Sample records for metal-reducing bacteria implicated

  1. Specific growth rate of sulfate reducing bacteria in the presence of manganese and cadmium.

    PubMed

    Medírcio, Sílvia N; Leão, Versiane A; Teixeira, Mônica C

    2007-05-08

    The development of technologies based on the use of sulfate-reducing bacteria (SRB) to treat sulfate contaminated wastewaters has produced a cost-effective route to precipitate metals. In this work the effects of cadmium and manganese in the SRB growth rates were assessed. It was observed that duplication time is 50h in the presence of cadmium and 6h in the presence of manganese, thus showing that the SRB growth rate was more affected by the presence of cadmium. A low sulfate reduction (maximum 25%) occurred which was sufficient for metal precipitation. The results are discussed considering their implications for metal precipitation in acid mining drainage.

  2. Metallic corrosion processes reactivation sustained by iron-reducing bacteria: Implication on long-term stability of protective layers

    NASA Astrophysics Data System (ADS)

    Esnault, L.; Jullien, M.; Mustin, C.; Bildstein, O.; Libert, M.

    In deep geological environments foreseen for the disposal of radioactive waste, metallic containers will undergo anaerobic corrosion. In this context, the formation of corrosion products such as magnetite may reduce the rate of corrosion processes through the formation of a protective layer. This study aims at determining the direct impact of iron-reducing bacteria (IRB) activity on the stability of corrosion protective layers. Batch experiments investigating iron corrosion processes including the formation of secondary magnetite and its subsequent alteration in the presence of IRB show the bacteria ability to use structural Fe(III) for respiration which leads to the sustainment of a high corrosion rate. With the bio-reduction of corrosion products such as magnetite, and H 2 as electron donor, IRB promote the reactivation of corrosion processes in corrosive environments by altering the protective layer. This phenomenon could have a major impact on the long-term stability of metallic compounds involved in multi-barrier system for high-level radioactive waste containment.

  3. Bio-Reduction of Graphene Oxide Using Sulfate-Reducing Bacteria and Its Implication on Anti-Biocorrosion.

    PubMed

    Song, Tian-Shun; Tan, Wei-Min; Xie, Jingjing

    2018-08-01

    In this paper, we developed an environmental friendly, cost effective, simple and green approach to reduce graphene oxide (GO) by a sulfate-reducing bacterium Desulfovibrio desulfuricans. The D. desulfuricans reduces exfoliated GO to reduced graphene oxide (rGO) at 25 °C in an aqueous solution without any toxic and environmentally harmful reducing agents. The rGO was characterized with X-ray Diffraction, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, Transmission Electron Microscope, X-ray Photoelectron Spectroscopy and Raman Spectroscopy. The analysis results showed that rGO had excellent properties and multi-layer graphene sheets structure. Furthermore, we demonstrated that D. desulfuricans, one of the primary bacteria responsible for the biocorrosion of various metals, might reduce GO to rGO on the surface of copper and prevented the corrosion of copper, which confirmed that electrophoretic deposition of GO on the surface of metals had great potential on the anti-biocorrosion applications.

  4. Microbiology and Biogeochemical Study of Underground Research Tunnel for the Geological Disposal of Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Roh, Y.; Oh, J.; Seo, H.; Rhee, S.

    2007-12-01

    The Underground Research Tunnel (URT) located in Korea Atomic Energy Research Institute (KAERI), Daejeon, South Korea was recently constructed as an experimental site to study radionuclide transport, biogeochemistry, radionuclide-mineral interactions for the geological disposal of high level nuclear waste. Groundwater sampled from URT was used to examine microbial diversity and to enrich metal reducing bacteria for studying microbe- metal interactions. Genomic analysis indicated that the groundwater contained diverse microorganisms such as metal reducers, metal oxidizers, anaerobic denitrifying bacteria, and bacteria for reductive dechlorination. Metal- reducing bacteria enriched from the groundwater was used to study metal reduction and biomineralization. The metal-reducing bacteria enriched with acetate or lactate as the electron donors showed the bacteria reduced Fe(III)-citrate, Fe(III) oxyhydroxides, Mn(IV) oxide, and Cr(VI) as the electron acceptors. Preliminary study indicated that the enriched bacteria were able to use glucose, lactate, acetate, and hydrogen as electron donors while reducing Fe(III)-citrate or Fe(III) oxyhydroxide as the electron acceptor. The bacteria exhibited diverse mineral precipitation capabilities including the formation of magnetite, siderite, and rhodochrosite. The results indicated that Fe(III)- and metal-reducing communities are present in URT at the KAERI.

  5. Fermentative process for making inorganic nanoparticles

    DOEpatents

    Phelps, Tommy J.; Lauf, Robert J.; Moon, Ji-Won; Roh, Yul

    2006-06-13

    A method for producing mixed metal oxide compounds includes the steps of: providing a supply of a metal reducing bacteria; providing a culture medium suitable for growth of the bacteria; providing a first mixed metal oxide phase comprising at least a first and a second metal, at least one of the first and second metal being reducible from a higher to a lower oxidation state by the bacteria; and, combining the bacteria, the culture medium, the first mixed metal oxide, and at least one electron donor in a reactor, wherein the bacteria reduces at least one of the first metal and the second metal from the higher to the lower oxidation state to form a second mixed metal oxide phase.

  6. Diverse metal reduction and nano- mineral formation by metal-reducing bacteria enriched from inter-tidal flat sediments

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Park, B.; Seo, H.; Roh, Y.

    2009-12-01

    Dissimilatory metal-reducing bacteria utilize diverse metal oxides as electron acceptors and couple this microbial metal reduciton to growth. However, the microbe-metal interactions playing important roles in the metal geochemistry and organic matter degradation in the tidal flat sediments have not been uncovered enough to employ in various environmental and industrial applications. The objective of this study was to examine biomineralization and bioremediation by the facultative metal-reducing bacteria isolated from the inter-tidal flat sediments in southwestern of Korea. 16S-rRNA analysis showed bacterial consortium mainly consists of genus of Clostridium sp. The enriched bacteria were capable of reducing diverse metals such as iron oxide, maganese oxide, Cr(VI) and Se(VI) during glucose fermentation process at room temperature. The bacteria reduced highly toxic and reactive elements such as Cr(VI) and Se(VI) to Cr(III) and Se(0). The results showed that microbial processes induced transformation from toxic states of heavy metals to less toxic and mobile states in natural environments. Andthe bacteria also reduced iron oxyhydroxide such as ferrihydrite and akaganeite (β-FeOOH) and formed nanometer-sized magnetite (Fe3O4). This study indicates microbial processes not only can be used for bioremediation of inorganic contaminants existing in the marine environments, but also form the magnetite nanoparticles which are exhibit superparamagnetic properties that can be useful for relevant medical and industrial applications.

  7. Bioreactor for acid mine drainage control

    DOEpatents

    Zaluski, Marek H.; Manchester, Kenneth R.

    2001-01-01

    A bioreactor for reacting an aqueous heavy metal and sulfate containing mine drainage solution with sulfate reducing bacteria to produce heavy metal sulfides and reduce the sulfuric acid content of the solution. The reactor is an elongated, horizontal trough defining an inlet section and a reaction section. An inlet manifold adjacent the inlet section distributes aqueous mine drainage solution into the inlet section for flow through the inlet section and reaction section. A sulfate reducing bacteria and bacteria nutrient composition in the inlet section provides sulfate reducing bacteria that with the sulfuric acid and heavy metals in the solution to form solid metal sulfides. The sulfate reducing bacteria and bacteria nutrient composition is retained in the cells of a honeycomb structure formed of cellular honeycomb panels mounted in the reactor inlet section. The honeycomb panels extend upwardly in the inlet section at an acute angle with respect to the horizontal. The cells defined in each panel are thereby offset with respect to the honeycomb cells in each adjacent panel in order to define a tortuous path for the flow of the aqueous solution.

  8. [Regulation of sulfates, hydrogen sulfide and heavy metals in technogenic reservoirs by sulfate-reducing bacteria].

    PubMed

    Hudz', S P; Peretiatko, T B; Moroz, O M; Hnatush, S O; Klym, I R

    2011-01-01

    Sulfate-reducing bacteria Desulfovibrio desulfuricans Ya-11 in the presence of sulfates and organic compounds in the medium reduce sulfates to hydrogen sulfide (dissimilatory sulfate reduction). Heavy metals in concentration over 2 mM inhibit this process. Pb2+, Zn2+, Ni2+, Co2+, Fe2+ and Cd2+ ions in concentration 1-1.5 mM display insignificant inhibiting effect on sulfate reduction process, and metals precipitate in the form of sulfides. At concentrations of heavy metals 2-3 mM one can observe a decrease of sulfates reduction intensity, and a percent of metals binding does not exceed 72%. Obtained results give reason to confirm, that sulfate-reducing bacteria play an important role in regulation of the level of sulfates, hydrogen sulfide and heavy metals in reservoirs and they may be used for purification of water environment from these compounds.

  9. Significance of Microbial Communities and Interactions in Safeguarding Reactive Mine Tailings by Ecological Engineering▿†

    PubMed Central

    N̆ancucheo, Ivan; Johnson, D. Barrie

    2011-01-01

    Pyritic mine tailings (mineral waste generated by metal mining) pose significant risk to the environment as point sources of acidic, metal-rich effluents (acid mine drainage [AMD]). While the accelerated oxidative dissolution of pyrite and other sulfide minerals in tailings by acidophilic chemolithotrophic prokaryotes has been widely reported, other acidophiles (heterotrophic bacteria that catalyze the dissimilatory reduction of iron and sulfur) can reverse the reactions involved in AMD genesis, and these have been implicated in the “natural attenuation” of mine waters. We have investigated whether by manipulating microbial communities in tailings (inoculating with iron- and sulfur-reducing acidophilic bacteria and phototrophic acidophilic microalgae) it is possible to mitigate the impact of the acid-generating and metal-mobilizing chemolithotrophic prokaryotes that are indigenous to tailing deposits. Sixty tailings mesocosms were set up, using five different microbial inoculation variants, and analyzed at regular intervals for changes in physicochemical and microbiological parameters for up to 1 year. Differences between treatment protocols were most apparent between tailings that had been inoculated with acidophilic algae in addition to aerobic and anaerobic heterotrophic bacteria and those that had been inoculated with only pyrite-oxidizing chemolithotrophs; these differences included higher pH values, lower redox potentials, and smaller concentrations of soluble copper and zinc. The results suggest that empirical ecological engineering of tailing lagoons to promote the growth and activities of iron- and sulfate-reducing bacteria could minimize their risk of AMD production and that the heterotrophic populations could be sustained by facilitating the growth of microalgae to provide continuous inputs of organic carbon. PMID:21965397

  10. Alkaline Anaerobic Respiration: Isolation and Characterization of a Novel Alkaliphilic and Metal-Reducing Bacterium

    PubMed Central

    Ye, Qi; Roh, Yul; Carroll, Susan L.; Blair, Benjamin; Zhou, Jizhong; Zhang, Chuanlun L.; Fields, Matthew W.

    2004-01-01

    Iron-reducing enrichments were obtained from leachate ponds at the U.S. Borax Company in Boron, Calif. Based on partial small-subunit (SSU) rRNA gene sequences (approximately 500 nucleotides), six isolates shared 98.9% nucleotide identity. As a representative, the isolate QYMF was selected for further analysis. QYMF could be grown with Fe(III)-citrate, Fe(III)-EDTA, Co(III)-EDTA, or Cr(VI) as electron acceptors, and yeast extract and lactate could serve as electron donors. Growth during iron reduction occurred over the pH range of 7.5 to 11.0 (optimum, pH 9.5), a sodium chloride range of 0 to 80 g/liter (optimum, 20 g/liter), and a temperature range of 4 to 45°C (optimum, approximately 35°C), and iron precipitates were formed. QYMF was a strict anaerobe that could be grown in the presence of borax, and the cells were straight rods that produced endospores. Sodium chloride and yeast extract stimulated growth. Phylogenetic analysis of the SSU rRNA gene indicated that the bacterium was a low-G+C gram-positive microorganism and had 96 and 92% nucleotide identity with Alkaliphilus transvaalensis and Alkaliphilus crotonatoxidans, respectively. The major phospholipid fatty acids were 14:1, 16:1ω7c, and 16:0, which were different from those of other alkaliphiles but similar to those of reported iron-reducing bacteria. The results demonstrated that the isolate might represent a novel metal-reducing alkaliphilic species. The name Alkaliphilus metalliredigens sp. nov. is proposed. The isolation and activity of metal-reducing bacteria from borax-contaminated leachate ponds suggest that bioremediation of metal-contaminated alkaline environments may be feasible and have implications for alkaline anaerobic respiration. PMID:15345448

  11. Mixed oxide nanoparticles and method of making

    DOEpatents

    Lauf, Robert J.; Phelps, Tommy J.; Zhang, Chuanlun; Roh, Yul

    2002-09-03

    Methods and apparatus for producing mixed oxide nanoparticulates are disclosed. Selected thermophilic bacteria cultured with suitable reducible metals in the presence of an electron donor may be cultured under conditions that reduce at least one metal to form a doped crystal or mixed oxide composition. The bacteria will form nanoparticles outside the cell, allowing easy recovery. Selection of metals depends on the redox potentials of the reducing agents added to the culture. Typically hydrogen or glucose are used as electron donors.

  12. ACUTE TOXICITY OF HEAVY METALS TO ACETATE-UTILIZING MIXED CULTURES OF SULFATE-REDUCING BACTERIA: EC100 AND EC50

    EPA Science Inventory

    Acid mine drainage (AMD) from abandoned mines and acid mine pitlakes is an important environmental contaminant concern and usually contains appreciable concentrations of heavy metals. Since sulfate-reducing bacteria (SRB) are involved in the treatment of AMD, knowledge of acute m...

  13. In situ capping for size control of monochalcogenides (ZnS, CdS, and SnS) nanocrystals produced by anaerobic metal-reducing bacteria

    DOE PAGES

    Jang, Gyoung Gug; Jacobs, Christopher B.; Ivanov, Ilia N.; ...

    2015-07-24

    Metal monochalcogenide quantum dot nanocrystals of ZnS, CdS and SnS were prepared by anaerobic, metal-reducing bacteria using in situ capping by oleic acid or oleylamine. Furthermore, the capping agent preferentially adsorbs on the surface of the nanocrystal, suppressing the growth process in the early stages, thus leading to production of nanocrystals with a diameter of less than 5 nm.

  14. Mineral transformations during the dissolution of uranium ore minerals by dissimilatory metal-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Glasauer, S.; Weidler, P.; Fakra, S.; Tyliszczak, T.; Shuh, D.

    2011-12-01

    Carnotite minerals [X2(UO2)2(VO4)2]; X = K, Ca, Ba, Mn, Na, Cu or Pb] form the major ore of uranium in the Colorado Plateau. These deposits are highly oxidized and contain U(VI) and V(IV). The biotransformation of U(VI) bound in carnotite by bacteria during dissimilatory metal reduction presents a complex puzzle in mineral chemistry. Both U(VI) and V(V) can be respired by metal reducing bacteria, and the mineral structure can change depending on the associated counterion. We incubated anaerobic cultures of S. putrefaciens CN32 with natural carnotite minerals from southeastern Utah in a nutrient-limited defined medium. Strain CN32 is a gram negative bacterium and a terrestrial isolate from New Mexico. The mineral and metal transformations were compared to a system that contained similar concentrations of soluble U(VI) and V(V). Electron (SEM, TEM) microscopies and x-ray spectromicroscopy (STXM) were used in conjunction with XRD to track mineral changes, and bacterial survival was monitored throughout the incubations. Slow rates of metal reduction over 10 months for the treatment with carnotite minerals revealed distinct biotic and abiotic processes, providing insight on mineral transformation and bacteria-metal interactions. The bacteria existed as small flocs or individual cells attached to the mineral phase, but did not adsorb soluble U or V, and accumulated very little of the biominerals. Reduction of mineral V(V) necessarily led to a dismantling of the carnotite structure. Bioreduction of V(V) by CN32 contributed small but profound changes to the mineral system, resulting in new minerals. Abiotic cation exchange within the carnotite group minerals induced the rearrangement of the mineral structures, leading to further mineral transformation. In contrast, bacteria survival was poor for treatments with soluble U(VI) and V(V), although both metals were reduced completely and formed solid UO2 and VO2; we also detected V(III). For these treatments, the bacteria formed extensive biofilms or flocs that contained U and V in the exopolymer, but excluded these metals from the bacteria. This suggests a specific mechanism to inhibit metal sorption to cell wall components. The example illustrates the interplay between bacteria and minerals under conditions that model oligotrophic survival, and provides insight on U mobilization from common uranium ore minerals.

  15. Species and Scale Dependence of Bacterial Motion Dynamics

    NASA Astrophysics Data System (ADS)

    Sund, N. L.; Yang, X.; Parashar, R.; Plymale, A.; Hu, D.; Kelly, R.; Scheibe, T. D.

    2017-12-01

    Many metal reducing bacteria are motile with their motion characteristics described by run-and-tumble behavior exhibiting series of flights (jumps) and waiting (residence) time spanning a wide range of values. Accurate models of motility allow for improved design and evaluation of in-situ bioremediation in the subsurface. While many bioremediation models neglect the motion of the bacteria, others treat motility using an advection dispersion equation, which assumes that the motion of the bacteria is Brownian.The assumption of Brownian motion to describe motility has enormous implications on predictive capabilities of bioremediation models, yet experimental evidence of this assumption is mixed [1][2][3]. We hypothesize that this is due to the species and scale dependence of the motion dynamics. We test our hypothesis by analyzing videos of motile bacteria of five different species in open domains. Trajectories of individual cells ranging from several seconds to few minutes in duration are extracted in neutral conditions (in the absence of any chemical gradient). The density of the bacteria is kept low so that the interaction between the bacteria is minimal. Preliminary results show a transition from Fickian (Brownian) to non-Fickian behavior for one species of bacteria (Pelosinus) and persistent Fickian behavior of another species (Geobacter).Figure: Video frames of motile bacteria with the last 10 seconds of their trajectories drawn in red. (left) Pelosinus and (right) Geobacter.[1] Ariel, Gil, et al. "Swarming bacteria migrate by Lévy Walk." Nature Communications 6 (2015).[2] Saragosti, Jonathan, Pascal Silberzan, and Axel Buguin. "Modeling E. coli tumbles by rotational diffusion. Implications for chemotaxis." PloS one 7.4 (2012): e35412.[3] Wu, Mingming, et al. "Collective bacterial dynamics revealed using a three-dimensional population-scale defocused particle tracking technique." Applied and Environmental Microbiology 72.7 (2006): 4987-4994.

  16. Functional Role of Infective Viral Particles on Metal Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coates, John D.

    2014-04-01

    A proposed strategy for the remediation of uranium (U) contaminated sites was based on the immobilization of U by reducing the oxidized soluble U, U(VI), to form a reduced insoluble end product, U(IV). Previous studies identified Geobacter sp., including G. sulfurreducens and G. metallireducens, as predominant U(VI)-reducing bacteria under acetate-oxidizing and U(VI)-reducing conditions. Examination of the finished genome sequence annotation of the canonical metal reducing species Geobacter sulfurreducens strain PCA and G. metallireduceans strain GS-15 as well as the draft genome sequence of G. uraniumreducens strain Rf4 identified phage related proteins. In addition, the completed genome for Anaeromyxobacter dehalogenans andmore » the draft genome sequence of Desulfovibrio desulfuricans strain G20, two more model metal-reducing bacteria, also revealed phage related sequences. The presence of these gene sequences indicated that Geobacter spp., Anaeromyxobacter spp., and Desulfovibrio spp. are susceptible to viral infection. Furthermore, viral populations in soils and sedimentary environments in the order of 6.4×10{sup 6}–2.7×10{sup 10} VLP’s cm{sup -3} have been observed. In some cases, viral populations exceed bacterial populations in these environments suggesting that a relationship may exist between viruses and bacteria. Our preliminary screens of samples collected from the ESR FRC indicated that viral like particles were observed in significant numbers. The objective of this study was to investigate the potential functional role viruses play in metal reduction specifically Fe(III) and U(VI) reduction, the environmental parameters affecting viral infection of metal reducing bacteria, and the subsequent effects on U transport.« less

  17. Bacteria in Nanoparticle Synthesis: Current Status and Future Prospects

    PubMed Central

    2014-01-01

    Microbial metal reduction can be a strategy for remediation of metal contaminations and wastes. Bacteria are capable of mobilization and immobilization of metals and in some cases, the bacteria which can reduce metal ions show the ability to precipitate metals at nanometer scale. Biosynthesis of nanoparticles (NPs) using bacteria has emerged as rapidly developing research area in green nanotechnology across the globe with various biological entities being employed in synthesis of NPs constantly forming an impute alternative for conventional chemical and physical methods. Optimization of the processes can result in synthesis of NPs with desired morphologies and controlled sizes, fast and clean. The aim of this review is, therefore, to make a reflection on the current state and future prospects and especially the possibilities and limitations of the above mentioned bio-based technique for industries. PMID:27355054

  18. Composition and influencing factors of bacterial communities in ballast tank sediments: Implications for ballast water and sediment management.

    PubMed

    Lv, Baoyi; Cui, Yuxue; Tian, Wen; Feng, Daolun

    2017-12-01

    This study aims to reveal the composition and influencing factors of bacterial communities in ballast tank sediments. Nine samples were collected and their 16S rRNA gene sequences were analyzed by high-throughput sequencing. The analysis results showed the Shannon index in ballast tank sediments was in the range of 5.27-6.35, which was significantly higher than that in ballast water. Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi and Proteobacteria were the dominant phyla and accounted for approximately 80% of all 16S rRNA gene sequences of the samples. Besides, the high contents of sulfate reducing bacteria (SRB) and sulfur oxidizing bacteria were detected in sediments, indicating that the corrosion of metal caused by SRB might occur in ballast tank. In addition, the trace of human fecal bacteria and candidate pathogens were also detected in ballast tank sediments, and these undesirable microbes reduced the effect of ballast water exchange. Furthermore, C and N had significant effects on the bacterial community composition in ballast tank sediments. In conclusion, our findings suggest that the proper management and disposal of the ballast tank sediments should be considered in order to reduce the negative impact and ecological risks related to ballast water and sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.

    PubMed

    Barton, Larry L; Fauque, Guy D

    2009-01-01

    Chemolithotrophic bacteria that use sulfate as terminal electron acceptor (sulfate-reducing bacteria) constitute a unique physiological group of microorganisms that couple anaerobic electron transport to ATP synthesis. These bacteria (220 species of 60 genera) can use a large variety of compounds as electron donors and to mediate electron flow they have a vast array of proteins with redox active metal groups. This chapter deals with the distribution in the environment and the major physiological and metabolic characteristics of sulfate-reducing bacteria (SRB). This chapter presents our current knowledge of soluble electron transfer proteins and transmembrane redox complexes that are playing an essential role in the dissimilatory sulfate reduction pathway of SRB of the genus Desulfovibrio. Environmentally important activities displayed by SRB are a consequence of the unique electron transport components or the production of high levels of H(2)S. The capability of SRB to utilize hydrocarbons in pure cultures and consortia has resulted in using these bacteria for bioremediation of BTEX (benzene, toluene, ethylbenzene and xylene) compounds in contaminated soils. Specific strains of SRB are capable of reducing 3-chlorobenzoate, chloroethenes, or nitroaromatic compounds and this has resulted in proposals to use SRB for bioremediation of environments containing trinitrotoluene and polychloroethenes. Since SRB have displayed dissimilatory reduction of U(VI) and Cr(VI), several biotechnology procedures have been proposed for using SRB in bioremediation of toxic metals. Additional non-specific metal reductase activity has resulted in using SRB for recovery of precious metals (e.g. platinum, palladium and gold) from waste streams. Since bacterially produced sulfide contributes to the souring of oil fields, corrosion of concrete, and discoloration of stonework is a serious problem, there is considerable interest in controlling the sulfidogenic activity of the SRB. The production of biosulfide by SRB has led to immobilization of toxic metals and reduction of textile dyes, although the process remains unresolved, SRB play a role in anaerobic methane oxidation which not only contributes to carbon cycle activities but also depletes an important industrial energy reserve.

  20. In vitro growth inhibition of mastitis causing bacteria by phenolics and metal chelators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chew, B.P.; Tjoelker, L.W.; Tanaka, T.S.

    1985-11-01

    Antimicrobial activities of three phenolic compounds and four metal chelators were tested at 0, 250, 500, and 1000 ppm in vitro against four major mastitis-causing bacteria, Streptococcus agalactiae, Staphylococcus aureus, Klebsiella pnuemoniae, and Escherichia coli. Overall, butylated hydroxyanisole and tert-butylhydroquinone showed the greatest antimicrobial activity. These phenolics were bactericidal at 250 to 500 ppm against all four bacteria tested. The butylated hydroxytoluene was bactericidal against the gram-positive bacteria but was ineffective against the coliforms. At 250 ppm, disodium ethylenediaminetetraacetic acid was bactericidal against the gram-positive bacteria but much less effective against the gram-negatives. However, diethylene-triaminepentaacetic acid was more growth inhibitorymore » than ethylenediaminetetraacetic acid against the gram-negative bacteria and especially against Escherichia coli. All other compounds were generally much less effective or ineffective against all four microorganisms. Therefore, butylated hydroxyanisole, butylated hydroxytoluene, tert-butylhydroquinone, ethylenediaminetetraacetic acid, and diethylenetriaminepentaacetic acid may have practical implications in the prevention or treatment of bovine mastitis.« less

  1. Remediation of Acid Mine Drainage with Sulfate Reducing Bacteria

    ERIC Educational Resources Information Center

    Hauri, James F.; Schaider, Laurel A.

    2009-01-01

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed…

  2. Biodiversity analysis by polyphasic study of marine bacteria associated with biocorrosion phenomena.

    PubMed

    Boudaud, N; Coton, M; Coton, E; Pineau, S; Travert, J; Amiel, C

    2010-07-01

    A polyphasic approach was used to study the biodiversity bacteria associated with biocorrosion processes, in particular sulfate-reducing bacteria (SRB) and thiosulfate-reducing bacteria (TRB) which are described to be particularly aggressive towards metallic materials, notably via hydrogen sulfide release. To study this particular flora, an infrared spectra library of 22 SRB and TRB collection strains were created using a Common Minimum Medium (CMM) developed during this study and standardized culture conditions. The CMM proved its ability to allow for growth of both SRB and TRB strains. These sulfurogen collection strains were clearly discriminated and differentiated at the genus level by fourier transform infrared (FT-IR) spectroscopy. In a second step, infrared spectra of isolates, recovered from biofilms formed on carbon steel coupons immersed for 1 year in three different French harbour areas, were compared to the infrared reference spectra library. In parallel, molecular methods (M13-PCR and 16S rRNA gene sequencing) were used to qualitatively evaluate the intra- and inter-species genetic diversity of biofilm isolates. The biodiversity study indicated that strains belonging to the Vibrio genus were the dominant population; strains belonging to the Desulfovibrio genus (SRB) and Peptostreptococcaceae were also identified. Overall, the combination of the FT-IR spectroscopy and molecular approaches allowed for the taxonomic and ecological study of a bacterial flora, cultivated on CMM, associated with microbiology-induced corrosion (MIC) processes. Via the use of the CMM medium, the culture of marine bacteria (including both SRB and TRB bacteria) was allowed, and the implication of nonsulforogen bacteria in MIC was observed. Their involvement in the biocorrosion phenomena will have to be studied and taken into account in the future. © 2009 The Authors. Journal compilation © 2009 The Society for Applied Microbiology.

  3. USE OF HYDROGEN RESPIROMETRY TO DETERMINE METAL TOXICITY TO SULFATE REDUCING BACTERIA

    EPA Science Inventory

    Acid mine drainage (AMD), an acidic metal-bearing wastewater poses a severe pollution problem attributed to post-mining activities. The metals (metal sulfates) encountered in AMD and considered of concern for risk assessment are: arsenic, cadmium, aluminum, manganese, iron, zinc ...

  4. Effect of metals on a siderophore producing bacterial isolate and its implications on microbial assisted bioremediation of metal contaminated soils.

    PubMed

    Gaonkar, Teja; Bhosle, Saroj

    2013-11-01

    A bacterial isolate producing siderophore under iron limiting conditions, was isolated from mangroves of Goa. Based on morphological, biochemical, chemotaxonomical and 16S rDNA studies, the isolate was identified as Bacillus amyloliquefaciens NAR38.1. Preliminary characterization of the siderophore indicated it to be catecholate type with dihydroxy benzoate as the core component. Optimum siderophore production was observed at pH 7 in mineral salts medium (MSM) without any added iron with glucose as the carbon source. Addition of NaCl in the growth medium showed considerable decrease in siderophore production above 2% NaCl. Fe(+2) and Fe(+3) below 2 μM and 40 μM concentrations respectively, induced siderophore production, above which the production was repressed. Binding studies of the siderophore with Fe(+2) and Fe(+3) indicated its high affinity towards Fe(+3). The siderophore concentration in the extracellular medium was enhanced when MSM was amended with essential metals Zn, Co, Mo and Mn, however, decreased with Cu, while the concentration was reduced with abiotic metals As, Pb, Al and Cd. Significant increase in extracellular siderophore production was observed with Pb and Al at concentrations of 50 μM and above. The effect of metals on siderophore production was completely mitigated in presence of Fe. The results implicate effect of metals on the efficiency of siderophore production by bacteria for potential application in bioremediation of metal contaminated iron deficient soils especially in the microbial assisted phytoremediation processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Microbiological and Geochemical Characterization of Fluvially Deposited Sulfidic Mine Tailings

    PubMed Central

    Wielinga, Bruce; Lucy, Juliette K.; Moore, Johnnie N.; Seastone, October F.; Gannon, James E.

    1999-01-01

    The fluvial deposition of mine tailings generated from historic mining operations near Butte, Montana, has resulted in substantial surface and shallow groundwater contamination along Silver Bow Creek. Biogeochemical processes in the sediment and underlying hyporheic zone were studied in an attempt to characterize interactions consequential to heavy-metal contamination of shallow groundwater. Sediment cores were extracted and fractionated based on sediment stratification. Subsamples of each fraction were assayed for culturable heterotrophic microbiota, specific microbial guilds involved in metal redox transformations, and both aqueous- and solid-phase geochemistry. Populations of cultivable Fe(III)-reducing bacteria were most prominent in the anoxic, circumneutral pH regions associated with a ferricrete layer or in an oxic zone high in organic carbon and soluble iron. Sulfur- and iron-oxidizing bacteria were distributed in discrete zones throughout the tailings and were often recovered from sections at and below the anoxic groundwater interface. Sulfate-reducing bacteria were also widely distributed in the cores and often occurred in zones overlapping iron and sulfur oxidizers. Sulfate-reducing bacteria were consistently recovered from oxic zones that contained high concentrations of metals in the oxidizable fraction. Altogether, these results suggest a highly varied and complex microbial ecology within a very heterogeneous geochemical environment. Such physical and biological heterogeneity has often been overlooked when remediation strategies for metal contaminated environments are formulated. PMID:10103249

  6. The potential for Probiotic Bacteria from milkfish intestine in reducing mercury metals in skimmed milk media

    NASA Astrophysics Data System (ADS)

    Dwyana, Zaraswati; Priosambodo, D.; Haedar, N.; Erviani, A. E.; Djabura, A. K.; Sukma, R.

    2018-03-01

    Mercury (Hg) is one of the heavy metals that is harmful to humans. The accumulation of mercury in the body is generally derived from food. Several types of bacteria from intestine of milkfish are known to reduce mercury concentration. People can take advantage of this bacterial ability by eating it through probiotic foods. This research conducted to figure out the potential for probiotic bacteria from milkfish intestine in reducing mercury. Isolation from probiotic bacteria from milkfish intestine conducted with grown the isolates in MRSA medium with addition of 1% CaCO3. Twelve isolate were obtained from milkfish intestine. Mercury resistance tested was performed by measuring cell density using a spectrophotometer at concentrations of 10, 15 and 20 ppm respectively in skim milk media. Probiotic tests (gastric acid, bile salts and antimicrobial activity) for MRSB media was also conducted. Results showed that seven isolate were resistant to mercury in all concentrations and potential as probiotics. All resistant isolate then tested for skim milk media with addition of 5, 10, 20 ppm mercury acetate respectively. Result showed that only one isolated was able to reduce the concentration of mercury (Hg) in all variations on concentration and potential as mercury reducer probiotic bacteria.

  7. Modification in digestive processing strategies to reduce toxic trace metal uptake in a marine bivalve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decho, A.W.; Luoma, S.N.

    1994-12-31

    Bivalves possess two major digestion pathways for processing food particles: a rapid ``intestinal`` pathway where digestion is largely extracellular; and a slower ``glandular`` pathway where digestion is largely intracellular. The slower glandular pathway often results in more efficient absorption of carbon but also more efficient uptake of certain metals (e.g. Cr associated with bacteria). In the bivalve Potamocorbula amurensis, large portions (> 90%) of bacteria are selectively routed to the glandular pathway. This results in efficient C uptake but also efficient uptake of associated Cr. The authors further determined if prolonged exposure to Cr-contaminated bacteria would result in high Crmore » uptake by animals or whether mechanisms exist to reduce Cr exposure and uptake. Bivalves were exposed to natural food + added bacteria (with or without added Cr) for a 6-day period, then pulse-chase experiments were conducted to quantify digestive processing and % absorption efficiencies (%AE) of bacterial Cr. Bivalves compensate at low (2--5 ug/g sed) Cr by reducing overall food ingestion, while digestive processing of food remains statistically similar to controls. At high Cr (200--500 ug/g sed) there are marked decreases in % bacteria processed by glandular digestion. This results in lower overall %AE of Cr. The results suggest that bivalves under natural conditions might balance efficient carbon sequestration against avoiding uptake of potentially toxic metals associated the food.« less

  8. USING RESPIROMETRY TO MEASURE HYDROGEN UTILIZATION IN SULFATE REDUCING BACTERIA IN THE PRESENCE OF COPPER AND ZINC

    EPA Science Inventory

    A respirometric method has been developed to measure hydrogen utilization by sulfate reducing bacteria (SRB). One application of this method has been to test inhibitory metals effects on the SRB culture used in a novel acid mine drainage treatment technology. As a control param...

  9. Metal-resistant rhizobacteria isolates improve Mucuna deeringiana phytoextraction capacity in multi-metal contaminated soils from a gold mining area.

    PubMed

    Boechat, Cácio Luiz; Giovanella, Patricia; Amorim, Magno Batista; de Sá, Enilson Luiz Saccol; de Oliveira Camargo, Flávio Anastácio

    2017-01-01

    Phytoremediation consists of biological techniques for heavy metal remediation, which include exploring the genetic package of vegetable species to remove heavy metals from the environment. The goals of this study were to investigate heavy metal and bioaugmentation effects on growth and nutrient uptake by Mucuna deeringiana; to determine the metal translocation factor and bioconcentration factor and provide insight for using native bacteria to enhance heavy metal accumulation. The experiment was conducted under greenhouse conditions using a 2 × 4 factorial scheme with highly and slightly contaminated soil samples and inoculating M. deeringiana with three highly lead (Pb +2 )-resistant bacteria Kluyvera intermedia (Ki), Klebsiella oxytoca (Ko), and Citrobacter murliniae (Cm) isolated from the rhizosphere of native plants identified as Senecio brasiliensis (Spreng.) Less., Senecio leptolobus DC., and Baccharis trimera (Less) DC., respectively. The increased heavy metal concentrations in soil samples do not decrease the root dry mass of M. deeringiana, concerning the number and dry weight of nodules. The shoot dry mass is reduced by the increasing concentration of heavy metals in soil associated with Kluyvera intermedia and Klebsiella oxytoca bacteria. The number of nodules is affected by heavy metals associated with Citrobacter murliniae bacteria. The bacteria K. intermedia, C. murliniae, and K. oxytoca increase the lead and cadmium available in the soil and enhanced metal uptake by Mucuna deeringiana. The M. deeringiana specie has characteristics that make it hyperaccumulate copper and zinc. The translocation and bioconcentration factors for M. deeringiana characterize it as a promising candidate to phytostabilize multi-metal contaminated soils.

  10. Chromium toxicity to nitrifying bacteria: implications to wastewater treatment

    EPA Science Inventory

    Chromium, a heavy metal that enters wastewater treatment plants (WWTPs) through industrial discharges, can be toxic to microorganisms carrying out important processes within biological wastewater treatment systems. The effect of Cr(III) and Cr(VI) on ammonia dependent specific ox...

  11. Metal(loid)-resistant bacteria reduce wheat Cd and As uptake in metal(loid)-contaminated soil.

    PubMed

    Wang, Xiao-Han; Luo, Wei-Wei; Wang, Qi; He, Lin-Yan; Sheng, Xia-Fang

    2018-06-05

    This study characterized the effect of the metal(loid)-resistant bacteria Ralstonia eutropha Q2-8 and Exiguobacterium aurantiacum Q3-11 on Cd and As accumulation in wheat grown in Cd- and As-polluted soils (1 mg kg -1 of Cd + 40 mg kg -1 of As and 2 mg kg -1 of Cd + 60 mg kg -1 of As). The influence of strains Q2-8 and Q3-11 on water-soluble Cd and As and NH 4 + concentration and pH in the soil filtrate were also analyzed. Inoculation with these strains significantly reduced wheat plant Cd (12-32%) and As (9-29%) uptake and available Cd (15-28%) and As (22-38%) contents in rhizosphere soils compared to the controls. Furthermore, these strains significantly increased the relative abundances of the arsM bacterial As metabolism gene and of Fe- and Mn-oxidizing Leptothrix species in rhizosphere soils. Notably, these strains significantly reduced water-soluble Cd and As concentrations and increased pH and NH 4 + concentration in the soil filtrate. These results suggest that these strains increased soil pH and the abundance of genes possibly involved in metal(loid) unavailability, resulting in reduced wheat Cd and As accumulation and highlight the possibility of using bacteria for in situ remediation and safe production of wheat or other food crops in metal(loid)-polluted soils. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Bioleaching of arsenic in contaminated soil using metal-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Lee, So-Ra; Lee, Jong-Un; Chon, Hyo-Taek

    2014-05-01

    A study on the extraction of arsenic in the contaminated soil collected from an old smelting site in Korea was carried out using metal-reducing bacteria. Two types of batch-type experiments, biostimulation and bioaugmentation, were conducted for 28 days under anaerobic conditions. The biostimulation experiments were performed through activation of indigenous bacteria by supply with glucose or lactate as a carbon source. The contaminated, autoclaved soil was inoculated with metal-reducing bacteria, Shewanella oneidensis MR-1 and S. algae BrY, in the bioaugmentation experiments. The results indicated that the maximum concentration of the extracted As was 11.2 mg/L at 4 days from the onset of the experiment when 20 mM glucose was supplied and the extraction efficiency of As ranged 60~63% in the biostimulation experiments. In the case of bioaugmentation, the highest dissolved As concentration was 24.4 mg/L at 2 days, though it dramatically decreased over time through re-adsorption onto soil particles. After both treatments, mode of As occurrence in the soil appeared to be changed to readily extractable fractions. This novel technique of bioleaching may be practically applied for remediation of As-contaminated soil after determination of optimum operational conditions such as operation time and proper carbon source and its concentration.

  13. Characterization of sulfate reducing bacteria isolated from urban soil

    NASA Astrophysics Data System (ADS)

    Zhang, Mingliang; Wang, Haixia

    2017-05-01

    Sulfate reducing bacteria (SRB) was isolated from urban soil and applied for the remediation of heavy metals pollution from acid mine drainage. The morphology and physiological characteristics (e.g. pH and heavy metals tolerance) of SRB was investigated. The SRB was gram-negative bacteria, long rod with slight curve, cell size 0.5× (1.5-2.0) μm. The pH of medium had significant effect on SRB growth and the efficiency of sulfate reduction, and it showed that the suitable pH range was 5-9 and SRB could not survive at pH less than 4. The maximum tolerance of Fe (II), Zn (II), Cd (II), and Cu (II) under acidic condition (pH 5.0) was about 600 mg/L, 150 mg/L, 25 mg/L and 25 mg/L, respectively. The result indicated that SRB isolated in this study could be used for the bioremediation of acid mine drainage (pH>4) within the heavy metals concentrations tolerance.

  14. STUDIES ON BIOSORPTION OF ZINC(II) AND COPPER(II) ON DESULFOVIBRIO DESULFURICANS

    EPA Science Inventory

    The objectives of thes studies are to determine the equilibrium concentration and kinetics of metal sorption on sulfate-reducing bacteria (SRB) isolates. Adsorption establishes the net reversible cellular metal uptake and is related to SRB metal toxicity and the effects of enviro...

  15. Metal Inhibition of Growth and Manganese Oxidation in Pseudomonas putida GB-1

    NASA Astrophysics Data System (ADS)

    Pena, J.; Sposito, G.

    2009-12-01

    Biogenic manganese oxides (MnO2) are ubiquitous nanoparticulate minerals that contribute to the adsorption of nutrient and toxicant metals, the oxidative degradation of various organic compounds, and the respiration of metal-reducing bacteria in aquatic and terrestrial environments. The formation of these minerals is catalyzed by a diverse and widely-distributed group of bacteria and fungi, often through the enzymatic oxidation of aqueous Mn(II) to Mn(IV). In metal-impacted ecosystems, toxicant metals may alter the viability and metabolic activity of Mn-oxidizing organisms, thereby limiting the conditions under which biogenic MnO2 can form and diminishing their potential as adsorbent materials. Pseudomonas putida GB-1 (P. putida GB-1) is a model Mn-oxidizing laboratory culture representative of freshwater and soil biofilm-forming bacteria. Manganese oxidation in P. putida GB-1 occurs via two single-electron-transfer reactions, involving a multicopper oxidase enzyme found on the bacterial outer membrane surface. Near the onset of the stationary phase of growth, dark brown MnO2 particles are deposited in a matrix of bacterial cells and extracellular polymeric substances, thus forming heterogeneous biomineral assemblages. In this study, we assessed the influence of various transition metals on microbial growth and manganese oxidation capacity in a P. putida GB-1 culture propagated in a nutrient-rich growth medium. The concentration-response behavior of actively growing P. putida GB-1 cells was investigated for Fe, Co, Ni, Cu and Zn at pH ≈ 6 in the presence and absence of 1 mM Mn. Toxicity parameters such as EC0, EC50 and Hillslope, and EC100 were obtained from the sigmoidal concentration-response curves. The extent of MnO2 formation in the presence of the various metal cations was documented 24, 50, 74 and 104 h after the metal-amended medium was inoculated. Toxicity values were compared to twelve physicochemical properties of the metals tested. Significant correlations were found between EC50 values and reduction potential, electronegativity and the covalent index. Thus, metal toxicity in P. putida GB-1 appears to be modulated by the metals’ propensity to participate in covalent interactions and generate oxidative stress. This study provides a quantitative measure of metal tolerance in P. putida GB-1, as well as operational limits for Mn oxidation in this model system, both of which have important implications for the reactivity of P. putida-MnO2 assemblages formed in metal-impacted ecosystems.

  16. Indirect Redox Transformations of Iron, Copper, and Chromium Catalyzed by Extremely Acidophilic Bacteria

    PubMed Central

    Johnson, D. Barrie; Hedrich, Sabrina; Pakostova, Eva

    2017-01-01

    Experiments were carried out to examine redox transformations of copper and chromium by acidophilic bacteria (Acidithiobacillus, Leptospirillum, and Acidiphilium), and also of iron (III) reduction by Acidithiobacillus spp. under aerobic conditions. Reduction of iron (III) was found with all five species of Acidithiobacillus tested, grown aerobically on elemental sulfur. Cultures maintained at pH 1.0 for protracted periods displayed increasing propensity for aerobic iron (III) reduction, which was observed with cell-free culture liquors as well as those containing bacteria. At. caldus grown on hydrogen also reduced iron (III) under aerobic conditions, confirming that the unknown metabolite(s) responsible for iron (III) reduction were not (exclusively) sulfur intermediates. Reduction of copper (II) by aerobic cultures of sulfur-grown Acidithiobacillus spp. showed similar trends to iron (III) reduction in being more pronounced as culture pH declined, and occurring in both the presence and absence of cells. Cultures of Acidithiobacillus grown anaerobically on hydrogen only reduced copper (II) when iron (III) (which was also reduced) was also included; identical results were found with Acidiphilium cryptum grown micro-aerobically on glucose. Harvested biomass of hydrogen-grown At. ferridurans oxidized iron (II) but not copper (I), and copper (I) was only oxidized by growing cultures of Acidithiobacillus spp. when iron (II) was also included. The data confirmed that oxidation and reduction of copper were both mediated by acidophilic bacteria indirectly, via iron (II) and iron (III). No oxidation of chromium (III) by acidophilic bacteria was observed even when, in the case of Leptospirillum spp., the redox potential of oxidized cultures exceeded +900 mV. Cultures of At. ferridurans and A. cryptum reduced chromium (VI), though only when iron (III) was also present, confirming an indirect mechanism and contradicting an earlier report of direct chromium reduction by A. cryptum. Measurements of redox potentials of iron, copper and chromium couples in acidic, sulfate-containing liquors showed that these differed from situations where metals are not complexed by inorganic ligands, and supported the current observations of indirect copper oxido-reduction and chromium reduction mediated by acidophilic bacteria. The implications of these results for both industrial applications of acidophiles and for exobiology are discussed. PMID:28239375

  17. Bacteria as Potential Indicators of Heavy Metal Contamination in a Tropical Mangrove and the Implications on Environmental and Human Health

    PubMed Central

    De La Rosa-Acosta, Melanie; Jiménez-Collazo, Johannys; Maldonado-Román, Marixa; Malavé-Llamas, Karlo; Musa-Wasil, Juan C.

    2017-01-01

    Heavy metal (HM) exposure has been associated with human health diseases like cancer, kidney and liver damage, neurological disorders, motor skills, low bone density and learning problems. With the beginning of the industrialization, the heavy metals in high concentration contribute to putting on the risk the humans in the vicinity. Our study site is located in Cataño, Puerto Rico. This is a highly industrialized area. It is surrounded by a recreational park, a rum distillery, two thermoelectric factories, and was impacted by CAPECO (oil refinery) explosion in 2009. Las Cucharillas marsh is part of The San Juan Bay Estuary System, considered as a critical wildlife area. The mangrove marsh has three of the four mangrove species found in PR Laguncularia racemosa, Avicennia germinans and Rhizophora mangle. This study was aimed at seven different heavy metals: Arsenic (As), Cadmium (Cd), Chromium (Cr), Lead (Pb), Zinc (Zn), Mercury (Hg) and Copper (Cu). These metals at high concentrations are of human health concern due to their toxicity, persistence, bioaccumulative and bio magnification potentials. Contamination of surface sediments with HM affects the food chain, starting with marine organisms up to humans. The people who live near the contaminated area and the local fishermen are at high risk of exposure. Studies reveal that certain microorganisms can resist the toxicity of heavy metals even at high concentrations. Our study pretends to exploit the sensitive nature of some bacteria to HM and use them as bioindicators. The objective of this research is to assess the bacterial community on the mangrove marsh, identify these bacteria and correlate bacterial species with the type and concentration of the metals found on the site. Our preliminary results with the BIOLOG® identification were five bacteria that are: Carnobacterium inhibens, Cupriavidus gilardii, Enterococcus maloduratus, Microbacterium flavescens and Ralstonia pickettii. This study will continue with an assessment of the exposure of different concentrations of heavy metals to our identified bacteria and underlying the mechanisms of degradation, magnification and or bioconcentration of these heavy metals. PMID:28835856

  18. Bioassessment of heavy metal toxicity and enhancement of heavy metal removal by sulfate-reducing bacteria in the presence of zero valent iron.

    PubMed

    Guo, Jing; Kang, Yong; Feng, Ying

    2017-12-01

    A simple and valid toxicity evaluation of Zn 2+ , Mn 2+ and Cr 6+ on sulfate-reducing bacteria (SRB) and heavy metal removal were investigated using the SRB system and SRB+Fe 0 system. The heavy metal toxicity coefficient (β) and the heavy metal concentration resulting in 50% inhibition of sulfate reduction (I) from a modeling process were proposed to evaluate the heavy metal toxicity and nonlinear regression was applied to search for evaluation indices β and I. The heavy metal toxicity order was Cr 6+  > Mn 2+  > Zn 2+ . Compared with the SRB system, the SRB+Fe 0 system exhibited a better capability for sulfate reduction and heavy metal removal. The heavy metal removal was above 99% in the SRB+Fe 0 system, except for Mn 2+ . The energy-dispersive spectroscopy (EDS) analysis showed that the precipitates were removed primarily as sulfide for Zn 2+ and hydroxide for Mn 2+ and Cr 6+ .The method of evaluating the heavy metal toxicity on SRB was of great significance to understand the fundamentals of the heavy metal toxicity and inhibition effects on the microorganism and regulate the process of microbial sulfate reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Antimicrobial resistance and its association with tolerance to heavy metals in agriculture production.

    PubMed

    Yu, Zhongyi; Gunn, Lynda; Wall, Patrick; Fanning, Séamus

    2017-06-01

    Antimicrobial resistance is a recognized public health challenge that since its emergence limits the therapeutic options available to veterinarians and clinicians alike, when treatment is warranted. This development is further compounded by the paucity of new antibiotics. The agri-food industry benefits from the availability of antimicrobial compounds for food-animal production and crop protection. Nonetheless, their improper use can result in the selection for bacteria that are phenotypically resistant to these compounds. Another class of agents used in agriculture includes various cationic metals that can be included in animal diets as nutritional supplements or spread on pastures to support crop growth and protection. Heavy metals, in particular, are giving rise to concerns among public health professionals, as they can persist in the environment remaining stable for prolonged periods. Moreover, bacteria can also exhibit resistance to these chemical elements and the genes encoding this phenotype can be physically localized to plasmids that may also contain one or more antimicrobial resistance-encoding gene(s). This paper reviews our current understanding of the role that bacteria play in expressing resistance to heavy metals. It will describe how heavy metals are used in agri-food production, and explore evidence available to link resistance to heavy metals and antimicrobial compounds. In addition, possible solutions to reduce the impact of heavy metal resistance are also discussed, including using organic minerals and reducing the level of trace minerals in animal feed rations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Plutonium Oxidation State Distribution under Aerobic and Anaerobic Subsurface Conditions for Metal-Reducing Bacteria

    NASA Astrophysics Data System (ADS)

    Reed, D. T.; Swanson, J.; Khaing, H.; Deo, R.; Rittmann, B.

