} to increase with cluster mass. The bulk of the ICL ({approx}60%) is provided by intermediate galaxies of total masses 10{sup 11}-10{sup 12} M{sub Sun} and stellar masses 6 Multiplication-Sign 10{sup 8} M{sub Sun} to 3 Multiplication-Sign 10{sup 10} M{sub Sun} that were tidally destroyed by even more massive galaxies. The contribution of low-mass galaxies to the ICL is small and the contribution of dwarf galaxies is negligible, even though, by numbers, most galaxies that are tidally destroyed are dwarfs. Tracking clusters back in time, we find that their values of f{sub ICL} tend to increase over time, but can experience sudden changes that are sometimes non-monotonic. These changes occur during major mergers involving clusters of comparable masses but very different intracluster luminosities. Most of the tidal destruction events take place in the central regions of clusters. As a result, the ICL is more centrally concentrated than the galactic light. Our results

  3. Mayall II=G1 in M31: Giant Globular Cluster or Core of a Dwarf Elliptical Galaxy?

    NASA Astrophysics Data System (ADS)

    Meylan, G.; Sarajedini, A.; Jablonka, P.; Djorgovski, S. G.; Bridges, T.; Rich, R. M.

    2001-08-01

    Mayall II=G1 is one of the brightest globular clusters belonging to M31, the Andromeda galaxy. Our observations with the Wide Field and Planetary Camera (WFPC2) on board the Hubble Space Telescope (HST) provide photometric data for the I versus V-I and V versus V-I color-magnitude diagrams. They reach stars with magnitudes fainter than V=27 mag, with a well populated red horizontal branch at about V=25.3 mag. From model fitting, we determine a rather high mean metallicity of [Fe/H]=-0.95+/-0.09, somewhat similar to 47 Tucanae. In order to determine our true measurement errors, we have carried out artificial star experiments. We find a larger spread in V-I than can be explained by the measurement errors, and we attribute this to an intrinsic metallicity dispersion amongst the stars of G1; this may be the consequence of self-enrichment during the early stellar/dynamical evolutionary phases of this cluster. So far, only ω Centauri, the giant Galactic globular cluster, has been known to exhibit such an intrinsic metallicity dispersion, a phenomenon certainly related to the deep potential wells of these two star clusters. We determine, from the same HST/WFPC2 data, the structural parameters of G1. Its surface brightness profile provides its core radius rc=0.14"=0.52 pc, its tidal radius rt~=54''=200 pc, and its concentration c=log(rt/rc)~=2.5. Such a high concentration indicates the probable collapse of the core of G1. KECK/HIRES observations provide the central velocity dispersion σobs=25.1 km s-1, with σp(0)=27.8 km s-1 once aperture corrected. Three estimates of the total mass of this globular cluster can be obtained. The King-model mass is MK=15×106 Msolar with M/LV~=7.5, and the virial mass is MVir=7.3×106 Msolar with M/LV~=3.6. By using a King-Michie model fitted simultaneously to the surface brightness profile and the central velocity dispersion value, mass estimates range from MKM=14×106 Msolar to 17×106 Msolar. Although uncertain, all of these mass

  4. NUCLEOSYNTHESIS AND THE INHOMOGENEOUS CHEMICAL EVOLUTION OF THE CARINA DWARF GALAXY

    SciTech Connect

    Venn, Kim A.; Divell, Mike; Shetrone, Matthew D.; Irwin, Mike J.; Hill, Vanessa; Jablonka, Pascale; Tolstoy, Eline; Lemasle, Bertrand; Starkenburg, Else; Helmi, Amina; Letarte, Bruno; Baldner, Charles; Battaglia, Giuseppina; Primas, Francesca; Kaufer, Andreas

    2012-06-01

    The detailed abundances of 23 chemical elements in nine bright red giant branch stars in the Carina dwarf spheroidal galaxy are presented based on high-resolution spectra gathered at the Very Large Telescope (VLT) and Magellan telescopes. A spherical model atmospheres analysis is applied using standard methods (local thermodynamic equilibrium and plane-parallel radiative transfer) to spectra ranging from 380 to 680 nm. Stellar parameters are found to be consistent between photometric and spectroscopic analyses, both at moderate and high resolution. The stars in this analysis range in metallicity from -2.9 < [Fe/H] <-1.3, and adopting the ages determined by Lemasle et al., we are able to examine the chemical evolution of Carina's old and intermediate-aged populations. One of the main results from this work is the evidence for inhomogeneous mixing in Carina and therefore for a poor statistical sampling of the supernova contributions when forming stars; a large dispersion in [Mg/Fe] indicates poor mixing in the old population, an offset in the [{alpha}/Fe] ratios between the old and intermediate-aged populations (when examined with previously published results) suggests that the second star formation event occurred in {alpha}-enriched gas, and one star, Car-612, seems to have formed in a pocket enhanced in SN Ia/II products. This latter star provides the first direct link between the formation of stars with enhanced SN Ia/II ratios in dwarf galaxies to those found in the outer Galactic halo (Ivans et al.). Another important result is the potential evidence for SN II driven winds. We show that the very metal-poor stars in Carina have not been enhanced in asymptotic giant branch or SN Ia products, and therefore their very low ratios of [Sr/Ba] suggests the loss of contributions from the early SNe II. Low ratios of [Na/Fe], [Mn/Fe], and [Cr/Fe] in two of these stars support this scenario, with additional evidence from the low [Zn/Fe] upper limit for one star. It is

  5. The star formation histories of local group dwarf galaxies. II. Searching for signatures of reionization

    SciTech Connect

    Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; Holtzman, Jon; Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F.

    2014-07-10

    We search for signatures of reionization in the star formation histories (SFHs) of 38 Local Group dwarf galaxies (10{sup 4} < M{sub *} < 10{sup 9} M{sub ☉}). The SFHs are derived from color-magnitude diagrams using archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. Only five quenched galaxies (And V, And VI, And XIII, Leo IV, and Hercules) are consistent with forming the bulk of their stars before reionization, when full uncertainties are considered. Observations of 13 of the predicted 'true fossils' identified by Bovill and Ricotti show that only two (Hercules and Leo IV) indicate star formation quenched by reionization. However, both are within the virial radius of the Milky Way and evidence of tidal disturbance complicates this interpretation. We argue that the late-time gas capture scenario posited by Ricotti for the low mass, gas-rich, and star-forming fossil candidate Leo T is observationally indistinguishable from simple gas retention. Given the ambiguity between environmental effects and reionization, the best reionization fossil candidates are quenched low mass field galaxies (e.g., KKR 25).

  6. SUBSTELLAR OBJECTS IN NEARBY YOUNG CLUSTERS (SONYC). II. THE BROWN DWARF POPULATION OF {rho} OPHIUCHI

    SciTech Connect

    Geers, Vincent; Jayawardhana, Ray; Lee, Eve; Lafreniere, David; Scholz, Alexander; Tamura, Motohide

    2011-01-01

    SONYC-Substellar Objects in Nearby Young Clusters-is a survey program to investigate the frequency and properties of brown dwarfs (BDs) down to masses below the deuterium-burning limit in nearby star-forming regions. In this second paper, we present results on the {approx}1 Myr old cluster {rho} Ophiuchi, combining our own deep optical- and near-infrared imaging using Subaru with photometry from the Two Micron All Sky Survey and the Spitzer Space Telescope. Of the candidates selected from iJK{sub s} photometry, we have confirmed three-including a new BD with a mass close to the deuterium limit-as likely cluster members through low-resolution infrared spectroscopy. We also identify 27 substellar candidates with mid-infrared excess consistent with disk emission, of which 16 are new and 11 are previously spectroscopically confirmed BDs. The high and variable extinction makes it difficult to obtain the complete substellar population in this region. However, current data suggest that its ratio of low-mass stars to BDs is similar to those reported for several other clusters, though higher than what was found for NGC 1333 in Scholz et al.

  7. From binaries to multiples. II. Hierarchical multiplicity of F and G dwarfs

    SciTech Connect

    Tokovinin, Andrei

    2014-04-01

    Statistics of hierarchical multiplicity among solar-type dwarfs are studied using the distance-limited sample of 4847 targets presented in the accompanying Paper I. Known facts about binaries (multiplicity fraction 0.46, lognormal period distribution with median period 100 yr and logarithmic dispersion 2.4, and nearly uniform mass-ratio distribution independent of the period) are confirmed with a high statistical significance. The fraction of hierarchies with three or more components is 0.13 ± 0.01, and the fractions of targets with n = 1, 2, 3, ... components are 54:33:8:4:1. Subsystems in the secondary components are almost as frequent as in the primary components, but in half of such cases both inner pairs are present. The high frequency of those 2+2 hierarchies (4%) suggests that both inner pairs were formed by a common process. The statistics of hierarchies can be reproduced by simulations, assuming that the field is a mixture coming from binary-rich and binary-poor environments. Periods of the outer and inner binaries are selected recursively from the same lognormal distribution, subject to the stability constraint and accounting for the correlation between inner subsystems. The simulator can be used to evaluate the frequency of multiple systems with specified parameters. However, it does not reproduce the observed excess of inner periods shorter than 10 days, caused by tidal evolution.

  8. The extended stellar substructures of four metal-poor globular clusters in the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Chun, Sang-Hyun; Sohn, Young-Jong

    2016-08-01

    We investigated the stellar density substructures around four metal-poor globular clusters (NGC 6266, NGC 6626, NGC 6642, and NGC 6723) in the Galactic bulge. Wide-field near-infrared (JHK s ) imaging data were obtained from WFCAM of UKIRT telescope. Field stars contamination around the globular clusters was reduced by using a statistical weighted filtering algorithm. Tidal stripping stellar substructures in the form of tidal tail (NGC 6266 and NGC 6626) or small density lobes/chunk (NGC 6642 and NGC 6723) were found around the four globular clusters in the two-dimensional density contour maps. We also find the overdensity features, which deviate from the theoretical models, in the outer region of radial density profiles. The observed results imply that the four globular clusters have experienced a strong tidal force or the bulge/disk shock effect of the Galaxy.

  9. The s-PROCESS Nucleosynthesis in Massive Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Iwamoto, Nobuyuki

    2005-12-01

    We present the s-process nucleosynthesis in massive stars with a wide range of metallicity, using the recent sets of reaction rates and stellar input physics. The decreasing metallicity makes poisoning effects of primary 16O larger at the late phase of core He burning, at which the s-process occurs actively in solar metallicity stars, and prevents the synthesis of heavy elements from being efficient. However, we find that the s-process proceeds very efficiently via neutron source reaction of 13C(α,n)16O at the end of core H burning phase when the metallicity decreases below Z ~ 10-8. These massive, extremely low metallicity stars may have an important contribution of light s-elements to observed extremely metal-poor stars.

  10. High-Resolution Spectroscopy of the Metal-Poor Star HD 187216

    NASA Astrophysics Data System (ADS)

    Barzdis, A.; Začs, L.; Galazutdinov, G.

    Abundance analysis of the metal-poor, carbon-rich giant HD 187216 using high-resolution (R ≈ 45 000) spectrum was performed. An LTE abundance analysis was done for carefully selected clean atomic lines, using the Uppsala atmospheric model with Teff = 4000 K, log g = 0.75, ξt = 2.8 km s-1 and [Z] = --2.0. The mean metallicity [Fe/H] = --1.7 derived by using singly ionized iron lines is much higher than previously believed. It seems likely that Fe I lines, like many other neutral atomic lines, suffer from non-LTE effects that are significant at low metallicity and gravity. The abundances of the neutron capture elements are found to be enhanced by about 1.3 dex relative to the iron group elements. Possible causes of chemical peculiarities of HD 187216 are discussed.

  11. BVRI CCD photometry of the metal-poor globular cluster NGC 4372

    SciTech Connect

    Alcaino, G.; Liller, W.; Alvarado, F.; Wenderoth, E. )

    1991-07-01

    BVRI CCD photometry is presented in two overlapping fields in the metal-poor globular cluster NGC 4372. The observations extend approximately 2 mag below the main-sequence turnoff to V about 21. By comparing the color-magnitude diagram (CMD) with those of clusters with similar metallicities, it is found that E(B-V) = 0.50 {plus minus} 0.03, and (m-M)v = 14.75 {plus minus} 0.06. Comparison with theoretical isochrones leads to a value E(B-V) = 0.53 {plus minus} 0.03. Comparison of the CMD with that of bright stars published by other authors yields a value for Delta V(TO-HB) = 3.3 {plus minus} 0.3. The weighted mean value of the age of the cluster, derived from the four colors, is 15 {plus minus} 4 Gyr (estimated external uncertainty). 17 refs.

  12. A giant planet around a metal-poor star of extragalactic origin.

    PubMed

    Setiawan, Johny; Klement, Rainer J; Henning, Thomas; Rix, Hans-Walter; Rochau, Boyke; Rodmann, Jens; Schulze-Hartung, Tim

    2010-12-17

    Stars in their late stage of evolution, such as horizontal branch stars, are still largely unexplored for planets. We detected a planetary companion around HIP 13044, a very metal-poor star on the red horizontal branch, on the basis of radial velocity observations with a high-resolution spectrograph at the 2.2-meter Max-Planck Gesellschaft-European Southern Observatory telescope. The star's periodic radial velocity variation of P = 16.2 days caused by the planet can be distinguished from the periods of the stellar activity indicators. The minimum mass of the planet is 1.25 times the mass of Jupiter and its orbital semimajor axis is 0.116 astronomical units. Because HIP 13044 belongs to a group of stars that have been accreted from a disrupted satellite galaxy of the Milky Way, the planet most likely has an extragalactic origin. PMID:21097905

  13. TOPoS: chemical study of extremely metal-poor stars.

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Sbordone, L.; Bonifacio, P.; Cayrel, R.; Christlieb, N.; Clark, P.; François, P.; Glover, S.; Klessen, R.; Koch, A.; Ludwig, H.-G.; Monaco, L.; Plez, B.; Spite, F.; Spite, M.; Steffen, M.; Zaggia, S.

    The extremely metal-poor (EMP) stars hold in their atmospheres the fossil record of the chemical composition of the early phases of the Galactic evolution. The chemical analysis of such objects provides important constraints on these early phases. EMP stars are very rare objects; to dig them out, large amounts of data have to be processed. With an automatic procedure, we analysed objects with colours of Turn-Off stars from the Sloan Digital Sky Survey to select a sample of good candidate EMP stars. In the latest years, we observed a sample of these candidates with X-Shooter and UVES, and we have an ongoing ESO large programme to use these spectrographs to observe EMP stars. I will report here the results on metallicity and Strontium abundance. Based on observations obtained at ESO Paranal Observatory, programme 189.D-0165(A)

  14. Extremely metal-poor stars and chemical signature of the first stars

    NASA Astrophysics Data System (ADS)

    Komiya, Yutaka

    2014-05-01

    Extremely metal-poor (EMP) stars in the Local Universe are expected as useful probes to the first stars. A portion of EMP stars should be second generation stars which are formed with nucleosynthetic yields of the first supernovae. In addition, if low-mass first stars were formed, they survive to date in the Local Universe. We constructed a new chemical evolution model taking into account the hierarchical galaxy formation process, and investigate the formation history of the first stars and the EMP stars. In this paper, we derive number and distribution of low-mass Population III (Pop. III) stars in the Local Universe and discuss the possibility to observe Pop. III survivors. We also show the expected chemical properties of the second generation stars and possible nucleosynthetic signatures of the first supernovae.

  15. Infrared measurements of metal-poor subdwarfs and a comparison with model atmospheres

    SciTech Connect

    Elias, J.H.; Bell, R.; Matthews, K.; Neugebauer, G. Observatorio Interamericano de Cerro Tololo, La Serena Maryland Univ., College Park )

    1989-12-01

    Infrared observations of four metal-poor subdwarfs have been compared with the predictions of model stellar atmospheres. The parameters of the models were established by fitting observed and calculated spectral energy distributions at visible wavelengths. The models were used to calculate J, H, K, and L-prime apparent magnitudes for the subdwarfs. When compared with observation, it was fount that, while the subdwarf models were internally consistent at the 1-percent level of better, there are systematic deviations relative to Vega in excess of 0.1 mag. These effects are far greater than would be expected from the excellent fits of the models, for both Vega and the subdwarfs, at shorter wavelengths. Various explanations are suggested for this effect. 24 refs.

  16. A giant planet around a metal-poor star of extragalactic origin.

    PubMed

    Setiawan, Johny; Klement, Rainer J; Henning, Thomas; Rix, Hans-Walter; Rochau, Boyke; Rodmann, Jens; Schulze-Hartung, Tim

    2010-12-17

    Stars in their late stage of evolution, such as horizontal branch stars, are still largely unexplored for planets. We detected a planetary companion around HIP 13044, a very metal-poor star on the red horizontal branch, on the basis of radial velocity observations with a high-resolution spectrograph at the 2.2-meter Max-Planck Gesellschaft-European Southern Observatory telescope. The star's periodic radial velocity variation of P = 16.2 days caused by the planet can be distinguished from the periods of the stellar activity indicators. The minimum mass of the planet is 1.25 times the mass of Jupiter and its orbital semimajor axis is 0.116 astronomical units. Because HIP 13044 belongs to a group of stars that have been accreted from a disrupted satellite galaxy of the Milky Way, the planet most likely has an extragalactic origin.

  17. The chemical imprint of silicate dust on the most metal-poor stars

    SciTech Connect

    Ji, Alexander P.; Frebel, Anna; Bromm, Volker E-mail: afrebel@mit.edu

    2014-02-20

    We investigate the impact of dust-induced gas fragmentation on the formation of the first low-mass, metal-poor stars (<1 M {sub ☉}) in the early universe. Previous work has shown the existence of a critical dust-to-gas ratio, below which dust thermal cooling cannot cause gas fragmentation. Assuming that the first dust is silicon-based, we compute critical dust-to-gas ratios and associated critical silicon abundances ([Si/H]{sub crit}). At the density and temperature associated with protostellar disks, we find that a standard Milky Way grain size distribution gives [Si/H]{sub crit} = –4.5 ± 0.1, while smaller grain sizes created in a supernova reverse shock give [Si/H]{sub crit} = –5.3 ± 0.1. Other environments are not dense enough to be influenced by dust cooling. We test the silicate dust cooling theory by comparing to silicon abundances observed in the most iron-poor stars ([Fe/H] < -4.0). Several stars have silicon abundances low enough to rule out dust-induced gas fragmentation with a standard grain size distribution. Moreover, two of these stars have such low silicon abundances that even dust with a shocked grain size distribution cannot explain their formation. Adding small amounts of carbon dust does not significantly change these conclusions. Additionally, we find that these stars exhibit either high carbon with low silicon abundances or the reverse. A silicate dust scenario thus suggests that the earliest low-mass star formation in the most metal-poor regime may have proceeded through two distinct cooling pathways: fine-structure line cooling and dust cooling. This naturally explains both the carbon-rich and carbon-normal stars at extremely low [Fe/H].

  18. TESTING THE ASTEROSEISMIC MASS SCALE USING METAL-POOR STARS CHARACTERIZED WITH APOGEE AND KEPLER

    SciTech Connect

    Epstein, Courtney R.; Johnson, Jennifer A.; Tayar, Jamie; Pinsonneault, Marc; Elsworth, Yvonne P.; Chaplin, William J.; Shetrone, Matthew; Mosser, Benoît; Hekker, Saskia; Harding, Paul; Silva Aguirre, Víctor; Basu, Sarbani; Beers, Timothy C.; Bizyaev, Dmitry; Bedding, Timothy R.; Frinchaboy, Peter M.; García, Rafael A.; and others

    2014-04-20

    Fundamental stellar properties, such as mass, radius, and age, can be inferred using asteroseismology. Cool stars with convective envelopes have turbulent motions that can stochastically drive and damp pulsations. The properties of the oscillation frequency power spectrum can be tied to mass and radius through solar-scaled asteroseismic relations. Stellar properties derived using these scaling relations need verification over a range of metallicities. Because the age and mass of halo stars are well-constrained by astrophysical priors, they provide an independent, empirical check on asteroseismic mass estimates in the low-metallicity regime. We identify nine metal-poor red giants (including six stars that are kinematically associated with the halo) from a sample observed by both the Kepler space telescope and the Sloan Digital Sky Survey-III APOGEE spectroscopic survey. We compare masses inferred using asteroseismology to those expected for halo and thick-disk stars. Although our sample is small, standard scaling relations, combined with asteroseismic parameters from the APOKASC Catalog, produce masses that are systematically higher (<ΔM > =0.17 ± 0.05 M {sub ☉}) than astrophysical expectations. The magnitude of the mass discrepancy is reduced by known theoretical corrections to the measured large frequency separation scaling relationship. Using alternative methods for measuring asteroseismic parameters induces systematic shifts at the 0.04 M {sub ☉} level. We also compare published asteroseismic analyses with scaling relationship masses to examine the impact of using the frequency of maximum power as a constraint. Upcoming APOKASC observations will provide a larger sample of ∼100 metal-poor stars, important for detailed asteroseismic characterization of Galactic stellar populations.

  19. Very Metal-poor Outer-halo Stars with Round Orbits

    NASA Astrophysics Data System (ADS)

    Hattori, Kohei; Yoshii, Yuzuru; Beers, Timothy C.; Carollo, Daniela; Lee, Young Sun

    2013-01-01

    The orbital motions of halo stars in the Milky Way reflect the orbital motions of the progenitor systems in which they formed, making it possible to trace the mass-assembly history of the Galaxy. Direct measurement of three-dimensional velocities, based on accurate proper motions and line-of-sight velocities, has revealed that the majority of halo stars in the inner-halo region move in eccentric orbits. However, our understanding of the motions of distant, in situ halo-star samples is still limited, due to the lack of accurate proper motions for these stars. Here we explore a model-independent analysis of the line-of-sight velocities and spatial distribution of a recent sample of 1865 carefully selected halo blue horizontal-branch (BHB) stars within 30 kpc of the Galactic center. We find that the mean rotational velocity of the very metal-poor ([Fe/H] < -2.0) BHB stars significantly lags behind that of the relatively more metal-rich ([Fe/H] > -2.0) BHB stars. We also find that the relatively more metal-rich BHB stars are dominated by stars with eccentric orbits, as previously observed for other stellar samples in the inner-halo region. By contrast, the very metal-poor BHB stars are dominated by stars on rounder, lower-eccentricity orbits. Our results indicate that the motion of the progenitor systems of the Milky Way that contributed to the stellar populations found within 30 kpc correlates directly with their metal abundance, which may be related to their physical properties such as gas fractions. These results are consistent with the existence of an inner/outer halo structure for the halo system, as advocated by Carollo et al.

  20. VERY METAL-POOR OUTER-HALO STARS WITH ROUND ORBITS

    SciTech Connect

    Hattori, Kohei; Yoshii, Yuzuru; Beers, Timothy C.; Carollo, Daniela; Lee, Young Sun

    2013-01-20

    The orbital motions of halo stars in the Milky Way reflect the orbital motions of the progenitor systems in which they formed, making it possible to trace the mass-assembly history of the Galaxy. Direct measurement of three-dimensional velocities, based on accurate proper motions and line-of-sight velocities, has revealed that the majority of halo stars in the inner-halo region move in eccentric orbits. However, our understanding of the motions of distant, in situ halo-star samples is still limited, due to the lack of accurate proper motions for these stars. Here we explore a model-independent analysis of the line-of-sight velocities and spatial distribution of a recent sample of 1865 carefully selected halo blue horizontal-branch (BHB) stars within 30 kpc of the Galactic center. We find that the mean rotational velocity of the very metal-poor ([Fe/H] < -2.0) BHB stars significantly lags behind that of the relatively more metal-rich ([Fe/H] > -2.0) BHB stars. We also find that the relatively more metal-rich BHB stars are dominated by stars with eccentric orbits, as previously observed for other stellar samples in the inner-halo region. By contrast, the very metal-poor BHB stars are dominated by stars on rounder, lower-eccentricity orbits. Our results indicate that the motion of the progenitor systems of the Milky Way that contributed to the stellar populations found within 30 kpc correlates directly with their metal abundance, which may be related to their physical properties such as gas fractions. These results are consistent with the existence of an inner/outer halo structure for the halo system, as advocated by Carollo et al.

  1. Abundance Profiling of Extremely Metal-poor Stars and Supernova Properties in the Early Universe

    NASA Astrophysics Data System (ADS)

    Tominaga, Nozomu; Iwamoto, Nobuyuki; Nomoto, Ken'ichi

    2014-04-01

    After the big bang nucleosynthesis, the first heavy element enrichment in the universe was made by a supernova (SN) explosion of a population (Pop) III star (Pop III SN). The abundance ratios of elements produced from Pop III SNe are recorded in abundance patterns of extremely metal-poor (EMP) stars. The observations of the increasing number of EMP stars have made it possible to statistically constrain the explosion properties of Pop III SNe. We present Pop III SN models whose nucleosynthesis yields well reproduce, individually, the abundance patterns of 48 such metal-poor stars as [Fe/H] <~ - 3.5. We then derive relations between the abundance ratios of EMP stars and certain explosion properties of Pop III SNe: the higher [(C + N)/Fe] and [(C + N)/Mg] ratios correspond to the smaller ejected Fe mass and the larger compact remnant mass, respectively. Using these relations, the distributions of the abundance ratios of EMP stars are converted to those of the explosion properties of Pop III SNe. Such distributions are compared with those of the explosion properties of present day SNe: the distribution of the ejected Fe mass of Pop III SNe has the same peak as that of the present day SNe but shows an extended tail down to ~10-2-10-5 M ⊙, and the distribution of the mass of the compact remnant of Pop III SNe is as wide as that of the present-day, stellar-mass black holes. Our results demonstrate the importance of large samples of EMP stars obtained by ongoing and future EMP star surveys and subsequent high-dispersion spectroscopic observations in clarifying the nature of Pop III SNe in the early universe.

  2. Abundance profiling of extremely metal-poor stars and supernova properties in the early universe

    SciTech Connect

    Tominaga, Nozomu; Iwamoto, Nobuyuki; Nomoto, Ken'ichi E-mail: iwamoto.nobuyuki@jaea.go.jp

    2014-04-20

    After the big bang nucleosynthesis, the first heavy element enrichment in the universe was made by a supernova (SN) explosion of a population (Pop) III star (Pop III SN). The abundance ratios of elements produced from Pop III SNe are recorded in abundance patterns of extremely metal-poor (EMP) stars. The observations of the increasing number of EMP stars have made it possible to statistically constrain the explosion properties of Pop III SNe. We present Pop III SN models whose nucleosynthesis yields well reproduce, individually, the abundance patterns of 48 such metal-poor stars as [Fe/H] ≲ – 3.5. We then derive relations between the abundance ratios of EMP stars and certain explosion properties of Pop III SNe: the higher [(C + N)/Fe] and [(C + N)/Mg] ratios correspond to the smaller ejected Fe mass and the larger compact remnant mass, respectively. Using these relations, the distributions of the abundance ratios of EMP stars are converted to those of the explosion properties of Pop III SNe. Such distributions are compared with those of the explosion properties of present day SNe: the distribution of the ejected Fe mass of Pop III SNe has the same peak as that of the present day SNe but shows an extended tail down to ∼10{sup –2}-10{sup –5} M {sub ☉}, and the distribution of the mass of the compact remnant of Pop III SNe is as wide as that of the present-day, stellar-mass black holes. Our results demonstrate the importance of large samples of EMP stars obtained by ongoing and future EMP star surveys and subsequent high-dispersion spectroscopic observations in clarifying the nature of Pop III SNe in the early universe.

  3. The Synthetic-Oversampling Method: Using Photometric Colors to Discover Extremely Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Miller, A. A.

    2015-09-01

    Extremely metal-poor (EMP) stars ([Fe/H] ≤ -3.0 dex) provide a unique window into understanding the first generation of stars and early chemical enrichment of the universe. EMP stars are exceptionally rare, however, and the relatively small number of confirmed discoveries limits our ability to exploit these near-field probes of the first ˜500 Myr after the Big Bang. Here, a new method to photometrically estimate [Fe/H] from only broadband photometric colors is presented. I show that the method, which utilizes machine-learning algorithms and a training set of ˜170,000 stars with spectroscopically measured [Fe/H], produces a typical scatter of ˜0.29 dex. This performance is similar to what is achievable via low-resolution spectroscopy, and outperforms other photometric techniques, while also being more general. I further show that a slight alteration to the model, wherein synthetic EMP stars are added to the training set, yields the robust identification of EMP candidates. In particular, this synthetic-oversampling method recovers ˜20% of the EMP stars in the training set, at a precision of ˜0.05. Furthermore, ˜65% of the false positives from the model are very metal-poor stars ([Fe/H] ≤ -2.0 dex). The synthetic-oversampling method is biased toward the discovery of warm (˜F-type) stars, a consequence of the targeting bias from the Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding survey. This EMP selection method represents a significant improvement over alternative broadband optical selection techniques. The models are applied to >12 million stars, with an expected yield of ˜600 new EMP stars, which promises to open new avenues for exploring the early universe.

  4. THE SYNTHETIC-OVERSAMPLING METHOD: USING PHOTOMETRIC COLORS TO DISCOVER EXTREMELY METAL-POOR STARS

    SciTech Connect

    Miller, A. A.

    2015-09-20

    Extremely metal-poor (EMP) stars ([Fe/H] ≤ −3.0 dex) provide a unique window into understanding the first generation of stars and early chemical enrichment of the universe. EMP stars are exceptionally rare, however, and the relatively small number of confirmed discoveries limits our ability to exploit these near-field probes of the first ∼500 Myr after the Big Bang. Here, a new method to photometrically estimate [Fe/H] from only broadband photometric colors is presented. I show that the method, which utilizes machine-learning algorithms and a training set of ∼170,000 stars with spectroscopically measured [Fe/H], produces a typical scatter of ∼0.29 dex. This performance is similar to what is achievable via low-resolution spectroscopy, and outperforms other photometric techniques, while also being more general. I further show that a slight alteration to the model, wherein synthetic EMP stars are added to the training set, yields the robust identification of EMP candidates. In particular, this synthetic-oversampling method recovers ∼20% of the EMP stars in the training set, at a precision of ∼0.05. Furthermore, ∼65% of the false positives from the model are very metal-poor stars ([Fe/H] ≤ −2.0 dex). The synthetic-oversampling method is biased toward the discovery of warm (∼F-type) stars, a consequence of the targeting bias from the Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding survey. This EMP selection method represents a significant improvement over alternative broadband optical selection techniques. The models are applied to >12 million stars, with an expected yield of ∼600 new EMP stars, which promises to open new avenues for exploring the early universe.

  5. THE MOST METAL-POOR STARS. I. DISCOVERY, DATA, AND ATMOSPHERIC PARAMETERS

    SciTech Connect

    Norris, John E.; Bessell, M. S.; Yong, David; Asplund, M.; Murphy, Simon J.; Christlieb, N.; Barklem, P. S.; Beers, Timothy C.; Frebel, Anna; Ryan, S. G. E-mail: bessell@mso.anu.edu.au E-mail: martin@mso.anu.edu.au E-mail: paul.barklem@physics.uu.se E-mail: afrebel@mit.edu

    2013-01-01

    We report the discovery of 34 stars in the Hamburg/ESO Survey for metal-poor stars and the Sloan Digital Sky Survey that have [Fe/H] {approx}< -3.0. Their median and minimum abundances are [Fe/H] = -3.1 and -4.1, respectively, while 10 stars have [Fe/H] < -3.5. High-resolution, high signal-to-noise spectroscopic data-equivalent widths and radial velocities-are presented for these stars, together with an additional four objects previously reported or currently being investigated elsewhere. We have determined the atmospheric parameters, effective temperature (T {sub eff}), and surface gravity (log g), which are critical in the determination of the chemical abundances and the evolutionary status of these stars. Three techniques were used to derive these parameters. Spectrophotometric fits to model atmosphere fluxes were used to derive T {sub eff}, log g, and an estimate of E(B - V); H{alpha}, H{beta}, and H{gamma} profile fitting to model atmosphere results provided the second determination of T {sub eff} and log g; and finally, we used an empirical T {sub eff}-calibrated H{delta} index, for the third, independent T {sub eff} determination. The three values of T {sub eff} are in good agreement, although the profile fitting may yield systematically cooler T {sub eff} values, by {approx}100 K. This collective data set will be analyzed in future papers in the present series to utilize the most metal-poor stars as probes of conditions in the early universe.

  6. The StEllar Counterparts of COmpact high velocity clouds (SECCO) survey. II. Sensitivity of the survey and the atlas of synthetic dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Beccari, G.; Bellazzini, M.; Battaglia, G.; Ibata, R.; Martin, N.; Testa, V.; Cignoni, M.; Correnti, M.

    2016-06-01

    The searching for StEllar Counterparts of COmpact high velocity clouds (SECCO) survey is devoted to the search for stellar counterparts within ultra compact high velocity clouds that are candidate low-mass, low-luminosity galaxies. We present the results of a set of simulations aimed at the quantitative estimate of the sensitivity of the survey as a function of the total luminosity, size, and distance of the stellar systems we are looking for. For all of our synthetic galaxies we assumed an exponential surface brightness profile and an old and metal-poor population. The synthetic galaxies are simulated both on the images and on the photometric catalogues, taking all the observational effects into account. In the fields where the available observational material is of top quality (≃36% of the SECCO fields), we detect synthetic galaxies as ≥5σ over-densities of resolved stars down to μV,h ≃ 30.0 mag/arcsec2, for D ≤ 1.5 Mpc, and down to μV,h ≃ 29.5 mag/arcsec2, for D ≤ 2.5 Mpc. In the field with the worst observational material of the whole survey, we detect synthetic galaxies with μV,h ≤ 28.8 mag/arcsec2 out to D ≤ 1.0 Mpc, and those with μV,h ≤ 27.5 mag/arcsec2 out to D ≤ 2.5 Mpc. Dwarf galaxies with MV = -10.0, with sizes in the range spanned by known dwarfs, are detected by visual inspection of the images up to D = 5 Mpc independent of the image quality. In the best quality images, dwarfs are partially resolved into stars up to D = 3.0 Mpc and completely unresolved at D = 5 Mpc. As an independent test of the sensitivity of our images to low surface brightness galaxies, we report on the detection of several dwarf spheroidal galaxies probably located in the Virgo cluster with MV ≲ -8.0 and μV,h ≲ 26.8 mag/arcsec2. The nature of the previously discovered SECCO 1 stellar system, also likely located in the Virgo cluster, is rediscussed in comparison with these dwarfs. While specific for the SECCO survey, our study may also provide general

  7. Triangulum II: Possibly a Very Dense Ultra-faint Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Kirby, Evan N.; Cohen, Judith G.; Simon, Joshua D.; Guhathakurta, Puragra

    2015-11-01

    Laevens et al. recently discovered Triangulum II (Tri II), a satellite of the Milky Way. Its Galactocentric distance is 36 kpc, and its luminosity is only 450 {L}⊙ . Using Keck/DEIMOS, we measured the radial velocities of six member stars within 1.‧2 of the center of Tri II, and we found a velocity dispersion of {σ }v={5.1}-1.4+4.0 {km} {{{s}}}-1. We also measured the metallicities of three stars and found a range of 0.8 dex in [Fe/H]. The velocity and metallicity dispersions identify Tri II as a dark matter-dominated galaxy. The galaxy is moving very quickly toward the Galactic center ({v}{{GSR}}=-262 {km} {{{s}}}-1). Although it might be in the process of being tidally disrupted as it approaches pericenter, there is no strong evidence for disruption in our data set. The ellipticity is low, and the mean velocity, < {v}{{helio}}> =-382.1+/- 2.9 {km} {{{s}}}-1, rules out an association with the Triangulum-Andromeda substructure or the Pan-Andromeda Archaeological Survey stellar stream. If Tri II is in dynamical equilibrium, then it would have a mass-to-light ratio of {3600}-2100+3500 {M}⊙ {L}⊙ -1, the highest of any non-disrupting galaxy (those for which dynamical mass estimates are reliable). The density within the 3D half-light radius would be {4.8}-3.5+8.1 {M}⊙ {{{pc}}}-3, even higher than Segue 1. Hence, Tri II is an excellent candidate for the indirect detection of dark matter annihilation. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  8. IONIZATION IN ATMOSPHERES OF BROWN DWARFS AND EXTRASOLAR PLANETS. II. DUST-INDUCED COLLISIONAL IONIZATION

    SciTech Connect

    Helling, Ch.; Jardine, M.; Mokler, F.

    2011-08-10

    Observations have shown that continuous radio emission and also sporadic H{alpha} and X-ray emission are prominent in singular, low-mass objects later than spectral class M. These activity signatures are interpreted as being caused by coupling of an ionized atmosphere to the stellar magnetic field. What remains a puzzle, however, is the mechanism by which such a cool atmosphere can produce the necessary level of ionization. At these low temperatures, thermal gas processes are insufficient, but the formation of clouds sets in. Cloud particles can act as seeds for electron avalanches in streamers that ionize the ambient gas, and can lead to lightning and indirectly to magnetic field coupling, a combination of processes also expected for protoplanetary disks. However, the precondition is that the cloud particles are charged. We use results from DRIFT-PHOENIX model atmospheres to investigate collisional processes that can lead to the ionization of dust grains inside clouds. We show that ionization by turbulence-induced dust-dust collisions is the most efficient kinetic process. The efficiency is highest in the inner cloud where particles grow quickly and, hence, the dust-to-gas ratio is high. Dust-dust collisions alone are not sufficient to improve the magnetic coupling of the atmosphere inside the cloud layers, but the charges supplied either on grains or within the gas phase as separated electrons can trigger secondary nonlinear processes. Cosmic rays are likely to increase the global level of ionization, but their influence decreases if a strong, large-scale magnetic field is present as on brown dwarfs. We suggest that although thermal gas ionization declines in objects across the fully convective boundary, dust charging by collisional processes can play an important role in the lowest mass objects. The onset of atmospheric dust may therefore correlate with the anomalous X-ray and radio emission in atmospheres that are cool, but charged more than expected by pure

  9. Is HE 0107-5240 A Primordial Star? The Characteristics of Extremely Metal-Poor Carbon-Rich Stars

    NASA Astrophysics Data System (ADS)

    Suda, Takuma; Aikawa, Masayuki; Machida, Masahiro N.; Fujimoto, Masayuki Y.; Iben, Icko, Jr.

    2004-08-01

    We discuss the origin of HE 0107-5240, which, with a metallicity of [Fe/H]=-5.3, is the most iron-poor star yet observed. Its discovery has an important bearing on the question of the observability of first-generation stars in our universe. In common with other stars of very small metallicity (-4<~[Fe/H]<~-2.5), HE 0107-5240 shows a peculiar abundance pattern, including large enhancements of C, N, and O, and a more modest enhancement of Na. The observed abundance pattern can be explained by nucleosynthesis and mass transfer in a first-generation binary star, which, after birth, accretes matter from a primordial cloud mixed with the ejectum of a supernova. We elaborate the binary scenario on the basis of our current understanding of the evolution and nucleosynthesis of extremely metal-poor, low-mass model stars and discuss the possibility of discriminating this scenario from others. In our picture, iron-peak elements arise in surface layers of the component stars by accretion of gas from the polluted primordial cloud, pollution occurring after the birth of the binary. To explain the observed C, N, O, and Na enhancements, as well as the 12C/ 13C ratio, we suppose that the currently observed star, once the secondary in a binary, accreted matter from a chemically evolved companion, which is now a white dwarf. To estimate the abundances in the matter transferred in the binary, we rely on the results of computations of model stars constructed with up-to-date input physics. Nucleosynthesis in a helium-flash-driven convective zone into which hydrogen has been injected is followed, allowing us to explain the origin in the primary of the observed O and Na enrichments and to discuss the abundances of s-process elements. From the observed abundances, we conclude that HE 0107-5240 has evolved from a wide binary (of initial separation ~20 AU) with a primary of initial mass in the range 1.2-3 Msolar. On the assumption that the system now consists of a white dwarf and a red giant

  10. Triangulum II: Possibly a Very Dense Ultra-faint Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Kirby, Evan N.; Cohen, Judith G.; Simon, Joshua D.; Guhathakurta, Puragra

    2015-11-01

    Laevens et al. recently discovered Triangulum II (Tri II), a satellite of the Milky Way. Its Galactocentric distance is 36 kpc, and its luminosity is only 450 {L}ȯ . Using Keck/DEIMOS, we measured the radial velocities of six member stars within 1.‧2 of the center of Tri II, and we found a velocity dispersion of {σ }v={5.1}-1.4+4.0 {km} {{{s}}}-1. We also measured the metallicities of three stars and found a range of 0.8 dex in [Fe/H]. The velocity and metallicity dispersions identify Tri II as a dark matter-dominated galaxy. The galaxy is moving very quickly toward the Galactic center ({v}{{GSR}}=-262 {km} {{{s}}}-1). Although it might be in the process of being tidally disrupted as it approaches pericenter, there is no strong evidence for disruption in our data set. The ellipticity is low, and the mean velocity, < {v}{{helio}}> =-382.1+/- 2.9 {km} {{{s}}}-1, rules out an association with the Triangulum–Andromeda substructure or the Pan-Andromeda Archaeological Survey stellar stream. If Tri II is in dynamical equilibrium, then it would have a mass-to-light ratio of {3600}-2100+3500 {M}ȯ {L}ȯ -1, the highest of any non-disrupting galaxy (those for which dynamical mass estimates are reliable). The density within the 3D half-light radius would be {4.8}-3.5+8.1 {M}ȯ {{{pc}}}-3, even higher than Segue 1. Hence, Tri II is an excellent candidate for the indirect detection of dark matter annihilation. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  11. The MUSCLES Treasury Survey. II. Intrinsic LYα and Extreme Ultraviolet Spectra of K and M Dwarfs with Exoplanets*

    NASA Astrophysics Data System (ADS)

    Youngblood, Allison; France, Kevin; Parke Loyd, R. O.; Linsky, Jeffrey L.; Redfield, Seth; Schneider, P. Christian; Wood, Brian E.; Brown, Alexander; Froning, Cynthia; Miguel, Yamila; Rugheimer, Sarah; Walkowicz, Lucianne

    2016-06-01

    The ultraviolet (UV) spectral energy distributions (SEDs) of low-mass (K- and M-type) stars play a critical role in the heating and chemistry of exoplanet atmospheres, but are not observationally well-constrained. Direct observations of the intrinsic flux of the Lyα line (the dominant source of UV photons from low-mass stars) are challenging, as interstellar H i absorbs the entire line core for even the closest stars. To address the existing gap in empirical constraints on the UV flux of K and M dwarfs, the MUSCLES Hubble Space Telescope Treasury Survey has obtained UV observations of 11 nearby M and K dwarfs hosting exoplanets. This paper presents the Lyα and extreme-UV spectral reconstructions for the MUSCLES targets. Most targets are optically inactive, but all exhibit significant UV activity. We use a Markov Chain Monte Carlo technique to correct the observed Lyα profiles for interstellar absorption, and we employ empirical relations to compute the extreme-UV SED from the intrinsic Lyα flux in ˜100 Å bins from 100-1170 Å. The reconstructed Lyα profiles have 300 km s-1 broad cores, while >1% of the total intrinsic Lyα flux is measured in extended wings between 300 and 1200 km s-1. The Lyα surface flux positively correlates with the Mg ii surface flux and negatively correlates with the stellar rotation period. Stars with larger Lyα surface flux also tend to have larger surface flux in ions formed at higher temperatures, but these correlations remain statistically insignificant in our sample of 11 stars. We also present H i column density measurements for 10 new sightlines through the local interstellar medium. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555.

  12. The MUSCLES Treasury Survey. II. Intrinsic LYα and Extreme Ultraviolet Spectra of K and M Dwarfs with Exoplanets*

    NASA Astrophysics Data System (ADS)

    Youngblood, Allison; France, Kevin; Parke Loyd, R. O.; Linsky, Jeffrey L.; Redfield, Seth; Schneider, P. Christian; Wood, Brian E.; Brown, Alexander; Froning, Cynthia; Miguel, Yamila; Rugheimer, Sarah; Walkowicz, Lucianne

    2016-06-01

    The ultraviolet (UV) spectral energy distributions (SEDs) of low-mass (K- and M-type) stars play a critical role in the heating and chemistry of exoplanet atmospheres, but are not observationally well-constrained. Direct observations of the intrinsic flux of the Lyα line (the dominant source of UV photons from low-mass stars) are challenging, as interstellar H i absorbs the entire line core for even the closest stars. To address the existing gap in empirical constraints on the UV flux of K and M dwarfs, the MUSCLES Hubble Space Telescope Treasury Survey has obtained UV observations of 11 nearby M and K dwarfs hosting exoplanets. This paper presents the Lyα and extreme-UV spectral reconstructions for the MUSCLES targets. Most targets are optically inactive, but all exhibit significant UV activity. We use a Markov Chain Monte Carlo technique to correct the observed Lyα profiles for interstellar absorption, and we employ empirical relations to compute the extreme-UV SED from the intrinsic Lyα flux in ˜100 Å bins from 100–1170 Å. The reconstructed Lyα profiles have 300 km s‑1 broad cores, while >1% of the total intrinsic Lyα flux is measured in extended wings between 300 and 1200 km s‑1. The Lyα surface flux positively correlates with the Mg ii surface flux and negatively correlates with the stellar rotation period. Stars with larger Lyα surface flux also tend to have larger surface flux in ions formed at higher temperatures, but these correlations remain statistically insignificant in our sample of 11 stars. We also present H i column density measurements for 10 new sightlines through the local interstellar medium. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555.

  13. The Origin of the Metal-Poor Common Proper Motion Pair HD 134439/134440: Insights from New Elemental Abundances

    NASA Astrophysics Data System (ADS)

    Chen, Yu; King, Jeremy R.; Boesgaard, Ann M.

    2014-11-01

    The low [α/Fe] ratio in the metal-poor ([Fe/H] ~ -1.50) common proper motion pair HD 134439 and HD 134440 has been variously attributed to chemical evolution in an extragalactic environment with an irregular star formation history, planetesimal accretion, and formation in an environment with an unusually high dust-to-gas ratio. We explore these various putative origins using CNO, Be, Ag, and Eu abundances derived from high-resolution near-UV Keck/HIRES spectroscopy. While we confirm a previously suggested correlation between elemental abundance ratios and condensation temperature at the 95% confidence level, these ratios lie within the continuum of values manifested by extant dSph data. We argue that the most plausible origin of our stars' distinctive abundance distribution relative to the Galactic halo field is formation in an environment chemically dominated by products of Type II SN of low progenitor mass; such a progenitor mass bias has been previously suggested as an explanation of low α-element ratios of dSph stars. The proper motion pair's heavy-to-light n-capture element ratio, which is >=0.3-0.5 dex lower than in the Galactic halo field and dSph stars, is discussed in the context of the truncated r-process, phenomenological n-capture production models, and α-rich freezeout in a high neutron excess environment; the latter simultaneously provides an attractive explanation of the difference in [Ca, Ti/O, Mg, Si] ratio in HD 134439/134440 compared to in situ dSph stars.

  14. G64-12 and G64-37 Are Carbon-enhanced Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Placco, Vinicius M.; Beers, Timothy C.; Reggiani, Henrique; Meléndez, Jorge

    2016-10-01

    We present new high-resolution chemical-abundance analyses for the well-known high proper-motion subdwarfs G64-12 and G64-37, based on very high signal-to-noise ratio spectra ({{S}}/{{N}}˜ 700/1) with resolving power R ˜ 95,000. These high-quality data enable the first reliable determination of the carbon abundances for these two stars; we classify them as carbon-enhanced metal-poor (CEMP) stars based on their carboni cities, which both exceed [C/Fe] = +1.0. They are sub-classified as CEMP-no Group-II stars, based on their location in the Yoon-Beers diagram of absolute carbon abundance, A(C) versus [Fe/H], as well as on the conventional diagnostic [Ba/Fe]. The relatively low absolute carbon abundances of CEMP-no stars, in combination with the high effective temperatures of these two stars ({T}{eff}˜ 6500 {{K}}), weakens their CH molecular features to the point that accurate carbon abundances can only be estimated from spectra with very high S/N. A comparison of the observed abundance patterns with the predicted yields from massive, metal-free supernova models reduces the inferred progenitor masses by factors of ˜2-3, and explosion energies by factors of ˜10-15, compared to those derived using previously claimed carbon-abundance estimates. There are certainly many more warm CEMP-no stars near the halo main-sequence turnoff that have been overlooked in past studies, directly impacting the derived frequencies of CEMP-no stars as a function of metallicity, a probe that provides important constraints on Galactic chemical evolution models, the initial mass function in the early universe, and first-star nucleosynthesis.

  15. Radiative levitation in carbon-enhanced metal-poor stars with s-process enrichment

    NASA Astrophysics Data System (ADS)

    Matrozis, E.; Stancliffe, R. J.

    2016-07-01

    A significant fraction of all metal-poor stars are carbon-rich. Most of these carbon-enhanced metal-poor (CEMP) stars also show enhancement in elements produced mainly by the s-process (CEMP-s stars), and evidence suggests that the origin of these non-standard abundances can be traced to mass transfer from a binary asymptotic giant branch (AGB) companion. Thus, observations of CEMP-s stars are commonly used to infer the nucleosynthesis output of low-metallicity AGB stars. A crucial step in this exercise is understanding what happens to the accreted material after mass transfer ceases. Here we present models of the post-mass-transfer evolution of CEMP-s stars considering the physics of thermohaline mixing and atomic diffusion, including radiative levitation. We find that stars with typical CEMP-s star masses, M ≈ 0.85 M⊙, have very shallow convective envelopes (Menv ≲ 10-7 M⊙). Hence, the surface abundance variations arising from the competition between gravitational settling and radiative levitation should be orders of magnitude larger than observed (e.g. [C/Fe] < -1 or [C/Fe] > +4). Lower-mass stars (M ≈ 0.80 M⊙) retain thicker convective envelopes and thus show variations more in line with observations, but are generally too unevolved (log g > 4) when they reach the age of the Universe. We are therefore unable to reproduce the spread in the observed abundances with these models and conclude that some other physical process must largely suppress atomic diffusion in the outer layers of CEMP-s stars. We demonstrate that this could be achieved by some additional (turbulent) mixing process operating at the base of the convective envelope, as found by other authors. Alternatively, mass-loss rates around 10-13 M⊙yr-1 could also negate most of the abundance variations by eroding the surface layers and forcing the base of the convective envelope to move inwards in mass. Since atomic diffusion cannot have a substantial effect on the surface abundances of CEMP

  16. CHEMICAL ANALYSIS OF THE NINTH MAGNITUDE CARBON-ENHANCED METAL-POOR STAR BD+44 Degree-Sign 493

    SciTech Connect

    Ito, Hiroko; Aoki, Wako; Beers, Timothy C.; Tominaga, Nozomu; Honda, Satoshi; Carollo, Daniela E-mail: beers@noao.edu E-mail: honda@kwasan.kyoto-u.ac.jp

    2013-08-10

    We present detailed chemical abundances for the bright carbon-enhanced metal-poor (CEMP) star BD+44 Degree-Sign 493, previously reported on by Ito et al. Our measurements confirm that BD+44 Degree-Sign 493 is an extremely metal-poor ([Fe/H] =-3.8) subgiant star with excesses of carbon and oxygen. No significant excesses are found for nitrogen and neutron-capture elements (the latter of which place it in the CEMP-no class of stars). Other elements that we measure exhibit abundance patterns that are typical for non-CEMP extremely metal-poor stars. No evidence for variations of radial velocity has been found for this star. These results strongly suggest that the carbon enhancement in BD+44 Degree-Sign 493 is unlikely to have been produced by a companion asymptotic giant-branch star and transferred to the presently observed star, nor by pollution of its natal molecular cloud by rapidly-rotating, massive, mega metal-poor ([Fe/H] < - 6.0) stars. A more likely possibility is that this star formed from gas polluted by the elements produced in a ''faint'' supernova, which underwent mixing and fallback, and only ejected small amounts of elements of metals beyond the lighter elements. The Li abundance of BD+44 Degree-Sign 493 (A(Li) = log (Li/H)+12 =1.0) is lower than the Spite plateau value, as found in other metal-poor subgiants. The upper limit on Be abundance (A(Be) = log (Be/H)+12 < - 1.8) is as low as those found for stars with similarly extremely-low metallicity, indicating that the progenitors of carbon- (and oxygen-) enhanced stars are not significant sources of Be, or that Be is depleted in metal-poor subgiants with effective temperatures of {approx}5400 K.

  17. Seven new carbon-enhanced metal-poor RR Lyrae stars

    SciTech Connect

    Kennedy, Catherine R.; Stancliffe, Richard J.; Kuehn, Charles; Beers, Timothy C.; Kinman, T. D.; Placco, Vinicius M.; Reggiani, Henrique; Rossi, Silvia; Lee, Young Sun

    2014-05-20

    We report estimated carbon-abundance ratios, [C/Fe], for seven newly discovered carbon-enhanced metal-poor (CEMP) RR Lyrae stars. These are well-studied RRab stars that had previously been selected as CEMP candidates based on low-resolution spectra. For this pilot study, we observed eight of these CEMP RR Lyrae candidates with the Wide Field Spectrograph on the ANU 2.3 m telescope. Prior to this study, only two CEMP RR Lyrae stars had been discovered: TY Gru and SDSS J1707+58. We compare our abundances to new theoretical models of the evolution of low-mass stars in binary systems. These simulations evolve the secondary stars, post accretion from an asymptotic giant-branch (AGB) donor, all the way to the RR Lyrae stage. The abundances of CEMP RR Lyrae stars can be used as direct probes of the nature of the donor star, such as its mass, and the amount of material accreted onto the secondary. We find that the majority of the sample of CEMP RR Lyrae stars is consistent with AGB donor masses of around 1.5-2.0 M {sub ☉} and accretion masses of a few hundredths of a solar mass. Future high-resolution studies of these newly discovered CEMP RR Lyrae stars will help disentangle the effects of the proposed mixing processes that occur in such objects.

  18. The r-Process in Metal Poor Stars and Black Hole Formation

    SciTech Connect

    Boyd, R N; Famiano, M A; Meyer, B S; Motizuki, Y; Kajino, T; Roederer, I U

    2011-11-30

    Nucleosynthesis of heavy nuclei in metal-poor stars is generally ascribed to the r-process, as the abundance pattern in many such stars agrees with the inferred Solar r-process abundances. Nonetheless, a significant number of these stars do not share this r-process template. they suggest that many such stars have begun an r-process, but it was prevented from running to completion in more massive stars by collapse to black holes, creating a 'truncated r-process,' or 'tr-process'. The observed fraction of tr-process stars is found to be consistent with expectations from the initial mass function (IMF), and they suggest that an apparent sharp truncation observed at around mass 160 could result from a combination of collapses to black holes and the difficulty of observing the higher mass rare earths. They test the tr-process hypothesis with calculations that are terminated before all r-process trajectories have been ejected. These produce qualitative agreement with observation when both black hole collapse and observational realities are taken into account.

  19. Main sequence of the metal-poor globular cluster M30 (NGC 7099)

    SciTech Connect

    Alcaino, G.; Liller, W.

    1980-10-01

    We present photographic photometry for 673 stars in the metal-poor globular cluster M30 (NGC 7099). The Racine wedge was used with the CTIO 1-m Yale telescope (..delta..m=3/sup m/.60), the CTIO 4-m telescope (..delta..m=6/sup m/.83), and the ESO 3.6-m telescope (..delta..m=4/sup m/.12) to extend the photoelectric limit from Vapprox. =16.3 to Vapprox. =20.4. For the main-sequence turn-off, we have determined its position to lie at V=18.4 +- 0.1 (m.e.) and B-V=0.49 +- 0.03 (m.e.). From these values, we calculate the intrinsic values M/sub v/ =3.87 and (B-V)/sub 0/=0.47. For the cluster as a whole, we derive a distance modulus (m-M)/sub V/=14.53 +- 0.15 and reddening E(B-V)=0.02 +- 0.02. Using the models of Iben and Rood (Astrophys. J. 159, 605 (1970)) and the isochrones of Demarque and McClure ((1977), in Evolution of Galaxies and Stellar Populations, edited by B. Tinsley and R. B. Larson (Yale University Observatory, New Haven), p. 199), we deduce the cluster's age to be 14.5( +- 4.0) x 10/sup 9/ yr. The large uncertainty in this value emphasizes the dire need for more work on cluster evolution.

  20. In the thick of it: metal-poor disc stars in RAVE

    NASA Astrophysics Data System (ADS)

    Kordopatis, G.; Gilmore, G.; Wyse, R. F. G.; Steinmetz, M.; Siebert, A.; Bienaymé, O.; McMillan, P. J.; Minchev, I.; Zwitter, T.; Gibson, B. K.; Seabroke, G.; Grebel, E. K.; Bland-Hawthorn, J.; Boeche, C.; Freeman, K. C.; Munari, U.; Navarro, J. F.; Parker, Q.; Reid, W. A.; Siviero, A.

    2013-12-01

    By selecting in the Radial Velocity Experiment-fourth data release (RAVE-DR4) survey the stars located between 1 and 2 kpc above the Galactic plane, we question the consistency of the simplest three-component model (thin disc, thick disc and halo) for the Milky Way. We confirm that the metallicity and azimuthal velocity distribution functions of the thick disc are not Gaussian. In particular, we find that the thick disc has an extended metallicity tail going at least down to [M/H] = ‒2 dex, contributing roughly 3 per cent of the entire thick disc population and having a shorter scalelength compared to the canonical thick disc. The mean azimuthal velocity of these metal-poor stars allows us to estimate the correlation between the metallicity ([M/H]) and the orbital velocity (Vφ), which is an important constraint on the formation mechanisms of the Galactic thick disc. Given our simple approach, we find ∂Vφ/∂[M/H]≈ 50 km s-1 dex-1, which is in very good agreement with previous literature values. We complete the study with a brief discussion on the implications of the formation scenarios for the thick disc and suggest that given the above-mentioned characteristics, a thick disc mainly formed by radial migration mechanisms seems unlikely.

  1. HST/STIS abundances in the uranium rich metal poor star CS 31082-001: Constraints on the r-Process

    NASA Astrophysics Data System (ADS)

    Siqueira-Mello, C.; Spite, M.; Barbuy, B.; Spite, F.; Caffau, E.; Hill, V.; Wanajo, S.; Primas, F.; Plez, B.; Cayrel, R.; Andersen, J.; Nordström, B.; Sneden, C.; Beers, T. C.; Bonifacio, P.; François, P.; Molaro, P.

    2016-01-01

    As a brief revision, the origin of heavy elements and the role of abundances in extremely metal-poor (EMP) stars are presented. Heavy element abundances in the EMP uranium-rich star CS 31082-001 based mainly on near-UV spectra from STIS/HST are presented. These results should be useful for a better characterisation of the neutron exposure(s) that produced the r-process elements in this star, as well as a guide for improving nuclear data and astrophysical site modelling, given that the new element abundances not available in previous works (Ge, Mo, Lu, Ta, W, Re, Pt, Au, and Bi) make CS 31082-001 the most completely well studied r-II object, with a total of 37 detections of n-capture elements.

  2. PRODUCTION OF {sup 9}Be THROUGH THE {alpha}-FUSION REACTION OF METAL-POOR COSMIC RAYS AND STELLAR FLARES

    SciTech Connect

    Kusakabe, Motohiko; Kawasaki, Masahiro E-mail: kawasaki@icrr.u-tokyo.ac.jp

    2013-04-10

    Spectroscopic observations of metal-poor stars have indicated possible {sup 6}Li abundances that are much larger than the primordial abundance predicted in the standard big bang nucleosynthesis model. Possible mechanisms of {sup 6}Li production in metal-poor stars include pregalactic and cosmological cosmic-ray (CR) nucleosynthesis and nucleosynthesis by flare-accelerated nuclides. We study {sup 9}Be production via two-step {alpha}-fusion reactions of CR or flare-accelerated {sup 3,4}He through {sup 6}He and {sup 6,7}Li, in pregalactic structure, intergalactic medium, and stellar surfaces. We solve transfer equations of CR or flare particles and calculate nuclear yields of {sup 6}He, {sup 6,7}Li, and {sup 9}Be taking account of probabilities of processing {sup 6}He and {sup 6,7}Li into {sup 9}Be via fusions with {alpha} particles. Yield ratios, i.e., {sup 9}Be/{sup 6}Li, are then calculated for the CR and flare nucleosynthesis models. We suggest that the future observations of {sup 9}Be in metal-poor stars may find enhanced abundances originating from metal-poor CR or flare activities.

  3. Very metal-poor galaxies: ionized gas kinematics in nine objects

    NASA Astrophysics Data System (ADS)

    Moiseev, A. V.; Pustilnik, S. A.; Kniazev, A. Y.

    2010-07-01

    The study of ionized gas morphology and kinematics in nine extremely metal-deficient (XMD) galaxies with the scanning Fabry-Perot interferometer on the Special Astrophysical Observatory (SAO) 6-m telescope is presented. Some of these very rare objects (with currently known range of O/H of 7.12 < 12 + log(O/H) < 7.65, or ) are believed to be the best proxies of `young' low-mass galaxies in the high-redshift Universe. One of the main goals of this study is to look for possible evidence of star formation (SF) activity induced by external perturbations. Recent results from HI mapping of a small subsample of XMD star-forming galaxies provided confident evidence for the important role of interaction-induced SF. Our observations provide complementary or new information that the great majority of the studied XMD dwarfs have strongly disturbed gas morphology and kinematics or the presence of detached components. We approximate the observed velocity fields by simple models of a rotating tilted thin disc, which allows us the robust detection of non-circular gas motions. These data, in turn, indicate the important role of current/recent interactions and mergers in the observed enhanced SF. As a by-product of our observations, we obtained data for two Low Surface Brightness (LSB) dwarf galaxies: Anon J012544+075957 that is a companion of the merger system UGC 993, and SAO 0822+3545 which shows off-centre, asymmetric, low star formation rate star-forming regions, likely induced by the interaction with the companion XMD dwarf HS 0822+3542. Based on observations obtained with the Special Astrophysical Observatory RAS 6-m telescope. E-mail: moisav@gmail.com (AVM); sap@sao.ru (SAP); akniazev@saao.ac.za (AYK)

  4. Abundances of carbon-enhanced metal-poor stars as constraints on their formation

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; Nordström, B.; Hansen, T. T.; Kennedy, C. R.; Placco, V. M.; Beers, T. C.; Andersen, J.; Cescutti, G.; Chiappini, C.

    2016-04-01

    Context. An increasing fraction of carbon-enhanced metal-poor (CEMP) stars is found as their iron abundance, [Fe/H], decreases below [Fe/H] =-2.0. The CEMP-s stars have the highest absolute carbon abundances, [C/H], and are thought to owe their enrichment in carbon and the slow neutron-capture (s-process) elements to mass transfer from a former asymptotic giant branch (AGB) binary companion. The most Fe-poor CEMP stars are normally single, exhibit somewhat lower [C/H] than CEMP-s stars, but show no s-process element enhancement (CEMP-no stars). Abundance determinations of CNO offer clues to their formation sites. Aims: Our aim is to use the medium-resolution spectrograph X-Shooter/VLT to determine stellar parameters and abundances for C, N, Sr, and Ba in several classes of CEMP stars in order to further classify and constrain the astrophysical formation sites of these stars. Methods: Atmospheric parameters for our programme stars were estimated from a combination of V-K photometry, model isochrone fits, and estimates from a modified version of the SDSS/SEGUE spectroscopic pipeline. We then used X-Shooter spectra in conjunction with the 1D local thermodynamic equilibrium spectrum synthesis code MOOG, 1D ATLAS9 atmosphere models to derive stellar abundances, and, where possible, isotopic 12C/13C ratios. Results: Abundances (or limits) of C, N, Sr, and Ba are derived for a sample of 27 faint metal-poor stars for which the X-Shooter spectra have sufficient signal-to-noise ratios (S/N). These moderate resolution, low S/N (~10-40) spectra prove sufficient to perform limited chemical tagging and enable assignment of these stars into the CEMP subclasses (CEMP-s and CEMP-no). According to the derived abundances, 17 of our sample stars are CEMP-s and 3 are CEMP-no, while the remaining 7 are carbon-normal. For four CEMP stars, the subclassification remains uncertain, and two of them may be pulsating AGB stars. Conclusions: The derived stellar abundances trace the formation

  5. Modelling the observed properties of carbon-enhanced metal-poor stars using binary population synthesis

    NASA Astrophysics Data System (ADS)

    Abate, C.; Pols, O. R.; Stancliffe, R. J.; Izzard, R. G.; Karakas, A. I.; Beers, T. C.; Lee, Y. S.

    2015-09-01

    The stellar population in the Galactic halo is characterised by a large fraction of carbon-enhanced metal-poor (CEMP) stars. Most CEMP stars have enhanced abundances of s-process elements (CEMP-s stars), and some of these are also enriched in r-process elements (CEMP-s/r stars). In one formation scenario proposed for CEMP stars, the observed carbon excess is explained by invoking wind mass transfer in the past from a more massive thermally-pulsing asymptotic giant branch (AGB) primary star in a binary system.In this work we generate synthetic populations of binary stars at metallicity Z = 0.0001 ([Fe/H] ≈ - 2.3), with the aim of reproducing the observed fraction of CEMP stars in the halo. In addition, we aim to constrain our model of the wind mass-transfer process, in particular the wind-accretion efficiency and angular-momentum loss, and investigate under which conditions our model populations reproduce observed distributions of element abundances.We compare the CEMP fractions determined from our synthetic populations and the abundance distributions of many elements with observations. Several physical parameters of the binary stellar population of the halo are uncertain, in particular the initial mass function, the mass-ratio distribution, the orbital-period distribution, and the binary fraction. We vary the assumptions in our model about these parameters, as well as the wind mass-transfer process, and study the consequent variations of our synthetic CEMP population.The CEMP fractions calculated in our synthetic populations vary between 7% and 17%, a range consistent with the CEMP fractions among very metal-poor stars recently derived from the SDSS/SEGUE data sample. The resulting fractions are more than a factor of three higher than those determined with default assumptions in previous population-synthesis studies, which typically underestimated the observed CEMP fraction. We find that most CEMP stars in our simulations are formed in binary systems with periods

  6. Three New Planetary Systems Orbiting Metal-Poor Thick Disk Stars

    NASA Astrophysics Data System (ADS)

    Cochran, William D.; Endl, M.; Brugamyer, E. J.; MacQueen, P. J.

    2013-10-01

    We report the detection of Jovian mass planets orbiting three nearby metal-poor thick disk stars. These discoveries were all made using precise radial velocity measurements from the High Resolution Spectrograph of the Hobby-Eberly Telescope. All of the planets are of Jovian mass or larger, with orbital periods ranging from about a year to over six years. HIP 14342 shows two planetary companions with orbital periods near a 2:1 resonance. The other planets detected orbit HIP 13366 and HIP 109384. All three of these stars are kinematic members of the galactic "thick disk", which is a population of stars with a larger vertical scale height and a larger velocity dispersion that the thin disk to which the Sun belongs. The thick disk stars are of lower total metallicity than the Sun, and are also chemically different than thin disk stars, having the abundances of their alpha-capture elements (e.g. O, Ne, Mg, Si, S, Ca, Ti) enhanced by 0.2 to 0.4 dex over those of thin disk stars of the same [Fe/H]. The majority of planets found among stars with [Fe/H] < ~-0.2 orbit thick disk stars, even though thin disk stars significantly outnumber thick disk stars in this metallicity range. Thus, the enhanced abundance of the alpha-capture elements, which are also key elements in the chemistry of planet-forming materials, may be responsible for the large fraction of low-metallicity thick-disk stars with planetary companions.

  7. DISCOVERY OF A GAS-RICH COMPANION TO THE EXTREMELY METAL-POOR GALAXY DDO 68

    SciTech Connect

    Cannon, John M.; Alfvin, Erik D.; Johnson, Megan; Koribalski, Baerbel; McQuinn, Kristen B. W.; Skillman, Evan D.; Bailin, Jeremy; Ford, H. Alyson; Girardi, Léo; Hirschauer, Alec S.; Janowiecki, Steven; Salzer, John J.; Van Sistine, Angela; Dolphin, Andrew; Elson, E. C.; Marigo, Paola; Rosenfield, Philip; Rosenberg, Jessica L.; Venkatesan, Aparna; Warren, Steven R.

    2014-05-20

    We present H I spectral-line imaging of the extremely metal-poor galaxy DDO 68. This system has a nebular oxygen abundance of only ∼3% Z {sub ☉}, making it one of the most metal-deficient galaxies known in the local volume. Surprisingly, DDO 68 is a relatively massive and luminous galaxy for its metal content, making it a significant outlier in the mass-metallicity and luminosity-metallicity relationships. The origin of such a low oxygen abundance in DDO 68 presents a challenge for models of the chemical evolution of galaxies. One possible solution to this problem is the infall of pristine neutral gas, potentially initiated during a gravitational interaction. Using archival H I spectral-line imaging obtained with the Karl G. Jansky Very Large Array, we have discovered a previously unknown companion of DDO 68. This low-mass (M{sub H} {sub I} = 2.8 × 10{sup 7} M {sub ☉}), recently star-forming (SFR{sub FUV} = 1.4 × 10{sup –3} M {sub ☉} yr{sup –1}, SFR{sub Hα} < 7 × 10{sup –5} M {sub ☉} yr{sup –1}) companion has the same systemic velocity as DDO 68 (V {sub sys} = 506 km s{sup –1}; D = 12.74 ± 0.27 Mpc) and is located at a projected distance of ∼42 kpc. New H I maps obtained with the 100 m Robert C. Byrd Green Bank Telescope provide evidence that DDO 68 and this companion are gravitationally interacting at the present time. Low surface brightness H I gas forms a bridge between these objects.

  8. Fluorine in carbon-enhanced metal-poor stars: a binary scenario

    NASA Astrophysics Data System (ADS)

    Lugaro, M.; de Mink, S. E.; Izzard, R. G.; Campbell, S. W.; Karakas, A. I.; Cristallo, S.; Pols, O. R.; Lattanzio, J. C.; Straniero, O.; Gallino, R.; Beers, T. C.

    2008-06-01

    Aims: A super-solar fluorine abundance was observed in the carbon-enhanced metal-poor (CEMP) star HE 1305+0132 ([F/Fe] = +2.90, [Fe/H] = -2.5). We propose that this observation can be explained using a binary model that involve mass transfer from an asymptotic giant branch (AGB) star companion and, based on this model, we predict F abundances in CEMP stars in general. We discuss wether F can be used to discriminate between the formation histories of most CEMP stars: via binary mass transfer or from the ejecta of fast-rotating massive stars. Methods: We compute AGB yields using different stellar evolution and nucleosynthesis codes to evaluate stellar model uncertainties. We use a simple dilution model to determine the factor by which the AGB yields should be diluted to match the abundances observed in HE 1305+0132. We further employ a binary population synthesis tool to estimate the probability of F-rich CEMP stars. Results: The abundances observed in HE 1305+0132 can be explained if this star accreted 3-11% of the mass lost by its former AGB companion. The primary AGB star should have dredged-up at least 0.2 {M}⊙ of material from its He-rich region into the convective envelope via third dredge-up, which corresponds to AGB models of Z ≃ 0.0001 and mass ≃2 {M}⊙. Many AGB model uncertainties, such as the treatment of convective borders and mass loss, require further investigation. We find that in the binary scenario most CEMP stars should also be FEMP stars, that is, have [F/Fe] > +1, while fast-rotating massive stars do not appear to produce fluorine. We conclude that fluorine is a signature of low-mass AGB pollution in CEMP stars, together with elements associated with the slow neutron-capture process.

  9. Tidal stripping stellar substructures around four metal-poor globular clusters in the galactic bulge

    SciTech Connect

    Chun, Sang-Hyun; Kang, Minhee; Jung, DooSeok; Sohn, Young-Jong

    2015-01-01

    We investigate the spatial density configuration of stars around four metal-poor globular clusters (NGC 6266, NGC 6626, NGC 6642, and NGC 6723) in the Galactic bulge region using wide-field deep J, H, and K imaging data obtained with the Wide Field Camera near-infrared array on the United Kingdom Infrared Telescope. A statistical weighted filtering algorithm for the stars on the color–magnitude diagram is applied in order to sort cluster member candidates from the field star contamination. In two-dimensional isodensity contour maps of the clusters, we find that all four of the globular clusters exhibit strong evidence of tidally stripped stellar features beyond the tidal radius in the form of tidal tails or small density lobes/chunks. The orientations of the extended stellar substructures are likely to be associated with the effect of dynamic interaction with the Galaxy and the cluster's space motion. The observed radial density profiles of the four globular clusters also describe the extended substructures; they depart from theoretical King and Wilson models and have an overdensity feature with a break in the slope of the profile at the outer region of clusters. The observed results could imply that four globular clusters in the Galactic bulge region have experienced strong environmental effects such as tidal forces or bulge/disk shocks of the Galaxy during the dynamical evolution of globular clusters. These observational results provide further details which add to our understanding of the evolution of clusters in the Galactic bulge region as well as the formation of the Galaxy.

  10. Carbon Abundance Plateaus among Carbon-Enhanced Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Yoon, Jinmi; He, Siyu; Placco, Vinicius; Carollo, Daniela; Beers, Timothy C.

    2016-01-01

    A substantial fraction of low-metallicity stars in the Milky Way, the Carbon-Enhanced Metal-Poor (CEMP) stars, exhibit enhancements of their carbon-to-iron relative to the solar value ([C/Fe] > +0.7). They can be divided into several sub-classes, depending on the nature and degree of the observed enhancements of their neutron-capture elements, providing information on their likely progenitors. CEMP-s stars (which exhibit enhanced s-process elements) are thought to be enhanced by mass transfer from an evolved AGB companion, while CEMP-no stars (which exhibit no over-abundances of neutron-capture elements) appear to be associated with explosions of the very first generations of stars. High-resolution spectroscopic analyses are generally required in order to make these sub-classifications.Several recent studies have suggested the existence of bimodality in the distribution of absolute carbon abundances among CEMP stars -- most CEMP-no stars belong to a low-C band ((A(C) ˜ 6.5), while most CEMP-s stars reside on a high-C band (A(C) ˜ 8.25). The number of CEMP stars considered by individual studies is, however, quite small, so we have compiled all available high-resolution spectroscopic data for CEMP stars, in order to further investigate the existence of the claimed carbon bi-modality, and to consider what can be learned about the progenitors of CEMP-s and CEMP-no stars based on the observed distribution of A(C) on the individual plateaus.We acknowledge partial support from the grant PHY 14-30152; Physics Frontier Center/JINA Center for the Evolution of the Elements (JINA-CEE), awarded by the US National Science Foundation.

  11. EXTREMELY METAL-POOR STARS AND A HIERARCHICAL CHEMICAL EVOLUTION MODEL

    SciTech Connect

    Komiya, Yutaka

    2011-07-20

    Early phases of the chemical evolution of the Galaxy and formation history of extremely metal-poor (EMP) stars are investigated using hierarchical galaxy formation models. We build a merger tree of the Galaxy according to the extended Press-Schechter theory. We follow the chemical evolution along the tree and compare the model results to the metallicity distribution function and abundance ratio distribution of the Milky Way halo. We adopt three different initial mass functions (IMFs). In a previous study, we argued that the typical mass, M{sub md}, of EMP stars should be high, M{sub md} {approx} 10 M{sub sun}, based on studies of binary origin carbon-rich EMP stars. In this study, we show that only the high-mass IMF can explain an observed small number of EMP stars. For relative element abundances, the high-mass IMF and the Salpeter IMF predict similar distributions. We also investigate dependence on nucleosynthetic yields of supernovae (SNe). The theoretical SN yields by Kobayashi et al. and Chieffi and Limongi show reasonable agreement with observations for {alpha}-elements. Our model predicts a significant scatter of element abundances at [Fe/H] < -3. We adopted the stellar yields derived in the work of Francois et al., which produce the best agreement between the observational data and the one-zone chemical evolution model. Their yields well reproduce a trend of the averaged abundances of EMP stars but predict much larger scatter than do the observations. The model with hypernovae predicts Zn abundance, in agreement with the observations, but other models predict lower [Zn/Fe]. Ejecta from the hypernovae with large explosion energy is mixed in large mass and decreases the scatter of the element abundances.

  12. When White Dwarfs Collide

    NASA Astrophysics Data System (ADS)

    Hawley, Wendy Phyllis

    2012-01-01

    3D models of white dwarf collisions are used to assess the likelihood of double-degenerate mergers as progenitors for Type Ia supernovae (henceforth SNIa) and to identify observational signatures of double-degenerate collisions. Observations of individual SNIa, SNIa rates in different galaxy types, and double white dwarf binary systems suggest that mergers or collisions between two white dwarfs play a role in the overall SNIa population. Given the possibility of two progenitor systems (single-degenerate and double-degenerate), the sample of SNIa used in cosmological calcula- tions needs to be carefully examined. To improve calculations of cosmological parameters, the development of calibrated diagnostics for double-degenerate progenitor SNIa is essential. Head-on white dwarf collision simulations are used to provide an upper limit on the 56Ni production in white dwarf collisions. In chapter II, I explore zero impact parameter collisions of white dwarfs using the Eulerian grid code FLASH. The initial 1D white dwarf profiles are created assuming hydrostatic equilibrium and a uniform composition of 50% 12C and 50% 16O. The masses range from 0.64 to 0.81 solar masses and have an isothermal temperature of 107 K. I map these 1D models onto a 3D grid, where the dimensions of the grid are each eight times the white dwarf radius, and the dwarfs are initially placed four white dwarf radii apart (center to center). To provide insight into a larger range of physical possibilities, I also model non-zero impact parameter white dwarf collisions (Chapter III). Although head-on white dwarf collisions provide an upper limit on 56Ni production, non-zero impact parameter collisions provide insight into a wider range of physical scenarios. The initial conditions (box size, initial separation, composition, and initial temperature) are identical to those used for the head-on collisions (Chapter II) for the same range of masses. For each mass pair- ing, collision simulations are carried

  13. THE NUCLEOSYNTHETIC IMPRINT OF 15-40 M{sub sun} PRIMORDIAL SUPERNOVAE ON METAL-POOR STARS

    SciTech Connect

    Joggerst, C. C.; Woosley, S. E.; Almgren, A.; Bell, J.; Heger, Alexander; Whalen, Daniel

    2010-01-20

    The inclusion of rotationally induced mixing in stellar evolution can alter the structure and composition of pre-supernova stars. We survey the effects of progenitor rotation on nucleosynthetic yields in Population III and II supernovae (SNe) using the new adaptive mesh refinement code CASTRO. We examine piston-driven spherical explosions in 15, 25, and 40 M{sub sun} stars at Z = 0 and 10{sup -4} Z{sub sun} with three explosion energies and two rotation rates. Rotation in the Z = 0 models resulted in primary nitrogen production and a stronger hydrogen burning shell which led all models to die as red supergiants (in contrast to the blue supergiant progenitors made without rotation). On the other hand, the Z = 10{sup -4} Z{sub sun} models that included rotation ended their lives as compact blue stars. Because of their extended structure, the hydrodynamics favors more mixing and less fallback in the metal-free stars than the Z = 10{sup -4} models. As expected, higher energy explosions produce more enrichment and less fallback than do lower energy explosions, and at constant explosion energy, less massive stars produce more enrichment and leave behind smaller remnants than do more massive stars. We compare our nucleosynthetic yields to the chemical abundances in the three most iron-poor stars yet found and reproduce the abundance pattern of one, HE 0557-4840, with a zero metallicity, 15 M{sub sun}, 2.4 x 10{sup 51} erg SN. A Salpeter IMF-averaged integration of our yields for Z = 0 models with explosion energies of 2.4 x 10{sup 51} erg or less is in good agreement with the abundances observed in larger samples of extremely metal-poor (EMP) stars, provided 15 M{sub sun} stars are included. Since the abundance patterns of EMP stars likely arise from a representative sample of progenitors, our yields suggest that 15-40 M{sub sun} core-collapse SNe with moderate explosion energies contributed the bulk of the metals to the early universe.

  14. Fe-Group Elements in the Metal-Poor Star HD 84937: Abundances and their Implications

    NASA Astrophysics Data System (ADS)

    Sneden, Chris; Cowan, John J.; Kobayashi, Chiaki; Pignatari, Marco; Lawler, James E.; Den Hartog, Elizabeth; Wood, Michael P.

    2016-01-01

    We have derived accurate relative abundances of the Fe-group elements Sc through Zn in the very metal-poor main-sequence turnoff star HD 84937. For this study we analyzed high resolution, high signal-to-noise HST/STIS and VLT/UVES spectra over a total wavelength range 2300-7000 Å. We employed only recent or newly-applied reliable laboratory transition data for all species. Abundances from more than 600 lines of non-Fe species were combined with about 550 Fe lines in HD 84937 to yield abundance ratios of high precision. From parallel analyses of solar photospheric spectra we also derived new solar abundances of these elements. This in turn yielded internally-consistent relative HD 84937 abundances with respect to the Sun. For seven of the ten Fe-group elements the HD 84937 abundances were from both neutral and ionized transitions. In all of these cases the neutral and ionized species yield the same abundances within the measurement uncertainties. Therefore standard Saha ionization balance appears to hold in the HD 84937 atmosphere. We derived metallicity [Fe/H] = -2.32 with sample standard deviation of 0.06. Solid evidence is seen for departures from the solar abundance mix in HD 84937, for example [Co/Fe] = +0.14, [Cu/Fe] = -0.83, and <[Sc,Ti,V/Fe]> = +0.31. Combining our Sc, Ti, and V abundances for this star with those from large-sample spectroscopic surveys suggests that these elements are positively correlated in stars with [Fe/H] < -2. HD 84937 is unusually enriched in Sc, Ti, and V. Our analysis strongly suggests that different types of supernovae with a large scatter of explosion energies and asymmetries contributed to the creation of the Fe-group elements early in the Galaxy's history.This work has been supported in part by NASA grant NNX10AN93G (J.E.L.), by NSF grants AST-1211055 (J.E.L.), AST-1211585 (C.S.), PHY-1430152 (through JINA, J.J.C. and M.P.), EU MIRGCT-2006-046520 (M.P.), and by the ``Lendlet-2014'' Programme of the Hungarian Academy of

  15. The extreme chemistry of multiple stellar populations in the metal-poor globular cluster NGC 4833

    NASA Astrophysics Data System (ADS)

    Carretta, E.; Bragaglia, A.; Gratton, R. G.; D'Orazi, V.; Lucatello, S.; Momany, Y.; Sollima, A.; Bellazzini, M.; Catanzaro, G.; Leone, F.

    2014-04-01

    Our FLAMES survey of Na-O anticorrelation in globular clusters (GCs) is extended to NGC 4833, a metal-poor GC with a long blue tail on the horizontal branch (HB). We present the abundance analysis for a large sample of 78 red giants based on UVES and GIRAFFE spectra acquired at the ESO-VLT. We derived abundances of Na, O, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Ba, La, and Nd. This is the first extensive study of this cluster from high resolution spectroscopy. On the scale of our survey, the metallicity of NGC 4833 is [Fe/H] = -2.015 ± 0.004 ± 0.084 dex (rms = 0.014 dex) from 12 stars observed with UVES, where the first error is from statistics and the second one refers to the systematic effects. The iron abundance in NGC 4833 is homogeneous at better than 6%. On the other hand, the light elements involved in proton-capture reactions at high temperature show the large star-to-star variations observed in almost all GCs studied so far. The Na-O anticorrelation in NGC 4833 is quite extended, as expected from the high temperatures reached by stars on the HB, and NGC 4833 contains a conspicuous fraction of stars with extreme [O/Na] ratios. More striking is the finding that large star-to-star variations are also seen for Mg, which spans a range of more than 0.5 dex in this GC. Depletions in Mg are correlated to the abundances of O and anti-correlated with Na, Al, and Si abundances. This pattern suggests the action of nuclear processing at unusually high temperatures, producing the extreme chemistry observed in the stellar generations of NGC 4833. These extreme changes are also seen in giants of the much more massive GCs M 54 and ω Cen, and our conclusion is that NGC 4833 has probably lost a conspicuous fraction of its original mass due to bulge shocking, as also indicated by its orbit. Based on observations collected at ESO telescopes under programmes 083.D-0208 and 68.D-0265.Full Tables 2, 6-11 are only available at the CDS via anonymous ftp to http

  16. The Primordial Deuterium Abundance of the Most Metal-poor Damped Lyman-α System

    NASA Astrophysics Data System (ADS)

    Cooke, Ryan J.; Pettini, Max; Nollett, Kenneth M.; Jorgenson, Regina

    2016-10-01

    We report the discovery and analysis of the most metal-poor damped Lyα (DLA) system currently known, which also displays the Lyman series absorption lines of neutral deuterium. The average [O/H] abundance of this system is [O/H] = ‑2.804 ± 0.015, which includes an absorption component with [O/H] = ‑3.07 ± 0.03. Despite the unfortunate blending of many weak D i absorption lines, we report a precise measurement of the deuterium abundance of this system. Using the six highest-quality and self-consistently analyzed measures of D/H in DLAs, we report tentative evidence for a subtle decrease of D/H with increasing metallicity. This trend must be confirmed with future high-precision D/H measurements spanning a range of metallicity. A weighted mean of these six independent measures provides our best estimate of the primordial abundance of deuterium, 105 (D/H)P = 2.547 ± 0.033 ({{log}}10 {{{(D/H)}}}{{P}}=-4.5940+/- 0.0056). We perform a series of detailed Monte Carlo calculations of Big Bang nucleosynthesis (BBN) that incorporate the latest determinations of several key nuclear reaction cross-sections, and propagate their associated uncertainty. Combining our measurement of (D/H)P with these BBN calculations yields an estimate of the cosmic baryon density, 100 ΩB,0 h 2(BBN) = 2.156 ± 0.020, if we adopt the most recent theoretical determination of the d{(p,γ )}3{He} reaction rate. This measure of ΩB,0 h 2 differs by ∼2.3σ from the Standard Model value estimated from the Planck observations of the cosmic microwave background. Using instead a d{(p,γ )}3{He} reaction rate that is based on the best available experimental cross-section data, we estimate 100 ΩB,0 h 2(BBN) = 2.260 ± 0.034, which is in somewhat better agreement with the Planck value. Forthcoming measurements of the crucial d{(p,γ )}3{He} cross-section may shed further light on this discrepancy. Based on observations collected at the European Organisation for Astronomical Research in the Southern

  17. S-process in extremely metal-poor, low-mass stars

    NASA Astrophysics Data System (ADS)

    Cruz, M. A.; Serenelli, A.; Weiss, A.

    2013-11-01

    Context. Extremely metal-poor (EMP), low-mass stars experience an ingestion of protons into the helium-rich layer during the core He-flash, resulting in the production of neutrons through the reactions 12C(p,γ)13N(β)13C(α,n)16O. This is a potential site for the production of s-process elements in EMP stars, which does not occur in more metal-rich counterparts. The signatures of s-process elements in the two most iron deficient stars observed to date, HE1327-2326 & HE0107-5240, still await for an explanation. Aims: We investigate the possibility that low-mass EMP stars could be the source of s-process elements observed in extremely iron deficient stars, either as a result of self-enrichment or in a binary scenario as the consequence of a mass transfer episode. Methods: We present evolutionary and post-processing s-process calculations of a 1 M⊙ stellar model with metallicities of Z = 0, 10-8, and 10-7. We assess the sensitivity of nucleosynthesis results to uncertainties in the input physics of the stellar models with particular regard to the details of convective mixing during the core He-flash. Results: Our models provide the possibility of explaining the C, O, Sr, and Ba abundance for the star HE0107-5240 as the result of mass-transfer from a low-mass EMP star. The drawback of our model is that nitrogen would be overproduced and the 12C/^{13C} abundance ratio would be underproduced in comparison to the observed values if mass would be transferred before the primary star enters the asymptotic giant branch phase. Conclusions: Our results show that low-mass EMP stars cannot be ruled out as companion stars that might have polluted HE1327-2326 and HE0107-5240 and produced the observed s-process pattern. However, more detailed studies of the core He-flash and the proton ingestion episode are needed to determine the robustness of our predictions.

  18. The low Sr/Ba ratio on some extremely metal-poor stars

    NASA Astrophysics Data System (ADS)

    Spite, M.; Spite, F.; Bonifacio, P.; Caffau, E.; François, P.; Sbordone, L.

    2014-11-01

    Context. It has been noted that, in classical extremely metal-poor (EMP) stars, the abundance ratio of two well-observed neutron-capture elements, Sr and Ba, is always higher than [Sr/Ba] = -0.5, which is the value of the solar r-only process; however, a handful of EMP stars have recently been found with a very low Sr/Ba ratio. Aims: We try to understand the origin of this anomaly by comparing the abundance pattern of the elements in these stars and in the classical EMP stars. Methods: For a rigorous comparison with previous data, four stars with very low Sr/Ba ratios were observed and analyzed in the same way as in the First Stars program: analysis within LTE approximation through 1D (hydrostatic) model atmosphere, providing homogeneous abundances of nine neutron-capture elements. Results: In CS 22950-173, the only turnoff star of the sample, the Sr/Ba ratio is, in fact, found to be higher than the r-only solar ratio, so the star is discarded. The remaining stars (CS 29493-090, CS 30322-023, HE 305-4520) are cool evolved giants. They do not present a clear carbon enrichment, but in evolved giants C is partly burned into N, and owing to their high N abundance, they could still have initially been carbon-rich EMP stars (CEMP). The abundances of Na to Mg present similar anomalies to those in CEMP stars. The abundance patterns of the neutron-capture elements in the three stars are strikingly similar to a theoretical s-process pattern. This pattern could at first be attributed to pollution by a nearby AGB, but none of the stars presents a clear variation in the radial velocity indicating the presence of a companion. The stellar parameters seem to exclude any internal pollution in a TP-AGB phase for at least two of these stars. The possibility that the stars are early-AGB stars polluted during the core He flash does not seem compatible with the theory. Based on observations obtained with the ESO Very Large Telescope at Paranal Observatory, Chile (ID 077.D-0299(A) PI

  19. STELLAR POPULATIONS AND STRUCTURAL PROPERTIES OF ULTRA FAINT DWARF GALAXIES, CANES VENATICI I, BOOeTES I, CANES VENATICI II, AND LEO IV

    SciTech Connect

    Okamoto, Sakurako; Arimoto, Nobuo; Yamada, Yoshihiko; Onodera, Masato

    2012-01-10

    We take deep images of four ultra faint dwarf (UFD) galaxies, Canes Venatici I (CVn I), Booetes I (Booe I), Canes Venatici II (CVn II), and Leo IV, using the Suprime-Cam on the Subaru Telescope. Color-magnitude diagrams (CMDs) extend below main-sequence turnoffs (MSTOs) and yield measurements of the ages of stellar populations. The stellar populations of three faint galaxies, the Booe I, CVn II, and Leo IV dwarf spheroidal galaxies (dSphs), are estimated to be as old as the Galactic globular cluster M92. We confirm that Booe I dSph has no intrinsic color spread in the MSTO and no spatial difference in the CMD morphology, which indicates that Booe I dSph is composed of an old single stellar population. One of the brightest UFDs, CVn I dSph, shows a relatively younger age ({approx}12.6 Gyr) with respect to Booe I, CVn II, and Leo IV dSphs, and the distribution of red horizontal branch (HB) stars is more concentrated toward the center than that of blue HB stars, suggesting that the galaxy contains complex stellar populations. Booe I and CVn I dSphs show the elongated and distorted shapes. CVn II dSph has the smallest tidal radius of a Milky Way satellite and has a distorted shape, while Leo IV dSph shows a less concentrated spherical shape. The simple stellar population of faint UFDs indicates that the gases in their progenitors were removed more effectively than those of brighter dSphs at the occurrence of their initial star formation. This is reasonable if the progenitors of UFDs belong to less massive halos than those of brighter dSphs.