    2009-12-01

    The fate and potential mobility of plutonium in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium is the near-surface contaminant of concern at several DOE sites and continues to be the contaminant of concern for the permanent disposal of nuclear waste. The mobility of plutonium is highly dependent on its redox distribution at its contamination source and along its potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. The redox distribution of plutonium in the presence of facultative metal reducing bacteria (specifically Shewanella and Geobacter species) was established in a concurrent experimental and modeling study under aerobic and anaerobic conditions. Pu(VI), although relatively soluble under oxidizing conditions at near-neutral pH, does not persist under a wide range of the oxic and anoxic conditions investigated in microbiologically active systems. Pu(V) complexes, which exhibit high chemical toxicity towards microorganisms, are relatively stable under oxic conditions but are reduced by metal reducing bacteria under anaerobic conditions. These facultative metal-reducing bacteria led to the rapid reduction of higher valent plutonium to form Pu(III/IV) species depending on nature of the starting plutonium species and chelating agents present in solution. Redox cycling of these lower oxidation states is likely a critical step in the formation of pseudo colloids that may lead to long-range subsurface transport. The CCBATCH biogeochemical model is used to explain the redox mechanisms and final speciation of the plutonium oxidation state distributions observed. These results for microbiologically active systems are interpreted in the context of their importance in defining the overall migration of plutonium in the subsurface.

  1. Recent Developments for Remediating Acidic Mine Waters Using Sulfidogenic Bacteria

    PubMed Central

    Bitencourt, José A. P.; Sahoo, Prafulla K.; Alves, Joner Oliveira; Siqueira, José O.

    2017-01-01

    Acidic mine drainage (AMD) is regarded as a pollutant and considered as potential source of valuable metals. With diminishing metal resources and ever-increasing demand on industry, recovering AMD metals is a sustainable initiative, despite facing major challenges. AMD refers to effluents draining from abandoned mines and mine wastes usually highly acidic that contain a variety of dissolved metals (Fe, Mn, Cu, Ni, and Zn) in much greater concentration than what is found in natural water bodies. There are numerous remediation treatments including chemical (lime treatment) or biological methods (aerobic wetlands and compost bioreactors) used for metal precipitation and removal from AMD. However, controlled biomineralization and selective recovering of metals using sulfidogenic bacteria are advantageous, reducing costs and environmental risks of sludge disposal. The increased understanding of the microbiology of acid-tolerant sulfidogenic bacteria will lead to the development of novel approaches to AMD treatment. We present and discuss several important recent approaches using low sulfidogenic bioreactors to both remediate and selectively recover metal sulfides from AMD. This work also highlights the efficiency and drawbacks of these types of treatments for metal recovery and points to future research for enhancing the use of novel acidophilic and acid-tolerant sulfidogenic microorganisms in AMD treatment. PMID:29119111

  2. Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria.

    PubMed

    Teemu, Halttunen; Seppo, Salminen; Jussi, Meriluoto; Raija, Tahvonen; Kalle, Lertola

    2008-07-15

    Extensive cadmium and lead contamination of water has been reported to occur locally as a result of human activities. Lactic acid bacteria have been reported to remove cadmium and lead from water. The aim of this work was to clarify the mechanisms of cadmium and lead removal from water. In addition, the effect of other metals, reversibility of binding and recyclability of the biomass was assessed. Based on our earlier data, the two most promising lactic acid bacteria, Lactobacillus fermentum ME3 and Bifidobacterium longum 46, were selected for these experiments. The results showed that the presence of other cationic metals and blocking of carboxyl and phosphoryl groups reduced cadmium and lead removal. These results suggest involvement of electrostatic interactions in cadmium and lead removal, and support our earlier findings. Transmission electron micrographs showed large deposits of lead on the bacterial surface suggesting formation of metallic lead precipitates. Both cadmium and lead removal were reversible processes established by full recovery of removed metal after desorption with dilute solutions of EDTA and HNO(3). Resorption capacity of both biomasses tested was reduced after regeneration with 10 mM EDTA and 15 mM HNO(3). Taken together, the results suggest involvement of several reversible mechanisms such as ion exchange and precipitation in cadmium and lead binding by lactic acid bacteria. The results show that specific lactic acid bacteria have the potential for removal of cadmium and lead from water although reduction in resorption capacity after regeneration of the biomass may form a problem. Since the studies so far have mainly focused on removal of single metals from pure water, metal removal in conditions of natural waters should be assessed in further experiments.

  3. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes

    PubMed Central

    Shi, Liang; Squier, Thomas C; Zachara, John M; Fredrickson, James K

    2007-01-01

    Dissimilatory reduction of metal (e.g. Fe, Mn) (hydr)oxides represents a challenge for microorganisms, as their cell envelopes are impermeable to metal (hydr)oxides that are poorly soluble in water. To overcome this physical barrier, the Gram-negative bacteria Shewanella oneidensis MR-1 and Geobacter sulfurreducens have developed electron transfer (ET) strategies that require multihaem c-type cytochromes (c-Cyts). In S. oneidensis MR-1, multihaem c-Cyts CymA and MtrA are believed to transfer electrons from the inner membrane quinone/quinol pool through the periplasm to the outer membrane. The type II secretion system of S. oneidensis MR-1 has been implicated in the reduction of metal (hydr)oxides, most likely by translocating decahaem c-Cyts MtrC and OmcA across outer membrane to the surface of bacterial cells where they form a protein complex. The extracellular MtrC and OmcA can directly reduce solid metal (hydr)oxides. Likewise, outer membrane multihaem c-Cyts OmcE and OmcS of G. sulfurreducens are suggested to transfer electrons from outer membrane to type IV pili that are hypothesized to relay the electrons to solid metal (hydr)oxides. Thus, multihaem c-Cyts play critical roles in S. oneidensis MR-1- and G. sulfurreducens-mediated dissimilatory reduction of solid metal (hydr)oxides by facilitating ET across the bacterial cell envelope. PMID:17581116

  4. MamO Is a Repurposed Serine Protease that Promotes Magnetite Biomineralization through Direct Transition Metal Binding in Magnetotactic Bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hershey, David M.; Ren, Xuefeng; Melnyk, Ryan A.

    2016-03-16

    Many living organisms transform inorganic atoms into highly ordered crystalline materials. An elegant example of such biomineralization processes is the production of nano-scale magnetic crystals in magnetotactic bacteria. Previous studies have implicated the involvement of two putative serine proteases, MamE and MamO, during the early stages of magnetite formation in Magnetospirillum magneticum AMB-1. Here, using genetic analysis and X-ray crystallography, we show that MamO has a degenerate active site, rendering it incapable of protease activity. Instead, MamO promotes magnetosome formation through two genetically distinct, noncatalytic activities: activation of MamE-dependent proteolysis of biomineralization factors and direct binding to transition metal ions.more » By solving the structure of the protease domain bound to a metal ion, we identify a surface-exposed di-histidine motif in MamO that contributes to metal binding and show that it is required to initiate biomineralization in vivo. Finally, we find that pseudoproteases are widespread in magnetotactic bacteria and that they have evolved independently in three separate taxa. In conclusion, our results highlight the versatility of protein scaffolds in accommodating new biochemical activities and provide unprecedented insight into the earliest stages of biomineralization.« less

  5. [Microflora of damaged ferroconcrete structures under the conditions of inhibitory protection].

    PubMed

    Kopteva, Zh P; Zanina, V V; Purish, L M; Piliashenko-Novokhatnyĭ, A I; Kozlova, I A

    2004-01-01

    Thionic, sulphate-reducing, denitrifying and ammonifying bacteria widely distributed in the sewer system on various structure elements have been isolated from damaged ferroconcrete samples. Effect of protective materials on microbe-induced corrosion of metal famework of concrete samples has been studied. Selective effect of corrosion inhibitors and coatings on the growth of corrosion-active bacteria of sulphur and nitrogen cycle has been revealed. It is shown that acid medium formed by thionic bacteria is more aggressive than ammonium-hydrosulphide one formed by denitrifying and sulphate-reducing bacteria. It has been established that the corrosion inhibitor--pyrquin, organosilicon coating CO-FMI and epoxyorganosilicon coating 4sk are most effective materials as to the action of thionic bacteria--dangerous agents of ferroconcrete aerobic corrosion.

  6. Interaction of Desulfovibrio desulfuricans biofilms with stainless steel surface and its impact on bacterial metabolism.

    PubMed

    Lopes, F A; Morin, P; Oliveira, R; Melo, L F

    2006-11-01

    To study the influence of some metallic elements of stainless steel 304 (SS 304) on the development and activity of a sulfate-reducing bacterial biofilm, using as comparison a reference nonmetallic material polymethylmethacrylate (PMMA). Desulfovibrio desulfuricans biofilms were developed on SS 304 and on a reference nonmetallic material, PMMA, in a flow cell system. Steady-state biofilms were metabolically more active on SS 304 than on PMMA. Activity tests with bacteria from both biofilms at steady state also showed that the doubling time was lower for bacteria from SS 304 biofilms. The influence of chromium and nickel, elements of SS 304 composition, was also tested on a cellular suspension of Des. desulfuricans. Nickel decreased the bacterial doubling time, while chromium had no significant effect. The following mechanism is hypothesized: a Des. desulfuricans biofilm grown on a SS 304 surface in anaerobic conditions leads to the weakening of the metal passive layer and to the dissolution in the bulk phase of nickel ions that have a positive influence on the sulfate-reducing bacteria metabolism. This phenomenon may enhance the biocorrosion process. A better understanding of the interactions between metallic surfaces such as stainless steel and bacteria commonly implied in the corrosion phenomena which is primordial to fight biocorrosion.

  7. Production of Manganese Oxide Nanoparticles by Shewanella Species

    PubMed Central

    Farooqui, Saad M.; White, Alan R.

    2016-01-01

    ABSTRACT Several species of the bacterial genus Shewanella are well-known dissimilatory reducers of manganese under anaerobic conditions. In fact, Shewanella oneidensis is one of the most well studied of all metal-reducing bacteria. In the current study, a number of Shewanella strains were tested for manganese-oxidizing capacity under aerobic conditions. All were able to oxidize Mn(II) and to produce solid dark brown manganese oxides. Shewanella loihica strain PV-4 was the strongest oxidizer, producing oxides at a rate of 20.3 mg/liter/day and oxidizing Mn(II) concentrations of up to 9 mM. In contrast, S. oneidensis MR-1 was the weakest oxidizer tested, producing oxides at 4.4 mg/liter/day and oxidizing up to 4 mM Mn(II). Analysis of products from the strongest oxidizers, i.e., S. loihica PV-4 and Shewanella putrefaciens CN-32, revealed finely grained, nanosize, poorly crystalline oxide particles with identical Mn oxidation states of 3.86. The biogenic manganese oxide products could be subsequently reduced within 2 days by all of the Shewanella strains when culture conditions were made anoxic and an appropriate nutrient (lactate) was added. While Shewanella species were detected previously as part of manganese-oxidizing consortia in natural environments, the current study has clearly shown manganese-reducing Shewanella species bacteria that are able to oxidize manganese in aerobic cultures. IMPORTANCE Members of the genus Shewanella are well known as dissimilatory manganese-reducing bacteria. This study shows that a number of species from Shewanella are also capable of manganese oxidation under aerobic conditions. Characterization of the products of the two most efficient oxidizers, S. loihica and S. putrefaciens, revealed finely grained, nanosize oxide particles. With a change in culture conditions, the manganese oxide products could be subsequently reduced by the same bacteria. The ability of Shewanella species both to oxidize and to reduce manganese indicates that the genus plays a significant role in the geochemical cycling of manganese. Due to the high affinity of manganese oxides for binding other metals, these bacteria may also contribute to the immobilization and release of other metals in the environment. PMID:27342559

  8. Influence of calcareous deposit on corrosion behavior of Q235 carbon steel with sulfate-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Li, Xiaolong; Wang, Jiangwei; Xu, Weichen; Duan, Jizhou; Chen, Shougang; Hou, Baorong

    2017-12-01

    Cathodic protection is a very effective method to protect metals, which can form calcareous deposits on metal surface. Research on the interrelationship between fouling organism and calcareous deposits is very important but very limited, especially sulfate-reducing bacteria (SRB). SRB is a kind of very important fouling organism that causes microbial corrosion of metals. A study of the influence of calcareous deposit on corrosion behavior of Q235 carbon steel in SRB-containing culture medium was carried out using electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and surface spectroscopy (EDS). The calcareous deposit was formed with good crystallinity and smooth surface under the gradient current density of -30 μA cm-2 in natural seawater for 72 h. Our results can help elucidate the formation of calcareous deposits and reveal the interrelationship between SRB and calcareous deposits under cathodic protection. The results indicate that the corrosion tendency of carbon steel was obviously affected by Sulfate-reducing Bacteria (SRB) metabolic activity and the calcareous deposit formed on the surface of carbon steel under cathodic protection was favourable to reduce the corrosion rate. Calcareous deposits can promote bacterial adhesion before biofilm formation. The results revealed the interaction between biofouling and calcareous deposits, and the anti-corrosion ability was enhanced by a kind of inorganic and organic composite membranes formed by biofilm and calcareous deposits.

  9. Metabolic reconfigurations aimed at the detoxification of a multi-metal stress in Pseudomonas fluorescens: implications for the bioremediation of metal pollutants.

    PubMed

    Alhasawi, Azhar; Costanzi, Jacob; Auger, Christopher; Appanna, Nishma D; Appanna, Vasu D

    2015-04-20

    Although the ability of microbial systems to adapt to the toxic challenge posed by numerous metal pollutants individually has been well documented, there is little detailed information on how bacteria survive in a multiple-metal environment. Here we describe the metabolic reconfiguration invoked by the soil microbe Pseudomonas fluorescens in a medium with millimolar amounts of aluminum (Al), iron (Fe), gallium (Ga), calcium (Ca), and zinc (Zn). While enzymes involved in the production of NADH were decreased, there was a marked increase in enzymatic activities dedicated to NADPH formation. A modified tricarboxylic acid (TCA) cycle coupled to an alternate glyoxylate shunt mediated the synthesis of adenosine triphosphate (ATP) with the concomitant generation of oxalate. This dicarboxylic acid was a key ingredient in the sequestration of the metals that were detoxified as a lipid complex. It appears that the microbe favors this strategy as opposed to a detoxification process aimed at each metal separately. These findings have interesting implications for bioremediation technologies. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation.

    PubMed

    Sobariu, Dana Luminița; Fertu, Daniela Ionela Tudorache; Diaconu, Mariana; Pavel, Lucian Vasile; Hlihor, Raluca-Maria; Drăgoi, Elena Niculina; Curteanu, Silvia; Lenz, Markus; Corvini, Philippe François-Xavier; Gavrilescu, Maria

    2017-10-25

    Certain species of plants can benefit from synergistic effects with plant growth-promoting rhizobacteria (PGPR) that improve plant growth and metal accumulation, mitigating toxic effects on plants and increasing their tolerance to heavy metals. The application of PGPR as biofertilizers and atmospheric nitrogen fixators contributes considerably to the intensification of the phytoremediation process. In this paper, we have built a system consisting of rhizospheric Azotobacter microbial populations and Lepidium sativum plants, growing in solutions containing heavy metals in various concentrations. We examined the ability of the organisms to grow in symbiosis so as to stimulate the plant growth and enhance its tolerance to Cr(VI) and Cd(II), to ultimately provide a reliable phytoremediation system. The study was developed at the laboratory level and, at this stage, does not assess the inherent interactions under real conditions occurring in contaminated fields with autochthonous microflora and under different pedoclimatic conditions and environmental stresses. Azotobacter sp. bacteria could indeed stimulate the average germination efficiency of Lepidium sativum by almost 7%, average root length by 22%, average stem length by 34% and dry biomass by 53%. The growth of L. sativum has been affected to a greater extent in Cd(II) solutions due its higher toxicity compared to that of Cr(VI). The reduced tolerance index (TI, %) indicated that plant growth in symbiosis with PGPR was however affected by heavy metal toxicity, while the tolerance of the plant to heavy metals was enhanced in the bacteria-plant system. A methodology based on artificial neural networks (ANNs) and differential evolution (DE), specifically a neuro-evolutionary approach, was applied to model germination rates, dry biomass and root/stem length and proving the robustness of the experimental data. The errors associated with all four variables are small and the correlation coefficients higher than 0.98, which indicate that the selected models can efficiently predict the experimental data. Copyright © 2016. Published by Elsevier B.V.

  11. Modeling of Cd adsorption to goethite-bacteria composites

    DOE PAGES

    Qu, Chenchen; Ma, Mingkai; Chen, Wenli; ...

    2017-11-21

    The accurate modeling of heavy metal adsorption in complex systems is fundamental for risk assessments in soils and associated environments. Bacteria-iron (hydr)oxide associations in soils and sediments play a critical role in heavy metal immobilization. The reduced adsorption of heavy metals on these composites have been widely reported using the component additivity (CA) method. However, there is a lack of a mechanism model to account for these deviations. In this study, we established models for Cd adsorption on goethite-Pseudomonas putida composites at 1:1 and 5:1 mass ratios. Cadmium adsorption on the 5:1 composite was consistent with the additivity method. But,more » the CA method over predicted Cd adsorption by approximately 8% on the 1:1 composite at high Cd concentration. The deviation was corrected by adding the site blockage reactions between P. putida and goethite. Both CA and “CA-site masking” models for Cd adsorption onto the composites were in line with the ITC data. These results indicate that CA method in simulating Cd adsorption on bacteria-iron oxides composites is limited to low bacterial and Cd concentrations. Thus the interfacial complexation reactions that occur between iron (hydr)oxides and bacteria should be taken into account when high concentrations of bacteria and heavy metals are present.« less

  12. Modeling of Cd adsorption to goethite-bacteria composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Chenchen; Ma, Mingkai; Chen, Wenli

    The accurate modeling of heavy metal adsorption in complex systems is fundamental for risk assessments in soils and associated environments. Bacteria-iron (hydr)oxide associations in soils and sediments play a critical role in heavy metal immobilization. The reduced adsorption of heavy metals on these composites have been widely reported using the component additivity (CA) method. However, there is a lack of a mechanism model to account for these deviations. In this study, we established models for Cd adsorption on goethite-Pseudomonas putida composites at 1:1 and 5:1 mass ratios. Cadmium adsorption on the 5:1 composite was consistent with the additivity method. But,more » the CA method over predicted Cd adsorption by approximately 8% on the 1:1 composite at high Cd concentration. The deviation was corrected by adding the site blockage reactions between P. putida and goethite. Both CA and “CA-site masking” models for Cd adsorption onto the composites were in line with the ITC data. These results indicate that CA method in simulating Cd adsorption on bacteria-iron oxides composites is limited to low bacterial and Cd concentrations. Thus the interfacial complexation reactions that occur between iron (hydr)oxides and bacteria should be taken into account when high concentrations of bacteria and heavy metals are present.« less

  13. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces.

    PubMed

    Gross, Benjamin J; El-Naggar, Mohamed Y

    2015-06-01

    Metal-reducing bacteria gain energy by extracellular electron transfer to external solids, such as naturally abundant minerals, which substitute for oxygen or the other common soluble electron acceptors of respiration. This process is one of the earliest forms of respiration on earth and has significant environmental and technological implications. By performing electron transfer to electrodes instead of minerals, these microbes can be used as biocatalysts for conversion of diverse chemical fuels to electricity. Understanding such a complex biotic-abiotic interaction necessitates the development of tools capable of probing extracellular electron transfer down to the level of single cells. Here, we describe an experimental platform for single cell respiration measurements. The design integrates an infrared optical trap, perfusion chamber, and lithographically fabricated electrochemical chips containing potentiostatically controlled transparent indium tin oxide microelectrodes. Individual bacteria are manipulated using the optical trap and placed on the microelectrodes, which are biased at a suitable oxidizing potential in the absence of any chemical electron acceptor. The potentiostat is used to detect the respiration current correlated with cell-electrode contact. We demonstrate the system with single cell measurements of the dissimilatory-metal reducing bacterium Shewanella oneidensis MR-1, which resulted in respiration currents ranging from 15 fA to 100 fA per cell under our measurement conditions. Mutants lacking the outer-membrane cytochromes necessary for extracellular respiration did not result in any measurable current output upon contact. In addition to the application for extracellular electron transfer studies, the ability to electronically measure cell-specific respiration rates may provide answers for a variety of fundamental microbial physiology questions.

  14. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces

    NASA Astrophysics Data System (ADS)

    Gross, Benjamin J.; El-Naggar, Mohamed Y.

    2015-06-01

    Metal-reducing bacteria gain energy by extracellular electron transfer to external solids, such as naturally abundant minerals, which substitute for oxygen or the other common soluble electron acceptors of respiration. This process is one of the earliest forms of respiration on earth and has significant environmental and technological implications. By performing electron transfer to electrodes instead of minerals, these microbes can be used as biocatalysts for conversion of diverse chemical fuels to electricity. Understanding such a complex biotic-abiotic interaction necessitates the development of tools capable of probing extracellular electron transfer down to the level of single cells. Here, we describe an experimental platform for single cell respiration measurements. The design integrates an infrared optical trap, perfusion chamber, and lithographically fabricated electrochemical chips containing potentiostatically controlled transparent indium tin oxide microelectrodes. Individual bacteria are manipulated using the optical trap and placed on the microelectrodes, which are biased at a suitable oxidizing potential in the absence of any chemical electron acceptor. The potentiostat is used to detect the respiration current correlated with cell-electrode contact. We demonstrate the system with single cell measurements of the dissimilatory-metal reducing bacterium Shewanella oneidensis MR-1, which resulted in respiration currents ranging from 15 fA to 100 fA per cell under our measurement conditions. Mutants lacking the outer-membrane cytochromes necessary for extracellular respiration did not result in any measurable current output upon contact. In addition to the application for extracellular electron transfer studies, the ability to electronically measure cell-specific respiration rates may provide answers for a variety of fundamental microbial physiology questions.

  15. Component analysis and heavy metal adsorption ability of extracellular polymeric substances (EPS) from sulfate reducing bacteria.

    PubMed

    Yue, Zheng-Bo; Li, Qing; Li, Chuan-chuan; Chen, Tian-hu; Wang, Jin

    2015-10-01

    Extracellular polymeric substances (EPS) play an important role in the treatment of acid mine drainage (AMD) by sulfate-reducing bacteria (SRB). In this paper, Desulfovibrio desulfuricans was used as the test strain to explore the effect of heavy metals on the components and adsorption ability of EPS. Fourier-transform infrared (FTIR) spectroscopy analysis results showed that heavy metals did not influence the type of functional groups of EPS. Potentiometric titration results indicated that the acidic constants (pKa) of the EPS fell into three ranges of 3.5-4.0, 5.9-6.7, and 8.9-9.8. The adsorption site concentrations of the surface functional groups also increased. Adsorption results suggested that EPS had a specific binding affinity for the dosed heavy metal, and that EPS extracted from the Zn(2+)-dosed system had a higher binding affinity for all heavy metals. Additionally, Zn(2+) decreased the inhibitory effects of Cd(2+) and Cu(2+) on the SRB. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Chromium Isotope Behaviour During Aerobic Microbial Reduction Activities

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Amor, K.; Porcelli, D.; Thompson, I.

    2014-12-01

    Microbial activity is a very important, and possibly even the dominant, reduction mechanism for many metals in natural water systems. Isotope fractionations during microbial metal reduction can reflect one major mechanism in metal cycling in the environment, and isotopic signatures can be used to identify and quantify reduction processes during biogeochemical cycling in the present environment as well as in the past. There are many Cr (VI)-reducing bacteria that have been discovered and isolated from the environment, and Cr isotopes were found to be fractionated during microbial reduction processes. In this study, Cr reduction experiments have been undertaken to determine the conditions under which Cr is reduced and the corresponding isotope signals that are generated. The experiments have been done with a facultative bacteria Pseudomonas fluorescens LB 300, and several parameters that have potential impact on reduction mechanisms have been investigated. Electron donors are important for bacteria growth and metabolism. One factor that can control the rate of Cr reduction is the nature of the electron donor. The results show that using citrate as an electron donor can stimulate bacteria reduction activity to a large extent; the reduction rate is much higher (15.10 mgˑL-1hour-1) compared with experiments using glucose (6.65 mgˑL-1ˑhour-1), acetate (4.88 mgˑL-1hour-1) or propionate (4.85 mgˑL-1hour-1) as electron donors. Groups with higher electron donor concentrations have higher reduction rates. Chromium is toxic, and when increasing Cr concentrations in the medium, the bacteria reduction rate is also higher, which reflects bacteria adapting to the toxic environment. In the natural environment, under different pH conditions, bacteria may metabolise in different ways. In our experiments with pH, bacteria performed better in reducing Cr (VI) when pH = 8, and there are no significant differences between groups with pH = 4 or pH = 6. To investigate this further, Cr isotope determinations will be presented, which are essential in better understanding bacterial reducing activities under different environmental conditions and can also provide important background information for interpreting Cr isotope fractionations in natural environment, and using Cr isotopes to identify reduction by microbial activity.

  17. Electron energy loss spectroscopy techniques for the study of microbial chromium(VI) reduction

    NASA Technical Reports Server (NTRS)

    Daulton, Tyrone L.; Little, Brenda J.; Lowe, Kristine; Jones-Meehan, Joanne

    2002-01-01

    Electron energy loss spectroscopy (EELS) techniques were used to determine oxidation state, at high spatial resolution, of chromium associated with the metal-reducing bacteria, Shewanella oneidensis, in anaerobic cultures containing Cr(VI)O4(2-). These techniques were applied to fixed cells examined in thin section by conventional transmission electron microscopy (TEM) as well as unfixed, hydrated bacteria examined by environmental cell (EC)-TEM. Two distinct populations of bacteria were observed by TEM: bacteria exhibiting low image contrast and bacteria exhibiting high contrast in their cell membrane (or boundary) structure which was often encrusted with high-contrast precipitates. Measurements by EELS demonstrated that cell boundaries became saturated with low concentrations of Cr and the precipitates encrusting bacterial cells contained a reduced form of Cr in oxidation state + 3 or lower.

  18. DEVELOPMENT OF AN ENVIRONMENTALLY BENIGN MICROBIAL INHIBITOR TO CONTROL INTERNAL PIPELINE CORROSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristine L. Lowe; Bill W. Bogan; Wendy R. Sullivan

    2004-07-30

    The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. Previous testing indicated that the growth, and the metal corrosion caused by pure cultures of sulfate reducing bacteria were inhibited by hexane extracts of some pepper plants. This quarter tests were performed with mixed bacterialmore » cultures obtained from natural gas pipelines. Treatment with the pepper extracts affected the growth and metabolic activity of the microbial consortia. Specifically, the growth and metabolism of sulfate reducing bacteria was inhibited. The demonstration that pepper extracts can inhibit the growth and metabolism of sulfate reducing bacteria in mixed cultures is a significant observation validating a key hypothesis of the project. Future tests to determine the effects of pepper extracts on mature/established biofilms will be performed next.« less

  19. Elucidation of the Functional Metal Binding Profile of a CdII/PbII sensor CmtRSc from Streptomyces coelicolor

    PubMed Central

    Wang, Yun; Kendall, John; Cavet, Jennifer S.; Giedroc, David P.

    2010-01-01

    Metal homeostasis and resistance in bacteria is maintained by a panel of metal sensing transcriptional regulators that collectively control transition metal availability and mediate resistance to heavy metal xenobiotics, including AsIII, CdII, PbII and HgII. The ArsR family constitutes a superfamily of metal sensors that appear to conform to the same winged helical, homodimeric fold, that collectively “sense” a wide array of beneficial metal ions and heavy metal pollutants. The genomes of many actinomycetes, including the soil dwelling bacterium Streptomyces coelicolor and the human pathogen Mycobacterium tuberculosis, encode over ten ArsR family regulators, most of unknown function. Here, we present the characterization of a homolog of M. tuberculosis CmtR (CmtRMtb) from S. coelicolor, denoted CmtRSc. We show that CmtRSc, in contrast to CmtRMtb binds two monomer mol equivalents of PbII or CdII to form two pairs of trigonal S3 coordination complexes per dimer. Metal site 1 conforms exactly to the α4C site previously characterized in CmtRMtb while metal site 2 is coordinated by a C-terminal vicinal thiolate pair, Cys110 and Cys111. Biological assays reveal that only CdII and, to a lesser extent, PbII mediate transcriptional derepression in the heterologous host M. smegmatis in a way that requires metal site 1. In contrast, mutagenesis of metal site 2 ligands Cys110 or Cys111 significantly reduces CdII responsiveness, with no detectable effect on PbII sensing. The implications of these findings on the ability to predict metal specificity and function from metal-site “signatures” in the primary structure of ArsR family proteins are discussed. PMID:20586430

  20. Phytotoxicity attenuation in Vigna radiata under heavy metal stress at the presence of biochar and N fixing bacteria.

    PubMed

    Seneviratne, Mihiri; Weerasundara, Lakshika; Ok, Yong Sik; Rinklebe, Jörg; Vithanage, Meththika

    2017-01-15

    This study assesses the effect of N-fixing bacteria and biochar synergism on plant growth and development of Vigna mungo under heavy metal stress (HM). Heavy metal stress is a worldwide problem, which causes critical effects on plant life due to oxidative stress. Application of biochar is a recent biological remediation technique, which often leads to an immobilization of heavy metals in soil. . Synergism of bacteria and biochar is a novel aspect to enhance plant growth under heavy metal stress. Woody biochar a byproduct of a dendro power industry was added as 1, 2.5 and 5% amounts combination with Bradyrhizobium japonicum, where mung seedlings were planted in serpentine soil rich in Ni, Mn, Cr and Co. Pot experiments were conducted for 12 weeks. The plant height, heavy metal uptake by plants, soil bioavailable heavy metal contents, soil N and P and microbial biomass carbon (MBC) were measured. The plant growth was enhanced with biochar amendment but a retardation was observed with high biochar application (5%). The soil N and P increased with the increase of biochar addition percentage while soil MBC showed reductions at 5% biochar amendment. Both soil bioavailable fractions of HM and up take of HMs by plants were gradually reduced with increase in biochar content. Based on the results, 2.5% biochar synergism with bacteria was the best for plant growth and soil nutrition status. Despite the synergism, available N was negatively correlated with the decrease of bioavailable metal percentage in soil whereas it was conversely for P. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Biofilms affecting progression of mild steel corrosion by Gram positive Bacillus sp.

    PubMed

    Lin, Johnson; Madida, Bafana B

    2015-10-01

    The biodeterioration of metals have detrimental effects on the environment with economic implications. The deterioration of metals is of great concern to industry. In this study, mild steel coupons which were immersed in a medium containing Gram-positive Bacillus spp. and different nutrient sources were compared with the control in sterile deionized water. The weight loss of the coupons in the presence of Bacillus spp. alone was lower than the control and was further reduced when additional carbon sources, especially fructose, were added. The level of metal corrosion was significantly increased in the presence of nitrate with or without bacteria. There was a significant strong correlation between the weight loss and biofilm level (r =  0.64; p < 0.05). The addition of nitrate and Bacillus spp. produced more biofilms on the coupons and resulted in greater weight loss compared to that with Bacillus spp. only under the same conditions. However, Bacillus spp. enriched with carbon sources formed less biofilms and results in lower weight loss compared to that with Bacillus spp. only. The production of biofilm by Bacillus spp. influences the level of metal corrosion under different environmental conditions, thereby, supporting the development of a preventive strategy against corrosion. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Microbially influenced corrosion communities associated with fuel-grade ethanol environments.

    PubMed

    Williamson, Charles H D; Jain, Luke A; Mishra, Brajendra; Olson, David L; Spear, John R

    2015-08-01

    Microbially influenced corrosion (MIC) is a costly problem that impacts hydrocarbon production and processing equipment, water distribution systems, ships, railcars, and other types of metallic infrastructure. In particular, MIC is known to cause considerable damage to hydrocarbon fuel infrastructure including production, transportation, and storage systems, often times with catastrophic environmental contamination results. As the production and use of alternative fuels such as fuel-grade ethanol (FGE) increase, it is important to consider MIC of engineered materials exposed to these "newer fuels" as they enter existing infrastructure. Reports of suspected MIC in systems handling FGE and water prompted an investigation of the microbial diversity associated with these environments. Small subunit ribosomal RNA gene pyrosequencing surveys indicate that acetic-acid-producing bacteria (Acetobacter spp. and Gluconacetobacter spp.) are prevalent in environments exposed to FGE and water. Other microbes previously implicated in corrosion, such as sulfate-reducing bacteria and methanogens, were also identified. In addition, acetic-acid-producing microbes and sulfate-reducing microbes were cultivated from sampled environments containing FGE and water. Results indicate that complex microbial communities form in these FGE environments and could cause significant MIC-related damage that may be difficult to control. How to better manage these microbial communities will be a defining aspect of improving mitigation of global infrastructure corrosion.

  3. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment.

    PubMed

    Zhang, Mingliang; Wang, Haixia; Han, Xuemei

    2016-07-01

    Novel immobilized sulfate-reducing bacteria (SRB) beads were prepared for the treatment of synthetic acid mine drainage (AMD) containing high concentrations of Fe, Cu, Cd and Zn using up-flow anaerobic packed-bed bioreactor. The tolerance of immobilized SRB beads to heavy metals was significantly enhanced compared with that of suspended SRB. High removal efficiencies of sulfate (61-88%) and heavy metals (>99.9%) as well as slightly alkaline effluent pH (7.3-7.8) were achieved when the bioreactor was fed with acidic influent (pH 2.7) containing high concentrations of multiple metals (Fe 469 mg/L, Cu 88 mg/L, Cd 92 mg/L and Zn 128 mg/L), which showed that the bioreactor filled with immobilized SRB beads had tolerance to AMD containing high concentrations of heavy metals. Partially decomposed maize straw was a carbon source and stabilizing agent in the initial phase of bioreactor operation but later had to be supplemented by a soluble carbon source such as sodium lactate. The microbial community in the bioreactor was characterized by denaturing gradient gel electrophoresis (DGGE) and sequencing of partial 16S rDNA genes. Synergistic interaction between SRB (Desulfovibrio desulfuricans) and co-existing fermentative bacteria could be the key factor for the utilization of complex organic substrate (maize straw) as carbon and nutrients source for sulfate reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Non-Equilibrium Plasma Processing for the Preparation of Antibacterial Surfaces

    PubMed Central

    Sardella, Eloisa; Palumbo, Fabio; Camporeale, Giuseppe; Favia, Pietro

    2016-01-01

    Non-equilibrium plasmas offer several strategies for developing antibacterial surfaces that are able to repel and/or to kill bacteria. Due to the variety of devices, implants, and materials in general, as well as of bacteria and applications, plasma assisted antibacterial strategies need to be tailored to each specific surface. Nano-composite coatings containing inorganic (metals and metal oxides) or organic (drugs and biomolecules) compounds can be deposited in one step, and used as drug delivery systems. On the other hand, functional coatings can be plasma-deposited and used to bind antibacterial molecules, for synthesizing surfaces with long lasting antibacterial activity. In addition, non-fouling coatings can be produced to inhibit the adhesion of bacteria and reduce the formation of biofilm. This paper reviews plasma-based strategies aimed to reduce bacterial attachment and proliferation on biomedical materials and devices, but also onto materials used in other fields. Most of the activities described have been developed in the lab of the authors. PMID:28773637

  5. Identification of Chromium Resistant Bacteria from Dry Fly Ash Sample of Mejia MTPS Thermal Power Plant, West Bengal, India.

    PubMed

    Roychowdhury, Roopali; Mukherjee, Pritam; Roy, Madhumita

    2016-02-01

    Eight chromium resistant bacteria were isolated from a dry fly ash sample of DVC-MTPS thermal power plant located in Bankura, West Bengal, India. These isolates displayed different degrees of chromate reduction under aerobic conditions. According to 16S rDNA gene analysis, five of them were Staphylococcus, two were Bacillus and one was Micrococcus. The minimum inhibitory concentration towards chromium and the ability to reduce hexavalent chromium to trivalent chromium was highest in Staphylococcus haemolyticus strain HMR17. All the strains were resistant to multiple heavy metals (As, Cu, Cd, Co, Zn, Mn, Pb and Fe) and reduced toxic hexavalent chromium to relatively non toxic trivalent chromium even in the presence of these multiple heavy metals. All of them showed resistance to different antibiotics. In a soil microcosm study, S. haemolyticus strain HMR17 completely reduced 4 mM hexavalent chromium within 7 days of incubation.

  6. Aluminum and sulphate removal by a highly Al-resistant dissimilatory sulphate-reducing bacteria community.

    PubMed

    Martins, Mónica; Taborda, Rita; Silva, Gonçalo; Assunção, Ana; Matos, António Pedro; Costa, Maria Clara

    2012-09-01

    A highly Al-resistant dissimilatory sulphate-reducing bacteria community was isolated from sludge of the wetland of Urgeiriça mine (community W). This community showed excellent sulphate removal at the presence of Al³⁺. After 27 days of incubation, 73, 86 and 81% of sulphate was removed in the presence of 0.48, 0.90 and 1.30 mM of Al³⁺, respectively. Moreover, Al³⁺ was simultaneously removed: 55, 85 and 78% of metal was removed in the presence of 0.48, 0.90 and 1.30 mM of Al³⁺, respectively. The dissociation of aluminium-lactate soluble complexes due to lactate consumption by dissimilatory sulphate-reducing bacteria can be responsible for aluminum removal, which probably precipitates as insoluble aluminium hydroxide. Phylogenetic analysis of 16S rRNA gene showed that this community was mainly composed by bacteria closely related to Desulfovibrio desulfuricans. However, bacteria affiliated to Proteus and Ralstonia were also present in the community.

  7. Arsenic biotransformation and release by bacteria indigenous to arsenic contaminated groundwater.

    PubMed

    Paul, Dhiraj; Kazy, Sufia K; Banerjee, Tirtha Das; Gupta, Ashok K; Pal, Taraknath; Sar, Pinaki

    2015-01-01

    Arsenic (As) biotransformation and release by indigenous bacteria from As rich groundwater was investigated. Metabolic landscape of 173 bacterial isolates indicated broad catabolic repertoire including abundance of As(5+) reductase activity and abilities in utilizing wide ranges of organic and inorganic respiratory substrates. Abundance of As homeostasis genes and utilization of hydrocarbon as carbon/electron donor and As(5+) as electron acceptor were noted within the isolates. Sediment microcosm study (for 300 days) showed a pivotal role of metal reducing facultative anaerobic bacteria in toxic As(3+) release in aqueous phase. Inhabitant bacteria catalyze As transformation and facilitate its release through a cascade of reactions including mineral bioweathering and As(5+) and/or Fe(3+) reduction activities. Compared to anaerobic incubation with As(5+) reducing strains, oxic state and/or incubation with As(3+) oxidizing bacteria resulted in reduced As release, thus indicating a strong role of such condition or biocatalytic mechanism in controlling in situ As contamination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Isolation of As-tolerant bacteria and their potentials of reducing As and Cd accumulation of edible tissues of vegetables in metal(loid)-contaminated soils.

    PubMed

    Wang, Xiaohan; Nie, Zongwei; He, Linyan; Wang, Qi; Sheng, Xiafang

    2017-02-01

    In this study, three As-tolerant bacteria Ralstonia eutropha Q2-8, Rhizobium tropici Q2-13, and Exiguobacterium aurantiacum Q3-11 were isolated from the rhizosphere and bulk soils of Chinese cabbage. The strains were characterized for their production of indole-3-acetic acid (IAA) and siderophores, their effects on soil metal(loid) bioavailability and organic matter content, and their effects on the edible tissue growth and metal(loid) accumulation of Chinese cabbage and radish in the metal(loid)-contaminated soil. The strains produced IAA and siderophores and increased the edible tissue biomass (ranging from 74% to 124%) of the vegetables compared to the controls. Furthermore, strain Q2-8 reduced As contents (ranging from 22% to 50%), while strains Q2-13 and Q3-11 decreased Cd contents (ranging from 21% to 53%) of the edible tissues of the vegetables compared to the controls. Strains Q2-8, Q2-13, and Q3-11 decreased the DTPA-extractable Cd contents (ranging from 16% to 41%) and increased the organic matter contents of the rhizosphere soils compared to the controls. The results showed the effects of the strains on the increased edible tissue growth and reduced As and Cd uptake of the edible tissues and highlighted the possibility to develop a new bacterial-assisted technique for reduced metal(loid) uptake of vegetables in the metal(loid)-contaminated soils. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Metal-immobilizing Serratia liquefaciens CL-1 and Bacillus thuringiensis X30 increase biomass and reduce heavy metal accumulation of radish under field conditions.

    PubMed

    Han, Hui; Sheng, Xiafang; Hu, Jingwen; He, Linyan; Wang, Qi

    2018-06-18

    In this study, metal-tolerant bacteria Serratia liquefaciens CL-1 and Bacillus thuringiensis X30 were compared for their Cd and Pb immobilization in solution and impacts on biomass and Cd and Pb uptake in a radish in metal-contaminated soils under field conditions. Strains CL-1 and X30 significantly reduced water-soluble Cd and Pb concentrations (45-67%) and increased the pH in solution compared to the controls. These strains significantly increased the biomass (25-99%) and decreased edible tissue Cd and Pb uptake in the radish (37-81%) and DTPA-extractable Cd and Pb contents (18-44%) of the rhizosphere soil compared to the un-inoculated controls. Strain CL-1 had higher potential to reduce edible tissue Cd and Pb uptake in the radish and DTPA-extractable Cd content than strain X30. Also, these strains significantly increased Cd translocation factor and strain CL-1 also significantly increased Pb translocation factor of the radish. Furthermore, strain CL-1 significantly increased the ratio of small soil aggregates (< 0.25 mm and 0.25-0.50 mm) of the rhizosphere soil. The results showed that these strains reduced the edible tissue Cd and Pb uptake through decreasing Cd and Pb availability in the soil and increasing Cd or Pb translocation from the roots to the leaves of the radish. The results also suggested the bacteria-related differences in reduced heavy metal uptake in the radish and the mechanisms involved under field conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Rotation Disk Process to Assess the Influence of Metals and Voltage on the Growth of Biofilm

    PubMed Central

    Barry, Dana M.; McGrath, Paul B.

    2016-01-01

    Biofilms consist of not only bacteria but also extracellular polymer substrates (EPS). They are groups of microorganisms that adhere to each other on a surface, especially as a result of exposure to water and bacteria. They can pose health risks to humans as they grow in hospital settings that include medical supplies and devices. In a previous study, the researchers discovered that bacteria/biofilm grew well on wetted external latex, male catheters. These results concerned the investigators and encouraged them to find ways for prohibiting the growth of bacteria/biofilm on the male catheters (which are made of natural rubber). They carried out a new study to assess the influence of metals and voltage for the growth of bacteria on these latex samples. For this purpose, a unique Rotation Disk Reactor was used to accelerate biofilm formation on external male catheter samples. This setup included a dip tank containing water and a rotating wheel with the attached latex samples (some of which had single electrodes while others had paired electrodes with applied voltage). The process allowed the samples to become wetted and also exposed them to microorganisms in the ambient air during each revolution of the wheel. The results (as viewed from SEM images) showed that when compared to the control sample, the presence of metals (brass, stainless steel, and silver) was generally effective in preventing bacterial growth. Also the use of voltage (9.5 volt battery) essentially eliminated the appearance of rod shaped bacteria in some of the samples. It can be concluded that the presence of metals significantly reduced bacterial growth on latex and the application of voltage was able to essentially eliminate bacteria, providing appropriate electrode combinations were used. PMID:28773689

  11. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross, Benjamin J.; El-Naggar, Mohamed Y., E-mail: mnaggar@usc.edu; Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-0484

    2015-06-15

    Metal-reducing bacteria gain energy by extracellular electron transfer to external solids, such as naturally abundant minerals, which substitute for oxygen or the other common soluble electron acceptors of respiration. This process is one of the earliest forms of respiration on earth and has significant environmental and technological implications. By performing electron transfer to electrodes instead of minerals, these microbes can be used as biocatalysts for conversion of diverse chemical fuels to electricity. Understanding such a complex biotic-abiotic interaction necessitates the development of tools capable of probing extracellular electron transfer down to the level of single cells. Here, we describe anmore » experimental platform for single cell respiration measurements. The design integrates an infrared optical trap, perfusion chamber, and lithographically fabricated electrochemical chips containing potentiostatically controlled transparent indium tin oxide microelectrodes. Individual bacteria are manipulated using the optical trap and placed on the microelectrodes, which are biased at a suitable oxidizing potential in the absence of any chemical electron acceptor. The potentiostat is used to detect the respiration current correlated with cell-electrode contact. We demonstrate the system with single cell measurements of the dissimilatory-metal reducing bacterium Shewanella oneidensis MR-1, which resulted in respiration currents ranging from 15 fA to 100 fA per cell under our measurement conditions. Mutants lacking the outer-membrane cytochromes necessary for extracellular respiration did not result in any measurable current output upon contact. In addition to the application for extracellular electron transfer studies, the ability to electronically measure cell-specific respiration rates may provide answers for a variety of fundamental microbial physiology questions.« less

  12. Acute toxicity of heavy metals to acetate-utilizing mixed cultures of sulfate-reducing bacteria: EC100 and EC50.

    PubMed

    Utgikar, V P; Chen, B Y; Chaudhary, N; Tabak, H H; Haines, J R; Govind, R

    2001-12-01

    Acid mine drainage from abandoned mines and acid mine pit lakes is an important environmental concern and usually contains appreciable concentrations of heavy metals. Because sulfate-reducing bacteria (SRB) are involved in the treatment of acid mine drainage, knowledge of acute metal toxicity levels for SRB is essential for the proper functioning of the treatment system for acid mine drainage. Quantification of heavy metal toxicity to mixed cultures of SRB is complicated by the confounding effects of metal hydroxide and sulfide precipitation, biosorption, and complexation with the constituents of the reaction matrix. The objective of this paper was to demonstrate that measurements of dissolved metal concentrations could be used to determine the toxicity parameters for mixed cultures of sulfate-reducing bacteria. The effective concentration, 100% (EC100), the lowest initial dissolved metal concentrations at which no sulfate reduction is observed, and the effective concentration, 50% (EC50), the initial dissolved metal concentrations resulting in a 50% decrease in sulfate reduction, for copper and zinc were determined in the present study by means of nondestructive, rapid physical and chemical analytical techniques. The reaction medium used in the experiments was designed specifically (in terms of pH and chemical composition) to provide the nutrients necessary for the sulfidogenic activity of the SRB and to preclude chemical precipitation of the metals under investigation. The toxicity-mitigating effects of biosorption of dissolved metals were also quantified. Anaerobic Hungate tubes were set up (at least in triplicate) and monitored for sulfate-reduction activity. The onset of SRB activity was detected by the blackening of the reaction mixture because of formation of insoluble ferrous sulfide. The EC100 values were found to be 12 mg/L for copper and 20 mg/L for zinc. The dissolved metal concentration measurements were effective as the indicators of the effect of the heavy metals at concentrations below EC100. The 7-d EC50 values obtained from the difference between the dissolved metal concentrations for the control tubes (tubes not containing copper or zinc) and tubes containing metals were found to be 10.5 mg/L for copper and 16.5 mg/L for zinc. Measurements of the turbidity and pH, bacterial population estimations by means of a most-probable number technique, and metal recovery in the sulfide precipitate were found to have only a limited applicability in these determinations.

  13. Flexible digestion strategies and trace metal assimilation in marine bivalves

    USGS Publications Warehouse

    Decho, Alan W.; Luoma, Samuel N.

    1996-01-01

    Pulse-chase experiments show that two marine bivalves take optimal advantage of different types of particulate food by varying food retention time in a flexible two-phase digestive system. For example, carbon is efficiently assimilated from bacteria by subjecting nearly all the ingested bacteria to prolonged digestion. Prolonging digestion also enhances assimilation of metals, many of which are toxic in minute quantities if they are biologically available. Detritus-feeding aquatic organisms have always lived in environments naturally rich in particle-reactive metals. We suggest that avoiding excess assimilation of metals could be a factor in the evolution of digestion strategies. We tested that suggestion by studying digestion of particles containing different Cr concentrations. We show that bivalves are capable of modifying the digestive processing of food to reduce exposure to high, biologically available, Cr concentrations. The evolution of a mechanism in some species to avoid high concentrations of metals in food could influence how effects of modern metal pollution are manifested in marine ecosystems.

  14. Biogeochemical and hydrological controls on fate and distribution of trace metals in oiled Gulf salt marshes

    NASA Astrophysics Data System (ADS)

    Keevan, J.; Natter, M.; Lee, M.; Keimowitz, A.; Okeke, B.; Savrda, C.; Saunders, J.

    2011-12-01

    On April 20, 2010, the drilling rig Deepwater Horizon exploded in the Gulf of Mexico, resulting in the release of approximately 5 million barrels of crude oil into the environment. Oil and its associated trace metals have been demonstrated to have a detrimental effect on coastal wetland ecosystems. Wetlands are particularly susceptible to oil contamination because they are composed largely of fine-grained sediments, which have a high capacity to adsorb organic matter and metals. The biogeochemical cycling of trace metals can be strongly influenced by microbial activity, specifically those of sulfate- and iron-reducing bacteria. Microbial activity may be enhanced by an increase in amounts of organic matter such as oil. This research incorporates an assessment of levels of trace metals and associated biogeochemical changes from ten coastal marshes in Alabama, Mississippi, and Louisiana. These sampling sites range in their pollution levels from pristine to highly contaminated. A total digestion analysis of wetland sediments shows higher concentrations of certain trace metals (e.g., Ni, Cu, Pb, Zn, Sr, Co, V, Ba, Hg, As) in heavily-oiled areas compared to less-affected and pristine sites. Due to chemical complexation among organic compounds and metals, crude oils often contain elevated levels (up to hundreds of mg/kg) of trace metals At the heavily-oiled Louisiana sites (e.g., Bay Jimmy, Bayou Dulac, Bay Batiste), elevated levels of metals and total organic carbon have been found in sediments down to depths of 30 cm. Clearly the contamination is not limited to shallow sediments and oil, along with various associated metals, may be invading into deeper (pre-industrial) portions of the marsh sediments. Pore-waters extracted from contaminated sediments are characterized by very high levels of reduced sulfur (up to 80 mg/kg), in contrast to fairly low ferrous iron concentrations (<0.02 mg/kg). The influx of oil into the wetlands might provide the initial substrate and carbon source for stimulating sulfate-reducing bacteria. The high sulfur levels, coupled with the low levels of iron, indicate that iron-reducing bacteria are outcompeted by sulfate reducers in oiled salt marshes. Moreover, pore-water pH values show a general increasing trend (ranging from 6.6 to 8.0) with depth, possibly reflecting the combined effects of bacterial sulfate reduction and saltwater intrusion at depth. Despite high levels of trace metals in bulk sediments, concentrations of trace metals dissolved in pore-waters are generally low. It is very likely that high organic matter content and bacterially-mediated sulfate reduction promote metal retention through the formation of sulfide solids. Framboidal pyrites, as well as other sulfides, have been identified, and are currently undergoing XRD, SEM, and EDAX analyses. Continued research is needed to monitor possible re-mobilization of trace metals in changing redox and biogeochemical conditions.