  20. Near-infrared spectroscopy of M dwarfs. II. H2O molecule as an abundance indicator of oxygen†

    NASA Astrophysics Data System (ADS)

    Tsuji, Takashi; Nakajima, Tadashi; Takeda, Yoichi

    2015-04-01

    Based on the near-infrared spectra (R ≈ 20000) of M dwarfs, oxygen abundances are determined from the rovibrational lines of H2O. Although H2O lines in M dwarfs are badly blended with each other and the continuum levels are depressed appreciably by the collective effect of the numerous H2O lines themselves, quantitative analysis of H2O lines has been carried out by referring to the pseudo-continua, consistently defined on the observed and theoretical spectra. For this purpose, the pseudo-continuum on the theoretical spectrum has been evaluated accurately by the use of the recent high-precision H2O line-list. Then, we propose a simple and flexible method of analyzing the equivalent widths (EWs) of blended features (i.e., not necessarily limited to single lines) by the use of a mini-curve-of-growth (CG), which is a small portion of the usual CG around the observed EW. The mini-CG is generated by using the theoretical EWs evaluated from the synthetic spectrum in exactly the same way as the EWs are measured from the observed spectrum. The observed EW is converted to the abundance by the use of the mini-CG, and the process is repeated for all the observed EWs line-by-line or blend-by-blend. In cool M dwarfs, almost all the oxygen atoms left after CO formation are in stable H2O molecules, which suffer little change for the uncertainties due to imperfect modelling of the photospheres. Thus the numerous H2O lines are excellent abundance indicators of oxygen. The oxygen abundances are determined to be log AO (AO = NO/NH) between -3.5 and -3.0 in 38 M dwarfs, but cannot be determined in four early M dwarfs in which H2O lines are detected only marginally. The resulting log AO/AC values plotted against log AC appear to be systematically smaller in the carbon-rich M dwarfs, showing the different formation histories of oxygen and carbon in the chemical evolution of the Galactic disk. Also, AO/AFe ratios in most M dwarfs are closer to the solar AO/AFe ratio, based on the

  1. PAndAS' CUBS: DISCOVERY OF TWO NEW DWARF GALAXIES IN THE SURROUNDINGS OF THE ANDROMEDA AND TRIANGULUM GALAXIES

    SciTech Connect

    Martin, Nicolas F.; McConnachie, Alan W.; Irwin, Mike; Chapman, Scott; Widrow, Lawrence M.; Ferguson, Annette M. N.; Ibata, Rodrigo A.; Dubinski, John; Babul, Arif; Navarro, Julio; Fardal, Mark; Lewis, Geraint F.; Rich, R. Michael

    2009-11-01

    We present the discovery of two new dwarf galaxies, Andromeda XXI and Andromeda XXII, located in the surroundings of the Andromeda and Triangulum galaxies (M31 and M33). These discoveries stem from the first year data of the Pan-Andromeda Archaeological Survey, a photometric survey of the M31/M33 group conducted with the Megaprime/MegaCam Wide-Field Camera mounted on the Canada-France-Hawaii Telescope. Both satellites appear as spatial overdensities of stars which, when plotted in a color-magnitude diagram, follow metal-poor, [Fe/H] = -1.8, red giant branches at the distance of M31/M33. Andromeda XXI is a moderately bright dwarf galaxy (M{sub V} = -9.9 +- 0.6), albeit with low surface brightness, emphasizing again that many relatively luminous M31 satellites still remain to be discovered. It is also a large satellite, with a half-light radius close to 1 kpc, making it the fourth largest Local Group dwarf spheroidal galaxy after the recently discovered Andromeda XIX, Andromeda II, and Sagittarius around the Milky Way, and supports the trend that M31 satellites are larger than their Milky Way counterparts. Andromeda XXII is much fainter (M{sub V} = -6.5 +- 0.8) and lies a lot closer in projection to M33 than it does to M31 (42 versus 224 kpc), suggesting that it could be the first Triangulum satellite to be discovered. Although this is a very exciting possibility in the context of a past interaction of M33 with M31 and the fate of its satellite system, a confirmation will have to await a good distance estimate to confirm its physical proximity to M33. Along with the dwarf galaxies found in previous surveys of the M31 surroundings, these two new satellites bring the number of dwarf spheroidal galaxies in this region to 20.

  2. Complete Element Abundances of Nine Stars in the r-process Galaxy Reticulum II

    NASA Astrophysics Data System (ADS)

    Ji, Alexander P.; Frebel, Anna; Simon, Joshua D.; Chiti, Anirudh

    2016-10-01

    We present chemical abundances derived from high-resolution Magellan/Magellan Inamori Kyocera Echelle spectra of the nine brightest known red giant members of the ultra-faint dwarf galaxy Reticulum II (Ret II). These stars span the full metallicity range of Ret II (‑3.5 < [Fe/H] < ‑2). Seven of the nine stars have extremely high levels of r-process material ([Eu/Fe] ∼ 1.7), in contrast to the extremely low neutron-capture element abundances found in every other ultra-faint dwarf galaxy studied to date. The other two stars are the most metal-poor stars in the system ([Fe/H] < ‑3), and they have neutron-capture element abundance limits similar to those in other ultra-faint dwarf galaxies. We confirm that the relative abundances of Sr, Y, and Zr in these stars are similar to those found in r-process halo stars, but they are ∼0.5 dex lower than the solar r-process pattern. If the universal r-process pattern extends to those elements, the stars in Ret II display the least contaminated known r-process pattern. The abundances of lighter elements up to the iron peak are otherwise similar to abundances of stars in the halo and in other ultra-faint dwarf galaxies. However, the scatter in abundance ratios is large enough to suggest that inhomogeneous metal mixing is required to explain the chemical evolution of this galaxy. The presence of low amounts of neutron-capture elements in other ultra-faint dwarf galaxies may imply the existence of additional r-process sites besides the source of r-process elements in Ret II. Galaxies like Ret II may be the original birth sites of r-process enhanced stars now found in the halo. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  3. VLT/FLAMES spectroscopy of red giant branch stars in the Fornax dwarf spheroidal galaxy

    NASA Astrophysics Data System (ADS)

    Lemasle, B.; de Boer, T. J. L.; Hill, V.; Tolstoy, E.; Irwin, M. J.; Jablonka, P.; Venn, K.; Battaglia, G.; Starkenburg, E.; Shetrone, M.; Letarte, B.; François, P.; Helmi, A.; Primas, F.; Kaufer, A.; Szeifert, T.

    2014-12-01

    Context. Fornax is one of the most massive dwarf spheroidal galaxies in the Local Group. The Fornax field star population is dominated by intermediate age stars but star formation was going on over almost its entire history. It has been proposed that Fornax experienced a minor merger event. Aims: Despite recent progress, only the high metallicity end of Fornax field stars ([Fe/H] > -1.2 dex) has been sampled in larger number via high resolution spectroscopy. We want to better understand the full chemical evolution of this galaxy by better sampling the whole metallicity range, including more metal poor stars. Methods: We use the VLT-FLAMES multi-fibre spectrograph in high-resolution mode to determine the abundances of several α, iron-peak and neutron-capture elements in a sample of 47 individual red giant branch stars in the Fornax dwarf spheroidal galaxy. We combine these abundances with accurate age estimates derived from the age probability distribution from the colour-magnitude diagram of Fornax. Results: Similar to other dwarf spheroidal galaxies, the old, metal-poor stars of Fornax are typically α-rich while the young metal-rich stars are α-poor. In the classical scenario of the time delay between Type II (SNe II) and Type Ia Supernovae (SNe Ia), we confirm that SNe Ia started to contribute to the chemical enrichment at [Fe/H] between -2.0 and -1.8 dex. We find that the onset of SNe Ia took place between 12-10 Gyr ago. The high values of [Ba/Fe], [La/Fe] reflect the influence of SNe Ia and AGB stars in the abundance pattern of the younger stellar population of Fornax. Conclusions: Our findings of low [α/Fe] and enhanced [Eu/Mg] are compatible with an initial mass function that lacks the most massive stars and with star formation that kept going on throughout the whole history of Fornax. We find that massive stars kept enriching the interstellar medium in α-elements, although they were not the main contributor to the iron enrichment. Based on FLAMES

  4. Chemical evolution of r-process elements in Draco dwarf spheroidal galaxies

    NASA Astrophysics Data System (ADS)

    Nitta Ishigaki, Miho; Tsujimoto, Takuji; Shigeyama, Toshikazu; Aoki, Wako

    2015-08-01

    Dwarf galaxies around the Milky Way halo are ideal laboratory of nucleosynthesis and chemical enrichments in the early universe. We studied chemical compositions including r-process elements for giant stars in Draco dwarf spheroidal galaxy based on high-resolution spectra obtained with the Subaru/HDS. Draco is known to mainly consist of old (age > 10 Gyr) and metal-poor ([Fe/H]<-1.5) stellar populations, which provides us an important insights about nucleosynthesis responsible for producing heavy elements in this galaxy. As reported in previous studies, we found that the Draco stars show enhanced [α/Fe] ratios at [Fe/H]<-2, decreasing at higher metallicity. This is consistent with an expectation that the chemical evolution is proceeded in a homogeneous manner initially by Type II and later by Type Ia supernovae. On the other hand, the [Eu/H] are constant over the metallicity range -2<[Fe/H]<-1 and low upper limits have been obtained at the lower [Fe/H]. The lack of increase in Eu abundance, despite the significant increase in Fe abundance by supernovae, implies that r-process elements were produced through much rarer events such as neutron-star mergers.

  5. PLANETS AROUND LOW-MASS STARS (PALMS). II. A LOW-MASS COMPANION TO THE YOUNG M DWARF GJ 3629 SEPARATED BY 0.''2

    SciTech Connect

    Bowler, Brendan P.; Liu, Michael C.; Shkolnik, Evgenya L.; Tamura, Motohide

    2012-09-01

    We present the discovery of a 0.''2 companion to the young M dwarf GJ 3629 as part of our high-contrast adaptive optics imaging search for giant planets around low-mass stars with the Keck-II and Subaru telescopes. Two epochs of imaging confirm that the pair is comoving and reveal signs of orbital motion. The primary exhibits saturated X-ray emission which, together with its UV photometry from GALEX, points to an age younger than {approx}300 Myr. At these ages the companion lies below the hydrogen burning limit with a model-dependent mass of 46 {+-} 16 M{sub Jup} based on the system's photometric distance of 22 {+-} 3 pc. Resolved YJHK photometry of the pair indicates a spectral type of M7 {+-} 2 for GJ 3629 B. With a projected separation of 4.4 {+-} 0.6 AU and an estimated orbital period of 21 {+-} 5 yr, GJ 3629 AB is likely to yield a dynamical mass in the next several years, making it one of only a handful of brown dwarfs to have a measured mass and an age constrained from the stellar primary.

  6. Using Clustering Algorithms to Identify Brown Dwarf Characteristics

    NASA Astrophysics Data System (ADS)

    Choban, Caleb

    2016-06-01

    Brown dwarfs are stars that are not massive enough to sustain core hydrogen fusion, and thus fade and cool over time. The molecular composition of brown dwarf atmospheres can be determined by observing absorption features in their infrared spectrum, which can be quantified using spectral indices. Comparing these indices to one another, we can determine what kind of brown dwarf it is, and if it is young or metal-poor. We explored a new method for identifying these subgroups through the expectation-maximization machine learning clustering algorithm, which provides a quantitative and statistical way of identifying index pairs which separate rare populations. We specifically quantified two statistics, completeness and concentration, to identify the best index pairs. Starting with a training set, we defined selection regions for young, metal-poor and binary brown dwarfs, and tested these on a large sample of L dwarfs. We present the results of this analysis, and demonstrate that new objects in these classes can be found through these methods.

  7. Seeking footprints of the primeval Universe in dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Hidalgo, Sebastian L.

    2015-03-01

    We present the star formation histories (SFHs) of four isolated dwarf galaxies, Cetus, Tucana, LGS-3, and Phoenix, as a function of galactocentric radius. Our results suggest that beyond some distance from the center, there are no significative differences in fundamental properties of these galaxies, such as the star formation rate (SFR) or age-metallicity relation (AMR). The stellar content of this region would be composed of old (>~ 10.5 Gyr) metal-poor stars only. In the innermost regions, dwarf galaxies appear to have formed stars during time intervals which duration varies from galaxy to galaxy. This extended star formation produces the dichotomy between dwarf spheroidal (dSph) and dwarf Transition (dTr) galaxy types.

  8. Zodiacal Exoplanets in Time (ZEIT) II. A "Super-Earth" Orbiting a Young K Dwarf in the Pleiades Neighborhood

    NASA Astrophysics Data System (ADS)

    Gaidos, E.; Mann, A. W.; Rizzuto, A.; Nofi, L.; Mace, G.; Vanderburg, A.; Feiden, G.; Narita, N.; Takeda, Y.; Esposito, T. M.; De Rosa, R. J.; Ansdell, M.; Hirano, T.; Graham, J. R.; Kraus, A.; Jaffe, D.

    2016-09-01

    We describe a "super-Earth"-size (2.30 ± 0.16R⊕) planet transiting an early K-type dwarf star in the Campaign 4 field observed by the K2 mission. The host star, EPIC 210363145, was identified as a candidate member of the approximately 120-Myr-old Pleiades cluster based on its kinematics and photometric distance. It is rotationally variable and exhibits near-ultraviolet emission consistent with a Pleiades age, but its rotational period is ≈ 20 d and its spectrum contains no Hα emission nor the Li I absorption expected of Pleiades K dwarfs. Instead, the star is probably an interloper that is unaffiliated with the cluster, but younger (≲ 1.3 Gyr) than the typical field dwarf. We ruled out a false positive transit signal produced by confusion with a background eclipsing binary by adaptive optics imaging and a statistical calculation. Doppler radial velocity measurements limit the companion mass to <2 times that of Jupiter. Screening of the lightcurves of 1014 potential Pleiades candidate stars uncovered no additional planets. An injection-and-recovery experiment using the K2 Pleiades lightcurves with simulated planets, assuming a planet population like that in the Kepler prime field, predicts only 0.8-1.8 detections (vs. ˜20 in an equivalent Kepler sample). The absence of Pleiades planet detections can be attributed to the much shorter monitoring time of K2 (80 days vs. four years), increased measurement noise due to spacecraft motion, and the intrinsic noisiness of the stars.

  9. A Wide-Field Photometric Survey for Extratidal Tails Around Five Metal-Poor Globular Clusters in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Chun, Sang-Hyun; Kim, Jae-Woo; Sohn, Sangmo T.; Park, Jang-Hyun; Han, Wonyong; Kim, Ho-Il; Lee, Young-Wook; Lee, Myung Gyoon; Lee, Sang-Gak; Sohn, Young-Jong

    2010-02-01

    Wide-field deep g'r'i' images obtained with the Megacam of the Canada-France-Hawaii Telescope are used to investigate the spatial configuration of stars around five metal-poor globular clusters M15, M30, M53, NGC 5053, and NGC 5466, in a field-of-view ~3°. Applying a mask filtering algorithm to the color-magnitude diagrams of the observed stars, we sorted cluster's member star candidates that are used to examine the characteristics of the spatial stellar distribution surrounding the target clusters. The smoothed surface density maps and the overlaid isodensity contours indicate that all of the five metal-poor globular clusters exhibit strong evidence of extratidal overdensity features over their tidal radii, in the form of extended tidal tails around the clusters. The orientations of the observed extratidal features show signatures of tidal tails tracing the clusters' orbits, inferred from their proper motions, and effects of dynamical interactions with the Galaxy. Our findings include detections of a tidal bridge-like feature and an envelope structure around the pair of globular clusters M53 and NGC 5053. The observed radial surface density profiles of target clusters have a deviation from theoretical King models, for which the profiles show a break at 0.5-0.7rt , extending the overdensity features out to 1.5-2rt . Both radial surface density profiles for different angular sections and azimuthal number density profiles confirm the overdensity features of tidal tails around the five metal-poor globular clusters. Our results add further observational evidence that the observed metal-poor halo globular clusters originate from an accreted satellite system, indicative of the merging scenario of the formation of the Galactic halo. Based on observations carried out at the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France, and the University of Hawaii. This is part of the

  10. The Unexpected Past of a Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    1996-08-01

    New Light on Cannibalism in the Local Group of Galaxies The Local Group of Galaxies consists of a few large spiral galaxies - for instance the Milky Way galaxy in which we live, and the Andromeda galaxy that is visible to the unaided eye in the northern constellation of the same name - as well as two dozen much smaller galaxies of mostly irregular shape. Whereas the larger galaxies have extended halos of very old stars, no such halos have ever been seen around the smaller ones. Now, however, Dante Minniti and Albert Zijlstra [1], working at the ESO 3.5-metre New Technology Telescope (NTT), have found a large halo of old and metal-poor stars around one of the dwarf galaxies in the Local Group. This finding is quite unexpected. It revises our understanding of star formation in these galaxies and provides important information about the past evolution of galaxies [2]. Galaxy halos The Milky Way galaxy is surrounded by a large, roughly spherical halo of old stars. The diameter is about 100,000 light years and the stars therein, known as Population II stars, are among the oldest known, with ages of 10 billion years or even more. They also differ from the younger stars nearer to the main plane of the Milky Way (in which our 4.7 billion year old Sun is located) by being very metal-poor. Many of the halo stars consist almost solely of hydrogen and helium, reflecting the composition of matter in the young Universe. This halo is important for our understanding of the processes that led to the formation of the Milky Way galaxy. It is believed that many of the halo stars and those of the same type found in globular clusters existed already before the Milky Way had fully formed. Galaxy cannibalism Many astronomers suspect that galaxies evolve and gradually grow larger and heavier by practising cannibalism on their own kind. In this picture, when two galaxies collide in space, the stars and nebulae in the smaller one will disperse and soon be taken over by the larger one, which

  11. VizieR Online Data Catalog: Extremely metal-poor stars CaII triplet (Carrera+, 2013)

    NASA Astrophysics Data System (ADS)

    Carrera, R.; Pancino, E.; Gallart, C.; Del Pino, A.

    2014-09-01

    The CaT calibration obtained in Paper I (Carrera et al., 2007AJ....134.1298C, Cat. J/AJ/134/1298) was obtained from observations of almost 500 RGB stars in 29 Galactic open and globular clusters, covering a total metallicity range of -2.33<=[Fe/H]<=+0.47. We used the same sample in this paper, so we refer the reader to Paper I for a detailed discussion about the observations and data reduction of these stars. (4 data files).

  12. Dwarf novae

    NASA Technical Reports Server (NTRS)

    Ladous, Constanze

    1993-01-01

    Dwarf novae are defined on grounds of their semi-regular brightness variations of some two to five magnitudes on time scales of typically 10 to 100 days. Historically several different classification schemes have been used. Today, dwarf novae are divided into three sub-classes: the U Geminorum stars, the SU Ursae Majoris stars, and the Z Camelopardalis stars. Outbursts of dwarf novae occur at semi-periodic intervals of time, typically every 10 to 100 days; amplitudes range from typically 2 to 5 mag. Within certain limits values are characteristic for each object. Relations between the outburst amplitude, or the total energy released during outburst, and the recurrence time have been found, as well as relations between the orbital period and the outburst decay time, the absolute magnitude during outburst maximum, and the widths of long and short outbursts, respectively. Some dwarf novae are known to have suspended their normal outburst activity altogether for a while. They later resumed it without having undergone any observable changes. The optical colors of dwarf novae all are quite similar during outburst, considerably bluer than during the quiescent state. During the outburst cycle, characteristic loops in the two color diagram are performed. At a time resolution on the order of minutes, strictly periodic photometric changes due to orbital motion become visible in the light curves of dwarf novae. These are characteristic for each system. Remarkably little is known about orbital variations during the course of an outburst. On time-scales of minutes and seconds, further more or less periodic types of variability are seen in dwarf novae. Appreciable flux is emitted by dwarf novae at all wavelengths from the X-rays to the longest IR wavelengths, and in some cases even in the radio. Most dwarf novae exhibit strong emission line spectra in the optical and UV during quiescence, although some have only very weak emissions in the optical and/or weak absorptions at UV

  13. FORMATION OF CARBON-ENHANCED METAL-POOR STARS IN THE PRESENCE OF FAR-ULTRAVIOLET RADIATION

    SciTech Connect

    Bovino, S.; Schleicher, D. R. G.; Latif, M. A.; Grassi, T.

    2014-08-01

    Recent discoveries of carbon-enhanced metal-poor stars like SMSS J031300.36–670839.3 provide increasing observational insights into the formation conditions of the first second-generation stars in the universe, reflecting the chemical conditions after the first supernova explosion. Here, we present the first cosmological simulations with a detailed chemical network including primordial species as well as C, C{sup +}, O, O{sup +}, Si, Si{sup +}, and Si{sup 2+} following the formation of carbon-enhanced metal-poor stars. The presence of background UV flux delays the collapse from z = 21 to z = 15 and cool the gas down to the cosmic microwave background temperature for a metallicity of Z/Z {sub ☉} = 10{sup –3}. This can potentially lead to the formation of lower-mass stars. Overall, we find that the metals have a stronger effect on the collapse than the radiation, yielding a comparable thermal structure for large variations in the radiative background. We further find that radiative backgrounds are not able to delay the collapse for Z/Z {sub ☉} = 10{sup –2} or a carbon abundance as in SMSS J031300.36–670839.3.

  14. Non-LTE line formation of Fe in late-type stars - III. 3D non-LTE analysis of metal-poor stars

    NASA Astrophysics Data System (ADS)

    Amarsi, A. M.; Lind, K.; Asplund, M.; Barklem, P. S.; Collet, R.

    2016-08-01

    As one of the most important elements in astronomy, iron abundance determinations need to be as accurate as possible. We investigate the accuracy of spectroscopic iron abundance analyses using archetypal metal-poor stars. We perform detailed 3D non-LTE radiative transfer calculations based on 3D hydrodynamic STAGGER model atmospheres, and employ a new model atom that includes new quantum-mechanical neutral hydrogen collisional rate coefficients. With the exception of the red giant HD122563, we find that the 3D non-LTE models achieve Fe I/Fe II excitation and ionization balance as well as not having any trends with equivalent width to within modelling uncertainties of 0.05 dex, all without having to invoke any microturbulent broadening; for HD122563 we predict that the current best parallax-based surface gravity is overestimated by 0.5 dex. Using a 3D non-LTE analysis, we infer iron abundances from the 3D model atmospheres that are roughly 0.1 dex higher than corresponding abundances from 1D MARCS model atmospheres; these differences go in the same direction as the non-LTE effects themselves.We make available grids of departure coefficients, equivalent widths and abundance corrections, calculated on 1D MARCS model atmospheres and horizontally- and temporally-averaged 3D STAGGER model atmospheres.

  15. IMPROVED V I log(gf) VALUES AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937

    SciTech Connect

    Lawler, J. E.; Wood, M. P.; Den Hartog, E. A.; Feigenson, T.; Sneden, C.; Cowan, J. J. E-mail: mpwood@wisc.edu E-mail: tfeigenson@wisc.edu E-mail: cowan@nhn.ou.edu

    2015-01-01

    New emission branching fraction measurements for 836 lines of the first spectrum of vanadium (V I) are determined from hollow cathode lamp spectra recorded with the National Solar Observatory 1 m Fourier transform spectrometer (FTS) and a high-resolution echelle spectrometer. The branching fractions are combined with recently published radiative lifetimes from laser-induced fluorescence measurements to determine accurate absolute atomic transition probabilities for the 836 lines. The FTS data are also used to extract new hyperfine structure A coefficients for 26 levels of neutral vanadium. These new laboratory data are applied to determine the V abundance in the Sun and metal-poor star HD 84937, yielding log ε(V) = 3.956 ± 0.004 (σ = 0.037) based on 93 V I lines and log ε(V) = 1.89 ± 0.03 (σ = 0.07) based on nine V I lines, respectively, using the Holweger-Müller 1D model. These new V I abundance values for the Sun and HD 84937 agree well with our earlier determinations based upon V II.

  16. Improved V I Log(gf) Values and Abundance Determinations in the Photospheres of the Sun and Metal-poor Star HD 84937

    NASA Astrophysics Data System (ADS)

    Lawler, J. E.; Wood, M. P.; Den Hartog, E. A.; Feigenson, T.; Sneden, C.; Cowan, J. J.

    2014-12-01

    New emission branching fraction measurements for 836 lines of the first spectrum of vanadium (V I) are determined from hollow cathode lamp spectra recorded with the National Solar Observatory 1 m Fourier transform spectrometer (FTS) and a high-resolution echelle spectrometer. The branching fractions are combined with recently published radiative lifetimes from laser-induced fluorescence measurements to determine accurate absolute atomic transition probabilities for the 836 lines. The FTS data are also used to extract new hyperfine structure A coefficients for 26 levels of neutral vanadium. These new laboratory data are applied to determine the V abundance in the Sun and metal-poor star HD 84937, yielding log ɛ(V) = 3.956 ± 0.004 (σ = 0.037) based on 93 V I lines and log ɛ(V) = 1.89 ± 0.03 (σ = 0.07) based on nine V I lines, respectively, using the Holweger-Müller 1D model. These new V I abundance values for the Sun and HD 84937 agree well with our earlier determinations based upon V II.

  17. THE BROWN DWARF KINEMATICS PROJECT. II. DETAILS ON NINE WIDE COMMON PROPER MOTION VERY LOW MASS COMPANIONS TO NEARBY STARS ,

    SciTech Connect

    Faherty, Jacqueline K.; Shara, Michael M.; Burgasser, Adam J.; West, Andrew A.; Bochanski, John J.; Cruz, Kelle L.; Walter, Frederick M.

    2010-01-15

    We report on nine wide common proper motion systems containing late-type M, L, or T companions. We confirm six previously reported companions, and identify three new systems. The ages of these systems are determined using diagnostics for both stellar primaries and low-mass secondaries and masses for the secondaries are inferred using evolutionary models. Of our three new discoveries, the M3+T6.5 pair G 204-39 and SDSS J1758+4633 has an age constrained to 0.5-1.5 Gyr making the secondary a potentially useful brown dwarf benchmark. The G5+L4 pair G 200-28 and SDSS J1416+5006 has a projected separation of {approx}25,000 AU making it one of the widest and lowest binding energy systems known to date. The system containing NLTT 2274 and SDSS J0041+1341 is an older M4+L0 (>4.5 Gyr) pair which shows H{alpha} activity in the secondary but not the primary making it a useful tracer of age/mass/activity trends. Two of the nine systems have discrepant component ages that emerge from stellar or ultracool diagnostics indicating possible shortcomings in our understanding of the age diagnostics of stars and brown dwarfs. We find a resolved binary frequency for widely separated (>100 AU) low-mass companions (i.e., at least a triple system) which is at least twice the frequency found for the field ultracool dwarf population. The ratio of triples to binaries and quadruples to binaries is also high for this sample: 3:5 and 1:4, respectively, compared to 8 pc sample values of 1:4 and 1:26. The additional components in these wide companion systems indicates a formation mechanism that requires a third or fourth component to maintain gravitational stability or facilitate the exchange of angular momentum. The binding energies for the nine multiples discussed in this text are among the lowest known for wide low-mass systems, suggesting that weakly bound, low-to-intermediate mass (0.2 M {sub sun} < M {sub tot}< 1.0 M {sub sun}) multiples can form and survive to exist in the field (1-8 Gyr)

  18. The Brown Dwarf Kinematics Project. II. Details on Nine Wide Common Proper Motion Very Low Mass Companions to Nearby Stars

    NASA Astrophysics Data System (ADS)

    Faherty, Jacqueline K.; Burgasser, Adam J.; West, Andrew A.; Bochanski, John J.; Cruz, Kelle L.; Shara, Michael M.; Walter, Frederick M.

    2010-01-01

    We report on nine wide common proper motion systems containing late-type M, L, or T companions. We confirm six previously reported companions, and identify three new systems. The ages of these systems are determined using diagnostics for both stellar primaries and low-mass secondaries and masses for the secondaries are inferred using evolutionary models. Of our three new discoveries, the M3+T6.5 pair G 204-39 and SDSS J1758+4633 has an age constrained to 0.5-1.5 Gyr making the secondary a potentially useful brown dwarf benchmark. The G5+L4 pair G 200-28 and SDSS J1416+5006 has a projected separation of ~25,000 AU making it one of the widest and lowest binding energy systems known to date. The system containing NLTT 2274 and SDSS J0041+1341 is an older M4+L0 (>4.5 Gyr) pair which shows Hα activity in the secondary but not the primary making it a useful tracer of age/mass/activity trends. Two of the nine systems have discrepant component ages that emerge from stellar or ultracool diagnostics indicating possible shortcomings in our understanding of the age diagnostics of stars and brown dwarfs. We find a resolved binary frequency for widely separated (>100 AU) low-mass companions (i.e., at least a triple system) which is at least twice the frequency found for the field ultracool dwarf population. The ratio of triples to binaries and quadruples to binaries is also high for this sample: 3:5 and 1:4, respectively, compared to 8 pc sample values of 1:4 and 1:26. The additional components in these wide companion systems indicates a formation mechanism that requires a third or fourth component to maintain gravitational stability or facilitate the exchange of angular momentum. The binding energies for the nine multiples discussed in this text are among the lowest known for wide low-mass systems, suggesting that weakly bound, low-to-intermediate mass (0.2 M sun < M tot< 1.0 M sun) multiples can form and survive to exist in the field (1-8 Gyr). This paper includes data

  19. Impact of NLTE on research of early chemical enrichment of the dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Mashonkina, Lyudmila

    2015-08-01

    The individual stars observed in the dwarf galaxies orbiting the Milky Way are presumably red giants. Their chemical abundances are commonly determined under the classical LTE assumption, despite its validity is questionable for atmospheres of giant, in particular, metal-poor stars. Exactly metal-poor objects are important for understanding the early chemical enrichment processes of the host galaxy and the onset of star formation. We selected a sample of the -4 < [Fe/H] < -2 stars in the dwarf spheroidal (dSph) galaxies Sculptor, Sextans, and Fornax and the ultra-faint galaxies Bootes I and Segue I, with the high-resolution observational data available, and revised abundances of up to 12 chemical species based on the non-local thermodynamic equilibrium (NLTE) line formation. Stellar parameters taken from the literature were checked through the NLTE analysis of lines of iron observed in the two ionisation stages, Fe I and Fe II. For the Scl, Sex, and Fnx stars, with effective temperatures and surface gravities derived from the photometry and known distance (Jablonka et al. 2015; Tafelmeyer et al. 2010), the Fe I/Fe II ionisation equilibrium was found to be fulfilled, when applying a scaling factor of SH = 0.5 to the Drawinian rates of Fe+H collisions. Pronounced NLTE effects were calculated for lines of Na I and Al I resulting in up to 0.5 dex lower [Na/Fe] ratios and up to 0.65 dex higher [Al/Fe] ratios compared with the corresponding LTE values. For the six Scl stars, the scatter of data on Mg/Na is much smaller in NLTE, with the mean [Mg/Na] = 0.61 +- 0.11, than LTE, where [Mg/Na] = 0.42 +- 0.21. We computed a grid of the NLTE abundance corrections for an extensive list of the Ca I, Ti I-Ti II, and Fe I lines in the MARCS models of cool giants, 4000 K <= Teff <= 4750 K, 0.5 <= log g <= 2.5, -4 <= [M/H] <= 0.

  20. The Unexpected Past of a Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    1996-08-01

    New Light on Cannibalism in the Local Group of Galaxies The Local Group of Galaxies consists of a few large spiral galaxies - for instance the Milky Way galaxy in which we live, and the Andromeda galaxy that is visible to the unaided eye in the northern constellation of the same name - as well as two dozen much smaller galaxies of mostly irregular shape. Whereas the larger galaxies have extended halos of very old stars, no such halos have ever been seen around the smaller ones. Now, however, Dante Minniti and Albert Zijlstra [1], working at the ESO 3.5-metre New Technology Telescope (NTT), have found a large halo of old and metal-poor stars around one of the dwarf galaxies in the Local Group. This finding is quite unexpected. It revises our understanding of star formation in these galaxies and provides important information about the past evolution of galaxies [2]. Galaxy halos The Milky Way galaxy is surrounded by a large, roughly spherical halo of old stars. The diameter is about 100,000 light years and the stars therein, known as Population II stars, are among the oldest known, with ages of 10 billion years or even more. They also differ from the younger stars nearer to the main plane of the Milky Way (in which our 4.7 billion year old Sun is located) by being very metal-poor. Many of the halo stars consist almost solely of hydrogen and helium, reflecting the composition of matter in the young Universe. This halo is important for our understanding of the processes that led to the formation of the Milky Way galaxy. It is believed that many of the halo stars and those of the same type found in globular clusters existed already before the Milky Way had fully formed. Galaxy cannibalism Many astronomers suspect that galaxies evolve and gradually grow larger and heavier by practising cannibalism on their own kind. In this picture, when two galaxies collide in space, the stars and nebulae in the smaller one will disperse and soon be taken over by the larger one, which

  1. Simulating Metal-Poor and Metal-Free Star Formation in the Earliest Galaxies

    NASA Astrophysics Data System (ADS)

    Safranek-Shrader, Chalence

    2014-01-01

    The end of the cosmic dark ages was brought about by the formation of the first stars and galaxies. Since this epoch is currently outside of observational reach, numerical studies are key in understanding this uncharted cosmic epoch. In this dissertation talk, I will describe my work using high-resolution, zoom-in simulations to understand the formation of these earliest stellar associations in a cosmological setting. The overarching focus will be on the fragmentation of collapsing gas and how this process is moderated by the gas chemistry, radiation fields, and realistic cosmological initial conditions. A key aspect of this work has been the development of sophisticated physics modules for the hydrodynamics code FLASH, including non-equilibrium chemistry, radiative transfer schemes, and sink particles. I will begin by describing how more moderate mass Population III stars ended their lives with a relatively quick heavy-element enrichment of their host dark matter halos, resulting in prompt Population II star formation. The introduction of metals from the first supernovae is believed to induce a star formation mode transition from high to low characteristic mass. I will show how the fragmentation of such metal enriched gas depends strongly on the metallicity, with fragmentation setting in when gas hits the CMB temperature floor. If present, an H2 photo-dissociating Lyman-Werner radiation background can delay the formation of the first stars and potentially result in clustered metal-free star formation in more massive, self-shielding halos at lower redshift. I will present results from recent simulations that follow the collapse and fragmentation of the first dust enriched gas to high densities (n ~ 10^14 cm^-3), analyzing the interplay of dust cooling with a CMB temperature floor and gauging the effect that dust heating from protostellar feedback has on the outcome of star formation. Finally, I will discuss this work’s implications for next

  2. OPTICAL–NEAR-INFRARED PHOTOMETRIC CALIBRATION OF M DWARF METALLICITY AND ITS APPLICATION

    SciTech Connect

    Hejazi, N.; Robertis, M. M. De; Dawson, P. C. E-mail: mmdr@yorku.ca

    2015-04-15

    Based on a carefully constructed sample of dwarf stars, a new optical–near-infrared photometric calibration to estimate the metallicity of late-type K and early-to-mid-type M dwarfs is presented. The calibration sample has two parts; the first part includes 18 M dwarfs with metallicities determined by high-resolution spectroscopy and the second part contains 49 dwarfs with metallicities obtained through moderate-resolution spectra. By applying this calibration to a large sample of around 1.3 million M dwarfs from the Sloan Digital Sky Survey and 2MASS, the metallicity distribution of this sample is determined and compared with those of previous studies. Using photometric parallaxes, the Galactic heights of M dwarfs in the large sample are also estimated. Our results show that stars farther from the Galactic plane, on average, have lower metallicity, which can be attributed to the age–metallicity relation. A scarcity of metal-poor dwarf stars in the metallicity distribution relative to the Simple Closed Box Model indicates the existence of the “M dwarf problem,” similar to the previously known G and K dwarf problems. Several more complicated Galactic chemical evolution models which have been proposed to resolve the G and K dwarf problems are tested and it is shown that these models could, to some extent, mitigate the M dwarf problem as well.

  3. The evolution of C/O in dwarf galaxies from Hubble Space Telescope FOS observations

    NASA Technical Reports Server (NTRS)

    Garnett, D. R.; Skillman, E. D.; Dufour, R. J.; Peimbert, M.; Torres-Peimbert, S.; Terlevich, R.; Terlevich, E.; Shields, G. A.

    1995-01-01

    We present UV observations of seven H II regions in low-luminosity dwarf irregular galaxies and the Magellanic Clouds obtained with the Faint Object Spectrograph (FOS) on the Hubble Space Telescope (HST) in order to measure the C/O abundance ratio in the interstellar medium (ISM) of those galaxies. We measure both O III 1666 A and C III 1909 A in our spectra, enabling us to determine C(+2)/O(+2) with relatively small uncertainties. The results from our HST observations show a continuous increase in C/O with increasing O/H, consistent with a power law having an index of 0.43 +/- 0.09 over the range -4.7 to -3.6 in log (O/H). One possible interpretation of this trend is that the most metal-poor galaxies are the youngest and dominated by the products of early enrichment by massive stars, while more metal-rich galaxies show increasing, delayed contributions of carbon from intermediate-mass stars. Our results also suggest that it may not be appropiate to combine abundances in irregular galaxies with those in spiral galaxies to study the evolution of chemical abundances. Our measured C/O ratios in the most metal-poor galaxies are consistent with predictions of nucleosynthesis from massive stars for Weaver & Woosley's best estimate for the 12C(alpha, gamma) 16O nuclear reaction rate, assuming negligible contanmination from carbon produced in intermediate-mass stars in these galaxies. We detect a weak N III 1750 A multiplet in SMC N88A and obtain interesting upper limits for two other objects. Our 2 sigma uppr limits on the 1750 A feature indicate that the N(+2)/O(+2) ratios in these objects are not significantly larger than the N(+)/O(+) ratios measured from optical spectra. This behavior is consistent with predictions of photionization models, although better detections of N III are needed to confirm the results.

  4. Standard Stars for the High-velocity and Metal-poor project at San Pedro Mártir

    NASA Astrophysics Data System (ADS)

    Schuster, W. J.; Parrao, L.; Contreras, M. E.

    2016-04-01

    The main documentation for the primary and secondary standard stars used in the high-velocity and metal-poor stars project is presented. Observations were taken using the Strömgren-Crawford, uvby-Hβ, 6-channel, spectrophotometric equipment with the H.L. Johnson 1.5-m telescope at the Observatorio Astronómico Nacional, San Pedro Mártir, between 1987 and 2007. Standard photometric values from the literature are reported for our standard stars, as well as transformed standard values, errors in the instrumental system, the transformation coefficients obtained for the standard system, the transformation errors, and the methods used to obtain such photometric observations and their standard transformations.

  5. Preliminary determination of the Non-LTE Calcium abundance in a sample of extremely metal-poor stars*

    NASA Astrophysics Data System (ADS)

    Spite, M.; Spite, F.; Bonifacio, P.; Caffau, E.; Andrievsky, S.; Korotin, S.; Cayrel, R.; François, P.

    2011-12-01

    The abundance ratios of the elements found in the extremely metal-poor stars (EMP) are a test of the yields predicted by the models of supernovae. For precise comparisons, it is of course preferable to avoid the approximation of LTE. The difference of LTE and NLTE profiles is displayed for three strong lines. The NLTE abundances of Ca are derived from the profiles of about 15 Ca I lines in the EMP giants and about 10 lines in the turnoff stars. The improved abundance trends are consistent with a [Ca/Fe] ratio constant vs. [Fe/H], and with a [Ca/Mg] ratio slightly declining when [Mg/H] increases. Also [Ca/Mg] presents a scatter larger than [Ca/Fe]. As far as the comparison with sulfur (another alpha elment) is concerned we find that [S/Ca] presents a scatter smaller than [S/Mg].

  6. MOLYBDENUM, RUTHENIUM, AND THE HEAVY r-PROCESS ELEMENTS IN MODERATELY METAL-POOR MAIN-SEQUENCE TURNOFF STARS

    SciTech Connect

    Peterson, Ruth C.

    2013-05-01

    The ratios of elemental abundances observed in metal-poor stars of the Galactic halo provide a unique present-day record of the nucleosynthesis products of its earliest stars. While the heaviest elements were synthesized by the r- and s-processes, dominant production mechanisms of light trans-ironic elements were obscure until recently. This work investigates further our 2011 conclusion that the low-entropy regime of a high-entropy wind (HEW) produced molybdenum and ruthenium in two moderately metal-poor turnoff stars that showed extreme overabundances of those elements with respect to iron. Only a few, rare nucleosynthesis events may have been involved. Here we determine abundances for Mo, Ru, and other trans-Fe elements for 28 similar stars by matching spectral calculations to well-exposed near-UV Keck HIRES spectra obtained for beryllium abundances. In each of the 26 turnoff stars with Mo or Ru line detections and no evidence for s-process production (therefore old), we find Mo and Ru to be three to six times overabundant. In contrast, the maximum overabundance is reduced to factors of three and two for the neighboring elements zirconium and palladium. Since the overproduction peaks sharply at Mo and Ru, a low-entropy HEW is confirmed as its origin. The overabundance level of the heavy r-process elements varies significantly, from none to a factor of four, but is uncorrelated with Mo and Ru overabundances. Despite their moderate metallicity, stars in this group trace the products of different nucleosynthetic events: possibly very few events, possibly events whose output depended on environment, metallicity, or time.

  7. Detection of Phosphorus, Sulphur, and Zinc in the Carbon-enhanced Metal-poor Star BD+44 493

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Placco, Vinicius M.; Beers, Timothy C.

    2016-06-01

    The carbon-enhanced metal-poor star BD+44°493 ([Fe/H] = -3.9) has been proposed as a candidate second-generation star enriched by metals from a single Pop III star. We report the first detections of P and S and the second detection of Zn in any extremely metal-poor carbon-enhanced star, using new spectra of BD+44°493 collected by the Cosmic Origins Spectrograph on the Hubble Space Telescope. We derive [P/Fe] = -0.34 ± 0.21, [S/Fe] = +0.07 ± 0.41, and [Zn/Fe] = -0.10 ± 0.24. We increase by 10-fold the number of Si i lines detected in BD+44°493, yielding [Si/Fe] = +0.15 ± 0.22. The [S/Fe] and [Zn/Fe] ratios exclude the hypothesis that the abundance pattern in BD+44°493 results from depletion of refractory elements onto dust grains. Comparison with zero-metallicity supernova (SN) models suggests that the stellar progenitor that enriched BD+44°493 was massive and ejected much less than 0.07 M ⊙ of 56Ni, characteristic of a faint SN. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under NASA contract NAS 5-26555. These observations are associated with program GO-14231.

  8. A search for stars of very low metal abundance. VI. Detailed abundances of 313 metal-poor stars

    SciTech Connect

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Burley, Gregory S.; Kelson, Daniel D.; Sneden, Christopher

    2014-06-01

    We present radial velocities, equivalent widths, model atmosphere parameters, and abundances or upper limits for 53 species of 48 elements derived from high resolution optical spectroscopy of 313 metal-poor stars. A majority of these stars were selected from the metal-poor candidates of the HK Survey of Beers, Preston, and Shectman. We derive detailed abundances for 61% of these stars for the first time. Spectra were obtained during a 10 yr observing campaign using the Magellan Inamori Kyocera Echelle spectrograph on the Magellan Telescopes at Las Campanas Observatory, the Robert G. Tull Coudé Spectrograph on the Harlan J. Smith Telescope at McDonald Observatory, and the High Resolution Spectrograph on the Hobby-Eberly Telescope at McDonald Observatory. We perform a standard LTE abundance analysis using MARCS model atmospheres, and we apply line-by-line statistical corrections to minimize systematic abundance differences arising when different sets of lines are available for analysis. We identify several abundance correlations with effective temperature. A comparison with previous abundance analyses reveals significant differences in stellar parameters, which we investigate in detail. Our metallicities are, on average, lower by ≈0.25 dex for red giants and ≈0.04 dex for subgiants. Our sample contains 19 stars with [Fe/H] ≤–3.5, 84 stars with [Fe/H] ≤–3.0, and 210 stars with [Fe/H] ≤–2.5. Detailed abundances are presented here or elsewhere for 91% of the 209 stars with [Fe/H] ≤–2.5 as estimated from medium resolution spectroscopy by Beers, Preston, and Shectman. We will discuss the interpretation of these abundances in subsequent papers.

  9. Molybdenum, Ruthenium, and the Heavy r-process Elements in Moderately Metal-poor Main-sequence Turnoff Stars

    NASA Astrophysics Data System (ADS)

    Peterson, Ruth C.