  15. Zinc and lead detoxifying abilities of humic substances relevant to environmental bacterial species.

    PubMed

    Perelomov, L V; Sarkar, Binoy; Sizova, O I; Chilachava, K B; Shvikin, A Y; Perelomova, I V; Atroshchenko, Y M

    2018-04-30

    The effect of humic substances (HS) and their different fractions (humic acids (HA) and hymatomelanic acids (HMA)) on the toxicity of zinc and lead to different strains of bacteria was studied. All tested bacteria demonstrated a lower resistance to zinc than lead showing minimum inhibitory concentrations of 0.1 - 0.3mM and 0.3-0.5mM, respectively. The highest resistance to lead was characteristic of Pseudomonas chlororaphis PCL1391 and Rhodococcus RS67, while Pseudomonas chlororaphis PCL1391 showed the greatest resistance to zinc. The combined fractions of HS and HA alone reduced zinc toxicity at all added concentrations of the organic substances (50 - 200mgL -1 ) to all microorganisms, while hymatomelanic acids reduced zinc toxicity to Pseudomonas chlororaphis PCL1391 at 200mgL -1 organic concentration only. The HS fractions imparted similar effects on lead toxicity also. This study demonstrated that heavy metal toxicity to bacteria could be reduced through complexation with HS and their fractions. This was particularly true when the metal-organic complexes held a high stability, and low solubility and bioavailability. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Geochemical, Genetic, and Community Controls on Mercury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Judy D.

    2014-11-10

    The sulfate-reducing bacteria (SRB) are soil bacteria that share two common characteristics, strict anaerobiosis and the ability to respire sulfate. The metabolic activities of these bacteria play significant roles in the global sulfur cycle, anaerobic degradation of biomass, biological metal corrosion in the environment and, recently, degradation of toxic compounds. The accumulation of evidence suggests these bacteria are also key to the production of the neurotoxin methylmercury in environmental settings. We propose to use our experience with the development of genetics in sulfate-reducing bacteria of the genus Desulfovibrio to create mutations that will eliminate the methylation of mercury, thereby identifyingmore » the genes essential for this process. This information may allow the environmental monitoring of the mercury methylation potential to learn the location and quantity of the production this toxin. From these data, more accurate predictive models of mercury cycling can be generated.« less

  17. Mutations in sit B and sit D genes affect manganese-growth requirements in Sinorhizobium meliloti.

    PubMed

    Platero, Raúl A; Jaureguy, Melina; Battistoni, Federico J; Fabiano, Elena R

    2003-01-21

    Two transposon-induced mutants of Sinorhizobium meliloti 242 were isolated based on their inability to grow on rich medium supplemented with the metal chelator ethylenediamine di-o-hydroxyphenylacetic acid (EDDHA) and either heme-compounds or siderophores as iron sources. Tagged loci of these mutants were identified as sit B and sit D genes. These genes encode components of an ABC (ATP-binding cassette) metal-type permease in several Gram-negative bacteria. In this work, the phenotypes of these two mutants were compared with those of two siderophore-mediated iron transport mutants. The results strongly implicate a role of the sit genes in manganese acquisition when this metal is limiting in S. meliloti.

  18. Formation of Deep Sea Umber Deposits Linked to Microbial Metal Oxidation at the South Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Peng, Xiaotong; Ta, Kaiwen; Chen, Shun; Zhang, Lijuan; Xu, Hengchao

    2015-04-01

    Umber deposits are important metalliferous deposits, which occur in off-axis half-graben structures at ancient and modern ocean floor. The genesis of umber deposits has remained controversial for several decades. Recently, microbial Fe(II) oxidation associated with low-temperature diffuse venting has been identified as a key process for the formation of umber deposits, but the exact biochemical mechanisms involved to the precipitation of Mn oxides and co-precipitation of Fe oxyhydroxides and Mn oxides in umber deposits still remain unknown. Here, we used nano secondary ion mass spectrometer, synchrotron-based X-ray absorption spectroscopy, electron microscopy, and molecular techniques to demonstrate the coexistence of two types of metal-oxidizing bacteria within deep-sea hydrothermal umber deposits at the South Atlantic Ridge, where we found unique spheroids composed of biogenic Fe oxyhydroxides and Mn oxides in the deposits. Our data suggest that Fe oxyhydroxides and Mn oxides are metabolic by-products of lithotrophic Fe(II)-oxidizing bacteria and heterotrophic Mn(II)-oxidizing bacteria, respectively. The hydrothermal vents fuel lithotrophic Fe(II)-oxidizing bacteria, which constitute a trophic base that may support the activities of heterotrophic Mn(II)-oxidizing bacteria. The biological origin of umber deposits underscore the importance of geomicrobiologcial interaction in triggering the formation of deep-sea deposits, with important implications for the generation of submarine Mn deposits and crusts.

  19. DEVELOPMENT OF AN ENVIRONMENTALLY BENIGN MICROBIAL INHIBITOR TO CONTROL INTERNAL PIPELINE CORROSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bill W. Bogan; Brigid M. Lamb; Gemma Husmillo

    The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. Various chemicals that inhibit the growth and/or the metabolism of corrosion-associated microbes such as sulfate reducing bacteria, denitrifying bacteria, and methanogenic bacteria were evaluated to determine their ability to inhibit corrosion in experiments utilizing puremore » and mixed bacterial cultures, and planktonic cultures as well as mature biofilms. Planktonic cultures are easier to inhibit than mature biofilms but several compounds were shown to be effective in decreasing the amount of metal corrosion. Of the compounds tested hexane extracts of Capsicum pepper plants and molybdate were the most effective inhibitors of sulfate reducing bacteria, bismuth nitrate was the most effective inhibitor of nitrate reducing bacteria, and 4-((pyridine-2-yl)methylamino)benzoic acid (PMBA) was the most effective inhibitor of methanogenic bacteria. All of these compounds were demonstrated to minimize corrosion due to MIC, at least in some circumstances. The results obtained in this project are consistent with the hypothesis that any compound that disrupts the metabolism of any of the major microbial groups present in corrosion-associated biofilms shows promise in limiting the amount/rate of corrosion. This approach of controlling MIC by controlling the metabolism of biofilms is more environmentally benign than the current approach involving the use of potent biocides, and warrants further investigation.« less

  20. Practical applications of sulfate-reducing bacteria to control acid mine drainage at the Lilly/Orphan Boy Mine near Elliston, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canty, M.

    The overall purpose of this document is to provide a detailed technical description of a technology, biological sulfate reduction, which is being demonstrated under the Mine Waste Technology Pilot Program, and provide the technology evaluation process undertaken to select this technology for demonstration. In addition, this document will link the use of the selected technology to an application at a specific site. The purpose of this project is to develop technical information on the ability of biological sulfate reduction to slow the process of acid generation and, thus, improve water quality at a remote mine site. Several technologies are screenedmore » for their potential to treat acid mine water and to function as a source control for a specific acid-generating situation: a mine shaft and associated underground workings flooded with acid mine water and discharging a small flow from a mine opening. The preferred technology is the use of biological sulfate reduction. Sulfate-reducing bacteria are capable of reducing sulfate to sulfide, as well as increasing the pH and alkalinity of water affected by acid generation. Soluble sulfide reacts with the soluble metals in solution to form insoluble metal sulfides. The environment needed for efficient sulfate-reducing bacteria growth decreases acid production by reducing the dissolved oxygen in water and increasing pH. A detailed technical description of the sulfate-reducing bacteria technology, based on an extensive review of the technical literature, is presented. The field demonstration of this technology to be performed at the Lilly/Orphan Boy Mine is also described. Finally, additional in situ applications of biological sulfate reduction are presented.« less

  1. Chelating agents.

    PubMed

    Bergan, T; Klaveness, J; Aasen, A J

    2001-01-01

    The antibacterial activity of metal ions, metal chelates, and molecules with chelating ability for polyvalent cations have been evaluated. The chelator N, N'-ethylenebis[2-(2-hydroxyphenyl)-glycine] (EHPG) exerted moderate-to-good activity against isolates of pathogenic bacteria and fungi. Other chelating agents such as ethylenediamine-tetraacetic acid (EDTA) and diethylene-triamine-pentaacetic acid (DTPA) revealed weak-to-moderate activity. Metal chelation of ligands reduced the activity of EDTA and DTPA. Copyright 2001 S. Karger AG, Basel

  2. Effects of sulfate on heavy metal release from iron corrosion scales in drinking water distribution system.

    PubMed

    Sun, Huifang; Shi, Baoyou; Yang, Fan; Wang, Dongsheng

    2017-05-01

    Trace heavy metals accumulated in iron corrosion scales within a drinking water distribution system (DWDS) could potentially be released to bulk water and consequently deteriorate the tap water quality. The objective of this study was to identify and evaluate the release of trace heavy metals in DWDS under changing source water conditions. Experimental pipe loops with different iron corrosion scales were set up to simulate the actual DWDS. The effects of sulfate levels on heavy metal release were systemically investigated. Heavy metal releases of Mn, Ni, Cu, Pb, Cr and As could be rapidly triggered by sulfate addition but the releases slowly decreased over time. Heavy metal release was more severe in pipes transporting groundwater (GW) than in pipes transporting surface water (SW). There were strong positive correlations (R 2  > 0.8) between the releases of Fe and Mn, Fe and Ni, Fe and Cu, and Fe and Pb. When switching to higher sulfate water, iron corrosion scales in all pipe loops tended to be more stable (especially in pipes transporting GW), with a larger proportion of stable constituents (mainly Fe 3 O 4 ) and fewer unstable compounds (β-FeOOH, γ-FeOOH, FeCO 3 and amorphous iron oxides). The main functional iron reducing bacteria (IRB) communities were favorable for the formation of Fe 3 O 4 . The transformation of corrosion scales and the growth of sulfate reducing bacteria (SRB) accounted for the gradually reduced heavy metal release with time. The higher metal release in pipes transporting GW could be due to increased Fe 6 (OH) 12 CO 3 content under higher sulfate concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Epidemiology of Antibiotic and Heavy Metal Resistance in Bacteria: Resistance Patterns in Staphylococci Isolated from Populations Not Known to be Exposed to Heavy Metals

    PubMed Central

    Groves, David J.; Young, Frank E.

    1975-01-01

    Staphylococci were isolated from clinical specimens obtained from patients not known to be exposed to abnormal levels of heavy metals. The antibiotic and heavy metal resistance patterns of these strains were determined by using a disk diffusion test and computer sorting. Though not absolute, an association of resistance to mercury and tetracycline in coagulase-negative strains was found, in contrast to resistance to copper and penicillin in coagulase-producing strains. A high degree of correlation was observed between the resistance to phenyl mercury and inorganic mercury, but no correlation was obtained between resistance to methylmercury and other metals. In general, strains resistant to many agents were usually coagulase negative. A possible mechanism and implications of these associations are considered. PMID:1147592

  4. Microbially supported phytoremediation of heavy metal contaminated soils: strategies and applications.

    PubMed

    Phieler, René; Voit, Annekatrin; Kothe, Erika

    2014-01-01

    Heavy metal contamination of soil as a result of, for example, mining operations, evokes worldwide concern. The use of selected metal-accumulating plants to clean up heavy metal contaminated sites represents a sustainable and inexpensive method for remediation approaches and, at the same time, avoids destruction of soil function. Within this scenario, phytoremediation is the use of plants (directly or indirectly) to reduce the risks of contaminants in soil to the environment and human health. Microbially assisted bioremediation strategies, such as phytoextraction or phytostabilization, may increase the beneficial aspects and can be viewed as potentially useful methods for application in remediation of low and heterogeneously contaminated soil. The plant-microbe interactions in phytoremediation strategies include mutually beneficial symbiotic associations such as mycorrhiza, plant growth promoting bacteria (PGPB), or endophytic bacteria that are discussed with respect to their impact on phytoremediation approaches.

  5. Bio-extraction of precious metals from urban solid waste

    NASA Astrophysics Data System (ADS)

    Das, Subhabrata; Natarajan, Gayathri; Ting, Yen-Peng

    2017-01-01

    Reduced product lifecycle and increasing demand for electronic devices have resulted in the generation of huge volumes of electronic waste (e-waste). E-wastes contain high concentrations of toxic heavy metals, which have detrimental effects on health and the environment. However, e-wastes also contain significant concentrations of precious metals such as gold, silver and palladium, which can be a major driving force for recycling of urban waste. Cyanogenic bacteria such as Chromobacterium violaceum generate cyanide as a secondary metabolite which mobilizes gold into solution via a soluble gold-cyanide complex. However, compared to conventional technology for metal recovery, this approach is not effective, owing largely to the low concentration of lixiviants produced by the bacteria. To overcome the challenges of bioleaching of gold from e-waste, several strategies were adopted to enhance gold recovery rates. These included (i) pretreatment of e-waste to remove competing metal ions, (ii) mutation to adapt the bacteria to high pH environment, (iii) metabolic engineering to produce higher cyanide lixiviant, and (iv) spent medium leaching with adjusted initial pH. Compared to 7.1 % recovery by the wild type bacteria, these strategies achieved gold recoveries of 11.3%, 22.5%, 30% and 30% respectively at 0.5% w/v pulp density respectively. Bioleached gold was finally mineralized and precipitated as gold nanoparticles using the bacterium Delftia acidovorans. This study demonstrates the potential for enhancement of biocyanide production and gold recovery from electronic waste through different strategies, and extraction of solid gold from bioleached leachate.

  6. Population structure of microbial communities associated with two deep, anaerobic, alkaline aquifers.

    PubMed Central

    Fry, N K; Fredrickson, J K; Fishbain, S; Wagner, M; Stahl, D A

    1997-01-01

    Microbial communities of two deep (1,270 and 316 m) alkaline (pH 9.94 and 8.05), anaerobic (Eh, -137 and -27 mV) aquifers were characterized by rRNA-based analyses. Both aquifers, the Grande Ronde (GR) and Priest rapids (PR) formations, are located within the Columbia River Basalt Group in south-central Washington, and sulfidogenesis and methanogenesis characterize the GR and PR formations, respectively. RNA was extracted from microorganisms collected from groundwater by ultrafiltration through hollow-fiber membranes and hybridized to taxon-specific oligonucleotide probes. Of the three domains, Bacteria dominated both communities, making up to 92.0 and 64.4% of the total rRNA from the GR and PR formations, respectively. Eucarya comprised 5.7 and 14.4%, and Archaea comprised 1.8% and 2.5%, respectively. The gram-positive target group was found in both aquifers, 11.7% in GR and 7.6% in PR. Two probes were used to target sulfate- and/or metal-reducing bacteria within the delta subclass of Proteobacteria. The Desulfobacter groups was present (0.3%) only in the high-sulfate groundwater (GR). However, comparable hybridization to a probe selective for the desulfovibrios and some metal-reducing bacteria was found in both aquifers, 2.5 and 2.9% from the GR and PR formations, respectively. Selective PCR amplification and sequencing of the desulfovibrio/metal-reducing group revealed a predominance of desulfovibrios in both systems (17 of 20 clones), suggesting that their environmental distribution is not restricted by sulfate availability. PMID:9097447

  7. Population structure of microbial communities associated with two deep, anaerobic, alkaline aquifers.

    PubMed

    Fry, N K; Fredrickson, J K; Fishbain, S; Wagner, M; Stahl, D A

    1997-04-01

    Microbial communities of two deep (1,270 and 316 m) alkaline (pH 9.94 and 8.05), anaerobic (Eh, -137 and -27 mV) aquifers were characterized by rRNA-based analyses. Both aquifers, the Grande Ronde (GR) and Priest rapids (PR) formations, are located within the Columbia River Basalt Group in south-central Washington, and sulfidogenesis and methanogenesis characterize the GR and PR formations, respectively. RNA was extracted from microorganisms collected from groundwater by ultrafiltration through hollow-fiber membranes and hybridized to taxon-specific oligonucleotide probes. Of the three domains, Bacteria dominated both communities, making up to 92.0 and 64.4% of the total rRNA from the GR and PR formations, respectively. Eucarya comprised 5.7 and 14.4%, and Archaea comprised 1.8% and 2.5%, respectively. The gram-positive target group was found in both aquifers, 11.7% in GR and 7.6% in PR. Two probes were used to target sulfate- and/or metal-reducing bacteria within the delta subclass of Proteobacteria. The Desulfobacter groups was present (0.3%) only in the high-sulfate groundwater (GR). However, comparable hybridization to a probe selective for the desulfovibrios and some metal-reducing bacteria was found in both aquifers, 2.5 and 2.9% from the GR and PR formations, respectively. Selective PCR amplification and sequencing of the desulfovibrio/metal-reducing group revealed a predominance of desulfovibrios in both systems (17 of 20 clones), suggesting that their environmental distribution is not restricted by sulfate availability.

  8. Biochemical passive reactors for treatment of acid mine drainage: Effect of hydraulic retention time on changes in efficiency, composition of reactive mixture, and microbial activity.

    PubMed

    Vasquez, Yaneth; Escobar, Maria C; Neculita, Carmen M; Arbeli, Ziv; Roldan, Fabio

    2016-06-01

    Biochemical passive treatment represents a promising option for the remediation of acid mine drainage. This study determined the effect of three hydraulic retention times (1, 2, and 4 days) on changes in system efficiency, reactive mixture, and microbial activity in bioreactors under upward flow conditions. Bioreactors were sacrificed in the weeks 8, 17 and 36, and the reactive mixture was sampled at the bottom, middle, and top layers. Physicochemical analyses were performed on reactive mixture post-treatment and correlated with sulfate-reducing bacteria and cellulolytic and dehydrogenase activity. All hydraulic retention times were efficient at increasing pH and alkalinity and removing sulfate (>60%) and metals (85-99% for Fe(2+) and 70-100% for Zn(2+)), except for Mn(2+). The longest hydraulic retention time (4 days) increased residual sulfides, deteriorated the quality of treated effluent and negatively impacted sulfate-reducing bacteria. Shortest hydraulic retention time (1 day) washed out biomass and increased input of dissolved oxygen in the reactors, leading to higher redox potential and decreasing metal removal efficiency. Concentrations of iron, zinc and metal sulfides were high in the bottom layer, especially with 2 day of hydraulic retention time. Sulfate-reducing bacteria, cellulolytic and dehydrogenase activity were higher in the middle layer at 4 days of hydraulic retention time. Hydraulic retention time had a strong influence on overall performance of passive reactors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Immobilization of cobalt by sulfate-reducing bacteria in subsurface sediments

    USGS Publications Warehouse

    Krumholz, Lee R.; Elias, Dwayne A.; Suflita, Joseph M.

    2003-01-01

    We investigated the impact of sulfate-reduction on immobilization of metals in subsurface aquifers. Co 2+ was used as a model for heavy metals. Factors limiting sulfate-reduction dependent Co 2+ immobilization were tested on pure cultures of sulfate-reducing bacteria, and in sediment columns from a landfill leachate contaminated aquifer. In the presence of 1 mM Co 2+ , the growth of pure cultures of sulfate-reducing bacteria was not impacted. Cultures of Desulfovibrio desulfuricans, Desulfotomaculum gibsoniae , and Desulfomicrobium hypogeia removed greater than 99.99% of the soluble Co 2+ when CoCl 2 was used with no chelators. The above cultures and Desulfoarcula baarsi removed 98-99.94% of the soluble Co(II) when the metal was complexed with the model ligand nitrilotriacetate (Co-NTA). Factors controlling the rate of sulfate-reduction based Co 2+ precipitation were investigated in sediment-cobalt mixtures. Several electron donors were tested and all but toluene accelerated soluble Co 2+ loss. Ethanol and formate showed the greatest stimulation. All complex nitrogen sources tested slowed and decreased the extent of Co 2+ removal from solution relative to formate-amended sediment incubations. A range of pH values were tested (6.35-7.81), with the more alkaline incubations exhibiting the largest precipitation of Co 2+ . The immobilization of Co 2+ in sediments was also investigated with cores to monitor the flow of Co 2+ through undisturbed sediments. An increase in the amount of Co 2+ immobilized as CoS was observed as sulfate reduction activity was stimulated in flow through columns. Both pure culture and sediment incubation data indicate that stimulation of sulfate reduction is a viable strategy in the immobilization of contaminating metals in subsurface systems.

  10. Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively.

    PubMed

    Dimkpa, C O; Merten, D; Svatos, A; Büchel, G; Kothe, E

    2009-11-01

    As a toxic metal, cadmium (Cd) affects microbial and plant metabolic processes, thereby potentially reducing the efficiency of microbe or plant-mediated remediation of Cd-polluted soil. The role of siderophores produced by Streptomyces tendae F4 in the uptake of Cd by bacteria and plant was investigated to gain insight into the influence of siderophores on Cd availability to micro-organisms and plants. The bacterium was cultured under siderophore-inducing conditions in the presence of Cd. The kinetics of siderophore production and identification of the siderophores and their metal-bound forms were performed using electrospray ionization mass spectrometry. Inductively coupled plasma spectroscopy was used to measure iron (Fe) and Cd contents in the bacterium and in sunflower plant grown in Cd-amended soil. Siderophores significantly reduced the Cd uptake by the bacterium, while supplying it with iron. Bacterial culture filtrates containing three hydroxamate siderophores secreted by S. tendae F4 significantly promoted plant growth and enhanced uptake of Cd and Fe by the plant, relative to the control. Furthermore, application of siderophores caused slightly more Cd, but similar Fe uptake, compared with EDTA. Bioinoculation with Streptomyces caused a dramatic increase in plant Fe content, but resulted only in slight increase in plant Cd content. It is concluded that siderophores can help reduce toxic metal uptake in bacteria, while simultaneously facilitating the uptake of such metals by plants. Also, EDTA is not superior to hydroxamate siderophores in terms of metal solubilization for plant uptake. The study showed that microbial processes could indirectly influence the availability and amount of toxic metals taken up from the rhizosphere of plants. Furthermore, although EDTA is used for chelator-enhanced phytoremediation, microbial siderophores would be ideal for this purpose.

  11. Heavy metal toxicity to bacteria - are the existing growth media accurate enough to determine heavy metal toxicity?

    PubMed

    Rathnayake, I V N; Megharaj, Mallavarapu; Krishnamurti, G S R; Bolan, Nanthi S; Naidu, Ravi

    2013-01-01

    A new minimal medium was formulated considering the limitations of the existing media for testing heavy metal sensitivity to bacteria. Toxicity of cadmium and copper to three bacteria was investigated in the new medium and compared with three other media commonly used to study the effect of the toxic metals. Based on speciation data arrived at using ion-selective electrodes, the available free-metal concentration in solution was highest in the MES-buffered medium. This finding was strongly supported by the estimated EC(50) values for the metals tested based on the toxicity bioassays. The free-ionic cadmium and copper concentrations in the medium provide more accurate determination of metal concentrations that affects the bacteria, than with most of other existing media. This will avoid doubts on other media and misleading conclusions relevant to the toxicity of heavy metals to bacteria and provides a better option for the study of metal-bacteria interactions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Nanospecific Inhibition of Pyoverdine Siderophore Production in Pseudomonas Chlororaphis O6 by CuO Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimkpa, Christian O.; McLean, Joan E.; Britt, David W.

    2012-03-01

    As traditional antibiotics become less effective against a growing number of pathogens, engineered nanoparticles (NPs) are becoming more widely applied as biocides. NPs of Ag, ZnO, and CuO exhibit dose-dependent antimicrobial activity; however, information is scant on the impact of sublethal levels of NPs on bacteria. In this paper, we evaluated the effect of a sublethal concentration (200 mg/L) of commercial CuO NPs on the expression of genes involved in the production of the fluorescent siderophore, pyoverdine (PVD) in the plant-beneficial bacterium Pseudomonas chlororaphis O6. PVDs are important in microbe-microbe and microbe-plant interactions, and are a virulence factor in pathogenicmore » pseudomonads. Cells challenged with the NPs had reduced amounts of PVD in their periplasm and the external medium. The NPs impaired the expression of genes involved in transport of the PVD precursor through the plasmamembrane, PVD maturation in the periplasm, and export through the outer membrane. Also, expression from one of three predicted Fe-PVD receptors was reduced by the NPs. As these effects were not observed for cells challenged with copper ions, this is a nanoparticlespecific phenomenon mediating cellular reprogramming in bacteria, affecting secondary metabolism and thus associated critical microbial processes. The regulation of bacterial genes and secondary metabolites by sublethal doses of a common metal oxide NP has strong environmental and medical implications.« less

  13. Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria--effects on phytoremediation strategies.

    PubMed

    Marques, Ana P G C; Moreira, Helena; Franco, Albina R; Rangel, António O S S; Castro, Paula M L

    2013-06-01

    Plant growth promoting bacteria (PGPR) may help reducing the toxicity of heavy metals to plants in polluted environments. In this work the effects of inoculating metal resistant and plant growth promoting bacterial strains on the growth of Helianthus annuus grown in Zn and Cd spiked soils were assessed. The PGPR strains Ralstonia eutropha (B1) and Chrysiobacterium humi (B2) reduced losses of weight in metal exposed plants and induced changes in metal bioaccumulation and bioconcentration - with strain B2 decreasing up to 67% Zn accumulation and by 20% Zn bioconcentration factor (BCF) in the shoots, up to 64% Zn uptake and 38% Zn BCF in the roots, and up to 27% Cd uptake and 27% Cd BCF in plant roots. The impact of inoculation on the bacterial communities in the rhizosphere of the plant was also assessed. Bacterial community diversity decreased with increasing levels of metal contamination in the soil, but in rhizosphere soil of plants inoculated with the PGPR strains, a higher bacterial diversity was kept throughout the experimental period. Inoculation of sunflower, particularly with C. humi (B2), appears to be an effective way of enhancing the short term stabilization potential of the plant in metal contaminated land, lowering losses in plant biomass and decreasing aboveground tissue contamination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Biogeochemistry of heavy metals in contaminated excessively moistened soils (Analytical review)

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.; Plekhanova, I. O.

    2014-03-01

    The biogeochemical behavior of heavy metals in contaminated excessively moistened soils depends on the development of reducing conditions (either moderate or strong). Upon the moderate biogenic reduction, Cr as the metal with variable valence forms low-soluble compounds, which decreases its availability to plants and prevents its penetration into surface- and groundwater. Creation of artificial barriers for Cr fixation on contaminated sites is based on the stimulation of natural metal-reducing bacteria. Arsenic, being a metalloid with a variable valence, is mobilized upon the moderate biogenic reduction. The mobility of siderophilic heavy metals with a constant valence grows under the moderate reducing conditions at the expense of dissolution of iron (hydr)oxides as carriers of these metals. Zinc, which can enter the newly formed goethite lattice, is an exception. Strong reduction processes in organic excessively moist and flooded soils (usually enriched in S) lead to the formation of low-soluble sulfides of heavy elements with both variable (As) and constant (Cu, Ni, Zn, and Pb) valence. On changing aquatic regime in overmoistened soils and their drying, sulfides of heavy metals are oxidized, and previously fixed metals are mobilized.

  15. Corrosion of 2205 Duplex Stainless Steel Weldment in Chloride Medium Containing Sulfate-Reducing Bacteria

    NASA Astrophysics Data System (ADS)

    Antony, P. J.; Singh Raman, R. K.; Kumar, Pradeep; Raman, R.

    2008-11-01

    Influence of changes in microstructure caused due to welding on microbiologically influenced corrosion of a duplex stainless steel was studied by exposing the weldment and parent metal to chloride medium containing sulfate-reducing bacteria (SRB). Identically prepared coupons (same area and surface finish) exposed to sterile medium were used as the control. Etching-type attack was observed in the presence of SRB, which was predominant in the heat-affected zone (HAZ) of the weldment. The anodic polarization studies indicated an increase in current density for coupon exposed to SRB-containing medium as compared to that obtained for coupon exposed to sterile medium. The scanning electron microscopy (SEM) observations after anodic polarization revealed that the attack was preferentially in the ferrite phase of HAZ of the weldment, whereas it was restricted to the austenite phase of the parent metal.

  16. Synthesis and Antibacterial Activity of Metal(loid) Nanostructures by Environmental Multi-Metal(loid) Resistant Bacteria and Metal(loid)-Reducing Flavoproteins.

    PubMed

    Figueroa, Maximiliano; Fernandez, Valentina; Arenas-Salinas, Mauricio; Ahumada, Diego; Muñoz-Villagrán, Claudia; Cornejo, Fabián; Vargas, Esteban; Latorre, Mauricio; Morales, Eduardo; Vásquez, Claudio; Arenas, Felipe

    2018-01-01

    Microbes are suitable candidates to recover and decontaminate different environments from soluble metal ions, either via reduction or precipitation to generate insoluble, non-toxic derivatives. In general, microorganisms reduce toxic metal ions generating nanostructures (NS), which display great applicability in biotechnological processes. Since the molecular bases of bacterial reduction are still unknown, the search for new -environmentally safe and less expensive- methods to synthesize NS have made biological systems attractive candidates. Here, 47 microorganisms isolated from a number of environmental samples were analyzed for their tolerance or sensitivity to 19 metal(loid)s. Ten of them were highly tolerant to some of them and were assessed for their ability to reduce these toxicants in vitro . All isolates were analyzed by 16S rRNA gene sequencing, fatty acids composition, biochemical tests and electron microscopy. Results showed that they belong to the Enterobacter, Staphylococcus, Acinetobacter , and Exiguobacterium genera. Most strains displayed metal(loid)-reducing activity using either NADH or NADPH as cofactor. While Acinetobacter schindleri showed the highest tellurite ( TeO 3 2 - ) and tetrachloro aurate ( AuCl 4 - ) reducing activity, Staphylococcus sciuri and Exiguobacterium acetylicum exhibited selenite ( SeO 3 2 - ) and silver (Ag + ) reducing activity, respectively. Based on these results, we used these bacteria to synthetize, in vivo and in vitro Te, Se, Au, and Ag-containing nanostructures. On the other hand, we also used purified E. cloacae glutathione reductase to synthesize in vitro Te-, Ag-, and Se-containing NS, whose morphology, size, composition, and chemical composition were evaluated. Finally, we assessed the putative anti-bacterial activity exhibited by the in vitro synthesized NS: Te-containing NS were more effective than Au-NS in inhibiting Escherichia coli and Listeria monocytogenes growth. Aerobically synthesized TeNS using MF09 crude extracts showed MICs of 45- and 66- μg/ml for E. coli and L. monocytogenes , respectively. Similar MIC values (40 and 82 μg/ml, respectively) were observed for TeNS generated using crude extracts from gorA -overexpressing E. coli . In turn, AuNS MICs for E. coli and L. monocytogenes were 64- and 68- μg/ml, respectively.

  17. Synthesis and Antibacterial Activity of Metal(loid) Nanostructures by Environmental Multi-Metal(loid) Resistant Bacteria and Metal(loid)-Reducing Flavoproteins

    PubMed Central

    Figueroa, Maximiliano; Fernandez, Valentina; Arenas-Salinas, Mauricio; Ahumada, Diego; Muñoz-Villagrán, Claudia; Cornejo, Fabián; Vargas, Esteban; Latorre, Mauricio; Morales, Eduardo; Vásquez, Claudio; Arenas, Felipe

    2018-01-01

    Microbes are suitable candidates to recover and decontaminate different environments from soluble metal ions, either via reduction or precipitation to generate insoluble, non-toxic derivatives. In general, microorganisms reduce toxic metal ions generating nanostructures (NS), which display great applicability in biotechnological processes. Since the molecular bases of bacterial reduction are still unknown, the search for new -environmentally safe and less expensive- methods to synthesize NS have made biological systems attractive candidates. Here, 47 microorganisms isolated from a number of environmental samples were analyzed for their tolerance or sensitivity to 19 metal(loid)s. Ten of them were highly tolerant to some of them and were assessed for their ability to reduce these toxicants in vitro. All isolates were analyzed by 16S rRNA gene sequencing, fatty acids composition, biochemical tests and electron microscopy. Results showed that they belong to the Enterobacter, Staphylococcus, Acinetobacter, and Exiguobacterium genera. Most strains displayed metal(loid)-reducing activity using either NADH or NADPH as cofactor. While Acinetobacter schindleri showed the highest tellurite (TeO32-) and tetrachloro aurate (AuCl4-) reducing activity, Staphylococcus sciuri and Exiguobacterium acetylicum exhibited selenite (SeO32-) and silver (Ag+) reducing activity, respectively. Based on these results, we used these bacteria to synthetize, in vivo and in vitro Te, Se, Au, and Ag-containing nanostructures. On the other hand, we also used purified E. cloacae glutathione reductase to synthesize in vitro Te-, Ag-, and Se-containing NS, whose morphology, size, composition, and chemical composition were evaluated. Finally, we assessed the putative anti-bacterial activity exhibited by the in vitro synthesized NS: Te-containing NS were more effective than Au-NS in inhibiting Escherichia coli and Listeria monocytogenes growth. Aerobically synthesized TeNS using MF09 crude extracts showed MICs of 45- and 66- μg/ml for E. coli and L. monocytogenes, respectively. Similar MIC values (40 and 82 μg/ml, respectively) were observed for TeNS generated using crude extracts from gorA-overexpressing E. coli. In turn, AuNS MICs for E. coli and L. monocytogenes were 64- and 68- μg/ml, respectively. PMID:29869640

  18. Transition Metals and Virulence in Bacteria

    PubMed Central

    Palmer, Lauren D.; Skaar, Eric P.

    2016-01-01

    Transition metals are required trace elements for all forms of life. Due to their unique inorganic and redox properties, transition metals serve as cofactors for enzymes and other proteins. In bacterial pathogenesis, the vertebrate host represents a rich source of nutrient metals, and bacteria have evolved diverse metal acquisition strategies. Host metal homeostasis changes dramatically in response to bacterial infections, including production of metal sequestering proteins and the bombardment of bacteria with toxic levels of metals. Presumably, in response, bacteria have evolved systems to subvert metal sequestration and toxicity. The coevolution of hosts and their bacterial pathogens in the battle for metals has uncovered emerging paradigms in social microbiology, rapid evolution, host specificity, and metal homeostasis across domains. This review focuses on recent advances and open questions in our understanding of the complex role of transition metals at the host-pathogen interface. PMID:27617971

  19. Transition Metals and Virulence in Bacteria.

    PubMed

    Palmer, Lauren D; Skaar, Eric P

    2016-11-23

    Transition metals are required trace elements for all forms of life. Due to their unique inorganic and redox properties, transition metals serve as cofactors for enzymes and other proteins. In bacterial pathogenesis, the vertebrate host represents a rich source of nutrient metals, and bacteria have evolved diverse metal acquisition strategies. Host metal homeostasis changes dramatically in response to bacterial infections, including production of metal sequestering proteins and the bombardment of bacteria with toxic levels of metals. In response, bacteria have evolved systems to subvert metal sequestration and toxicity. The coevolution of hosts and their bacterial pathogens in the battle for metals has uncovered emerging paradigms in social microbiology, rapid evolution, host specificity, and metal homeostasis across domains. This review focuses on recent advances and open questions in our understanding of the complex role of transition metals at the host-pathogen interface.

  20. Detection of heavy metal resistance bioluminescence bacteria using microplate bioassay method.

    PubMed

    Ranjitha, P; Karthy, E S

    2012-01-01

    Effects of different heavy metals on Vibrio harveyi, V. fischeri, Photobacterium phosphoreum and P. leiognathi were examined. Checkerboard assay was used for the detection of the natural metal tolerance levels of a large number of marine luminous eubacteria. 57 strains of luminous bacteria were investigated for their natural patterns of heavy metal tolerance. The behaviors of these strains were not homogeneous with respect to all metals tested, even within the strains belonging to the same genus. At least 1 to 4 different MICs were detected for every metal except barium and cobalt. Isolated bacteria were tested for the presence of plasmids using the modified alkaline lysis method, was effective for identification of plasmids of different sizes. This study revealed the frequency of the occurrence of plasmids in heavy metal resistance bacteria and inferred that plasmids are highly ubiquitous and predominant in most heavy metal resistant bacteria.

  1. An Inner Membrane Cytochrome Required Only for Reduction of High Redox Potential Extracellular Electron Acceptors

    PubMed Central

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.

    2014-01-01

    ABSTRACT Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentials greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤−0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to −0.1 V versus SHE triggered exponential growth. At potentials of ≤−0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. The redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found. PMID:25425235

  2. An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors

    DOE PAGES

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.; ...

    2014-10-28

    Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentialsmore » greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤–0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to –0.1 V versus SHE triggered exponential growth. At potentials of ≤–0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. Redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found.« less

  3. The Role of Plant Growth-Promoting Bacteria in Metal Phytoremediation.

    PubMed

    Kong, Zhaoyu; Glick, Bernard R

    2017-01-01

    Phytoremediation is a promising technology that uses plants and their associated microbes to clean up contaminants from the environment. In recent years, phytoremediation assisted by plant growth-promoting bacteria (PGPB) has been highly touted for cleaning up toxic metals from soil. PGPB include rhizospheric bacteria, endophytic bacteria and the bacteria that facilitate phytoremediation by other means. This review provides information about the traits and mechanisms possessed by PGPB that improve plant metal tolerance and growth, and illustrate mechanisms responsible for plant metal accumulation/translocation in plants. Several recent examples of phytoremediation of metals facilitated by PGPB are reviewed. Although many encouraging results have been reported in the past years, there have also been numerous challenges encountered in phytoremediation in the field. To implement PGPB-assisted phytoremediation of metals in the natural environment, there is also a need to critically assess the ecological effects of PGPB, especially for those nonnative bacteria. © 2017 Elsevier Ltd All rights reserved.

  4. Assessment and Comparison of Electrokinetic and Electrokinetic-bioremediation Techniques for Mercury Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Azhar, A. T. S.; Nabila, A. T. A.; Nurshuhaila, M. S.; Zaidi, E.; Azim, M. A. M.; Farhana, S. M. S.

    2016-11-01

    Landfills are major sources of contamination due to the presence of harmful bacteria and heavy metals. Electrokinetic-Bioremediation (Ek-Bio) is one of the techniques that can be conducted to remediate contaminated soil. Therefore, the most prominent bacteria from landfill soil will be isolated to determine their optimal conditions for culture and growth. The degradation rate and the effectiveness of selected local bacteria were used to reduce soil contamination. Hence, this enhances microbiological activities to degrade contaminants in soil and reduce the content of heavy metals. The aim of this study is to investigate the ability of isolated bacteria (Lysinibacillus fusiformis) to remove mercury in landfill soil. 5 kg of landfill soil was mixed with deionized water to make it into slurry condition for the purpose of electrokinetic and bioremediation. This remediation technique was conducted for 7 days by using 50 V/m of electrical gradient and Lysinibacillus fusiformis bacteria was applied at the anode reservoir. The slurry landfill soil was located at the middle of the reservoir while distilled water was placed at the cathode of reservoir. After undergoing treatment for 7 days, the mercury analyzer showed that there was a significant reduction of approximately up to 78 % of mercury concentration for the landfill soil. From the results, it is proven that electrokinetic bioremediation technique is able to remove mercury within in a short period of time. Thus, a combination of Lysinibacillus fusiformis and electrokinetic technique has the potential to remove mercury from contaminated soil in Malaysia.

  5. Lemna minor tolerance to metal-working fluid residues: implications for rhizoremediation.

    PubMed

    Grijalbo, L; Becerril, J M; Barrutia, O; Gutierrez-Mañero, J; Lucas Garcia, J A

    2016-07-01

    For the first time in the literature, duckweed (Lemna minor) tolerance (alone or in combination with a consortium of bacteria) to spent metal-working fluid (MWF) was assessed, together with its capacity to reduce the chemical oxygen demand (COD) of this residue. In a preliminary study, L. minor response to pre-treated MWF residue (ptMWF) and vacuum-distilled MWF water (MWFw) was tested. Plants were able to grow in both residues at different COD levels tested (up to 2300 mg·l(-1) ), showing few toxicity symptoms (mainly growth inhibition). Plant response to MWFw was more regular and dose responsive than when exposed to ptMWF. Moreover, COD reduction was less significant in ptMWF. Thus, based on these preliminary results, a second study was conducted using MWFw to test the effectiveness of inoculation with a bacterial consortium isolated from a membrane bioreactor fed with the same residue. After 5 days of exposure, COD in solutions containing inoculated plants was significantly lower than in non-inoculated ones. Moreover, inoculation reduced β+γ-tocopherol levels in MWFw-exposed plants, suggesting pollutant imposed stress was reduced. We therefore conclude from that L. minor is highly tolerant to spent MWF residues and that this species can be very useful, together with the appropriate bacterial consortium, in reducing COD of this residue under local legislation limits and thus minimise its potential environmental impact. Interestingly, the lipophilic antioxidant tocopherol (especially the sum of β+γ isomers) proved to be an effective plant biomarker of pollution. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Antioxidant, electrochemical, thermal, antimicrobial and alkane oxidation properties of tridentate Schiff base ligands and their metal complexes

    NASA Astrophysics Data System (ADS)

    Ceyhan, Gökhan; Çelik, Cumali; Uruş, Serhan; Demirtaş, İbrahim; Elmastaş, Mahfuz; Tümer, Mehmet

    2011-10-01

    In this study, two Schiff base ligands (HL 1 and HL 2) and their Cu(II), Co(II), Ni(II), Pd(II) and Ru(III) metal complexes were synthesized and characterized by the analytical and spectroscopic methods. Alkane oxidation activities of the metal complexes were studied on cyclohexane as substrate. The ligands and their metal complexes were evaluated for their antimicrobial activity against Corynebacterium xerosis, Bacillus brevis, Bacillus megaterium, Bacillus cereus, Mycobacterium smegmatis, Staphylococcus aureus, Micrococcus luteus and Enterococcus faecalis (as Gram-positive bacteria) and Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Yersinia enterocolitica, Klebsiella fragilis, Saccharomyces cerevisiae, and Candida albicans (as Gram-negative bacteria). The antioxidant properties of the Schiff base ligands were evaluated in a series of in vitro tests: 1,1-diphenyl-2-picrylhydrazyl (DPPH rad ) free radical scavenging and reducing power activity of superoxide anion radical generated non-enzymatic systems. Electrochemical and thermal properties of the compounds were investigated.

  7. Contact Killing of Bacteria on Copper Is Suppressed if Bacterial-Metal Contact Is Prevented and Is Induced on Iron by Copper Ions

    PubMed Central

    Mathews, Salima; Hans, Michael

    2013-01-01

    Bacteria are rapidly killed on copper surfaces, and copper ions released from the surface have been proposed to play a major role in the killing process. However, it has remained unclear whether contact of the bacteria with the copper surface is also an important factor. Using laser interference lithography, we engineered copper surfaces which were covered with a grid of an inert polymer which prevented contact of the bacteria with the surface. Using Enterococcus hirae as a model organism, we showed that the release of ionic copper from these modified surfaces was not significantly reduced. In contrast, killing of bacteria was strongly attenuated. When E. hirae cells were exposed to a solid iron surface, the loss of cell viability was the same as on glass. However, exposing cells to iron in the presence of 4 mM CuSO4 led to complete killing in 100 min. These experiments suggest that contact killing proceeds by a mechanism whereby the metal-bacterial contact damages the cell envelope, which, in turn, makes the cells susceptible to further damage by copper ions. PMID:23396344

  8. Fate of a metal-resistant inoculum in contaminated and pristine soils assessed by denaturing gradient gel electrophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen, J.R.; Chang, Y.J.; MacNaughton, S.J.

    Cesium, cadmium, cobalt, and strontium are four contaminants frequently found in soils at biotoxic levels. Introduction of certain nongenetically modified bacteria has been frequently suggested as a method for the immobilization of heavy metal contaminants in soil, thereby reducing runoff and bioavailability. In this study, the authors have used the polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) to track the survival of the five bacterial species added to soil microcosms with and without the addition of a mixture of these metals. The PCR primers targeted conserved regions of the 165 rDNA molecular present in all bacteria. Themore » reaction products were shown to reflect the relative abundance of the bacteria both in mixtures of pure cultures and against a background of all the eubacterial species present in the soil following inoculation. Three of the species (Pseudomonas aeruginosa FRD-1, Shewanella putrifaciens 200, and Desulfovibrio vulgaris Hildenborough) decreased rapidly following inoculation into both soils. The proportion of Alcaligenes eutrophus CH34 remained at a constant level throughout the 8-week experiment in both soil treatments. Sphingomonas aromaticivorans B0695 showed toxic metal-dependent survival in that its relative abundance dropped rapidly in pristine soil but remained at approximately inoculation levels throughout the experiment in contaminated microcosms.« less

  9. Biomedical Implications of Heavy Metals Induced Imbalances in Redox Systems

    PubMed Central

    Singh, Shweta; Siddiqi, Nikhat J.

    2014-01-01

    Several workers have extensively worked out the metal induced toxicity and have reported the toxic and carcinogenic effects of metals in human and animals. It is well known that these metals play a crucial role in facilitating normal biological functions of cells as well. One of the major mechanisms associated with heavy metal toxicity has been attributed to generation of reactive oxygen and nitrogen species, which develops imbalance between the prooxidant elements and the antioxidants (reducing elements) in the body. In this process, a shift to the former is termed as oxidative stress. The oxidative stress mediated toxicity of heavy metals involves damage primarily to liver (hepatotoxicity), central nervous system (neurotoxicity), DNA (genotoxicity), and kidney (nephrotoxicity) in animals and humans. Heavy metals are reported to impact signaling cascade and associated factors leading to apoptosis. The present review illustrates an account of the current knowledge about the effects of heavy metals (mainly arsenic, lead, mercury, and cadmium) induced oxidative stress as well as the possible remedies of metal(s) toxicity through natural/synthetic antioxidants, which may render their effects by reducing the concentration of toxic metal(s). This paper primarily concerns the clinicopathological and biomedical implications of heavy metals induced oxidative stress and their toxicity management in mammals. PMID:25184144

  10. Metal-tolerant PAH-degrading bacteria: development of suitable test medium and effect of cadmium and its availability on PAH biodegradation.

    PubMed

    Thavamani, Palanisami; Megharaj, Mallavarapu; Naidu, Ravi

    2015-06-01

    The use of metal-tolerant polyaromatic hydrocarbon (PAH)-degrading bacteria is viable for mitigating metal inhibition of organic compound biodegradation in the remediation of mixed contaminated sites. Many microbial growth media used for toxicity testing contain high concentrations of metal-binding components such as phosphates that can reduce solution-phase metal concentrations thereby underestimate the real toxicity. In this study, we isolated two PAHs-degrading bacterial consortia from long-term mixed contaminated soils. We have developed a new mineral medium by optimising the concentrations of medium components to allow the bacterial growth and at the same time maintain high bioavailable metal (Cd(2+) as a model metal) in the medium. This medium has more than 60 % Cd as Cd(2+) at pH 6.5 as measured by an ion selective electrode and visual MINTEQ model. The Cd-tolerant patterns of the consortia were tested and minimum inhibitory concentration (MIC) derived. The consortium-5 had the highest MIC of 5 mg l(-1) Cd followed by consortium-9. Both cultures were able to completely metabolise 200 mg l(-1) phenanthrene in less than 4 days in the presence of 5 mg l(-1) Cd. The isolated metal-tolerant PAH-degrading bacterial cultures have great potential for bioremediation of mixed contaminated soils.

  11. Metal Cycling by Bacteria: Moving Electrons Around

    ScienceCinema

    Nealson, Ken

    2017-12-09

    About 20 years ago, Shewanella oneidensis MR-1 was isolated from a manganese-rich lack in upstate New York, and subsequently shown to utilize solid forms of oxidized manganese or iron as an electron acceptor. Recent studies of metal-reducing bacterial have unveiled a number of unexpected properties of microbes that have enlarged our view of microbes and their role(s) in natural ecosystems. For example, the processes of metal reduction themselves are fundamental to the carbon cycle in many lakes and sediments, where iron and manganese account for the major portion of organic carbon oxidation in many sediments. On more modest spatial scales, iron and manganese reduction can be linked to the oxidation of a wide variety of carbon compounds, many of them recalcitrant and/or toxic. One remarkable property of metal reducers is their ability to reduce solid, often highly crystalline substrates such as iron and manganese oxides and oxyhydroxides. It is now clear that this is done via the utilization of enzymes located on the outer wall of the bacteria - enzymes that apparently interact directly with these solid substrates. Molecular and genomic studies combined have revealed the genes and protoeins responsible for these activities, and many facets of the regulation. This talk focuses on the general features and properties of these remarkable organisms that seem to communicate via electron transfer across a wide variety of soluable, insoluable, and even "inert" substrates, and the way that these processes may be mechanistically linked.

  12. Enzymatic Recovery of Elemental Palladium by Using Sulfate-Reducing Bacteria

    PubMed Central

    Lloyd, Jon R.; Yong, Ping; Macaskie, Lynne E.

    1998-01-01

    Worldwide usage of platinum group metals is increasing, prompting new recovery technologies. Resting cells of Desulfovibrio desulfuricans reduced soluble Pd2+ to elemental, cell-bound Pd0 supported by pyruvate, formate, or H2 as the electron donor without biochemical cofactors. Pd reduction was O2 insensitive, opening the way for recycling and recovery of Pd under oxic conditions. PMID:9797331

  13. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis.

    PubMed

    Hyde, Embriette R; Andrade, Fernando; Vaksman, Zalman; Parthasarathy, Kavitha; Jiang, Hong; Parthasarathy, Deepa K; Torregrossa, Ashley C; Tribble, Gena; Kaplan, Heidi B; Petrosino, Joseph F; Bryan, Nathan S

    2014-01-01

    The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO) homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria.

  14. Metagenomic Analysis of Nitrate-Reducing Bacteria in the Oral Cavity: Implications for Nitric Oxide Homeostasis

    PubMed Central

    Hyde, Embriette R.; Andrade, Fernando; Vaksman, Zalman; Parthasarathy, Kavitha; Jiang, Hong; Parthasarathy, Deepa K.; Torregrossa, Ashley C.; Tribble, Gena; Kaplan, Heidi B.; Petrosino, Joseph F.; Bryan, Nathan S.