    2013-05-01

    The ratios of elemental abundances observed in metal-poor stars of the Galactic halo provide a unique present-day record of the nucleosynthesis products of its earliest stars. While the heaviest elements were synthesized by the r- and s-processes, dominant production mechanisms of light trans-ironic elements were obscure until recently. This work investigates further our 2011 conclusion that the low-entropy regime of a high-entropy wind (HEW) produced molybdenum and ruthenium in two moderately metal-poor turnoff stars that showed extreme overabundances of those elements with respect to iron. Only a few, rare nucleosynthesis events may have been involved. Here we determine abundances for Mo, Ru, and other trans-Fe elements for 28 similar stars by matching spectral calculations to well-exposed near-UV Keck HIRES spectra obtained for beryllium abundances. In each of the 26 turnoff stars with Mo or Ru line detections and no evidence for s-process production (therefore old), we find Mo and Ru to be three to six times overabundant. In contrast, the maximum overabundance is reduced to factors of three and two for the neighboring elements zirconium and palladium. Since the overproduction peaks sharply at Mo and Ru, a low-entropy HEW is confirmed as its origin. The overabundance level of the heavy r-process elements varies significantly, from none to a factor of four, but is uncorrelated with Mo and Ru overabundances. Despite their moderate metallicity, stars in this group trace the products of different nucleosynthetic events: possibly very few events, possibly events whose output depended on environment, metallicity, or time.

  10. Detection of Phosphorus, Sulphur, and Zinc in the Carbon-enhanced Metal-poor Star BD+44 493

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Placco, Vinicius M.; Beers, Timothy C.

    2016-06-01

    The carbon-enhanced metal-poor star BD+44°493 ([Fe/H] = ‑3.9) has been proposed as a candidate second-generation star enriched by metals from a single Pop III star. We report the first detections of P and S and the second detection of Zn in any extremely metal-poor carbon-enhanced star, using new spectra of BD+44°493 collected by the Cosmic Origins Spectrograph on the Hubble Space Telescope. We derive [P/Fe] = ‑0.34 ± 0.21, [S/Fe] = +0.07 ± 0.41, and [Zn/Fe] = ‑0.10 ± 0.24. We increase by 10-fold the number of Si i lines detected in BD+44°493, yielding [Si/Fe] = +0.15 ± 0.22. The [S/Fe] and [Zn/Fe] ratios exclude the hypothesis that the abundance pattern in BD+44°493 results from depletion of refractory elements onto dust grains. Comparison with zero-metallicity supernova (SN) models suggests that the stellar progenitor that enriched BD+44°493 was massive and ejected much less than 0.07 M ⊙ of 56Ni, characteristic of a faint SN. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under NASA contract NAS 5-26555. These observations are associated with program GO-14231.

  11. Tidal dwarf galaxies and the luminosity-metallicity relation .

    NASA Astrophysics Data System (ADS)

    Sweet, S. M.; Drinkwater, M. J.; Meurer, G.; Bekki, K.; Dopita, M. A.; Kilborn, V.; Nicholls, D.

    We present a recalibration of the luminosity-metallicity relation for gas-rich, star-forming dwarfs to magnitudes as faint as M_R˜ -13. We use the \\citet{Dopita2013} metallicity calibrations to calibrate the relation for all of the data in this analysis. Metal-rich dwarfs classified as tidal dwarf galaxy (TDG) candidates in the literature are typically of metallicity 12 + log(O/H) = 8.70 ± 0.05, while SDSS dwarfs fainter than M_R = -16 have a mean metallicity of 12 + log(O/H) = 8.28 ± 0.10, regardless of their luminosity. Our hydrodynamical simuations predict that TDGs should have metallicities elevated above the normal luminosity-metallicity relation. Metallicity can therefore be a useful diagnostic for identifying TDG candidate populations in the absence of tidal tails. At magnitudes brighter than M_R˜ -16 our sample of 53 star-forming galaxies in 9 HI gas-rich groups is consistent with the normal relation defined by the SDSS sample. At fainter magnitudes there is an increase in dispersion in metallicity of our sample. In our sample we identify three (16% of dwarfs) strong TDG candidates (12 + log(O/H) > 8.6), and four (21%) very metal poor dwarfs (12 + log(O/H) < 8.0), which are likely gas-rich dwarfs with recently ignited star formation. Further details of this analysis are available in Sweet et al. (2013, ApJ submitted).

  12. The Eating Habits of Milky Way Mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars

    DOE PAGES

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.

    2016-04-01

    In this paper, we study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (Mvir ~ 1012.1 M⊙) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with Mstar ~ 108–1010M⊙. Halos with more quiescent accretion histories tend to have lower mass progenitors (108–109 M⊙),more » and lower overall accreted stellar masses. Ultra-faint mass (Mstar < 105 M⊙) dwarfs contribute a negligible amount (<<1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (~2%–5%) of the very metal-poor stars with [Fe/H] < -2. Dwarfs with masses 105 < Mstar/M⊙ < 108 provide a substantial amount of the very metal-poor stellar material (~40%–80%), and even relatively metal-rich dwarfs with Mstar > 108 M⊙ can contribute a considerable fraction (~20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. In conclusion, we suggest that the MW could be a "transient fossil"; a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.« less

  13. The Eating Habits of Milky Way-mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars

    NASA Astrophysics Data System (ADS)

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.

    2016-04-01

    We study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (Mvir ∼ 1012.1 M⊙) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with Mstar ∼ 108–1010M⊙. Halos with more quiescent accretion histories tend to have lower mass progenitors (108–109 M⊙), and lower overall accreted stellar masses. Ultra-faint mass (Mstar < 105 M⊙) dwarfs contribute a negligible amount (≪1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (∼2%–5%) of the very metal-poor stars with [Fe/H] < ‑2. Dwarfs with masses 105 < Mstar/M⊙ < 108 provide a substantial amount of the very metal-poor stellar material (∼40%–80%), and even relatively metal-rich dwarfs with Mstar > 108 M⊙ can contribute a considerable fraction (∼20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. We suggest that the MW could be a “transient fossil” a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.

  14. The Eating Habits of Milky Way-mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars

    NASA Astrophysics Data System (ADS)

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.

    2016-04-01

    We study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (Mvir ˜ 1012.1 M⊙) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with Mstar ˜ 108-1010M⊙. Halos with more quiescent accretion histories tend to have lower mass progenitors (108-109 M⊙), and lower overall accreted stellar masses. Ultra-faint mass (Mstar < 105 M⊙) dwarfs contribute a negligible amount (≪1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (˜2%-5%) of the very metal-poor stars with [Fe/H] < -2. Dwarfs with masses 105 < Mstar/M⊙ < 108 provide a substantial amount of the very metal-poor stellar material (˜40%-80%), and even relatively metal-rich dwarfs with Mstar > 108 M⊙ can contribute a considerable fraction (˜20%-60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. We suggest that the MW could be a “transient fossil” a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.

  15. An inefficient dwarf: chemical abundances and the evolution of the Ursa Minor dwarf spheroidal galaxy

    NASA Astrophysics Data System (ADS)

    Ural, Uğur; Cescutti, Gabriele; Koch, Andreas; Kleyna, Jan; Feltzing, Sofia; Wilkinson, Mark I.

    2015-05-01

    We present detailed chemical element abundance ratios of 17 elements with eight ≤ Z ≤ 60 in three metal-poor stars in the Ursa Minor dwarf spheroidal galaxy, which we combine with extant data from the literature to assess the predictions of a novel suite of galaxy chemical evolution models. The spectroscopic data were obtained with the Keck/High-Resolution Echelle Spectrograph instrument and revealed low metallicities of [Fe/H] = -2.12, -2.13 and -2.67 dex. While the most metal-poor star in our sample shows an overabundance of [Mn/Fe] and other Fe-peak elements, our overall findings are in agreement with previous studies of this galaxy: elevated values of the [α/Fe] ratios that are similar to, or only slightly lower than, the halo values but with SN Ia enrichment at very low metallicity, as well as an enhancement of the ratio of first to second peak neutron capture elements [Y/Ba] with decreasing metallicity. The chemical evolution models which were tailored to reproduce the metallicity distribution function of the dwarf spheroidal, indicate that Ursa Minor had an extended star formation which lasted nearly 5 Gyr with low efficiency and are able to explain the [Y/Ba] enhancement at low metallicity for the first time. In particular, we show that the present-day lack of gas is probably due to continuous loss of gas from the system, which we model as winds.

  16. The lithium isotope ratio in Population II halo dwarfs - A proposed test of the late decaying massive particle nucleosynthesis scenario

    NASA Technical Reports Server (NTRS)

    Brown, Lawrence; Schramm, David N.

    1988-01-01

    It is shown that observations of the lithium isotope ratio in high surface temperature Population II stars may be critical to cosmological nucleosynthesis models. In particular, decaying particle scenarios as derived in some supersymmetric models may stand or fall with such observations.

  17. Detailed chemical abundances in NGC 5824: another metal-poor globular cluster with internal heavy element abundance variations

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Mateo, Mario; Bailey, John I.; Spencer, Meghin; Crane, Jeffrey D.; Shectman, Stephen A.

    2016-01-01

    We present radial velocities, stellar parameters, and detailed abundances of 39 elements derived from high-resolution spectroscopic observations of red giant stars in the luminous, metal-poor globular cluster NGC 5824. We observe 26 stars in NGC 5824 using the Michigan/Magellan Fiber System (M2FS) and two stars using the Magellan Inamori Kyocera Echelle spectrograph. We derive a mean metallicity of [Fe/H] = -1.94 ± 0.02 (statistical) ±0.10 (systematic). The metallicity dispersion of this sample of stars, 0.08 dex, is in agreement with previous work and does not exceed the expected observational errors. Previous work suggested an internal metallicity spread only when fainter samples of stars were considered, so we cannot exclude the possibility of an intrinsic metallicity dispersion in NGC 5824. The M2FS spectra reveal a large internal dispersion in [Mg/Fe], 0.28 dex, which is found in a few other luminous, metal-poor clusters. [Mg/Fe] is correlated with [O/Fe] and anticorrelated with [Na/Fe] and [Al/Fe]. There is no evidence for internal dispersion among the other α- or Fe-group abundance ratios. 25 of the 26 stars exhibit a n-capture enrichment pattern dominated by r-process nucleosynthesis (<[Eu/Fe]> = +0.11 ± 0.12; <[Ba/Eu]> = -0.66 ± 0.05). Only one star shows evidence of substantial s-process enhancement ([Ba/Fe] = +0.56 ± 0.12; [Ba/Eu] = +0.38 ± 0.14), but this star does not exhibit other characteristics associated with s-process enhancement via mass transfer from a binary companion. The Pb and other heavy elements produced by the s-process suggest a time-scale of no more than a few hundred Myr for star formation and chemical enrichment, like the complex globular clusters M2, M22, and NGC 5286.

  18. A study of rotating globular clusters. The case of the old, metal-poor globular cluster NGC 4372

    NASA Astrophysics Data System (ADS)

    Kacharov, N.; Bianchini, P.; Koch, A.; Frank, M. J.; Martin, N. F.; van de Ven, G.; Puzia, T. H.; McDonald, I.; Johnson, C. I.; Zijlstra, A. A.

    2014-07-01

    Context. NGC 4372 is a poorly studied old, very metal-poor globular cluster (GC) located in the inner Milky Way halo. Aims: We present the first in-depth study of the kinematic properties and derive the structural parameters of NGC 4372 based on the fit of a Plummer profile and a rotating, physical model. We explore the link between internal rotation to different cluster properties and together with similar studies of more GCs, we put these in the context of globular cluster formation and evolution. Methods: We present radial velocities for 131 cluster member stars measured from high-resolution FLAMES/GIRAFFE observations. Their membership to the GC is additionally confirmed from precise metallicity estimates. We build a velocity dispersion profile and a systemic rotation curve using this kinematic data set. Additionally, we obtain an elliptical number density profile of NGC 4372 based on optical images using a Markov chain Monte Carlo fitting algorithm. From this, we derive the cluster's half-light radius and ellipticity as rh = 3.44' ± 0.04' and ɛ = 0.08 ± 0.01. Finally, we give a physical interpretation of the observed morphological and kinematic properties of this GC by fitting an axisymmetric, differentially rotating, dynamical model. Results: Our results show that NGC 4372 has an unusually high ratio of rotation amplitude to velocity dispersion (1.2 vs. 4.5 km s-1) for its metallicity. This puts it in line, however, with two other exceptional, very metal-poor GCs: M 15 and NGC 4590. We also find a mild flattening of NGC 4372 in the direction of its rotation. Given its old age, this suggests that the flattening is indeed caused by the systemic rotation rather than tidal interactions with the Galaxy. Additionally, we estimate the dynamical mass of the GC Mdyn = 2.0 ± 0.5 × 105M⊙ based on the dynamical model, which constrains the mass-to-light ratio of NGC 4372 between 1.4 and 2.3 M⊙/L⊙, representative of an old, purely stellar population. Based on

  19. A Search for Stars of Very Low Metal Abundance. VI. Detailed Abundances of 313 Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Sneden, Christopher; Burley, Gregory S.; Kelson, Daniel D.

    2014-06-01

    We present radial velocities, equivalent widths, model atmosphere parameters, and abundances or upper limits for 53 species of 48 elements derived from high resolution optical spectroscopy of 313 metal-poor stars. A majority of these stars were selected from the metal-poor candidates of the HK Survey of Beers, Preston, and Shectman. We derive detailed abundances for 61% of these stars for the first time. Spectra were obtained during a 10 yr observing campaign using the Magellan Inamori Kyocera Echelle spectrograph on the Magellan Telescopes at Las Campanas Observatory, the Robert G. Tull Coudé Spectrograph on the Harlan J. Smith Telescope at McDonald Observatory, and the High Resolution Spectrograph on the Hobby-Eberly Telescope at McDonald Observatory. We perform a standard LTE abundance analysis using MARCS model atmospheres, and we apply line-by-line statistical corrections to minimize systematic abundance differences arising when different sets of lines are available for analysis. We identify several abundance correlations with effective temperature. A comparison with previous abundance analyses reveals significant differences in stellar parameters, which we investigate in detail. Our metallicities are, on average, lower by ≈0.25 dex for red giants and ≈0.04 dex for subgiants. Our sample contains 19 stars with [Fe/H] <=-3.5, 84 stars with [Fe/H] <=-3.0, and 210 stars with [Fe/H] <=-2.5. Detailed abundances are presented here or elsewhere for 91% of the 209 stars with [Fe/H] <=-2.5 as estimated from medium resolution spectroscopy by Beers, Preston, and Shectman. We will discuss the interpretation of these abundances in subsequent papers. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, and The McDonald Observatory of The University of Texas at Austin. The Hobby-Eberly Telescope is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University

  20. Deep SDSS optical spectroscopy of distant halo stars. III. Chemical analysis of extremely metal-poor stars

    NASA Astrophysics Data System (ADS)

    Fernández-Alvar, E.; Allende Prieto, C.; Beers, T. C.; Lee, Y. S.; Masseron, T.; Schneider, D. P.

    2016-09-01

    Aims: We present the results of an analysis of 107 extremely metal-poor (EMP) stars with metallicities lower than [Fe/H] =- 3.0, identified in medium-resolution spectra in the Sloan Digital Sky Survey (SDSS). Our analysis provides estimates of the stellar effective temperatures and surface gravities, as well as iron, calcium, and magnesium abundances. Methods: We followed the same method as in previous papers of this series. The method is based on comparisons of the observed spectra with synthetic spectra. The abundances of Fe, Ca, and Mg were determined by fitting spectral regions that are dominated by lines of each element. In addition, we present a technique to determine upper limits for elements whose features are not detected in a given spectrum. We also analyzed our sample with the SEGUE stellar parameter pipeline to obtain additional determinations of the atmospheric parameters and iron and alpha-element abundances, which we thend compare with ours. In addition, we used these parameters to infer [C/Fe] ratios. Results: Ca is typically the only element in these spectra with a moderate to low signal-to-noise ratio and medium resolution in this metallicity regime with lines that are sufficiently strong to reliably measure its abundance. Fe and Mg exhibit weaker features that in most cases only provide upper limits. We measured [Ca/Fe] and [Mg/Fe] for EMP stars in the SDSS spectra and conclude that most of the stars exhibit the typical enhancement level for α-elements, ~+0.4, although some stars for which only [Fe/H] upper limits could be estimated indicate higher [α/Fe] ratios. We also find that 26% of the stars in our sample can be classified as carbon-enhanced metal-poor (CEMP) stars and that the frequency of CEMP stars also increases with decreasing metallicity, as has been reported for previous samples. We identify a rare, bright (g = 11.90) EMP star, SDSS J134144.61+474128.6, with [Fe/H] =- 3.27, [C/Fe] = + 0.95, and elevated magnesium ([Mg/Fe] =+ 0

  1. LOCAL GROUP DWARF ELLIPTICAL GALAXIES. II. STELLAR KINEMATICS TO LARGE RADII IN NGC 147 AND NGC 185

    SciTech Connect

    Geha, M.; Van der Marel, R. P.; Kalirai, J.; Guhathakurta, P.; Kirby, E. N.

    2010-03-01

    We present kinematic and metallicity profiles for the M 31 dwarf elliptical (dE) satellite galaxies NGC 147 and NGC 185. The profiles represent the most extensive spectroscopic radial coverage for any dE galaxy, extending to a projected distance of 8 half-light radii (8r{sub eff} {approx} 14'). We achieve this coverage via Keck/DEIMOS multislit spectroscopic observations of 520 and 442 member red giant branch stars in NGC 147 and NGC 185, respectively. In contrast to previous studies, we find that both dEs have significant internal rotation. We measure a maximum rotational velocity of 17 +- 2 km s{sup -1} for NGC 147 and 15 +- 5 km s{sup -1} for NGC 185. While both rotation profiles suggest a flattening in the outer regions, there is no indication that we have reached the radius of maximum rotation velocity. The velocity dispersions decrease gently with radius with average dispersions of 16 +- 1 km s{sup -1} and 24 +- 1 km s{sup -1} for NGC 147 and NGC 185, respectively. The average metallicities for NGC 147 and NGC 185 are [Fe/H] = -1.1 +- 0.1 and [Fe/H] = -1.3 +- 0.1, respectively; both dEs have internal metallicity dispersions of 0.5 dex, but show no evidence for a radial metallicity gradient. We construct two-{integral} axisymmetric dynamical models and find that the observed kinematical profiles cannot be explained without modest amounts of non-baryonic dark matter. We measure central mass-to-light ratios of M/L{sub V} = 4.2 +- 0.6 and M/L{sub V} = 4.6 +- 0.6 for NGC 147 and NGC 185, respectively. Both dE galaxies are consistent with being primarily flattened by their rotational motions, although some anisotropic velocity dispersion is needed to fully explain their observed shapes. The velocity profiles of all three Local Group dEs (NGC 147, NGC 185, and NGC 205) suggest that rotation is more prevalent in the dE galaxy class than previously assumed, but often manifests only at several times the effective radius. Since all dEs outside the Local Group have been

  2. Synthesizing exoplanet demographics from radial velocity and microlensing surveys. II. The frequency of planets orbiting M dwarfs

    SciTech Connect

    Clanton, Christian; Gaudi, B. Scott

    2014-08-20

    In contrast to radial velocity (RV) surveys, results from microlensing surveys indicate that giant planets with masses greater than the critical mass for core accretion (∼0.1 M {sub Jup}) are relatively common around low-mass stars. Using the methodology developed in the first paper, we predict the sensitivity of M-dwarf RV surveys to analogs of the population of planets inferred by microlensing. We find that RV surveys should detect a handful of super-Jovian (>M {sub Jup}) planets at the longest periods being probed. These planets are indeed found by RV surveys, implying that the demographic constraints inferred from these two methods are consistent. Finally, we combine the results from both methods to estimate planet frequencies spanning wide regions of parameter space. We find that the frequency of Jupiters and super-Jupiters (1 ≲ m{sub p} sin i/M {sub Jup} ≲ 13) with periods 1 ≤ P/days ≤ 10{sup 4} is f{sub J}=0.029{sub −0.015}{sup +0.013}, a median factor of 4.3 (1.5-14 at 95% confidence) smaller than the inferred frequency of such planets around FGK stars of 0.11 ± 0.02. However, we find the frequency of all giant planets with 30 ≲ m{sub p} sin i/M {sub ⊕} ≲ 10{sup 4} and 1 ≤ P/days ≤ 10{sup 4} to be f{sub G}=0.15{sub −0.07}{sup +0.06}, only a median factor of 2.2 (0.73-5.9 at 95% confidence) smaller than the inferred frequency of such planets orbiting FGK stars of 0.31 ± 0.07. For a more conservative definition of giant planets (50 ≲ m{sub p} sin i/M {sub ⊕} ≲ 10{sup 4}), we find f{sub G{sup ′}}=0.11±0.05, a median factor of 2.2 (0.73-6.7 at 95% confidence) smaller than that inferred for FGK stars of 0.25 ± 0.05. Finally, we find the frequency of all planets with 1 ≤ m{sub p} sin i/M {sub ⊕} ≤ 10{sup 4} and 1 ≤ P/days ≤ 10{sup 4} to be f{sub p} = 1.9 ± 0.5.

  3. THE BROWN DWARF KINEMATICS PROJECT (BDKP). III. PARALLAXES FOR 70 ULTRACOOL DWARFS

    SciTech Connect

    Faherty, Jacqueline K.; Shara, Michael M.; Cruz, Kelle L.; Burgasser, Adam J.; Walter, Frederick M.; Van der Bliek, Nicole; Vrba, Frederick J.; Anglada-Escude, Guillem

    2012-06-10

    We report parallax measurements for 70 ultracool dwarfs (UCDs) including 11 late-M, 32 L, and 27 T dwarfs. In this sample, 14 M and L dwarfs exhibit low surface gravity features, 6 are close binary systems, and 2 are metal-poor subdwarfs. We combined our new measurements with 114 previously published UCD parallaxes and optical-mid-IR photometry to examine trends in spectral-type/absolute magnitude, and color-color diagrams. We report new polynomial relations between spectral type and M{sub JHK}. Including resolved L/T transition binaries in the relations, we find no reason to differentiate between a 'bright' (unresolved binary) and a 'faint' (single source) sample across the L/T boundary. Isolating early T dwarfs, we find that the brightening of T0-T4 sources is prominent in M{sub J} where there is a [1.2-1.4] mag difference. A similar yet dampened brightening of [0.3-0.5] mag happens at M{sub H} and a plateau or dimming of [-0.2 to -0.3] mag is seen in M{sub K} . Comparison with evolutionary models that vary gravity, metallicity, and cloud thickness verifies that for L into T dwarfs, decreasing cloud thickness reproduces brown dwarf near-IR color-magnitude diagrams. However we find that a near constant temperature of 1200 {+-}100 K along a narrow spectral subtype of T0-T4 is required to account for the brightening and color-magnitude diagram of the L-dwarf/T-dwarf transition. There is a significant population of both L and T dwarfs which are red or potentially 'ultra-cloudy' compared to the models, many of which are known to be young indicating a correlation between enhanced photospheric dust and youth. For the low surface gravity or young companion L dwarfs we find that 8 out of 10 are at least [0.2-1.0] mag underluminous in M{sub JH} and/or M{sub K} compared to equivalent spectral type objects. We speculate that this is a consequence of increased dust opacity and conclude that low surface gravity L dwarfs require a completely new spectral-type/absolute magnitude

  4. Mergers and the outside-in formation of dwarf spheroidals

    NASA Astrophysics Data System (ADS)

    Benítez-Llambay, A.; Navarro, J. F.; Abadi, M. G.; Gottlöber, S.; Yepes, G.; Hoffman, Y.; Steinmetz, M.

    2016-02-01

    We use a cosmological simulation of the formation of the Local Group to explore the origin of age and metallicity gradients in dwarf spheroidal galaxies. We find that a number of simulated dwarfs form `outside-in', with an old, metal-poor population that surrounds a younger, more concentrated metal-rich component, reminiscent of dwarf spheroidals like Sculptor or Sextans. We focus on a few examples where stars form in two populations distinct in age in order to elucidate the origin of these gradients. The spatial distributions of the two components reflect their diverse origin; the old stellar component is assembled through mergers, but the young population forms largely in situ. The older component results from a first episode of star formation that begins early but is quickly shut off by the combined effects of stellar feedback and reionization. The younger component forms when a late accretion event adds gas and reignites star formation. The effect of mergers is to disperse the old stellar population, increasing their radius and decreasing their central density relative to the young population. We argue that dwarf-dwarf mergers offer a plausible scenario for the formation of systems with multiple distinct populations and, more generally, for the origin of age and metallicity gradients in dwarf spheroidals.

  5. DETECTION OF ELEMENTS AT ALL THREE r-PROCESS PEAKS IN THE METAL-POOR STAR HD 160617

    SciTech Connect

    Roederer, Ian U.; Lawler, James E. E-mail: jelawler@wisc.edu

    2012-05-01

    We report the first detection of elements at all three r-process peaks in the metal-poor halo star HD 160617. These elements include arsenic and selenium, which have not been detected previously in halo stars, and the elements tellurium, osmium, iridium, and platinum, which have been detected previously. Absorption lines of these elements are found in archive observations made with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. We present up-to-date absolute atomic transition probabilities and complete line component patterns for these elements. Additional archival spectra of this star from several ground-based instruments allow us to derive abundances or upper limits of 45 elements in HD 160617, including 27 elements produced by neutron-capture reactions. The average abundances of the elements at the three r-process peaks are similar to the predicted solar system r-process residuals when scaled to the abundances in the rare earth element domain. This result for arsenic and selenium may be surprising in light of predictions that the production of the lightest r-process elements generally should be decoupled from the heavier r-process elements.

  6. NUCLEOSYNTHESIS IN HIGH-ENTROPY HOT BUBBLES OF SUPERNOVAE AND ABUNDANCE PATTERNS OF EXTREMELY METAL-POOR STARS

    SciTech Connect

    Izutani, Natsuko; Umeda, Hideyuki E-mail: umeda@astron.s.u-tokyo.ac.j

    2010-09-01

    There have been suggestions that the abundance of extremely metal-poor (EMP) stars can be reproduced by hypernovae (HNe), not by normal supernovae (SNe). However, recently it was also suggested that if the innermost neutron-rich or proton-rich matter is ejected, the abundance patterns of ejected matter are changed, and normal SNe may also reproduce the observations of EMP stars. In this Letter, we calculate explosive nucleosynthesis with various Y {sub e} and entropy, and investigate whether normal SNe with this innermost matter, which we call the 'hot-bubble' component, can reproduce the abundance of EMP stars. We find that neutron-rich (Y {sub e} = 0.45-0.49) and proton-rich (Y {sub e} = 0.51-0.55) matter can increase Zn/Fe and Co/Fe ratios as observed, but tend to overproduce other Fe-peak elements. In addition, we find that if slightly proton-rich matter with 0.50 {<=} Y {sub e} < 0.501 with s/k {sub b} {approx} 15-40 is ejected as much as {approx}0.06 M {sub sun}, even normal SNe can reproduce the abundance of EMP stars, though it requires fine-tuning of Y {sub e}. On the other hand, HNe can more easily reproduce the observations of EMP stars without fine-tuning. Our results imply that HNe are the most likely origin of the abundance pattern of EMP stars.

  7. Evidence for dwarf stars at D of about 100 kiloparsecs near the Sextans dwarf spheroidal galaxy

    NASA Astrophysics Data System (ADS)

    Gould, Andrew; Guhathakurta, Puragra; Richstone, Douglas; Flynn, Chris

    1992-04-01

    A method is presented for detecting individual, metal-poor, dwarf stars at distances less than about 150 kpc - a method specifically designed to filter out stars from among the much more numerous faint background field galaxies on the basis of broad-band colors. This technique is applied to two fields at high Galactic latitude, for which there are deep CCD data in four bands ranging from 3600 to 9000 A. The field in Sextans probably contains more than about five dwarf stars with BJ not greater than 25.5. These are consistent with being at a common distance about 100 kpc and lie about 1.7 deg from the newly discovered dwarf galaxy in Sextans whose distance is about 85 +/- 10 kpc. The stars lie near the major axis of the galaxy and are near or beyond the tidal radius. The second field, toward the south Galactic pole, may contain up to about five extra-Galactic stars, but these show no evidence for being at a common distance. Possible applications of this type technique are discussed, and it is shown that even very low surface brightness star clusters or dwarf galaxies may be detected at distances less than about 1 Mpc.

  8. Evidence for dwarf stars at D of about 100 kiloparsecs near the Sextans dwarf spheroidal galaxy

    NASA Technical Reports Server (NTRS)

    Gould, Andrew; Guhathakurta, Puragra; Richstone, Douglas; Flynn, Chris

    1992-01-01

    A method is presented for detecting individual, metal-poor, dwarf stars at distances less than about 150 kpc - a method specifically designed to filter out stars from among the much more numerous faint background field galaxies on the basis of broad-band colors. This technique is applied to two fields at high Galactic latitude, for which there are deep CCD data in four bands ranging from 3600 to 9000 A. The field in Sextans probably contains more than about five dwarf stars with BJ not greater than 25.5. These are consistent with being at a common distance about 100 kpc and lie about 1.7 deg from the newly discovered dwarf galaxy in Sextans whose distance is about 85 +/- 10 kpc. The stars lie near the major axis of the galaxy and are near or beyond the tidal radius. The second field, toward the south Galactic pole, may contain up to about five extra-Galactic stars, but these show no evidence for being at a common distance. Possible applications of this type technique are discussed, and it is shown that even very low surface brightness star clusters or dwarf galaxies may be detected at distances less than about 1 Mpc.

  9. Impact of NLTE on research of early chemical enrichment of the dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Mashonkina, Lyudmila; Jablonka, Pascale; North, Pierre; Sitnova, Tatyana

    2016-08-01

    Based on high-resolution observed spectra, the non-local thermodynamic equilibrium (NLTE) line formation, and precise stellar atmosphere parameters, we present the first complete sample of dwarf spheroidal galaxies (dSphs) with accurate chemical abundances in the very metal-poor (VMP) regime. The obtained stellar elemental ratios are compared with chemical enrichment models, and we show that NLTE is a major step forward for studies of the dSph and the Milky Way (MW) chemical evolution.

  10. The role of binaries in the enrichment of the early Galactic halo. I. r-process-enhanced metal-poor stars

    NASA Astrophysics Data System (ADS)

    Hansen, T. T.; Andersen, J.; Nordström, B.; Beers, T. C.; Yoon, J.; Buchhave, L. A.

    2015-11-01

    Context. The detailed chemical composition of most metal-poor halo stars has been found to be highly uniform, but a minority of stars exhibit dramatic enhancements in their abundances of heavy neutron-capture elements and/or of carbon. The key question for Galactic chemical evolution models is whether these peculiarities reflect the composition of the natal clouds, or if they are due to later (post-birth) mass transfer of chemically processed material from a binary companion. If the former case applies, the observed excess of certain elements was implanted within selected clouds in the early ISM from a production site at interstellar distances. Aims: Our aim is to determine the frequency and orbital properties of binaries among these chemically peculiar stars. This information provides the basis for deciding whether local mass transfer from a binary companion is necessary and sufficient to explain their unusual compositions. This paper discusses our study of a sample of 17 moderately (r-I) and highly (r-II) r-process-element enhanced VMP and EMP stars. Methods: High-resolution, low signal-to-noise spectra of the stars were obtained at roughly monthly intervals over eight years with the FIES spectrograph at the Nordic Optical Telescope. From these spectra, radial velocities with an accuracy of ~100 m s-1 were determined by cross-correlation against an optimized template. Results: Fourteen of the programme stars exhibit no significant radial-velocity variation over this temporal window, while three are binaries with orbits of typical eccentricity for their periods, resulting in a normal binary frequency of ~18 ± 6% for the sample. Conclusions: Our results confirm our preliminary conclusion from 2011, based on partial data, that the chemical peculiarity of the r-I and r-II stars is not caused by any putative binary companions. Instead, it was imprinted on the natal molecular clouds of these stars by an external, distant source. Models of the ISM in early galaxies

  11. PREDICTING Lyα AND Mg II FLUXES FROM K AND M DWARFS USING GALAXY EVOLUTION EXPLORER ULTRAVIOLET PHOTOMETRY

    SciTech Connect

    Shkolnik, Evgenya L.; Rolph, Kristina A.; Peacock, Sarah; Barman, Travis S. E-mail: kristina.rolph@fandm.edu E-mail: barman@lpl.arizona.edu

    2014-11-20

    A star's ultraviolet (UV) emission can greatly affect the atmospheric chemistry and physical properties of closely orbiting planets with the potential for severe mass loss. In particular, the Lyα emission line at 1216 Å, which dominates the far-ultraviolet (FUV) spectrum, is a major source of photodissociation of important atmospheric molecules such as water and methane. The intrinsic flux of Lyα, however, cannot be directly measured due to the absorption of neutral hydrogen in the interstellar medium and contamination by geocoronal emission. To date, reconstruction of the intrinsic Lyα line based on Hubble Space Telescope spectra has been accomplished for 46 FGKM nearby stars, 28 of which have also been observed by the Galaxy Evolution Explorer (GALEX). Our investigation provides a correlation between published intrinsic Lyα and GALEX far- and near-ultraviolet (NUV) chromospheric fluxes for K and M stars. The negative correlations between the ratio of the Lyα to the GALEX fluxes reveal how the relative strength of Lyα compared to the broadband fluxes weakens as the FUV and NUV excess flux increase. We also correlate GALEX fluxes with the strong NUV Mg II h+k spectral emission lines formed at lower chromospheric temperatures than Lyα. The reported correlations provide estimates of intrinsic Lyα and Mg II fluxes for the thousands of K and M stars in the archived GALEX all-sky surveys. These will constrain new stellar upper atmosphere models for cool stars and provide realistic inputs to models describing exoplanetary photochemistry and atmospheric evolution in the absence of UV spectroscopy.

  12. THE SPLASH SURVEY: INTERNAL KINEMATICS, CHEMICAL ABUNDANCES, AND MASSES OF THE ANDROMEDA I, II, III, VII, X, AND XIV DWARF SPHEROIDAL GALAXIES {sup ,}

    SciTech Connect

    Kalirai, Jason S.; Beaton, Rachael L.; Majewski, Steven R.; Ostheimer, James C.; Patterson, Richard J.; Geha, Marla C.; Gilbert, Karoline M.; Guhathakurta, Puragra; Kirby, Evan N.

    2010-03-10

    We present new Keck/DEIMOS spectroscopic observations of hundreds of individual stars along the sightline to the first three of the Andromeda (M31) dwarf spheroidal (dSph) galaxies to be discovered, And I, II, and III, and combine them with recent spectroscopic studies by our team of three additional M31 dSphs, And VII, X, and XIV, as a part of the SPLASH Survey (Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo). Member stars of each dSph are isolated from foreground Milky Way dwarf stars and M31 field contamination using a variety of photometric and spectroscopic diagnostics. Our final spectroscopic sample of member stars in each dSph, for which we measure accurate radial velocities with a median uncertainty (random plus systematic errors) of 4-5 km s{sup -1}, includes 80 red giants in And I, 95 in And II, 43 in And III, 18 in And VII, 22 in And X, and 38 in And XIV. The sample of confirmed members in the six dSphs is used to derive each system's mean radial velocity, intrinsic central velocity dispersion, mean abundance, abundance spread, and dynamical mass. This combined data set presents us with a unique opportunity to perform the first systematic comparison of the global properties (e.g., metallicities, sizes, and dark matter masses) of one-third of Andromeda's total known dSph population with Milky Way counterparts of the same luminosity. Our overall comparisons indicate that the family of dSphs in these two hosts have both similarities and differences. For example, we find that the luminosity-metallicity relation is very similar between L {approx} 10{sup 5} and 10{sup 7} L{sub sun}, suggesting that the chemical evolution histories of each group of dSphs are similar. The lowest luminosity M31 dSphs appear to deviate from the relation, possibly suggesting tidal stripping. Previous observations have noted that the sizes of M31's brightest dSphs are systematically larger than Milky Way satellites of similar luminosity. At lower luminosities

  13. DETECTION OF A DISTINCT METAL-POOR STELLAR HALO IN THE EARLY-TYPE GALAXY NGC 3115

    SciTech Connect

    Peacock, Mark B.; Strader, Jay; Romanowsky, Aaron J.; Brodie, Jean P.

    2015-02-10

    We present the resolved stellar populations in the inner and outer halo of the nearby lenticular galaxy NGC 3115. Using deep Hubble Space Telescope observations, we analyze stars 2 mag fainter than the tip of the red giant branch (TRGB). We study three fields along the minor axis of this galaxy, 19, 37, and 54 kpc from its center—corresponding to 7, 14, and 21 effective radii (r{sub e} ). Even at these large galactocentric distances, all of the fields are dominated by a relatively enriched population, with the main peak in the metallicity distribution decreasing with radius from [Z/H] ∼ –0.5 to –0.65. The fraction of metal-poor stars ([Z/H] < –0.95) increases from 17% at 16-37 kpc to 28% at ∼54 kpc. We observe a distinct low-metallicity population (peaked at [Z/H] ∼ –1.3 and with total mass 2 × 10{sup 10} M {sub ☉} ∼ 14% of the galaxy's stellar mass) and argue that this represents the detection of an underlying low-metallicity stellar halo. Such halos are generally predicted by galaxy formation theories and have been observed in several late-type galaxies, including the Milky Way and M31. The metallicity and spatial distribution of the stellar halo of NGC 3115 are consistent with the galaxy's globular cluster system, which has a similar low-metallicity population that becomes dominant at these large radii. This finding supports the use of globular clusters as bright chemodynamical tracers of galaxy halos. These data also allow us to make a precise measurement of the magnitude of the TRGB, from which we derive a distance modulus of NGC 3115 of 30.05 ± 0.05 ± 0.10{sub sys} (10.2 ± 0.2 ± 0.5{sub sys} Mpc)

  14. Small-scale hero: Massive-star enrichment in the Hercules dwarf spheroidal

    NASA Astrophysics Data System (ADS)

    Koch, Andreas; Matteucci, Francesca; Feltzing, Sofia

    2012-09-01

    Dwarf spheroidal galaxies are often conjectured to be the sites of the first stars. The best current contenders for finding the chemical imprints from the enrichment by those massive objects are the ``ultrafaint dwarfs'' (UFDs). Here we present evidence for remarkably low heavy element abundances in the metal poor Hercules UFD. Combined with other peculiar abundance patterns this indicates that Hercules was likely only influenced by very few, massive explosive events - thus bearing the traces of an early, localized chemical enrichment with only very little other contributions from other sources at later times.

  15. TIDAL SIGNATURES IN THE FAINTEST MILKY WAY SATELLITES: THE DETAILED PROPERTIES OF LEO V, PISCES II, AND CANES VENATICI II

    SciTech Connect

    Sand, David J.; Strader, Jay; McLeod, Brian; Caldwell, Nelson; Willman, Beth; Zaritsky, Dennis; Olszewski, Edward; Seth, Anil

    2012-09-01

    We present deep wide-field photometry of three recently discovered faint Milky Way (MW) satellites: Leo V, Pisces II, and Canes Venatici II. Our main goals are to study the structure and star formation history of these dwarfs; we also search for signs of tidal disturbance. The three satellites have similar half-light radii ({approx}60-90 pc) but a wide range of ellipticities. Both Leo V and CVn II show hints of stream-like overdensities at large radii. An analysis of the satellite color-magnitude diagrams shows that all three objects are old (>10 Gyr) and metal-poor ([Fe/H] {approx} -2), though neither the models nor the data have sufficient precision to assess when the satellites formed with respect to cosmic reionization. The lack of an observed younger stellar population ({approx}< 10 Gyr) possibly sets them apart from the other satellites at Galactocentric distances {approx}> 150 kpc. We present a new compilation of structural data for all MW satellite galaxies and use it to compare the properties of classical dwarfs to the ultra-faints. The ellipticity distribution of the two groups is consistent at the {approx}2{sigma} level. However, the faintest satellites tend to be more aligned toward the Galactic Center, and those satellites with the highest ellipticity ({approx}> 0.4) have orientations ({Delta}{theta}{sub GC}) in the range 20 Degree-Sign {approx}< {Delta}{theta}{sub GC} {approx}< 40 Degree-Sign . This latter observation is in rough agreement with predictions from simulations of dwarf galaxies that have lost a significant fraction of their dark matter halos and are being tidally stripped.

  16. The DART imaging and CaT survey of the Fornax dwarf spheroidal galaxy

    NASA Astrophysics Data System (ADS)

    Battaglia, G.; Tolstoy, E.; Helmi, A.; Irwin, M. J.; Letarte, B.; Jablonka, P.; Hill, V.; Venn, K. A.; Shetrone, M. D.; Arimoto, N.; Primas, F.; Kaufer, A.; Francois, P.; Szeifert, T.; Abel, T.; Sadakane, K.

    2006-11-01

    Aims.As part of the DART project we have used the ESO/2.2m Wide Field Imager in conjunction with the VLT/FLAMES GIRAFFE spectrograph to study the detailed properties of the resolved stellar population of the Fornax dwarf spheroidal galaxy out to and beyond its tidal radius. Fornax dwarf spheroidal galaxy has had a complicated evolution and contains significant numbers of young, intermediate age and old stars. We investigate the relation between these different components by studying their photometric, kinematic and abundance distributions. Methods: . We re-derived the structural parameters of the Fornax dwarf spheroidal using our wide field imaging covering the galaxy out to its tidal radius, and analysed the spatial distribution of the Fornax stars of different ages as selected from colour-magnitude diagram analysis. We have obtained accurate velocities and metallicities from spectra in the Ca II triplet wavelength region for 562 Red Giant Branch stars which have velocities consistent with membership of the Fornax dwarf spheroidal. Results: .We have found evidence for the presence of at least three distinct stellar components: a young population (few 100 Myr old) concentrated in the centre of the galaxy, visible as a Main Sequence in the colour-magnitude diagram; an intermediate age population (2-8 Gyr old); and an ancient population (>10 Gyr), which are distinguishable from each other kinematically, from the metallicity distribution and in the spatial distribution of stars found in the colour-magnitude diagram. Conclusions: . From our spectroscopic analysis we find that the "metal rich" stars ([Fe/H]> -1.3) show a less extended and more concentrated spatial distribution, and display colder kinematics than the "metal poor" stars ([Fe/H]<-1.3). There is tentative evidence that the ancient stellar population in the centre of Fornax does not exhibit equilibrium kinematics. This could be a sign of a relatively recent accretion of external material, such as the merger

  17. First stars. XVI. HST/STIS abundances of heavy elements in the uranium-rich metal-poor star CS 31082-001

    NASA Astrophysics Data System (ADS)

    Siqueira Mello, C.; Spite, M.; Barbuy, B.; Spite, F.; Caffau, E.; Hill, V.; Wanajo, S.; Primas, F.; Plez, B.; Cayrel, R.; Andersen, J.; Nordström, B.; Sneden, C.; Beers, T. C.; Bonifacio, P.; François, P.; Molaro, P.

    2013-02-01

    Context. The origin and site(s) of the r-process nucleosynthesis is(are) still not known with certainty, but complete, detailed r-element abundances offer our best clues. The few extremely metal-poor (EMP) stars with large r-element excesses allow us to study the r-process signatures in great detail, with minimal interference from later stages of Galactic evolution. CS 31082-001 is an outstanding example of the information that can be gathered from these exceptional stars. Aims: Here we aim to complement our previous abundance determinations for third-peak r-process elements with new and improved results for elements of the first and second r-process peaks from near-UV HST/STIS and optical UVES spectra. These results should provide new insight into the nucleosynthesis of the elements beyond iron. Methods: The spectra were analyzed by a consistent approach based on an OSMARCS LTE model atmosphere and the Turbospectrum spectrum synthesis code to derive abundances of heavy elements in CS 31082-001, and using updated oscillator strengths from the recent literature. Synthetic spectra were computed for all lines of the elements of interest to check for proper line intensities and possible blends in these crowded spectra. Our new abundances were combined with the best previous results to provide reliable mean abundances for the first and second-peak r-process elements. Results: We present new abundances for 23 neutron-capture elements, 6 of which - Ge, Mo, Lu, Ta, W, and Re - have not been reported before. This makes CS 31082-001 the most completely studied r-II star, with abundances for a total of 37 neutron-capture elements. We also present the first NLTE+3D abundance of lead in this star, further constraining the nature of the r-process. Based on observations made with the NASA/ESA Hubble Space Telescope (HST) through the Space Telescope Science Institute, operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555; and

  18. Ca II triplet spectroscopy of RGB stars in NGC 6822: kinematics and metallicities

    NASA Astrophysics Data System (ADS)

    Swan, J.; Cole, A. A.; Tolstoy, E.; Irwin, M. J.

    2016-03-01

    We present a detailed analysis of the chemistry and kinematics of red giants in the dwarf irregular galaxy NGC 6822. Spectroscopy at ≈8500 Å was acquired for 72 red giant stars across two fields using FORS2 at the VLT. Line-of-sight extinction was individually estimated for each target star to accommodate the variable reddening across NGC 6822. The mean radial velocity was found to be = -52.8 ± 2.2 km s-1 with dispersion σv = 24.1 km s-1, in agreement with other studies. Ca II triplet equivalent widths were converted into [Fe/H] metallicities using a V magnitude proxy for surface gravity. The average metallicity was <[Fe/H]> = -0.84 ± 0.04 with dispersion σ = 0.31 dex and interquartile range 0.48. Our assignment of individual reddening values makes our analysis more sensitive to spatial variations in metallicity than previous studies. We divide our sample into metal-rich and metal-poor stars; the former were found to cluster towards small radii with the metal-poor stars more evenly distributed across the galaxy. The velocity dispersion of the metal-poor stars was found to be higher than that of the metal-rich stars (σ _{v_MP}=27.4 km s-1; σ _{v_MR}=21.1 km s-1); combined with the age-metallicity relation this indicates that the older populations have either been dynamically heated during their lifetimes or were born in a less disc-like distribution than the younger stars.. The low ratio vrot/σv suggests that within the inner 10 arcmin, NGC 6822's stars are dynamically decoupled from the H I gas, and possibly distributed in a thick disc or spheroid structure.