    2014-01-01

    The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO) homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria. PMID:24670812

  15. High-Quality Draft Genome Sequence of Desulfovibrio carbinoliphilus FW-101-2B, an Organic Acid-Oxidizing Sulfate-Reducing Bacterium Isolated from Uranium(VI)-Contaminated Groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsay, Bradley D.; Hwang, Chiachi; Woo, Hannah L.

    2015-03-12

    Desulfovibrio carbinoliphilus subsp. oakridgensis FW-101-2B is an anaerobic, organic acid/alcohol-oxidizing, sulfate-reducing δ-proteobacterium. FW-101-2B was isolated from contaminated groundwater at The Field Research Center at Oak Ridge National Lab after in situ stimulation for heavy metal-reducing conditions. The genome will help elucidate the metabolic potential of sulfate-reducing bacteria during uranium reduction.

  16. Magnetic susceptibility as a proxy for investigating microbially mediated iron reduction

    USGS Publications Warehouse

    Mewafy, F.M.; Atekwana, E.A.; Werkema, D.D.; Slater, L.D.; Ntarlagiannis, D.; Revil, A.; Skold, M.; Delin, G.N.

    2011-01-01

    We investigated magnetic susceptibility (MS) variations in hydrocarbon contaminated sediments. Our objective was to determine if MS can be used as an intrinsic bioremediation indicator due to the activity of iron-reducing bacteria. A contaminated and an uncontaminated core were retrieved from a site contaminated with crude oil near Bemidji, Minnesota and subsampled for MS measurements. The contaminated core revealed enriched MS zones within the hydrocarbon smear zone, which is related to iron-reduction coupled to oxidation of hydrocarbon compounds and the vadose zone, which is coincident with a zone of methane depletion suggesting aerobic or anaerobic oxidation of methane is coupled to iron-reduction. The latter has significant implications for methane cycling. We conclude that MS can serve as a proxy for intrinsic bioremediation due to the activity of iron-reducing bacteria iron-reducing bacteria and for the application of geophysics to iron cycling studies. ?? 2011 by the American Geophysical Union.

  17. Copper-resistant bacteria reduces oxidative stress and uptake of copper in lentil plants: potential for bacterial bioremediation.

    PubMed

    Islam, Faisal; Yasmeen, Tahira; Ali, Qasim; Mubin, Muhammad; Ali, Shafaqat; Arif, Muhammad Saleem; Hussain, Sabir; Riaz, Muhammad; Abbas, Farhat

    2016-01-01

    For effective microbe-assisted bioremediation, metal-resistant plant growth-promoting bacteria (PGPB) must facilitate plant growth by restricting excess metal uptake in plants, leading to prevent its bio-amplification in the ecosystem. The aims of our study were to isolate and characterize copper (Cu)-resistant PGPB from waste water receiving contaminated soil. In addition, we investigated the phytotoxic effect of copper on the lentil plants inoculated with copper-resistant bacteria Providencia vermicola, grown in copper-contaminated soil. Copper-resistant P. vermicola showed multiple plant growth promoting characteristics, when used as a seed inoculant. It protected the lentil plants from copper toxicity with a considerable increase in root and shoot length, plant dry weight and leaf area. A notable increase in different gas exchange characteristics such as A, E, C i , g s , and A/E, as well as increase in N and P accumulation were also recorded in inoculated plants as compared to un-inoculated copper stressed plants. In addition, leaf chlorophyll content, root nodulation, number of pods, 1,000 seed weight were also higher in inoculated plants as compared with non-inoculated ones. Anti-oxidative defense mechanism improved significantly via elevated expression of reactive oxygen species -scavenging enzymes including ascorbate peroxidase, superoxide dismutase, catalase, and guaiacol peroxidase with alternate decrease in malondialdehyde and H2O2 contents, reduced electrolyte leakage, proline, and total phenolic contents suggesting that inoculation of P. vermicola triggered heavy metals stress-related defense pathways under copper stress. Overall, the results demonstrated that the P. vermicola seed inoculation confer heavy metal stress tolerance in lentil plant which can be used as a potent biotechnological tool to cope with the problems of copper pollution in crop plants for better yield.

  18. Mini-review: the morphology, mineralogy and microbiology of accumulated iron corrosion products.

    PubMed

    Little, Brenda J; Gerke, Tammie L; Lee, Jason S

    2014-09-01

    Despite obvious differences in morphology, substratum chemistry and the electrolyte in which they form, accumulations of iron corrosion products have the following characteristics in common: stratification of iron oxides/hydroxides with a preponderance of α-FeOOH (goethite) and accumulation of metals. Bacteria, particularly iron-oxidizing and sulfate-reducing bacteria have been identified in some accumulations. Both biotic and abiotic mechanisms have been used to rationalize observations for particular sets of environmental data. This review is the first to compare observations and interpretations.

  19. A Review of Microbially Induced Corrosion (MIC) of Steel and a Preliminary Investigation to Determine Its Occurrence in Naval Vessels

    DTIC Science & Technology

    1993-05-01

    nutrients for the SRB; (c) aerobic bacteria present in the biofilm utilise available oxygen so that ininer layers of the biofilm remain anaerobic , and...metals in anoxic conditions by von Wolkogen Kuhr and van der Vlugt (1934) who recognised the role of the anaerobic sulfate reducing bacteria (SRB). They...proposed to occur during anaerobic corrosion of iron and steels and corrosion mechanisms that result in products containing iron phosphate, vivianite, (Fe

  20. Nickel and platinum group metal nanoparticle production by Desulfovibrio alaskensis G20.

    PubMed

    Capeness, M J; Edmundson, M C; Horsfall, L E

    2015-12-25

    Desulfovibrio alaskensis G20 is an anaerobic sulfate reducing bacteria. While Desulfovibrio species have previously been shown to reduce palladium and platinum to the zero-state, forming nanoparticles in the process; there have been no reports that D. alaskensis is able to form these nanoparticles. Metal nanoparticles have properties that make them ideal for use in many industrial and medical applications, such as their size and shape giving them higher catalytic activity than the bulk form of the same metal. Nanoparticles of the platinum group metals in particular are highly sought after for their catalytic ability and herein we report the formation of both palladium and platinum nanoparticles by D. alaskensis and the biotransformation of solvated nickel ions to nanoparticle form. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Protecting health from metal exposures in drinking water.

    PubMed

    Armour, Margaret-Ann

    2016-03-01

    Drinking water is essential to us as human beings. According to the World Health Organization "The quality of drinking-water is a powerful environmental determinant of health" (http://www.who.int/water_sanitation_health/dwq/en/), but clean drinking water is a precious commodity not always readily available. Surface and ground water are the major sources of drinking water. Both can be contaminated, surface water with bacteria while ground water frequently contains salts of metals that occur naturally or are introduced by human activity. This paper will briefly review the metallic salts found in drinking water in areas around the world, as well as list some of the methods used to reduce or remove them. It will then discuss our research on reducing the risk of pollution of drinking water by removal of metal ions from wastewater.

  2. Comparative biochemistry and physiology of iron-respiring bacteria from acidic and neutral-pH environments: Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnuson, T S

    2009-04-07

    Acidophilic dissimilatory iron-reducing bacteria (DIRB) are now being detected in a variety of ‘extreme’ low-pH, radionuclide- and heavy-metal contaminated habitats where Fe(III) reduction is taking place, and may represent a significant proportion of metal-transforming organisms in these environments. Acidiphilium cryptum is our model organism, a facultative iron-respiring Alphaproteobacterium. Major findings of this project have been 1) Discovery of novel outer-membrane and periplasmic cytochromes c in acidophiles that are reactive with Fe and Cr, 2) Discovery of Cr(VI) reduction mechanisms in acidophiles, mediated by c-type cytochromes and other reductase activity, 3) Development of enzyme detection methods specific for Cr-reducing enzymes, 4)more » Characterization of biofilm formation in A. cryptum, and 5) Annotation of the Acidiphilium cryptum genome (Magnuson, Kusel, and Cummings, DOE-JGI 2005-2006). Two manuscripts and one book chapter have been published, and several more mauscripts are prepared for submission.« less

  3. The in vitro effect of xylitol on chronic rhinosinusitis biofilms.

    PubMed

    Jain, R; Lee, T; Hardcastle, T; Biswas, K; Radcliff, F; Douglas, R

    2016-12-01

    Biofilms have been implicated in chronic rhinosinusitis (CRS) and may explain the limited efficacy of antibiotics. There is a need to find more effective, non-antibiotic based therapies for CRS. This study examines the effects of xylitol on CRS biofilms and planktonic bacteria. Crystal violet assay and spectrophotometry were used to quantify the effects of xylitol (5% and 10% solutions) against Staphylococcus epidermidis, Pseudomonas aeruginosa, and Staphylococcus aureus. The disruption of established biofilms, inhibition of biofilm formation and effects on planktonic bacteria growth were investigated and compared to saline and no treatment. Xylitol 5% and 10% significantly reduced biofilm biomass (S. epidermidis), inhibited biofilm formation (S. aureus and P. aeruginosa) and reduced growth of planktonic bacteria (S. epidermidis, S. aureus, and P. aeruginosa). Xylitol 5% inhibited formation of S. epidermidis biofilms more effectively than xylitol 10%. Xylitol 10% reduced S. epidermidis planktonic bacteria more effectively than xylitol 5%. Saline, xylitol 5% and 10% disrupted established biofilms of S. aureus when compared with no treatment. No solution was effective against established P. aeruginosa biofilm. Xylitol has variable activity against biofilms and planktonic bacteria in vitro and may have therapeutic efficacy in the management of CRS.

  4. Microbial survival in the stratosphere and implications for global dispersal

    USGS Publications Warehouse

    Smith, David J.; Griffin, Dale W.; McPeters, Richard D.; Ward, Peter D.; Schuerger, Andrew C.

    2011-01-01

    Spores of Bacillus subtilis were exposed to a series of stratosphere simulations. In total, five distinct treatments measured the effect of reduced pressure, low temperature, high desiccation, and intense ultraviolet (UV) irradiation on stratosphereisolated and ground-isolated B. subtilis strains. Environmental conditions were based on springtime data from a mid-latitude region of the lower stratosphere (20 km). Experimentally, each treatment consisted of the following independent or combined conditions: -70 °C, 56 mb, 10-12%relative humidity and 0.00421, 5.11, and 54.64 W/m2 of UVC (200-280 nm), UVB (280-315 nm), UVA (315-400 nm), respectively. Bacteria were deposited on metal coupon surfaces in monolayers of ~1 x 106 spores and prepared with palagonite (particle size< 20 μm). After 6 h of exposure to the stratosphere environment, 99.9% of B. subtilis spores were killed due to UV irradiation. In contrast, temperature, desiccation, and pressure simulations without UV had no effect on spore viability up through 96 h. There were no differences in survival between the stratosphere-isolated versus ground-isolated B. subtilis strains. Inactivation of most bacteria in our simulation indicates that the stratosphere can be a critical barrier to long-distance microbial dispersal and that survival in the upper atmosphere may be constrained by UV irradiation.

  5. Chemistry of Marine Ligands and Siderophores

    PubMed Central

    Vraspir, Julia M.; Butler, Alison

    2011-01-01

    Marine microorganisms are presented with unique challenges to obtain essential metal ions required to survive and thrive in the ocean. The production of organic ligands to complex transition metal ions is one strategy to both facilitate uptake of specific metals, such as iron, and to mitigate the potential toxic effects of other metal ions, such as copper. A number of important trace metal ions are complexed by organic ligands in seawater, including iron, cobalt, nickel, copper, zinc, and cadmium, thus defining the speciation of these metal ions in the ocean. In the case of iron, siderophores have been identified and structurally characterized. Siderophores are low molecular weight iron-binding ligands produced by marine bacteria. Although progress has been made toward the identity of in situ iron-binding ligands, few compounds have been identified that coordinate the other trace metals. Deciphering the chemical structures and production stimuli of naturally produced organic ligands and the organisms they come from is fundamental to understanding metal speciation and bioavailability. The current evidence for marine ligands, with an emphasis on siderophores, and discussion of the importance and implications of metal-binding ligands in controlling metal speciation and cycling within the world’s oceans are presented. PMID:21141029

  6. Evaluating the microbial community and gene regulation involved in crystallization kinetics of ZnS formation in reduced environments

    NASA Astrophysics Data System (ADS)

    Falk, Nicholas; Chaganti, Subba Rao; Weisener, Christopher G.

    2018-01-01

    In anoxic environments, sulfate-reducing bacteria (SRB) may precipitate sparingly-soluble, fine-grained sulfides as by-products of dissimilatory sulfate reduction. This bio-mechanism lends importance to acid rock drainage (ARD) remediation efforts for its ability to immobilize harmful metals from contaminant pathways, including Zn. However, SRB often coexist alongside multiple bacterial guilds in these environments, and may be sustained or hindered by the activities and metabolic by-products of their cohorts, driven by the commonly available substrates. Thus, the effectiveness of onset sulfate reduction and resultant metal-sulfide generation in ARD treatment can be enhanced by unravelling the complexities associated with these interactions. This research used material sourced from a passive bioreactor system located at the Stockton Coal Mine, New Zealand to investigate SRB activity and associated community function. RNA sequencing showed spore-forming Desulfitobacterium and Desulfotomaculum as the dominant SRB enriched from the reduced zone of the bioreactor. Metatranscriptomic analysis revealed acetogenic bacteria as syntrophic partners in substrate availability and Pseudomonas as metal-resistant community members. ZnS precipitates were observed by scanning electron microscopy (SEM) in short-term batch enrichments as well as long-term raw bioreactor material, with observed differences in mineral arrangement indicative of different nucleation scenarios. Syntrophy, metal response mechanisms, and the capacity for sporulation were observed as key microbial functions in mine waste reclamation settings. Here, Zn and S mass balance calculations coupled with RNA sequence data and microscopy illuminated favourable physicochemical and biological conditions for early metal sulfide precipitation in passive treatment systems for ARD and highlight the advantages of linking both lab and field-scale studies.

  7. Characterization of the corrosion resistance of several alloys to dilute biologically active solutions

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.

    1990-01-01

    Sulfate reducing bacteria and acid producing bacteria/fungi detected in hygiene waters increased the corrosion rate in aluminum alloy. Biologically active media enhanced the formation of pits on metal coupons. Direct observation of gas evolved at the corrosion sample, coupled with scanning electron microscopy (SEM) and energy dispersive x-ray analysis of the corrosion products indicates that the corrosion rate is increased because the presence of bacteria favor the reduction of hydrogen as the cathodic reaction through the reaction of oxygen and water. SEM verifies the presence of microbes in a biofilm on the surface of corroding samples. The bacterial consortia are associated with anodic sites on the metal surface, aggressive pitting occurs adjacent to biofilms. Many pits are associated with triple points and inclusions in the aluminum alloy microstructure. Similar bacterial colonization was found on the stainless steel samples. Fourier transform Infrared Spectroscopy confirmed the presence of carbonyl groups in pitted areas of samples exposed to biologically active waters.

  8. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria.

    PubMed

    Xu, Dake; Li, Yingchao; Gu, Tingyue

    2016-08-01

    Biocorrosion is also known as microbiologically influenced corrosion (MIC). Most anaerobic MIC cases can be classified into two major types. Type I MIC involves non-oxygen oxidants such as sulfate and nitrate that require biocatalysis for their reduction in the cytoplasm of microbes such as sulfate reducing bacteria (SRB) and nitrate reducing bacteria (NRB). This means that the extracellular electrons from the oxidation of metal such as iron must be transported across cell walls into the cytoplasm. Type II MIC involves oxidants such as protons that are secreted by microbes such as acid producing bacteria (APB). The biofilms in this case supply the locally high concentrations of oxidants that are corrosive without biocatalysis. This work describes a mechanistic model that is based on the biocatalytic cathodic sulfate reduction (BCSR) theory. The model utilizes charge transfer and mass transfer concepts to describe the SRB biocorrosion process. The model also includes a mechanism to describe APB attack based on the local acidic pH at a pit bottom. A pitting prediction software package has been created based on the mechanisms. It predicts long-term pitting rates and worst-case scenarios after calibration using SRB short-term pit depth data. Various parameters can be investigated through computer simulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Processes affecting transport of uranium in a suboxic aquifer

    USGS Publications Warehouse

    Davis, J.A.; Curtis, G.P.; Wilkins, M.J.; Kohler, M.; Fox, P.; Naftz, D.L.; Lloyd, J.R.

    2006-01-01

    At the Naturita site in Colorado, USA, groundwaters were sampled and analyzed for chemical composition and by culture and culture-independent microbiological techniques. In addition, sediments were extracted with a dilute sodium carbonate solution to determine quantities of labile uranium within the sediments. Samples from the upgradient portion of the contaminated aquifer, where very little dissolved Fe(II) is found in the groundwater, have uranium content that is controlled by U(VI) adsorption and few metal-reducing bacteria are observed. In the extreme downgradient portion of the aquifer, where dissolved Fe(II) is observed, uranium content of the sediments includes significant quantities of reduced U(IV) and diverse populations of Fe(III)-reducing bacteria were present in the subsurface with the potential of reducing U(VI) to U(IV). ?? 2006 Elsevier Ltd. All rights reserved.

  10. POST-MORTEM FINDINGS ON THE PERFORMANCE OF ENGINEERED SRB FIELD-BIOREACTORS FOR ACID MINE DRAINAGE CONTROL

    EPA Science Inventory

    Sulphate-reducing bacteria (SRB) have the ability to immobilize dissolved metals by precipitating them as sulphides, provided that a favourable biochemical environment is created. Such an environment includes the presence of sulphate, anaerobic conditions and the availability of...

  11. The effects of a new therapeutic triclosan/copolymer/sodium-fluoride dentifrice on oral bacteria, including odorigenic species.

    PubMed

    Furgang, David; Sreenivasan, Prem K; Zhang, Yun Po; Fine, Daniel H; Cummins, Diane

    2003-09-01

    This investigation examined the in vitro and ex vivo antimicrobial effects of a new dentifrice, Colgate Total Advanced Fresh, formulated with triclosan/copolymer/sodium fluoride, on oral bacteria, including those odorigenic bacteria implicated in bad breath. The effects of Colgate Total Advanced Fresh were compared to commercially available fluoride dentifrices that served as controls. Three experimental approaches were undertaken for these studies. In the first approach, the dentifrice formulations were tested in vitro against 13 species of oral bacteria implicated in bad breath. The second approach examined the antimicrobial activity derived from dentifrice that was adsorbed to and released from hydroxyapatite disks. In this approach, dentifrice-treated hydroxyapatite disks were immersed in a suspension of bacteria, and reduction in bacterial viability from the release of bioactive agents from hydroxyapatite was determined. The third approach examined the effect of treating bacteria immediately after their removal from the oral cavity of 11 adult human volunteers. This ex vivo study examined the viability of cultivable oral bacteria after dentifrice treatment for 2 minutes. Antimicrobial effects were determined by plating Colgate Total Advanced Fresh and control-dentifrice-treated samples on enriched media (for all cultivable oral bacteria) and indicator media (for hydrogen-sulfide-producing organisms), respectively. Results indicated that the antimicrobial effects of Colgate Total Advanced Fresh were significantly greater than either of the other dentifrices for all 13 oral odorigenic bacterial strains tested in vitro (P < or = 0.05). In the second approach, Colgate Total Advanced Fresh-treated hydroxyapatite disks were significantly more active in reducing bacterial growth than the other dentifrices tested (P < or = 0.05). Finally, ex vivo treatment of oral bacteria with Colgate Total Advanced Fresh demonstrated a 90.9% reduction of all oral cultivable bacteria and a 91.5% reduction of oral bacteria producing hydrogen sulfide compared with the control dentifrice. In conclusion, these results, taken together with the significant reductions in clinical malodor scores by Colgate Total Advanced Fresh demonstrated in organoleptic studies, strongly suggest that this dentifrice kills the bacteria that are implicated in the cause of bad breath.

  12. Metal mobilization by iron- and sulfur-oxidizing bacteria in a multiple extreme mine tailings in the Atacama Desert, Chile.

    PubMed

    Korehi, H; Blöthe, M; Sitnikova, M A; Dold, B; Schippers, A

    2013-03-05

    The marine shore sulfidic mine tailings dump at the Chañaral Bay in the Atacama Desert, northern Chile, is characterized by extreme acidity, high salinity, and high heavy metals concentrations. Due to pyrite oxidation, metals (especially copper) are mobilized under acidic conditions and transported toward the tailings surface and precipitate as secondary minerals (Dold, Environ. Sci. Technol. 2006, 40, 752-758.). Depth profiles of total cell counts in this almost organic-carbon free multiple extreme environment showed variable numbers with up to 10(8) cells g(-1) dry weight for 50 samples at four sites. Real-time PCR quantification and bacterial 16S rRNA gene diversity analysis via clone libraries revealed a dominance of Bacteria over Archaea and the frequent occurrence of the acidophilic iron(II)- and sulfur-oxidizing and iron(III)-reducing genera Acidithiobacillus, Alicyclobacillus, and Sulfobacillus. Acidophilic chemolithoautotrophic iron(II)-oxidizing bacteria were also frequently found via most-probable-number (MPN) cultivation. Halotolerant iron(II)-oxidizers in enrichment cultures were active at NaCl concentrations up to 1 M. Maximal microcalorimetrically determined pyrite oxidation rates coincided with maxima of the pyrite content, total cell counts, and MPN of iron(II)-oxidizers. These findings indicate that microbial pyrite oxidation and metal mobilization preferentially occur in distinct tailings layers at high salinity. Microorganisms for biomining with seawater salt concentrations obviously exist in nature.

  13. New insight on the response of bacteria to fluoride.

    PubMed

    Breaker, R R

    2012-01-01

    Fluoride has been used for decades to prevent caries and it is well established that this anion can inhibit the growth of bacteria. However, the precise effects that fluoride has on bacteria and the mechanisms that bacteria use to overcome fluoride toxicity have largely remained unexplored. Recently, my laboratory reported the discovery of biological systems that bacteria use to sense fluoride and reduce fluoride toxicity. These sensors and their associated genes are very widespread in biology, which has implications for a number of issues that are central to the use of fluoride for dental care. Below I provide a summary of our findings, comment on some of the key prospects for expanding our understanding of fluoride's effects on biology, and propose some future uses of this knowledge. Copyright © 2012 S. Karger AG, Basel.

  14. New Insight on the Response of Bacteria to Fluoride

    PubMed Central

    Breaker, R.R.

    2012-01-01

    Fluoride has been used for decades to prevent caries and it is well established that this anion can inhibit the growth of bacteria. However, the precise effects that fluoride has on bacteria and the mechanisms that bacteria use to overcome fluoride toxicity have largely remained unexplored. Recently, my laboratory reported the discovery of biological systems that bacteria use to sense fluoride and reduce fluoride toxicity. These sensors and their associated genes are very widespread in biology, which has implications for a number of issues that are central to the use of fluoride for dental care. Below I provide a summary of our findings, comment on some of the key prospects for expanding our understanding of fluoride's effects on biology, and propose some future uses of this knowledge. PMID:22327376

  15. Fungal endophytes and their interactions with plants in phytoremediation: A review.

    PubMed

    Deng, Zujun; Cao, Lixiang

    2017-02-01

    Endophytic microorganisms (including bacteria and fungi) are likely to interact closely with their hosts and are more protected from adverse changes in the environment. The microbiota contribute to plant growth, productivity, carbon sequestration, and phytoremediation. Elevated levels of contaminants (i.e. metals) are toxic to most plants, the plant's metabolism and growth were impaired and their potential for metal phytoextraction is highly restricted. Exploiting endophytic microorganisms to reduce metal toxicity to plants have been investigated to improve phytoremediation efficiencies. Fungi play an important role in organic and inorganic transformation, element cycling, rock and mineral transformations, bioweathering, mycogenic mineral formation, fungal-clay interactions, and metal-fungal interactions. Endophytic fungi also showed potentials to enhance phytoremediation. Compared to bacteria, most fungi exhibit a filamentous growth habit, which provides the ability to adopt both explorative or exploitative growth strategies and form linear organs of aggregated hyphae to protect fungal translocation. However, the information regarding the role of endophytic fungi in phytoremediation are incomplete, this review highlights the taxa, physiological properties, and interaction of endophytic fungi with plants in phytoremediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Non-SRB sulfidogenic bacteria in oilfield production facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crolet, J.L.; Magot, M.F.

    1996-03-01

    The characterization of strictly anaerobic bacteria which can reduce thiosulfate into hydrogen sulfide is described. Although thiosulfate reduction is a common metabolism in the bacterial world, its implication regarding microbiologically influenced corrosion has never been investigated. Thiosulfate is in ecosystems where hydrogen sulfide and oxygen come in contact. An example is a sour oil-transporting pipeline in the Gulf of Guinea. In one year, this line corroded by pitting to a depth of about 1 cm.

  17. Physiological and hydrological controls on mineral redox cycling by long-range electron transport by bacteria in anaerobic sediments

    NASA Astrophysics Data System (ADS)

    Michelson, K.; Werth, C. J.; Sanford, R. A.; Valocchi, A. J.

    2016-12-01

    The cycling of iron and manganese oxides plays a critical role in the bioavailability of trace elements and macronutrients, the flux of carbon across terrestrial and atmospheric ecosystems, and the remediation of groundwater contaminated by toxic metals and radionuclides. Bacteria control one half of the redox cycle as the primary drivers of iron and manganese reduction in anaerobic soils and sediments. However, Fe(III) and Mn(IV) are almost exclusively present under anaerobic conditions as insoluble oxides, the reduction of which are facilitated by extracellular electron transport via conductive `nanowires', electron shuttling, and direct contact with outer membrane cytochromes. Our research focus is on the relative contribution of nanowires and electron shuttles under different physiological and hydrological conditions, which remains unexplored. We present a novel microfluidic platform that allows us to directly observe these phenomena under a controlled environment representative of groundwater conditions, monitor the metabolic activity and redox state of bacteria, and determine the presence of reduced products in-situ using Raman spectroscopy. Using Geobacter sulfurreducens and Shewanella oneidensis as model metal-reducing bacteria, and insoluble manganese dioxide (i.e. birnessite) as an electron acceptor, we show that 1) electron shuttling is more effective under static conditions 2) the presence of exogenous shuttles allows efficient electron transport under all flow regimes 3) redox potential of the bulk medium exerts significant control over reduction by both nanowires and electron shuttles 4) shuttling is amplified by orders of magnitude in nanopores.

  18. Coexistence of Fe(II)- and Mn(II)-oxidizing bacteria govern the formation of deep sea umber deposits

    NASA Astrophysics Data System (ADS)

    Peng, Xiaotong; Ta, Kaiwen; Chen, Shun; Zhang, Lijuan; Xu, Hengchao

    2015-11-01

    The genesis of umber deposits has remained controversial for several decades. Recently, microbial Fe(II) oxidation associated with low-temperature diffuse venting has been identified as a key process for the formation of umber deposits, but the exact biogeochemical mechanisms involved to the precipitation of Mn oxides in umber deposits still remain unknown. Here, we used nano secondary ion mass spectrometer, synchrotron-based X-ray absorption spectroscopy, electron microscopy, and molecular techniques to demonstrate the coexistence of two types of metal-oxidizing bacteria within deep-sea hydrothermal umber deposits at the South Mid-Atlantic Ridge, where we found unique spheroids composed of biogenic Fe oxyhydroxides and Mn oxides in the deposits. Our data show that Fe oxyhydroxides and Mn oxides are metabolic by-products of lithotrophic Fe(II)-oxidizing bacteria and heterotrophic Mn(II)-oxidizing bacteria, respectively. The hydrothermal vents fuel lithotrophic microorganisms, which constitute a trophic base that might support the activities of heterogenic Mn(II)-oxidizing bacteria. The biological origin of umber deposits shed light on the importance of geomicrobiological interaction in triggering the formation of metalliferous deposits, with important implications for the generation of submarine Mn deposits and crusts.

  19. Diversity and Distribution of Heavy Metal-Resistant Bacteria in Polluted Sediments of the Araça Bay, São Sebastião (SP), and the Relationship Between Heavy Metals and Organic Matter Concentrations.

    PubMed

    Zampieri, Bruna Del Busso; Pinto, Aline Bartelochi; Schultz, Leonardo; de Oliveira, Marcos Antonio; de Oliveira, Ana Julia Fernandes Cardoso

    2016-10-01

    Heavy metals influence the population size, diversity, and metabolic activity of bacteria. In turn, bacteria can develop heavy metal resistance mechanisms, and this can be used in bioremediation of contaminated areas. The purpose of the present study was to understand how heavy metals concentration influence on diversity and distribution of heavy metal-resistant bacteria in Araça Bay, São Sebastião, on the São Paulo coast of Brazil. The hypothesis is that activities that contribute for heavy metal disposal and the increase of metals concentrations in environment can influence in density, diversity, and distribution of heavy metal-resistant bacteria. Only 12 % of the isolated bacteria were sensitive to all of the metals tested. We observed that the highest percentage of resistant strains were in areas closest to the São Sebastião channel, where port activity occurs and have bigger heavy metals concentrations. Bacterial isolated were most resistant to Cr, followed by Zn, Cd, and Cu. Few strains resisted to Cd levels greater than 200 mg L(-1). In respect to Cr, 36 % of the strains were able to grow in the presence of as much as 3200 mg L(-1). Few strains were able to grow at concentrations of Zn and Cu as high as 1600 mg L(-1), and none grew at the highest concentration of 3200 mg L(-1). Bacillus sp. was most frequently isolated and may be the dominant genus in heavy metal-polluted areas. Staphylococcus sp., Planococcus maritimus, and Vibrio aginolyticus were also isolated, suggesting their potential in bioremediation of contaminated sites.

  20. Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria

    NASA Astrophysics Data System (ADS)

    Bestawy, Ebtesam El.; Helmy, Shacker; Hussien, Hany; Fahmy, Mohamed; Amer, Ranya

    2013-03-01

    Removal of heavy metals from contaminated domestic-industrial effluent using eight resistant indigenous bacteria isolated from acclimatized activated sludge was investigated. Molecular identification using 16S rDNA amplification revealed that all strains were Gram-negative among which two were resistant to each of copper, cadmium and cobalt while one was resistant to each of chromium and the heavy metal mixture. They were identified as Enterobacter sp. (Cu1), Enterobacter sp. (Cu2), Stenotrophomonas sp. (Cd1), Providencia sp. (Cd2), Chryseobacterium sp. (Co1), Comamonas sp. (Co2), Ochrobactrum sp. (Cr) and Delftia sp. (M1) according to their resistance pattern. Strains Cu1, Cd1, Co2 and Cr were able to resist 275 mg Cu/l, 320 mg Cd/l, 140 mg Co/l and 29 mg Cr/l respectively. The four resistant strains were used as a mixture to remove heavy metals (elevated concentrations) and reduce the organic load of wastewater effluent. Results revealed that using the proposed activated sludge with the resistant bacterial mixture was more efficient for heavy metal removal compared to the activated sludge alone. It is therefore recommended that the proposed activated sludge system augmented with the acclimatized strains is the best choice to ensure high treatment efficiency and performance under metal stresses especially when industrial effluents are involved.

  1. TREATMENT OF ACID MINE DRAINAGE: I. EQUILIBRIUM BIOSORPTION OF ZINC AND COPPER ON NON-VIABLE ACTIVATED SLUDGE

    EPA Science Inventory

    Biosorption is potentially attractive technology for treament of acid mine drainage for separation/recovery of metal ions and mitigation of their toxicity to sulfate reducing bacteria. This study describes the equilibrium biosorptio of Zn(II) and CU(II) by nonviable activated slu...

  2. Isolating metal-tolerant bacteria capable of removing copper, chromium, and arsenic from treated wood

    Treesearch

    Carol A. Clausen

    2000-01-01

    Bioremediation of chromated copper arsenate-treated waste wood with one or more metal-tolerant bacteria is a potential method of naturally releasing metals from treated wood fibre. Sampling eight environments with elevated levels of copper, chromium, and arsenic resulted in the isolation of 28 bacteria with the capability of releasing one or more of the components from...

  3. Plant-associated bacteria and their role in the success or failure of metal phytoextraction projects: first observations of a field-related experiment

    PubMed Central

    Weyens, Nele; Beckers, Bram; Schellingen, Kerim; Ceulemans, Reinhart; Croes, Sarah; Janssen, Jolien; Haenen, Stefan; Witters, Nele; Vangronsveld, Jaco

    2013-01-01

    Phytoextraction has been reported as an economically and ecologically sound alternative for the remediation of metal-contaminated soils. Willow is a metal phytoextractor of interest because it allows to combine a gradual contaminant removal with production of biomass that can be valorized in different ways. In this work two willow clones growing on a metal-contaminated site were selected: ‘Belgisch Rood’ (BR) with a moderate metal extraction capacity and ‘Tora’ (TO) with a twice as high metal accumulation. All cultivable bacteria associated with both willow clones were isolated and identified using 16SrDNA ARDRA analysis followed by 16SrDNA sequencing. Further all isolated bacteria were investigated for characteristics that might promote plant growth (production of siderophores, organic acids and indol acetic acid) and for their metal resistance. The genotypic and phenotypic characterization of the isolated bacteria showed that the TO endophytic bacterial population is more diverse and contains a higher percentage of metal-resistant plant growth promoting bacteria than the endophytic population associated with BR. We hypothesize that the difference in the metal accumulation capacity between BR and TO clones might be at least partly related to differences in characteristics of their associated bacterial population. PMID:23425076

  4. Sulphates Removal from Acid Mine Drainage

    NASA Astrophysics Data System (ADS)

    Luptáková, Alena; Mačingová, Eva; Kotuličová, Ingrida; Rudzanová, Dominika

    2016-10-01

    Acid mine drainage (AMD) are a worldwide problem leading to ecological destruction in river basins and the contamination of water sources. AMD are characterized by low pH and high content of heavy metals and sulphates. In order to minimize negative impacts of AMD appropriate treatment techniques has to be chosen. Treatment processes are focused on neutralizing, stabilizing and removing pollutants. From this reason efficient and environmental friendly methods are needed to be developed in order to reduce heavy metals as well as sulphates. Various methods are used for remediation of acid mine drainage, but any of them have been applied under commercial-scale conditions. Their application depends on geochemical, technical, natural, financial, and other factors. The aim of the present work was to interpret the study of biological methods for sulphates removal from AMD out-flowing from the shaft Pech of the deposit Smolmk in Slovak Republic. In the experimental works AMD were used after removal of heavy metals by precipitation and sorption using the synthetic sorbent Slovakite. The base of the studied method for the sulphates elimination was the anaerobic bacterial sulphate reduction using sulphate-reducing bacteria (SRB) genera Desulfovibrio. SRB represent a group of bacteria that uses sulphates as a terminal electron acceptor for their metabolism. These bacteria realize the conversion of sulphate to hydrogen sulphide under anaerobic conditions. For the purposes of experiments a few variants of the selective medium DSM-63 culture media were used in term of the sulphates and sodium lactate contents in the selective medium as well as sulphates in the studied AMD.

  5. Impact of elevated nitrate on sulfate-reducing bacteria: A comparative study of Desulfovibrio vulgaris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Q.; He, Z.; Joyner, D.C.

    2010-07-15

    Sulfate-reducing bacteria have been extensively studied for their potential in heavy-metal bioremediation. However, the occurrence of elevated nitrate in contaminated environments has been shown to inhibit sulfate reduction activity. Although the inhibition has been suggested to result from the competition with nitrate-reducing bacteria, the possibility of direct inhibition of sulfate reducers by elevated nitrate needs to be explored. Using Desulfovibrio vulgaris as a model sulfate-reducing bacterium, functional genomics analysis reveals that osmotic stress contributed to growth inhibition by nitrate as shown by the upregulation of the glycine/betaine transporter genes and the relief of nitrate inhibition by osmoprotectants. The observation thatmore » significant growth inhibition was effected by 70 mM NaNO{sub 3} but not by 70 mM NaCl suggests the presence of inhibitory mechanisms in addition to osmotic stress. The differential expression of genes characteristic of nitrite stress responses, such as the hybrid cluster protein gene, under nitrate stress condition further indicates that nitrate stress response by D. vulgaris was linked to components of both osmotic and nitrite stress responses. The involvement of the oxidative stress response pathway, however, might be the result of a more general stress response. Given the low similarities between the response profiles to nitrate and other stresses, less-defined stress response pathways could also be important in nitrate stress, which might involve the shift in energy metabolism. The involvement of nitrite stress response upon exposure to nitrate may provide detoxification mechanisms for nitrite, which is inhibitory to sulfate-reducing bacteria, produced by microbial nitrate reduction as a metabolic intermediate and may enhance the survival of sulfate-reducing bacteria in environments with elevated nitrate level.« less

  6. In Situ Analysis of a Silver Nanoparticle-Precipitating Shewanella Biofilm by Surface Enhanced Confocal Raman Microscopy

    PubMed Central

    Schkolnik, Gal; Schmidt, Matthias; Mazza, Marco G.; Harnisch, Falk; Musat, Niculina

    2015-01-01

    Shewanella oneidensis MR-1 is an electroactive bacterium, capable of reducing extracellular insoluble electron acceptors, making it important for both nutrient cycling in nature and microbial electrochemical technologies, such as microbial fuel cells and microbial electrosynthesis. When allowed to anaerobically colonize an Ag/AgCl solid interface, S. oneidensis has precipitated silver nanoparticles (AgNp), thus providing the means for a surface enhanced confocal Raman microscopy (SECRaM) investigation of its biofilm. The result is the in-situ chemical mapping of the biofilm as it developed over time, where the distribution of cytochromes, reduced and oxidized flavins, polysaccharides and phosphate in the undisturbed biofilm is monitored. Utilizing AgNp bio-produced by the bacteria colonizing the Ag/AgCl interface, we could perform SECRaM while avoiding the use of a patterned or roughened support or the introduction of noble metal salts and reducing agents. This new method will allow a spatially and temporally resolved chemical investigation not only of Shewanella biofilms at an insoluble electron acceptor, but also of other noble metal nanoparticle-precipitating bacteria in laboratory cultures or in complex microbial communities in their natural habitats. PMID:26709923

  7. Field Deployment for In-situ Metal and Radionuclide Stabilization by Microbial Metabolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turick, C. E.; Knox, A. S.; Dixon, K. L.

    2005-09-26

    A novel biotechnology is reported here that was demonstrated at SRS that facilitates metal and actinide immobilization by incorporating the physiology and ecology of indigenous bacteria. This technology is based on our previous work with pyomelanin-producing bacteria isolated from SRS soils. Through tyrosine supplementation, overproduction of pyomelanin was achieved, which lead ultimately to metal and actinide immobilization, both in-vitro and in-situ. Pyomelanin is a recalcitrant microbial pigment and a humic type compound in the class of melanin pigments. Pyomelanin has electron shuttling and metal chelation capabilities and thus accelerates the bacterial reduction and/or immobilization of metals. Pyomelanin is produced outsidemore » the cell and either diffuses away or attaches to the cell surface. In either case, the reduced pyomelanin is capable of transferring electrons to metals as well as chelating metals. Because of its recalcitrance and redox cycling properties, pyomelanin molecules can be used over and over again for metal transformation. When produced in excess, pyomelanin produced by one bacterial species can be used by other species for metal reduction, thereby extending the utility of pyomelanin and further accelerating metal immobilization rates. Soils contaminated with Ni and U were the focus of this study in order to develop in-situ, metal bioimmobilization technologies. We have demonstrated pyomelanin production in soil from the Tims Branch area of SRS as a result of tyrosine amendments. These results were documented in laboratory soil column studies and field deployment studies. The amended soils demonstrated increased redox behavior and sequestration capacity of U and transition metals following pyomelanin production. Treatments incorporating tyrosine and lactate demonstrated the highest levels of pyomelanin production. In order to determine the potential use of this technology at other areas of SRS, pyomelanin producing bacteria were also quantified from metal contaminated soils at TNX and D areas of SRS. A bacterial culture collection from subsurface studies near P Area of SRS were also evaluated for pyomelanin production. Bacterial densities of pyomelanin producers were determined to be >10{sup 6} cells/g soil at TNX and D areas. In addition, approximately 25% of isolates from P area demonstrated pyomelanin production in the presence of tyrosine. Biogeochemical activity is an ongoing and dynamic process due, in part, to bacterial activity in the subsurface. Bacteria contribute significantly to biotransformation of metals and radionuclides. An understanding and application of the mechanisms of metal and radionuclide reduction offers tremendous potential for development into bioremedial processes and technologies. This report demonstrates the application of recent advances in bacterial physiology and soil ecology for future bioremediation activities involving metal and actinide immobilization.« less

  8. Mini-review: the morphology, mineralogy and microbiology of accumulated iron corrosion products

    PubMed Central

    Little, Brenda J.; Gerke, Tammie L.; Lee, Jason S.

    2014-01-01

    Despite obvious differences in morphology, substratum chemistry and the electrolyte in which they form, accumulations of iron corrosion products have the following characteristics in common: stratification of iron oxides/hydroxides with a preponderance of α-FeOOH (goethite) and accumulation of metals. Bacteria, particularly iron-oxidizing and sulfate-reducing bacteria have been identified in some accumulations. Both biotic and abiotic mechanisms have been used to rationalize observations for particular sets of environmental data. This review is the first to compare observations and interpretations. PMID:25271874

  9. Preventing Bacterial Infections using Metal Oxides Nanocoatings on Bone Implant

    NASA Astrophysics Data System (ADS)

    Duceac, L. D.; Straticiuc, S.; Hanganu, E.; Stafie, L.; Calin, G.; Gavrilescu, S. L.

    2017-06-01

    Nowadays bone implant removal is caused by infection that occurs around it possibly acquired after surgery or during hospitalization. The purpose of this study was to reveal some metal oxides applied as coatings on bone implant thus limiting the usual antibiotics-resistant bacteria colonization. Therefore ZnO, TiO2 and CuO were synthesized and structurally and morphologically analized in order to use them as an alternative antimicrobial agents deposited on bone implant. XRD, SEM, and FTIR characterization techniques were used to identify structure and texture of these nanoscaled metal oxides. These metal oxides nanocoatings on implant surface play a big role in preventing bacterial infection and reducing surgical complications.

  10. Development and Application of Small-Subunit rRNA Probes for Assessment of Selected Thiobacillus Species and Members of the Genus Acidiphilium

    PubMed Central

    Peccia, Jordan; Marchand, Eric A.; Silverstein, Joann; Hernandez, Mark

    2000-01-01

    Culture-dependent studies have implicated sulfur-oxidizing bacteria as the causative agents of acid mine drainage and concrete corrosion in sewers. Thiobacillus species are considered the major representatives of the acid-producing bacteria in these environments. Small-subunit rRNA genes from all of the Thiobacillus and Acidiphilium species catalogued by the Ribosomal Database Project were identified and used to design oligonucleotide DNA probes. Two oligonucleotide probes were synthesized to complement variable regions of 16S rRNA in the following acidophilic bacteria: Thiobacillus ferrooxidans and T. thiooxidans (probe Thio820) and members of the genus Acidiphilium (probe Acdp821). Using 32P radiolabels, probe specificity was characterized by hybridization dissociation temperature (Td) with membrane-immobilized RNA extracted from a suite of 21 strains representing three groups of bacteria. Fluorochrome-conjugated probes were evaluated for use with fluorescent in situ hybridization (FISH) at the experimentally determined Tds. FISH was used to identify and enumerate bacteria in laboratory reactors and environmental samples. Probing of laboratory reactors inoculated with a mixed culture of acidophilic bacteria validated the ability of the oligonucleotide probes to track specific cell numbers with time. Additionally, probing of sediments from an active acid mine drainage site in Colorado demonstrated the ability to identify numbers of active bacteria in natural environments that contain high concentrations of metals, associated precipitates, and other mineral debris. PMID:10877807

  11. The bio-physics of condensation of divalent cations into the bacterial wall has implications for growth of Gram-positive bacteria.

    PubMed

    Rauch, Cyril; Cherkaoui, Mohammed; Egan, Sharon; Leigh, James

    2017-02-01

    The anionic-polyelectrolyte nature of the wall of Gram-positive bacteria has long been suspected to be involved in homeostasis of essential cations and bacterial growth. A better understanding of the coupling between the biophysics and the biology of the wall is essential to understand some key features at play in ion-homeostasis in this living system. We consider the wall as a polyelectrolyte gel and balance the long-range electrostatic repulsion within this structure against the penalty entropy required to condense cations around wall polyelectrolytes. The resulting equations define how cations interact physically with the wall and the characteristic time required for a cation to leave the wall and enter into the bacterium to enable its usage for bacterial metabolism and growth. The model was challenged against experimental data regarding growth of Gram-positive bacteria in the presence of varying concentration of divalent ions. The model explains qualitatively and quantitatively how divalent cations interact with the wall as well as how the biophysical properties of the wall impact on bacterial growth (in particular the initiation of bacterial growth). The interplay between polymer biophysics and the biology of Gram positive bacteria is defined for the first time as a new set of variables that contribute to the kinetics of bacterial growth. Providing an understanding of how bacteria capture essential metal cations in way that does not follow usual binding laws has implications when considering the control of such organisms and their ability to survive and grow in extreme environments. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  12. Trace and minor element variations and sulfur isotopes in crystalline and colloform ZnS: Incorporation mechanisms and implications for their genesis

    USGS Publications Warehouse

    Pfaff, Katharina; Koenig, Alan; Wenzel, Thomas; Ridley, Ian; Hildebrandt, Ludwig H.; Leach, David L.; Markl, Gregor

    2011-01-01

    Various models have been proposed to explain the formation mechanism of colloform sphalerite, but the origin is still under debate. In order to decipher influences on trace element incorporation and sulfur isotope composition, crystalline and colloform sphalerite from the carbonate-hosted Mississippi-Valley Type (MVT) deposit near Wiesloch, SW Germany, were investigated and compared to sphalerite samples from 52 hydrothermal vein-type deposits in the Schwarzwald ore district, SW Germany to study the influence of different host rocks, formation mechanisms and fluid origin on trace element incorporation. Trace and minor element incorporation in sphalerite shows some correlation to their host rock and/or origin of fluid, gangue, paragenetic minerals and precipitation mechanisms (e.g., diagenetic processes, fluid cooling or fluid mixing). Furthermore, crystalline sphalerite is generally enriched in elements like Cd, Cu, Sb and Ag compared to colloform sphalerite that mainly incorporates elements like As, Pb and Tl. In addition, sulfur isotopes are characterized by positive values for crystalline and strongly negative values for colloform sphalerite. The combination of trace element contents, typical minerals associated with colloform sphalerite from Wiesloch, sulfur isotopes and thermodynamic considerations helped to evaluate the involvement of sulfate-reducing bacteria in water-filled karst cavities. Sulfate-reducing bacteria cause a sulfide-rich environment that leads in case of a metal-rich fluid supply to a sudden oversaturation of the fluid with respect to galena, sphalerite and pyrite. This, however, exactly coincides with the observed crystallization sequence of samples involving colloform sphalerite from the Wiesloch MVT deposit.

  13. Surface multiheme c-type cytochromes from Thermincola potens: Implications for dissimilatory metal reduction by Gram-positive bacteria

    NASA Astrophysics Data System (ADS)

    Carlson, H. K.; Iavarone, A. T.; Gorur, A.; Yeo, B. S.; Tran, R.; Melnyk, R. A.; Mathies, R. A.; Auer, M.; Coates, J. D.

    2011-12-01

    Almost nothing is known about the mechanisms of dissimilatory metal reduction by Gram-positive bacteria, although they have been shown to be the dominant species in some environments. Thermincola potens strain JR was isolated from the anode of a microbial fuel cell inoculated with anaerobic digester sludge and operated at 55 °C. Preliminary characterization revealed that T. potens coupled acetate oxidation to the reduction of hydrous ferric oxides (HFO) or the humic substances analog, anthraquinone-2,6-disulfonate (AQDS). The genome of T. potens was recently sequenced, and the abundance of multiheme c-type cytochromes (MHCs) is unusual for a Gram-positive bacterium. We present evidence from trypsin shaving LC-MS/MS experiments and surface-enhanced Raman spectroscopy (SERS) that indicates the expression of a number of MHCs during T. potens growth on either HFO or AQDS and that several MHCs are localized to the cell wall or cell surface of T. potens. Furthermore, one of the MHCs can be extracted from cells with low pH or denaturants suggesting a loose association with the cell wall or cell surface. Electron microscopy does not reveal an S-layer, and the precipitation of silver metal on the cell surface is inhibited by cyanide, supporting the involvement of surface-localized redox-active heme proteins in dissimilatory metal reduction. These results are the first direct evidence for cell-wall associated cytochromes and MHC involvement in conducting electrons across the cell envelope of a Gram-positive bacterium.

  14. Biosorption of multi-heavy metals by coral associated phosphate solubilising bacteria Cronobacter muytjensii KSCAS2.

    PubMed

    Saranya, Kailasam; Sundaramanickam, Arumugam; Shekhar, Sudhanshu; Meena, Moorthy; Sathishkumar, Rengasamy Subramaniyan; Balasubramanian, Thangavel

    2018-06-02

    This paper examines the potential detoxification efficiency of heavy metals by phosphate solubilising bacteria (PSB) that were isolated from coral, sea grass and mangrove environment. Initially, four potential bacterial isolates were selected based on their phosphate solubilisation index from 42 strains and were used for the metal tolerance test. Among the four isolates, KSCAS2 exhibited maximum tolerance to heavy metals and the phenotype indicated the production of extra polymeric substances. In a multi-heavy metal experimental setup at two concentrations (100 and 200 mg L -l ), it has been demonstrated that the bacteria have extracellularly sequestered metal ions in amorphous deposits and this has been confirmed by scanning electron microscopy. In experiments with a 100 mg L -1 initial metal concentration, the percentages of metal removal by bacteria were 55.23% of Cd, 72.45% of Cr, 76.51% of Cu and 61.51% of Zn, respectively. In subsequent experiments, when the metal concentration was increased up to 200 mg L -l , the metal removal capacity decreased as follows: 44.62%, 63.1%, 67% and 52.80% for Cd, Cr, Cu and Zn, respectively. In addition, the biosorption of heavy metals was confirmed by the Fourier transform infrared Spectroscopy (FT-IR) and scanning electron microscopy (SEM) analysis. The heavy metal concentrations in a broth culture were analysed by inductively coupled plasma-optical emission spectroscopy (ICP-OES). The study suggests that PSB Cronobacter muytjensii KSCAS2 can efficiently remove the heavy metals and these bacteria could be used for the metal removal from the agricultural soils. Copyright © 2018. Published by Elsevier Ltd.

  15. The ecology and biotechnology of sulphate-reducing bacteria.

    PubMed

    Muyzer, Gerard; Stams, Alfons J M

    2008-06-01

    Sulphate-reducing bacteria (SRB) are anaerobic microorganisms that use sulphate as a terminal electron acceptor in, for example, the degradation of organic compounds. They are ubiquitous in anoxic habitats, where they have an important role in both the sulphur and carbon cycles. SRB can cause a serious problem for industries, such as the offshore oil industry, because of the production of sulphide, which is highly reactive, corrosive and toxic. However, these organisms can also be beneficial by removing sulphate and heavy metals from waste streams. Although SRB have been studied for more than a century, it is only with the recent emergence of new molecular biological and genomic techniques that we have begun to obtain detailed information on their way of life.

  16. Unintended Laboratory-Driven Evolution Reveals Genetic Requirements for Biofilm Formation by Desulfovibrio vulgaris Hildenborough

    DOE PAGES

    De León, Kara B.; Zane, Grant M.; Trotter, Valentine V.; ...

    2017-10-17

    Biofilms of sulfate-reducing bacteria (SRB) are of particular interest as members of this group are culprits in corrosion of industrial metal and concrete pipelines as well as being key players in subsurface metal cycling. Yet the mechanism of biofilm formation by these bacteria has not been determined. Here in this paper, we show that two supposedly identical wild-type cultures of the SRBDesulfovibrio vulgarisHildenborough maintained in different laboratories have diverged in biofilm formation. From genome resequencing and subsequent mutant analyses, we discovered that a single nucleotide change within DVU1017, the ABC transporter of a type I secretion system (T1SS), was sufficientmore » to eliminate biofilm formation inD. vulgarisHildenborough. Two T1SS cargo proteins were identified as likely biofilm structural proteins, and the presence of at least one (with either being sufficient) was shown to be required for biofilm formation. Antibodies specific to these biofilm structural proteins confirmed that DVU1017, and thus the T1SS, is essential for localization of these adhesion proteins on the cell surface. We propose that DVU1017 is a member of the lapB category of microbial surface proteins because of its phenotypic similarity to the adhesin export system described for biofilm formation in the environmental pseudomonads. These findings have led to the identification of two functions required for biofilm formation in D. vulgaris Hildenborough and focus attention on the importance of monitoring laboratory-driven evolution, as phenotypes as fundamental as biofilm formation can be altered. The growth of bacteria attached to a surface (i.e., biofilm), specifically biofilms of sulfate-reducing bacteria, has a profound impact on the economy of developed nations due to steel and concrete corrosion in industrial pipelines and processing facilities. Furthermore, the presence of sulfate-reducing bacteria in oil wells causes oil souring from sulfide production, resulting in product loss, a health hazard to workers, and ultimately abandonment of wells. Identification of the required genes is a critical step for determining the mechanism of biofilm formation by sulfate reducers. Here, the transporter by which putative biofilm structural proteins are exported from sulfate-reducing Desulfovibrio vulgaris Hildenborough cells was discovered, and a single nucleotide change within the gene coding for this transporter was found to be sufficient to completely stop formation of biofilm.« less

  17. Unintended Laboratory-Driven Evolution Reveals Genetic Requirements for Biofilm Formation by Desulfovibrio vulgaris Hildenborough

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De León, Kara B.; Zane, Grant M.; Trotter, Valentine V.

    Biofilms of sulfate-reducing bacteria (SRB) are of particular interest as members of this group are culprits in corrosion of industrial metal and concrete pipelines as well as being key players in subsurface metal cycling. Yet the mechanism of biofilm formation by these bacteria has not been determined. Here in this paper, we show that two supposedly identical wild-type cultures of the SRBDesulfovibrio vulgarisHildenborough maintained in different laboratories have diverged in biofilm formation. From genome resequencing and subsequent mutant analyses, we discovered that a single nucleotide change within DVU1017, the ABC transporter of a type I secretion system (T1SS), was sufficientmore » to eliminate biofilm formation inD. vulgarisHildenborough. Two T1SS cargo proteins were identified as likely biofilm structural proteins, and the presence of at least one (with either being sufficient) was shown to be required for biofilm formation. Antibodies specific to these biofilm structural proteins confirmed that DVU1017, and thus the T1SS, is essential for localization of these adhesion proteins on the cell surface. We propose that DVU1017 is a member of the lapB category of microbial surface proteins because of its phenotypic similarity to the adhesin export system described for biofilm formation in the environmental pseudomonads. These findings have led to the identification of two functions required for biofilm formation in D. vulgaris Hildenborough and focus attention on the importance of monitoring laboratory-driven evolution, as phenotypes as fundamental as biofilm formation can be altered. The growth of bacteria attached to a surface (i.e., biofilm), specifically biofilms of sulfate-reducing bacteria, has a profound impact on the economy of developed nations due to steel and concrete corrosion in industrial pipelines and processing facilities. Furthermore, the presence of sulfate-reducing bacteria in oil wells causes oil souring from sulfide production, resulting in product loss, a health hazard to workers, and ultimately abandonment of wells. Identification of the required genes is a critical step for determining the mechanism of biofilm formation by sulfate reducers. Here, the transporter by which putative biofilm structural proteins are exported from sulfate-reducing Desulfovibrio vulgaris Hildenborough cells was discovered, and a single nucleotide change within the gene coding for this transporter was found to be sufficient to completely stop formation of biofilm.« less

  18. Novel tools for in situ detection of biodiversity and function of dechlorinating and uranium-reducing bacteria in contaminated environments

    USDA-ARS?s Scientific Manuscript database

    Toxic heavy metals and radionuclides pose a growing, global threat to the environment. For an intelligent remediation design, reliable analytical tools for detection of relevant species are needed, such as PCR. However, PCR cannot visualize its targets and thus provide information about the morpholo...

  19. MICROBIAL SULFATE REDUCTION AND METAL ATTENUATION IN PH 4 ACID MINE WATER

    EPA Science Inventory

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing...

  20. Water-based binary polyol process for the controllable synthesis of silver nanoparticles inhibiting human and foodborne pathogenic bacteria

    USDA-ARS?s Scientific Manuscript database

    The polyol process is a widely used strategy for producing nanoparticles from various reducible metallic precursors; however it requires a bulk polyol liquid reaction with additional protective agents at high temperatures. Here, we report a water-based binary polyol process using low concentrations ...

  1. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents.

    PubMed

    Allahverdiyev, Adil M; Kon, Kateryna Volodymyrivna; Abamor, Emrah Sefik; Bagirova, Malahat; Rafailovich, Miriam

    2011-11-01

    The worldwide escalation of bacterial resistance to conventional medical antibiotics is a serious concern for modern medicine. High prevalence of multidrug-resistant bacteria among bacteria-based infections decreases effectiveness of current treatments and causes thousands of deaths. New improvements in present methods and novel strategies are urgently needed to cope with this problem. Owing to their antibacterial activities, metallic nanoparticles represent an effective solution for overcoming bacterial resistance. However, metallic nanoparticles are toxic, which causes restrictions in their use. Recent studies have shown that combining nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells by decreasing the requirement for high dosages but also enhances their bactericidal properties. Combining antibiotics with nanoparticles also restores their ability to destroy bacteria that have acquired resistance to them. Furthermore, nanoparticles tagged with antibiotics have been shown to increase the concentration of antibiotics at the site of bacterium-antibiotic interaction, and to facilitate binding of antibiotics to bacteria. Likewise, combining nanoparticles with antimicrobial peptides and essential oils generates genuine synergy against bacterial resistance. In this article, we aim to summarize recent studies on interactions between nanoparticles and antibiotics, as well as other antibacterial agents to formulate new prospects for future studies. Based on the promising data that demonstrated the synergistic effects of antimicrobial agents with nanoparticles, we believe that this combination is a potential candidate for more research into treatments for antibiotic-resistant bacteria.

  2. Biosorption of heavy metal ions on Rhodobacter sphaeroides and Alcaligenes eutrophus H16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seki, Hideshi; Suzuki, Akira; Mitsueda, Shinichiro

    1998-01-15

    A fundamental study of the application of bacteria to the recovery of toxic heavy metals from aqueous environments was carried out. The biosorption characteristics of cadmium and lead ions were determined with purple nonsulfur bacteria, Rhodobacter sphaeroides and hydrogen bacteria, Alcaligenes eutrophus H16 that were inactivated by steam sterilization. A simplified version of the metal binding model proposed by Plette et al. was used for the description of meal binding data. The results showed that the biosorption of bivalent metal ions to whole cell bodies of the bacteria was due to monodentate binding to two different types of acidic sites:more » carboxilic and phosphatic-type sites. The number of metal binding sites of A. eutrophus was 2.4-fold larger than that of R. sphaeroides.« less

  3. Macrotextured Breast Implants with Defined Steps to Minimize Bacterial Contamination around the Device: Experience in 42,000 Implants.

    PubMed

    Adams, William P; Culbertson, Eric J; Deva, Anand K; R Magnusson, Mark; Layt, Craig; Jewell, Mark L; Mallucci, Patrick; Hedén, Per

    2017-09-01

    Bacteria/biofilm on breast implant surfaces has been implicated in capsular contracture and breast implant-associated anaplastic large-cell lymphoma (ALCL). Macrotextured breast implants have been shown to harbor more bacteria than smooth or microtextured implants. Recent reports also suggest that macrotextured implants are associated with a significantly higher incidence of breast implant-associated ALCL. Using techniques to reduce the number of bacteria around implants, specifically, the 14-point plan, has successfully minimized the occurrence of capsular contracture. The authors hypothesize that a similar effect may be seen in reducing the risk of breast implant-associated ALCL. Pooled data from eight plastic surgeons assessed the use of macrotextured breast implants (Biocell and polyurethane) and known cases of breast implant-associated ALCL. Surgeon adherence to the 14-point plan was also analyzed. A total of 42,035 Biocell implants were placed in 21,650 patients; mean follow-up was 11.7 years (range, 1 to 14 years). A total of 704 polyurethane implants were used, with a mean follow-up of 8.0 years (range, 1 to 20 years). The overall capsular contracture rate was 2.2 percent. There were no cases of implant-associated ALCL. All surgeons routinely performed all 13 perioperative components of the 14-point plan; two surgeons do not routinely prescribe prophylaxis for subsequent unrelated procedures. Mounting evidence implicates the role of a sustained T-cell response to implant bacteria/biofilm in the development of breast implant-associated ALCL. Using the principles of the 14-point plan to minimize bacterial load at the time of surgery, the development and subsequent sequelae of capsular contracture and breast implant-associated ALCL may be reduced, especially with higher-risk macrotextured implants. Therapeutic, IV.

  4. A New Type of Metal-Binding Site in Cobalt- And Zinc-Containing Adenylate Kinases Isolated From Sulfate-Reducers D. Gigas And D. Desulfuricans ATCC 27774

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavel, O.Y.; Bursakov, S.A.; Rocco, G.Di

    2009-05-18

    Adenylate kinase (AK) mediates the reversible transfer of phosphate groups between the adenylate nucleotides and contributes to the maintenance of their constant cellular level, necessary for energy metabolism and nucleic acid synthesis. The AK were purified from crude extracts of two sulfate-reducing bacteria (SRB), Desulfovibrio (D.) gigas NCIB 9332 and Desulfovibrio desulfuricans ATCC 27774, and biochemically and spectroscopically characterized in the native and fully cobalt- or zinc-substituted forms. These are the first reported adenylate kinases that bind either zinc or cobalt and are related to the subgroup of metal-containing AK found, in most cases, in Gram-positive bacteria. The electronic absorptionmore » spectrum is consistent with tetrahedral coordinated cobalt, predominantly via sulfur ligands, and is supported by EPR. The involvement of three cysteines in cobalt or zinc coordination was confirmed by chemical methods. Extended X-ray absorption fine structure (EXAFS) indicate that cobalt or zinc are bound by three cysteine residues and one histidine in the metal-binding site of the 'LID' domain. The sequence {sup 129}Cys-X{sub 5}-His-X{sub 15}-Cys-X{sub 2}-Cys of the AK from D. gigas is involved in metal coordination and represents a new type of binding motif that differs from other known zinc-binding sites of AK. Cobalt and zinc play a structural role in stabilizing the LID domain.« less

  5. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust

    PubMed Central

    Enning, Dennis; Venzlaff, Hendrik; Garrelfs, Julia; Dinh, Hang T; Meyer, Volker; Mayrhofer, Karl; Hassel, Achim W; Stratmann, Martin; Widdel, Friedrich

    2012-01-01

    Iron (Fe0) corrosion in anoxic environments (e.g. inside pipelines), a process entailing considerable economic costs, is largely influenced by microorganisms, in particular sulfate-reducing bacteria (SRB). The process is characterized by formation of black crusts and metal pitting. The mechanism is usually explained by the corrosiveness of formed H2S, and scavenge of ‘cathodic’ H2 from chemical reaction of Fe0 with H2O. Here we studied peculiar marine SRB that grew lithotrophically with metallic iron as the only electron donor. They degraded up to 72% of iron coupons (10 mm × 10 mm × 1 mm) within five months, which is a technologically highly relevant corrosion rate (0.7 mm Fe0 year−1), while conventional H2-scavenging control strains were not corrosive. The black, hard mineral crust (FeS, FeCO3, Mg/CaCO3) deposited on the corroding metal exhibited electrical conductivity (50 S m−1). This was sufficient to explain the corrosion rate by electron flow from the metal (4Fe0 → 4Fe2+ + 8e−) through semiconductive sulfides to the crust-colonizing cells reducing sulfate (8e− + SO42− + 9H+ → HS− + 4H2O). Hence, anaerobic microbial iron corrosion obviously bypasses H2 rather than depends on it. SRB with such corrosive potential were revealed at naturally high numbers at a coastal marine sediment site. Iron coupons buried there were corroded and covered by the characteristic mineral crust. It is speculated that anaerobic biocorrosion is due to the promiscuous use of an ecophysiologically relevant catabolic trait for uptake of external electrons from abiotic or biotic sources in sediments. PMID:22616633

  6. Native Phytoremediation Potential of Urtica dioica for Removal of PCBs and Heavy Metals Can Be Improved by Genetic Manipulations Using Constitutive CaMV 35S Promoter.

    PubMed

    Viktorova, Jitka; Jandova, Zuzana; Madlenakova, Michaela; Prouzova, Petra; Bartunek, Vilem; Vrchotova, Blanka; Lovecka, Petra; Musilova, Lucie; Macek, Tomas

    2016-01-01

    Although stinging nettle (Urtica dioica) has been shown to reduce HM (heavy metal) content in soil, its wider phytoremediation potential has been neglected. Urtica dioica was cultivated in soils contaminated with HMs or polychlorinated biphenyls (PCBs). After four months, up to 33% of the less chlorinated biphenyls and 8% of HMs (Zn, Pb, Cd) had been removed. Bacteria were isolated from the plant tissue, with the endophytic bacteria Bacillus shackletonii and Streptomyces badius shown to have the most significant effect. These bacteria demonstrated not only benefits for plant growth, but also extreme tolerance to As, Zn and Pb. Despite these results, the native phytoremediation potential of nettles could be improved by biotechnologies. Transient expression was used to investigate the functionality of the most common constitutive promoter, CaMV 35S in Urtica dioica. This showed the expression of the CUP and bphC transgenes. Collectively, our findings suggest that remediation by stinging nettle could have a much wider range of applications than previously thought.

  7. Native Phytoremediation Potential of Urtica dioica for Removal of PCBs and Heavy Metals Can Be Improved by Genetic Manipulations Using Constitutive CaMV 35S Promoter

    PubMed Central

    Viktorova, Jitka; Jandova, Zuzana; Madlenakova, Michaela; Prouzova, Petra; Bartunek, Vilem; Vrchotova, Blanka; Lovecka, Petra; Musilova, Lucie; Macek, Tomas

    2016-01-01

    Although stinging nettle (Urtica dioica) has been shown to reduce HM (heavy metal) content in soil, its wider phytoremediation potential has been neglected. Urtica dioica was cultivated in soils contaminated with HMs or polychlorinated biphenyls (PCBs). After four months, up to 33% of the less chlorinated biphenyls and 8% of HMs (Zn, Pb, Cd) had been removed. Bacteria were isolated from the plant tissue, with the endophytic bacteria Bacillus shackletonii and Streptomyces badius shown to have the most significant effect. These bacteria demonstrated not only benefits for plant growth, but also extreme tolerance to As, Zn and Pb. Despite these results, the native phytoremediation potential of nettles could be improved by biotechnologies. Transient expression was used to investigate the functionality of the most common constitutive promoter, CaMV 35S in Urtica dioica. This showed the expression of the CUP and bphC transgenes. Collectively, our findings suggest that remediation by stinging nettle could have a much wider range of applications than previously thought. PMID:27930707

  8. Effects of toxic metals and chemicals on biofilm and biocorrosion.

    PubMed

    Fang, Herbert H P; Xu, Li-Chong; Chan, Kwong-Yu

    2002-11-01

    Microbes in marine biofilms aggregated into clusters and increased the production of extracellular polymeric substances (EPS), by over 100% in some cases, when the seawater media containing toxic metals and chemicals, such as Cd(II), Cu(II), Pb(II), Zn(II), AI(III), Cr(III), glutaraldehyde, and phenol. The formation of microbial cluster and the increased production of EPS, which contained 84-92% proteins and 8-16% polysaccharides, accelerated the corrosion of the mild steel. However, there was no quantitative relationship between the degree of increased corrosion and the toxicity of metals/chemicals towards sulfate-reducing bacteria, or the increased EPS production.

  9. The Role of Oral Cavity Biofilm on Metallic Biomaterial Surface Destruction-Corrosion and Friction Aspects.

    PubMed

    Mystkowska, Joanna; Niemirowicz-Laskowska, Katarzyna; Łysik, Dawid; Tokajuk, Grażyna; Dąbrowski, Jan R; Bucki, Robert

    2018-03-06

    Metallic biomaterials in the oral cavity are exposed to many factors such as saliva, bacterial microflora, food, temperature fluctuations, and mechanical forces. Extreme conditions present in the oral cavity affect biomaterial exploitation and significantly reduce its biofunctionality, limiting the time of exploitation stability. We mainly refer to friction, corrosion, and biocorrosion processes. Saliva plays an important role and is responsible for lubrication and biofilm formation as a transporter of nutrients for microorganisms. The presence of metallic elements in the oral cavity may lead to the formation of electro-galvanic cells and, as a result, may induce corrosion. Transitional microorganisms such as sulfate-reducing bacteria may also be present among the metabolic microflora in the oral cavity, which can induce biological corrosion. Microorganisms that form a biofilm locally change the conditions on the surface of biomaterials and contribute to the intensification of the biocorrosion processes. These processes may enhance allergy to metals, inflammation, or cancer development. On the other hand, the presence of saliva and biofilm may significantly reduce friction and wear on enamel as well as on biomaterials. This work summarizes data on the influence of saliva and oral biofilms on the destruction of metallic biomaterials.

  10. The Role of Oral Cavity Biofilm on Metallic Biomaterial Surface Destruction–Corrosion and Friction Aspects

    PubMed Central

    Niemirowicz-Laskowska, Katarzyna; Łysik, Dawid; Tokajuk, Grażyna; Dąbrowski, Jan R.; Bucki, Robert

    2018-01-01

    Metallic biomaterials in the oral cavity are exposed to many factors such as saliva, bacterial microflora, food, temperature fluctuations, and mechanical forces. Extreme conditions present in the oral cavity affect biomaterial exploitation and significantly reduce its biofunctionality, limiting the time of exploitation stability. We mainly refer to friction, corrosion, and biocorrosion processes. Saliva plays an important role and is responsible for lubrication and biofilm formation as a transporter of nutrients for microorganisms. The presence of metallic elements in the oral cavity may lead to the formation of electro-galvanic cells and, as a result, may induce corrosion. Transitional microorganisms such as sulfate-reducing bacteria may also be present among the metabolic microflora in the oral cavity, which can induce biological corrosion. Microorganisms that form a biofilm locally change the conditions on the surface of biomaterials and contribute to the intensification of the biocorrosion processes. These processes may enhance allergy to metals, inflammation, or cancer development. On the other hand, the presence of saliva and biofilm may significantly reduce friction and wear on enamel as well as on biomaterials. This work summarizes data on the influence of saliva and oral biofilms on the destruction of metallic biomaterials. PMID:29509686

  11. Biological accumulation of tellurium nanorod structures via reduction of tellurite by Shewanella oneidensis MR-1.

    PubMed

    Kim, Dong-Hun; Kanaly, Robert A; Hur, Hor-Gil

    2012-12-01

    The dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, reduced tellurite (Te(IV), TeO(3)(2-)) to elemental tellurium under anaerobic conditions resulting in the intracellular accumulation of needle shaped crystalline Te(0) nanorods. Fatty acid analyses showed that toxic Te(IV) increased the unsaturated fatty acid composition of the lipid components of the cell membrane, implying a deconstruction of the integrity of the cellular membrane structure. The current results suggest that dissimilatory metal reducing bacteria such as S. oneidensis MR-1 may play an important role in recycling toxic tellurium elements, and may be applied as a novel selective biological filter via the accumulation of industry-applicable rare materials, Te(0) nanorods, in the cell. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Detection of γ-radiation and heavy metals using electrochemical bacterial-based sensor

    NASA Astrophysics Data System (ADS)

    Al-Shanawa, M.; Nabok, A.; Hashim, A.; Smith, T.; Forder, S.

    2013-06-01

    The main aim of this work is to develop a simple electrochemical sensor for detection of γ-radiation and heavy metals using bacteria. A series of DC and AC electrical measurements were carried out on samples of two types of bacteria, namely Escherichia coli and Deinococcus radiodurans. As a first step, a correlation between DC and AC electrical conductivity and bacteria concentration in solution was established. The study of the effect of γ-radiation and heavy metal ions (Cd2+) on DC and AC electrical characteristics of bacteria revealed a possibility of pattern recognition of the above inhibition factors.

  13. Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains.

    PubMed

    Lin, Xiaoyan; Mou, Renxiang; Cao, Zhaoyun; Xu, Ping; Wu, Xiaoliang; Zhu, Zhiwei; Chen, Mingxue

    2016-11-01

    Cadmium (Cd) pollution is a serious widespread environmental problem that not only destroys the microbial ecology of soil and decreases crop production, but also poses a serious risk to human health. Many methods have been used for the remediation of Cd pollution but none of these is totally satisfactory. Microbial remediation strategies have attracted increasing interest since they are environmentally friendly and cost-effective. In the present study, three Cd-resistant bacteria were isolated and evaluated for potential application in Cd bioremediation. Based on their morphological, physiological and biochemical characteristics, together with 16S rDNA gene sequence analyses, bacteria were identified as Stenotrophomonas acidaminiphila (2#), Pseudomonas aeruginosa (9#) and Delftia tsuruhatensis (12#). Pseudomonas aeruginosa showed very high tolerance to metals, especially Cd (2200mg/L), Zn (1800mg/L) and Pb (1200mg/L), and is thought to be a multi-metal-resistant bacterium. Pseudomonas aeruginosa was also sensitive to 13 different antibiotics. The effects of the bacterial strains on the growth of rice plants and their ability to reduce Cd accumulation from Cd-contaminated soils in pot experiments were also evaluated. For Oryza sativa L. A grown in contaminated soil (3mg/kg Cd), the accumulation of Cd was decreased by 31.2 and 25.5% in brown rice and polished rice, respectively, by strain 9#; Pseudomonas aeruginosa was more effective in reducing Cd accumulation in rice grains than a mixture of strains. For Oryza sativa L. B, a mixture of strains acting synergistically was more effective than a single strain in reducing Cd accumulation; treatment with mixed strains (strains+3mg/kg Cd) resulted in 41.3, 35.9, and 32.6% reductions in Cd accumulation in unhulled rice, brown rice and polished rice, respectively. Although different results were obtained for two rice varieties, it can still be concluded that Cd-resistant bacteria are suitable for reducing Cd accumulation in rice grains and show potential for bioremediation of Cd-contaminated soils. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Method of microbially producing metal gallate spinel nano-objects, and compositions produced thereby

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duty, Chad E.; Jellison, Jr., Gerald E.; Love, Lonnie J.

    A method of forming a metal gallate spinel structure that includes mixing a divalent metal-containing salt and a gallium-containing salt in solution with fermentative or thermophilic bacteria. In the process, the bacteria nucleate metal gallate spinel nano-objects from the divalent metal-containing salt and the gallium-containing salt without requiring reduction of a metal in the solution. The metal gallate spinel structures, as well as light-emitting structures in which they are incorporated, are also described.

  15. Synthesis of Metal Nanoparticles in Metal-Phenolic Networks: Catalytic and Antimicrobial Applications of Coated Textiles.

    PubMed

    Yun, Gyeongwon; Pan, Shuaijun; Wang, Ting-Yi; Guo, Junling; Richardson, Joseph J; Caruso, Frank

    2018-03-01

    The synthesis of metal nanoparticle (NP)-coated textiles (nanotextiles) is achieved by a dipping process in water without toxic chemicals or complicated synthetic procedures. By taking advantage of the unique nature of tannic acid, metal-phenolic network-coated textiles serve as reducing and stabilizing sites for the generation of metal nanoparticles of controllable size. The textiles can be decorated with various metal nanoparticles, including palladium, silver, or gold, and exhibit properties derived from the presence of the metal nanoparticles, for example, catalytic activity in water (>96% over five cycles using palladium nanoparticles) and antibacterial activity against Gram-negative bacteria (inhibition of Escherichia coli using silver nanoparticles) that outperforms a commercial bandage. The reported strategy offers opportunities for the development of hybrid nanomaterials that may have application in fields outside of catalysis and antimicrobials, such as sensing and smart clothing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Bioreduction of vanadium (V) in groundwater by autohydrogentrophic bacteria: Mechanisms and microorganisms.

    PubMed

    Xu, Xiaoyin; Xia, Siqing; Zhou, Lijie; Zhang, Zhiqiang; Rittmann, Bruce E

    2015-04-01

    As one of the transition metals, vanadium (V) (V(V)) in trace amounts represents an essential element for normal cell growth, but becomes toxic when its concentration is above 1mg/L. V(V) can alter cellular differentiation, gene expression, and other biochemical and metabolic phenomena. A feasible method to detoxify V(V) is to reduce it to V(IV), which precipitates and can be readily removed from the water. The bioreduction of V(V) in a contaminated groundwater was investigated using autohydrogentrophic bacteria and hydrogen gas as the electron donor. Compared with the previous organic donors, H2 shows the advantages as an ideal electron donor, including nontoxicity and less production of excess biomass. V(V) was 95.5% removed by biochemical reduction when autohydrogentrophic bacteria and hydrogen were both present, and the reduced V(IV) precipitated, leading to total-V removal. Reduction kinetics could be described by a first-order model and were sensitive to pH and temperature, with the optimum ranges of pH7.5-8.0 and 35-40°C, respectively. Phylogenetic analysis by clone library showed that the dominant species in the experiments with V(V) bioreduction belonged to the β-Proteobacteria. Previously known V(V)-reducing species were absent, suggesting that V(V) reduction was carried out by novel species. Their selective enrichment during V(V) bioreduction suggests that Rhodocyclus, a denitrifying bacterium, and Clostridium, a fermenter known to carry out metal reduction, were responsible for V(V) bioreduction. Copyright © 2015. Published by Elsevier B.V.

  17. Molecular investigation on the binding of Cd(II) by the binary mixtures of montmorillonite with two bacterial species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Huihui; Qu, ChenChen; Liu, Jing

    Bacteria and phyllosilicate commonly coexist in the natural environment, producing various bacteria–clay complexes that are capable of immobilizing heavy metals, such as cadmium, via adsorption. However, the molecular binding mechanisms of heavy metals on these complex aggregates still remain poorly understood. This study investigated Cd adsorption on Gram-positive B. subtilis, Gram-negative P. putida and their binary mixtures with montmorillonite (Mont) using the Cd K-edge x-ray absorption spectroscopy (XAS) and isothermal titration calorimetry (ITC). We observed a lower adsorptive capacity for P. putida than B. subtilis, whereas P. putida–Mont and B. subtilis–Mont mixtures showed nearly identical Cd adsorption behaviors. EXAFS fitsmore » and ITC measurements demonstrated more phosphoryl binding of Cd in P. putida. The decreased coordination of C atoms around Cd and the reduced adsorption enthalpies and entropies for the binary mixtures compared to that for individual bacteria suggested that the bidentate Cd-carboxyl complexes in pure bacteria systems were probably transformed into monodentate complexes that acted as ionic bridging structure between bacteria and motmorillonite. This study clarified the binding mechanism of Cd at the bacteria–phyllosilicate interfaces from a molecular and thermodynamic view, which has an environmental significance for predicting the chemical behavior of trace elements in complex mineral–organic systems.« less

  18. Characterization of cadmium biosorption by Exiguobacterium sp. isolated from farmland soil near Cu-Pb-Zn mine.

    PubMed

    Park, Jin Hee; Chon, Hyo-Taek

    2016-06-01

    Bacteria have the ability to bind heavy metals on their cell wall. Biosorption is a passive and energy-independent mechanism to adsorb heavy metals. The efficiency of heavy metal biosorption can vary depending on several factors such as the growth phase of bacteria, solution pH, and existence of competitive heavy metals. In this study, Exiguobacterium sp. isolated from farmland soil near a mine site were used, and optimal conditions for Cd biosorption in solution were investigated. As bacterial growth progressed, Cd biosorption increased, which is attributed to changes in the structure and composition of the cell wall during bacterial growth. The biosorption process was rapid and was completed within 30 min. Cadmium biosorption was highest at pH 7 due to the dissociation of hydrogen ions and the increase of negative charges with increasing pH. In the mixed metal solution of Cd, Pb, and Zn, the amount of biosorption was in the order of Pb>Cd>Zn while in a single metal solution, the order was Cd≥Pb>Zn. The maximum adsorption capacity for Cd by the isolated bacteria was 15.6 mg/g biomass, which was calculated from the Langmuir isotherm model. Different adsorption efficiencies under various environmental conditions indicate that, to control metal mobility, the conditions for biosorption should be optimized before applying bacteria. The results showed that the isolated bacteria can be used to immobilize metals in metal-contaminated wastewater.

  19. Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants.

    PubMed

    Das, Surajit; Dash, Hirak R; Chakraborty, Jaya

    2016-04-01

    Metal pollution is one of the most persistent and complex environmental issues, causing threat to the ecosystem and human health. On exposure to several toxic metals such as arsenic, cadmium, chromium, copper, lead, and mercury, several bacteria has evolved with many metal-resistant genes as a means of their adaptation. These genes can be further exploited for bioremediation of the metal-contaminated environments. Many operon-clustered metal-resistant genes such as cadB, chrA, copAB, pbrA, merA, and NiCoT have been reported in bacterial systems for cadmium, chromium, copper, lead, mercury, and nickel resistance and detoxification, respectively. The field of environmental bioremediation has been ameliorated by exploiting diverse bacterial detoxification genes. Genetic engineering integrated with bioremediation assists in manipulation of bacterial genome which can enhance toxic metal detoxification that is not usually performed by normal bacteria. These techniques include genetic engineering with single genes or operons, pathway construction, and alternations of the sequences of existing genes. However, numerous facets of bacterial novel metal-resistant genes are yet to be explored for application in microbial bioremediation practices. This review describes the role of bacteria and their adaptive mechanisms for toxic metal detoxification and restoration of contaminated sites.

  20. Enhance wastewater biological treatment through the bacteria induced graphene oxide hydrogel.

    PubMed

    Shen, Liang; Jin, Ziheng; Wang, Dian; Wang, Yuanpeng; Lu, Yinghua

    2018-01-01

    The interaction between bacteria and graphene-family materials like pristine graphene, graphene oxide (GO) and reduced graphene oxide (rGO) is such an elusive issue that its implication in environmental biotechnology is unclear. Herein, two kinds of self-assembled bio-rGO-hydrogels (BGHs) were prepared by cultivating specific Shewanella sp. strains with GO solution for the first time. The microscopic examination by SEM, TEM and CLSM indicated a porous 3D structure of BGHs, in which live bacteria firmly anchored and extracellular polymeric substances (EPS) abundantly distributed. Spectra of XRD, FTIR, XPS and Raman further proved that GO was reduced to rGO by bacteria along with the gelation process, which suggests a potential green technique to produce graphene. Based on the characterization results, four mechanisms for the BGH formation were proposed, i.e., stacking, bridging, rolling and cross-linking of rGO sheets, through the synergistic effect of activities and EPS from special bacteria. More importantly, the BGHs obtained in this study were found able to achieve unique cleanup performance that the counterpart free bacteria could not fulfill, as exemplified in Congo red decolorization and Cr(VI) bioreduction. These findings therefore enlighten a prospective application of graphene materials for the biological treatment of wastewaters in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Conformational and thermodynamic hallmarks of DNA operator site specificity in the copper sensitive operon repressor from Streptomyces lividans

    PubMed Central

    Tan, Benedict G.; Vijgenboom, Erik; Worrall, Jonathan A. R.

    2014-01-01

    Metal ion homeostasis in bacteria relies on metalloregulatory proteins to upregulate metal resistance genes and enable the organism to preclude metal toxicity. The copper sensitive operon repressor (CsoR) family is widely distributed in bacteria and controls the expression of copper efflux systems. CsoR operator sites consist of G-tract containing pseudopalindromes of which the mechanism of operator binding is poorly understood. Here, we use a structurally characterized CsoR from Streptomyces lividans (CsoRSl) together with three specific operator targets to reveal the salient features pertaining to the mechanism of DNA binding. We reveal that CsoRSl binds to its operator site through a 2-fold axis of symmetry centred on a conserved 5′-TAC/GTA-3′ inverted repeat. Operator recognition is stringently dependent not only on electropositive residues but also on a conserved polar glutamine residue. Thermodynamic and circular dichroic signatures of the CsoRSl–DNA interaction suggest selectivity towards the A-DNA-like topology of the G-tracts at the operator site. Such properties are enhanced on protein binding thus enabling the symmetrical binding of two CsoRSl tetramers. Finally, differential binding modes may exist in operator sites having more than one 5′-TAC/GTA-3′ inverted repeat with implications in vivo for a mechanism of modular control. PMID:24121681

  2. Multidrug-Resistance and Toxic Metal Tolerance of Medically Important Bacteria Isolated from an Aquaculture System

    PubMed Central

    Resende, Juliana Alves; Silva, Vânia L.; Fontes, Cláudia Oliveira; Souza-Filho, Job Alves; de Oliveira, Tamara Lopes Rocha; Coelho, Cíntia Marques; César, Dionéia Evangelista; Diniz, Cláudio Galuppo

    2012-01-01

    The use of antimicrobials and toxic metals should be considered carefully in aquaculture and surrounding environments. We aimed to evaluate medically relevant bacteria in an aquaculture system and their susceptibility to antimicrobials and toxic metals. Selective cultures for enterobacteria (ENT), non-fermenting Gram-negative rods (NFR) and Gram-positive cocci (GPC) were obtained from water samples collected in two different year seasons. The isolated bacteria were biochemically identified and antimicrobial and toxic metal susceptibility patterns were determined. Overall, 407 representative strains were recovered. In general, bacteria isolated from fish ponds showed higher multiple antibiotic resistance indices when compared to those isolated from a water-fed canal. Resistance to penicillin and azithromycin was observed more frequently in the GPC group, whereas resistance to ampicillin and ampicillin/sulbactam or gentamicin was observed more frequently in the ENT and NFR groups, respectively. All the isolated bacteria were tolerant to nickel, zinc, chromium and copper at high levels (≥1,024 μg mL−1), whereas tolerance to cadmium and mercury varied among the isolated bacteria (2–1,024 μg mL−1). Multidrug-resistant bacteria were more frequent and diverse in fish ponds than in the water-fed canal. A positive correlation was observed between antimicrobial resistance and metal tolerance. The data point out the need for water treatment associated with the aquaculture system. PMID:22972388

  3. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review.

    PubMed

    Liu, Shao-Heng; Zeng, Guang-Ming; Niu, Qiu-Ya; Liu, Yang; Zhou, Lu; Jiang, Lu-Hua; Tan, Xiao-Fei; Xu, Piao; Zhang, Chen; Cheng, Min

    2017-01-01

    In recent years, knowledge in regard to bioremediation of combined pollution of polycyclic aromatic hydrocarbons (PAHs) and heavy metals by bacteria and fungi has been widely developed. This paper reviews the species of bacteria and fungi which can tackle with various types of PAHs and heavy metals entering into environment simultaneously or successively. Microbial activity, pollutants bioavailability and environmental factors (e.g. pH, temperature, low molecular weight organic acids and humic acids) can all affect the bioremediation of PAHs and heavy metals. Moreover, this paper summarizes the remediation mechanisms of PAHs and heavy metals by microbes via elucidating the interaction mechanisms of heavy metals with heavy metals, PAHs/PAHs metabolites with PAHs and PAHs with heavy metals. Based on the above reviews, this paper also discusses the potential research needs for this field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. In vivo surface roughness evolution of a stressed metallic implant

    NASA Astrophysics Data System (ADS)

    Tan, Henry

    2016-10-01

    Implant-associated infection, a serious medical issue, is caused by the adhesion of bacteria to the surface of biomaterials; for this process the surface roughness is an important property. Surface nanotopography of medical implant devices can control the extent of bacterial attachment by modifying the surface morphology; to this end a model is introduced to facilitate the analysis of a nanoscale smooth surface subject to mechanical loading and in vivo corrosion. At nanometre scale rough surface promotes friction, hence reduces the mobility of the bacteria; this sessile environment expedites the biofilm growth. This manuscript derives the controlling equation for surface roughness evolution for metallic implant subject to in-plane stresses, and predicts the in vivo roughness changes within 6 h of continued mechanical loading at different stress level. This paper provides analytic tool and theoretical information for surface nanotopography of medical implant devices.

  5. Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium

    USGS Publications Warehouse

    Caccavo, F.; Coates, J.D.; Rossello-Mora, R. A.; Ludwig, W.; Schleifer, K.H.; Lovley, D.R.; McInerney, M.J.

    1996-01-01

    A new, phylogenetically distinct, dissimilatory, Fe(III)-reducing bacterium was isolated from surface sediment of a hydrocarbon-contaminated ditch. The isolate, designated strain PAL-1, was an obligately anaerobic, non-fermentative, motile, gram-negative vibrio. PAL-1 grew in a defined medium with acetate as electron donor and ferric pyrophosphate, ferric oxyhydroxide, ferric citrate, Co(III)-EDTA, or elemental sulfur as sole electron acceptor. PAL-1 also used proline, hydrogen, lactate, propionate, succinate, fumarate, pyruvate, or yeast extract as electron donors for Fe(III) reduction. It is the first bacterium known to couple the oxidation of an amino acid to Fe(III) reduction. PAI-1 did not reduce oxygen, Mn(IV), U(VI), Cr(VI), nitrate, sulfate, sulfite, or thiosulfate with acetate as the electron donor. Cell suspensions of PAL-1 exhibited dithionite-reduced minus air-oxidized difference spectra that were characteristic of c-type cytochromes. Analysis of the 16S rRNA gene sequence of PAL-1 showed that the strain is not related to any of the described metal-reducing bacteria in the Proteobacteria and, together with Flexistipes sinusarabici, forms a separate line of descent within the Bacteria. Phenotypically and phylogenetically, strain PAI-1 differs from all other described bacteria, and represents the type strain of a new genus and species. Geovibrio ferrireducens.

  6. A case in support of implementing innovative bio-processes in the metal mining industry.

    PubMed

    Sánchez-Andrea, Irene; Stams, Alfons J M; Weijma, Jan; Gonzalez Contreras, Paula; Dijkman, Henk; Rozendal, Rene A; Johnson, D Barrie

    2016-06-01

    The metal mining industry faces many large challenges in future years, among which is the increasing need to process low-grade ores as accessible higher grade ores become depleted. This is against a backdrop of increasing global demands for base and precious metals, and rare earth elements. Typically about 99% of solid material hauled to, and ground at, the land surface currently ends up as waste (rock dumps and mineral tailings). Exposure of these to air and water frequently leads to the formation of acidic, metal-contaminated run-off waters, referred to as acid mine drainage, which constitutes a severe threat to the environment. Formation of acid drainage is a natural phenomenon involving various species of lithotrophic (literally 'rock-eating') bacteria and archaea, which oxidize reduced forms of iron and/or sulfur. However, other microorganisms that reduce inorganic sulfur compounds can essentially reverse this process. These microorganisms can be applied on industrial scale to precipitate metals from industrial mineral leachates and acid mine drainage streams, resulting in a net improvement in metal recovery, while minimizing the amounts of leachable metals to the tailings storage dams. Here, we advocate that more extensive exploitation of microorganisms in metal mining operations could be an important way to green up the industry, reducing environmental risks and improving the efficiency and the economy of metal recovery. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Fungal biosynthesis of gold nanoparticles: mechanism and scale up

    PubMed Central

    Kitching, Michael; Ramani, Meghana; Marsili, Enrico

    2015-01-01

    Gold nanoparticles (AuNPs) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP synthesis often produce toxic residues that raise environmental concern. On the other hand, the biological synthesis of AuNPs in viable microorganisms and their cell-free extracts is an environmentally friendly and low-cost process. In general, fungi tolerate higher metal concentrations than bacteria and secrete abundant extracellular redox proteins to reduce soluble metal ions to their insoluble form and eventually to nanocrystals. Fungi harbour untapped biological diversity and may provide novel metal reductases for metal detoxification and bioreduction. A thorough understanding of the biosynthetic mechanism of AuNPs in fungi is needed to reduce the time of biosynthesis and to scale up the AuNP production process. In this review, we describe the known mechanisms for AuNP biosynthesis in viable fungi and fungal protein extracts and discuss the most suitable bioreactors for industrial AuNP biosynthesis. PMID:25154648

  8. Mixed sulfate-reducing bacteria-enriched microbial fuel cells for the treatment of wastewater containing copper.

    PubMed

    Miran, Waheed; Jang, Jiseon; Nawaz, Mohsin; Shahzad, Asif; Jeong, Sang Eun; Jeon, Che Ok; Lee, Dae Sung

    2017-12-01

    Microbial fuel cells (MFCs) have been widely investigated for organic-based waste/substrate conversion to electricity. However, toxic compounds such as heavy metals are ubiquitous in organic waste and wastewater. In this work, a sulfate reducing bacteria (SRB)-enriched anode is used to study the impact of Cu 2+ on MFC performance. This study demonstrates that MFC performance is slightly enhanced at concentrations of up to 20 mg/L of Cu 2+ , owing to the stimulating effect of metals on biological reactions. Cu 2+ removal involves the precipitation of metalloids out of the solution, as metal sulfide, after they react with the sulfide produced by SRB. Simultaneous power generation of 224.1 mW/m 2 at lactate COD/SO 4 2- mass ratio of 2.0 and Cu 2+ of 20 mg/L, and high Cu 2+ removal efficiency, at >98%, are demonstrated in the anodic chamber of a dual-chamber MFC. Consistent MFC performance at 20 mg/L of Cu 2+ for ten successive cycles shows the excellent reproducibility of this system. In addition, total organic content and sulfate removal efficiencies greater than 85% and 70%, respectively, are achieved up to 20 mg/L of Cu 2+ in 48 h batches. However, higher metal concentration and very low pH at <4.0 inhibit the SRB MFC system. Microbial community analysis reveals that Desulfovibrio is the most abundant SRB in anode biofilm at the genus level, at 38.1%. The experimental results demonstrate that biological treatment of low-concentration metal-containing wastewater with SRB in MFCs can be an attractive technique for the bioremediation of this type of medium with simultaneous energy generation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Increased Tolerance to Heavy Metals Exhibited by Swarming Bacteria

    NASA Astrophysics Data System (ADS)

    Anyan, M.; Shrout, J. D.

    2014-12-01

    Pseudomonas aeruginosa is a ubiquitous, Gram-negative bacterium that utilizes several different modes of motility to colonize surfaces, including swarming, which is the coordinated movement of cells over surfaces in groups. Swarming facilitates surface colonization and biofilm development for P. aeruginosa, and it is known that swarming behavior is influenced by changes in nutrient composition and surface moisture. To understand the fate and cycling of heavy metals in the environment, it is important to understand the interaction and toxicity of these metals upon bacteria. While previous studies have shown surface-attached bacterial biofilms to be highly resistant to heavy metal toxicity, little is known about the influence of heavy metals upon surface motile bacteria and developing biofilms. Using a combination of laboratory assays we examined differences in bacterial behavior in response to two metals, Cd and Ni. We find that surface swarming bacteria are able to grow on 4x and 2.5x more Cd and Ni, respectively, than planktonic cells (i.e., test tube cultures). P. aeruginosa was able to swarm in the presence ≤0.051mM Ni and ≤0.045mM Cd. To investigate the bioavailability of metals to bacteria growing under our examined conditions, we separated cell and supernatant fractions of P. aeruginosa cultures, and used ICP-MS techniques to measure Cd and Ni sorption. A greater percentage of Cd than Ni was sorbed by both cells and supernatant (which contains rhamnolipid, a surfactant known to sorb some metals and improve swarming). While we show that cell products such as rhamnolipid bind heavy metals (as expected) and should limit metal bioavailability, our results suggest at least one additional mechanism (as yet undetermined) that promotes cell survival during swarming in the presence of these heavy metals.

  10. Metal-Mediated Modulation of Streptococcal Cysteine Protease Activity and Its Biological Implications

    PubMed Central

    Chella Krishnan, Karthickeyan; Mukundan, Santhosh; Landero Figueroa, Julio A.; Caruso, Joseph A.

    2014-01-01

    Streptococcal cysteine protease (SpeB), the major secreted protease produced by group A streptococcus (GAS), cleaves both host and bacterial proteins and contributes importantly to the pathogenesis of invasive GAS infections. Modulation of SpeB expression and/or its activity during invasive GAS infections has been shown to affect bacterial virulence and infection severity. Expression of SpeB is regulated by the GAS CovR-CovS two-component regulatory system, and we demonstrated that bacteria with mutations in the CovR-CovS two-component regulatory system are selected for during localized GAS infections and that these bacteria lack SpeB expression and exhibit a hypervirulent phenotype. Additionally, in a separate study, we showed that expression of SpeB can also be modulated by human transferrin- and/or lactoferrin-mediated iron chelation. Accordingly, the goal of this study was to investigate the possible roles of iron and other metals in modulating SpeB expression and/or activity in a manner that would potentiate bacterial virulence. Here, we report that the divalent metals zinc and copper inhibit SpeB activity at the posttranslational level. Utilizing online metal-binding site prediction servers, we identified two putative metal-binding sites in SpeB, one of which involves the catalytic-dyad residues 47Cys and 195His. Based on our findings, we propose that zinc and/or copper availability in the bacterial microenvironment can modulate the proteolytic activity of SpeB in a manner that preserves the integrity of several other virulence factors essential for bacterial survival and dissemination within the host and thereby may exacerbate the severity of invasive GAS infections. PMID:24799625

  11. [Phylogenetic diversity of microorganisms associated with the deep-water sponge Baikalospongia intermedia].

    PubMed

    Kalyzhnaya, O V; Itskovich, V B

    2014-07-01

    The diversity of bacteria associated with deep-water sponge Baikalospongia intermedia was evaluated by sequence analysis of 16S rRNA genes from two sponge samples collected in Lake Baikal from depths of 550 and 1204 m. A total of 64 operational taxonomic units, belonging to nine bacterial phyla, Proteobacteria (classes Alphaproteobacteria,. Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria), Actinobacteria, Planctomycetes, Cloroflexi, Verrucomicrobia, Acidobacteria, Chlorobi, and Nitrospirae, including candidate phylum WS5, were identified. Phylogenetic analysis showed that the examined communities contained phylotypes exhibiting homology to uncultured bacteria from different lake ecosystems, freshwater sediments, soil and geological formations. Moreover, a number of phylotypes were relative to psychrophilic, methane-oxidizing, sulfate-reducing bacteria, and to microorganisms resistant to the influence of heavy metals. It seems likely that the unusual habitation conditions of deep-water sponges contribute to the taxonomic diversity of associated bacteria and have an influence on the presence of functionally important microorganisms in bacterial communities.

  12. Vanadium removal from LD converter slag using bacteria and fungi.

    PubMed

    Mirazimi, S M J; Abbasalipour, Z; Rashchi, F

    2015-04-15

    Removal of vanadium from Linz-Donawits (LD) converter slag was investigated by means of three different species of microbial systems: Acidithiobacillus thiooxidans (autotrophic bacteria), Pseudomonas putida (heterotrophic bacteria) and Aspergillus niger (fungi). The bioleaching process was carried out in both one-step and two-step process and the leaching efficiencies in both cases were compared. Formation of inorganic and organic acids during the leaching process caused mobilization of vanadium. In order to reduce toxic effects of the metal species on the above mentioned microorganisms, a prolonged adaptation process was performed. Both bacteria, A. thiooxidans and P. putida were able to remove more than 90% of vanadium at slag concentrations of 1-5 g L(-1) after 15 days. Also, the maximum achievable vanadium removal in the fungal system was approximately 92% at a slag concentration of 1 g L(-1) after 22 days. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Analysis of metal and biocides resistance genes in drug resistance and susceptible Salmonella enterica from food animals

    USDA-ARS?s Scientific Manuscript database

    Background Generally drug resistant bacteria carry antibiotic resistance genes and heavy metal and biocide resistance genes on large conjugative plasmids. The presence of these metal and biocide resistance genes in susceptible bacteria are not assessed comprehensively. Hence, WGS data of susceptib...

  14. The Role of Intermetal Competition and Mis-Metalation in Metal Toxicity.

    PubMed

    Barwinska-Sendra, Anna; Waldron, Kevin J

    2017-01-01

    The metals manganese, iron, cobalt, nickel, copper and zinc are essential for almost all bacteria, but their precise metal requirements vary by species, by ecological niche and by growth condition. Bacteria thus must acquire each of these essential elements in sufficient quantity to satisfy their cellular demand, but in excess these same elements are toxic. Metal toxicity has been exploited by humanity for centuries, and by the mammalian immune system for far longer, yet the mechanisms by which these elements cause toxicity to bacteria are not fully understood. There has been a resurgence of interest in metal toxicity in recent decades due to the problematic spread of antibiotic resistance amongst bacterial pathogens, which has led to an increased research effort to understand these toxicity mechanisms at the molecular level. A recurring theme from these studies is the role of intermetal competition in bacterial metal toxicity. In this review, we first survey biological metal usage and introduce some fundamental chemical concepts that are important for understanding bacterial metal usage and toxicity. Then we introduce a simple model by which to understand bacterial metal homeostasis in terms of the distribution of each essential metal ion within cellular 'pools', and dissect how these pools interact with each other and with key proteins of bacterial metal homeostasis. Finally, using a number of key examples from the recent literature, we look at specific metal toxicity mechanisms in model bacteria, demonstrating the role of metal-metal competition in the toxicity mechanisms of diverse essential metals. © 2017 Elsevier Ltd. All rights reserved.