  19. An optical transmission spectrum of the transiting hot Jupiter in the metal-poor WASP-98 planetary system

    NASA Astrophysics Data System (ADS)

    Mancini, L.; Giordano, M.; Mollière, P.; Southworth, J.; Brahm, R.; Ciceri, S.; Henning, Th.

    2016-09-01

    The WASP-98 planetary system represents a rare case of a hot Jupiter hosted by a metal-poor main-sequence star. We present a follow-up study of this system based on multiband photometry and high-resolution spectroscopy. Two new transit events of WASP-98 b were simultaneously observed in four passbands (g', r', i', z'), using the telescope-defocusing technique, yielding eight high-precision light curves with point-to-point scatters of less than 1 mmag. We also collected three spectra of the parent star with a high-resolution spectrograph, which we used to remeasure its spectral characteristics, in particular its metallicity. We found this to be very low, [Fe/H] = -0.49 ± 0.10, but larger than was previously reported, [Fe/H] = -0.60 ± 0.19. We used these new photometric and spectroscopic data to refine the orbital and physical properties of this planetary system, finding that the stellar and planetary mass measurements are significantly larger than those in the discovery paper. In addition, the multiband light curves were used to construct an optical transmission spectrum of WASP-98 b and probe the characteristics of its atmosphere at the terminator. We measured a lower radius at z' compared with the other three passbands. The maximum variation is between the r' and z' bands, has a confidence level of roughly 6σ and equates to 5.5 pressure scale heights. We compared this spectrum to theoretical models, investigating several possible types of atmospheres, including hazy, cloudy, cloud-free, and clear atmospheres with titanium and vanadium oxide opacities. We could not find a good fit to the observations, except in the extreme case of a clear atmosphere with TiO and VO opacities, in which the condensation of Ti and V was suppressed. As this case is unrealistic, our results suggest the presence of an additional optical-absorbing species in the atmosphere of WASP-98 b, of unknown chemical nature.

  20. Naming Disney's Dwarfs.

    ERIC Educational Resources Information Center

    Sidwell, Robert T.

    1980-01-01

    Discusses Disney's version of the folkloric dwarfs in his production of "Snow White" and weighs the Disney rendition of the dwarf figure against the corpus of traits and behaviors pertaining to dwarfs in traditional folklore. Concludes that Disney's dwarfs are "anthropologically true." (HOD)

  1. PAndAS' CUBS: Discovery of Two New Dwarf Galaxies in the Surroundings of the Andromeda and Triangulum Galaxies

    NASA Astrophysics Data System (ADS)

    Martin, Nicolas F.; McConnachie, Alan W.; Irwin, Mike; Widrow, Lawrence M.; Ferguson, Annette M. N.; Ibata, Rodrigo A.; Dubinski, John; Babul, Arif; Chapman, Scott; Fardal, Mark; Lewis, Geraint F.; Navarro, Julio; Rich, R. Michael

    2009-11-01

    We present the discovery of two new dwarf galaxies, Andromeda XXI and Andromeda XXII, located in the surroundings of the Andromeda and Triangulum galaxies (M31 and M33). These discoveries stem from the first year data of the Pan-Andromeda Archaeological Survey, a photometric survey of the M31/M33 group conducted with the Megaprime/MegaCam Wide-Field Camera mounted on the Canada-France-Hawaii Telescope. Both satellites appear as spatial overdensities of stars which, when plotted in a color-magnitude diagram, follow metal-poor, [Fe/H] = -1.8, red giant branches at the distance of M31/M33. Andromeda XXI is a moderately bright dwarf galaxy (MV = -9.9 ± 0.6), albeit with low surface brightness, emphasizing again that many relatively luminous M31 satellites still remain to be discovered. It is also a large satellite, with a half-light radius close to 1 kpc, making it the fourth largest Local Group dwarf spheroidal galaxy after the recently discovered Andromeda XIX, Andromeda II, and Sagittarius around the Milky Way, and supports the trend that M31 satellites are larger than their Milky Way counterparts. Andromeda XXII is much fainter (MV = -6.5 ± 0.8) and lies a lot closer in projection to M33 than it does to M31 (42 versus 224 kpc), suggesting that it could be the first Triangulum satellite to be discovered. Although this is a very exciting possibility in the context of a past interaction of M33 with M31 and the fate of its satellite system, a confirmation will have to await a good distance estimate to confirm its physical proximity to M33. Along with the dwarf galaxies found in previous surveys of the M31 surroundings, these two new satellites bring the number of dwarf spheroidal galaxies in this region to 20. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of

  2. THE ACCRETION OF DWARF GALAXIES AND THEIR GLOBULAR CLUSTER SYSTEMS

    SciTech Connect

    Masters, Craig E.; Ashman, Keith M. E-mail: ashmank@umkc.ed

    2010-12-10

    The question of where the low-metallicity globular clusters in early-type galaxies came from has profound implications for the formation of those galaxies. Our work supports the idea that the metal-poor globular cluster systems of giant early-type galaxies formed in dwarf galaxies that have been subsumed by the giants. To support this hypothesis, two linear relations, one involving globular cluster metallicity versus host galaxy luminosity and one involving metallicity versus velocity dispersion were studied. Tentatively, these relations show that the bright ellipticals do not obey the same trend as the dwarfs, suggesting that the low-metallicity globular clusters did not form within their parent bright ellipticals.

  3. Metal-poor, Cool Gas in the Circumgalactic Medium of a z = 2.4 Star-forming Galaxy: Direct Evidence for Cold Accretion?

    NASA Astrophysics Data System (ADS)

    Crighton, Neil H. M.; Hennawi, Joseph F.; Prochaska, J. Xavier

    2013-10-01

    In our current galaxy formation paradigm, high-redshift galaxies are predominantly fueled by accretion of cool, metal-poor gas from the intergalactic medium. Hydrodynamical simulations predict that this material should be observable in absorption against background sightlines within a galaxy's virial radius, as optically thick Lyman limit systems (LLSs) with low metallicities. Here we report the discovery of exactly such a strong metal-poor absorber at an impact parameter R = 58 kpc from a star-forming galaxy at z = 2.44. Besides strong neutral hydrogen (N_{{H}^0}=10^{19.50+/- 0.16}\\, cm^{-2}) we detect neutral deuterium and oxygen, allowing a precise measurement of the metallicity: log10(Z/Z ⊙) = -2.0 ± 0.17, or (7-15) × 10-3 solar. Furthermore, the narrow deuterium linewidth requires a cool temperature <20,000 K. Given the striking similarities between this system and the predictions of simulations, we argue that it represents the direct detection of a high-redshift cold-accretion stream. The low-metallicity gas cloud is a single component of an absorption system exhibiting a complex velocity, ionization, and enrichment structure. Two other components have metallicities >0.1 solar, 10 times larger than the metal-poor component. We conclude that the photoionized circumgalactic medium (CGM) of this galaxy is highly inhomogeneous: the majority of the gas is in a cool, metal-poor and predominantly neutral phase, but the majority of the metals are in a highly ionized phase exhibiting weak neutral hydrogen absorption but strong metal absorption. If such inhomogeneity is common, then high-resolution spectra and detailed ionization modeling are critical to accurately appraise the distribution of metals in the high-redshift CGM. .

  4. LUMINOUS SUPERNOVA-LIKE UV/OPTICAL/INFRARED TRANSIENTS ASSOCIATED WITH ULTRA-LONG GAMMA-RAY BURSTS FROM METAL-POOR BLUE SUPERGIANTS

    SciTech Connect

    Kashiyama, Kazumi; Yajima, Hidenobu; Nakauchi, Daisuke; Nakamura, Takashi; Suwa, Yudai

    2013-06-10

    Metal-poor massive stars typically end their lives as blue supergiants (BSGs). Gamma-ray bursts (GRBs) from such progenitors could have an ultra-long duration of relativistic jets. For example, Population III (Pop III) GRBs at z {approx} 10-20 might be observable as X-ray-rich events with a typical duration of T{sub 90} {approx} 10{sup 4}(1 + z) s. The recent GRB111209A at z = 0.677 has an ultra-long duration of T{sub 90} {approx} 2.5 Multiplication-Sign 10{sup 4} s and it has been suggested that its progenitor might have been a metal-poor BSG in the local universe. Here, we suggest that luminous UV/optical/infrared emission is associated with this new class of GRBs from metal-poor BSGs. Before the jet head breaks out of the progenitor envelope, the energy injected by the jet is stored in a hot plasma cocoon, which finally emerges and expands as a baryon-loaded fireball. We show that the photospheric emissions from the cocoon fireball could be intrinsically very bright (L{sub peak} {approx} 10{sup 42}-10{sup 44} erg s{sup -1}) in UV/optical bands ({epsilon}{sub peak} {approx} 10 eV) with a typical duration of {approx}100 days in the rest frame. Such cocoon emissions from Pop III GRBs might be detectable in infrared bands at {approx}years after Pop III GRBs at up to z {approx} 15 by upcoming facilities such as the James Webb Space Telescope. We also suggest that GRB111209A might have been rebrightening in UV/optical bands up to an AB magnitude of {approx}< 26. The cocoon emission from local metal-poor BSGs might have been observed previously as luminous supernovae without GRBs since they can be seen from the off-axis direction of the jet.

  5. METAL-POOR, COOL GAS IN THE CIRCUMGALACTIC MEDIUM OF A z = 2.4 STAR-FORMING GALAXY: DIRECT EVIDENCE FOR COLD ACCRETION?

    SciTech Connect

    Crighton, Neil H. M.; Hennawi, Joseph F.; Prochaska, J. Xavier

    2013-10-20

    In our current galaxy formation paradigm, high-redshift galaxies are predominantly fueled by accretion of cool, metal-poor gas from the intergalactic medium. Hydrodynamical simulations predict that this material should be observable in absorption against background sightlines within a galaxy's virial radius, as optically thick Lyman limit systems (LLSs) with low metallicities. Here we report the discovery of exactly such a strong metal-poor absorber at an impact parameter R = 58 kpc from a star-forming galaxy at z = 2.44. Besides strong neutral hydrogen (N{sub H{sup 0}}=10{sup 19.50±0.16} cm{sup -2}) we detect neutral deuterium and oxygen, allowing a precise measurement of the metallicity: log{sub 10}(Z/Z {sub ☉}) = –2.0 ± 0.17, or (7-15) × 10{sup –3} solar. Furthermore, the narrow deuterium linewidth requires a cool temperature <20,000 K. Given the striking similarities between this system and the predictions of simulations, we argue that it represents the direct detection of a high-redshift cold-accretion stream. The low-metallicity gas cloud is a single component of an absorption system exhibiting a complex velocity, ionization, and enrichment structure. Two other components have metallicities >0.1 solar, 10 times larger than the metal-poor component. We conclude that the photoionized circumgalactic medium (CGM) of this galaxy is highly inhomogeneous: the majority of the gas is in a cool, metal-poor and predominantly neutral phase, but the majority of the metals are in a highly ionized phase exhibiting weak neutral hydrogen absorption but strong metal absorption. If such inhomogeneity is common, then high-resolution spectra and detailed ionization modeling are critical to accurately appraise the distribution of metals in the high-redshift CGM.

  6. CARBON-ENHANCED METAL-POOR STARS IN THE INNER AND OUTER HALO COMPONENTS OF THE MILKY WAY

    SciTech Connect

    Carollo, Daniela; Norris, John E.; Freeman, Ken C.; Beers, Timothy C.; Lee, Young Sun; Kennedy, Catherine R.; Bovy, Jo; Sivarani, Thirupathi; Aoki, Wako E-mail: kcf@mso.anu.edu.au E-mail: beers@pa.msu.edu E-mail: kenne257@msu.edu E-mail: sivarani@iiap.res.in

    2012-01-10

    Carbon-enhanced metal-poor (CEMP) stars in the halo components of the Milky Way are explored, based on accurate determinations of the carbon-to-iron ([C/Fe]) abundance ratios and kinematic quantities for over 30,000 calibration stars from the Sloan Digital Sky Survey. Using our present criterion that low-metallicity stars exhibiting [C/Fe] ratios ({sup c}arbonicity{sup )} in excess of [C/Fe] =+0.7 are considered CEMP stars, the global frequency of CEMP stars in the halo system for [Fe/H] <-1.5 is 8%, for [Fe/H] <-2.0 it is 12%, and for [Fe/H] <-2.5 it is 20%. We also confirm a significant increase in the level of carbon enrichment with declining metallicity, growing from ([C/Fe]) {approx}+1.0 at [Fe/H] =-1.5 to ([C/Fe]) {approx}+1.7 at [Fe/H] =-2.7. The nature of the carbonicity distribution function (CarDF) changes dramatically with increasing distance above the Galactic plane, |Z|. For |Z| <5 kpc, relatively few CEMP stars are identified. For distances |Z| >5 kpc, the CarDF exhibits a strong tail toward high values, up to [C/Fe] > +3.0. We also find a clear increase in the CEMP frequency with |Z|. For stars with -2.0 < [Fe/H] <-1.5, the frequency grows from 5% at |Z| {approx}2 kpc to 10% at |Z| {approx}10 kpc. For stars with [Fe/H] <-2.0, the frequency grows from 8% at |Z| {approx}2 kpc to 25% at |Z| {approx}10 kpc. For stars with -2.0 < [Fe/H] <-1.5, the mean carbonicity is ([C/Fe]) {approx}+1.0 for 0 kpc < |Z| < 10 kpc, with little dependence on |Z|; for [Fe/H] <-2.0, ([C/Fe]) {approx}+1.5, again roughly independent of |Z|. Based on a statistical separation of the halo components in velocity space, we find evidence for a significant contrast in the frequency of CEMP stars between the inner- and outer-halo components-the outer halo possesses roughly twice the fraction of CEMP stars as the inner halo. The carbonicity distribution also differs between the inner-halo and outer-halo components-the inner halo has a greater portion of stars with modest carbon

  7. A spectroscopic binary in the Hercules dwarf spheroidal galaxy

    SciTech Connect

    Koch, Andreas; Hansen, Terese; Feltzing, Sofia; Wilkinson, Mark I.

    2014-01-01

    We present the radial velocity curve of a single-lined spectroscopic binary in the faint Hercules dwarf spheroidal (dSph) galaxy, based on 34 individual spectra covering more than 2 yr of observations. This is the first time that orbital elements could be derived for a binary in a dSph. The system consists of a metal-poor red giant and a low-mass companion, possibly a white dwarf, with a 135 day period in a moderately eccentric (e = 0.18) orbit. Its period and eccentricity are fully consistent with metal-poor binaries in the Galactic halo, while the projected semimajor axis is small, at a{sub p} sin i = 38 R {sub ☉}. In fact, a very close orbit could inhibit the production of heavier elements through s-process nucleosynthesis, leading to the very low abundances of neutron-capture elements that are found in this star. We discuss the further implications for the chemical enrichment history of the Hercules dSph, but find no compelling binary scenario that could reasonably explain the full, peculiar abundance pattern of the Hercules dSph galaxy.

  8. SpeX spectroscopy of unresolved very low mass binaries. II. Identification of 14 candidate binaries with late-M/early-L and T dwarf components

    SciTech Connect

    Bardalez Gagliuffi, Daniella C.; Burgasser, Adam J.; Nicholls, Christine P.; Gelino, Christopher R.; Looper, Dagny L.; Schmidt, Sarah J.; Cruz, Kelle; West, Andrew A.; Gizis, John E.; Metchev, Stanimir

    2014-10-20

    Multiplicity is a key statistic for understanding the formation of very low mass (VLM) stars and brown dwarfs. Currently, the separation distribution of VLM binaries remains poorly constrained at small separations (≤1 AU), leading to uncertainty in the overall binary fraction. We approach this problem by searching for late-M/early-L plus T dwarf spectral binaries whose combined light spectra exhibit distinct peculiarities, allowing for separation-independent identification. We define a set of spectral indices designed to identify these systems, and we use a spectral template fitting method to confirm and characterize spectral binary candidates from a library of 815 spectra from the SpeX Prism Spectral Libraries. We present 11 new binary candidates, confirm 3 previously reported candidates, and rule out 2 previously identified candidates, all with primary and secondary spectral types in the range M7-L7 and T1-T8, respectively. We find that subdwarfs and blue L dwarfs are the primary contaminants in our sample and propose a method for segregating these sources. If confirmed by follow-up observations, these systems may add to the growing list of tight separation binaries, whose orbital properties may yield further insight into brown dwarf formation scenarios.

  9. Hunting for extremely metal-poor emission-line galaxies in the Sloan Digital Sky Survey: MMT and 3.5 m APO observations

    NASA Astrophysics Data System (ADS)

    Izotov, Y. I.; Thuan, T. X.; Guseva, N. G.

    2012-10-01

    We present 6.5-m MMT and 3.5 m APO spectrophotometry of 69 H ii regions in 42 low-metallicity emission-line galaxies, selected from the data release 7 of the Sloan Digital Sky Survey to have mostly [O iii]λ4959/Hβ ≲ 1 and [N ii]λ6583/Hβ ≲ 0.1. The electron temperature-sensitive emission line [O iii] λ4363 is detected in 53 H ii regions allowing a direct abundance determination. The oxygen abundance in the remaining 16 H ii regions is derived using a semi-empirical method. The oxygen abundance of the galaxies in our sample ranges from 12 + log O/H ~ 7.1 to ~7.9, with 14 H ii regions in 7 galaxies with 12 + log O/H ≤ 7.35. In 5 of the latter galaxies, the oxygen abundance is derived here for the first time. Including other known extremely metal-deficient emission-line galaxies from the literature, e.g. SBS 0335-052W, SBS 0335-052E and I Zw 18, we have compiled a sample of the 17 most metal-deficient (with 12 + log O/H ≤ 7.35) emission-line galaxies known in the local universe. There appears to be a metallicity floor at 12 + log O/H ~ 6.9, suggesting that the matter from which dwarf emission-line galaxies formed was pre-enriched to that level by e.g. Population III stars. Based on observations with the Multiple Mirror telescope (MMT) and the 3.5 m Apache Point Observatory (APO). The MMT is operated by the MMT Observatory (MMTO), a joint venture of the Smithsonian Institution and the University of Arizona. The Apache Point Observatory 3.5-m telescope is owned and operated by the Astrophysical Research Consortium.Figures 1-3 and Tables 2-8 are available in electronic form at http://www.aanda.org

  10. Choirs H I galaxy groups: The metallicity of dwarf galaxies

    SciTech Connect

    Sweet, Sarah M.; Drinkwater, Michael J.; Meurer, Gerhardt; Bekki, Kenji; Dopita, Michael A.; Nicholls, David C.; Kilborn, Virginia

    2014-02-10

    We present a recalibration of the luminosity-metallicity relation for gas-rich, star-forming dwarfs to magnitudes as faint as M{sub R} ∼ –13. We use the Dopita et al. metallicity calibrations to calibrate the relation for all the data in this analysis. In metallicity-luminosity space, we find two subpopulations within a sample of high-confidence Sloan Digital Sky Survey (SDSS) DR8 star-forming galaxies: 52% are metal-rich giants and 48% are metal-medium galaxies. Metal-rich dwarfs classified as tidal dwarf galaxy (TDG) candidates in the literature are typically of metallicity 12 + log(O/H) = 8.70 ± 0.05, while SDSS dwarfs fainter than M{sub R} = –16 have a mean metallicity of 12 + log(O/H) = 8.28 ± 0.10, regardless of their luminosity, indicating that there is an approximate floor to the metallicity of low-luminosity galaxies. Our hydrodynamical simulations predict that TDGs should have metallicities elevated above the normal luminosity-metallicity relation. Metallicity can therefore be a useful diagnostic for identifying TDG candidate populations in the absence of tidal tails. At magnitudes brighter than M{sub R} ∼ –16, our sample of 53 star-forming galaxies in 9 H I gas-rich groups is consistent with the normal relation defined by the SDSS sample. At fainter magnitudes, there is an increase in dispersion of the metallicity of our sample, suggestive of a wide range of H I content and environment. In our sample, we identify three (16% of dwarfs) strong TDG candidates (12 + log(O/H) > 8.6) and four (21%) very metal-poor dwarfs (12 + log(O/H) < 8.0), which are likely gas-rich dwarfs with recently ignited star formation.

  11. WASP-37b: A 1.8 M{sub J} EXOPLANET TRANSITING A METAL-POOR STAR

    SciTech Connect

    Simpson, E. K.; Faedi, F.; Barros, S. C. C.; Pollacco, D.; Todd, I.; McCormac, J.; Brown, D. J. A.; Cameron, A. Collier; Miller, G. R. M.; Hebb, L.; Smalley, B.; Anderson, D. R.; Butters, O. W.; Hebrard, G.; Boisse, I.; Santerne, A.; Street, R. A.; Skillen, I.; Triaud, A. H. M. J.; Bento, J.

    2011-01-15

    We report on the discovery of WASP-37b, a transiting hot Jupiter orbiting an m{sub v} = 12.7 G2-type dwarf, with a period of 3.577469 {+-} 0.000011 d, transit epoch T{sub 0} = 2455338.6188 {+-} 0.0006 (HJD; dates throughout the paper are given in Coordinated Universal Time (UTC)), and a transit duration 0.1304{sup +0.0018}{sub -0.0017} d. The planetary companion has a mass M{sub p} = 1.80 {+-} 0.17 M{sub J} and radius R{sub p} = 1.16{sup +0.07}{sub -0.06} R{sub J}, yielding a mean density of 1.15{sup +0.12}{sub -0.15} {rho}{sub J}. From a spectral analysis, we find that the host star has M{sub *} = 0.925 {+-} 0.120 M{sub sun}, R{sub *} = 1.003 {+-} 0.053 R{sub sun}, T{sub eff} = 5800 {+-} 150 K, and [Fe/H] = -0.40 {+-} 0.12. WASP-37 is therefore one of the lowest metallicity stars to host a transiting planet.

  12. Probing baryonic processes and gastrophysics in the formation of the Milky Way dwarf satellites. I. Metallicity distribution properties

    SciTech Connect

    Hou, Jun; Yu, Qingjuan; Lu, Youjun

    2014-08-10

    The Milky Way (MW) dwarf satellites, as the smallest galaxies discovered in the present-day universe, are potentially powerful probes to various baryonic processes in galaxy formation occurring in the early universe. In this paper, we study the chemical properties of the stars in the dwarf satellites around the MW-like host galaxies, and explore the possible effects of several baryonic processes, including supernova (SN) feedback, the reionization of the universe, and H{sub 2} cooling, and how current and future observations may put some constraints on these processes. We use a semianalytical model to generate MW-like galaxies, for which a fiducial model can reproduce the luminosity function and the stellar metallicity-stellar mass correlation of the MW dwarfs. Using the simulated MW-like galaxies, we focus on investigating three metallicity properties of their dwarfs: the stellar metallicity-stellar mass correlation of the dwarf population, and the metal-poor and metal-rich tails of the stellar metallicity distribution in individual dwarfs. We find that (1) the slope of the stellar metallicity-stellar mass correlation is sensitive to the SN feedback strength and the reionization epoch; (2) the extension of the metal-rich tails is mainly sensitive to the SN feedback strength; (3) the extension of the metal-poor tails is mainly sensitive to the reionization epoch; (4) none of the three chemical properties are sensitive to the H{sub 2} cooling process; and (5) a comparison of our model results with the current observational slope of the stellar metallicity-stellar mass relation suggests that the local universe is reionized earlier than the cosmic average, local sources may have a significant contribution to the reionization in the local region, and an intermediate to strong SN feedback strength is preferred. Future observations of metal-rich and metal-poor tails of stellar metallicity distributions will put further constraints on the SN feedback and the reionization

  13. PS1-10bzj: A Fast, Hydrogen-poor Superluminous Supernova in a Metal-poor Host Galaxy

    NASA Astrophysics Data System (ADS)

    Lunnan, R.; Chornock, R.; Berger, E.; Milisavljevic, D.; Drout, M.; Sanders, N. E.; Challis, P. M.; Czekala, I.; Foley, R. J.; Fong, W.; Huber, M. E.; Kirshner, R. P.; Leibler, C.; Marion, G. H.; McCrum, M.; Narayan, G.; Rest, A.; Roth, K. C.; Scolnic, D.; Smartt, S. J.; Smith, K.; Soderberg, A. M.; Stubbs, C. W.; Tonry, J. L.; Burgett, W. S.; Chambers, K. C.; Kudritzki, R.-P.; Magnier, E. A.; Price, P. A.

    2013-07-01

    We present observations and analysis of PS1-10bzj, a superluminous supernova (SLSN) discovered in the Pan-STARRS Medium Deep Survey at a redshift z = 0.650. Spectroscopically, PS1-10bzj is similar to the hydrogen-poor SLSNe 2005ap and SCP 06F6, though with a steeper rise and lower peak luminosity (M bol ~= -21.4 mag) than previous events. We construct a bolometric light curve, and show that while PS1-10bzj's energetics were less extreme than previous events, its luminosity still cannot be explained by radioactive nickel decay alone. We explore both a magnetar spin-down and circumstellar interaction scenario and find that either can fit the data. PS1-10bzj is located in the Extended Chandra Deep Field South and the host galaxy is imaged in a number of surveys, including with the Hubble Space Telescope. The host is a compact dwarf galaxy (MB ≈ -18 mag, diameter <~ 800 pc), with a low stellar mass (M * ≈ 2.4 × 107 M ⊙), young stellar population (τ* ≈ 5 Myr), and a star formation rate of ~2-3 M ⊙ yr-1. The specific star formation rate is the highest seen in an SLSN host so far (~100 Gyr-1). We detect the [O III] λ4363 line, and find a low metallicity: 12 + (O/H) = 7.8 ± 0.2 (sime 0.1 Z ⊙). Together, this indicates that at least some of the progenitors of SLSNe come from young, low-metallicity populations.

  14. PS1-10bzj: A FAST, HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA IN A METAL-POOR HOST GALAXY

    SciTech Connect

    Lunnan, R.; Chornock, R.; Berger, E.; Milisavljevic, D.; Drout, M.; Sanders, N. E.; Challis, P. M.; Czekala, I.; Foley, R. J.; Fong, W.; Kirshner, R. P.; Leibler, C.; Marion, G. H.; Narayan, G.; Huber, M. E.; McCrum, M.; Smartt, S. J.; Rest, A.; Roth, K. C.; Scolnic, D.; and others

    2013-07-10

    We present observations and analysis of PS1-10bzj, a superluminous supernova (SLSN) discovered in the Pan-STARRS Medium Deep Survey at a redshift z = 0.650. Spectroscopically, PS1-10bzj is similar to the hydrogen-poor SLSNe 2005ap and SCP 06F6, though with a steeper rise and lower peak luminosity (M{sub bol} {approx_equal} -21.4 mag) than previous events. We construct a bolometric light curve, and show that while PS1-10bzj's energetics were less extreme than previous events, its luminosity still cannot be explained by radioactive nickel decay alone. We explore both a magnetar spin-down and circumstellar interaction scenario and find that either can fit the data. PS1-10bzj is located in the Extended Chandra Deep Field South and the host galaxy is imaged in a number of surveys, including with the Hubble Space Telescope. The host is a compact dwarf galaxy (M{sub B} Almost-Equal-To -18 mag, diameter {approx}< 800 pc), with a low stellar mass (M{sub *} Almost-Equal-To 2.4 Multiplication-Sign 10{sup 7} M{sub Sun }), young stellar population ({tau}{sub *} Almost-Equal-To 5 Myr), and a star formation rate of {approx}2-3 M{sub Sun} yr{sup -1}. The specific star formation rate is the highest seen in an SLSN host so far ({approx}100 Gyr{sup -1}). We detect the [O III] {lambda}4363 line, and find a low metallicity: 12 + (O/H) = 7.8 {+-} 0.2 ({approx_equal} 0.1 Z{sub Sun }). Together, this indicates that at least some of the progenitors of SLSNe come from young, low-metallicity populations.

  15. Dust in an Extremely Metal-Poor Galaxy: Mid-infrared Observations ofSBS 0335-052

    NASA Astrophysics Data System (ADS)

    Thuan, Trinh X.; Sauvage, Marc; Madden, Suzanne

    1999-05-01

    The metal-deficient (Z=Zsolar/41) blue compact dwarf galaxy SBS 0335-052 was observed with ISOCAM between 5 and 17 μm. With an L12μm/LB ratio of 2.15, the galaxy is unexpectedly bright in the mid-infrared for such a low-metallicity object. The mid-infrared spectrum shows no sign of the unidentified infrared bands, which we interpret as an effect of the destruction of their carriers by the very high UV energy density in SBS 0335-052. The spectral energy distribution (SED) is dominated by a very strong continuum, which makes the ionic lines of [S IV] and [Ne III] very weak. From 5 to 17 μm, the SED can be fitted with a graybody spectrum, modified by an extinction law similar to that observed toward the Galactic center, with an optical depth of AV~19-21 mag. Such a large optical depth implies that a large fraction (as much as ~75%) of the current star formation activity in SBS 0335-052 is hidden by dust with a mass between 3×103 and 5×105 Msolar. Silicate grains that are present as silicate extinction bands at 9.7 and 18 μm can account for the unusual shape of the MIR spectrum of SBS 0335-052. It is remarkable that such a nearly primordial environment contains as much dust as galaxies that are 10 times more metal-rich. If the hidden star formation in SBS 0335-052 is typical of young galaxies at high redshifts, then the cosmic star formation rate derived from UV/optical fluxes would be underestimated. Based on data obtained with ISO, an ESA project with instruments funded by the ESA member states (especially the PI countries: France, Germany, the Netherlands, and the United Kingdom) with the participation of ISAS and NASA.

  16. A SEARCH FOR L/T TRANSITION DWARFS WITH PAN-STARRS1 AND WISE. II. L/T TRANSITION ATMOSPHERES AND YOUNG DISCOVERIES

    SciTech Connect

    Best, William M. J.; Liu, Michael C.; Magnier, Eugene A.; Aller, Kimberly M.; Chambers, K. C.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.; Deacon, Niall R.; Redstone, Joshua; Burgett, W. S.; Draper, P.; Metcalfe, N.

    2015-12-01

    The evolution of brown dwarfs from L to T spectral types is one of the least understood aspects of the ultracool population, partly for lack of a large, well-defined, and well-characterized sample in the L/T transition. To improve the existing census, we have searched ≈28,000 deg{sup 2} using the Pan-STARRS1 and Wide-field Infrared Survey Explorer surveys for L/T transition dwarfs within 25 pc. We present 130 ultracool dwarf discoveries with estimated distances ≈9–130 pc, including 21 that were independently discovered by other authors and 3 that were previously identified as photometric candidates. Seventy-nine of our objects have near-IR spectral types of L6–T4.5, the most L/T transition dwarfs from any search to date, and we have increased the census of L9–T1.5 objects within 25 pc by over 50%. The color distribution of our discoveries provides further evidence for the “L/T gap,” a deficit of objects with (J − K){sub MKO} ≈ 0.0–0.5 mag in the L/T transition, and thus reinforces the idea that the transition from cloudy to clear photospheres occurs rapidly. Among our discoveries are 31 candidate binaries based on their low-resolution spectral features. Two of these candidates are common proper motion companions to nearby main sequence stars; if confirmed as binaries, these would be rare benchmark systems with the potential to stringently test ultracool evolutionary models. Our search also serendipitously identified 23 late-M and L dwarfs with spectroscopic signs of low gravity implying youth, including 10 with vl-g or int-g gravity classifications and another 13 with indications of low gravity whose spectral types or modest spectral signal-to-noise ratio do not allow us to assign formal classifications. Finally, we identify 10 candidate members of nearby young moving groups (YMG) with spectral types L7–T4.5, including three showing spectroscopic signs of low gravity. If confirmed, any of these would be among the coolest known YMG members

  17. A Search for L/T Transition Dwarfs with Pan-STARRS1 and WISE. II. L/T Transition Atmospheres and Young Discoveries

    NASA Astrophysics Data System (ADS)

    Best, William M. J.; Liu, Michael C.; Magnier, Eugene A.; Deacon, Niall R.; Aller, Kimberly M.; Redstone, Joshua; Burgett, W. S.; Chambers, K. C.; Draper, P.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Metcalfe, N.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.

    2015-12-01

    The evolution of brown dwarfs from L to T spectral types is one of the least understood aspects of the ultracool population, partly for lack of a large, well-defined, and well-characterized sample in the L/T transition. To improve the existing census, we have searched ≈28,000 deg2 using the Pan-STARRS1 and Wide-field Infrared Survey Explorer surveys for L/T transition dwarfs within 25 pc. We present 130 ultracool dwarf discoveries with estimated distances ≈9-130 pc, including 21 that were independently discovered by other authors and 3 that were previously identified as photometric candidates. Seventy-nine of our objects have near-IR spectral types of L6-T4.5, the most L/T transition dwarfs from any search to date, and we have increased the census of L9-T1.5 objects within 25 pc by over 50%. The color distribution of our discoveries provides further evidence for the “L/T gap,” a deficit of objects with (J - K)MKO ≈ 0.0-0.5 mag in the L/T transition, and thus reinforces the idea that the transition from cloudy to clear photospheres occurs rapidly. Among our discoveries are 31 candidate binaries based on their low-resolution spectral features. Two of these candidates are common proper motion companions to nearby main sequence stars; if confirmed as binaries, these would be rare benchmark systems with the potential to stringently test ultracool evolutionary models. Our search also serendipitously identified 23 late-M and L dwarfs with spectroscopic signs of low gravity implying youth, including 10 with vl-g or int-g gravity classifications and another 13 with indications of low gravity whose spectral types or modest spectral signal-to-noise ratio do not allow us to assign formal classifications. Finally, we identify 10 candidate members of nearby young moving groups (YMG) with spectral types L7-T4.5, including three showing spectroscopic signs of low gravity. If confirmed, any of these would be among the coolest known YMG members and would help to determine

  18. A New Milky Way dwarf galaxy in Ursa Major

    SciTech Connect

    Willman, Beth; Dalcanton, Julianne J.; Martinez-Delgado, David; West, Andrew A.; Blanton, Michael R.; Hogg, David W.; Barentine, J.C.; Brewington, Howard J.; Harvanek, Michael; Kleinman, S.J.; Krzesinski, Jurek; Long, Dan; Neilsen, Eric H., Jr.; Nitta, Atsuko; Snedden, Stephanie A.; /CCPP, New York /Washington U., Seattle, Astron. Dept. /IAA, Granada /Heidelberg, Max Planck Inst. Astron. /Apache Point Observ. /Mt. Suhora Observ., Cracow /Fermilab

    2005-03-01

    In this Letter, we report the discovery of a new dwarf satellite to the Milky Way, located at ({alpha}{sub 2000}, {delta}{sub 2000}) = (158.72,51.92) in the constellation of Ursa Major. This object was detected as an overdensity of red, resolved stars in Sloan Digital Sky Survey data. The color-magnitude diagram of the Ursa Major dwarf looks remarkably similar to that of Sextans, the lowest surface brightness Milky Way companion known, but with approximately an order of magnitude fewer stars. Deeper follow-up imaging confirms this object has an old and metal-poor stellar population and is {approx} 100 kpc away. We roughly estimate M{sub V} = -6.75 and r{sub 1/2} = 250 pc for this dwarf. Its luminosity is several times fainter than the faintest known Milky Way dwarfs. However, its physical size is typical for dSphs. Even though its absolute magnitude and size are presently quite uncertain, Ursa Major is likely the lowest luminosity and lowest surface brightness galaxy yet known.

  19. Blue not brown: UKIRT Infrared Deep Sky Survey T dwarfs with suppressed K-band flux

    NASA Astrophysics Data System (ADS)

    Murray, D. N.; Burningham, B.; Jones, H. R. A.; Pinfield, D. J.; Lucas, P. W.; Leggett, S. K.; Tinney, C. G.; Day-Jones, A. C.; Weights, D. J.; Lodieu, N.; Pérez Prieto, J. A.; Nickson, E.; Zhang, Z. H.; Clarke, J. R. A.; Jenkins, J. S.; Tamura, M.

    2011-06-01

    We have used blue near-infrared colours to select a group of 12 spectroscopically confirmed United Kingdom InfraRed Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) T dwarfs later than T4. From amongst these, we identify the first two kinematic halo T-dwarf candidates. Blue near-infrared colours have been attributed to collisionally induced hydrogen absorption, which is enhanced by either high surface gravity or low metallicity. Proper motions are measured and distances estimated, allowing the determination of tangential velocities. U and V components are estimated for our objects by assuming Vrad= 0. From this, ULAS J0926+0835 is found to have U= 62 km s-1 and V=-140 km s-1, and ULAS J1319+1209 is found to have U= 192 km s-1 and V=-92 km s-1. These values are consistent with potential halo membership. However, these are not the bluest objects in our selection. The bluest is ULAS J1233+1219, with J-K=-1.16 ± 0.07, and surprisingly this object is found to have young disc-like U and V. Our sample also contains Hip 73786B, companion to the metal-poor K5 dwarf Hip 73786. Hip 73786 is a metal-poor star, with [Fe/H] =-0.3 ± 0.1 and is located at a distance of 19 ± 0.7 pc. U, V, W space velocity components are calculated for Hip 73786A and B, finding that U=-48 ± 7 km s-1, V=-75 ± 4 km s-1 and W=-44 ± 8 km s-1. From the properties of the primary, Hip 73786B is found to be at least 1.6-Gyr old. As a metal-poor object, Hip 73786B represents an important addition to the sample of known T dwarf benchmarks.

  20. The DART Imaging And CaT Survey of the Fornax Dwarf Spheroidal Galaxy

    SciTech Connect

    Battaglia, Giuseppina; Tolstoy, E.; Helmi, A.; Irwin, M.J.; Letarte, B.; Jablonka, P.; Hill, V.; Venn, K.A.; Shetrone, M.D.; Arimoto, N.; Primas, F.; Kaufer, A.; Francois, P.; Szeifert, T.; Abel, T.; Sadakane, K.; /Osaka Kyoiku U.

    2006-08-28

    As part of the DART project we have used the ESO/2.2m Wide Field Imager in conjunction with the VLT/FLAMES* GIRAFFE spectrograph to study the detailed properties of the resolved stellar population of the Fornax dwarf spheroidal galaxy out to and beyond its tidal radius. Fornax dSph has had a complicated evolution and contains significant numbers of young, intermediate age and old stars. We investigate the relation between these different components by studying their photometric, kinematic and abundance distributions. We re-derived the structural parameters of the Fornax dwarf spheroidal using our wide field imaging covering the galaxy out to its tidal radius, and analyzed the spatial distribution of the Fornax stars of different ages as selected from Colour-Magnitude Diagram analysis. We have obtained accurate velocities and metallicities from spectra in the Ca II triplet wavelength region for 562 Red Giant Branch stars which have velocities consistent with membership in Fornax dwarf spheroidal. We have found evidence for the presence of at least three distinct stellar components: a young population (few 100 Myr old) concentrated in the center of the galaxy, visible as a Main Sequence in the Colour-Magnitude Diagram; an intermediate age population (2-8 Gyr old); and an ancient population (> 10Gyr), which are distinguishable from each other kinematically, from the metallicity distribution and in the spatial distribution of stars found in the Colour-Magnitude Diagram. From our spectroscopic analysis we find that the ''metal rich'' stars ([Fe/H] > -1.3) show a less extended and more concentrated spatial distribution, and display a colder kinematics than the ''metal poor'' stars ([Fe/H] < -1.3). There is tentative evidence that the ancient stellar population in the center of Fornax does not exhibit equilibrium kinematics. This could be a sign of a relatively recent accretion of external material, such as the merger of another galaxy or other means of gas accretion at

  1. THE DISTRIBUTION OF ALPHA ELEMENTS IN ULTRA-FAINT DWARF GALAXIES

    SciTech Connect

    Vargas, Luis C.; Geha, Marla; Kirby, Evan N.; Simon, Joshua D.

    2013-04-20

    The Milky Way ultra-faint dwarf (UFD) galaxies contain some of the oldest, most metal-poor stars in the universe. We present [Mg/Fe], [Si/Fe], [Ca/Fe], [Ti/Fe], and mean [{alpha}/Fe] abundance ratios for 61 individual red giant branch stars across eight UFDs. This is the largest sample of alpha abundances published to date in galaxies with absolute magnitudes M{sub V} > -8, including the first measurements for Segue 1, Canes Venatici II, Ursa Major I, and Leo T. Abundances were determined via medium-resolution Keck/DEIMOS spectroscopy and spectral synthesis. The sample spans the metallicity range -3.4 <[Fe/H] < -1.1. With the possible exception of Segue 1 and Ursa Major II, the individual UFDs show on average lower [{alpha}/Fe] at higher metallicities, consistent with enrichment from Type Ia supernovae. Thus, even the faintest galaxies have undergone at least a limited level of chemical self-enrichment. Together with recent photometric studies, this suggests that star formation in the UFDs was not a single burst, but instead lasted at least as much as the minimum time delay of the onset of Type Ia supernovae ({approx}100 Myr) and less than {approx}2 Gyr. We further show that the combined population of UFDs has an [{alpha}/Fe] abundance pattern that is inconsistent with a flat, Galactic halo-like alpha abundance trend, and is also qualitatively different from that of the more luminous CVn I dSph, which does show a hint of a plateau at very low [Fe/H].

  2. Significance of brown dwarfs

    NASA Technical Reports Server (NTRS)

    Black, D. C.

    1986-01-01

    The significance of brown dwarfs for resolving some major problems in astronomy is discussed. The importance of brown dwarfs for models of star formation by fragmentation of molecular clouds and for obtaining independent measurements of the ages of stars in binary systems is addressed. The relationship of brown dwarfs to planets is considered.

  3. ALFALFA Discovery of the Nearby Gas-rich Dwarf Galaxy Leo P. V. Neutral Gas Dynamics and Kinematics

    NASA Astrophysics Data System (ADS)

    Bernstein-Cooper, Elijah Z.; Cannon, John M.; Elson, Edward C.; Warren, Steven R.; Chengular, Jayaram; Skillman, Evan D.; Adams, Elizabeth A. K.; Bolatto, Alberto D.; Giovanelli, Riccardo; Haynes, Martha P.; McQuinn, Kristen B. W.; Pardy, Stephen A.; Rhode, Katherine L.; Salzer, John J.

    2014-08-01

    We present new H I spectral line imaging of the extremely metal-poor, star-forming dwarf irregular galaxy Leo P. Our H I images probe the global neutral gas properties and the local conditions of the interstellar medium (ISM). The H I morphology is slightly elongated along the optical major axis. We do not find obvious signatures of interaction or infalling gas at large spatial scales. The neutral gas disk shows obvious rotation, although the velocity dispersion is comparable to the rotation velocity. The rotation amplitude is estimated to be V c =15 ± 5 km s-1. Within the H I radius probed by these observations, the mass ratio of gas to stars is roughly 2:1, while the ratio of the total mass to the baryonic mass is gsim15:1. We use this information to place Leo P on the baryonic Tully-Fisher relation, testing the baryonic content of cosmic structures in a sparsely populated portion of parameter space that has hitherto been occupied primarily by dwarf spheroidal galaxies. We detect the signature of two temperature components in the neutral ISM of Leo P the cold and warm components have characteristic velocity widths of 4.2 ± 0.9 km s-1 and 10.1 ± 1.2 km s-1, corresponding to kinetic temperature upper limits of ~1100 K and ~6200 K, respectively. The cold H I component is unresolved at a physical resolution of 200 pc. The highest H I surface densities are observed in close physical proximity to the single H II region. A comparison of the neutral gas properties of Leo P with other extremely metal-deficient (XMD) galaxies reveals that Leo P has the lowest neutral gas mass of any known XMD, and that the dynamical mass of Leo P is more than two orders of magnitude smaller than any known XMD with comparable metallicity.

  4. The VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits. II. Survey description, results, and performances

    NASA Astrophysics Data System (ADS)

    Chauvin, G.; Vigan, A.; Bonnefoy, M.; Desidera, S.; Bonavita, M.; Mesa, D.; Boccaletti, A.; Buenzli, E.; Carson, J.; Delorme, P.; Hagelberg, J.; Montagnier, G.; Mordasini, C.; Quanz, S. P.; Segransan, D.; Thalmann, C.; Beuzit, J.-L.; Biller, B.; Covino, E.; Feldt, M.; Girard, J.; Gratton, R.; Henning, T.; Kasper, M.; Lagrange, A.-M.; Messina, S.; Meyer, M.; Mouillet, D.; Moutou, C.; Reggiani, M.; Schlieder, J. E.; Zurlo, A.

    2015-01-01

    Context. Young, nearby stars are ideal targets for direct imaging searches for giant planets and brown dwarf companions. After the first-imaged planet discoveries, vast efforts have been devoted to the statistical analysis of the occurence and orbital distributions of giant planets and brown dwarf companions at wide (≥5-6 AU) orbits. Aims: In anticipation of the VLT/SPHERE planet-imager, guaranteed-time programs, we have conducted a preparatory survey of 86 stars between 2009 and 2013 to identify new faint comoving companions to ultimately analyze the occurence of giant planets and brown dwarf companions at wide (10-2000 AU) orbits around young, solar-type stars. Methods: We used NaCo at VLT to explore the occurrence rate of giant planets and brown dwarfs between typically 0.1 and 8''. Diffraction-limited observations in H-band combined with angular differential imaging enabled us to reach primary star-companion brightness ratios as small as 10-6 at 1.5''. Repeated observations at several epochs enabled us to discriminate comoving companions from background objects. Results: During our survey, twelve systems were resolved as new binaries, including the discovery of a new white dwarf companion to the star HD 8049. Around 34 stars, at least one companion candidate was detected in the observed field of view. More than 400 faint sources were detected; 90% of them were in four crowded fields. With the exception of HD 8049 B, we did not identify any new comoving companions. The survey also led to spatially resolved images of the thin debris disk around HD 61005 that have been published earlier. Finally, considering the survey detection limits, we derive a preliminary upper limit on the frequency of giant planets for the semi-major axes of [10, 2000] AU: typically less than 15% between 100 and 500 AU and less than 10% between 50 and 500 AU for exoplanets that are more massive than 5 MJup and 10 MJup respectively, if we consider a uniform input distribution and a

  5. The role of binaries in the enrichment of the early Galactic halo. III. Carbon-enhanced metal-poor stars - CEMP-s stars

    NASA Astrophysics Data System (ADS)

    Hansen, T. T.; Andersen, J.; Nordström, B.; Beers, T. C.; Placco, V. M.; Yoon, J.; Buchhave, L. A.