  15. A chemical equilibrium model for metal adsorption onto bacterial surfaces

    NASA Astrophysics Data System (ADS)

    Fein, Jeremy B.; Daughney, Christopher J.; Yee, Nathan; Davis, Thomas A.

    1997-08-01

    This study quantifies metal adsorption onto cell wall surfaces of Bacillus subtilis by applying equilibrium thermodynamics to the specific chemical reactions that occur at the water-bacteria interface. We use acid/base titrations to determine deprotonation constants for the important surface functional groups, and we perform metal-bacteria adsorption experiments, using Cd, Cu, Pb, and Al, to yield site-specific stability constants for the important metal-bacteria surface complexes. The acid/base properties of the cell wall of B. subtilis can best be characterized by invoking three distinct types of surface organic acid functional groups, with pK a values of 4.82 ± 0.14, 6.9 ± 0.5, and 9.4 ± 0.6. These functional groups likely correspond to carboxyl, phosphate, and hydroxyl sites, respectively, that are displayed on the cell wall surface. The results of the metal adsorption experiments indicate that both the carboxyl sites and the phosphate sites contribute to metal uptake. The values of the log stability constants for metal-carboxyl surface complexes range from 3.4 for Cd, 4.2 for Pb, 4.3 for Cu, to 5.0 for Al. These results suggest that the stabilities of the metal-surface complexes are high enough for metal-bacterial interactions to affect metal mobilities in many aqueous systems, and this approach enables quantitative assessment of the effects of bacteria on metal mobilities.

  16. Environmental implications of iron fuel borne catalysts and their effects on diesel particulate formation and composition

    EPA Science Inventory

    Metal fuel borne catalysts can be used with diesel fuels to effectively reduce engine out particle mass emissions. Mixed with the fuel, the metals become incorporated as nanometer-scale occlusions with soot during its formation and are available to promote in-cylinder soot oxida...

  17. Effects of Grazing on Bacteria-Mediated Corrosion of Metals in Seawater

    DTIC Science & Technology

    1986-05-01

    NUMBEER2. GOVT ACCESSION NO. 3. RECIPIENT’S CATA’.00 NJUMIIER 4. TITLE (mESubtitle) S*TYPE OF REPORT a ’!;.iOO COVERED IL’ Effects of Grazing on... Effects of Grazing on Bacteria-Mediated Corrosion of Metals in Seawater ONR Contract No. : N00014-83-0652 Project Period: August 1983-August, 1985 Principal...the laboratory to address the next two objectives. II. Effect of Protozoa on Total Numbers of Bacteria on Metals This objective included testing a

  18. Resolving colocalization of bacteria and metal(loid)s on plant root surfaces by combining fluorescence in situ hybridization (FISH) with multiple-energy micro-focused X-ray fluorescence (ME μXRF).

    PubMed

    Honeker, Linnea K; Root, Robert A; Chorover, Jon; Maier, Raina M

    2016-12-01

    Metal(loid)-contamination of the environment due to anthropogenic activities is a global problem. Understanding the fate of contaminants requires elucidation of biotic and abiotic factors that influence metal(loid) speciation from molecular to field scales. Improved methods are needed to assess micro-scale processes, such as those occurring at biogeochemical interfaces between plant tissues, microbial cells, and metal(loid)s. Here we present an advanced method that combines fluorescence in situ hybridization (FISH) with synchrotron-based multiple-energy micro-focused X-ray fluorescence microprobe imaging (ME μXRF) to examine colocalization of bacteria and metal(loid)s on root surfaces of plants used to phytostabilize metalliferous mine tailings. Bacteria were visualized on a small root section using SytoBC nucleic acid stain and FISH probes targeting the domain Bacteria and a specific group (Alphaproteobacteria, Gammaproteobacteria, or Actinobacteria). The same root region was then analyzed for elemental distribution and metal(loid) speciation of As and Fe using ME μXRF. The FISH and ME μXRF images were aligned using ImageJ software to correlate microbiological and geochemical results. Results from quantitative analysis of colocalization show a significantly higher fraction of As colocalized with Fe-oxide plaques on the root surfaces (fraction of overlap 0.49±0.19) than to bacteria (0.072±0.052) (p<0.05). Of the bacteria that colocalized with metal(loid)s, Actinobacteria, known for their metal tolerance, had a higher correlation with both As and Fe than Alphaproteobacteria or Gammaproteobacteria. This method demonstrates how coupling these micro-techniques can expand our understanding of micro-scale interactions between roots, metal(loid)s and microbes, information that should lead to improved mechanistic models of metal(loid) speciation and fate. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Electrodes as Terminal Electron Acceptors in Anaerobic Ammonium Oxidation

    NASA Astrophysics Data System (ADS)

    Ruiz-Urigüen, M.; Jaffe, P. R.

    2017-12-01

    Anaerobic ammonium (NH4+) oxidation under iron (Fe) reducing conditions is a microbial- mediated process known as Feammox. This is a novel pathway in the nitrogen cycle, and a key process for alleviating NH4+ accumulation in anoxic soils, wetlands, and wastewater. Acidimicrobiaceae-bacterium A6, phylum Actinobacteria, are one type of autotrophic bacteria linked to this process. The Feammox-bacteria obtain their energy by oxidizing NH4+ and transferring the electrons to a terminal electron acceptor (TEA). Under environmental conditions, iron oxides are the TEAs. However, in this study we show that electrodes in Microbial Electrolysis Cells (MECs) or electrodes set in the field can be used as TEAs by Feammox-bacteria. The potential difference between electrodes is the driving force for electron transfer, making the reaction energetically feasible. Our results show that MECs containing Feammox cultures can remove NH4+ up to 3.5 mg/L in less than 4 hours, compared to an average of 9 mg/L in 2 weeks when cultured under traditional conditions. Concomitantly, MECs produce an average current of 30.5 A/m3 whilst dead bacteria produced low (<2.7 A/m3) or no current. Furthermore, we have measured that A6 biomass increased from 5E4 cells/ml to 9.77E5 cells/ml in 2 weeks of operation, indicating the feasibility of growing A6 in MECs. Results from the electrodes in the field show higher percentage of electrogenic bacteria, including Acidimicrobiaceae-bacterium, on the more reducing electrode, compared to the more oxidized one. Our initial results also suggest that electrodes contained more Actinobacteria when compared to bulk soil. Electrodes as TEAs enhance electrogenic bacteria recovery and culturing. The use of MECs for the productions of Feammox-bacteria eliminates the dependence of Fe, a finite electron acceptor, therefore, allowing for continuous NH4+ removal. Finally, Fe-free Feammox-bacteria can be applied to reduce other metals of environmental concern; therefore, opening the range of possible application of Feammox-bacteria.

  20. Endophytic bacteria and their potential to enhance heavy metal phytoextraction.

    PubMed

    Rajkumar, Mani; Ae, Noriharu; Freitas, Helena

    2009-09-01

    Pollution of soils with heavy metals is becoming one of the most severe environmental and human health hazards. Due to its widespread contamination finding innovative ways to clean metal pollutant has become a priority in the remediation field. Phytoremediation, the use of plants for the restoration of environments contaminated with pollutants is a relatively new technology that is more benign than current engineering solutions to treat contaminated sites. Recently, the benefits of combining endophytic bacteria with plants for increased remediation of pollutants have been successfully tried for toxic metal removal from contaminated soils. Endophytic bacteria reside within plant hosts without causing disease symptoms. Further, the metal resistant endophytes are reported to be present in various hyperaccumulator plants growing on heavy metal contaminated soils and play an important role in successful survival and growth of plants. Moreover, the metal resistant endophytes are reported to promote plant growth by various mechanisms such as nitrogen fixation, solubilization of minerals, production of phytohormones, siderophores, utilization of 1-aminocyclopropane-1-carboxylic acid as a sole N source and transformation of nutrient elements. In this review we highlight the diversity and plant growth promoting features of metal resistant endophytic bacteria and discuss their potential in phytoextraction of heavy metals from contaminated soils.

  1. Increase in detectable opportunistic bacteria in the oral cavity of orthodontic patients.

    PubMed

    Kitada, K; de Toledo, A; Oho, T

    2009-05-01

    This study was performed to detect the opportunistic bacteria and fungi from the oral cavities of orthodontic patients and examine the ability of the organisms to adhere to saliva-coated metallic brackets. Opportunistic bacteria and fungi were isolated from 58 patients (orthodontic group: 42; non-orthodontic group: 16) using culture methods and were identified based on their biochemical and enzymatic profiles. Seven opportunistic and four streptococcal strains were tested for their ability to adhere to saliva-coated metallic brackets. More opportunistic bacteria and fungi were detected in the orthodontic group than in the non-orthodontic group (P < 0.05). Opportunistic bacteria adhered to saliva-coated metallic brackets to the same degree as oral streptococci. The isolation frequencies of opportunistic bacteria and fungi increase during orthodontic treatment, suggesting the importance of paying special attention to oral hygiene in orthodontic patients to prevent periodontal disease and the aggravation of systemic disease in immunocompromised conditions.

  2. Assessment of toxic impact of metals on proline, antioxidant enzymes, and biological characteristics of Pseudomonas aeruginosa inoculated Cicer arietinum grown in chromium and nickel-stressed sandy clay loam soils.

    PubMed

    Saif, Saima; Khan, Mohammad Saghir

    2018-04-17

    Considering the heavy metal risk to soil microbiota and agro-ecosystems, the study was designed to determine metal toxicity to bacteria and to find metal tolerant bacteria carrying multifarious plant growth promoting activities and to assess their impact on chickpea cultivated in stressed soils. Metal tolerant strain SFP1 recognized as Pseudomonas aeruginosa employing 16S rRNA gene sequence determination showed maximum tolerance to Cr (400 μg/ml) and Ni (800 μg/ml) and produced variable amounts of indole acetic acid, HCN, NH 3 , and ACC deaminase and could solubilize insoluble phosphates even under Cr (VI) and Ni stress. Metal tolerant P. aeruginosa reduced toxicity of Cr (VI) and Ni and concomitantly enhanced the performance of chickpea grown under stressed and conventional soils. At 144 mg Cr kg -1 , the measured parameters of a bacterial strain was significantly enhanced, but it was lower compared to those recorded at 660 mg Ni kg -1 . The strain SFP1 demonstrated maximum increase in seed yield (81%) and grain protein (16%) at 660 mg Ni kg -1 over uninoculated and untreated control. Stressed plants had more proline, antioxidant enzymes, and metal concentrations in plant tissues. P. aeruginosa, however, remarkably declined the level of stress markers (proline and APX, SOD, CAT, and GR), as well as with Cr (VI) and Ni uptake by chickpea. Conclusively, P. aeruginosa strain SFP1 due to its dual metal tolerant ability, capacity to secrete plant growth promoting regulators even under metal stress and potential to mitigate metal toxicity, could be developed as microbial inoculant for enhancing chickpea production in Cr and Ni contaminated soils.

  3. The use of visible light and metal oxide nano particles for pathogen inactivation

    NASA Astrophysics Data System (ADS)

    Lubart, R.; Lipovski, A.; Gedanken, A.

    2012-09-01

    Since the effectiveness of antibiotic treatment is decreasing due to the development of resistant strains, alternative approaches for destroying microorganisms are needed. In this review we summarize new technologies that might be effective for pathogen inactivation. In the past we found that intense blue light could be used for bacterial eradication. The phototoxic effect correlated with the amount of reactive oxygen species (ROS) generated by the bacteria due to illumination. Recently it has been shown that the effect of light can be enhanced by introducing metal oxide nanoparticles (nps) to the bacteria prior to irradiation. This led us to suggest combining nanoparticles with visible light irradiation for pathogen eradication. We have shown that combination of illumination with the nanoparticles (ZnO or TiO2) resulted in a marked increase in the reduction of bacterial viability to a mean reduction of 80-90% for both nanoaprticles. As a matter of fact metal oxide nps alone can be used for bacteria destruction. The advantage of our approach is the use of lower concentrations of nps, combined with reduced light intensity that is less toxic to the host tissue. To further avoid the toxicity of metal oxides nps on healthy tissue it is possible to coat their surfaces with various substrates including ceramics and polymers. Recently Zinc oxide nanoparticles have been synthesized and deposited on the surface of cotton fabrics using ultrasound irradiation. Thus in the future we will try to treat infected wounds with transparent bandages coated with ZnO that will be applied to the wounds prior to irradiation.

  4. Diversity change of microbial communities responding to zinc and arsenic pollution in a river of northeastern China.

    PubMed

    Zhao, Jun; Zhao, Xin; Chao, Lei; Zhang, Wei; You, Tao; Zhang, Jie

    2014-07-01

    Pollution discharge disturbs the natural functions of water systems. The environmental microbial community composition and diversity are sensitive key indicators to the impact of water pollutant on the microbial ecology system over time. It is meaningful to develop a way to identify the microbial diversity related to heavy metal effects in evaluating river pollution. Water and sediment samples were collected from eight sections along the Tiaozi River where wastewater and sewage were discharged from Siping City in northeastern China. The main pollutants contents and microbial communities were analyzed. As the primary metal pollutants, zinc (Zn) and arsenic (As) were recorded at the maximum concentrations of 420 and 5.72 μg/L in the water, and 1704 and 1.92 mg/kg in the sediment, respectively. These pollutants posed a threat to the microbial community diversity as only a few species of bacteria and eukaryotes with strong resistance were detected through denaturing gradient gel electrophoresis (DGGE). Acinetobacter johnsonii, Clostridium cellulovorans, and Trichococcus pasteurii were the dominant bacteria in the severely polluted areas. The massive reproduction of Limnodrilus hoffmeisteri almost depleted the dissolved oxygen (DO) and resulted in the decline of the aerobic bacteria. It was noted that the pollution reduced the microbial diversity but the L. hoffmeisteri mass increased as the dominant community, which led to the overconsuming of DO and anaerobic stinking water bodies. Water quality, concentrations of heavy metals, and the spatial distribution of microbial populations have obvious consistencies, which mean that the heavy metals in the river pose a serious stress on the microorganisms.

  5. Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria

    PubMed Central

    Carlson, Hans K.; Iavarone, Anthony T.; Gorur, Amita; Yeo, Boon Siang; Tran, Rosalie; Melnyk, Ryan A.; Mathies, Richard A.; Auer, Manfred; Coates, John D.

    2012-01-01

    Almost nothing is known about the mechanisms of dissimilatory metal reduction by Gram-positive bacteria, although they may be the dominant species in some environments. Thermincola potens strain JR was isolated from the anode of a microbial fuel cell inoculated with anaerobic digester sludge and operated at 55 °C. Preliminary characterization revealed that T. potens coupled acetate oxidation to the reduction of hydrous ferric oxides (HFO) or anthraquinone-2,6-disulfonate (AQDS), an analog of the redox active components of humic substances. The genome of T. potens was recently sequenced, and the abundance of multiheme c-type cytochromes (MHCs) is unusual for a Gram-positive bacterium. We present evidence from trypsin-shaving LC-MS/MS experiments and surface-enhanced Raman spectroscopy (SERS) that indicates the expression of a number of MHCs during T. potens growth on either HFO or AQDS, and that several MHCs are localized to the cell wall or cell surface. Furthermore, one of the MHCs can be extracted from cells with low pH or denaturants, suggesting a loose association with the cell wall or cell surface. Electron microscopy does not reveal an S-layer, and the precipitation of silver metal on the cell surface is inhibited by cyanide, supporting the involvement of surface-localized redox-active heme proteins in dissimilatory metal reduction. These results provide unique direct evidence for cell wall-associated cytochromes and support MHC involvement in conducting electrons across the cell envelope of a Gram-positive bacterium. PMID:22307634

  6. DOWN-STREAM SPATIAL DISTRIBUTION OF ANTIBIOTIC RESISTANCE TRAITS ALONG METAL CONTAMINATED STREAM REACHES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuckfield, C; J V Mcarthur

    2007-04-16

    Sediment bacteria samples were collected from three streams in South Carolina, two contaminated with multiple metals (Four Mile Creek and Castor Creek), one uncontaminated (Meyers Branch), and another metal contaminated stream (Lampert Creek) in northern Washington State. Growth plates inoculated with Four Mile Creek sample extracts show bacteria colony growth after incubation on plates containing either one of two aminoglycosides (kanamycin or streptomycin), tetracycline or chloramphenocol. This study analyzes the spatial pattern of antibiotic resistance in culturable sediment bacteria in all four streams that may be due to metal contamination. We summarize the two aminoglycoside resistance measures and the 10more » metals concentrations by Principal Components Analysis. Respectively, 63% and 58% of the variability was explained in the 1st principal component of each variable set. We used the respective multivariate summary metrics (i.e. 1st principal component scores) as input measures for exploring the spatial correlation between antibiotic resistance and metal concentration for each stream reach sampled. Results show a significant and negative correlation between metals scores versus aminoglycoside resistance scores and suggest that selection for metal tolerance among sediment bacteria may influence selection for antibiotic resistance differently than previously supposed.. In addition, we borrow a method from geostatistics (variography) wherein a spatial cross-correlation analysis shows that decreasing metal concentrations scores are associated with increasing aminoglycoside resistance scores as the separation distance between sediment samples decreases, but for contaminated streams only. Since these results were counter to our initial expectation and to other experimental evidence for water column bacteria, we suspect our field results are influenced by metal bioavailability in the sediments and by a contaminant promoted interaction or ''cocktail effect'' from complex combinations of pollution mediated selection agents.« less

  7. Biotechnological and Agronomic Potential of Endophytic Pink-Pigmented Methylotrophic Methylobacterium spp.

    PubMed Central

    Dourado, Manuella Nóbrega; Aparecida Camargo Neves, Aline; Santos, Daiene Souza; Araújo, Welington Luiz

    2015-01-01

    The genus Methylobacterium is composed of pink-pigmented facultative methylotrophic (PPFM) bacteria, which are able to synthesize carotenoids and grow on reduced organic compounds containing one carbon (C1), such as methanol and methylamine. Due to their high phenotypic plasticity, these bacteria are able to colonize different habitats, such as soil, water, and sediment, and different host plants as both endophytes and epiphytes. In plant colonization, the frequency and distribution may be influenced by plant genotype or by interactions with other associated microorganisms, which may result in increasing plant fitness. In this review, different aspects of interactions with the host plant are discussed, including their capacity to fix nitrogen, nodule the host plant, produce cytokinins, auxin and enzymes involved in the induction of systemic resistance, such as pectinase and cellulase, and therefore plant growth promotion. In addition, bacteria belonging to this group can be used to reduce environmental contamination because they are able to degrade toxic compounds, tolerate high heavy metal concentrations, and increase plant tolerance to these compounds. Moreover, genome sequencing and omics approaches have revealed genes related to plant-bacteria interactions that may be important for developing strains able to promote plant growth and protection against phytopathogens. PMID:25861650

  8. Biotechnological and agronomic potential of endophytic pink-pigmented methylotrophic Methylobacterium spp.

    PubMed

    Dourado, Manuella Nóbrega; Camargo Neves, Aline Aparecida; Santos, Daiene Souza; Araújo, Welington Luiz

    2015-01-01

    The genus Methylobacterium is composed of pink-pigmented facultative methylotrophic (PPFM) bacteria, which are able to synthesize carotenoids and grow on reduced organic compounds containing one carbon (C1), such as methanol and methylamine. Due to their high phenotypic plasticity, these bacteria are able to colonize different habitats, such as soil, water, and sediment, and different host plants as both endophytes and epiphytes. In plant colonization, the frequency and distribution may be influenced by plant genotype or by interactions with other associated microorganisms, which may result in increasing plant fitness. In this review, different aspects of interactions with the host plant are discussed, including their capacity to fix nitrogen, nodule the host plant, produce cytokinins, auxin and enzymes involved in the induction of systemic resistance, such as pectinase and cellulase, and therefore plant growth promotion. In addition, bacteria belonging to this group can be used to reduce environmental contamination because they are able to degrade toxic compounds, tolerate high heavy metal concentrations, and increase plant tolerance to these compounds. Moreover, genome sequencing and omics approaches have revealed genes related to plant-bacteria interactions that may be important for developing strains able to promote plant growth and protection against phytopathogens.

  9. Mechanisms and Effectivity of Sulfate Reducing Bioreactors ...

    EPA Pesticide Factsheets

    Mining-influenced water (MIW) is the main environmental challenges associated with the mining industry. Passive MIW remediation can be achieved through microbial activity in sulfate-reducing bioreactors (SRBRs), but their actual removal rates depend on different factors, one of which is the substrate composition. Chitinous materials have demonstrated high metal removal rates, particularly for the two recalcitrant MIW contaminants Zn and Mn, but their removal mechanisms need further study. We studied Cd, Fe, Zn, and Mn removal in bioactive and abiotic SRBRs to elucidate the metal removal mechanisms and the differences in metal and sulfate removal rates using a chitinous material as substrate. We found that sulfate-reducing bacteria are effective in increasing metal and sulfate removal rates and duration of operation in SRBRs, and that the main mechanism involved was metal precipitation as sulfides. The solid residues provided evidence of the presence of sulfides in the bioactive column, more specifically ZnS, according to XPS analysis. The feasibility of passive treatments with a chitinous substrate could be an important option for MIW remediation. Mining influenced water (MIW) remediation is still one of the top priorities for the agency because it addresses the most important environmental problem associated with the mining industry and that affects thousands of communities in the U.S. and worldwide. In this paper, the MIW bioremediation mechanisms are studied

  10. Extremophiles in Mineral Sulphide Heaps: Some Bacterial Responses to Variable Temperature, Acidity and Solution Composition

    PubMed Central

    Watling, Helen R.; Shiers, Denis W.; Collinson, David M.

    2015-01-01

    In heap bioleaching, acidophilic extremophiles contribute to enhanced metal extraction from mineral sulphides through the oxidation of Fe(II) and/or reduced inorganic sulphur compounds (RISC), such as elemental sulphur or mineral sulphides, or the degradation of organic compounds derived from the ore, biota or reagents used during mineral processing. The impacts of variable solution acidity and composition, as well as temperature on the three microbiological functions have been examined for up to four bacterial species found in mineral sulphide heaps. The results indicate that bacteria adapt to sufficiently high metal concentrations (Cu, Ni, Co, Zn, As) to allow them to function in mineral sulphide heaps and, by engaging alternative metabolic pathways, to extend the solution pH range over which growth is sustained. Fluctuating temperatures during start up in sulphide heaps pose the greatest threat to efficient bacterial colonisation. The large masses of ores in bioleaching heaps mean that high temperatures arising from sulphide oxidation are hard to control initially, when the sulphide content of the ore is greatest. During that period, mesophilic and moderately thermophilic bacteria are markedly reduced in both numbers and activity. PMID:27682094

  11. Methanobactin and the Link between Copper and Bacterial Methane Oxidation

    PubMed Central

    Semrau, Jeremy D.; Murrell, J. Colin; Gallagher, Warren H.; Dennison, Christopher; Vuilleumier, Stéphane

    2016-01-01

    SUMMARY Methanobactins (mbs) are low-molecular-mass (<1,200 Da) copper-binding peptides, or chalkophores, produced by many methane-oxidizing bacteria (methanotrophs). These molecules exhibit similarities to certain iron-binding siderophores but are expressed and secreted in response to copper limitation. Structurally, mbs are characterized by a pair of heterocyclic rings with associated thioamide groups that form the copper coordination site. One of the rings is always an oxazolone and the second ring an oxazolone, an imidazolone, or a pyrazinedione moiety. The mb molecule originates from a peptide precursor that undergoes a series of posttranslational modifications, including (i) ring formation, (ii) cleavage of a leader peptide sequence, and (iii) in some cases, addition of a sulfate group. Functionally, mbs represent the extracellular component of a copper acquisition system. Consistent with this role in copper acquisition, mbs have a high affinity for copper ions. Following binding, mbs rapidly reduce Cu2+ to Cu1+. In addition to binding copper, mbs will bind most transition metals and near-transition metals and protect the host methanotroph as well as other bacteria from toxic metals. Several other physiological functions have been assigned to mbs, based primarily on their redox and metal-binding properties. In this review, we examine the current state of knowledge of this novel type of metal-binding peptide. We also explore its potential applications, how mbs may alter the bioavailability of multiple metals, and the many roles mbs may play in the physiology of methanotrophs. PMID:26984926

  12. [The environment as a reservoir for antimicrobial resistance : A growing problem for public health?

    PubMed

    Westphal-Settele, Kathi; Konradi, Sabine; Balzer, Frederike; Schönfeld, Jens; Schmithausen, Ricarda

    2018-05-01

    Antimicrobial resistance (AMR) is a threat to public and animal health on the global scale. The origin of the genes associated with resistance has long been unknown. Recently, there is a growing body of evidence demonstrating that environmental bacteria are resistant to a multitude of antibiotic substances and that this environmental reservoir of AMR is still growing. The analysis of the genomes of bacterial pathogens indicates that they have acquired their resistance profiles by incorporating different genetic elements through horizontal gene transfer. The ancestors of pathogenic bacteria, as well as the origin of resistance determinants, lay most likely in the environmental microbiota. Indeed, there is some evidence that at least some clinically relevant resistance genes have originated in environmental bacterial species. Thus, feasible measures are required to reduce the risks posed by AMR genes and resistant bacteria that occur in the environment. It has been shown that a concurrence of factors, such as high concentrations of antibiotics or heavy metals used as biocides and high bacterial densities, promote development and spread of antimicrobial resistance. For this purpose, it is essential to restrict the use of antibiotics for the treatment of livestock and humans to medical necessity, as well as to reduce the application of biocides and heavy metals in animal husbandry. Moreover, it is important to further develop sanitary measures at the interface between the environment and clinical settings or livestock farming.

  13. Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications

    PubMed Central

    Saif, Sadia; Tahir, Arifa; Chen, Yongsheng

    2016-01-01

    Recent advances in nanoscience and nanotechnology have also led to the development of novel nanomaterials, which ultimately increase potential health and environmental hazards. Interest in developing environmentally benign procedures for the synthesis of metallic nanoparticles has been increased. The purpose is to minimize the negative impacts of synthetic procedures, their accompanying chemicals and derivative compounds. The exploitation of different biomaterials for the synthesis of nanoparticles is considered a valuable approach in green nanotechnology. Biological resources such as bacteria, algae fungi and plants have been used for the production of low-cost, energy-efficient, and nontoxic environmental friendly metallic nanoparticles. This review provides an overview of various reports of green synthesised zero valent metallic iron (ZVMI) and iron oxide (Fe2O3/Fe3O4) nanoparticles (NPs) and highlights their substantial applications in environmental pollution control. This review also summarizes the ecotoxicological impacts of green synthesised iron nanoparticles opposed to non-green synthesised iron nanoparticles. PMID:28335338

  14. Vegetation successfully prevents oxidization of sulfide minerals in mine tailings.

    PubMed

    Li, Yang; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-07-15

    The oxidization of metal sulfide in tailings causes acid mine drainage. However, it remains unclear whether vegetation prevents the oxidization of metal sulfides. The oxidization characteristics and microbial indices of the tailings in the presence of various plant species were investigated to explore the effects of vegetation on the oxidization of sulfide minerals in tailings. The pH, reducing sulfur, free iron oxides (Fed), chemical oxygen consumption (COC) and biological oxygen consumption (BOC) were measured. Key iron- and sulfur-oxidizing bacteria (Acidithiobacillus spp., Leptospirillum spp. and Thiobacillus spp.) were quantified using real-time PCR. The results indicate that vegetation growing on tailings can effectively prevent the oxidization of sulfide minerals in tailings. A higher pH and reducing-sulfur content and lower Fed were observed in the 0-30 cm depth interval in the presence of vegetation compared to bare tailings (BT). The COC gradually decreased with depth in all of the soil profiles; specifically, the COC rapidly decreased in the 10-20 cm interval in the presence of vegetation but gradually decreased in the BT profiles. Imperata cylindrica (IC) and Chrysopogon zizanoides (CZ) profiles contained the highest BOC in the 10-20 cm interval. The abundance of key iron- and sulfur-oxidizing bacteria in the vegetated tailings were significantly lower than in the BT; in particular, IC was associated with the lowest iron- and sulfur-oxidizing bacterial abundance. In conclusion, vegetation successfully prevented the oxidization of sulfide minerals in the tailings, and Imperata cylindrica is the most effective in reducing the number of iron- and sulfur-oxidizing bacteria and helped to prevent the oxidization of sulfide minerals in the long term. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Isolation and characterization of metal-reducing thermoanaerobacter strains from deep subsurface environments of the Piceance Basin, Colorado.

    PubMed

    Roh, Yul; Liu, Shi V; Li, Guangshan; Huang, Heshu; Phelps, Tommy J; Zhou, Jizhong

    2002-12-01

    Five bacterial strains were isolated from anaerobic enrichment cultures that had originated from inoculations with samples collected from the deep subsurface environments of the millions-of-years-old, geologically and hydrologically isolated Piceance Basin in Colorado. Small-subunit rRNA gene-based analyses indicated that all of these bacteria were closely related to Thermoanaerobacter ethanolicus, with similarities of 99.4 to 99.5%. Three isolates (X513, X514, and X561) from the five bacterial strains were used to examine physiological characteristics. These thermophilic bacteria were able to use acetate, glucose, hydrogen, lactate, pyruvate, succinate, and xylose as electron donors while reducing Fe(III), cobalt(III), chromium(VI), manganese(IV), and uranium(VI) at 60 degrees C. One of the isolates (X514) was also able to utilize hydrogen as an electron donor for Fe(III) reduction. These bacteria exhibited diverse mineral precipitation capabilities, including the formation of magnetite (Fe(3)O(4)), siderite (FeCO(3)), rhodochrosite (MnCO(3)), and uraninite (UO(2)). The gas composition of the incubation headspace and the ionic composition of the incubation medium exerted profound influences on the types of minerals formed. The susceptibility of the thermophilic Fe(III)-reducing cultures to metabolic inhibitors specific for ferric reductase, hydrogenase, and electron transport indicated that iron reduction by these bacteria is an enzymatic process.

  16. Study on the adsorption of bacteria in ceramsite and their synergetic effect on adsorption of heavy metals.

    PubMed

    Qiu, Shan; Ma, Fang; Huang, Xu; Xu, Shanwen

    2014-01-01

    In this paper, heavy metal adsorption by ceramsite with or without Bacillus subtilis (B. subtilis) immobilization was studied, and the synergetic effect of ceramsite and bacteria was discussed in detail. To investigate the roles of the micro-pore structure of ceramsite and bacteria in removing heavy metals, the amount of bacteria immobilized on the ceramsite was determined and the effect of pH was evaluated. It was found that the immobilization of B. subtilis on the ceramsite was attributed to the electrostatic attraction and covalent bond. The scanning electron microscopy results revealed that, with the presence of ceramsite, there was the conglutination of B. subtilis cells due to the cell outer membrane dissolving. In addition, the B. subtilis immobilized ceramsite showed a different adsorption capacity for different heavy metals, with the adsorption capacity ranking of La(3+) > Cu(2+) > Mg(2+) > Na(+).

  17. Semi-passive in-situ pilot scale bioreactor successfully removed sulfate and metals from mine impacted water under subarctic climatic conditions.

    PubMed

    Nielsen, Guillaume; Hatam, Ido; Abuan, Karl A; Janin, Amelie; Coudert, Lucie; Blais, Jean Francois; Mercier, Guy; Baldwin, Susan A

    2018-04-23

    Mine drainage contaminated with metals is a major environmental threat since it is a source of water pollution with devastating effects on aquatic ecosystems. Conventional active treatment technologies are prohibitively expensive and so there is increasing demand to develop reliable, cost-effective and sustainable passive or semi-passive treatment. These are promising alternatives since they leverage the metabolism of microorganisms native to the disturbed site at in situ or close to in situ conditions. Since this is a biological approach, it is not clear if semi-passive treatment would be effective in remote locations with extremely cold weather such as at mines in the subarctic. In this study we tested the hypothesis that sulfate-reducing bacteria, which are microorganisms that promote metal precipitation, exist in subarctic mine environments and their activity can be stimulated by adding a readily available carbon source. An experiment was setup at a closed mine in the Yukon Territory, Canada, where leaching of Zn and Cd occurs. To test if semi-passive treatment could precipitate these metals and prevent further leaching from waste rock, molasses as a carbon source was added to anaerobic bioreactors mimicking the belowground in-situ conditions. Microbial community analysis confirmed that sulfate-reducing bacteria became enriched in the bioreactors upon addition of molasses. The population composition remained fairly stable over the 14 month operating period despite temperature shifts from 17 to 5 °C. Sulfate reduction functionality was confirmed by quantification of the gene for dissimilatory sulfite reductase. Metals were removed from underground mine drainage fed into the bioreactors with Zn removal efficiency varying between 20.9% in winter and 89.3% in summer, and Cd removal efficiency between 39% in winter and 90.5% in summer. This study demonstrated that stimulation of native SRB in MIW was possible and that in situ semi-passive treatment can be effective in removing metals despite the cold climate. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Identification of crude-oil components and microorganisms that cause souring under anaerobic conditions.

    PubMed

    Hasegawa, R; Toyama, K; Miyanaga, K; Tanji, Y

    2014-02-01

    Oil souring has important implications with respect to energy resources. Understanding the physiology of the microorganisms that play a role and the biological mechanisms are both important for the maintenance of infrastructure and mitigation of corrosion processes. The objective of this study was to identify crude-oil components and microorganisms in oil-field water that contribute to crude-oil souring. To identify the crude-oil components and microorganisms that are responsible for anaerobic souring in oil reservoirs, biological conversion of crude-oil components under anaerobic conditions was investigated. Microorganisms in oil field water in Akita, Japan degraded alkanes and aromatics to volatile fatty acids (VFAs) under anaerobic conditions, and fermenting bacteria such as Fusibacter sp. were involved in VFA production. Aromatics such as toluene and ethylbenzene were degraded by sulfate-reducing bacteria (Desulfotignum sp.) via the fumarate-addition pathway and not only degradation of VFA but also degradation of aromatics by sulfate-reducing bacteria was the cause of souring. Naphthenic acid and 2,4-xylenol were not converted.

  19. Formation of palladium(0) nanoparticles at microbial surfaces.

    PubMed

    Bunge, Michael; Søbjerg, Lina S; Rotaru, Amelia-Elena; Gauthier, Delphine; Lindhardt, Anders T; Hause, Gerd; Finster, Kai; Kingshott, Peter; Skrydstrup, Troels; Meyer, Rikke L

    2010-10-01

    The increasing demand and limited natural resources for industrially important platinum-group metal (PGM) catalysts render the recovery from secondary sources such as industrial waste economically interesting. In the process of palladium (Pd) recovery, microorganisms have revealed a strong potential. Hitherto, bacteria with the property of dissimilatory metal reduction have been in focus, although the biochemical reactions linking enzymatic Pd(II) reduction and Pd(0) deposition have not yet been identified. In this study we investigated Pd(II) reduction with formate as the electron donor in the presence of Gram-negative bacteria with no documented capacity for reducing metals for energy production: Cupriavidus necator, Pseudomonas putida, and Paracoccus denitrificans. Only large and close-packed Pd(0) aggregates were formed in cell-free buffer solutions. Pd(II) reduction in the presence of bacteria resulted in smaller, well-suspended Pd(0) particles that were associated with the cells (called "bioPd(0)" in the following). Nanosize Pd(0) particles (3-30 nm) were only observed in the presence of bacteria, and particles in this size range were located in the periplasmic space. Pd(0) nanoparticles were still deposited on autoclaved cells of C. necator that had no hydrogenase activity, suggesting a hydrogenase-independent formation mechanism. The catalytic properties of Pd(0) and bioPd(0) were determined by the amount of hydrogen released in a reaction with hypophosphite. Generally, bioPd(0) demonstrated a lower level of activity than the Pd(0) control, possibly due to the inaccessibility of the Pd(0) fraction embedded in the cell envelope. Our results demonstrate the suitability of bacterial cells for the recovery of Pd(0), and formation and immobilization of Pd(0) nanoparticles inside the cell envelope. However, procedures to make periplasmic Pd(0) catalytically accessible need to be developed for future nanobiotechnological applications.

  20. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil.

    PubMed

    Sitte, Jana; Akob, Denise M; Kaufmann, Christian; Finster, Kai; Banerjee, Dipanjan; Burkhardt, Eva-Maria; Kostka, Joel E; Scheinost, Andreas C; Büchel, Georg; Küsel, Kirsten

    2010-05-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the (35)SO(4)(2-) radiotracer method, was restricted to reduced soil horizons with rates of < or =142 +/- 20 nmol cm(-3) day(-1). Concentrations of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that approximately 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [(13)C]acetate- and [(13)C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined < or =100% during anoxic soil incubations. In contrast to results in other studies, soluble uranium increased in carbon-amended treatments, reaching < or =1,407 nM in solution. Our results suggest that (i) ongoing sulfate reduction in contaminated soil resulted in in situ metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems.

  1. Microbial Links between Sulfate Reduction and Metal Retention in Uranium- and Heavy Metal-Contaminated Soil▿

    PubMed Central

    Sitte, Jana; Akob, Denise M.; Kaufmann, Christian; Finster, Kai; Banerjee, Dipanjan; Burkhardt, Eva-Maria; Kostka, Joel E.; Scheinost, Andreas C.; Büchel, Georg; Küsel, Kirsten

    2010-01-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the 35SO42− radiotracer method, was restricted to reduced soil horizons with rates of ≤142 ± 20 nmol cm−3 day−1. Concentrations of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that ∼80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [13C]acetate- and [13C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined ≤100% during anoxic soil incubations. In contrast to results in other studies, soluble uranium increased in carbon-amended treatments, reaching ≤1,407 nM in solution. Our results suggest that (i) ongoing sulfate reduction in contaminated soil resulted in in situ metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems. PMID:20363796

  2. Cool temperatures reduce antifungal activity of symbiotic bacteria of threatened amphibians--implications for disease management and patterns of decline.

    PubMed

    Daskin, Joshua H; Bell, Sara C; Schwarzkopf, Lin; Alford, Ross A

    2014-01-01

    Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is a widespread disease of amphibians responsible for population declines and extinctions. Some bacteria from amphibians' skins produce antimicrobial substances active against Bd. Supplementing populations of these cutaneous antifungal bacteria might help manage chytridiomycosis in wild amphibians. However, the activity of protective bacteria may depend upon environmental conditions. Biocontrol of Bd in nature thus requires knowledge of how environmental conditions affect their anti-Bd activity. For example, Bd-driven amphibian declines have often occurred at temperatures below Bd's optimum range. It is possible these declines occurred due to reduced anti-Bd activity of bacterial symbionts at cool temperatures. Better understanding of the effects of temperature on chytridiomycosis development could also improve risk evaluation for amphibian populations yet to encounter Bd. We characterized, at a range of temperatures approximating natural seasonal variation, the anti-Bd activity of bacterial symbionts from the skins of three species of rainforest tree frogs (Litoria nannotis, Litoria rheocola, and Litoria serrata). All three species declined during chytridiomycosis outbreaks in the late 1980s and early 1990s and have subsequently recovered to differing extents. We collected anti-Bd bacterial symbionts from frogs and cultured the bacteria at constant temperatures from 8 °C to 33 °C. Using a spectrophotometric assay, we monitored Bd growth in cell-free supernatants (CFSs) from each temperature treatment. CFSs from 11 of 24 bacteria showed reduced anti-Bd activity in vitro when they were produced at cool temperatures similar to those encountered by the host species during population declines. Reduced anti-Bd activity of metabolites produced at low temperatures may, therefore, partially explain the association between Bd-driven declines and cool temperatures. We show that to avoid inconsistent antifungal activity, bacteria evaluated for use in chytridiomycosis biocontrol should be tested over a range of environmental temperatures spanning those likely to be encountered in the field.

  3. Porphyromonas endodontalis binds, reduces and grows on human hemoglobin.

    PubMed

    Zerr, M; Drake, D; Johnson, W; Cox, C D

    2001-08-01

    Porphyromonas endodontalis is a black-pigmented, obligate anaerobic rod-shaped bacterium implicated as playing a major role in endodontic infections. We have previously shown that P. endodontalis requires the porphyrin nucleus, preferably supplied as hemoglobin, as a growth supplement. The bacteria also actively transport free iron, although this activity does not support growth in the absence of a porphyrin source. The purpose of this study was to further investigate the binding and subsequent utilization of human hemoglobin by P. endodontalis. P. endodontalis binds hemoglobin and reduces the Fe(III) porphyrin, resulting in a steady accumulation of ferrous hemoglobin. Reduction of methemoglobin was similar to the extracellular reduction of nitrobluetetrazolium in the presence of oxidizable substrate. Turbidimetric and viable cell determinations showed that P. endodontalis grew when supplied only hemoglobin. Therefore, we conclude that hemoglobin appears to serve as a sole carbon and nitrogen source, and that these bacteria reduce extracellular compounds at the expense of oxidized substrates.

  4. Antimicrobial resistance, heavy metal resistance and integron content in bacteria isolated from a South African tilapia aquaculture system.

    PubMed

    Chenia, Hafizah Y; Jacobs, Anelet

    2017-11-21

    Antibacterial compounds and metals co-select for antimicrobial resistance when bacteria harbour resistance genes towards both types of compounds, facilitating the proliferation and evolution of antimicrobial and heavy metal resistance. Antimicrobial and heavy metal resistance indices of 42 Gram-negative bacteria from a tilapia aquaculture system were determined to identify possible correlations between these phenotypes. Agar dilution assays were carried out to determine susceptibility to cadmium, copper, lead, mercury, chromate and zinc, while susceptibility to 21 antimicrobial agents was investigated by disk diffusion assays. Presence of merA, the mercury resistance gene, was determined by dot-blot hybridizations and PCR. Association of mercury resistance with integrons and transposon Tn21 was also investigated by PCR. Isolates displayed a high frequency of antimicrobial (erythromycin: 100%; ampicillin: 85%; trimethoprim: 78%) and heavy metal (Zn2+: 95%; Cd2+: 91%) resistance. No correlation was established between heavy metal and multiple antibiotic resistance indices. Significant positive correlations were observed between heavy metal resistance profiles, indices, Cu2+ and Cr3+ resistance with erythromycin resistance. Significant positive correlations were observed between merA (24%)/Tn21 (24%) presence and heavy metal resistance profiles and indices; however, significant negative correlations were obtained between integron-associated qacE∆1 (43%) and sulI (26%) gene presence and heavy metal resistance indices. Heavy metal and antimicrobial agents co-select for resistance, with fish-associated, resistant bacteria demonstrating simultaneous heavy metal resistance. Thus, care should be taken when using anti-fouling heavy metals as feed additives in aquaculture facilities.

  5. Brief ultrasonication improves detection of biofilm-formative bacteria around a metal implant.

    PubMed

    Kobayashi, Naomi; Bauer, Thomas W; Tuohy, Marion J; Fujishiro, Takaaki; Procop, Gary W

    2007-04-01

    Biofilms are complex microenvironments produced by microorganisms on surfaces. Ultrasonication disrupts biofilms and may make the microorganism or its DNA available for detection. We determined whether ultrasonication could affect our ability to detect bacteria adherent to a metal substrate. A biofilm-formative Staphylococcus aureus strain was used for an in vitro implant infection model (biofilm-formative condition). We used quantitative culture and real time-polymerase chain reaction to determine the influence of different durations of ultrasound on bacterial adherence and viability. Sonication for 1 minute increased the yield of bacteria. Sonication longer than 5 minutes led to fewer bacterial colonies by conventional culture but not by polymerase chain reaction. This suggests short periods of sonication help release bacteria from the metal substrate by disrupting the biofilm, but longer periods of sonication lyse bacteria prohibiting their detection in microbiologic cultures. A relatively short duration of sonication may be desirable for maximizing detection of biofilm-formative bacteria around implants by culture or polymerase chain reaction.

  6. Reduction and removal of heptavalent technetium from solution by Escherichia coli.

    PubMed

    Lloyd, J R; Cole, J A; Macaskie, L E

    1997-03-01

    Anaerobic, but not aerobic, cultures of Escherichia coli accumulated Tc(VII) and reduced it to a black insoluble precipitate. Tc was the predominant element detected when the precipitate was analyzed by proton-induced X-ray emission. Electron microscopy in combination with energy-dispersive X-ray analysis showed that the site of Tc deposition was intracellular. It is proposed that Tc precipitation was a result of enzymatically mediated reduction of Tc(VII) to an insoluble oxide. Formate was an effective electron donor for Tc(VII) reduction which could be replaced by pyruvate, glucose, or glycerol but not by acetate, lactate, succinate, or ethanol. Mutants defective in the synthesis of the transcription factor FNR, in molybdenum cofactor (molybdopterin guanine dinucleotide [MGD]) synthesis, or in formate dehydrogenase H synthesis were all defective in Tc(VII) reduction, implicating a role for the formate hydrogenlyase complex in Tc(VII) reduction. The following observations confirmed that the hydrogenase III (Hyc) component of formate hydrogenlyase in both essential and sufficient for Tc(VII) reduction: (i) dihydrogen could replace formate as an effective electron donor for Tc(VII) reduction by wild-type bacteria and mutants defective in MGD synthesis; (ii) the inability of fnr mutants to reduce Tc(VII) can be suppressed phenotypically by growth with 250 microM Ni2+ and formate; (iii) Tc(VII) reduction is defective in a hyc mutant; (iv) the ability to reduce Tc(VII) was repressed during anaerobic growth in the presence of nitrate, but this repression was counteracted by the addition of formate to the growth medium; (v) H2, but not formate, was an effective electron donor for a Sel- mutant which is unable to incorporate selenocysteine into any of the three known formate dehydrogenases of E. coli. This appears to be the first report of Hyc functioning as an H2-oxidizing hydrogenase or as a dissimilatory metal ion reductase in enteric bacteria.

  7. Antimicrobial properties of metal and metal-halide nanoparticles and their potential applications

    NASA Astrophysics Data System (ADS)

    Torrey, Jason Robert

    Heavy metals, including silver and copper, have been known to possess antimicrobial properties against bacterial, fungal, and viral pathogens. Metal nanoparticles (aggregations of metal atoms 1-200 nm in size) have recently become the subject of intensive study for their increased antimicrobial properties. In the current studies, metal and metal-halide nanoparticles were evaluated for their antibacterial efficacy. Silver (Ag), silver bromide (AgBr), silver iodide (AgI), and copper iodide (CuI) nanoparticles significantly reduced bacterial numbers of the Gram-negative Pseudomonas aeruginosa and the Gram-positive Staphylococcus aureus within 24 hours and were more effective against P. aeruginosa. CuI nanoparticles were found to be highly effective, reducing both organisms by >4.43 log 10 within 15 minutes at 60 ppm Cu. CuI nanoparticles formulated with different stabilizers (sodium dodecyl sulfate, SDS; polyvinyl pyrrolidone, PVP) were further tested against representative Gram-positive and Gram-negative bacteria, Mycobacteria, a fungus (Candida albicans ), and a non-enveloped virus (poliovirus). Both nanoparticles caused significant reductions in most of the Gram-negative bacteria within five minutes (>5.09-log10). The Gram-positive bacterial species and C. albicans were more sensitive to the CuI-SDS than the CuI-PVP nanoparticles. In contrast, the acid-fast Mycobacterium smegmatis was more resistant to CuI-SDS than CuI-PVP nanoparticles. Poliovirus was more resistant than the other organisms tested except for Mycobacterium fortuitum, which displayed the greatest resistance to CuI nanoparticles. As an example of a real world antimicrobial application, polymer coatings embedded with various concentrations of CuI nanoparticles were tested for antibacterial efficacy against P. aeruginosa and S. aureus. Polyester-epoxy powder coatings were found to display superior uniformity, stability and antimicrobial properties against both organisms (>4.92 log 10 after six hours at 0.25% Cu). These surfaces were negatively impacted when tested under dry conditions with high organic content. At 0.25% Cu, the antibacterial activity of the powder coatings was not impacted by washing with several commercial cleaners; however, at concentrations of 0.05% Cu, antibacterial activity was reduced by washing with water, WindexRTM , and Pine SolRTM. Ultrasonic cleaning of the coatings appeared to decrease their antimicrobial efficacy. Despite this, CuI nanoparticles were found in all studies to have great potential as a new class of fast-acting, broad-spectrum antimicrobial.

  8. Cd immobilization and reduced tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the presence of heavy metal-resistant bacteria.

    PubMed

    Li, Ya; Pang, Hai-Dong; He, Lin-Yan; Wang, Qi; Sheng, Xia-Fang

    2017-04-01

    Two metal-resistant Bacillus megaterium H3 and Neorhizobium huautlense T1-17 were investigated for their immobilization of Cd in solution and tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the Cd-contaminated soil. Strains H3 and T1-17 decreased 79-96% of water-soluble Cd in solution and increased grain biomass in the high Cd-contaminated soil. Inoculation with H3 and T1-17 significantly decreased the root (ranging from 25% to 58%), above-ground tissue (ranging from 13% to 34%), and polished rice (ranging from 45% to 72%) Cd contents as well as Cd bioconcentration factor of the rice compared to the controls. Furthermore, H3 and T1-17 significantly reduced the exchangeable Cd content of the rhizosphere soils compared with the controls. Notably, strain T1-17 had significantly higher ability to reduce Cd bioconcentration factor and polished rice Cd uptake than strain H3. The results demonstrated that H3 and T1-17 decreased the tissue (especially polished rice) Cd uptake by decreasing Cd availability in soil and Cd bioconcentration factor and the effect on the reduced polished rice Cd uptake was dependent on the strains. The results may provide an effective synergistic bioremediation of Cd-contaminated soils in the bacteria and rice plants and bacterial-assisted safe production of rice in Cd-contaminated soils. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Culturable Heavy Metal-Resistant and Plant Growth Promoting Bacteria in V-Ti Magnetite Mine Tailing Soil from Panzhihua, China

    PubMed Central

    Zhang, Chu; Liu, Huiying; Liu, Jin; Zheng, Wenwen; Kang, Xia; Leng, Xuejun; Zhao, Ke; Gu, Yunfu; Zhang, Xiaoping; Xiang, Quanju; Chen, Qiang

    2014-01-01

    To provide a basis for using indigenous bacteria for bioremediation of heavy metal contaminated soil, the heavy metal resistance and plant growth-promoting activity of 136 isolates from V-Ti magnetite mine tailing soil were systematically analyzed. Among the 13 identified bacterial genera, the most abundant genus was Bacillus (79 isolates) out of which 32 represented B. subtilis and 14 B. pumilus, followed by Rhizobium sp. (29 isolates) and Ochrobactrum intermedium (13 isolates). Altogether 93 isolates tolerated the highest concentration (1000 mg kg−1) of at least one of the six tested heavy metals. Five strains were tolerant against all the tested heavy metals, 71 strains tolerated 1,000 mg kg−1 cadmium whereas only one strain tolerated 1,000 mg kg−1 cobalt. Altogether 67% of the bacteria produced indoleacetic acid (IAA), a plant growth-promoting phytohormone. The concentration of IAA produced by 53 isolates was higher than 20 µg ml−1. In total 21% of the bacteria produced siderophore (5.50–167.67 µg ml−1) with two Bacillus sp. producing more than 100 µg ml−1. Eighteen isolates produced both IAA and siderophore. The results suggested that the indigenous bacteria in the soil have beneficial characteristics for remediating the contaminated mine tailing soil. PMID:25188470

  10. Reduction and Immobilization of Radionuclides and Toxic Metal Ions Using Combined Zero Valent Iron and Anaerobic Bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenly J. Weathers; Lynn E. Katz

    2002-05-29

    The use of zero valent iron, permeable reactive barriers (PRBs) for groundwater remediation continues to increase. AN exciting variation of this technology involves introducing anaerobic bacteria into these barriers so that both biological and abiotic pollutant removal processes are functional. This work evaluated the hypothesis that a system combining a mixed culture of sulfate reducing bacteria (SRB) with zero valent iron would have a greater cr(VI) removal efficiency and a greater total Cr(VI) removal capacity than a zero valent iron system without the microorganisms. Hence, the overall goal of this research was to compare the performance of these types ofmore » systems with regard to their Cr(VI) removal efficiency and total Cr(VI) removal capacity. Both batch and continuous flow reactor systems were evaluated.« less

  11. Biomachining - A new approach for micromachining of metals

    NASA Astrophysics Data System (ADS)

    Vigneshwaran, S. C. Sakthi; Ramakrishnan, R.; Arun Prakash, C.; Sashank, C.

    2018-04-01

    Machining is the process of removal of material from workpiece. Machining can be done by physical, chemical or biological methods. Though physical and chemical methods have been widely used in machining process, they have their own disadvantages such as development of heat affected zone and usage of hazardous chemicals. Biomachining is the machining process in which bacteria is used to remove material from the metal parts. Chemolithotrophic bacteria such as Acidothiobacillus ferroxidans has been used in biomachining of metals like copper, iron etc. These bacteria are used because of their property of catalyzing the oxidation of inorganic substances. Biomachining is a suitable process for micromachining of metals. This paper reviews the biomachining process and various mechanisms involved in biomachining. This paper also briefs about various parameters/factors to be considered in biomachining and also the effect of those parameters on metal removal rate.

  12. Draft genome sequence of Therminicola potens strain JR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrne-Bailey, K.G.; Wrighton, K.C.; Melnyk, R.A.

    'Thermincola potens' strain JR is one of the first Gram-positive dissimilatory metal-reducing bacteria (DMRB) for which there is a complete genome sequence. Consistent with the physiology of this organism, preliminary annotation revealed an abundance of multiheme c-type cytochromes that are putatively associated with the periplasm and cell surface in a Gram-positive bacterium. Here we report the complete genome sequence of strain JR.

  13. Antimicrobial effects of a new therapeutic liquid dentifrice formulation on oral bacteria including odorigenic species.

    PubMed

    Sreenivasan, P K; Furgang, D; Zhang, Y; DeVizio, W; Fine, D H

    2005-03-01

    The control of oral malodor is well-recognized in efforts to improve oral health. Antimicrobial formulations can mitigate oral malodor, however, procedures to assess effects on oral bacteria including those implicated in halitosis are unavailable. This investigation examined the antimicrobial effects of a new liquid triclosan/copolymer dentifrice (test) formulation that demonstrated significant inhibition of oral malodor in previous organoleptic clinical studies. Procedures compared antimicrobial effects of the test and control formulations on a range of oral micro-organisms including members implicated in halitosis, substantive antimicrobial effects of formulations with hydroxyapatite as a surrogate for human teeth and ex vivo effects on oral bacteria from human volunteers. With Actinomyces viscosus, as a model system, the test formulation demonstrated a dose-dependent effect. At these concentrations the test formulation provided significant antimicrobial effects on 13 strains of oral bacteria including those implicated in bad breath at selected posttreatment time points. Treatment of hydroxyapatite by the test dentifrice resulted in a significant and substantive antimicrobial effect vs. controls. Oral bacteria from subjects treated ex vivo with the test dentifrice resulted in significant reductions in cultivable oral bacteria and odorigenic bacteria producing hydrogen sulfide. In summary, microbiological methods adapted to study odorigenic bacteria demonstrate the significant antimicrobial effects of the test (triclosan/copolymer) dentifrice with laboratory and clinical strains of oral bacteria implicated in bad breath.

  14. Isolation of Acetogenic Bacteria That Induce Biocorrosion by Utilizing Metallic Iron as the Sole Electron Donor

    PubMed Central

    Yumoto, Isao; Kamagata, Yoichi

    2014-01-01

    Corrosion of iron occurring under anoxic conditions, which is termed microbiologically influenced corrosion (MIC) or biocorrosion, is mostly caused by microbial activities. Microbial activity that enhances corrosion via uptake of electrons from metallic iron [Fe(0)] has been regarded as one of the major causative factors. In addition to sulfate-reducing bacteria and methanogenic archaea in marine environments, acetogenic bacteria in freshwater environments have recently been suggested to cause MIC under anoxic conditions. However, no microorganisms that perform acetogenesis-dependent MIC have been isolated or had their MIC-inducing mechanisms characterized. Here, we enriched and isolated acetogenic bacteria that induce iron corrosion by utilizing Fe(0) as the sole electron donor under freshwater, sulfate-free, and anoxic conditions. The enriched communities produced significantly larger amounts of Fe(II) than the abiotic controls and produced acetate coupled with Fe(0) oxidation prior to CH4 production. Microbial community analysis revealed that Sporomusa sp. and Desulfovibrio sp. dominated in the enrichments. Strain GT1, which is closely related to the acetogen Sporomusa sphaeroides, was eventually isolated from the enrichment. Strain GT1 grew acetogenetically with Fe(0) as the sole electron donor and enhanced iron corrosion, which is the first demonstration of MIC mediated by a pure culture of an acetogen. Other well-known acetogenic bacteria, including Sporomusa ovata and Acetobacterium spp., did not grow well on Fe(0). These results indicate that very few species of acetogens have specific mechanisms to efficiently utilize cathodic electrons derived from Fe(0) oxidation and induce iron corrosion. PMID:25304512

  15. Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor.

    PubMed

    Kato, Souichiro; Yumoto, Isao; Kamagata, Yoichi

    2015-01-01

    Corrosion of iron occurring under anoxic conditions, which is termed microbiologically influenced corrosion (MIC) or biocorrosion, is mostly caused by microbial activities. Microbial activity that enhances corrosion via uptake of electrons from metallic iron [Fe(0)] has been regarded as one of the major causative factors. In addition to sulfate-reducing bacteria and methanogenic archaea in marine environments, acetogenic bacteria in freshwater environments have recently been suggested to cause MIC under anoxic conditions. However, no microorganisms that perform acetogenesis-dependent MIC have been isolated or had their MIC-inducing mechanisms characterized. Here, we enriched and isolated acetogenic bacteria that induce iron corrosion by utilizing Fe(0) as the sole electron donor under freshwater, sulfate-free, and anoxic conditions. The enriched communities produced significantly larger amounts of Fe(II) than the abiotic controls and produced acetate coupled with Fe(0) oxidation prior to CH4 production. Microbial community analysis revealed that Sporomusa sp. and Desulfovibrio sp. dominated in the enrichments. Strain GT1, which is closely related to the acetogen Sporomusa sphaeroides, was eventually isolated from the enrichment. Strain GT1 grew acetogenetically with Fe(0) as the sole electron donor and enhanced iron corrosion, which is the first demonstration of MIC mediated by a pure culture of an acetogen. Other well-known acetogenic bacteria, including Sporomusa ovata and Acetobacterium spp., did not grow well on Fe(0). These results indicate that very few species of acetogens have specific mechanisms to efficiently utilize cathodic electrons derived from Fe(0) oxidation and induce iron corrosion. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Fungal biosynthesis of gold nanoparticles: mechanism and scale up.

    PubMed

    Kitching, Michael; Ramani, Meghana; Marsili, Enrico

    2015-11-01

    Gold nanoparticles (AuNPs) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP synthesis often produce toxic residues that raise environmental concern. On the other hand, the biological synthesis of AuNPs in viable microorganisms and their cell-free extracts is an environmentally friendly and low-cost process. In general, fungi tolerate higher metal concentrations than bacteria and secrete abundant extracellular redox proteins to reduce soluble metal ions to their insoluble form and eventually to nanocrystals. Fungi harbour untapped biological diversity and may provide novel metal reductases for metal detoxification and bioreduction. A thorough understanding of the biosynthetic mechanism of AuNPs in fungi is needed to reduce the time of biosynthesis and to scale up the AuNP production process. In this review, we describe the known mechanisms for AuNP biosynthesis in viable fungi and fungal protein extracts and discuss the most suitable bioreactors for industrial AuNP biosynthesis. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  17. Competitive adsorption of heavy metal by extracellular polymeric substances (EPS) extracted from sulfate reducing bacteria.

    PubMed

    Wang, Jin; Li, Qing; Li, Ming-Ming; Chen, Tian-Hu; Zhou, Yue-Fei; Yue, Zheng-Bo

    2014-07-01

    Competitive adsorption of heavy metals by extracellular polymeric substances (EPS) extracted from Desulfovibrio desulfuricans was investigated. Chemical analysis showed that different EPS compositions had different capacities for the adsorption of heavy metals which was investigated using Cu(2+) and Zn(2+). Batch adsorption tests indicated that EPS had a higher combined ability with Zn(2+) than Cu(2+). This was confirmed and explained by Fourier transform infrared (FTIR) and excitation-emission matrix (EEM) spectroscopy analysis. FTIR analysis showed that both polysaccharides and protein combined with Zn(2+) while only protein combined with Cu(2+). EEM spectra further revealed that tryptophan-like substances were the main compositions reacted with the heavy metals. Moreover, Zn(2+) had a higher fluorescence quenching ability than Cu(2+). Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Microorganisms and heavy metals associated with atmospheric deposition in a congested urban environment of a developing country: Sri Lanka.

    PubMed

    Weerasundara, Lakshika; Amarasekara, R W K; Magana-Arachchi, D N; Ziyath, Abdul M; Karunaratne, D G G P; Goonetilleke, Ashantha; Vithanage, Meththika

    2017-04-15

    The presence of bacteria and heavy metals in atmospheric deposition were investigated in Kandy, Sri Lanka, which is a typical city in the developing world with significant traffic congestion. Atmospheric deposition samples were analyzed for Al, Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb which are heavy metals common to urban environments. Al and Fe were found in high concentrations due to the presence of natural sources, but may also be re-suspended by vehicular traffic. Relatively high concentrations of toxic metals such as Cr and Pb in dissolved form were also found. High Zn loads can be attributed to vehicular emissions and the wide use of Zn coated roofing materials. The metal loads in wet deposition showed higher concentrations compared to dry deposition. The metal concentrations among the different sampling sites significantly differ from each other depending on the traffic conditions. Industrial activities are not significant in Kandy City. Consequently, the traffic exerts high influence on heavy metal loadings. As part of the bacterial investigations, nine species of culturable bacteria, namely; Sphingomonas sp., Pseudomonas aeruginosa, Pseudomonas monteilii, Klebsiella pneumonia, Ochrobactrum intermedium, Leclercia adecarboxylata, Exiguobacterium sp., Bacillus pumilus and Kocuria kristinae, which are opportunistic pathogens, were identified. This is the first time Pseudomonas monteilii and Ochrobactrum intermedium has been reported from a country in Asia. The culturable fraction constituted ~0.01 to 10%. Pigmented bacteria and endospore forming bacteria were copious in the atmospheric depositions due to their capability to withstand harsh environmental conditions. The presence of pathogenic bacteria and heavy metals creates potential human and ecosystem health risk. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Survival in amoeba--a major selection pressure on the presence of bacterial copper and zinc resistance determinants? Identification of a "copper pathogenicity island".

    PubMed

    Hao, Xiuli; Lüthje, Freja L; Qin, Yanan; McDevitt, Sylvia Franke; Lutay, Nataliya; Hobman, Jon L; Asiani, Karishma; Soncini, Fernando C; German, Nadezhda; Zhang, Siyu; Zhu, Yong-Guan; Rensing, Christopher

    2015-07-01

    The presence of metal resistance determinants in bacteria usually is attributed to geological or anthropogenic metal contamination in different environments or associated with the use of antimicrobial metals in human healthcare or in agriculture. While this is certainly true, we hypothesize that protozoan predation and macrophage killing are also responsible for selection of copper/zinc resistance genes in bacteria. In this review, we outline evidence supporting this hypothesis, as well as highlight the correlation between metal resistance and pathogenicity in bacteria. In addition, we introduce and characterize the "copper pathogenicity island" identified in Escherichia coli and Salmonella strains isolated from copper- and zinc-fed Danish pigs.

  20. Protist-facilitated transport of soil bacteria in an artificial soil micromodel

    NASA Astrophysics Data System (ADS)

    Rubinstein, R. L.; Cousens, V.; Gage, D. J.; Shor, L. M.

    2013-12-01

    Soil bacteria within the rhizosphere benefit plants by protecting roots from pathogens, producing growth factors, and improving nutrient availability. These effects can greatly improve overall plant health and increase crop yield, but as roots grow out from the tips they quickly outpace their bacterial partners. Some soil bacteria are motile and can chemotact towards root tips, but bacterial mobility in unsaturated soils is limited to interconnected hydrated pores. Mobility is further reduced by the tendency of soil bacteria to form biofilms. The introduction of protists to the rhizosphere has been shown to benefit plants, purportedly by selective grazing on harmful bacteria or release of nutrients otherwise sequestered in bacteria. We propose that an additional benefit to the presence of protists is the facilitated transport of beneficial bacteria along root systems. Using microfluidic devices designed to imitate narrow, fluid-filled channels in soil, we have shown that the distribution of bacteria through micro-channels is accelerated in the presence of protists. Furthermore, we have observed that even with predation effects, the bacteria remain viable and continue to reproduce for the duration of our experiments. These results expand upon our understanding of complex bio-physical interactions in the rhizosphere system, and may have important implications for agricultural practices.

  1. Screening beneficial rhizobacteria from Spartina maritima for phytoremediation of metal polluted salt marshes: comparison of gram-positive and gram-negative strains.

    PubMed

    Paredes-Páliz, Karina I; Caviedes, Miguel A; Doukkali, Bouchra; Mateos-Naranjo, Enrique; Rodríguez-Llorente, Ignacio D; Pajuelo, Eloísa

    2016-10-01

    The aim of our work was the isolation and characterization of bacteria from the rhizosphere of Spartina maritima in the metal contaminated Odiel estuary (Huelva, SW Spain). From 25 strains, 84 % were identified as gram-positive, particularly Staphylococcus and Bacillus. Gram-negative bacteria were represented by Pantoea and Salmonella. Salt and heavy metal tolerance, metal bioabsorption, plant growth promoting (PGP) properties, and biofilm formation were investigated in the bacterial collection. Despite the higher abundance of gram-positive bacteria, gram-negative isolates displayed higher tolerance toward metal(loid)s (As, Cu, Zn, and Pb) and greater metal biosorption, as deduced from ICP-OES and SEM-EDX analyses. Besides, they exhibited better PGP properties, which were retained in the presence of metals and the ability to form biofilms. Gram-negative strains Pantoea agglomerans RSO6 and RSO7, together with gram-positive Bacillus aryabhattai RSO25, were selected for a bacterial consortium aimed to inoculate S. maritima plants in metal polluted estuaries for phytoremediation purposes.

  2. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction.

    PubMed

    Rajkumar, Mani; Ae, Noriharu; Prasad, Majeti Narasimha Vara; Freitas, Helena

    2010-03-01

    Phytoremediation holds promise for in situ treatment of heavy metal contaminated soils. Recently, the benefits of combining siderophore-producing bacteria (SPB) with plants for metal removal from contaminated soils have been demonstrated. Metal-resistant SPB play an important role in the successful survival and growth of plants in contaminated soils by alleviating the metal toxicity and supplying the plant with nutrients, particularly iron. Furthermore, bacterial siderophores are able to bind metals other than iron and thus enhance their bioavailability in the rhizosphere of plants. Overall, an increase in plant growth and metal uptake will further enhance the effectiveness of phytoremediation processes. Here, we highlight the diversity and ecology of metal resistant SPB and discuss their potential role in phytoremediation of heavy metals.

  3. Intracellular Cadmium Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  4. Ecotoxic heavy metals transformation by bacteria and fungi in aquatic ecosystem.

    PubMed

    Chaturvedi, Amiy Dutt; Pal, Dharm; Penta, Santhosh; Kumar, Awanish

    2015-10-01

    Water is the most important and vital molecule of our planet and covers 75% of earth surface. But it is getting polluted due to high industrial growth. The heavy metals produced by industrial activities are recurrently added to it and considered as dangerous pollutants. Increasing concentration of toxic heavy metals (Pb(2+), Cd(2+), Hg(2+), Ni(2+)) in water is a severe threat for human. Heavy metal contaminated water is highly carcinogenic and poisonous at even relatively low concentrations. When they discharged in water bodies, they dissolve in the water and are distributed in the food chain. Bacteria and fungi are efficient microbes that frequently transform heavy metals and remove toxicity. The application of bacteria and fungi may offer cost benefit in water treatment plants for heavy metal transformation and directly related to public health and environmental safety issues. The heavy metals transformation rate in water is also dependent on the enzymatic capability of microorganisms. By transforming toxic heavy metals microbes sustain aquatic and terrestrial life. Therefore the application of microbiological biomass for heavy metal transformation and removal from aquatic ecosystem is highly significant and striking. This paper reviews the microbial transformation of heavy metal, microbe metal interaction and different approaches for microbial heavy metal remediation from water bodies.

  5. Phylogenetic characterization of a corrosive consortium isolated from a sour gas pipeline.

    PubMed

    Jan-Roblero, J; Romero, J M; Amaya, M; Le Borgne, S

    2004-06-01

    Biocorrosion is a common problem in oil and gas industry facilities. Characterization of the microbial populations responsible for biocorrosion and the interactions between different microorganisms with metallic surfaces is required in order to implement efficient monitoring and control strategies. Denaturing gradient gel electrophoresis (DGGE) analysis was used to separate PCR products and sequence analysis revealed the bacterial composition of a consortium obtained from a sour gas pipeline in the Gulf of Mexico. Only one species of sulfate-reducing bacteria (SRB) was detected in this consortium. The rest of the population consisted of enteric bacteria with different characteristics and metabolic capabilities potentially related to biocorrosion. Therefore, several types of bacteria may be involved in biocorrosion arising from natural biofilms that develop in industrial facilities. The low abundance of the detected SRB was evidenced by environmental scanning electron microscopy (ESEM). In addition, the localized corrosion of pipeline steel in the presence of the consortium was clearly observed by ESEM after removing the adhered bacteria.

  6. Biogeochemical implications of the ubiquitous colonization of marine habitats and redox gradients by Marinobacter species.

    PubMed

    Handley, Kim M; Lloyd, Jonathan R

    2013-01-01

    The Marinobacter genus comprises widespread marine bacteria, found in localities as diverse as the deep ocean, coastal seawater and sediment, hydrothermal settings, oceanic basalt, sea-ice, sand, solar salterns, and oil fields. Terrestrial sources include saline soil and wine-barrel-decalcification wastewater. The genus was designated in 1992 for the Gram-negative, hydrocarbon-degrading bacterium Marinobacter hydrocarbonoclasticus. Since then, a further 31 type strains have been designated. Nonetheless, the metabolic range of many Marinobacter species remains largely unexplored. Most species have been classified as aerobic heterotrophs, and assessed for limited anaerobic pathways (fermentation or nitrate reduction), whereas studies of low-temperature hydrothermal sediments, basalt at oceanic spreading centers, and phytoplankton have identified species that possess a respiratory repertoire with significant biogeochemical implications. Notable physiological traits include nitrate-dependent Fe(II)-oxidation, arsenic and fumarate redox cycling, and Mn(II) oxidation. There is also evidence for Fe(III) reduction, and metal(loid) detoxification. Considering the ubiquity and metabolic capabilities of the genus, Marinobacter species may perform an important and underestimated role in the biogeochemical cycling of organics and metals in varied marine habitats, and spanning aerobic-to-anoxic redox gradients.

  7. Biogeochemical implications of the ubiquitous colonization of marine habitats and redox gradients by Marinobacter species

    PubMed Central

    Handley, Kim M.; Lloyd, Jonathan R.

    2013-01-01

    The Marinobacter genus comprises widespread marine bacteria, found in localities as diverse as the deep ocean, coastal seawater and sediment, hydrothermal settings, oceanic basalt, sea-ice, sand, solar salterns, and oil fields. Terrestrial sources include saline soil and wine-barrel-decalcification wastewater. The genus was designated in 1992 for the Gram-negative, hydrocarbon-degrading bacterium Marinobacter hydrocarbonoclasticus. Since then, a further 31 type strains have been designated. Nonetheless, the metabolic range of many Marinobacter species remains largely unexplored. Most species have been classified as aerobic heterotrophs, and assessed for limited anaerobic pathways (fermentation or nitrate reduction), whereas studies of low-temperature hydrothermal sediments, basalt at oceanic spreading centers, and phytoplankton have identified species that possess a respiratory repertoire with significant biogeochemical implications. Notable physiological traits include nitrate-dependent Fe(II)-oxidation, arsenic and fumarate redox cycling, and Mn(II) oxidation. There is also evidence for Fe(III) reduction, and metal(loid) detoxification. Considering the ubiquity and metabolic capabilities of the genus, Marinobacter species may perform an important and underestimated role in the biogeochemical cycling of organics and metals in varied marine habitats, and spanning aerobic-to-anoxic redox gradients. PMID:23734151

  8. Metal acquisition and virulence in Brucella

    PubMed Central

    Roop, R. Martin

    2013-01-01

    Similar to other bacteria, Brucella strains require several biologically essential metals for their survival in vitro and in vivo. Acquiring sufficient levels of some of these metals, particularly iron, manganese and zinc, is especially challenging in the mammalian host, where sequestration of these micronutrients is a well-documented component of both the innate and acquired immune responses. This review describes the Brucella metal transporters that have been shown to play critical roles in the virulence of these bacteria in experimental and natural hosts. PMID:22632611

  9. Anaerobic consortia of fungi and sulfate reducing bacteria in deep granite fractures.

    PubMed

    Drake, Henrik; Ivarsson, Magnus; Bengtson, Stefan; Heim, Christine; Siljeström, Sandra; Whitehouse, Martin J; Broman, Curt; Belivanova, Veneta; Åström, Mats E

    2017-07-04

    The deep biosphere is one of the least understood ecosystems on Earth. Although most microbiological studies in this system have focused on prokaryotes and neglected microeukaryotes, recent discoveries have revealed existence of fossil and active fungi in marine sediments and sub-seafloor basalts, with proposed importance for the subsurface energy cycle. However, studies of fungi in deep continental crystalline rocks are surprisingly few. Consequently, the characteristics and processes of fungi and fungus-prokaryote interactions in this vast environment remain enigmatic. Here we report the first findings of partly organically preserved and partly mineralized fungi at great depth in fractured crystalline rock (-740 m). Based on environmental parameters and mineralogy the fungi are interpreted as anaerobic. Synchrotron-based techniques and stable isotope microanalysis confirm a coupling between the fungi and sulfate reducing bacteria. The cryptoendolithic fungi have significantly weathered neighboring zeolite crystals and thus have implications for storage of toxic wastes using zeolite barriers.Deep subsurface microorganisms play an important role in nutrient cycling, yet little is known about deep continental fungal communities. Here, the authors show organically preserved and partly mineralized fungi at 740 m depth, and find evidence of an anaerobic fungi and sulfate reducing bacteria consortium.

  10. Effect of heavy-metal on synthesis of siderophores by Pseudomonas aeruginosa ZGKD3

    NASA Astrophysics Data System (ADS)

    Shi, Peili; Xing, Zhukang; Zhang, Yuxiu; Chai, Tuanyao

    2017-01-01

    Most siderophore-producing bacteria could improve the plant growth. Here, the effect of heavy-metal on the growth, total siderophore and pyoverdine production of the Cd tolerance Pseudomonas aeruginosa ZGKD3 were investigated. The results showed that ZGKD3 exhibited tolerance to heavy metals, and the metal tolerance decreased in the order Mn2+>Pb2+>Ni2+>Cu2+>Zn2+>Cd2+. The total siderophore and pyoverdine production of ZGKD3 induced by metals of Cd2+, Cu2+, Zn2+, Ni2+, Pb2+ and Mn2+ were different, the total siderophore and pyoverdine production reduced in the order Cd2+>Pb2+>Mn2+>Ni2+>Zn2+ >Cu2+ and Zn2+>Cd2+>Mn2+>Pb2+>Ni2+>Cu2+, respectively. These results suggested that ZGKD3 could grow in heavy-metal contaminated soil and had the potential of improving phytoremediation efficiency in Cd and Zn contaminated soils.

  11. Organic substrates as electron donors in permeable reactive barriers for removal of heavy metals from acid mine drainage.

    PubMed

    Kijjanapanich, P; Pakdeerattanamint, K; Lens, P N L; Annachhatre, A P

    2012-12-01

    This research was conducted to select suitable natural organic substrates as potential carbon sources for use as electron donors for biological sulphate reduction in a permeable reactive barrier (PRB). A number of organic substrates were assessed through batch and continuous column experiments under anaerobic conditions with acid mine drainage (AMD) obtained from an abandoned lignite coal mine. To keep the heavy metal concentration at a constant level, the AMD was supplemented with heavy metals whenever necessary. Under anaerobic conditions, sulphate-reducing bacteria (SRB) converted sulphate into sulphide using the organic substrates as electron donors. The sulphide that was generated precipitated heavy metals as metal sulphides. Organic substrates, which yielded the highest sulphate reduction in batch tests, were selected for continuous column experiments which lasted over 200 days. A mixture of pig-farm wastewater treatment sludge, rice husk and coconut husk chips yielded the best heavy metal (Fe, Cu, Zn and Mn) removal efficiencies of over 90%.

  12. Significant Association between Sulfate-Reducing Bacteria and Uranium-Reducing Microbial Communities as Revealed by a Combined Massively Parallel Sequencing-Indicator Species Approach▿ †

    PubMed Central

    Cardenas, Erick; Wu, Wei-Min; Leigh, Mary Beth; Carley, Jack; Carroll, Sue; Gentry, Terry; Luo, Jian; Watson, David; Gu, Baohua; Ginder-Vogel, Matthew; Kitanidis, Peter K.; Jardine, Philip M.; Zhou, Jizhong; Criddle, Craig S.; Marsh, Terence L.; Tiedje, James M.

    2010-01-01

    Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remediation was achieved with a hydraulic flow control consisting of an inner loop, where ethanol was injected, and an outer loop for flow-field protection. This strategy reduced uranium concentrations in groundwater to levels below 0.126 μM and created geochemical gradients in electron donors from the inner-loop injection well toward the outer loop and downgradient flow path. Our analysis with 15 sediment samples from the entire test area found significant indicator species that showed a high degree of adaptation to the three different hydrochemical-created conditions. Castellaniella and Rhodanobacter characterized areas with low pH, heavy metals, and low bioactivity, while sulfate-, Fe(III)-, and U(VI)-reducing bacteria (Desulfovibrio, Anaeromyxobacter, and Desulfosporosinus) were indicators of areas where U(VI) reduction occurred. The abundance of these bacteria, as well as the Fe(III) and U(VI) reducer Geobacter, correlated with the hydraulic connectivity to the substrate injection site, suggesting that the selected populations were a direct response to electron donor addition by the groundwater flow path. A false-discovery-rate approach was implemented to discard false-positive results by chance, given the large amount of data compared. PMID:20729318

  13. Significant association between sulfate-reducing bacteria and uranium-reducing microbial communities as revealed by a combined massively parallel sequencing-indicator species approach.

    PubMed

    Cardenas, Erick; Wu, Wei-Min; Leigh, Mary Beth; Carley, Jack; Carroll, Sue; Gentry, Terry; Luo, Jian; Watson, David; Gu, Baohua; Ginder-Vogel, Matthew; Kitanidis, Peter K; Jardine, Philip M; Zhou, Jizhong; Criddle, Craig S; Marsh, Terence L; Tiedje, James M

    2010-10-01

    Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remediation was achieved with a hydraulic flow control consisting of an inner loop, where ethanol was injected, and an outer loop for flow-field protection. This strategy reduced uranium concentrations in groundwater to levels below 0.126 μM and created geochemical gradients in electron donors from the inner-loop injection well toward the outer loop and downgradient flow path. Our analysis with 15 sediment samples from the entire test area found significant indicator species that showed a high degree of adaptation to the three different hydrochemical-created conditions. Castellaniella and Rhodanobacter characterized areas with low pH, heavy metals, and low bioactivity, while sulfate-, Fe(III)-, and U(VI)-reducing bacteria (Desulfovibrio, Anaeromyxobacter, and Desulfosporosinus) were indicators of areas where U(VI) reduction occurred. The abundance of these bacteria, as well as the Fe(III) and U(VI) reducer Geobacter, correlated with the hydraulic connectivity to the substrate injection site, suggesting that the selected populations were a direct response to electron donor addition by the groundwater flow path. A false-discovery-rate approach was implemented to discard false-positive results by chance, given the large amount of data compared.

  14. Diversity of endophytic Pseudomonas in Halimione portulacoides from metal(loid)-polluted salt marshes.

    PubMed

    Rocha, Jaqueline; Tacão, Marta; Fidalgo, Cátia; Alves, Artur; Henriques, Isabel

    2016-07-01

    Phytoremediation assisted by bacteria is seen as a promising alternative to reduce metal contamination in the environment. The main goal of this study was to characterize endophytic Pseudomonas isolated from Halimione portulacoides, a metal-accumulator plant, in salt marshes contaminated with metal(loid)s. Phylogenetic analysis based on 16S rRNA and gyrB genes showed that isolates affiliated with P. sabulinigri (n = 16), P. koreensis (n = 10), P. simiae (n = 5), P. seleniipraecipitans (n = 2), P. guineae (n = 2), P. migulae (n = 1), P. fragi (n = 1), P. xanthomarina (n = 1), and Pseudomonas sp. (n = 1). Most of these species have never been described as endophytic. The majority of the isolates were resistant to three or more metal(loid)s. Antibiotic resistance was frequent among the isolates but most likely related to species-intrinsic features. Common acquired antibiotic resistance genes and integrons were not detected. Plasmids were detected in 43.6 % of the isolates. Isolates that affiliated with different species shared the same plasmid profile but attempts to transfer metal resistance to receptor strains were not successful. Phosphate solubilization and IAA production were the most prevalent plant growth promoting traits, and 20 % of the isolates showed activity against phytopathogenic bacteria. Most isolates produced four or more extracellular enzymes. Preliminary results showed that two selected isolates promote Arabidopsis thaliana root elongation. Results highlight the diversity of endophytic Pseudomonas in H. portulacoides from contaminated sites and their potential to assist phytoremediation by acting as plant growth promoters and as environmental detoxifiers.

  15. Taking nature into lab: biomineralization by heavy metal resistant streptomycetes in soil

    NASA Astrophysics Data System (ADS)

    Schütze, E.; Weist, A.; Klose, M.; Wach, T.; Schumann, M.; Nietzsche, S.; Merten, D.; Baumert, J.; Majzlan, J.; Kothe, E.

    2013-02-01

    Biomineralization by heavy metal resistant streptomycetes was tested to evaluate the potential influence on metal mobilities in soil. Thus, we designed an experiment adopting conditions from classical laboratory methods to natural conditions prevailing in metal-rich soils with media spiked with heavy metals, soil agar, and nutrient enriched or unamended soil incubated with the bacteria. As a result, all strains were able to form struvite minerals on tryptic soy broth (TSB) media supplemented with AlCl2, MnCl2 and CuSO4, as well as on soil agar. Some strains additionally formed struvite on nutrient enriched contaminated and control soil, as well as on metal contaminated soil without addition of media components. In contrast, switzerite was exclusively formed on minimal media spiked with MnCl2 by four heavy metal resistant strains, and on nutrient enriched control soil by one strain. Hydrated nickel hydrogen phosphate was only crystallized on complex media supplemented with NiSO4 by most strains. Thus, mineralization is a~dominant property of streptomycetes, with different processes likely to occur under laboratory conditions and sub-natural to natural conditions. This new understanding may be transferred to formation of minerals in rock and sediment evolution, to ore deposit formation, and also might have implications for our understanding of biological metal resistance mechanisms. We assume that biogeochemical cycles, nutrient storage and metal resistance might be affected by formation and re-solubilization of minerals like struvite in soil at microscale.

  16. Taking nature into lab: biomineralization by heavy metal-resistant streptomycetes in soil

    NASA Astrophysics Data System (ADS)

    Schütze, E.; Weist, A.; Klose, M.; Wach, T.; Schumann, M.; Nietzsche, S.; Merten, D.; Baumert, J.; Majzlan, J.; Kothe, E.

    2013-06-01

    Biomineralization by heavy metal-resistant streptomycetes was tested to evaluate the potential influence on metal mobilities in soil. Thus, we designed an experiment adopting conditions from classical laboratory methods to natural conditions prevailing in metal-rich soils with media spiked with heavy metals, soil agar, and nutrient-enriched or unamended soil incubated with the bacteria. As a result, all strains were able to form struvite minerals (MgNH4PO4• 6H2O) on tryptic soy broth (TSB)-media supplemented with AlCl3, MnCl2 and CuSO4, as well as on soil agar. Some strains additionally formed struvite on nutrient-enriched contaminated and control soil, as well as on metal contaminated soil without addition of media components. In contrast, switzerite (Mn3(PO4)2• 7H2O) was exclusively formed on minimal media spiked with MnCl2 by four heavy metal-resistant strains, and on nutrient-enriched control soil by one strain. Hydrated nickel hydrogen phosphate was only crystallized on complex media supplemented with NiSO4 by most strains. Thus, mineralization is a dominant property of streptomycetes, with different processes likely to occur under laboratory conditions and sub-natural to natural conditions. This new understanding might have implications for our understanding of biological metal resistance mechanisms. We assume that biogeochemical cycles, nutrient storage and metal resistance might be affected by formation and re-solubilization of minerals like struvite in soil at microscale.

  17. Inactivation of bacteria from contaminated streams in Limpopo, South Africa by silver- or copper-nanoparticle paper filters

    PubMed Central

    Dankovich, Theresa A.; Levine, Jonathan S.; Potgieter, Natasha; Dillingham, Rebecca; Smith, James A.

    2016-01-01

    There is an urgent need for inexpensive point-of-use methods to purify drinking water in developing countries to reduce the incidence of illnesses caused by waterborne pathogens. Previously, our work showed the deactivation of laboratory-cultured bacteria by percolation through a thick paper sheet containing either silver (Ag) or copper (Cu) nanoparticles (NP). In this study, these paper filters containing AgNPs or CuNPs have been tested with water sourced from contaminated streams in Limpopo, South Africa. Following the percolation of the contaminated stream water through the metal nanoparticle (MNP) papers, the water quality of the filtered effluent was evaluated with respect to the colony counts of total coliform and E. coli bacteria, turbidity, and either silver or copper ions. Influent total coliform bacteria concentrations from the stream water in Limpopo ranged from 250 CFU/100 mL to 1,750,000 CFU/100 mL. With the less contaminated stream water (250 - 15,000 CFU/100 mL), both AgNP and CuNP papers showed complete inactivation of the coliform bacteria. With the surface water with higher coliform bacteria levels (500,000 - 1,000,000 CFU/100 mL), both the AgNP and CuNP papers showed similar results with a slightly higher bacteria reduction of log10 5.1 for the AgNP papers than the log10 4.8 reduction for the CuNP papers. E. coli results followed similar trends. For most water purification experiments, the metal release from the sheets was minimal, with values under 0.1 ppm for Ag and 1.0 ppm for Cu (the current US EPA and WHO drinking water limits for Ag and Cu, respectively). These results show good potential for the use of paper embedded with silver and/or copper nanoparticles as effective point-of-use water purifiers. PMID:27022474

  18. Unicellular cyanobacteria Synechocystis accommodate heterotrophic bacteria with varied enzymatic and metal resistance properties.

    PubMed

    Abdulaziz, Anas; Sageer, Saliha; Chekidhenkuzhiyil, Jasmin; Vijayan, Vijitha; Pavanan, Pratheesh; Athiyanathil, Sujith; Nair, Shanta

    2016-08-01

    The interactions between heterotrophic bacteria and primary producers have a profound impact on the functioning of marine ecosystem. We characterized the enzymatic and metal resistance properties of fourteen heterotrophic bacteria isolated from a unicellular cyanobacterium Synechocystis sp. that came from a heavy metal contaminated region of Cochin estuary, southwest coast of India. Based on 16S rRNA gene sequence similarities, the heterotrophic bacteria were grouped into three phyla: namely Actinobacteria, Firmicute, and Proteobacteria. Overall Proteobacteria showed a higher level of enzyme expression while Actinobacteria and Firmicutes showed higher tolerance to heavy metals. Among Proteobacteria, an isolate of Marinobacter hydrocarbonoclasticus (MMRF-584) showed highest activities of β-glucosidase (1.58 ± 0.2 μMml(-1)  min(-1) ) and laminarinase (1170.17 ± 95.4 μgml(-1)  min(-1) ), while other two isolates of M. hydrocarbonoclasticus, MMRF-578 and 581, showed highest phosphatase (44.71 ± 0.2 μMml(-1)  min(-1) ) and aminopeptidase (33.22 ± 0 μMml(-1)  min(-1) ) activities respectively. Among Firmicutes, the Virgibacillus sp. MMRF-571 showed exceptional resistance against the toxic heavy metals Cd (180 mM), Pb (150 mM), and Hg (0.5 mM). Bacillus cereus, MMRF-575, showed resistance to the highest concentrations of Co (250 mM), Cd (150 mM), Pb (180 mM), Hg (0.5 mM), Ni (280 mM), and Zn (250 mM) tested. Our results show that heterotrophic bacteria with varied enzymatic and metal resistance properties are associated with Synechocystis sp. Further studies to delineate the role of these heterotrophic bacteria in protecting primary producers from toxic effects of heavy metals and their potential application in bioremediation will be appreciated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The bioenergetics mechanisms and applications of sulfate-reducing bacteria in remediation of pollutants in drainage: A review.

    PubMed

    Li, Xin; Lan, Shi-Ming; Zhu, Zhong-Ping; Zhang, Chang; Zeng, Guang-Ming; Liu, Yun-Guo; Cao, Wei-Cheng; Song, Biao; Yang, Hong; Wang, Sheng-Fan; Wu, Shao-Hua

    2018-04-20

    Sulfate-reducing bacteria (SRB), a group of anaerobic prokaryotes, can use sulfur species as a terminal electron acceptor for the oxidation of organic compounds. They not only have significant ecological functions, but also play an important role in bioremediation of contaminated sites. Although numerous studies on metabolism and applications of SRB have been conducted, they still remain incompletely understood and even controversial. Fully understanding the metabolism of SRB paves the way for allowing the microorganisms to provide more beneficial services in bioremediation. Here we review progress in bioenergetics mechanisms and application of SRB including: (1) electron acceptors and donors for SRB; (2) pathway for sulfate reduction; (3) electron transfer in sulfate reduction; (4) application of SRB for economical and concomitant treatment of heavy metal, organic contaminants and sulfates. Moreover, current knowledge gaps and further research needs are identified. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Biocorrosion of Endodontic Files through the Action of Two Species of Sulfate-reducing Bacteria: Desulfovibrio desulfuricans and Desulfovibrio fairfieldensis.

    PubMed

    Heggendorn, Fabiano Luiz; Gonçalves, Lucio Souza; Dias, Eliane Pedra; de Oliveira Freitas Lione, Viviane; Lutterbach, Márcia Teresa Soares

    2015-08-01

    This study assessed the biocorrosive capacity of two bacteria: Desulfovibrio desulfuricans and Desulfovibrio fairfieldensis on endodontic files, as a preliminary step in the development of a biopharmaceutical, to facilitate the removal of endodontic file fragments from root canals. In the first stage, the corrosive potential of the artificial saliva medium (ASM), modified Postgate E medium (MPEM), 2.5 % sodium hypochlorite (NaOCl) solution and white medium (WM), without the inoculation of bacteria was assessed by immersion assays. In the second stage, test samples were inoculated with the two species of sulphur-reducing bacteria (SRB) on ASM and modified artificial saliva medium (MASM). In the third stage, test samples were inoculated with the same species on MPEM, ASM and MASM. All test samples were viewed under an infinite focus Alicona microscope. No test sample became corroded when immersed only in media, without bacteria. With the exception of one test sample between those inoculated with bacteria in ASM and MASM, there was no evidence of corrosion. Fifty percent of the test samples demonstrated a greater intensity of biocorrosion when compared with the initial assays. Desulfovibrio desulfuricans and D. fairfieldensis are capable of promoting biocorrosion of the steel constituent of endodontic files. This study describes the initial development of a biopharmaceutical to facilitate the removal of endodontic file fragments from root canals, which can be successfully implicated in endodontic therapy in order to avoiding parendodontic surgery or even tooth loss in such events.

  1. Improvement of the trace metal composition of medium for nitrite-dependent anaerobic methane oxidation bacteria: Iron (II) and copper (II) make a difference.

    PubMed

    He, Zhanfei; Geng, Sha; Pan, Yawei; Cai, Chaoyang; Wang, Jiaqi; Wang, Liqiao; Liu, Shuai; Zheng, Ping; Xu, Xinhua; Hu, Baolan

    2015-11-15

    Nitrite-dependent anaerobic methane oxidation (n-damo) is a potential bioprocess for treating nitrogen-containing wastewater. This process uses methane, an inexpensive and nontoxic end-product of anaerobic digestion, as an external electron donor. However, the low turnover rate and slow growth rate of n-damo functional bacteria limit the practical application of this process. In the present study, the short- and long-term effects of variations in trace metal concentrations on n-damo bacteria were investigated, and the concentrations of trace metal elements of medium were improved. The results were subsequently verified by a group of long-term inoculations (90 days) and were applied in a sequencing batch reactor (SBR) (84 days). The results indicated that iron (Fe(II)) and copper (Cu(II)) (20 and 10 μmol L(-1), respectively) significantly stimulated the activity and the growth of n-damo bacteria, whereas other trace metal elements, including zinc (Zn), molybdenum (Mo), cobalt (Co), manganese (Mn), and nickel (Ni), had no significant effect on n-damo bacteria in the tested concentration ranges. Interestingly, fluorescence in situ hybridization (FISH) showed that a large number of dense, large aggregates (10-50 μm) of n-damo bacteria were formed by cell adhesion in the SBR reactor after using the improved medium, and to our knowledge this is the first discovery of large aggregates of n-damo bacteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Microalgae-bacteria biofilms: a sustainable synergistic approach in remediation of acid mine drainage.

    PubMed

    Abinandan, Sudharsanam; Subashchandrabose, Suresh R; Venkateswarlu, Kadiyala; Megharaj, Mallavarapu

    2018-02-01

    Microalgae and bacteria offer a huge potential in delving interest to study and explore various mechanisms under extreme environments. Acid mine drainage (AMD) is one such environment which is extremely acidic containing copious amounts of heavy metals and poses a major threat to the ecosystem. Despite its extreme conditions, AMD is the habitat for several microbes and their activities. The use of various chemicals in prevention of AMD formation and conventional treatment in a larger scale is not feasible under different geological conditions. It implies that microbe-mediated approach is a viable and sustainable alternative technology for AMD remediation. Microalgae in biofilms play a pivotal role in such bioremediation as they maintain mutualism with heterotrophic bacteria. Synergistic approach of using microalgae-bacteria biofilms provides supportive metabolites from algal biomass for growth of bacteria and mediates remediation of AMD. However, by virtue of their physiology and capabilities of metal removal, non-acidophilic microalgae can be acclimated for use in AMD remediation. A combination of selective acidophilic and non-acidophilic microalgae together with bacteria, all in the form of biofilms, may be very effective for bioremediation of metal-contaminated waters. The present review critically examines the nature of mutualistic interactions established between microalgae and bacteria in biofilms and their role in removal of metals from AMDs, and consequent biomass production for the yield of biofuel. Integration of microalgal-bacterial consortia in fuel cells would be an attractive emerging approach of microbial biotechnology for AMD remediation.

  3. PEROXOTITANATE- AND MONOSODIUM METAL-TITANATE COMPOUNDS AS INHIBITORS OF BACTERIAL GROWTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, D.

    2011-01-19

    Sodium titanates are ion-exchange materials that effectively bind a variety of metal ions over a wide pH range. Sodium titanates alone have no known adverse biological effects but metal-exchanged titanates (or metal titanates) can deliver metal ions to mammalian cells to alter cell processes in vitro. In this work, we test a hypothesis that metal-titanate compounds inhibit bacterial growth; demonstration of this principle is one prerequisite to developing metal-based, titanate-delivered antibacterial agents. Focusing initially on oral diseases, we exposed five species of oral bacteria to titanates for 24 h, with or without loading of Au(III), Pd(II), Pt(II), and Pt(IV), andmore » measuring bacterial growth in planktonic assays through increases in optical density. In each experiment, bacterial growth was compared with control cultures of titanates or bacteria alone. We observed no suppression of bacterial growth by the sodium titanates alone, but significant (p < 0.05, two-sided t-tests) suppression was observed with metal-titanate compounds, particularly Au(III)-titanates, but with other metal titanates as well. Growth inhibition ranged from 15 to 100% depending on the metal ion and bacterial species involved. Furthermore, in specific cases, the titanates inhibited bacterial growth 5- to 375-fold versus metal ions alone, suggesting that titanates enhanced metal-bacteria interactions. This work supports further development of metal titanates as a novel class of antibacterials.« less

  4. Interactions between Diatoms and Bacteria

    PubMed Central

    Amin, Shady A.; Parker, Micaela S.

    2012-01-01

    Summary: Diatoms and bacteria have cooccurred in common habitats for hundreds of millions of years, thus fostering specific associations and interactions with global biogeochemical consequences. Diatoms are responsible for one-fifth of the photosynthesis on Earth, while bacteria remineralize a large portion of this fixed carbon in the oceans. Through their coexistence, diatoms and bacteria cycle nutrients between oxidized and reduced states, impacting bioavailability and ultimately feeding higher trophic levels. Here we present an overview of how diatoms and bacteria interact and the implications of these interactions. We emphasize that heterotrophic bacteria in the oceans that are consistently associated with diatoms are confined to two phyla. These consistent bacterial associations result from encounter mechanisms that occur within a microscale environment surrounding a diatom cell. We review signaling mechanisms that occur in this microenvironment to pave the way for specific interactions. Finally, we discuss known interactions between diatoms and bacteria and exciting new directions and research opportunities in this field. Throughout the review, we emphasize new technological advances that will help in the discovery of new interactions. Deciphering the languages of diatoms and bacteria and how they interact will inform our understanding of the role these organisms have in shaping the ocean and how these interactions may change in future oceans. PMID:22933565

  5. Both sulfate-reducing bacteria and Enterobacteriaceae take part in marine biocorrosion of carbon steel.

    PubMed

    Bermont-Bouis, D; Janvier, M; Grimont, P A D; Dupont, I; Vallaeys, T

    2007-01-01

    In order to evaluate the part played in biocorrosion by microbial groups other than sulfate-reducing bacteria (SRB), we characterized the phylogenetic diversity of a corrosive marine biofilm attached to a harbour pile structure as well as to carbon steel surfaces (coupons) immersed in seawater for increasing time periods (1 and 8 months). We thus experimentally checked corroding abilities of defined species mixtures. Microbial community analysis was performed using both traditional cultivation techniques and polymerase chain reaction cloning-sequencing of 16S rRNA genes. Community structure of biofilms developing with time on immersed coupons tended to reach after 8 months, a steady state similar to the one observed on a harbour pile structure. Phylogenetic affiliations of isolates and cloned 16S rRNA genes (rrs) indicated that native biofilms (developing after 1-month immersion) were mainly colonized by gamma-proteobacteria. Among these, Vibrio species were detected in majority with molecular methods while cultivation techniques revealed dominance of Enterobacteriaceae such as Citrobacter, Klebsiella and Proteus species. Conversely, in mature biofilms (8-month immersion and pile structure), SRB, and to a lesser extent, spirochaetes were dominant. Corroding activity detection assays confirmed that Enterobacteriaceae (members of the gamma-proteobacteria) were involved in biocorrosion of metallic material in marine conditions. In marine biofilms, metal corrosion may be initiated by Enterobacteriaceae.

  6. Thioredoxin system in obligate anaerobe Desulfovibrio desulfuricans: Identification and characterization of a novel thioredoxin 2.

    PubMed

    Sarin, Ritu; Sharma, Yagya D

    2006-07-05

    Metal corroding sulfate reducing bacteria have been poorly characterized at molecular level due to difficulties pertaining to isolation and handling of anaerobes. We report here for the first time the presence and characterization of thioredoxin 2 in an obligate anaerobic dissimilatory sulfate reducing bacterium Desulfovibrio desulfuricans. In silico analysis of the D. desulfuricans genome revealed the presence of thioredoxin 1 (dstrx1), thioredoxin 2 (dstrx2) and thioredoxin reductase (dstrxR) genes. These genes were found to be actively expressed by the bacteria under the anaerobic growth conditions. We have overexpressed the anaerobic thioredoxin genes in E. coli to produce functionally active recombinant proteins. Recombinant DsTrxR recognized both DsTrx1 and DsTrx2 as its substrate. Mutation studies revealed that the activity of DsTrx2 can be completely abolished with a single amino acid mutation (C69A) in the signature motif 'WCGPC'. Furthermore, the N-terminal domain of DsTrx2 containing two extra CXXC motifs was found to have a negative regulation on its biochemical activity. In conclusion, we have shown the presence of thioredoxin 2 for the first time in an obligate anaerobe which in this anaerobe may be required for its survival under either oxidative stress conditions or metal ion hemostasis.

  7. Size tunable elemental copper nanoparticles: extracellular synthesis by thermoanaerobic bacteria and capping molecules

    DOE PAGES

    Jang, Gyoung Gug; Jacobs, Christopher B.; Gresback, Ryan G.; ...