    2016-04-01

    Context. Detailed spectroscopic studies of metal-poor halo stars have highlighted the important role of carbon-enhanced metal-poor (CEMP) stars in understanding the early production and ejection of carbon in the Galaxy and in identifying the progenitors of the CEMP stars among the first stars formed after the Big Bang. Recent work has also classified the CEMP stars by absolute carbon abundance, A(C), into high- and low-C bands, mostly populated by binary and single stars, respectively. Aims: Our aim is to determine the frequency and orbital parameters of binary systems among the CEMP-s stars, which exhibit strong enhancements of neutron-capture elements associated with the s-process. This allows us to test whether local mass transfer from a binary companion is necessary and sufficient to explain their dramatic carbon excesses. Methods: We have systematically monitored the radial velocities of a sample of 22 CEMP-s stars for several years with ~monthly, high-resolution, low S/N échelle spectra obtained at the Nordic Optical Telescope (NOT) at La Palma, Spain. From these spectra, radial velocities with an accuracy of ≈100 m s-1 were determined by cross-correlation with optimised templates. Results: Eighteen of the 22 stars exhibit clear orbital motion, yielding a binary frequency of 82 ± 10%, while four stars appear to be single (18 ± 10%). We thus confirm that the binary frequency of CEMP-s stars is much higher than for normal metal-poor giants, but not 100% as previously claimed. Secure orbits are determined for eleven of the binaries and provisional orbits for six long-period systems (P > 3000 days), and orbital circularisation timescales are discussed. Conclusions: The conventional scenario of local mass transfer from a former asymptotic giant branch (AGB) binary companion does appear to account for the chemical composition of most CEMP-s stars. However, the excess of C and s-process elements in some single CEMP-s stars was apparently transferred to their

  6. Low-Metallicity Star Formation: From the First Stars to Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Hunt, Leslie K.; Madden, Suzanne C.; Schneider, Raffaella

    2008-12-01

    'Shea and Michael L. Norman; 16. Damped Lyα systems as probes of chemical evolution over cosmological timescales Miroslava Dessauges-Zavadsky; 17. Connecting high-redshift galaxy populations through observations of local damped Lyman alpha dwarf galaxies Regina E. Schulte-Ladbeck; 18. Chemical enrichment and feedback in low metallicity environments: constraints on galaxy formation Francesca Matteucci; 19. Effects of reionization on dwarf galaxy formation Massimo Ricotti; 20. The importance of following the evolution of the dust in galaxies on their SEDs A. Schurer, F. Calura, L. Silva, A. Pipino, G. L. Granato, F. Matteucci and R. Maiolino; 21. About the chemical evolution of dSphs (and the peculiar globular cluster ωCen) Andrea Marcolini and Annibale D'Ercole; 22. Young star clusters in the small Magellanic cloud: impact of local and global conditions on star formation Elena Sabbi, Linda J. Smith, Lynn R. Carlson, Antonella Nota, Monca Tosi, Michele Cignoni, Jay S. Gallagher III, Marco Sirianni and Margaret Meixner; 23. Modeling the ISM properties of metal-poor galaxies and gamma-ray burst hosts Emily M. Levesque, Lisa J. Kewley, Kirsten Larson and Leonie Snijders; 24. Dwarf galaxies and the magnetisation of the IGM Uli Klein; Session III. Explosive Events in Low-Metallicity Environments: 25. Supernovae and their evolution in a low metallicity ISM Roger A. Chevalier; 26. First stars - type Ib supernovae connection Ken'ichi Nomoto, Masaomi Tanaka, Yasuomi Kamiya, Nozomu Tominaga and Keiichi Maeda; 27. Supernova nucleosynthesis in the early universe Nozomu Tominaga, Hideyuki Umeda, Keiichi Maeda, Ken'ichi Nomoto and Nobuyuki Iwamoto; 28. Powerful explosions at Z = 0? Sylvia Ekström, Georges Meynet, Raphael Hirschi and André Maeder; 29. Wind anisotropy and stellar evolution Cyril Georgy, Georges Meynet and André Maeder; 30. Low-mass and metal-poor gamma-ray burst

  7. Carbon-enhanced metal-poor stars: CEMP-s and CEMP-no subclasses in the halo system of the Milky Way

    SciTech Connect

    Carollo, Daniela; Freeman, Ken; Beers, Timothy C.; Placco, Vinicius M.; Tumlinson, Jason; Martell, Sarah L. E-mail: kcf@mso.anu.edu.au E-mail: vplacco@gemini.edu E-mail: smartell@aao.gov.au

    2014-06-20

    We explore the kinematics and orbital properties of a sample of 323 very metal-poor stars in the halo system of the Milky Way, selected from the high-resolution spectroscopic follow-up studies of Aoki et al. and Yong et al. The combined sample contains a significant fraction of carbon-enhanced metal-poor (CEMP) stars (22% or 29%, depending on whether a strict or relaxed criterion is applied for this definition). Barium abundances (or upper limits) are available for the great majority of the CEMP stars, allowing for their separation into the CEMP-s and CEMP-no subclasses. A new method to assign membership to the inner- and outer-halo populations of the Milky Way is developed, making use of the integrals of motion, and applied to determine the relative fractions of CEMP stars in these two subclasses for each halo component. Although limited by small-number statistics, the data suggest that the inner halo of the Milky Way exhibits a somewhat higher relative number of CEMP-s stars than CEMP-no stars (57% versus 43%), while the outer halo possesses a clearly higher fraction of CEMP-no stars than CEMP-s stars (70% versus 30%). Although larger samples of CEMP stars with known Ba abundances are required, this result suggests that the dominant progenitors of CEMP stars in the two halo components were different; massive stars for the outer halo, and intermediate-mass stars in the case of the inner halo.

  8. OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. V. TOWARD AN EMPIRICAL METAL-POOR MASS–LUMINOSITY RELATION

    SciTech Connect

    Horch, Elliott P.; Van Altena, William F.; Demarque, Pierre; Howell, Steve B.; Everett, Mark E.; Ciardi, David R.; Teske, Johanna K.; Henry, Todd J.; Winters, Jennifer G. E-mail: william.vanaltena@yale.edu E-mail: steve.b.howell@nasa.gov E-mail: ciardi@ipac.caltech.edu E-mail: thenry@astro.gsu.edu

    2015-05-15

    In an effort to better understand the details of the stellar structure and evolution of metal-poor stars, the Gemini North telescope was used on two occasions to take speckle imaging data of a sample of known spectroscopic binary stars and other nearby stars in order to search for and resolve close companions. The observations were obtained using the Differential Speckle Survey Instrument, which takes data in two filters simultaneously. The results presented here are of 90 observations of 23 systems in which one or more companions was detected, and six stars where no companion was detected to the limit of the camera capabilities at Gemini. In the case of the binary and multiple stars, these results are then further analyzed to make first orbit determinations in five cases, and orbit refinements in four other cases. The mass information is derived, and since the systems span a range in metallicity, a study is presented that compares our results with the expected trend in total mass as derived from the most recent Yale isochrones as a function of metal abundance. These data suggest that metal-poor main-sequence stars are less massive at a given color than their solar-metallicity analogues in a manner consistent with that predicted from the theory.

  9. Observations of Binary Stars with the Differential Speckle Survey Instrument. V. Toward an Empirical Metal-Poor Mass-Luminosity Relation

    NASA Astrophysics Data System (ADS)

    Horch, Elliott P.; van Altena, William F.; Demarque, Pierre; Howell, Steve B.; Everett, Mark E.; Ciardi, David R.; Teske, Johanna K.; Henry, Todd J.; Winters, Jennifer G.

    2015-05-01

    In an effort to better understand the details of the stellar structure and evolution of metal-poor stars, the Gemini North telescope was used on two occasions to take speckle imaging data of a sample of known spectroscopic binary stars and other nearby stars in order to search for and resolve close companions. The observations were obtained using the Differential Speckle Survey Instrument, which takes data in two filters simultaneously. The results presented here are of 90 observations of 23 systems in which one or more companions was detected, and six stars where no companion was detected to the limit of the camera capabilities at Gemini. In the case of the binary and multiple stars, these results are then further analyzed to make first orbit determinations in five cases, and orbit refinements in four other cases. The mass information is derived, and since the systems span a range in metallicity, a study is presented that compares our results with the expected trend in total mass as derived from the most recent Yale isochrones as a function of metal abundance. These data suggest that metal-poor main-sequence stars are less massive at a given color than their solar-metallicity analogues in a manner consistent with that predicted from the theory.

  10. KECK OBSERVATIONS OF THE YOUNG METAL-POOR HOST GALAXY OF THE SUPER-CHANDRASEKHAR-MASS TYPE Ia SUPERNOVA SN 2007if

    SciTech Connect

    Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Loken, S.; Antilogus, P.; Bongard, S.; Canto, A.; Pain, R.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Paech, K.; Chotard, N.; Copin, Y.; Gangler, E.

    2011-05-20

    We present Keck LRIS spectroscopy and g-band photometry of the metal-poor, low-luminosity host galaxy of the super-Chandrasekhar-mass Type Ia supernova SN 2007if. Deep imaging of the host reveals its apparent magnitude to be m{sub g} = 23.15 {+-} 0.06, which at the spectroscopically measured redshift of z{sub helio} = 0.07450 {+-} 0.00015 corresponds to an absolute magnitude of M{sub g} = -14.45 {+-} 0.06. Galaxy g - r color constrains the mass-to-light ratio, giving a host stellar mass estimate of log(M{sub *}/M{sub sun}) = 7.32 {+-} 0.17. Balmer absorption in the stellar continuum, along with the strength of the 4000 A break, constrains the age of the dominant starburst in the galaxy to be t{sub burst} = 123{sup +165}{sub -77} Myr, corresponding to a main-sequence turnoff mass of M/M{sub sun} = 4.6{sup +2.6}{sub -1.4}. Using the R{sub 23} method of calculating metallicity from the fluxes of strong emission lines, we determine the host oxygen abundance to be 12 + log(O/H){sub KK04} = 8.01 {+-} 0.09, significantly lower than any previously reported spectroscopically measured Type Ia supernova host galaxy metallicity. Our data show that SN 2007if is very likely to have originated from a young, metal-poor progenitor.

  11. Dependence of the Sr-to-Ba and Sr-to-Eu Ratio on the Nuclear Equation of State in Metal-poor Halo Stars

    NASA Astrophysics Data System (ADS)

    Famiano, M. A.; Kajino, T.; Aoki, W.; Suda, T.

    2016-10-01

    A model is proposed in which the dependence on the equation of state (EOS) of the scatter of [Sr/Ba] in metal-poor stars is studied. Light r-process element enrichment in these stars has been explained via a truncated r-process, or “tr-process.” The truncation of the r-process from a generic core-collapse event followed by a collapse into an accretion-induced black hole is examined in the framework of a galactic chemical evolution model. The constraints on this model imposed by observations of extremely metal-poor stars are explained, and the upper limits in the [Sr/Ba] distributions are found to be related to the nuclear EOS in a collapse scenario. The scatter in [Sr/Ba] and [Sr/Eu] as a function of metallicity has been found to be consistent with turbulent ejection in core-collapse supernovae. Adaptations of this model are evaluated to account for the scatter in isotopic observables. This is done by assuming mixing in ejecta in a supernova event. Stiff EOS are eliminated by this model.

  12. EXAMINATION OF THE MASS-DEPENDENT Li DEPLETION HYPOTHESIS BY THE Li ABUNDANCES OF THE VERY METAL-POOR DOUBLE-LINED SPECTROSCOPIC BINARY G166-45

    SciTech Connect

    Aoki, Wako; Ito, Hiroko; Tajitsu, Akito

    2012-05-20

    The Li abundances of the two components of the very metal-poor ([Fe/H] -2.5) double-lined spectroscopic binary G166-45 (BD+26 Degree-Sign 2606) are determined separately based on high-resolution spectra obtained with the Subaru Telescope High Dispersion Spectrograph and its image slicer. From the photometric colors and the mass ratio, the effective temperatures of the primary and secondary components are estimated to be 6350 {+-} 100 K and 5830 {+-} 170 K, respectively. The Li abundance of the primary (A(Li) = 2.23) agrees well with the Spite plateau value, while that of the secondary is slightly lower (A(Li) = 2.11). Such a discrepancy of the Li abundances between the two components is previously found in the extremely metal-poor, double-lined spectroscopic binary CS 22876-032; however, the discrepancy in G166-45 is much smaller. The results agree with the trends found for Li abundance as a function of effective temperature (and of stellar mass) of main-sequence stars with -3.0 < [Fe/H] < -2.0, suggesting that the depletion of Li at T{sub eff} {approx} 5800 K is not particularly large in this metallicity range. The significant Li depletion found in CS 22876-032B is a phenomenon only found in the lowest metallicity range ([Fe/H] < -3).

  13. Behavior of [S/Fe] in Very Metal-Poor Stars from the S I 1.046 µm Lines Revisited

    NASA Astrophysics Data System (ADS)

    Takeda, Yoichi; Takada-Hidai, Masahide

    2012-04-01

    With an aim to establish how the [S/Fe] ratios behave in the very low metallicity regime down to [Fe/H] ˜ -3, we conducted a non-LTE analysis of near-IR S I triplet lines (multiplet 3) at 10455-10459 Å for a dozen very metal-poor stars (-3.2 ≲ [Fe/H] ≲ -1.9) based on new observational data obtained with IRCS+AO188 of the Subaru Telescope. It turned out that the resulting [S/ Fe] values are only moderately supersolar at [S/Fe] ˜ +0.2-0.5, irrespective of the metallicity. While this ``flat'' tendency is consistent with a trend recently corroborated by Spite et al. (2011, A&A, 528, A9) based on the S I 9212/9228/9237 lines (multiplet 1), it disaffirms the possibility of a conspicuously large [S/Fe] (up to ˜ +0.8) at [Fe/H] ˜ -3 that we once suggested in our first report on the S abundances of disk/halo stars using S I 10455-10459 lines (Takeda & Takada-Hidai 2011, PASJ, 63, S537). Given these new observational facts, we withdraw our previous argument, since we consider that [S/Fe]'s of some most metal-poor objects were overestimated in that paper; the likely cause for this failure is also discussed.

  14. THE MOST METAL-POOR STARS. IV. THE TWO POPULATIONS WITH [Fe/H] {approx}< -3.0

    SciTech Connect

    Norris, John E.; Yong, David; Bessell, M. S.; Asplund, M. E-mail: bessell@mso.anu.edu.au; and others

    2013-01-01

    We discuss the carbon-normal and carbon-rich populations of Galactic halo stars having [Fe/H] {approx}< -3.0, utilizing chemical abundances from high-resolution, high signal-to-noise model-atmosphere analyses. The C-rich population represents {approx}28% of stars below [Fe/H] = -3.1, with the present C-rich sample comprising 16 CEMP-no stars, and two others with [Fe/H] {approx} -5.5 and uncertain classification. The population is O-rich ([O/Fe] {approx}> +1.5); the light elements Na, Mg, and Al are enhanced relative to Fe in half the sample; and for Z > 20 (Ca) there is little evidence for enhancements relative to solar values. These results are best explained in terms of the admixing and processing of material from H-burning and He-burning regions as achieved by nucleosynthesis in zero-heavy-element models in the literature of 'mixing and fallback' supernovae (SNe); of rotating, massive, and intermediate-mass stars; and of Type II SNe with relativistic jets. The available (limited) radial velocities offer little support for the C-rich stars with [Fe/H] < -3.1 being binary. More data are required before one could conclude that binarity is key to an understanding of this population. We suggest that the C-rich and C-normal populations result from two different gas cooling channels in the very early universe of material that formed the progenitors of the two populations. The first was cooling by fine-structure line transitions of C II and O I (to form the C-rich population); the second, while not well defined (perhaps dust-induced cooling?), led to the C-normal group. In this scenario, the C-rich population contains the oldest stars currently observed.

  15. High-resolution abundance analysis of red giants in the metal-poor bulge globular cluster HP 1

    NASA Astrophysics Data System (ADS)

    Barbuy, B.; Cantelli, E.; Vemado, A.; Ernandes, H.; Ortolani, S.; Saviane, I.; Bica, E.; Minniti, D.; Dias, B.; Momany, Y.; Hill, V.; Zoccali, M.; Siqueira-Mello, C.

    2016-06-01

    Context. The globular cluster HP 1 is projected at only 3.̊33 from the Galactic center. Together with its distance, this makes it one of the most central globular clusters in the Milky Way. It has a blue horizontal branch (BHB) and a metallicity of [Fe/H] ≈ -1.0. This means that it probably is one of the oldest objects in the Galaxy. Abundance ratios can reveal the nucleosynthesis pattern of the first stars as well as the early chemical enrichment and early formation of stellar populations. Aims: High-resolution spectra obtained for six stars were analyzed to derive the abundances of the light elements C, N, O, Na, and Al, the alpha-elements Mg, Si, Ca, and Ti, and the heavy elements Sr, Y, Zr, Ba, La, and Eu. Methods: High-resolution spectra of six red giants that are confirmed members of the bulge globular cluster HP 1 were obtained with the 8 m VLT UT2-Kueyen telescope with the UVES spectrograph in FLAMES-UVES configuration. The spectroscopic parameter derivation was based on the excitation and ionization equilibrium of Fe i and Fe ii. Results: We confirm a mean metallicity of [Fe/H] = -1.06 ± 0.10, by adding the two stars that were previously analyzed in HP 1. The alpha-elements O and Mg are enhanced by about +0.3 ≲ [O,Mg/Fe] ≲ +0.5 dex, Si is moderately enhanced with +0.15 ≲ [Si/Fe] ≲ +0.35 dex, while Ca and Ti show lower values of -0.04 ≲ [Ca,Ti/Fe] ≲ +0.28 dex. The r-element Eu is also enhanced with [Eu/Fe] ≈ +0.4, which together with O and Mg is indicative of early enrichment by type II supernovae. Na and Al are low, but it is unclear if Na-O are anticorrelated. The heavy elements are moderately enhanced, with -0.20 < [La/Fe] < +0.43 dex and 0.0 < [Ba/Fe] < +0.75 dex, which is compatible with r-process formation. The spread in Y, Zr, Ba, and La abundances, on the other hand, appears to be compatible with the spinstar scenario or other additional mechanisms such as the weak r-process. Observations collected at the European Southern

  16. SURFACE BRIGHTNESS PROFILES OF DWARF GALAXIES. I. PROFILES AND STATISTICS

    SciTech Connect

    Herrmann, Kimberly A.; Hunter, Deidre A.; Elmegreen, Bruce G. E-mail: dah@lowell.edu

    2013-11-01

    Radial surface brightness profiles of spiral galaxies are classified into three types: (I) single exponential, or the light falls off with one exponential to a break before falling off (II) more steeply, or (III) less steeply. Profile breaks are also found in dwarf disks, but some dwarf Type IIs are flat or increasing out to a break before falling off. Here we re-examine the stellar disk profiles of 141 dwarfs: 96 dwarf irregulars (dIms), 26 Blue Compact Dwarfs (BCDs), and 19 Magellanic-type spirals (Sms). We fit single, double, or even triple exponential profiles in up to 11 passbands: GALEX FUV and NUV, ground-based UBVJHK and Hα, and Spitzer 3.6 and 4.5 μm. We find that more luminous galaxies have brighter centers, larger inner and outer scale lengths, and breaks at larger radii; dwarf trends with M{sub B} extend to spirals. However, the V-band break surface brightness is independent of break type, M{sub B} , and Hubble type. Dwarf Type II and III profiles fall off similarly beyond the breaks but have different interiors and IIs break ∼twice as far as IIIs. Outer Type II and III scale lengths may have weak trends with wavelength, but pure Type II inner scale lengths clearly decrease from the FUV to visible bands whereas Type III inner scale lengths increase with redder bands. This suggests the influence of different star formation histories on profile type, but nonetheless the break location is approximately the same in all passbands. Dwarfs continue trends between profile and Hubble types such that later-type galaxies have more Type II but fewer Type I and III profiles than early-type spirals. BCDs and Sms are over-represented as Types III and II, respectively, compared to dIms.

  17. X-ray spectroscopy of hot white dwarfs

    NASA Astrophysics Data System (ADS)

    Adamczak, Jens

    2010-10-01

    X-ray spectra of two hot white dwarfs observed by the Chandra satellite have been analyzed. The first is a white dwarf of spectral class DA with an almost pure hydrogen atmosphere. Contrary to that, the atmosphere of the second object, a PG 1159 star, is basically hydrogen free. The reason for the different composition can be found in the differing evolution of these objects. Some DA white dwarfs show much smaller metallicities than predicted by the mechanism of radiative levitation. Many spectral lines of the heavy elements that are the key to the explanation to the unusual metal poorness are located in the X-ray wavelength range. Some PG 1159 stars are non-radial g-mode pulsators. The pulsations depend amongst others on the abundances of the elements in the atmosphere, log g, and T eff. The soft X-ray range is particularly temperature sensitive and allows to constrain the temperature of a non-pulsating PG 1159 star with respect to its pulsating spectroscopic twin. Detailed analysis of X-ray spectra of single white dwarfs do not yet exist. The aim of this thesis was to analyze spectra of the DA white dwarfs LB 1919 and GD 246 in different wavelength ranges in order to find out if the metals in the atmospheres of these objects are homogeneously mixed or chemically stratified. This helps to identify or exclude possible unexpected mechanisms that might disturb the equilibrium between gravitational and radiative forces in the atmosphere. For LB 1919 an additional aim was to identify photospheric features of several elements and determine their abundances for the first time. It was further intended to determine the temperature of the non-pulsating PG 1159 star PG 1520+525 precisely. The spectra of LB 1919 and GD 246 ranging from X-ray to optical wavelengths were analyzed with advanced homogeneous and stratified Non-LTE model atmospheres. The Chandra spectrum of the PG 1159 star PG 1520+525 was analyzed with homogeneous Non-LTE model atmospheres only since no

  18. Explaining the Ba, Y, Sr, and Eu abundance scatter in metal-poor halo stars: constraints to the r-process

    NASA Astrophysics Data System (ADS)

    Cescutti, G.; Chiappini, C.

    2014-05-01

    Context. Thanks to the heroic observational campaigns carried out in recent years we now have large samples of metal-poor stars for which measurements of detailed abundances exist. In particular, large samples of stars with metallicities -5 < [Fe/H] <-1 and measured abundances of Sr, Ba, Y, and Eu are now available. These data hold important clues on the nature of the contribution of the first stellar generations to the enrichment of our Galaxy. Aims: We aim to explain the scatter in Sr, Ba, Y, and Eu abundance ratio diagrams unveiled by the metal-poor halo stars. Methods: We computed inhomogeneous chemical evolution models for the Galactic halo assuming different scenarios for the r-process site: the electron-capture (EC) supernovae and the magnetorotationally driven (MRD) supernovae scenarios. We also considered models with and without the contribution of fast-rotating massive stars (spinstars) to an early enrichment by the s-process. A detailed comparison with the now large sample of stars with measured abundances of Sr, Ba, Y, Eu, and Fe is provided (both in terms of scatter plots and number distributions for several abundance ratios). Results: The scatter observed in these abundance ratios of the very metal-poor stars (with [Fe/H] <-2.5) can be explained by combining the s-process production in spinstars, and the r-process contribution coming from massive stars. For the r-process we have developed models for both the EC and the MRD scenarios that match the observations. Conclusions: With the present observational and theoretical constraints we cannot distinguish between the EC and the MRD scenarios in the Galactic halo. Independently of the r-process scenarios adopted, the production of elements by an s-process in spinstars is needed to reproduce the spread in abundances of the light neutron capture elements (Sr and Y) over heavy neutron capture elements (Ba and Eu). We provide a way to test our suggestions by means of the distribution of the Ba isotopic

  19. On the formation of dwarf galaxies and stellar haloes

    NASA Astrophysics Data System (ADS)

    Read, J. I.; Pontzen, A. P.; Viel, M.

    2006-09-01

    Using analytic arguments and a suite of very high resolution (~103Msolar per particle) cosmological hydrodynamical simulations, we argue that high-redshift, z ~ 10, M ~ 108Msolar haloes, form the smallest `baryonic building block' (BBB) for galaxy formation. These haloes are just massive enough to efficiently form stars through atomic line cooling and to hold on to their gas in the presence of supernova (SN) winds and reionization. These combined effects, in particular that of the SN feedback, create a sharp transition: over the mass range 3-10 × 107Msolar, the BBBs drop two orders of magnitude in stellar mass. Below ~2 × 107Msolar, galaxies will be dark with almost no stars and no gas. Above this scale is the smallest unit of galaxy formation: the BBB. We show that the BBBs have stellar distributions which are spheroidal, of low rotational velocity, old and metal poor: they resemble the dwarf spheroidal galaxies (dSphs) of the Local Group (LG). Unlike the LG dSphs, however, they contain significant gas fractions. We connect these high-redshift BBBs to the smallest dwarf galaxies observed at z = 0 using linear theory. A small fraction (~100) of these gas-rich BBBs at high redshift fall in to a galaxy the size of the Milky Way (MW). We suggest that 10 per cent of these survive to become the observed LG dwarf galaxies at the present epoch. This is consistent with recent numerical estimates. Those infalling haloes on benign orbits which keep them far away from the MW or Andromeda manage to retain their gas and slowly form stars - these become the smallest dwarf irregular galaxies; those on more severe orbits lose their gas faster than they can form stars and become the dwarf spheroidals. The remaining 90 per cent of the BBBs will be accreted. We show that this gives a metallicity and total stellar mass consistent with the MW old stellar halo.

  20. The Metamorphosis of Tidally Stirred Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Mayer, Lucio; Governato, Fabio; Colpi, Monica; Moore, Ben; Quinn, Thomas; Wadsley, James; Stadel, Joachim; Lake, George

    2001-10-01

    We present results from high-resolution N-body/SPH (smoothed particle hydrodynamic) simulations of rotationally supported dwarf irregular galaxies moving on bound orbits in the massive dark matter halo of the Milky Way. The dwarf models span a range in disk surface density and the masses and sizes of their dark halos are consistent with the predictions of cold dark matter cosmogonies. We show that the strong tidal field of the Milky Way determines severe mass loss in their halos and disks and induces bar and bending instabilities that transform low surface brightness dwarfs (LSBs) into dwarf spheroidals (dSphs) and high surface brightness dwarfs (HSBs) into dwarf ellipticals (dEs) in less than 10 Gyr. The final central velocity dispersions of the remnants are in the range 8-30 km s-1 and their final v/σ falls to values less than 0.5, matching well the kinematics of early-type dwarfs. The transformation requires the orbital time of the dwarf to be <~3-4 Gyr, which implies a halo as massive and extended as predicted by hierarchical models of galaxy formation to explain the origin of even the farthest dSph satellites of the Milky Way, Leo I, and Leo II. We show that only dwarfs with central dark matter densities as high as those of Draco and Ursa Minor can survive for 10 Gyr in the proximity of the Milky Way. A correlation between the central density and the distance of the dwarfs from the primary galaxy is indeed expected in hierarchical models, in which the densest objects should have small orbital times because of their early formation epochs. Part of the gas is stripped and part is funneled to the center because of the bar, generating one strong burst of star formation in HSBs and smaller, multiple bursts in LSBs. Therefore, the large variety of star formation histories observed in Local Group dSphs arises because different types of dIrr progenitors respond differently to the external perturbation of the Milky Way. Our evolutionary model naturally explains the

  1. Low Mach Number Modeling of Convection in Helium Shells on Sub-Chandrasekhar White Dwarfs. II. Bulk Properties of Simple Models

    NASA Astrophysics Data System (ADS)

    Jacobs, A. M.; Zingale, M.; Nonaka, A.; Almgren, A. S.; Bell, J. B.

    2016-08-01

    The dynamics of helium shell convection driven by nuclear burning establish the conditions for runaway in the sub-Chandrasekhar-mass, double-detonation model for SNe Ia, as well as for a variety of other explosive phenomena. We explore these convection dynamics for a range of white dwarf core and helium shell masses in three dimensions using the low Mach number hydrodynamics code MAESTRO. We present calculations of the bulk properties of this evolution, including time-series evolution of global diagnostics, lateral averages of the 3D state, and the global 3D state. We find a variety of outcomes, including quasi-equilibrium, localized runaway, and convective runaway. Our results suggest that the double-detonation progenitor model is promising and that 3D dynamic convection plays a key role.

  2. IMPROVED Ni I log(gf) VALUES AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937

    SciTech Connect

    Wood, M. P.; Lawler, J. E.; Sneden, C.; Cowan, J. J. E-mail: jelawler@wisc.edu E-mail: cowan@nhn.ou.edu

    2014-04-01

    Atomic transition probability measurements for 371 Ni I lines in the UV through near-IR are reported. Branching fractions from data recorded using a Fourier transform spectrometer and a new echelle spectrograph are combined with published radiative lifetimes to determine these transition probabilities. Generally good agreement is found in comparisons to previously reported Ni I transition probability measurements. Use of the new echelle spectrograph, independent radiometric calibration methods, and independent data analysis routines enable a reduction of systematic errors and overall improvement in transition probability uncertainty over previous measurements. The new Ni I data are applied to high-resolution visible and UV spectra of the Sun and metal-poor star HD 84937 to derive new, more accurate Ni abundances. Lines covering a wide range of wavelength and excitation potential are used to search for non-LTE effects.

  3. MUSE searches for galaxies near very metal-poor gas clouds at z ˜ 3: new constraints for cold accretion models

    NASA Astrophysics Data System (ADS)

    Fumagalli, Michele; Cantalupo, Sebastiano; Dekel, Avishai; Morris, Simon L.; O'Meara, John M.; Prochaska, J. Xavier; Theuns, Tom

    2016-10-01

    We report on the search for galaxies in the proximity of two very metal-poor gas clouds at z ˜ 3 towards the quasar Q0956+122. With a 5-hour Multi-Unit Spectroscopic Explorer (MUSE) integration in a ˜500 × 500 kpc2 region centred at the quasar position, we achieve a ≥80 per cent complete spectroscopic survey of continuum-detected galaxies with mR ≤ 25 mag and Lyα emitters with luminosity LLyα ≥ 3 × 1041 erg s- 1. We do not identify galaxies at the redshift of a z ˜ 3.2 Lyman limit system (LLS) with log Z/Z⊙ = -3.35 ± 0.05, placing this gas cloud in the intergalactic medium or circumgalactic medium of a galaxy below our sensitivity limits. Conversely, we detect five Lyα emitters at the redshift of a pristine z ˜ 3.1 LLS with log Z/Z⊙ ≤ -3.8, while ˜0.4 sources were expected given the z ˜ 3 Lyα luminosity function. Both this high detection rate and the fact that at least three emitters appear aligned in projection with the LLS suggest that this pristine cloud is tracing a gas filament that is feeding one or multiple galaxies. Our observations uncover two different environments for metal-poor LLSs, implying a complex link between these absorbers and galaxy haloes, which ongoing MUSE surveys will soon explore in detail. Moreover, in agreement with recent MUSE observations, we detected a ˜ 90 kpc Lyα nebula at the quasar redshift and three Lyα emitters reminiscent of a `dark galaxy' population.

  4. On the necessity of composition-dependent low-temperature opacity in models of metal-poor asymptotic giant branch stars

    SciTech Connect

    Constantino, Thomas; Campbell, Simon; Lattanzio, John; Gil-Pons, Pilar

    2014-03-20

    The vital importance of composition-dependent low-temperature opacity in low-mass (M ≤ 3 M {sub ☉}) asymptotic giant branch (AGB) stellar models of metallicity Z ≥ 0.001 has recently been demonstrated. Its significance to more metal-poor, intermediate-mass (M ≥ 2.5 M {sub ☉}) models has yet to be investigated. We show that its inclusion in lower-metallicity models ([Fe/H] ≤–2) is essential and that there exists no threshold metallicity below which composition-dependent molecular opacity may be neglected. We find it to be crucial in all intermediate-mass models investigated ([Fe/H] ≤–2 and 2.5 ≤ M/M {sub ☉} ≤ 5), because of the evolution of the surface chemistry, including the orders of magnitude increase in the abundance of molecule-forming species. Its effect on these models mirrors that previously reported for higher-metallicity models—increase in radius, decrease in T {sub eff}, faster mass loss, shorter thermally pulsing AGB lifetime, reduced enrichment in third dredge-up products (by a factor of 3-10), and an increase in the mass limit for hot bottom burning. We show that the evolution of low-metallicity models with composition-dependent low-temperature opacity is relatively independent of initial metal abundance because its contribution to the opacity is far outweighed by changes resulting from dredge-up. Our results imply a significant reduction in the expected number of nitrogen-enhanced metal-poor stars, which may help explain their observed paucity. We note that these findings are partially a product of the macrophysics adopted in our models, in particular, the Vassiliadis and Wood mass loss rate which is strongly dependent on radius.

  5. METAL-POOR STARS OBSERVED WITH THE MAGELLAN TELESCOPE. I. CONSTRAINTS ON PROGENITOR MASS AND METALLICITY OF AGB STARS UNDERGOING s-PROCESS NUCLEOSYNTHESIS

    SciTech Connect

    Placco, Vinicius M.; Rossi, Silvia; Frebel, Anna; Beers, Timothy C.; Karakas, Amanda I.; Kennedy, Catherine R.; Christlieb, Norbert; Stancliffe, Richard J.

    2013-06-20

    We present a comprehensive abundance analysis of two newly discovered carbon-enhanced metal-poor (CEMP) stars. HE 2138-3336 is a s-process-rich star with [Fe/H] = -2.79, and has the highest [Pb/Fe] abundance ratio measured thus far, if non-local thermodynamic equilibrium corrections are included ([Pb/Fe] = +3.84). HE 2258-6358, with [Fe/H] = -2.67, exhibits enrichments in both s- and r-process elements. These stars were selected from a sample of candidate metal-poor stars from the Hamburg/ESO objective-prism survey, and followed up with medium-resolution (R {approx} 2000) spectroscopy with GEMINI/GMOS. We report here on derived abundances (or limits) for a total of 34 elements in each star, based on high-resolution (R {approx} 30, 000) spectroscopy obtained with Magellan-Clay/MIKE. Our results are compared to predictions from new theoretical asymptotic giant branch (AGB) nucleosynthesis models of 1.3 M{sub Sun} with [Fe/H] = -2.5 and -2.8, as well as to a set of AGB models of 1.0 to 6.0 M{sub Sun} at [Fe/H] = -2.3. The agreement with the model predictions suggests that the neutron-capture material in HE 2138-3336 originated from mass transfer from a binary companion star that previously went through the AGB phase, whereas for HE 2258-6358, an additional process has to be taken into account to explain its abundance pattern. We find that a narrow range of progenitor masses (1.0 {<=} M(M{sub Sun }) {<=} 1.3) and metallicities (-2.8 {<=} [Fe/H] {<=}-2.5) yield the best agreement with our observed elemental abundance patterns.

  6. Metal-Poor, Strongly Star-Forming Galaxies in the DEEP2 Survey: The Relationship Between Stellar Mass, Temperature-Based Metallicity, and Star Formation Rate

    NASA Technical Reports Server (NTRS)

    Ly, Chun; Rigby, Jane R.; Cooper, Michael; Yan, Renbin

    2015-01-01

    We report on the discovery of 28 redshift (z) approximately 0.8 metal-poor galaxies in DEEP2. These galaxies were selected for their detection of the weak [O (sub III)] lambda 4363 emission line, which provides a "direct" measure of the gas-phase metallicity. A primary goal for identifying these rare galaxies is to examine whether the fundamental metallicity relation (FMR) between stellar mass, gas metallicity, and star formation rate (SFR) extends to low stellar mass and high SFR. The FMR suggests that higher SFR galaxies have lower metallicity (at fixed stellar mass). To test this trend, we combine spectroscopic measurements of metallicity and dust-corrected SFRs, with stellar mass estimates from modeling the optical photometry. We find that these galaxies are 1.05 plus or minus 0.61 decimal exponent (dex) above the redshift (z) approximately equal to 1 stellar mass-SFR relation, and 0.23 plus or minus 0.23 decimal exponent (dex) below the local mass-metallicity relation. Relative to the FMR, the latter offset is reduced to 0.01 decimal exponent (dex), but significant dispersion remains (0.29 decimal exponent (dex) with 0.16 decimal exponent (dex) due to measurement uncertainties). This dispersion suggests that gas accretion, star formation and chemical enrichment have not reached equilibrium in these galaxies. This is evident by their short stellar mass doubling timescale of approximately 100 (sup plus 310) (sub minus 75) million years that suggests stochastic star formation. Combining our sample with other redshift (z) of approximately 1 metal-poor galaxies, we find a weak positive SFR-metallicity dependence (at fixed stellar mass) that is significant at 97.3 percent confidence. We interpret this positive correlation as recent star formation that has enriched the gas, but has not had time to drive the metal-enriched gas out with feedback mechanisms.

  7. Metal-Poor, Strongly Star-Forming Galaxies in the DEEP2 Survey: The Relationship Between Stellar Mass, Temperature-Based Metallicity, and Star Formation Rate

    NASA Technical Reports Server (NTRS)

    Ly, Chun; Rigby, Jane R.; Cooper, Michael; Yan, Renbin

    2015-01-01

    We report on the discovery of 28 redshift (z) approximately equal to 0.8 metal-poor galaxies in DEEP2. These galaxies were selected for their detection of the weak [O (sub III)] lambda 4363 emission line, which provides a "direct" measure of the gas-phase metallicity. A primary goal for identifying these rare galaxies is to examine whether the fundamental metallicity relation (FMR) between stellar mass, gas metallicity, and star formation rate (SFR) holds for low stellar mass and high SFR galaxies. The FMR suggests that higher SFR galaxies have lower metallicity (at fixed stellar mass). To test this trend, we combine spectroscopic measurements of metallicity and dust-corrected SFR with stellar mass estimates from modeling the optical photometry. We find that these galaxies are 1.05 plus or minus 0.61 dex above the redshift (z) approximately 1 stellar mass-SFR relation and 0.23 plus or minus 0.23 dex below the local mass-metallicity relation. Relative to the FMR, the latter offset is reduced to 0.01 dex, but significant dispersion remains dex with 0.16 dex due to measurement uncertainties). This dispersion suggests that gas accretion, star formation, and chemical enrichment have not reached equilibrium in these galaxies. This is evident by their short stellar mass doubling timescale of approximately equal to 100 (sup plus 310) (sub minus 75) million years which suggests stochastic star formation. Combining our sample with other redshift (z) of approximately 1 metal-poor galaxies, we find a weak positive SFR-metallicity dependence (at fixed stellar mass) that is significant at 94.4 percent confidence. We interpret this positive correlation as recent star formation that has enriched the gas but has not had time to drive the metal-enriched gas out with feedback mechanisms.

  8. A Tidally Disrupting Dwarf Galaxy in the Halo of NGC 253

    NASA Astrophysics Data System (ADS)

    Toloba, Elisa; Sand, David J.; Spekkens, Kristine; Crnojević, Denija; Simon, Joshua D.; Guhathakurta, Puragra; Strader, Jay; Caldwell, Nelson; McLeod, Brian; Seth, Anil C.

    2016-01-01

    We report the discovery of Scl-MM-Dw2, a new dwarf galaxy at a projected separation of ˜50 kpc from NGC 253, as part of the Panoramic Imaging Survey of Centaurus and Sculptor project (PISCeS). We measure a tip of the red giant branch (RGB) distance of 3.12 ± 0.30 Mpc, suggesting that Scl-MM-Dw2 is likely a satellite of NGC 253. We qualitatively compare the distribution of RGB stars in the color-magnitude diagram with theoretical isochrones and find that it is consistent with an old, ˜12 Gyr, and metal-poor, -2.3 \\lt [Fe/H] \\lt -1.1, stellar population. We also detect a small number of asymptotic giant branch stars consistent with a metal-poor 2-3 Gyr population in the center of the dwarf. Our non-detection of HI in a deep Green Bank Telescope spectrum implies a gas fraction {M}{HI}/{L}V\\lt 0.02 {M}⊙ /{L}⊙ . The stellar and gaseous properties of Scl-MM-Dw2 suggest that it is a dwarf spheroidal galaxy. Scl-MM-Dw2 has a luminosity of {M}V=-12.1+/- 0.5 mag and a half-light radius of rh =2.94+/- 0.46 {{kpc}}, which makes it moderately larger than dwarf galaxies in the Local Group of the same luminosity. However, Scl-MM-Dw2 is very elongated (ɛ =0.66+/- 0.06), and it has an extremely low surface brightness ({μ }0,V=27.7+/- 0.6 mag arcsec-2). Its elongation and diffuseness make it an outlier in the ellipticity-luminosity and surface brightness-luminosity scaling relations. These properties suggest that this dwarf is being tidally disrupted by NGC 253.

  9. A Tidally Disrupting Dwarf Galaxy in the Halo of NGC 253

    NASA Astrophysics Data System (ADS)

    Toloba, Elisa; Sand, David J.; Spekkens, Kristine; Crnojević, Denija; Simon, Joshua D.; Guhathakurta, Puragra; Strader, Jay; Caldwell, Nelson; McLeod, Brian; Seth, Anil C.

    2016-01-01

    We report the discovery of Scl-MM-Dw2, a new dwarf galaxy at a projected separation of ∼50 kpc from NGC 253, as part of the Panoramic Imaging Survey of Centaurus and Sculptor project (PISCeS). We measure a tip of the red giant branch (RGB) distance of 3.12 ± 0.30 Mpc, suggesting that Scl-MM-Dw2 is likely a satellite of NGC 253. We qualitatively compare the distribution of RGB stars in the color–magnitude diagram with theoretical isochrones and find that it is consistent with an old, ∼12 Gyr, and metal-poor, -2.3 \\lt [Fe/H] \\lt -1.1, stellar population. We also detect a small number of asymptotic giant branch stars consistent with a metal-poor 2–3 Gyr population in the center of the dwarf. Our non-detection of HI in a deep Green Bank Telescope spectrum implies a gas fraction {M}{HI}/{L}V\\lt 0.02 {M}ȯ /{L}ȯ . The stellar and gaseous properties of Scl-MM-Dw2 suggest that it is a dwarf spheroidal galaxy. Scl-MM-Dw2 has a luminosity of {M}V=-12.1+/- 0.5 mag and a half-light radius of rh =2.94+/- 0.46 {{kpc}}, which makes it moderately larger than dwarf galaxies in the Local Group of the same luminosity. However, Scl-MM-Dw2 is very elongated (ε =0.66+/- 0.06), and it has an extremely low surface brightness ({μ }0,V=27.7+/- 0.6 mag arcsec‑2). Its elongation and diffuseness make it an outlier in the ellipticity–luminosity and surface brightness–luminosity scaling relations. These properties suggest that this dwarf is being tidally disrupted by NGC 253.

  10. Astrophysics: Illuminating brown dwarfs

    NASA Astrophysics Data System (ADS)

    Showman, Adam P.

    2016-05-01

    Objects known as brown dwarfs are midway between stars and planets in mass. Observations of a hot brown dwarf irradiated by a nearby star will help to fill a gap in our knowledge of the atmospheres of fluid planetary objects. See Letter p.366

  11. WISE and Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, J. Davy; WISE Team

    2009-05-01

    The search for the nearest and coolest brown dwarfs will use WISE's two short-wavelength channels (W1 and W2), which are optimized for brown dwarf detection. W1 samples the methane fundamental absorption band at 3.3 microns, and W2 measures the relatively opacity-free portion of the brown dwarf atmosphere near 4.7 microns. Cool brown dwarfs will thus have very red [W1]-[W2] colors, maximizing our chances of identifying them. Extrapolating preferred mass functions to very low masses and assuming that the star formation rate has been constant over the last 10 Gyr, we can predict the number of brown dwarfs WISE is expected to image. At spectral types later than T7 (Teff > 850K), WISE is expected to find 500 brown dwarfs, which makes WISE uniquely suited among future surveys to measure the low-mass limit of star formation for the first time. This sample will also show whether a new spectral class beyond T, dubbed "Y", is needed at the lowest temperatures. Although the primary six-month WISE mission will cover the entire sky once, WISE should have sufficient cryogen to perform a second, complete pass of the sky. In this case, the identification of nearby brown dwarfs need not rely solely on color selection. Kinematics (proper motion) and geometry (parallax) can also be used to distinguish our closest brown dwarf neighbors, one of which may lie less distant than Proxima Centauri or even fall within our own Oort Cloud.

  12. The HST Snapshot Survey of Nearby Dwarf Galaxy Candidates. II. Distance to the M81/NGC2403 Complex Via DSph Galaxies Imaged With WFPC2

    NASA Astrophysics Data System (ADS)

    Karachentsev, I. D.; Karachentseva, V. E.; Dolphin, A. E.; Geisler, D.; Grebel, E. K.; Guhathakurta, P.; Hodge, P. W.; Sarajedini, A.; Seitzer, P.; Sharina, M. E.

    1999-12-01

    The bright spiral galaxies M81 and NGC 2403 and their dwarf companions are two of the closest galaxy groups to our own Local Group. The Cepheid distance moduli of M81 and NGC 2403 are (27.80+/-0.20) and (27.51+/-0.24) mag (Freedman et al. 1994, Freedman & Madore 1988). We obtained Hubble Space Telescope WFPC2 images of the dwarf spheroidal galaxies K61, K63, K64, DDO 78, BK6N, kk077 in the M81 group and of DDO 44 in the NGC2403 group. The resulting CMDs show the red giant branch with tips in the range of I(TRGB)= [23.5 -- 24.0] mag. The derived true distance moduli of the six M81 dSphs range from 27.55 to 27.95 mag, consistent with their membership in this group. The TRGB distance modulus of DDO 44, (27.52+/-0.15) mag, confirms it as a companion of NGC 2403. Taking into account the TRGB distances derived for M82 (Sakai & Madore 1999), for the dSphs BK5N and F8D1 (Caldwell et al. 1998), and the BCD UGC6456 (Lynds et al. 1998), we obtain a mean distance modulus of (27.82 +/-0.06) mag for the M81 group. The standard deviation of the individual moduli is 0.17 mag. We find the difference of the TRGB distances to the two the groups to be (0.47+/-0.25) Mpc. {From} a projected separation of M81 and NGC 2403 of 0.83 Mpc follows a deprojected distance of 0.95 Mpc. With respect to the Local Group, M81 and NGC 2403 have radial velocities of 106 km/s and 216 km/s, while the velocities of the group centroids are 216 km/s and 275 km/s, respectively. The higher velocity of the closer group may indicate that the two groups are moving towards each other. IDK and EKG are supported by the Henri Chrétien International Research Grant administered by the American Astronomical Society.

  13. Quantitative spectral analysis of the sdB star HD 188112: A helium-core white dwarf progenitor

    NASA Astrophysics Data System (ADS)

    Latour, M.; Heber, U.; Irrgang, A.; Schaffenroth, V.; Geier, S.; Hillebrandt, W.; Röpke, F. K.; Taubenberger, S.; Kromer, M.; Fink, M.

    2016-01-01

    Context. HD 188112 is a bright (V = 10.2 mag) hot subdwarf B (sdB) star with a mass too low to ignite core helium burning and is therefore considered a pre-extremely low-mass (ELM) white dwarf (WD). ELM WDs (M ≲ 0.3 M⊙) are He-core objects produced by the evolution of compact binary systems. Aims: We present in this paper a detailed abundance analysis of HD 188112 based on high-resolution Hubble Space Telescope (HST) near- and far-ultraviolet spectroscopy. We also constrain the mass of the star's companion. Methods: We use hybrid non-LTE model atmospheres to fit the observed spectral lines, and to derive the abundances of more than a dozen elements and the rotational broadening of metallic lines. Results: We confirm the previous binary system parameters by combining radial velocities measured in our UV spectra with the previously published values. The system has a period of 0.60658584 days and a WD companion with M ≥ 0.70 M⊙. By assuming a tidally locked rotation combined with the projected rotational velocity (v sin i = 7.9 ± 0.3 km s-1), we constrain the companion mass to be between 0.9 and 1.3 M⊙. We further discuss the future evolution of the system as a potential progenitor of an underluminous type Ia supernova. We measure abundances for Mg, Al, Si, P, S, Ca, Ti, Cr, Mn, Fe, Ni, and Zn, and for the trans-iron elements Ga, Sn, and Pb. In addition, we derive upper limits for the C, N, O elements and find HD 188112 to be strongly depleted in carbon. We find evidence of non-LTE effects on the line strength of some ionic species such as Si ii and Ni ii. The metallic abundances indicate that the star is metal-poor, with an abundance pattern most likely produced by diffusion effects.

  14. Antlia B: A Faint Dwarf Galaxy Member of the NGC 3109 Association

    NASA Astrophysics Data System (ADS)

    Sand, D. J.; Spekkens, K.; Crnojević, D.; Hargis, J. R.; Willman, B.; Strader, J.; Grillmair, C. J.

    2015-10-01

    We report the discovery of Antlia B, a faint dwarf galaxy at a projected distance of ˜72 kpc from NGC 3109 ({M}V ˜ -15 {mag}), the primary galaxy of the NGC 3109 dwarf association at the edge of the Local Group. The tip of the red giant branch distance to Antlia B is D = 1.29 ± 0.10 Mpc, which is consistent with the distance to NGC 3109. A qualitative analysis indicates the new dwarf's stellar population has both an old, metal-poor red giant branch (≳ 10 {{Gyr}}, [Fe/H] ˜ -2), and a younger blue population with an age of ˜200-400 Myr, analogous to the original Antlia dwarf, another likely satellite of NGC 3109. Antlia B has H i gas at a velocity of {v}{helio,{{H}} {{I}}} = 376 km s-1, confirming the association with NGC 3109 (vhelio = 403 km s-1). The H i gas mass (MH i = 2.8 ± 0.2 × 105 {M}⊙ ), stellar luminosity (MV = -9.7 ± 0.6 mag) and half light radius (rh = 273 ± 29 pc) are all consistent with the properties of dwarf irregular and dwarf spheroidal galaxies in the Local Volume, and is most similar to the Leo P dwarf galaxy. The discovery of Antlia B is the initial result from a Dark Energy Camera survey for halo substructure and faint dwarf companions to NGC 3109 with the goal of comparing observed substructure with expectations from the Λ+Cold Dark Matter model in the sub-Milky Way regime.

  15. CHEMICAL SIGNATURES OF THE FIRST SUPERNOVAE IN THE SCULPTOR DWARF SPHEROIDAL GALAXY

    SciTech Connect

    Simon, Joshua D.; Thompson, Ian B.; Shectman, Stephen A.; Jacobson, Heather R.; Frebel, Anna; Adams, Joshua J. E-mail: ian@obs.carnegiescience.edu E-mail: hjr@mit.edu E-mail: jja439@gmail.com

    2015-04-01

    We present a homogeneous chemical abundance analysis of five of the most metal-poor stars in the Sculptor dwarf spheroidal galaxy. We analyze new and archival high resolution spectroscopy from Magellan/MIKE and VLT/UVES and determine stellar parameters and abundances in a consistent way for each star. Two of the stars in our sample, at [Fe/H] = −3.5 and [Fe/H] = −3.8, are new discoveries from our Ca K survey of Sculptor, while the other three were known in the literature. We confirm that Scl 07-50 is the lowest metallicity star identified in an external galaxy, at [Fe/H] = −4.1. The two most metal-poor stars both have very unusual abundance patterns, with striking deficiencies of the α elements, while the other three stars resemble typical extremely metal-poor Milky Way halo stars. We show that the star-to-star scatter for several elements in Sculptor is larger than that for halo stars in the same metallicity range. This scatter and the uncommon abundance patterns of the lowest metallicity stars indicate that the oldest surviving Sculptor stars were enriched by a small number of earlier supernovae, perhaps weighted toward high-mass progenitors from the first generation of stars the galaxy formed.

  16. PROSPECTING IN LATE-TYPE DWARFS: A CALIBRATION OF INFRARED AND VISIBLE SPECTROSCOPIC METALLICITIES OF LATE K AND M DWARFS SPANNING 1.5 dex

    SciTech Connect

    Mann, Andrew W.; Hilton, Eric J.; Brewer, John M.; Gaidos, Eric; Lepine, Sebastien

    2013-02-01

    Knowledge of late K and M dwarf metallicities can be used to guide planet searches and constrain planet formation models. However, the determination of metallicities of late-type stars is difficult because visible wavelength spectra of their cool atmospheres contain many overlapping absorption lines, preventing the measurement of equivalent widths. We present new methods, and improved calibrations of existing methods, to determine metallicities of late K and M dwarfs from moderate resolution (1300 < R < 2000) visible and infrared spectra. We select a sample of 112 wide binary systems that contain a late-type companion to a solar-type primary star. Our sample includes 62 primary stars with previously published metallicities, as well as 50 stars with metallicities determined from our own observations. We use our sample to empirically determine which features in the spectrum of the companion are best correlated with the metallicity of the primary. We find {approx_equal}120 features in K and M dwarf spectra that are useful for predicting metallicity. We derive metallicity calibrations for different wavelength ranges, and show that it is possible to get metallicities reliable to <0.10 dex using either visible, J-, H-, or K-band spectra. We find that the most accurate metallicities derived from visible spectra requires the use of different calibrations for early-type (K5.5-M2) and late-type (M2-M6) dwarfs. Our calibrations are applicable to dwarfs with metallicities of -1.04 < [Fe/H] <+0.56 and spectral types from K7 to M5. Lastly, we use our sample of wide binaries to test and refine existing calibrations to determine M dwarf metallicities. We find that the {zeta} parameter, which measures the ratio of TiO can CaH bands, is correlated with [Fe/H] for super-solar metallicities, and {zeta} does not always correctly identify metal-poor M dwarfs. We also find that existing calibrations in the K and H bands are quite reliable for stars with [Fe/H] >-0.5, but are less useful

  17. The Gaia-ESO Survey: Separating disk chemical substructures with cluster models. Evidence of a separate evolution in the metal-poor thin disk

    NASA Astrophysics Data System (ADS)

    Rojas-Arriagada, A.; Recio-Blanco, A.; de Laverny, P.; Schultheis, M.; Guiglion, G.; Mikolaitis, Š.; Kordopatis, G.; Hill, V.; Gilmore, G.; Randich, S.; Alfaro, E. J.; Bensby, T.; Koposov, S. E.; Costado, M. T.; Franciosini, E.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Lind, K.; Magrini, L.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Worley, C. C.; Zaggia, S.; Chiappini, C.

    2016-02-01

    Context. Recent spectroscopic surveys have begun to explore the Galactic disk system on the basis of large data samples, with spatial distributions sampling regions well outside the solar neighborhood. In this way, they provide valuable information for testing spatial and temporal variations of disk structure kinematics and chemical evolution. Aims: The main purposes of this study are to demonstrate the usefulness of a rigorous mathematical approach to separate substructures of a stellar sample in the abundance-metallicity plane, and provide new evidence with which to characterize the nature of the metal-poor end of the thin disk sequence. Methods: We used a Gaussian mixture model algorithm to separate in the [Mg/Fe] vs. [Fe/H] plane a clean disk star subsample (essentially at RGC< 10 kpc) from the Gaia-ESO survey (GES) internal data release 2 (iDR2). We aim at decomposing it into data groups highlighting number density and/or slope variations in the abundance-metallicity plane. An independent sample of disk red clump stars from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) was used to cross-check the identified features. Results: We find that the sample is separated into five groups associated with major Galactic components; the metal-rich end of the halo, the thick disk, and three subgroups for the thin disk sequence. This is confirmed with the sample of red clump stars from APOGEE. The three thin disk groups served to explore this sequence in more detail. The two metal-intermediate and metal-rich groups of the thin disk decomposition ([Fe/H] > -0.25 dex) highlight a change in the slope at solar metallicity. This holds true at different radial regions of the Milky Way. The distribution of Galactocentric radial distances of the metal-poor part of the thin disk ([Fe/H] < -0.25 dex) is shifted to larger distances than those of the more metal-rich parts. Moreover, the metal-poor part of the thin disk presents indications of a scale height

  18. Star Formation in Dwarf-Dwarf Mergers: Fueling Hierarchical Assembly

    NASA Astrophysics Data System (ADS)

    Stierwalt, Sabrina; Johnson, K. E.; Kallivayalil, N.; Patton, D. R.; Putman, M. E.; Besla, G.; Geha, M. C.

    2014-01-01

    We present early results from the first systematic study a sample of isolated interacting dwarf pairs and the mechanisms governing their star formation. Low mass dwarf galaxies are ubiquitous in the local universe, yet the efficiency of gas removal and the enhancement of star formation in dwarfs via pre-processing (i.e. dwarf-dwarf interactions occurring before the accretion by a massive host) are currently unconstrained. Studies of Local Group dwarfs credit stochastic internal processes for their complicated star formation histories, but a few intriguing examples suggest interactions among dwarfs may produce enhanced star formation. We combine archival UV imaging from GALEX with deep optical broad- and narrow-band (Halpha) imaging taken with the pre- One Degree Imager (pODI) on the WIYN 3.5-m telescope and with the 2.3-m Bok telescope at Steward Observatory to confirm the presence of stellar bridges and tidal tails and to determine whether dwarf-dwarf interactions alone can trigger significant levels of star formation. We investigate star formation rates and global galaxy colors as a function of dwarf pair separation (i.e. the dwarf merger sequence) and dwarf-dwarf mass ratio. This project is a precursor to an ongoing effort to obtain high spatial resolution HI imaging to assess the importance of sequential triggering caused by dwarf-dwarf interactions and the subsequent affect on the more massive hosts that later accrete the low mass systems.

  19. KELT-6b: A P ∼ 7.9 day hot Saturn transiting a metal-poor star with a long-period companion

    SciTech Connect

    Collins, Karen A.; Kielkopf, John F.; Eastman, Jason D.; Beatty, Thomas G.; Gaudi, B. Scott; Siverd, Robert J.; Pepper, Joshua; Stassun, Keivan G.; Johnson, John Asher; Howard, Andrew W.; Fulton, Benjamin J.; Fischer, Debra A.; Manner, Mark; Bieryla, Allyson; Latham, David W.; Gregorio, Joao; Buchhave, Lars A.; Jensen, Eric L. N.; Penev, Kaloyan; Crepp, Justin R.; and others

    2014-02-01

    We report the discovery of KELT-6b, a mildly inflated Saturn-mass planet transiting a metal-poor host. The initial transit signal was identified in KELT-North survey data, and the planetary nature of the occulter was established using a combination of follow-up photometry, high-resolution imaging, high-resolution spectroscopy, and precise radial velocity measurements. The fiducial model from a global analysis including constraints from isochrones indicates that the V = 10.38 host star (BD+31 2447) is a mildly evolved, late-F star with T {sub eff} = 6102 ± 43 K, log g{sub ⋆}=4.07{sub −0.07}{sup +0.04}, and [Fe/H] = –0.28 ± 0.04, with an inferred mass M {sub *} = 1.09 ± 0.04 M {sub ☉} and radius R{sub ⋆}=1.58{sub −0.09}{sup +0.16} R{sub ⊙}. The planetary companion has mass M{sub P} = 0.43 ± 0.05 M {sub Jup}, radius R{sub P}=1.19{sub −0.08}{sup +0.13} R{sub Jup}, surface gravity log g{sub P}=2.86{sub −0.08}{sup +0.06}, and density ρ{sub P}=0.31{sub −0.08}{sup +0.07} g cm{sup −3}. The planet is on an orbit with semimajor axis a = 0.079 ± 0.001 AU and eccentricity e=0.22{sub −0.10}{sup +0.12}, which is roughly consistent with circular, and has ephemeris of T {sub c}(BJD{sub TDB}) = 2456347.79679 ± 0.00036 and P = 7.845631 ± 0.000046 days. Equally plausible fits that employ empirical constraints on the host-star parameters rather than isochrones yield a larger planet mass and radius by ∼4)-7). KELT-6b has surface gravity and incident flux similar to HD 209458b, but orbits a host that is more metal poor than HD 209458 by ∼0.3 dex. Thus, the KELT-6 system offers an opportunity to perform a comparative measurement of two similar planets in similar environments around stars of very different metallicities. The precise radial velocity data also reveal an acceleration indicative of a longer-period third body in the system, although the companion is not detected in Keck adaptive optics images.

  20. The Diverse Origins of Neutron-capture Elements in the Metal-poor Star HD 94028: Possible Detection of Products of i-Process Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Karakas, Amanda I.; Pignatari, Marco; Herwig, Falk

    2016-04-01

    We present a detailed analysis of the composition and nucleosynthetic origins of the heavy elements in the metal-poor ([Fe/H] = ‑1.62 ± 0.09) star HD 94028. Previous studies revealed that this star is mildly enhanced in elements produced by the slow neutron-capture process (s process; e.g., [Pb/Fe] = +0.79 ± 0.32) and rapid neutron-capture process (r process; e.g., [Eu/Fe] = +0.22 ± 0.12), including unusually large molybdenum ([Mo/Fe] = +0.97 ± 0.16) and ruthenium ([Ru/Fe] = +0.69 ± 0.17) enhancements. However, this star is not enhanced in carbon ([C/Fe] = ‑0.06 ± 0.19). We analyze an archival near-ultraviolet spectrum of HD 94028, collected using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope, and other archival optical spectra collected from ground-based telescopes. We report abundances or upper limits derived from 64 species of 56 elements. We compare these observations with s-process yields from low-metallicity AGB evolution and nucleosynthesis models. No combination of s- and r-process patterns can adequately reproduce the observed abundances, including the super-solar [As/Ge] ratio (+0.99 ± 0.23) and the enhanced [Mo/Fe] and [Ru/Fe] ratios. We can fit these features when including an additional contribution from the intermediate neutron-capture process (i process), which perhaps operated through the ingestion of H in He-burning convective regions in massive stars, super-AGB stars, or low-mass AGB stars. Currently, only the i process appears capable of consistently producing the super-solar [As/Ge] ratios and ratios among neighboring heavy elements found in HD 94028. Other metal-poor stars also show enhanced [As/Ge] ratios, hinting that operation of the i process may have been common in the early Galaxy. These data are associated with Program 072.B-0585(A), PI. Silva. Some data presented in this paper were obtained from the Barbara A. Mikulski Archive for Space Telescopes (MAST). The Space Telescope Science Institute

  1. The Diverse Origins of Neutron-capture Elements in the Metal-poor Star HD 94028: Possible Detection of Products of i-Process Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Karakas, Amanda I.; Pignatari, Marco; Herwig, Falk

    2016-04-01

    We present a detailed analysis of the composition and nucleosynthetic origins of the heavy elements in the metal-poor ([Fe/H] = -1.62 ± 0.09) star HD 94028. Previous studies revealed that this star is mildly enhanced in elements produced by the slow neutron-capture process (s process; e.g., [Pb/Fe] = +0.79 ± 0.32) and rapid neutron-capture process (r process; e.g., [Eu/Fe] = +0.22 ± 0.12), including unusually large molybdenum ([Mo/Fe] = +0.97 ± 0.16) and ruthenium ([Ru/Fe] = +0.69 ± 0.17) enhancements. However, this star is not enhanced in carbon ([C/Fe] = -0.06 ± 0.19). We analyze an archival near-ultraviolet spectrum of HD 94028, collected using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope, and other archival optical spectra collected from ground-based telescopes. We report abundances or upper limits derived from 64 species of 56 elements. We compare these observations with s-process yields from low-metallicity AGB evolution and nucleosynthesis models. No combination of s- and r-process patterns can adequately reproduce the observed abundances, including the super-solar [As/Ge] ratio (+0.99 ± 0.23) and the enhanced [Mo/Fe] and [Ru/Fe] ratios. We can fit these features when including an additional contribution from the intermediate neutron-capture process (i process), which perhaps operated through the ingestion of H in He-burning convective regions in massive stars, super-AGB stars, or low-mass AGB stars. Currently, only the i process appears capable of consistently producing the super-solar [As/Ge] ratios and ratios among neighboring heavy elements found in HD 94028. Other metal-poor stars also show enhanced [As/Ge] ratios, hinting that operation of the i process may have been common in the early Galaxy. These data are associated with Program 072.B-0585(A), PI. Silva. Some data presented in this paper were obtained from the Barbara A. Mikulski Archive for Space Telescopes (MAST). The Space Telescope Science Institute is

  2. Trends in ultracool dwarf magnetism. II. The inverse correlation between X-ray activity and rotation as evidence for a bimodal dynamo

    SciTech Connect

    Cook, B. A.; Williams, P. K. G.; Berger, E.

    2014-04-10

    Observations of magnetic activity indicators in solar-type stars exhibit a relationship with rotation with an increase until a 'saturation' level and a moderate decrease in activity in the very fastest rotators ('supersaturation'). While X-ray data have suggested that this relationship is strongly violated in ultracool dwarfs (UCDs; spectral type ≳M7), the limited number of X-ray detections has prevented firm conclusions. In this paper, we analyze the X-ray activity-rotation relation in 38 UCDs. Our sample represents the largest catalog of X-ray active UCDs to date, including seven new and four previously unpublished Chandra observations presented in a companion paper. We identify a substantial number of rapidly rotating UCDs with X-ray activity extending two orders of magnitude below the expected saturation level and measure a 'supersaturation'-type anticorrelation between rotation and X-ray activity. The scatter in UCD X-ray activity at a fixed rotation is ∼3 times larger than that in earlier-type stars. We discuss several mechanisms that have been proposed to explain the data, including centrifugal stripping of the corona, and find them to be inconsistent with the observed trends. Instead, we suggest that an additional parameter correlated with both X-ray activity and rotation is responsible for the observed effects. Building on the results of Zeeman-Doppler imaging of UCD magnetic fields and our companion study of radio/X-ray flux ratios, we argue that this parameter is the magnetic field topology, and that the large scatter in UCD X-ray fluxes reflects the presence of two dynamo modes that produce distinct topologies.

  3. Trends in Ultracool Dwarf Magnetism. II. The Inverse Correlation Between X-Ray Activity and Rotation as Evidence for a Bimodal Dynamo

    NASA Astrophysics Data System (ADS)

    Cook, B. A.; Williams, P. K. G.; Berger, E.

    2014-04-01

    Observations of magnetic activity indicators in solar-type stars exhibit a relationship with rotation with an increase until a "saturation" level and a moderate decrease in activity in the very fastest rotators ("supersaturation"). While X-ray data have suggested that this relationship is strongly violated in ultracool dwarfs (UCDs; spectral type gsimM7), the limited number of X-ray detections has prevented firm conclusions. In this paper, we analyze the X-ray activity-rotation relation in 38 UCDs. Our sample represents the largest catalog of X-ray active UCDs to date, including seven new and four previously unpublished Chandra observations presented in a companion paper. We identify a substantial number of rapidly rotating UCDs with X-ray activity extending two orders of magnitude below the expected saturation level and measure a "supersaturation"-type anticorrelation between rotation and X-ray activity. The scatter in UCD X-ray activity at a fixed rotation is ~3 times larger than that in earlier-type stars. We discuss several mechanisms that have been proposed to explain the data, including centrifugal stripping of the corona, and find them to be inconsistent with the observed trends. Instead, we suggest that an additional parameter correlated with both X-ray activity and rotation is responsible for the observed effects. Building on the results of Zeeman-Doppler imaging of UCD magnetic fields and our companion study of radio/X-ray flux ratios, we argue that this parameter is the magnetic field topology, and that the large scatter in UCD X-ray fluxes reflects the presence of two dynamo modes that produce distinct topologies.

  4. Chemistry of Stars in the Sculptor Dwarf Galaxy from VLT-FLAMES

    NASA Astrophysics Data System (ADS)

    Venn, Kim A.; Hill, V.

    The chemical composition of 91 stars in the Sculptor dwarf spheroidal galaxy is presented as determined from spectra taken with the FLAMES multiobject spectrograph in the Medusa mode. The analysis methods are outlined. The [α/Fe] ratios are shown for Mg, Ca, and Ti, and compared with those of Galactic stars. Heavy element abundance ratios (Y, Ba, and Eu) are also presented. Since the Sculptor dwarf galaxy has had a significantly different star formation history and chemical evolution than the Galaxy, then comparison of Sculptor's metal-poor (old) stars to similar metallicity stars in the Galaxy can be used to discuss galaxy formation scenarios, as well as test some of our fundamental assumptions in stellar nucleosynthesis.

  5. M dwarfs: Theoretical work

    NASA Technical Reports Server (NTRS)

    Mullan, Dermott J.

    1987-01-01

    Theoretical work on the atmospheres of M dwarfs has progressed along lines parallel to those followed in the study of other classes of stars. Such models have become increasingly sophisticated as improvements in opacities, in the equation of state, and in the treatment of convection were incorporated during the last 15 to 20 years. As a result, spectrophotometric data on M dwarfs can now be fitted rather well by current models. The various attempts at modeling M dwarf photospheres in purely thermal terms are summarized. Some extensions of these models to include the effects of microturbulence and magnetic inhomogeneities are presented.

  6. Carbon-enhanced metal-poor star frequencies in the galaxy: corrections for the effect of evolutionary status on carbon abundances

    SciTech Connect

    Placco, Vinicius M.; Frebel, Anna; Beers, Timothy C.; Stancliffe, Richard J.

    2014-12-10

    We revisit the observed frequencies of carbon-enhanced metal-poor (CEMP) stars as a function of the metallicity in the Galaxy, using data from the literature with available high-resolution spectroscopy. Our analysis excludes stars exhibiting clear overabundances of neutron-capture elements and takes into account the expected depletion of surface carbon abundance that occurs due to CN processing on the upper red giant branch. This allows for the recovery of the initial carbon abundance of these stars, and thus for an accurate assessment of the frequencies of carbon-enhanced stars. The correction procedure we develop is based on stellar-evolution models and depends on the surface gravity, log g, of a given star. Our analysis indicates that for stars with [Fe/H] ≤–2.0, 20% exhibit [C/Fe] ≥+0.7. This fraction increases to 43% for [Fe/H] ≤–3.0 and 81% for [Fe/H] ≤–4.0, which is higher than have been previously inferred without taking the carbon abundance correction into account. These CEMP star frequencies provide important inputs for Galactic and stellar chemical evolution models, as they constrain the evolution of carbon at early times and the possible formation channels for the CEMP-no stars. We also have developed a public online tool with which carbon corrections using our procedure can be easily obtained.

  7. Stellar yields of rotating first stars. I. Yields of weak supernovae and abundances of carbon-enhanced hyper-metal-poor stars

    SciTech Connect

    Takahashi, Koh; Umeda, Hideyuki; Yoshida, Takashi

    2014-10-10

    We perform a stellar evolution simulation of first stars and calculate stellar yields from the first supernovae. The initial masses are taken from 12 to 140 M {sub ☉} to cover the whole range of core-collapse supernova progenitors, and stellar rotation is included, which results in efficient internal mixing. A weak explosion is assumed in supernova yield calculations, thus only outer distributed matter, which is not affected by the explosive nucleosynthesis, is ejected in the models. We show that the initial mass and the rotation affect the explosion yield. All the weak explosion models have abundances of [C/O] larger than unity. Stellar yields from massive progenitors of >40-60 M {sub ☉} show enhancement of Mg and Si. Rotating models yield abundant Na and Al, and Ca is synthesized in nonrotating heavy massive models of >80 M {sub ☉}. We fit the stellar yields to the three most iron-deficient stars and constrain the initial parameters of the mother progenitor stars. The abundance pattern in SMSS 0313–6708 is well explained by 50-80 M {sub ☉} nonrotating models, rotating 30-40 M {sub ☉} models well fit the abundance of HE 0107-5240, and both nonrotating and rotating 15-40 M {sub ☉} models explain HE 1327-2326. The presented analysis will be applicable to other carbon-enhanced hyper-metal-poor stars observed in the future. The abundance analyses will give valuable information about the characteristics of the first stars.

  8. Abundance analysis of SDSS J134338.67+484426.6; an extremely metal-poor star from the MARVELS pre-survey

    NASA Astrophysics Data System (ADS)

    Susmitha Rani, A.; Sivarani, T.; Beers, T. C.; Fleming, S.; Mahadevan, S.; Ge, J.

    2016-05-01

    We present an elemental-abundance analysis of an extremely metal-poor (EMP; [Fe/H] <-3.0) star, SDSS J134338.67+484426.6, identified during the course of the Multi-object Apache Point Observatory Radial Velocity Exoplanet Large-area Survey spectroscopic pre-survey of some 20 000 stars to identify suitable candidates for exoplanet searches. This star, with an apparent magnitude V = 12.14, is the lowest metallicity star found in the pre-survey, and is one of only ˜20 known EMP stars that are this bright or brighter. Our high-resolution spectroscopic analysis shows that this star is a subgiant with [Fe/H] = -3.42, having `normal' carbon and no enhancement of neutron-capture abundances. Strontium is underabundant, [Sr/Fe] = -0.47, but the derived lower limit on [Sr/Ba] indicates that Sr is likely enhanced relative to Ba. This star belongs to the sparsely populated class of α-poor EMP stars that exhibit low ratios of [Mg/Fe], [Si/Fe], and [Ca/Fe] compared to typical halo stars at similar metallicity. The observed variations in radial velocity from several epochs of (low- and high-resolution) spectroscopic follow-up indicate that SDSS J134338.67+484426.6 is a possible long-period binary. We also discuss the abundance trends in EMP stars for r-process elements, and compare with other magnesium-poor stars.

  9. A DEEP STUDY OF THE DWARF SATELLITES ANDROMEDA XXVIII AND ANDROMEDA XXIX

    SciTech Connect

    Slater, Colin T.; Bell, Eric F.; Martin, Nicolas F.; Tollerud, Erik J.; Ho, Nhung

    2015-06-20

    We present the results of a deep study of the isolated dwarf galaxies Andromeda XXVIII and Andromeda XXIX with Gemini/GMOS and Keck/DEIMOS. Both galaxies are shown to host old, metal-poor stellar populations with no detectable recent star formation, conclusively identifying both of them as dwarf spheroidal galaxies (dSphs). And XXVIII exhibits a complex horizontal branch morphology, which is suggestive of metallicity enrichment and thus an extended period of star formation in the past. Decomposing the horizontal branch into blue (metal-poor, assumed to be older) and red (relatively more metal-rich, assumed to be younger) populations shows that the metal-rich are also more spatially concentrated in the center of the galaxy. We use spectroscopic measurements of the calcium triplet, combined with the improved precision of the Gemini photometry, to measure the metallicity of the galaxies, confirming the metallicity spread and showing that they both lie on the luminosity–metallicity relation for dwarf satellites. Taken together, the galaxies exhibit largely typical properties for dSphs despite their significant distances from M31. These dwarfs thus place particularly significant constraints on models of dSph formation involving environmental processes such as tidal or ram pressure stripping. Such models must be able to completely transform the two galaxies into dSphs in no more than two pericentric passages around M31, while maintaining a significant stellar population gradient. Reproducing these features is a prime requirement for models of dSph formation to demonstrate not just the plausibility of environmental transformation but the capability of accurately recreating real dSphs.

  10. A Deep Study of the Dwarf Satellites Andromeda XXVIII and Andromeda XXIX

    NASA Astrophysics Data System (ADS)

    Slater, Colin T.; Bell, Eric F.; Martin, Nicolas F.; Tollerud, Erik J.; Ho, Nhung

    2015-06-01

    We present the results of a deep study of the isolated dwarf galaxies Andromeda XXVIII and Andromeda XXIX with Gemini/GMOS and Keck/DEIMOS. Both galaxies are shown to host old, metal-poor stellar populations with no detectable recent star formation, conclusively identifying both of them as dwarf spheroidal galaxies (dSphs). And XXVIII exhibits a complex horizontal branch morphology, which is suggestive of metallicity enrichment and thus an extended period of star formation in the past. Decomposing the horizontal branch into blue (metal-poor, assumed to be older) and red (relatively more metal-rich, assumed to be younger) populations shows that the metal-rich are also more spatially concentrated in the center of the galaxy. We use spectroscopic measurements of the calcium triplet, combined with the improved precision of the Gemini photometry, to measure the metallicity of the galaxies, confirming the metallicity spread and showing that they both lie on the luminosity-metallicity relation for dwarf satellites. Taken together, the galaxies exhibit largely typical properties for dSphs despite their significant distances from M31. These dwarfs thus place particularly significant constraints on models of dSph formation involving environmental processes such as tidal or ram pressure stripping. Such models must be able to completely transform the two galaxies into dSphs in no more than two pericentric passages around M31, while maintaining a significant stellar population gradient. Reproducing these features is a prime requirement for models of dSph formation to demonstrate not just the plausibility of environmental transformation but the capability of accurately recreating real dSphs.

  11. Understanding Brown Dwarf Variability

    NASA Technical Reports Server (NTRS)

    Marley, Mark S.

    2013-01-01

    Surveys of brown dwarf variability continue to find that roughly half of all brown dwarfs are variable. While variability is observed amongst all types of brown dwarfs, amplitudes are typically greatest for L-T transition objects. In my talk I will discuss the possible physical mechanisms that are responsible for the observed variability. I will particularly focus on comparing and contrasting the effects of changes in atmospheric thermal profile and cloud opacity. The two different mechanisms will produce different variability signatures and I will discuss the extent to which the current datasets constrain both mechanisms. By combining constraints from studies of variability with existing spectral and photometric datasets we can begin to construct and test self-consistent models of brown dwarf atmospheres. These models not only aid in the interpretation of existing objects but also inform studies of directly imaged giant planets.

  12. High-velocity blueshifted Fe II absorption in the dwarf star-forming galaxy PHL 293B: evidence for a wind driven supershell?

    NASA Astrophysics Data System (ADS)

    Terlevich, Roberto; Terlevich, Elena; Bosch, Guillermo; Díaz, Ángeles; Hägele, Guillermo; Cardaci, Mónica; Firpo, Verónica

    2014-12-01

    X-shooter and WHT-ISIS spectra of the star-forming galaxy PHL 293B also known as A2228-00 and SDSS J223036.79-000636.9 are presented in this paper. We find broad (FWHM = 1000 km s-1) and very broad (FWZI = 4000 km s-1) components in the Balmer lines, narrow absorption components in the Balmer series blueshifted by 800 km s-1, previously undetected Fe II multiplet (42) absorptions also blueshifted by 800 km s-1, IR Ca II triplet stellar absorptions consistent with [Fe/H] < -2.0 and no broad components or blueshifted absorptions in the He I lines. Based on historical records, we found no optical variability at the 5σ level of 0.02 mag between 2005 and 2013 and no optical variability at the level of 0.1 mag for the past 24 yr. The lack of variability rules out transient phenomena like luminous blue variables or Type IIn supernovae as the origin of the blueshifted absorptions of H I and Fe II. The evidence points to either a young and dense expanding supershell or a stationary cooling wind, in both cases driven by the young cluster wind.

  13. Dwarfs in ancient Egypt.

    PubMed

    Kozma, Chahira

    2006-02-15

    Ancient Egypt was one of the most advanced and productive civilizations in antiquity, spanning 3000 years before the "Christian" era. Ancient Egyptians built colossal temples and magnificent tombs to honor their gods and religious leaders. Their hieroglyphic language, system of organization, and recording of events give contemporary researchers insights into their daily activities. Based on the record left by their art, the ancient Egyptians documented the presence of dwarfs in almost every facet of life. Due to the hot dry climate and natural and artificial mummification, Egypt is a major source of information on achondroplasia in the old world. The remains of dwarfs are abundant and include complete and partial skeletons. Dwarfs were employed as personal attendants, animal tenders, jewelers, and entertainers. Several high-ranking dwarfs especially from the Old Kingdom (2700-2190 BCE) achieved important status and had lavish burial places close to the pyramids. Their costly tombs in the royal cemeteries and the inscriptions on their statutes indicate their high-ranking position in Egyptian society and their close relation to the king. Some of them were Seneb, Pereniankh, Khnumhotpe, and Djeder. There were at least two dwarf gods, Ptah and Bes. The god Ptah was associated with regeneration and rejuvenation. The god Bes was a protector of sexuality, childbirth, women, and children. He was a favored deity particularly during the Greco-Roman period. His temple was recently excavated in the Baharia oasis in the middle of Egypt. The burial sites and artistic sources provide glimpses of the positions of dwarfs in daily life in ancient Egypt. Dwarfs were accepted in ancient Egypt; their recorded daily activities suggest assimilation into daily life, and their disorder was not shown as a physical handicap. Wisdom writings and moral teachings in ancient Egypt commanded respect for dwarfs and other individuals with disabilities.

  14. Dwarfs in ancient Egypt.

    PubMed

    Kozma, Chahira

    2006-02-15

    Ancient Egypt was one of the most advanced and productive civilizations in antiquity, spanning 3000 years before the "Christian" era. Ancient Egyptians built colossal temples and magnificent tombs to honor their gods and religious leaders. Their hieroglyphic language, system of organization, and recording of events give contemporary researchers insights into their daily activities. Based on the record left by their art, the ancient Egyptians documented the presence of dwarfs in almost every facet of life. Due to the hot dry climate and natural and artificial mummification, Egypt is a major source of information on achondroplasia in the old world. The remains of dwarfs are abundant and include complete and partial skeletons. Dwarfs were employed as personal attendants, animal tenders, jewelers, and entertainers. Several high-ranking dwarfs especially from the Old Kingdom (2700-2190 BCE) achieved important status and had lavish burial places close to the pyramids. Their costly tombs in the royal cemeteries and the inscriptions on their statutes indicate their high-ranking position in Egyptian society and their close relation to the king. Some of them were Seneb, Pereniankh, Khnumhotpe, and Djeder. There were at least two dwarf gods, Ptah and Bes. The god Ptah was associated with regeneration and rejuvenation. The god Bes was a protector of sexuality, childbirth, women, and children. He was a favored deity particularly during the Greco-Roman period. His temple was recently excavated in the Baharia oasis in the middle of Egypt. The burial sites and artistic sources provide glimpses of the positions of dwarfs in daily life in ancient Egypt. Dwarfs were accepted in ancient Egypt; their recorded daily activities suggest assimilation into daily life, and their disorder was not shown as a physical handicap. Wisdom writings and moral teachings in ancient Egypt commanded respect for dwarfs and other individuals with disabilities. PMID:16380966

  15. The Chemical Evolution of the Bootes I Ultra-faint Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Frebel, Anna; Norris, John E.; Gilmore, Gerard; Wyse, Rosemary F. G.

    2016-08-01

    We present chemical abundance measurements of two metal-poor red giant stars in the ultra-faint dwarf galaxy Boötes I, based on Magellan/MIKE high-resolution spectra. For Boo-980, with {{[Fe/H]}}=-3.1, we present the first elemental abundance measurements, while Boo-127, with {{[Fe/H]}}=-2.0, shows abundances in good agreement with previous measurements. Light and iron-peak element abundance ratios in the two Boötes I stars, as well as those of most other Boötes I members, collected from the literature, closely resemble those of regular metal-poor halo stars. Neutron-capture element abundances Sr and Ba are systematically lower than the main halo trend and also show a significant abundance spread. Overall, this is similar to what has been found for other ultra-faint dwarf galaxies. We apply corrections to the carbon abundances (commensurate with stellar evolutionary status) of the entire sample and find 21% of stars to be carbon-enhanced metal-poor (CEMP) stars, compared to 13% without using the carbon correction. We reassess the metallicity distribution functions for the CEMP stars and non-CEMP stars, and confirm earlier claims that CEMP stars might belong to a different, earlier population. Applying a set of abundance criteria to test to what extent Boötes I could be a surviving first galaxy suggests that it is one of the earliest assembled systems that perhaps received gas from accretion from other clouds in the system, or from swallowing a first galaxy or building block type object. This resulted in the two stellar populations observable today. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  16. METALS REMOVED BY OUTFLOWS FROM MILKY WAY DWARF SPHEROIDAL GALAXIES

    SciTech Connect

    Kirby, Evan N.; Martin, Crystal L.; Finlator, Kristian

    2011-12-15

    The stars in the dwarf spheroidal satellite galaxies (dSphs) of the Milky Way are significantly more metal-poor than would be expected from a closed box model of chemical evolution. Gas outflows likely carried away most of the metals produced by the dSphs. Based on previous Keck/DEIMOS observations and models, we calculate the mass in Mg, Si, Ca, and Fe expelled from each of eight dSphs. Essentially, these masses are the differences between the observed amount of metals present in the dSphs' stars today and the inferred amount of metals produced by supernovae. We conclude that the dSphs lost 96% to >99% of the metals their stars manufactured. We apply the observed mass function of Milky Way dSphs to the ejected mass function to determine that a single large dSph, like Fornax, lost more metals over 10 Gyr than all smaller dSphs combined. Therefore, small galaxies like dSphs are not significant contributors to the metal content of the intergalactic medium. Finally, we compare our ejected mass function to previous X-ray measurements of the metal content of the winds from the post-starburst dwarf irregular galaxy NGC 1569. Remarkably, the most recent starburst in that galaxy falls exactly on the ejected-mass-stellar-mass relation defined by the Milky Way dSphs.

  17. Kinematics of Metal-poor Stars in the Galaxy. III. Formation of the Stellar Halo and Thick Disk as Revealed from a Large Sample of Nonkinematically Selected Stars

    NASA Astrophysics Data System (ADS)

    Chiba, Masashi; Beers, Timothy C.

    2000-06-01

    We present a detailed analysis of the space motions of 1203 solar-neighborhood stars with metal abundances [Fe/H]<=-0.6, on the basis of a catalog, of metal-poor stars selected without kinematic bias recently revised and supplemented by Beers et al. This sample, having available proper motions, radial velocities, and distance estimates for stars with a wide range of metal abundances, is by far the largest such catalog to be assembled to date. We show that the stars in our sample with [Fe/H]<=-2.2, which likely represent a ``pure'' halo component, are characterized by a radially elongated velocity ellipsoid (σU,σV,σW)=(141+/-11, 106+/-9, 94+/-8) km s-1 and small prograde rotation =30 to 50 km s-1, consistent with previous analysis of this sample by Beers and Sommer-Larsen based on radial velocity information alone. In contrast to the previous analysis, we find a decrease in with increasing distance from the Galactic plane for stars that are likely to be members of the halo population (Δ/Δ|Z|=-52+/-6 km s-1 kpc-1), which may represent the signature of a dissipatively formed flattened inner halo. Unlike essentially all previous kinematically selected catalogs, the metal-poor stars in our sample exhibit a diverse distribution of orbital eccentricities, e, with no apparent correlation between [Fe/H] and e. This demonstrates, clearly and convincingly, that the evidence offered in 1962 by Eggen, Lynden-Bell, & Sandage for a rapid collapse of the Galaxy, an apparent correlation between the orbital eccentricity of halo stars with metallicity, is basically the result of their proper-motion selection bias. However, even in our nonkinematically selected sample, we have identified a small concentration of high-e stars at [Fe/H]~-1.7, which may originate, in part, from infalling gas during the early formation of the Galaxy. We find no evidence for an additional thick disk component for stellar abundances [Fe/H]<=-2.2. The kinematics of the intermediate

  18. Metal Lines in DA White Dwarfs

    NASA Astrophysics Data System (ADS)

    Zuckerman, B.; Koester, D.; Reid, I. N.; Hünsch, M.

    2003-10-01

    We report Keck telescope HIRES echelle observations of DA white dwarfs in a continuation of an extensive search for metals. These spectra are supplemented with new JHK magnitudes that are used to determine improved atmospheric parameters. Of the DA white dwarfs not in binary or common proper motion systems, about 25% show Ca II lines. For these, Ca abundances are determined from comparison with theoretical equivalent widths from model atmosphere calculations; in a few cases we also obtain Mg, Fe, Si, and Al abundances. If Ca is not observed, we generally determine very stringent upper limits. We compare the data to predictions of previously published models involving the accretion/diffusion of interstellar matter and of comets. The derived abundances are not obviously compatible with the predictions of either model, which up to now could only be tested with traces of metals in helium-rich white dwarfs. By modifying certain assumptions in the published interstellar accretion model we are able to match the distribution of the elements in the white dwarf atmospheres, but, even so, tests of other expectations from this scenario are less successful. Because comet accretion appears unlikely to be the primary cause of the DAZ phenomenon, the data suggest that no more than about 20% of F-type main-sequence stars are accompanied by Oort-like comet clouds. This represents the first observational estimate of this fraction. A plausible alternative to the accretion of cometary or interstellar matter is disruption and accretion of asteroidal material, a model first suggested in 1990 to explain excess near-infrared emission from the DAZ G29-38. An asteroidal debris model to account for the general DAZ phenomenon does not presently disagree with the HIRES data, but neither is there any compelling evidence in support of such a model. The HIRES data indicate that in close red dwarf/white dwarf binaries not known to be cataclysmic variables there is, nonetheless, significant mass

  19. The Accretion Disk and White Dwarf in the Dwarf Nova HS1804+6753

    NASA Astrophysics Data System (ADS)

    Marsh, Thomas

    1996-07-01

    We will take high-speed UV spectroscopy of the dwarf novaHS1804+6753 to find and measure the role of supersonic turbulencein its outer accretion disk. With HST observations of theeclipsing dwarf nova OY Car we have discovered a sensitiveprobe of physical conditions in its accretion disk. This isbased upon model atmosphere fits to strong veiling of thewhite dwarf by a mass of FeII lines at ultravioletwavelengths. Suprisingly we found supersonic microturblence atMach ~ 6 in the absorbing gas. While this would normally beexpected to dissipate in shocks, recent theoretical worksuggests that the disk can become strongly magnetic in whichcase it is the Alfven rather than sound speed which isrelevant. The result needs to be confirmed on other targets.Other systems are also needed to study vertical stratificationin the disk as a single object only gives us one line ofsight. Eclipsing dwarf novae are of particular interest as theeclipse allows the component spectra to be separated andbecause the line-of-sight is likely to pass through the disk.Therefore we propose to observe a newly discovered andrelatively bright eclipsing dwarf nova named HS1804+6753. At 5hours HS1804+6753 has a much longer period than any other suitabletarget and there are signs that it has a particularly highinclination and therefore it will provide an extreme test ofour model.

  20. DA White Dwarfs in the Kepler Field

    NASA Astrophysics Data System (ADS)

    Doyle, T. F.; Howell, S. B.; Petit, V.; Lépine, S.

    2016-10-01

    We present 16 new, and confirm 7 previously identified, DA white dwarfs in the Kepler field through ground-based spectroscopy with the Hale 200″, Kitt Peak 4-meter, and Bok 2.3-meter telescopes. Using atmospheric models we determine their effective temperatures and surface gravities to constrain their position with respect to the ZZ Ceti (DA pulsator) instability strip, and look for the presence or absence of pulsation with Kepler's unprecedented photometry. Our results are as follows: i) From our measurements of temperature and surface gravity, 12 of the 23 DA white dwarfs from this work fall well outside of the instability strip. The Kepler photometry available for 11 of these WDs allows us to confirm that none are pulsating. One of these eleven happens to be a presumed binary, KIC 11604781, with a period of ˜5 days. ii) The remaining 11 DA white dwarfs are instability strip candidates, potentially falling within the current, empirical instability strip, after accounting for uncertainties. These WDs will help constrain the strip's location further, as eight are near the blue edge and three are near the red edge of the instability strip. Four of these WDs do not have Kepler photometry, so ground-based photometry is needed to determine the pulsation nature of these white dwarfs. The remaining seven have Kepler photometry available, but do not show any periodicity on typical WD pulsation timescales.

  1. Dense cloud cores revealed by CO in the low metallicity dwarf galaxy WLM.

    PubMed

    Rubio, Monica; Elmegreen, Bruce G; Hunter, Deidre A; Brinks, Elias; Cortés, Juan R; Cigan, Phil

    2015-09-10

    Understanding stellar birth requires observations of the clouds in which they form. These clouds are dense and self-gravitating, and in all existing observations they are molecular, with H2 the dominant species and carbon monoxide (CO) the best available tracer. When the abundances of carbon and oxygen are low compared with that of hydrogen, and the opacity from dust is also low, as in primeval galaxies and local dwarf irregular galaxies, CO forms slowly and is easily destroyed, so it is difficult for it to accumulate inside dense clouds. Here we report interferometric observations of CO clouds in the local group dwarf irregular galaxy Wolf-Lundmark-Melotte (WLM), which has a metallicity that is 13 per cent of the solar value and 50 per cent lower than the previous CO detection threshold. The clouds are tiny compared to the surrounding atomic and H2 envelopes, but they have typical densities and column densities for CO clouds in the Milky Way. The normal CO density explains why star clusters forming in dwarf irregulars have similar densities to star clusters in giant spiral galaxies. The low cloud masses suggest that these clusters will also be low mass, unless some galaxy-scale compression occurs, such as an impact from a cosmic cloud or other galaxy. If the massive metal-poor globular clusters in the halo of the Milky Way formed in dwarf galaxies, as is commonly believed, then they were probably triggered by such an impact.

  2. The Elusive Old Population of the Dwarf Spheroidal Galaxy Leo I.

    PubMed

    Held; Saviane; Momany; Carraro

    2000-02-20

    We report the discovery of a significant old population in the dwarf spheroidal (dSph) galaxy Leo I as a result of a wide-area search with the ESO New Technology Telescope. Studies of the stellar content of Local Group dwarf galaxies have shown the presence of an old stellar population in almost all of the dwarf spheroidal galaxies. The only exception was Leo I, which alone appeared to have delayed its initial star formation episode until just a few gigayears ago. The color-magnitude diagram of Leo I now reveals an extended horizontal branch, unambiguously indicating the presence of an old, metal-poor population in the outer regions of this galaxy. Yet we find little evidence for a stellar population gradient, at least outside R>2' (0.16 kpc), since the old horizontal branch stars of Leo I are radially distributed as their more numerous intermediate-age helium-burning counterparts. The discovery of a definitely old population in the predominantly young dwarf spheroidal galaxy Leo I points to a sharply defined first epoch of star formation common to all of the Local Group dSph galaxies as well as to the halo of the Milky Way.

  3. Dense cloud cores revealed by CO in the low metallicity dwarf galaxy WLM.

    PubMed

    Rubio, Monica; Elmegreen, Bruce G; Hunter, Deidre A; Brinks, Elias; Cortés, Juan R; Cigan, Phil

    2015-09-10

    Understanding stellar birth requires observations of the clouds in which they form. These clouds are dense and self-gravitating, and in all existing observations they are molecular, with H2 the dominant species and carbon monoxide (CO) the best available tracer. When the abundances of carbon and oxygen are low compared with that of hydrogen, and the opacity from dust is also low, as in primeval galaxies and local dwarf irregular galaxies, CO forms slowly and is easily destroyed, so it is difficult for it to accumulate inside dense clouds. Here we report interferometric observations of CO clouds in the local group dwarf irregular galaxy Wolf-Lundmark-Melotte (WLM), which has a metallicity that is 13 per cent of the solar value and 50 per cent lower than the previous CO detection threshold. The clouds are tiny compared to the surrounding atomic and H2 envelopes, but they have typical densities and column densities for CO clouds in the Milky Way. The normal CO density explains why star clusters forming in dwarf irregulars have similar densities to star clusters in giant spiral galaxies. The low cloud masses suggest that these clusters will also be low mass, unless some galaxy-scale compression occurs, such as an impact from a cosmic cloud or other galaxy. If the massive metal-poor globular clusters in the halo of the Milky Way formed in dwarf galaxies, as is commonly believed, then they were probably triggered by such an impact. PMID:26354481

  4. The history of the evolution of dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Lotz, Jennifer Mae

    2003-08-01

    The formation of stars in the smallest galaxies is an important test of the standard paradigm for galaxy formation and evolution. While reasonably successful otherwise, current simulations of hierarchical galaxy formation have great difficulty reproducing the number density, star-formation histories, and structural parameters of local dwarf galaxies. Motivated by these difficulties, we use the observations of both the local dwarf galaxy population and the progenitors of dwarf galaxies in the distant universe, and a new approach to testing galaxy evolution, to trace the evolution and star-formation histories of dwarf galaxies. In the first half of this thesis, we present the results of an HST survey of ˜ 70 dwarf elliptical galaxies (dEs) in the nearby Virgo and Fornax Clusters. By resolving the globular clusters and nuclei from the underlying stars in each dE, we use these three sub- populations to trace the dE star-formation histories. We find that the dE globular cluster candidates are as blue in V I as the metal-poor globular clusters of the Milky Way. The observed correlation of the dE globular cluster systems' V I color with the luminosity of the host dE is strong evidence that the globular clusters were formed within the halos of dEs, and do not have a pre-galactic origin. The blue V I colors of the globular cluster systems and nuclei relative to the dE stellar envelopes require at least two separate star- formation episodes within the dEs. We explore the possibility that many of the dE nuclei are dynamically decayed massive globular clusters. However, we find that dynamical friction appears to be too effective at destroying globular clusters to account for the faint nuclei and the cluster systems observed in low-luminosity dEs, unless the clusters are relatively young or the dEs possess extended dark-matter halos. The extremely blue colors of two nuclei indicate younger ages than the dE stellar halos and globular cluster systems. In the second half of this

  5. New Brown Dwarf Discs in Upper Scorpius Observed with WISE

    NASA Technical Reports Server (NTRS)

    Dawson, P.; Scholz, A.; Ray, T. P.; Natta, A.; Marsh, K. A.; Padgett, D.; Ressler, M. E.

    2013-01-01

    We present a census of the disc population for UKIDSS selected brown dwarfs in the 5-10 Myr old Upper Scorpius OB association. For 116 objects originally identified in UKIDSS, the majority of them not studied in previous publications, we obtain photometry from the Wide-Field Infrared Survey Explorer data base. The resulting colour magnitude and colour colour plots clearly show two separate populations of objects, interpreted as brown dwarfs with discs (class II) and without discs (class III). We identify 27 class II brown dwarfs, 14 of them not previously known. This disc fraction (27 out of 116, or 23%) among brown dwarfs was found to be similar to results for K/M stars in Upper Scorpius, suggesting that the lifetimes of discs are independent of the mass of the central object for low-mass stars and brown dwarfs. 5 out of 27 discs (19 per cent) lack excess at 3.4 and 4.6 microns and are potential transition discs (i.e. are in transition from class II to class III). The transition disc fraction is comparable to low-mass stars.We estimate that the time-scale for a typical transition from class II to class III is less than 0.4 Myr for brown dwarfs. These results suggest that the evolution of brown dwarf discs mirrors the behaviour of discs around low-mass stars, with disc lifetimes of the order of 5 10 Myr and a disc clearing time-scale significantly shorter than 1 Myr.

  6. The search for brown dwarfs

    NASA Technical Reports Server (NTRS)

    Stevenson, David J.

    1991-01-01

    The theory of brown dwarfs is summarized and observational findings regarding brown dwarfs are reviewed. The equation of state, the thermal properties, the interior transport properties, the boundary conditions, and the initial conditions are examined. Indirect observations, IR speckle interferometry, IR photometry, and field observations of brown dwarfs are discussed.

  7. Asteroseismology of White Dwarf Stars

    NASA Technical Reports Server (NTRS)

    Hansen, Carl J.

    1997-01-01

    The primary purpose of this investigation has been to study various aspects of multimode pulsations in variable white dwarfs. In particular, nonlinear interactions among pulsation modes in white dwarfs (and, to some extent, in other variable stars), analysis of recent observations where such interactions are important, and preliminary work on the effects of crystallization in cool white dwarfs are reported.

  8. A YOUNG WHITE DWARF WITH AN INFRARED EXCESS

    SciTech Connect

    Xu, S.; Jura, M.; Klein, B.; Zuckerman, B.; Pantoja, B.; Su, K. Y. L.; Meng, H. Y. A. E-mail: jura@astro.ucla.edu

    2015-06-10

    Using observations of Spitzer/IRAC, we report the serendipitous discovery of excess infrared emission from a single white dwarf PG 0010+280. At a temperature of 27,220 K and a cooling age of 16 Myr, it is the hottest and youngest white dwarf to display an excess at 3–8 μm. The infrared excess can be fit by either an opaque dust disk within the tidal radius of the white dwarf or a 1300 K blackbody, possibly from an irradiated substellar object or a re-heated giant planet. PG 0010+280 has two unique properties that are different from white dwarfs with a dust disk: (i) relatively low emission at 8 μm and (ii) non-detection of heavy elements in its atmosphere from high-resolution spectroscopic observations with Keck/HIRES. The origin of the infrared excess remains unclear.

  9. Atomic diffusion in metal poor stars. The influence on the Main Sequence fitting distance scale, subdwarfs ages and the value of Delta Y/ Delta Z

    NASA Astrophysics Data System (ADS)

    Salaris, M.; Groenewegen, M. A. T.; Weiss, A.

    2000-03-01

    The effect of atomic diffusion on the Main Sequence (MS) of metal-poor low mass stars is investigated. Since diffusion alters the stellar surface chemical abundances with respect to their initial values, one must ensure - by calibrating the initial chemical composition of the theoretical models - that the surface abundances of the models match the observed ones of the stellar population under scrutiny. When properly calibrated, our models with diffusion reproduce well within the errors the Hertzsprung-Russell diagram of Hipparcos subdwarfs with empirically determined T_eff values and high resolution spectroscopical [Fe/H] determinations. Since the observed surface abundances of subdwarfs are different from the initial ones due to the effect of diffusion, while the globular clusters stellar abundances are measured in Red Giants, which have practically recovered their initial abundances after the dredge-up, the isochrones to be employed for studying globular clusters and Halo subdwarfs with the same observational value of [Fe/H] are different and do not coincide. This is at odds with the basic assumption of the MS-fitting technique for distance determinations. However, the use of the rather large sample of Hipparcos lower MS subdwarfs with accurate parallaxes keeps at minimum the effect of these differences, for two reasons. First, it is possible to use subdwarfs with observed [Fe/H] values close to the cluster one; this minimizes the colour corrections (which are derived from the isochrones) needed to reduce all the subdwarfs to a mono-metallicity sequence having the same [Fe/H] than the cluster. Second, one can employ objects sufficiently faint so that the differences between the subdwarfs and cluster MS with the same observed value of [Fe/H] are small (they increase for increasing luminosity). We find therefore that the distances based on standard isochrones are basically unaltered when diffusion is taken properly into account. On the other hand, the absolute ages

  10. Evolution and CNO yields of Z = 10-5 stars and possible effects on carbon-enhanced metal-poor production

    NASA Astrophysics Data System (ADS)

    Gil-Pons, P.; Doherty, C. L.; Lau, H.; Campbell, S. W.; Suda, T.; Guilani, S.; Gutiérrez, J.; Lattanzio, J. C.

    2013-09-01

    Aims: Our main goals are to get a deeper insight into the evolution and final fates of intermediate-mass, extremely metal-poor (EMP) stars. We also aim to investigate the C, N, and O yields of these stars. Methods: Using the Monash University Stellar Evolution code MONSTAR we computed and analysed the evolution of stars of metallicity Z = 10-5 and masses between 4 and 9 M⊙, from their main sequence until the late thermally pulsing (super) asymptotic giant branch, TP-(S)AGB phase. Results: Our model stars experience a strong C, N, and O envelope enrichment either due to the second dredge-up process, the dredge-out phenomenon, or the third dredge-up early during the TP-(S)AGB phase. Their late evolution is therefore similar to that of higher metallicity objects. When using a standard prescription for the mass loss rates during the TP-(S)AGB phase, the computed stars are able to lose most of their envelopes before their cores reach the Chandrasekhar mass (mCh), so our standard models do not predict the occurrence of SNI1/2 for Z = 10-5 stars. However, we find that the reduction of only one order of magnitude in the mass-loss rates, which are particularly uncertain at this metallicity, would prevent the complete ejection of the envelope, allowing the stars to either explode as an SNI1/2 or become an electron-capture SN. Our calculations stop due to an instability near the base of the convective envelope that hampers further convergence and leaves remnant envelope masses between 0.25 M⊙ for our 4 M⊙ model and 1.5 M⊙ for our 9 M⊙ model. We present two sets of C, N, and O yields derived from our full calculations and computed under two different assumptions, namely, that the instability causes a practically instant loss of the remnant envelope or that the stars recover and proceed with further thermal pulses. Conclusions: Our results have implications for the early chemical evolution of the Universe and might provide another piece for the puzzle of the carbon

  11. Alfalfa discovery of the nearby gas-rich dwarf galaxy LEO P. V. Neutral gas dynamics and kinematics

    SciTech Connect

    Bernstein-Cooper, Elijah Z.; Pardy, Stephen A.; Cannon, John M. E-mail: spardy@astro.wisc.edu; and others

    2014-08-01

    We present new H I spectral line imaging of the extremely metal-poor, star-forming dwarf irregular galaxy Leo P. Our H I images probe the global neutral gas properties and the local conditions of the interstellar medium (ISM). The H I morphology is slightly elongated along the optical major axis. We do not find obvious signatures of interaction or infalling gas at large spatial scales. The neutral gas disk shows obvious rotation, although the velocity dispersion is comparable to the rotation velocity. The rotation amplitude is estimated to be V {sub c} =15 ± 5 km s{sup –1}. Within the H I radius probed by these observations, the mass ratio of gas to stars is roughly 2:1, while the ratio of the total mass to the baryonic mass is ≳15:1. We use this information to place Leo P on the baryonic Tully-Fisher relation, testing the baryonic content of cosmic structures in a sparsely populated portion of parameter space that has hitherto been occupied primarily by dwarf spheroidal galaxies. We detect the signature of two temperature components in the neutral ISM of Leo P; the cold and warm components have characteristic velocity widths of 4.2 ± 0.9 km s{sup –1} and 10.1 ± 1.2 km s{sup –1}, corresponding to kinetic temperature upper limits of ∼1100 K and ∼6200 K, respectively. The cold H I component is unresolved at a physical resolution of 200 pc. The highest H I surface densities are observed in close physical proximity to the single H II region. A comparison of the neutral gas properties of Leo P with other extremely metal-deficient (XMD) galaxies reveals that Leo P has the lowest neutral gas mass of any known XMD, and that the dynamical mass of Leo P is more than two orders of magnitude smaller than any known XMD with comparable metallicity.

  12. The Pulsar/White Dwarf/Planet System in M4: Improved Astrometry

    NASA Astrophysics Data System (ADS)

    Richer, Harvey B.; Ibata, Rodrigo; Fahlman, Gregory G.; Huber, Mark

    2003-11-01

    A young and undermassive white dwarf has been identified as the possible companion to the millisecond pulsar PSR B1620-26 in M4. This association is important since it then helps constrain the mass of the third body in the system to be of order a few times that of Jupiter. The presence of this planet in M4 has critical implications for planetary formation mechanisms in metal-poor environments such as globular clusters and the early universe. The identification of the white dwarf is purely via the agreement in position between it and the pulsar and was limited by the accuracy of the pointing of the H ubble Space T elescope, which is +/-0.7". We have redetermined the position of the white dwarf using ground-based data tied to the USNO-B1.0 catalog and find that the pulsar and white dwarf are now coincident to within 0.12"+/-0.13", further strengthening the case for an association between the two. We have also attempted to improve the proper-motion measurement of the white dwarf by a maximum likelihood analysis of the stellar positions measured over a baseline of 5 years. While the errors are reduced by almost a factor of 6 from our previous work, we still have not resolved the cluster's intrinsic dispersion in proper motion. Thus, the proper motion of the white dwarf with respect to the cluster itself is still not known, although it is very small and is within 2 σ of that of the cluster's internal dispersion. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555. Based on observations with the Canada-France-Hawaii Telescope, which is operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  13. GASEOUS MATERIAL ORBITING THE POLLUTED, DUSTY WHITE DWARF HE 1349-2305

    SciTech Connect

    Melis, Carl; Burgasser, Adam J.; Dufour, P.; Farihi, J.; Bochanski, J.; Parsons, S. G.; Gaensicke, B. T.; Koester, D.; Swift, Brandon J.

    2012-05-20

    We present new spectroscopic observations of the polluted, dusty, helium-dominated atmosphere white dwarf star HE 1349-2305. Optical spectroscopy reveals weak Ca II infrared triplet emission indicating that metallic gas debris orbits and is accreted by the white dwarf. Atmospheric abundances are measured for magnesium and silicon while upper limits for iron and oxygen are derived from the available optical spectroscopy. HE 1349-2305 is the first gas disk-hosting white dwarf star identified among previously known polluted white dwarfs. Further characterization of the parent body polluting this star will require ultraviolet spectroscopy.

  14. Origins, Evolution, and Fate of Brown Dwarfs

    NASA Technical Reports Server (NTRS)

    Martin, Eduardo

    2003-01-01

    Research related to the origins, evolution and fate of brown dwarfs is presented. The topics include: 1) Imaging surveys for brown dwarfs; 2) Companion detection techniques; 3) Measurements of fundamental properties of brown dwarfs; 4) Classification schemes for ultracool dwarfs; 5) Origins and evolution of brown dwarfs; 6) Ultracool atmospheres and interiors; 7) Time variable phenomena in brown dwarfs; 8) Comparisons between brown dwarfs and planets; 9) Substellar mass functions; and 10) Future facilities.

  15. Hunting the Coolest Substellar Dwarfs

    NASA Astrophysics Data System (ADS)

    Zuckerman, Ben; Rodriguez, David; Song, Inseok; Melis, Carl

    2010-06-01

    The few lowest mass substellar objects discovered in previous imaging surveys are found to have large semi-major axes, typically hundreds of AU. We show that at such large separations and toward old stars one has the best chance to detect the coolest brown dwarf companions, with effective temperatures of <500 K (the so-called 'Y dwarfs''). Effective temperatures of 500 K represent a region of temperature space that is only recently being probed for free floating brown dwarfs. The discovery of such cool objects will illuminate their physics and chemistry and will provide observational data to test planetary models. To discover one or more Y dwarfs, we are conducting a survey of white dwarfs with ages >2 Gyr that lie within 35 pc of Earth. As companions to white dwarfs, we will be able to determine the ages of any cool brown dwarfs we find and thus constrain their masses.

  16. Dwarf Eye Disorder

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Johns Hopkins researchers at the Wilmer Eye Institute have discovered what appears to be the first human gene mutation that causes extreme farsightedness. The researchers report that nanophthalmos, Greek for "dwarf eye," is a rare, potentially blinding disorder caused by an alteration in a gene called MFRP that helps control eye growth and…

  17. White Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Kepler, S. O.

    2014-10-01

    White dwarfs are the evolutionary endpoint for nearly 95% of all stars born in our Galaxy, the final stages of evolution of all low- and intermediate mass stars, i.e., main sequence stars with masses below (8.5± 1.5) M_{odot}, depending on metallicity of the progenitor, mass loss and core overshoot. Massive white dwarfs are intrinsically rare objects, tand produce a gap in the determination of the initial vs. final mass relation at the high mass end (e.g. Weidemann 2000 A&A, 363, 647; Kalirai et al. 2008, ApJ, 676, 594; Williams, Bolte & Koester 2009, ApJ, 693, 355). Main sequences stars with higher masses will explode as SNII (Smartt S. 2009 ARA&A, 47, 63), but the limit does depend on the metallicity of the progenitor. Massive white dwarfs are probably SNIa progenitors through accretion or merger. They are rare, being the final product of massive stars (less common) and have smaller radius (less luminous). Kepler et al. 2007 (MNRAS, 375, 1315), Kleinman et al. 2013 (ApJS, 204, 5) estimate only 1-2% white dwarfs have masses above 1 M_{odot}. The final stages of evolution after helium burning are a race between core growth and loss of the H-rich envelope in a stellar wind. When the burning shell is exposed, the star rapidly cools and burning ceases, leaving a white dwarf. As they cool down, the magnetic field freezes in, ranging from a few kilogauss to a gigagauss. Peculiar type Ia SN 2006gz, SN 2007if, SN 2009dc, SN 2003fg suggest progenitors in the range 2.4-2.8 M_{odot}, and Das U. & Mukhopadhyay B. (2012, Phys. Rev. D, 86, 042001) estimate that the Chandrasekhar limit increases to 2.3-2.6 M_{odot} for extremely high magnetic field stars, but differential rotation induced by accretion could also increase it, according to Hachisu I. et al. 2012 (ApJ, 744, 69). García-Berro et al. 2012, ApJ, 749, 25, for example, proposes double degenerate mergers are the progenitors of high-field magnetic white dwarfs. We propose magnetic fields enhance the line broadening in

  18. The G-dwarf problem in the Galaxy

    NASA Astrophysics Data System (ADS)

    Caimmi, R.

    2008-07-01

    This paper has two parts: one about observational constraints, and the other about chemical evolution models. In the first part, the empirical differential metallicity distribution (EDMD) is deduced from three different samples involving (i) local thick disk stars derived from Gliese and scaled in situ samples within the range, -1.20⩽[Fe/H]⩽-0.20 [Wyse, R.F.G., Gilmore, G., 1995. AJ 110, 2771]; (ii) 46 likely metal-weak thick disk stars within the range, -2.20⩽[Fe/H]⩽-1.00 [Chiba, M., Beers, T.C., 2000. AJ 119, 2843]; (iii) 287 chemically selected G dwarfs within 25 pc from the Sun, with the corrections performed in order to take into account the stellar scale height [Rocha-Pinto, H.J., Maciel, W.J., 1996. MNRAS 279, 447]; in addition to previous results [Caimmi, R., 2001b. AN 322, 241; Caimmi, R., 2007. NewA 12, 289] related to (iv) 372 solar neighbourhood halo subdwarfs [Ryan, S.G., Norris, J.E., 1991. AJ 101, 1865]; and (v) 268 K-giant bulge stars [Sadler, E.M., Rich, R.M., Terndrup, D.M., 1996. AJ 112, 171]. The metal-poor and metal-rich EDMD related to the thick disk shows similarities with their halo and bulge counterparts, respectively. Then the thick disk is conceived as made of two distinct regions: the halo-like and the bulge-like thick disk, and the related EDMD is deduced. Under the assumption that each distribution is typical for the corresponding subsystem, the EDMD of the thick disk, the thick + thin disk, and the Galaxy, is determined by weighting the mass. In the second part, models of chemical evolution for the halo-like thick disk, the bulge-like thick disk, and the thin disk, are computed assuming the instantaneous recycling approximation. The EDMD data are fitted, to an acceptable extent, by simple models of chemical evolution implying both homogeneous and inhomogeneous star formation, provided that star formation is inhibited during thick disk formation, with respect to the thin disk. The initial mass function (IMF) is assumed to be a

  19. Three-dimensional hydrodynamical CO5BOLD model atmospheres of red giant stars. IV. Oxygen diagnostics in extremely metal-poor red giants with infrared OH lines

    NASA Astrophysics Data System (ADS)

    Dobrovolskas, V.; Kučinskas, A.; Bonifacio, P.; Caffau, E.; Ludwig, H.-G.; Steffen, M.; Spite, M.

    2015-04-01

    Context. Although oxygen is an important tracer of Galactic chemical evolution, measurements of its abundance in the atmospheres of the oldest Galactic stars are still scarce and rather imprecise. This is mainly because only a few spectral lines are available for the abundance diagnostics. At the lowest end of the metallicity scale, oxygen can only be measured in giant stars and in most of cases such measurements rely on a single forbidden [O i] 630 nm line that is very weak and frequently blended with telluric lines. Although molecular OH lines located in the ultraviolet and infrared could also be used for the diagnostics, oxygen abundances obtained from the OH lines and the [O i] 630 nm line are usually discrepant to a level of ~ 0.3-0.4 dex. Aims: We study the influence of convection on the formation of the infrared (IR) OH lines and the forbidden [O i] 630 nm line in the atmospheres of extremely metal-poor (EMP) red giant stars. Our ultimate goal is to clarify whether a realistic treatment of convection with state-of-the-art 3D hydrodynamical model atmospheres may help to bring the oxygen abundances obtained using the two indicators into closer agreement. Methods: We used high-resolution (R = 50 000) and high signal-to-noise ratio (S/N ≈ 200-600) spectra of four EMP red giant stars obtained with the VLT CRIRES spectrograph. For each EMP star, 4-14 IR OH vibrational-rotational lines located in the spectral range of 1514-1548 and 1595-1632 nm were used to determine oxygen abundances by employing standard 1D local thermodynamic equilibrium (LTE) abundance analysis methodology. We then corrected the 1D LTE abundances obtained from each individual OH line for the 3D hydrodynamical effects, which was done by applying 3D-1D LTE abundance corrections that were determined using 3D hydrodynamical CO5BOLD and 1D hydrostatic LHD model atmospheres. Results: We find that the influence of convection on the formation of [O i] 630 nm line in the atmospheres of EMP giants

  20. The white dwarf luminosity function

    NASA Astrophysics Data System (ADS)

    García-Berro, Enrique; Oswalt, Terry D.

    2016-06-01

    White dwarfs are the final remnants of low- and intermediate-mass stars. Their evolution is essentially a cooling process that lasts for ∼ 10 Gyr. Their observed properties provide information about the history of the Galaxy, its dark matter content and a host of other interesting astrophysical problems. Examples of these include an independent determination of the past history of the local star formation rate, identification of the objects responsible for the reported microlensing events, constraints on the rate of change of the gravitational constant, and upper limits to the mass of weakly interacting massive particles. To carry on these tasks the essential observational tools are the luminosity and mass functions of white dwarfs, whereas the theoretical tools are the evolutionary sequences of white dwarf progenitors, and the corresponding white dwarf cooling sequences. In particular, the observed white dwarf luminosity function is the key manifestation of the white dwarf cooling theory, although other relevant ingredients are needed to compare theory and observations. In this review we summarize the recent attempts to empirically determine the white dwarf luminosity function for the different Galactic populations. We also discuss the biases that may affect its interpretation. Finally, we elaborate on the theoretical ingredients needed to model the white dwarf luminosity function, paying special attention to the remaining uncertainties, and we comment on some applications of the white dwarf cooling theory. Astrophysical problems for which white dwarf stars may provide useful leverage in the near future are also discussed.

  1. KECK NIRSPEC RADIAL VELOCITY OBSERVATIONS OF LATE-M DWARFS

    SciTech Connect

    Tanner, Angelle; White, Russel; Bailey, John; Blake, Cullen; Blake, Geoffrey; Cruz, Kelle; Burgasser, Adam J.; Kraus, Adam

    2012-11-15

    We present the results of an infrared spectroscopic survey of 23 late-M dwarfs with the NIRSPEC echelle spectrometer on the Keck II telescope. Using telluric lines for wavelength calibration, we are able to achieve measurement precisions of down to 45 m s{sup -1} for our late-M dwarfs over a one- to four-year long baseline. Our sample contains two stars with radial velocity (RV) variations of >1000 m s{sup -1}. While we require more measurements to determine whether these RV variations are due to unseen planetary or stellar companions or are the result of starspots known to plague the surface of M dwarfs, we can place upper limits of <40 M{sub J} sin i on the masses of any companions around those two M dwarfs with RV variations of <160 m s{sup -1} at orbital periods of 10-100 days. We have also measured the rotational velocities for all the stars in our late-M dwarf sample and offer our multi-order, high-resolution spectra over 2.0-2.4 {mu}m to the atmospheric modeling community to better understand the atmospheres of late-M dwarfs.

  2. Detection of the White Dwarf Companions of Barium Dwarfs

    NASA Astrophysics Data System (ADS)

    Gray, Richard O.; Corbally, C. J.; Griffin, E.; McGahee, C. E.

    2010-01-01

    The Barium dwarfs are chemically peculiar F- and G-type stars that show enhanced abundances of s-process elements such as strontium and barium. They are believed to have derived their chemical peculiarities via mass transfer from a former AGB companion, now a white dwarf. These WD companions should be detectable in the far-ultraviolet if their effective temperatures exceed 10,000K. However, despite dedicated IUE searches, no WD companion has been directly detected. We have observed 4 Ba dwarfs with the GALEX ultraviolet space telescope (2 newly discovered Ba dwarfs have archival observations), and report here on the first unequivocal direct detection of a WD companion of a Ba dwarf, HD 15306, the hottest Ba dwarf known (F4 V). This WD companion is detected through a clear far-ultraviolet excess. Detection of the putative WD companions of the other observed Ba dwarfs is somewhat more problematical, as those stars have cooler effective temperatures and chromospheric activity can significantly affect their FUV fluxes. The disentanglement of WD FUV fluxes from FUV emission due to chromospheric activity requires comparison of the observed Ba dwarfs with F- and G-type dwarfs with archival GALEX photometry. We have selected a set of 68 F- and G-type dwarfs from the NStars program (Gray et al. 2003, 2006) that have good quality archival GALEX photometry and show a wide range of chromospheric activity. A comparison of these stars with the 5 remaining GALEX-observed Ba dwarfs suggests that one and perhaps two of these Ba dwarfs have detectable WD companions.

  3. Chemical Analysis of the Fornax Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Letarte, Bruno

    2007-03-01

    delivers stellar parameters and abundances in a controlled man- ner. This involved developing error analysis and diagnostics to carefully test the robustness of the results. The Fornax dwarf spheroidal galaxy contains five globular clusters (GCs) with a range of properties. Using VLT/UVES I have obtained the first detailed chemical abundances for nine individual stars in three of its GCs. From our results it is clear that they were formed promptly and early in the history of Fornax dSph, as were the Milky Way GCs. Thus, despite their very different mass, morphology and global star formation history, the abundance patterns of individual stars in the Fornax GCs are almost identical to those found in Milky Way globular clusters, including abundance patterns that are specific to GC stars (deep-mixing) and rare anomalies (europium-rich) also observed in other GCs. This suggests that stars in GCs are the same regardless of the type or size of the galaxy in which the GC is hosted. Thanks to the multi-fibre capability of VLT/FLAMES I have been able to make detailed abundance measurements of 81 RGB stars in the central part of Fornax, which is a significant, even dramatic, improvement on the previous UVES sample of three individual field stars. This sample of Fornax field stars exhibits unusually low [α/Fe] ratios, and its dependence with metallicity is different from the Milky Way, showing a different efficiency in gas enrichment. Fornax field stars are clearly predominantly enriched by s-process elements at high metallicity, showing the strong role of (metal poor) AGB stars. Our sample is dominated by a relatively young, relatively metal rich population. This means that we have obtained the most detailed picture of the chemical enrichment of Fornax during the last ~4 Gyrs. There is only one field star in our sample which appears old and metal poor, and it has abundance properties almost indistinguishable from the globular clusters in Fornax. These results confirm and deepen the

  4. FIRE SPECTROSCOPY OF FIVE LATE-TYPE T DWARFS DISCOVERED WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER

    SciTech Connect

    Burgasser, Adam J.; Cushing, Michael C.; Mainzer, A.; Bauer, James M.; Kirkpatrick, J. Davy; Gelino, Christopher R.; Griffith, Roger L.; Marsh, Kenneth A.; Looper, Dagny L.; Tinney, Christopher; Simcoe, Robert A.; Bochanski, John J.; Skrutskie, Michael F.; Thompson, Maggie A.; Wright, Edward L.

    2011-07-10

    We present the discovery of five late-type T dwarfs identified with the Wide-field Infrared Survey Explorer (WISE). Low-resolution near-infrared spectroscopy obtained with the Magellan Folded-port InfraRed Echellette reveal strong H{sub 2}O and CH{sub 4} absorption in all five sources, and spectral indices and comparison to spectral templates indicate classifications ranging from T5.5 to T8.5:. The spectrum of the latest-type source, WISE J1812+2721, is an excellent match to that of the T8.5 companion brown dwarf Wolf 940B. WISE-based spectrophotometric distance estimates place these T dwarfs at 12-13 pc from the Sun, assuming they are single. Preliminary fits of the spectral data to the atmosphere models of Saumon and Marley indicate effective temperatures ranging from 600 K to 930 K, both cloudy and cloud-free atmospheres, and a broad range of ages and masses. In particular, two sources show evidence of both low surface gravity and cloudy atmospheres, tentatively supporting a trend noted in other young brown dwarfs and exoplanets. In contrast, the high proper motion T dwarf WISE J2018-7423 exhibits a suppressed K-band peak and blue spectrophotometric J - K colors indicative of an old, massive brown dwarf; however, it lacks the broadened Y-band peak seen in metal-poor counterparts. These results illustrate the broad diversity of low-temperature brown dwarfs that will be uncovered with WISE.

  5. WISE Y dwarfs as probes of the brown dwarf-exoplanet connection

    SciTech Connect

    Beichman, C.; Gelino, Christopher R.; Kirkpatrick, J. Davy; Cushing, Michael C.; Dodson-Robinson, Sally; Marley, Mark S.; Morley, Caroline V.; Wright, E. L.

    2014-03-10

    We have determined astrometric positions for 15 WISE-discovered late-type brown dwarfs (six T8-9 and nine Y dwarfs) using the Keck-II telescope, the Spitzer Space Telescope, and the Hubble Space Telescope. Combining data from 8 to 20 epochs we derive parallactic and proper motions for these objects, which puts the majority within 15 pc. For ages greater than a few Gyr, as suggested from kinematic considerations, we find masses of 10-30 M {sub Jup} based on standard models for the evolution of low-mass objects with a range of mass estimates for individual objects, depending on the model in question. Three of the coolest objects have effective temperatures ∼350 K and inferred masses of 10-15 M {sub Jup}. Our parallactic distances confirm earlier photometric estimates and direct measurements and suggest that the number of objects with masses below about 15 M {sub Jup} must be flat or declining, relative to higher mass objects. The masses of the coldest Y dwarfs may be similar to those inferred for recently imaged planet-mass companions to nearby young stars. Objects in this mass range, which appear to be rare in both the interstellar and protoplanetary environments, may both have formed via gravitational fragmentation—the brown dwarfs in interstellar clouds and companion objects in a protoplanetary disk. In both cases, however, the fact that objects in this mass range are relatively infrequent suggests that this mechanism must be inefficient in both environments.

  6. White dwarf heating and the ultraviolet flux in dwarf novae

    NASA Technical Reports Server (NTRS)

    Pringle, J. E.

    1988-01-01

    The heating of the outer layers of the white dwarf which is likely to occur during a dwarf nova outburst is investigated. It is shown that the decline in IUE flux, observed during quiescent intervals in the dwarf novae VW Hydri and WX Hydri, may be due to the outer layers cooling off once the heat source is removed. The calculations here assume uniformity of the heat source over the white dwarf surface. This is unlikely to be realized from disk accretion, and discussion is made of what further calculations are required.

  7. Collapsing white dwarfs

    NASA Technical Reports Server (NTRS)

    Baron, E.; Cooperstein, J.; Kahana, S.; Nomoto, K.

    1987-01-01

    The results of the hydrodynamic collapse of an accreting C + O white dwarf are presented. Collapse is induced by electron captures in the iron core behind a conductive deflagration front. The shock wave produced by the hydrodynamic bounce of the iron core stalls at about 115 km, and thus a neutron star formed in such a model would be formed as an optically quiet event.

  8. Spectroscopic study of extended star clusters in dwarf galaxy NGC 6822

    SciTech Connect

    Hwang, Narae; Kim, Sang Chul; Park, Hong Soo; Lee, Myung Gyoon; Lim, Sungsoon; Hodge, Paul W.; Weisz, Daniel; Miller, Bryan

    2014-03-01

    We present a spectroscopic study of the four extended star clusters (ESCs) in NGC 6822 based on the data obtained with the Gemini Multi-Object Spectrograph on the Gemini-South 8.1 m telescope. The radial velocities derived from the spectra range from –61.2 ± 20.4 km s{sup –1} (for C1) to –115.34 ± 57.9 km s{sup –1} (for C4) and, unlike the intermediate-age carbon stars, they do not display any sign of systematic rotation around NGC 6822. The ages and metallicities derived using the Lick indices show that the ESCs are old (≥8 Gyr) and metal poor ([Fe/H] ≲ –1.5). NGC 6822 is found to have both metal poor ([Fe/H] ≈–2.0) and metal rich ([Fe/H] ≈–0.9) star clusters within 15' (2 kpc) from the center, whereas only metal poor clusters are observed in the outer halo with r ≥ 20'(2.6 kpc). The kinematics, old ages, and low metallicities of ESCs suggest that ESCs may have accreted into the halo of NGC 6822. Based on the velocity distribution of ESCs, we have determined the total mass and the mass-to-light ratio of NGC 6822: M{sub N6822}=7.5{sub −0.1}{sup +4.5}×10{sup 9} M{sub ⊙} and (M/L){sub N6822}=75{sub −1}{sup +45}(M/L){sub ⊙}. It shows that NGC 6822 is one of the most dark matter dominated dwarf galaxies in the Local Group.

  9. Population studies. XIII. A new analysis of the Bidelman-Macconnell 'weak-metal' stars - confirmation of metal-poor stars in the thick disk of the galaxy

    SciTech Connect

    Beers, Timothy C.; Norris, John E.; Placco, Vinicius M.; Lee, Young Sun; Rossi, Silvia; Carollo, Daniela; Masseron, Thomas E-mail: jen@mso.anu.edu.au E-mail: youngsun@cnu.ac.kr E-mail: daniela.carollo@mq.edu.au

    2014-10-10

    A new set of very high signal-to-noise (S/N > 100/1), medium-resolution (R ∼ 3000) optical spectra have been obtained for 302 of the candidate 'weak-metal' stars selected by Bidelman and MacConnell. We use these data to calibrate the recently developed generalization of the Sloan Extension for Galactic Exploration and Understanding and Exploration (SEGUE) Stellar Parameter Pipeline, and obtain estimates of the atmospheric parameters (T {sub eff}, log g, and [Fe/H]) for these non-Sloan Digital Sky Survey/SEGUE data; we also obtain estimates of [C/Fe]. The new abundance measurements are shown to be consistent with available high-resolution spectroscopic determinations, and represent a substantial improvement over the accuracies obtained from the previous photometric estimates reported in Paper I of this series. The apparent offset in the photometric abundances of the giants in this sample noted by several authors is confirmed by our new spectroscopy; no such effect is found for the dwarfs. The presence of a metal-weak thick-disk (MWTD) population is clearly supported by these new abundance data. Some 25% of the stars with metallicities –1.8 < [Fe/H] ≤–0.8 exhibit orbital eccentricities e < 0.4, yet are clearly separated from members of the inner-halo population with similar metallicities by their location in a Lindblad energy versus angular momentum diagram. A comparison is made with recent results for a similar-size sample of Radial Velocity Experiment stars from Ruchti et al. We conclude, based on both of these samples, that the MWTD is real, and must be accounted for in discussions of the formation and evolution of the disk system of the Milky Way.

  10. HAT-P-24b: AN INFLATED HOT JUPITER ON A 3.36 DAY PERIOD TRANSITING A HOT, METAL-POOR STAR

    SciTech Connect

    Kipping, D. M.; Bakos, G. A.; Hartman, J.; Torres, G.; Latham, D. W.; Noyes, R. W.; Beky, B.; Perumpilly, G.; Esquerdo, G. A.; Sasselov, D. D.; Stefanik, R. P.; Shporer, A.; Kovacs, Geza; Howard, A. W.; Marcy, G. W.; Fischer, D. A.; Johnson, J. A.; Lazar, J.; Papp, I.; Sari, P.

    2010-12-20

    We report the discovery of HAT-P-24b, a transiting extrasolar planet orbiting the moderately bright V = 11.818 F8 dwarf star GSC 0774-01441, with a period P = 3.3552464 {+-} 0.0000071 days, transit epoch T{sub c} = 2455216.97669 {+-} 0.00024 (BJD)11, and transit duration 3.653 {+-} 0.025 hr. The host star has a mass of 1.191 {+-} 0.042 M{sub sun}, radius of 1.317 {+-} 0.068 R{sub sun}, effective temperature 6373 {+-} 80 K, and a low metallicity of [Fe/H] = -0.16 {+-} 0.08. The planetary companion has a mass of 0.681 {+-} 0.031 M{sub J} and radius of 1.243 {+-} 0.072 R{sub J} yielding a mean density of 0.439 {+-} 0.069 g cm{sup -3}. By repeating our global fits with different parameter sets, we have performed a critical investigation of the fitting techniques used for previous Hungarian-made Automated Telescope planetary discoveries. We find that the system properties are robust against the choice of priors. The effects of fixed versus fitted limb darkening are also examined. HAT-P-24b probably maintains a small eccentricity of e = 0.052{sup +0.022}{sub -0.017}, which is accepted over the circular orbit model with false alarm probability 5.8%. In the absence of eccentricity pumping, this result suggests that HAT-P-24b experiences less tidal dissipation than Jupiter. Due to relatively rapid stellar rotation, we estimate that HAT-P-24b should exhibit one of the largest known Rossiter-McLaughlin effect amplitudes for an exoplanet ({Delta}V{sub RM} {approx_equal} 95 m s{sup -1}) and thus a precise measurement of the sky-projected spin-orbit alignment should be possible.

  11. Local Universe Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Carignan, Claude

    2015-08-01

    One of the outstanding problems in cosmology is addressing the "small-scale crisis" and understanding structure formation at the smallest scales. Standard Lambda Cold Dark Matter cosmological simulations of Milky Way-size DM halos predict many more DM sub-halos than the number of dwarf galaxies observed. This is the so-called Missing Satellites Problem. The most popular interpretation of the Missing Satellites Problem is that the smallest dark matter halos in the universe are extremely inefficient at forming stars. The virialized extent of the Milky Way's halo should contain ~500 satellites, while only ˜100 satellites and dwarfs are observed in the whole Local Group. Despite the large amount of theoretical work and new optical observations, the discrepancy, even if reduced, still persists between observations and hierarchical models, regardless of the model parameters. It may be possible to find those isolated ultra-faint missing dwarf galaxies via their neutral gas component, which is one of the goals we are pursuing with the SKA precursor KAT-7 in South Africa, and soon with the SKA pathfinder MeerKAT.

  12. Evolution and nucleosynthesis of extremely metal-poor and metal-free low- and intermediate-mass stars. I. Stellar yield tables and the CEMPs

    NASA Astrophysics Data System (ADS)

    Campbell, S. W.; Lattanzio, J. C.

    2008-11-01

    Context: The growing body of spectral observations of the extremely metal-poor (EMP) stars in the Galactic Halo provides constraints on theoretical studies of the chemical and stellar evolution of the early Universe. Aims: To calculate yields for EMP stars for use in chemical evolution calculations and to test whether such models can account for some of the recent abundance observations of EMP stars, in particular the highly C-rich EMP (CEMP) halo stars. Methods: We modify an existing 1D stellar structure code to include time-dependent mixing in a diffusion approximation. Using this code and a post-processing nucleosynthesis code we calculate the structural evolution and nucleosynthesis of a grid of models covering the metallicity range: -6.5 ≤ [Fe/H] ≤ -3.0 (plus Z = 0), and mass range: 0.85 ≤ M ≤ 3.0 M_⊙, amounting to 20 stars in total. Results: Many of the models experience violent nuclear burning episodes not seen at higher metallicities. We refer to these events as “Dual Flashes” since they are characterised by nearly simultaneous peaks in both hydrogen and helium burning. These events have been reported by previous studies. Some of the material processed by the Dual Flashes is dredged up causing significant surface pollution with a distinct chemical composition. We have calculated the entire evolution of the Z=0 and EMP models, from the ZAMS to the end of the TPAGB, including extensive nucleosynthesis. In this paper, the first of a series describing and analysing this large data set, we present the resulting stellar yields. Although subject to many uncertainties these are, as far as we are aware, the only yields currently available in this mass and metallicity range. We also analyse the yields in terms of C and N, comparing them to the observed CEMP abundances. At the lowest metallicities ([Fe/H] ≲ -4.0) we find the yields to contain ~ 1 to 2 dex too much carbon, in agreement with all previous studies. At higher metallicities ([Fe/H] ~ -3

  13. Globular Clusters, Dwarf Galaxies, and the Assembly of the M87 Halo

    NASA Astrophysics Data System (ADS)

    Peng, Eric W.; Zhang, Hong-Xin; Liu, Chengze; Liu, Yiqing

    2016-08-01

    At the center of the nearest galaxy cluster, the Virgo cluster, lies the massive cD galaxy, M87 (NGC 4486). Using data from the Next Generation Virgo Cluster Survey, we investigate the relationship between M87, its globular clusters (GCs), and