    2014-11-10

    Bimodal sized elemental copper (Cu) nanoparticles (NPs) were synthesized from inexpensive oxidized copper salts by an extracellular metal-reduction process using anaerobic Thermoanaerobacter sp. X513 bacteria in aqueous solution. The bacteria nucleate NPs outside of the cell, and they control the Cu2+ reduction rate to form uniform crystallites with an average diameter of 1.75 0.46 m after 3-day incubation. To control the size and enhance air stability of Cu NPs, the reaction mixtures were supplemented with nitrilotriacetic acid as a chelator, and the surfactant capping agents oleic acid, oleylamine, ascorbic acid, or L-cysteine. Time-dependent UV-visible absorption measurements and XPS studies indicatedmore » well-suspended, bimodal colloidal Cu NPs (70 150 and 5 10 nm) with extended air-stability up to 300 min and stable Cu NP films surfaces with 14% oxidation after 20 days. FTIR spectroscopy suggested that these capping agents were effectively adsorbed on the NP surface providing oxidation resistance in aqueous and dry conditions. Compared to previously reported Cu NP syntheses, this biological process substantially reduced the requirement for hazardous organic solvents and chemical reducing agents, while reducing the levels of Cu oxide impurities in the product. This process was highly reproducible and scalable from 0.01 to 1-L batches.« less

  8. Mercury-resistance and mercuric reductase activity in Chromobacterium, Erwinia, and Bacillus species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trevors, J.T.

    1987-06-01

    Mercury resistant bacteria have been the most extensively studied of all the metal-tolerant bacteria. Mercury resistance is usually mediated by two distinctly different enzymes encoded by plasmids. Mercuric reductase reduces Hg/sup 2 +/ to metallic mercury (Hg/sup 0/). Organomercurial lyases have a molecular weight of 20,000 to 40,000, are composed of 1 or 2 subunits and require the presence of thiol. Plasmic-encoded Hg/sup 2 +/ resistance and mercuric reductase activity have not been detected in many species of bacteria. A Chromobacterium, Erwinia and Bacillus species isolated from environmental samples were capable of growth in the presence of 50 ..mu..M HgCl/submore » 2/. Cell-free extracts of the 3 organisms exhibited mercuric reductase activity that oxidized NADPH in the presence of HgCl/sub 2/. Negligible oxidation of NADPH was observed in the absence of HgCl/sub 2/. The Chromobacterium sp. did not contain any plasmid DNA. This would suggest that Hg/sup 2 +/ resistance was carried on the chromosome in Chromobacterium. A single 3 Mdal plasmid in the Bacillus sp. was refractory to curing. The Erwinia sp. contained 3 plasmids which were also refractory to curing. The location of the resistance genes is unknown in the Bacillus and Erwinia isolates.« less

  9. Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells

    PubMed Central

    2010-01-01

    Background Recent epidemiological analyses have implicated acute Campylobacter enteritis as a factor that may incite or exacerbate inflammatory bowel disease (IBD) in susceptible individuals. We have demonstrated previously that C. jejuni disrupts the intestinal barrier function by rapidly inducing epithelial translocation of non-invasive commensal bacteria via a transcellular lipid raft-mediated mechanism ('transcytosis'). To further characterize this mechanism, the aim of this current study was to elucidate whether C. jejuni utilizes M cells to facilitate transcytosis of commensal intestinal bacteria. Results C. jejuni induced translocation of non-invasive E. coli across confluent Caco-2 epithelial monolayers in the absence of disrupted transepithelial electrical resistance or increased permeability to a 3 kDa dextran probe. C. jejuni-infected monolayers displayed increased numbers of cells expressing the M cell-specific marker, galectin-9, reduced numbers of enterocytes that stained with the absorptive enterocyte marker, Ulex europaeus agglutinin-1, and reduced activities of enzymes typically associated with absorptive enterocytes (namely alkaline phosphatase, lactase, and sucrase). Furthermore, in Campylobacter-infected monolayers, E. coli were observed to be internalized specifically within epithelial cells displaying M-like cell characteristics. Conclusion These data indicate that C. jejuni may utilize M cells to promote transcytosis of non-invasive bacteria across the intact intestinal epithelial barrier. This mechanism may contribute to the inflammatory immune responses against commensal intestinal bacteria commonly observed in IBD patients. PMID:21040540

  10. A study on the selection of indigenous leaching-bacteria for effective bioleaching

    NASA Astrophysics Data System (ADS)

    Oh, S. J.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    Bioleaching technology, which is based on the ability of microorganisms to transform solid compounds into soluble and extractable valuable elements that can be recovered, has been rapidly developed in recent decades for its advantages, which include mild reaction condition, low energy consumption, simple process, low environmental impact and being suitable for low grade mine tailings and residues. The bacteria activities (survival, adaptation of toxically environments etc.) in the bioleaching technology play a key role in the solubilization of metals. The purpose of this study was to selection of optimal leaching-bacteria through changed pH and redox potential on bio-oxidation in batch experiments for successful bioleaching technology. Twenty three indigenous bacteria used throughout this study, leaching-bacteria were obtained from various geochemical conditions; bacteria inhabitation type (acid mine drainage, mine wastes leachate and sulfur hot springs) and base-metal type (sulfur, sulfide, iron and coal). Bio-oxidation experiment result was showed that 9 cycles (1 cycle - 28days) after the leaching-bacteria were inoculated to a leaching medium, pH was observed decreasing and redox potential increased. In the bacteria inhabitation type, bio-oxidation of sulfur hot springs bacteria was greater than other types (acid mine drainage and mine wastes leachate). In addition, bio-oxidation on base-metal type was appeared sulfur was greater than other types (sulfide, iron and coal). This study informs basic knowledge when bacteria apply to eco-/economic resources utilization studies including the biomining and the recycling of mine waste system.

  11. Inactivation of biofilm bacteria.

    PubMed Central

    LeChevallier, M W; Cawthon, C D; Lee, R G

    1988-01-01

    The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found by other investigators. Biofilm bacteria grown on the surfaces of granular activated carbon particles, metal coupons, or glass microscope slides were 150 to more than 3,000 times more resistant to hypochlorous acid (free chlorine, pH 7.0) than were unattached cells. In contrast, resistance of biofilm bacteria to monochloramine disinfection ranged from 2- to 100-fold more than that of unattached cells. The results suggested that, relative to inactivation of unattached bacteria, monochloramine was better able to penetrate and kill biofilm bacteria than free chlorine. For free chlorine, the data indicated that transport of the disinfectant into the biofilm was a major rate-limiting factor. Because of this phenomenon, increasing the level of free chlorine did not increase disinfection efficiency. Experiments where equal weights of disinfectants were used suggested that the greater penetrating power of monochloramine compensated for its limited disinfection activity. These studies showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria. The research provides important insights into strategies for control of biofilm bacteria. Images PMID:2849380

  12. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries.

    PubMed

    Chowdhury, Shakhawat; Mazumder, M A Jafar; Al-Attas, Omar; Husain, Tahir

    2016-11-01

    Heavy metals in drinking water pose a threat to human health. Populations are exposed to heavy metals primarily through water consumption, but few heavy metals can bioaccumulate in the human body (e.g., in lipids and the gastrointestinal system) and may induce cancer and other risks. To date, few thousand publications have reported various aspects of heavy metals in drinking water, including the types and quantities of metals in drinking water, their sources, factors affecting their concentrations at exposure points, human exposure, potential risks, and their removal from drinking water. Many developing countries are faced with the challenge of reducing human exposure to heavy metals, mainly due to their limited economic capacities to use advanced technologies for heavy metal removal. This paper aims to review the state of research on heavy metals in drinking water in developing countries; understand their types and variability, sources, exposure, possible health effects, and removal; and analyze the factors contributing to heavy metals in drinking water. This study identifies the current challenges in developing countries, and future research needs to reduce the levels of heavy metals in drinking water. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Interaction of probiotics and pathogens--benefits to human health?

    PubMed

    Salminen, Seppo; Nybom, Sonja; Meriluoto, Jussi; Collado, Maria Carmen; Vesterlund, Satu; El-Nezami, Hani

    2010-04-01

    The probiotic terminology has matured over the years and currently a unified definition has been formed. Lactic acid bacteria (LAB) and bifidobacteria have been reported to remove heavy metals, cyanotoxins and mycotoxins from aqueous solutions. The binding processes appear to be species and strain specific. The most efficient microbial species and strains in the removal of these compounds vary between components tested. However, it is of interest to note that most strains characterized until now do not bind positive components or nutrients in the diet. This has significant implications to future detoxification biotechnology development. In a similar manner, lactic acid bacteria and bifidobacteria interact directly with viruses and pathogens in food and water as well as toxin producing microbes and some toxins. This review updates information and aims to characterize these interactions in association. The target is to understand probiotic health effects and to relate the mechanisms and actions to future potential of specific probiotic bacteria on decontamination of foods and water, and diets. The same aim is targeted in characterizing the role of probiotics in inactivating pathogens and viruses of health importance to facilitate the establishment of novel means of disease risk reduction related health benefits. Copyright 2010. Published by Elsevier Ltd.

  14. Bioavailability of pollutants in bacterial communities of Rodrigo de Freitas Lagoon, Rio de Janeiro, Brazil

    PubMed Central

    da Fonseca, E.M.; Neto, J.A. Baptista; McAlister, J.J.; Smith, B.J.; Crapez, M.A.C.

    2014-01-01

    Processes involving heavy metals and other contaminants continue to present unsolved environmental questions. To advance the understanding of geochemical processes that involve the bioavailability of contaminants, cores where collected in the Rodrigo de Freitas lagoon, and analyzed for bacterial activity and metal concentrations. Results would suggest an extremely reducing environment where organic substances seem to be the predominant agents responsible for this geochemical process. Analytical data showed sulphate reduction to be the main agent driving this process, since this kind of bacteria was found to be active in all of the samples analyzed. Esterase enzyme production did not signal the influence of heavy metals and hydrocarbon concentrations and heavy metals were found to be unavailable for biota. However, correlation between results for bacterial biomass and the potentially mobile percentage of the total Ni concentrations would suggest a negative impact. PMID:25477931

  15. The Threat of Aerobic Vaginitis to Pregnancy and Neonatal Morbidity.

    PubMed

    Kaambo, Eveline; Africa, Charlene W J

    2017-06-01

    Aerobic vaginitis (AV) is an endogenous opportunistic infection brought about by the disruption of the normal vaginal microbiota. Its early diagnosis and treatment during pregnancy may reduce the risk of negative pregnancy outcomes. The aim of this review was to report on the aerobic bacteria most prevalent in AV and to provide evidence of the threat of untreated AV on pregnancy outcomes. More than 300 papers on preterm delivery were extracted from several research domains and filtered to include only AV-associated bacteria such as Staphylococcus aureus, Enterococcus faecalis, Escherichia coli and Group B streptococci and their association with adverse pregnancy outcomes. Due to the diverse sample groups, study techniques and outcomes, a meta-analysis was not conducted. The review revealed that the association of AV with adverse pregnancy outcomes has not been as widely researched as bacterial vaginosis (BV) and needs further investigation. Furthermore, the frequent misdiagnosis of AV coupled with the emerging antimicrobial resistance associated with bacteria implicated in AV and neonatal nosocomial infections pose a problem for prophylaxis and treatment to reduce the risk of maternal and neonatal morbidity and mortality.

  16. Selenite reduction by the obligate aerobic bacterium Comamonas testosteroni S44 isolated from a metal-contaminated soil

    PubMed Central

    2014-01-01

    Background Selenium (Se) is an essential trace element in most organisms but has to be carefully handled since there is a thin line between beneficial and toxic concentrations. Many bacteria have the ability to reduce selenite (Se(IV)) and (or) selenate (Se(VI)) to red elemental selenium that is less toxic. Results A strictly aerobic bacterium, Comamonas testosteroni S44, previously isolated from metal(loid)-contaminated soil in southern China, reduced Se(IV) to red selenium nanoparticles (SeNPs) with sizes ranging from 100 to 200 nm. Both energy dispersive X-ray Spectroscopy (EDX or EDS) and EDS Elemental Mapping showed no element Se and SeNPs were produced inside cells whereas Se(IV) was reduced to red-colored selenium in the cytoplasmic fraction in presence of NADPH. Tungstate inhibited Se(VI) but not Se(IV) reduction, indicating the Se(IV)-reducing determinant does not contain molybdenum as co-factor. Strain S44 was resistant to multiple heavy and transition metal(loid)s such as Se(IV), As(III), Cu(II), and Cd(II) with minimal inhibitory concentrations (MIC) of 100 mM, 20 mM, 4 mM, and 0.5 mM, respectively. Disruption of iscR encoding a transcriptional regulator negatively impacted cellular growth and subsequent resistance to multiple heavy metal(loid)s. Conclusions C. testosteroni S44 could be very useful for bioremediation in heavy metal(loid) polluted soils due to the ability to both reduce toxic Se(VI) and Se(IV) to non-toxic Se (0) under aerobic conditions and to tolerate multiple heavy and transition metals. IscR appears to be an activator to regulate genes involved in resistance to heavy or transition metal(loid)s but not for genes responsible for Se(IV) reduction. PMID:25098921

  17. Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria.

    PubMed

    Troxell, Bryan; Hassan, Hosni M

    2013-01-01

    In the ancient anaerobic environment, ferrous iron (Fe(2+)) was one of the first metal cofactors. Oxygenation of the ancient world challenged bacteria to acquire the insoluble ferric iron (Fe(3+)) and later to defend against reactive oxygen species (ROS) generated by the Fenton chemistry. To acquire Fe(3+), bacteria produce low-molecular weight compounds, known as siderophores, which have extremely high affinity for Fe(3+). However, during infection the host restricts iron from pathogens by producing iron- and siderophore-chelating proteins, by exporting iron from intracellular pathogen-containing compartments, and by limiting absorption of dietary iron. Ferric Uptake Regulator (Fur) is a transcription factor which utilizes Fe(2+) as a corepressor and represses siderophore synthesis in pathogens. Fur, directly or indirectly, controls expression of enzymes that protect against ROS damage. Thus, the challenges of iron homeostasis and defense against ROS are addressed via Fur. Although the role of Fur as a repressor is well-documented, emerging evidence demonstrates that Fur can function as an activator. Fur activation can occur through three distinct mechanisms (1) indirectly via small RNAs, (2) binding at cis regulatory elements that enhance recruitment of the RNA polymerase holoenzyme (RNAP), and (3) functioning as an antirepressor by removing or blocking DNA binding of a repressor of transcription. In addition, Fur homologs control defense against peroxide stress (PerR) and control uptake of other metals such as zinc (Zur) and manganese (Mur) in pathogenic bacteria. Fur family members are important for virulence within bacterial pathogens since mutants of fur, perR, or zur exhibit reduced virulence within numerous animal and plant models of infection. This review focuses on the breadth of Fur regulation in pathogenic bacteria.

  18. Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria

    PubMed Central

    Troxell, Bryan; Hassan, Hosni M.

    2013-01-01

    In the ancient anaerobic environment, ferrous iron (Fe2+) was one of the first metal cofactors. Oxygenation of the ancient world challenged bacteria to acquire the insoluble ferric iron (Fe3+) and later to defend against reactive oxygen species (ROS) generated by the Fenton chemistry. To acquire Fe3+, bacteria produce low-molecular weight compounds, known as siderophores, which have extremely high affinity for Fe3+. However, during infection the host restricts iron from pathogens by producing iron- and siderophore-chelating proteins, by exporting iron from intracellular pathogen-containing compartments, and by limiting absorption of dietary iron. Ferric Uptake Regulator (Fur) is a transcription factor which utilizes Fe2+ as a corepressor and represses siderophore synthesis in pathogens. Fur, directly or indirectly, controls expression of enzymes that protect against ROS damage. Thus, the challenges of iron homeostasis and defense against ROS are addressed via Fur. Although the role of Fur as a repressor is well-documented, emerging evidence demonstrates that Fur can function as an activator. Fur activation can occur through three distinct mechanisms (1) indirectly via small RNAs, (2) binding at cis regulatory elements that enhance recruitment of the RNA polymerase holoenzyme (RNAP), and (3) functioning as an antirepressor by removing or blocking DNA binding of a repressor of transcription. In addition, Fur homologs control defense against peroxide stress (PerR) and control uptake of other metals such as zinc (Zur) and manganese (Mur) in pathogenic bacteria. Fur family members are important for virulence within bacterial pathogens since mutants of fur, perR, or zur exhibit reduced virulence within numerous animal and plant models of infection. This review focuses on the breadth of Fur regulation in pathogenic bacteria. PMID:24106689

  19. Implications in studies of environmental risk assessments: Does culture medium influence the results of toxicity tests of marine bacteria?

    PubMed

    Díaz-García, Alejandra; Borrero-Santiago, Ana R; Riba, Inmaculada

    2018-04-14

    Two marine bacterial populations (Roseobacter sp. and Pseudomonas litoralis) were exposed to different concentrations of zinc (300, 625, 1250, 2000, 2500 and 5000 mg L -1 ) and cadmium (75, 250, 340, 500 and 1000 mg L -1 ) using two culture media (full nutrient Marine Broth 2216 "MB" and 1:10 (vol/vol) dilution with seawater of Marine Broth 2216 "MB SW "), in order to assess population responses depending on the culture medium and also potential adverse effects associated with these two metals. Different responses were found depending on the culture medium (Bacterial abundance (cells·mL -1 ), growth rates (μ, hours -1 ), and production of Extracellular Polysaccharides Substances (EPS) (μg glucose·cells -1 ). Results showed negative effects in both strains after the exposure to Zn treatments. Both strains showed highest metal sensitivity at low concentrations using both culture media. However, different results were found when exposing the bacterial populations to Cd treatments depending on the culture medium. Highest toxicity was observed using MB at low levels of Cd concentrations, whereas MB SW showed toxicity to bacteria at higher concentrations of Cd. Results not only showed adverse effects on Roseobacter sp. and Pseudomonas litoralis associated with the concentration of Zn and Cd, but also confirm that depending on the culture medium results can differ. This work suggests MB SW as an adequate culture medium to study metal toxicity bioassays in order to predict realistic effects on marine bacterial populations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Rapid classification of heavy metal-exposed freshwater bacteria by infrared spectroscopy coupled with chemometrics using supervised method

    NASA Astrophysics Data System (ADS)

    Gurbanov, Rafig; Gozen, Ayse Gul; Severcan, Feride

    2018-01-01

    Rapid, cost-effective, sensitive and accurate methodologies to classify bacteria are still in the process of development. The major drawbacks of standard microbiological, molecular and immunological techniques call for the possible usage of infrared (IR) spectroscopy based supervised chemometric techniques. Previous applications of IR based chemometric methods have demonstrated outstanding findings in the classification of bacteria. Therefore, we have exploited an IR spectroscopy based chemometrics using supervised method namely Soft Independent Modeling of Class Analogy (SIMCA) technique for the first time to classify heavy metal-exposed bacteria to be used in the selection of suitable bacteria to evaluate their potential for environmental cleanup applications. Herein, we present the powerful differentiation and classification of laboratory strains (Escherichia coli and Staphylococcus aureus) and environmental isolates (Gordonia sp. and Microbacterium oxydans) of bacteria exposed to growth inhibitory concentrations of silver (Ag), cadmium (Cd) and lead (Pb). Our results demonstrated that SIMCA was able to differentiate all heavy metal-exposed and control groups from each other with 95% confidence level. Correct identification of randomly chosen test samples in their corresponding groups and high model distances between the classes were also achieved. We report, for the first time, the success of IR spectroscopy coupled with supervised chemometric technique SIMCA in classification of different bacteria under a given treatment.

  1. Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains

    PubMed Central

    Scandorieiro, Sara; de Camargo, Larissa C.; Lancheros, Cesar A. C.; Yamada-Ogatta, Sueli F.; Nakamura, Celso V.; de Oliveira, Admilton G.; Andrade, Célia G. T. J.; Duran, Nelson; Nakazato, Gerson; Kobayashi, Renata K. T.

    2016-01-01

    Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 μM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low hemolytic activity, especially at MIC levels. This study describes for the first time the synergistic and additive interaction between OEO and bio-AgNP produced by F. oxysporum against multidrug-resistant bacteria, such as MRSA, and β-lactamase- and carbapenemase-producing Escherichia coli and Acinetobacter baumannii strains. These results indicated that this combination can be an alternative in the control of infections with few or no treatment options. PMID:27242772

  2. Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains.

    PubMed

    Scandorieiro, Sara; de Camargo, Larissa C; Lancheros, Cesar A C; Yamada-Ogatta, Sueli F; Nakamura, Celso V; de Oliveira, Admilton G; Andrade, Célia G T J; Duran, Nelson; Nakazato, Gerson; Kobayashi, Renata K T

    2016-01-01

    Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 μM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low hemolytic activity, especially at MIC levels. This study describes for the first time the synergistic and additive interaction between OEO and bio-AgNP produced by F. oxysporum against multidrug-resistant bacteria, such as MRSA, and β-lactamase- and carbapenemase-producing Escherichia coli and Acinetobacter baumannii strains. These results indicated that this combination can be an alternative in the control of infections with few or no treatment options.

  3. Comparative Toxicity of Nanoparticulate CuO and ZnO to Soil Bacterial Communities

    PubMed Central

    Rousk, Johannes; Ackermann, Kathrin; Curling, Simon F.; Jones, Davey L.

    2012-01-01

    The increasing industrial application of metal oxide Engineered Nano-Particles (ENPs) is likely to increase their environmental release to soils. While the potential of metal oxide ENPs as environmental toxicants has been shown, lack of suitable control treatments have compromised the power of many previous assessments. We evaluated the ecotoxicity of ENP (nano) forms of Zn and Cu oxides in two different soils by measuring their ability to inhibit bacterial growth. We could show a direct acute toxicity of nano-CuO acting on soil bacteria while the macroparticulate (bulk) form of CuO was not toxic. In comparison, CuSO4 was more toxic than either oxide form. Unlike Cu, all forms of Zn were toxic to soil bacteria, and the bulk-ZnO was more toxic than the nano-ZnO. The ZnSO4 addition was not consistently more toxic than the oxide forms. Consistently, we found a tight link between the dissolved concentration of metal in solution and the inhibition of bacterial growth. The inconsistent toxicological response between soils could be explained by different resulting concentrations of metals in soil solution. Our findings suggested that the principal mechanism of toxicity was dissolution of metal oxides and sulphates into a metal ion form known to be highly toxic to bacteria, and not a direct effect of nano-sized particles acting on bacteria. We propose that integrated efforts toward directly assessing bioavailable metal concentrations are more valuable than spending resources to reassess ecotoxicology of ENPs separately from general metal toxicity. PMID:22479561

  4. Iron-Virus Interactions in the Oceans

    NASA Astrophysics Data System (ADS)

    Bonnain, C. C.; Buck, K. N.; Breitbart, M.

    2016-02-01

    Iron is an essential nutrient in the oceans, with the sub-nanomolar concentrations found in open ocean surface waters often insufficient for supporting biological activity. More than 99.9% of dissolved iron is bound to organic ligands, yet identifying the sources of these ligands in seawater remains a major challenge. A significant portion of iron-binding ligands fall into the colloidal fraction, which is operationally defined as the fraction collected between a 0.02 µm and a 0.45 µm filter. Among the organic ligands in this fraction persists an extremely abundant biological candidate: viruses. On average there are 107 viruses per milliliter of seawater, most of which are phages (viruses that infect bacteria). The impact of viruses on ocean biogeochemistry is often evoked purely through the act of lysing hosts and very few studies have considered the geochemical potential of the viral particles themselves. Recent work in non-marine model systems has revealed the presence of iron atoms within the structure of diverse phages infecting Escherichia coli. Combined with the small size and sheer abundance of phages in the oceans, the inclusion of iron in phage structures would translate into a major factor for cycling of this important trace metal. In addition, iron is so critical for growth that bacteria have evolved multiple uptake systems for assimilating iron, such as siderophores. Certain outer membrane proteins serve a dual function in siderophore uptake and as a phage receptor, suggesting that some of the strategies utilized for iron acquisition make bacteria vulnerable to phage infection. Given the constant arms race between bacteria and phages to develop resistance and counter-resistance, respectively, it is not surprising that phage would have evolved to utilize critical regions of surface-exposed proteins which are indispensable for bacterial growth as receptors. The research presented here explores the potential of marine phages to serve as iron-binding ligands and discusses the implications for both trace metal biogeochemistry and marine phage-host interactions.

  5. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils.

    PubMed

    Park, Jin Hee; Lamb, Dane; Paneerselvam, Periyasamy; Choppala, Girish; Bolan, Nanthi; Chung, Jae-Woo

    2011-01-30

    As land application becomes one of the important waste utilization and disposal practices, soil is increasingly being seen as a major source of metal(loid)s reaching food chain, mainly through plant uptake and animal transfer. With greater public awareness of the implications of contaminated soils on human and animal health there has been increasing interest in developing technologies to remediate contaminated sites. Bioremediation is a natural process which relies on soil microorganisms and higher plants to alter metal(loid) bioavailability and can be enhanced by addition of organic amendments to soils. Large quantities of organic amendments, such as manure compost, biosolid and municipal solid wastes are used as a source of nutrients and also as a conditioner to improve the physical properties and fertility of soils. These organic amendments that are low in metal(loid)s can be used as a sink for reducing the bioavailability of metal(loid)s in contaminated soils and sediments through their effect on the adsorption, complexation, reduction and volatilization of metal(loid)s. This review examines the mechanisms for the enhanced bioremediation of metal(loid)s by organic amendments and discusses the practical implications in relation to sequestration and bioavailability of metal(loid)s in soils. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Response of soil microbial communities and microbial interactions to long-term heavy metal contamination.

    PubMed

    Li, Xiaoqi; Meng, Delong; Li, Juan; Yin, Huaqun; Liu, Hongwei; Liu, Xueduan; Cheng, Cheng; Xiao, Yunhua; Liu, Zhenghua; Yan, Mingli

    2017-12-01

    Due to the persistence of metals in the ecosystem and their threat to all living organisms, effects of heavy metal on soil microbial communities were widely studied. However, little was known about the interactions among microorganisms in heavy metal-contaminated soils. In the present study, microbial communities in Non (CON), moderately (CL) and severely (CH) contaminated soils were investigated through high-throughput Illumina sequencing of 16s rRNA gene amplicons, and networks were constructed to show the interactions among microbes. Results showed that the microbial community composition was significantly, while the microbial diversity was not significantly affected by heavy metal contamination. Bacteria showed various response to heavy metals. Bacteria that positively correlated with Cd, e.g. Acidobacteria_Gp and Proteobacteria_thiobacillus, had more links between nodes and more positive interactions among microbes in CL- and CH-networks, while bacteria that negatively correlated with Cd, e.g. Longilinea, Gp2 and Gp4 had fewer network links and more negative interactions in CL and CH-networks. Unlike bacteria, members of the archaeal domain, i.e. phyla Crenarchaeota and Euryarchaeota, class Thermoprotei and order Thermoplasmatales showed only positive correlation with Cd and had more network interactions in CH-networks. The present study indicated that (i) the microbial community composition, as well as network interactions was shift to strengthen adaptability of microorganisms to heavy metal contamination, (ii) archaea were resistant to heavy metal contamination and may contribute to the adaption to heavy metals. It was proposed that the contribution might be achieved either by improving environment conditions or by cooperative interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Complete Genome Sequence of the Electricity-Producing “Thermincola potens” Strain JR▿

    PubMed Central

    Byrne-Bailey, Kathryne G.; Wrighton, Kelly C.; Melnyk, Ryan A.; Agbo, Peter; Hazen, Terry C.; Coates, John D.

    2010-01-01

    “Thermincola potens” strain JR is one of the first Gram-positive dissimilatory metal-reducing bacteria (DMRB) for which there is a complete genome sequence. Consistent with the physiology of this organism, preliminary annotation revealed an abundance of multiheme c-type cytochromes that are putatively associated with the periplasm and cell surface in a Gram-positive bacterium. Here we report the complete genome sequence of strain JR. PMID:20525829

  8. Numerical taxonomy of heavy metal tolerant bacteria isolated from the estuarine environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, D.A.; Austin, B.; Mills, A.L.

    1977-01-01

    Metal tolerant bacteria, totalling 301 strains, were isolated from water and sediment samples collected from Chesapeake Bay. Growth in the presence of 100 ppm cadmium, chromium, cobalt, lead, mercury and molybdenum was tested. In addition, the strains were examined for 118 biochemical, cultural, morphological, nutritional and physiological, characters and the data were analyzed by computer, using the simple matching and Jaccard coefficients. From sorted similarity matrices, 293 strains, 97% of the total, were removed in 12 clusters defined at the 80 to 85% similarity level. The clusters included Bacillus and Pseudomonas spp. and genera and species of Enterobacteriaceae. Three clusters,more » containing gram negative rods, were not identified. Several of the clusters were composed of strains exhibiting tolerance to a wide range of heavy metals, whereas three of the clusters contained bacteria that were capable of growth in the presence of only a few of the metals examined in this study. Antibiotic resistance of the metal resistant strains has also been examined.« less

  9. Geochemical influences and mercury methylation of a dental wastewater microbiome

    PubMed Central

    Rani, Asha; Rockne, Karl J.; Drummond, James; Al-Hinai, Muntasar; Ranjan, Ravi

    2015-01-01

    The microbiome of dental clinic wastewater and its impact on mercury methylation remains largely unknown. Waste generated during dental procedures enters the sewer system and contributes a significant fraction of the total mercury (tHg) and methyl mercury (MeHg) load to wastewater treatment facilities. Investigating the influence of geochemical factors and microbiome structure is a critical step linking the methylating microorganisms in dental wastewater (DWW) ecosystems. DWW samples from a dental clinic were collected over eight weeks and analyzed for geochemical parameters, tHg, MeHg and bacterio-toxic heavy metals. We employed bacterial fingerprinting and pyrosequencing for microbiome analysis. High concentrations of tHg, MeHg and heavy metals were detected in DWW. The microbiome was dominated by Proteobacteria, Actinobacteria, Bacteroidetes, Chloroflexi and many unclassified bacteria. Significant correlations were found between the bacterial community, Hg levels and geochemical factors including pH and the predicted total amount (not fraction) of neutral Hg-sulfide species. The most prevalent known methylators included Desulfobulbus propionicus, Desulfovibrio desulfuricans, Desulfovibrio magneticus and Geobacter sulfurreducens. This study is the first to investigate the impact of high loads of Hg, MeHg and other heavy metals on the dental clinic wastewater microbiome, and illuminates the role of many known and unknown sulfate-reducing bacteria in Hg methylation. PMID:26271452

  10. Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans.

    PubMed

    Chatterjee, S K; Bhattacharjee, I; Chandra, G

    2010-03-15

    The metal binding capacity of the thermophilic bacteria Geobacillus thermodenitrificans isolated from Damodar river, India was assessed using synthetic metal solutions and industrial waste water. Biosorption preference of dead biomass of G. thermodenitrificans for the synthetic metal solutions was in the following order Fe(+3)>Cr(+3)>Co(+2)>Cu(+2)>Zn(+2)>Cd(+2)>Ag(+)>Pb(+2). It reduced the concentration of Fe(+3) (91.31%), Cr(+3) (80.80%), Co(+2) (79.71%), Cu(+2) (57.14%), Zn(+2) (55.14%), Cd(+2) (49.02%), Ag(+) (43.25%) and Pb(+2) (36.86%) at different optimum pH within 720 min. When this strain was applied in the industrial waste water biosorption preference was in the following order Fe(+3)>Cr(+3)>Cd(+2)>Pb(+2)>Cu(+2)>Co(+2)>Zn(+2)>Ag(+) and concentrations reduced up to 43.94% for Fe(+3), 39.2% for Cr(+3), 35.88% for Cd(+2), 18.22% for Pb(+2), 13.03% for Cu(+2), 11.43% for Co(+2), 9.02% for Zn(+2) and 7.65% for Ag(+) within 120 min. (c) 2009 Elsevier B.V. All rights reserved.

  11. Microbiological corrosion of ASTM SA105 carbon steel pipe for industrial fire water usage

    NASA Astrophysics Data System (ADS)

    Chidambaram, S.; Ashok, K.; Karthik, V.; Venkatakrishnan, P. G.

    2018-02-01

    The large number of metallic systems developed for last few decades against both general uniform corrosion and localized corrosion. Among all microbiological induced corrosion (MIC) is attractive, multidisciplinary and complex in nature. Many chemical processing industries utilizes fresh water for fire service to nullify major/minor fire. One such fire water service line pipe attacked by micro-organisms leads to leakage which is industrially important from safety point of view. Also large numbers of leakage reported in similar fire water service of nearby food processing plant, paper & pulp plant, steel plant, electricity board etc…In present investigation one such industrial fire water service line failure analysis of carbon steel line pipe was analyzed to determine the cause of failure. The water sample subjected to various chemical and bacterial analyses. Turbidity, pH, calcium hardness, free chlorine, oxidation reduction potential, fungi, yeasts, sulphide reducing bacteria (SRB) and total bacteria (TB) were measured on water sample analysis. The corrosion rate was measured on steel samples and corrosion coupon measurements were installed in fire water for validating non flow assisted localized corrosion. The sulphide reducing bacteria (SRB) presents in fire water causes a localized micro biological corrosion attack of line pipe.

  12. Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment.

    PubMed

    van den Brand, T P H; Roest, K; Chen, G H; Brdjanovic, D; van Loosdrecht, M C M

    2015-11-01

    The activity of sulfate reducing bacteria (SRB) in domestic wastewater treatment plants (WWTP) is often considered as a problem due to H2S formation and potential related odour and corrosion of materials. However, when controlled well, these bacteria can be effectively used in a positive manner for the treatment of wastewater. The main advantages of using SRB in wastewater treatment are: (1) minimal sludge production, (2) reduction of potential pathogens presence, (3) removal of heavy metals and (4) as pre-treatment of anaerobic digestion. These advantages are accessory to efficient and stable COD removal by SRB. Though only a few studies have been conducted on SRB treatment of domestic wastewater, the many studies performed on industrial wastewater provide information on the potential of SRB in domestic wastewater treatment. A key-parameter analyses literature study comprising pH, organic substrates, sulfate, salt, temperature and oxygen revealed that the conditions are well suited for the application of SRB in domestic wastewater treatment. Since the application of SRB in WWTP has environmental benefits its application is worth considering for wastewater treatment, when sulfate is present in the influent.

  13. Corrosion inhibition of stainless steel by a sulfate-reducing bacteria biofilm in seawater

    NASA Astrophysics Data System (ADS)

    Li, Fu-shao; An, Mao-zhong; Duan, Dong-xia

    2012-08-01

    Corrosion inhibition of stainless steel due to a sulfate-reducing bacteria (SRB) biofilm in seawater was studied. By atomic force microscopy, a layer of fish-scale-like biofilm was found to form as stainless steel coupons were exposed to the culture media with SRB, and this biofilm grew more and more compact. As a result, coupons' surface under the biofilm turned irregular less slowly than that exposed to the sterilized culture media. Then, physicoelectric characteristics of the electrode/biofilm/solution interface were investigated by electrochemical impedance spectroscopy (EIS), and the coverage of the biofilm as well as the relative irregularity of coupons' surface was also recorded by EIS spectra. Finally, anodic cyclic polarization results further demonstrated the protective property of the biofilm. Therefore, in estimation of SRB-implicated corrosion of stainless steel, not only the detrimental SRB metabolites but also the protective SRB biofilm as well should be taken into account.

  14. Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron.

    PubMed

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, James A

    2016-05-05

    This study assessed the bioremediation of acid rock drainage (ARD) in flow-through columns testing zero-valent iron (ZVI) for the first time as the sole exogenous electron donor to drive sulfate-reducing bacteria in permeable reactive barriers. Columns containing ZVI, limestone or a mixture of both materials were inoculated with an anaerobic mixed culture and fed a synthetic ARD containing sulfuric acid and heavy metals (initially copper, and later also cadmium and lead). ZVI significantly enhanced sulfate reduction and the heavy metals were extensively removed (>99.7%). Solid-phase analyses showed that heavy metals were precipitated with biogenic sulfide in the columns packed with ZVI. Excess sulfide was sequestered by iron, preventing the discharge of dissolved sulfide. In the absence of ZVI, heavy metals were also significantly removed (>99.8%) due to precipitation with hydroxide and carbonate ions released from the limestone. Vertical-profiles of heavy metals in the columns packing, at the end of the experiment, demonstrated that the ZVI columns still had excess capacity to remove heavy metals, while the capacity of the limestone control column was approaching saturation. The ZVI provided conditions that enhanced sulfate reduction and generated alkalinity. Collectively, the results demonstrate an innovative passive ARD remediation process using ZVI as sole electron-donor. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Traditional Medicinal Plant Extracts and Natural Products with Activity against Oral Bacteria: Potential Application in the Prevention and Treatment of Oral Diseases

    PubMed Central

    Palombo, Enzo A.

    2011-01-01

    Oral diseases are major health problems with dental caries and periodontal diseases among the most important preventable global infectious diseases. Oral health influences the general quality of life and poor oral health is linked to chronic conditions and systemic diseases. The association between oral diseases and the oral microbiota is well established. Of the more than 750 species of bacteria that inhabit the oral cavity, a number are implicated in oral diseases. The development of dental caries involves acidogenic and aciduric Gram-positive bacteria (mutans streptococci, lactobacilli and actinomycetes). Periodontal diseases have been linked to anaerobic Gram-negative bacteria (Porphyromonas gingivalis, Actinobacillus, Prevotella and Fusobacterium). Given the incidence of oral disease, increased resistance by bacteria to antibiotics, adverse affects of some antibacterial agents currently used in dentistry and financial considerations in developing countries, there is a need for alternative prevention and treatment options that are safe, effective and economical. While several agents are commercially available, these chemicals can alter oral microbiota and have undesirable side-effects such as vomiting, diarrhea and tooth staining. Hence, the search for alternative products continues and natural phytochemicals isolated from plants used as traditional medicines are considered as good alternatives. In this review, plant extracts or phytochemicals that inhibit the growth of oral pathogens, reduce the development of biofilms and dental plaque, influence the adhesion of bacteria to surfaces and reduce the symptoms of oral diseases will be discussed further. Clinical studies that have investigated the safety and efficacy of such plant-derived medicines will also be described. PMID:19596745

  16. Cd and proton adsorption onto bacterial consortia grown from industrial wastes and contaminated geologic settings.

    PubMed

    Borrok, David M; Fein, Jeremy B; Kulpa, Charles F

    2004-11-01

    To model the effects of bacterial metal adsorption in contaminated environments, results from metal adsorption experiments involving individual pure stains of bacteria must be extrapolated to systems in which potentially dozens of bacterial species are present. This extrapolation may be made easier because bacterial consortia from natural environments appear to exhibit similar metal binding properties. However, bacteria that thrive in highly perturbed contaminated environments may exhibit significantly different adsorptive behavior. Here we measure proton and Cd adsorption onto a range of bacterial consortia grown from heavily contaminated industrial wastes, groundwater, and soils. We model the results using a discrete site surface complexation approach to determine binding constants and site densities for each consortium. The results demonstrate that bacterial consortia from different contaminated environments exhibit a range of total site densities (approximately a 3-fold difference) and Cd-binding constants (approximately a 10-fold difference). These ranges for Cd binding constants may be small enough to suggest that bacteria-metal adsorption in contaminated environments can be described using relatively few "averaged" bacteria-metal binding constants (in conjunction with the necessary binding constants for competing surfaces and ligands). However, if additional precision is necessary, modeling parameters must be developed separately for each contaminated environment of interest.

  17. Structural and functional characterisation of multi-copper oxidase CueO from lignin-degrading bacterium Ochrobactrum sp. reveal its activity towards lignin model compounds and lignosulfonate.

    PubMed

    Granja-Travez, Rommel Santiago; Wilkinson, Rachael C; Persinoti, Gabriela Felix; Squina, Fabio M; Fülöp, Vilmos; Bugg, Timothy D H

    2018-05-01

    The identification of enzymes responsible for oxidation of lignin in lignin-degrading bacteria is of interest for biotechnological valorization of lignin to renewable chemical products. The genome sequences of two lignin-degrading bacteria, Ochrobactrum sp., and Paenibacillus sp., contain no B-type DyP peroxidases implicated in lignin degradation in other bacteria, but contain putative multicopper oxidase genes. Multi-copper oxidase CueO from Ochrobactrum sp. was expressed and reconstituted as a recombinant laccase-like enzyme, and kinetically characterized. Ochrobactrum CueO shows activity for oxidation of β-aryl ether and biphenyl lignin dimer model compounds, generating oxidized dimeric products, and shows activity for oxidation of Ca-lignosulfonate, generating vanillic acid as a low molecular weight product. The crystal structure of Ochrobactrum CueO (OcCueO) has been determined at 1.1 Å resolution (PDB: 6EVG), showing a four-coordinate mononuclear type I copper center with ligands His495, His434 and Cys490 with Met500 as an axial ligand, similar to that of Escherichia coli CueO and bacterial azurin proteins, whereas fungal laccase enzymes contain a three-coordinate type I copper metal center. A trinuclear type 2/3 copper cluster was modeled into the active site, showing similar structure to E. coli CueO and fungal laccases, and three solvent channels leading to the active site. Site-directed mutagenesis was carried out on amino acid residues found in the solvent channels, indicating the importance for residues Asp102, Gly103, Arg221, Arg223, and Asp462 for catalytic activity. The work identifies a new bacterial multicopper enzyme with activity for lignin oxidation, and implicates a role for bacterial laccase-like multicopper oxidases in some lignin-degrading bacteria. Structural data are available in the PDB under the accession number 6EVG. © 2018 Federation of European Biochemical Societies.

  18. Host-imposed manganese starvation of invading pathogens: two routes to the same destination

    PubMed Central

    Morey, Jacqueline R.; McDevitt, Christopher A.; Kehl-Fie, Thomas E.

    2015-01-01

    During infection invading pathogens must acquire all essential nutrients, including first row transition metals, from the host. To combat invaders, the host exploits this fact and restricts the availability of these nutrients using a defense mechanism known as nutritional immunity. While iron sequestration is the most well-known aspect of this defense, recent work has revealed that the host restricts the availability of other essential elements, notably manganese, during infection. Furthermore, these studies have revealed that the host utilizes multiple strategies that extend beyond metal sequestration to prevent bacteria from obtaining these metals. This review will discuss the mechanisms by which bacteria attempt to obtain the essential first row transition metal ion manganese during infection, and the approaches utilized by the host to prevent this occurrence. In addition, this review will discuss the impact of host-imposed manganese starvation on invading bacteria. PMID:25836716

  19. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    USGS Publications Warehouse

    Church, C.D.; Wilkin, R.T.; Alpers, Charles N.; Rye, R.O.; Blaine, R.B.

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2-3 ??? heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. ?? 2007 Church et al; licensee BioMed Central Ltd.

  20. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    PubMed Central

    Church, Clinton D; Wilkin, Richard T; Alpers, Charles N; Rye, Robert O; McCleskey, R Blaine

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2–3 ‰ heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. PMID:17956615

  1. Silver nanocrystallites: Facile biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on Gram-negative and Gram-positive bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suresh, Anil K; Wang, Wei; Pelletier, Dale A

    Microorganisms have long been known to develop resistance to metal ions either by sequestering metals inside the cell or by effluxing them into the extracellular media. Here we report the biosynthesis of extracellular silver based single nanocrystallites of well-defined composition and homogeneous morphology utilizing the -proteobacterium, Shewanella oneidensis strain MR-1, upon incubation with an aqueous solution of silver nitrate. Further characterization of these particles revealed that the crystals consist of small, reasonably monodispersed spheres in the size range 2 11 nm (with an average of 4 1.5 nm). The bactericidal effect of these biologically synthesized silver nanoparticles (biogenic-Ag) are comparedmore » to similar chemically synthesized nanoparticles (colloidal silver [colloidal-Ag] and oleate capped silver [oleate-Ag]). The determination of the bactericidal effect of these different silver nanoparticles was assessed using both Gram-negative (E. coli) and Gram-positive (B. subtilis) bacteria and based on the diameter of the inhibition zone in disc diffusion tests, minimum inhibitory concentrations, Live/Dead staining assays, and atomic force microscopy. From a toxicity perspective, a clear synthesis procedure, and a surface coat- and strain-dependent inhibition were observed for silver nanoparticles. Biogenic-Ag was found to be of higher toxicity when compared to colloidal-Ag for both E. coli and B. subtilis. E. coli was found to be more resistant to either of these nanoparticles than B. subtilis. In contrast, Oleate-Ag was not toxic to either of the bacteria. These findings have important implications for the potential uses of Ag nanomaterials and for their fate in biological and environmental systems.« less

  2. Phytoremediation of Metal Contaminated Soil Using Willow: Exploiting Plant-Associated Bacteria to Improve Biomass Production and Metal Uptake.

    PubMed

    Janssen, Jolien; Weyens, Nele; Croes, Sarah; Beckers, Bram; Meiresonne, Linda; Van Peteghem, Pierre; Carleer, Robert; Vangronsveld, Jaco

    2015-01-01

    Short rotation coppice (SRC) of willow and poplar is proposed for economic valorization and concurrently as remediation strategy for metal contaminated land in northeast-Belgium. However, metal phytoextraction appears insufficient to effectuate rapid reduction of soil metal contents. To increase both biomass production and metal accumulation of SRC, two strategies are proposed: (i) in situ selection of the best performing clones and (ii) bioaugmentation of these clones with beneficial plant-associated bacteria. Based on field data, two experimental willow clones, a Salix viminalis and a Salix alba x alba clone, were selected. Compared to the best performing commercial clones, considerable increases in stem metal extraction were achieved (up to 74% for Cd and 91% for Zn). From the selected clones, plant-associated bacteria were isolated and identified. All strains were subsequently screened for their plant growth-promoting and metal uptake enhancing traits. Five strains were selected for a greenhouse inoculation experiment with the selected clones planted in Cd-Zn-Pb contaminated soil. Extraction potential tended to increase after inoculation of S. viminalis plants with a Rahnella sp. strain due to a significantly increased twig biomass. However, although bacterial strains showing beneficial traits in vitro were used for inoculation, increments in extraction potential were not always observed.

  3. Iron-Oxidizing Bacteria: A Review of Corrosion Mechanisms in Fresh Water and Marine Environments

    DTIC Science & Technology

    2010-01-01

    ABSTRACT Models for corrosion influenced by iron-oxidizing ba < v-~~/ •" *> combinations, i.e., 300 series stainless steel exposed to oxygenated...surrounding oxygenated cathode . Metal at the anode dissolves, forming metal cations that undergo hydrolysis and decrease pH. The extent of the pH...S, K, Ca and Mn in addition to Fe. The underside of the tubercle, the surface that had been in contact with the metal, was comprised of bacteria

  4. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components

    PubMed Central

    Pirbadian, Sahand; Barchinger, Sarah E.; Leung, Kar Man; Byun, Hye Suk; Jangir, Yamini; Bouhenni, Rachida A.; Reed, Samantha B.; Romine, Margaret F.; Saffarini, Daad A.; Shi, Liang; Gorby, Yuri A.; Golbeck, John H.; El-Naggar, Mohamed Y.

    2014-01-01

    Bacterial nanowires offer an extracellular electron transport (EET) pathway for linking the respiratory chain of bacteria to external surfaces, including oxidized metals in the environment and engineered electrodes in renewable energy devices. Despite the global, environmental, and technological consequences of this biotic–abiotic interaction, the composition, physiological relevance, and electron transport mechanisms of bacterial nanowires remain unclear. We report, to our knowledge, the first in vivo observations of the formation and respiratory impact of nanowires in the model metal-reducing microbe Shewanella oneidensis MR-1. Live fluorescence measurements, immunolabeling, and quantitative gene expression analysis point to S. oneidensis MR-1 nanowires as extensions of the outer membrane and periplasm that include the multiheme cytochromes responsible for EET, rather than pilin-based structures as previously thought. These membrane extensions are associated with outer membrane vesicles, structures ubiquitous in Gram-negative bacteria, and are consistent with bacterial nanowires that mediate long-range EET by the previously proposed multistep redox hopping mechanism. Redox-functionalized membrane and vesicular extensions may represent a general microbial strategy for electron transport and energy distribution. PMID:25143589

  5. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components.

    PubMed

    Pirbadian, Sahand; Barchinger, Sarah E; Leung, Kar Man; Byun, Hye Suk; Jangir, Yamini; Bouhenni, Rachida A; Reed, Samantha B; Romine, Margaret F; Saffarini, Daad A; Shi, Liang; Gorby, Yuri A; Golbeck, John H; El-Naggar, Mohamed Y

    2014-09-02

    Bacterial nanowires offer an extracellular electron transport (EET) pathway for linking the respiratory chain of bacteria to external surfaces, including oxidized metals in the environment and engineered electrodes in renewable energy devices. Despite the global, environmental, and technological consequences of this biotic-abiotic interaction, the composition, physiological relevance, and electron transport mechanisms of bacterial nanowires remain unclear. We report, to our knowledge, the first in vivo observations of the formation and respiratory impact of nanowires in the model metal-reducing microbe Shewanella oneidensis MR-1. Live fluorescence measurements, immunolabeling, and quantitative gene expression analysis point to S. oneidensis MR-1 nanowires as extensions of the outer membrane and periplasm that include the multiheme cytochromes responsible for EET, rather than pilin-based structures as previously thought. These membrane extensions are associated with outer membrane vesicles, structures ubiquitous in Gram-negative bacteria, and are consistent with bacterial nanowires that mediate long-range EET by the previously proposed multistep redox hopping mechanism. Redox-functionalized membrane and vesicular extensions may represent a general microbial strategy for electron transport and energy distribution.

  6. Microbiological test results using three urine pretreatment regimes with 316L stainless steel

    NASA Technical Reports Server (NTRS)

    Huff, Timothy L.

    1993-01-01

    Three urine pretreatments, (1) Oxone (Dupont) and sulfuric acid, (2) sodium hypochlorite and sulfuric acid, (3) and ozone, were studied for their ability to reduce microbial levels in urine and minimize surface attachment to 316L stainless steel coupons. Urine samples inoculated with Bacillus insolitus and a filamentous mold, organisms previously recovered from the vapor compression distillation subsystem of NASA Space Station Freedom water recovery test were tested in glass corrosion cells containing base or weld metal coupons. Microbial levels, changes in pH, color, turbidity, and odor of the fluid were monitored over the course of the 21-day test. Specimen surfaces were examined by scanning electron microscopy at completion of the test for microbial attachment. Ozonated urine samples were less turbid and had lower microbial levels than controls or samples receiving other pretreatments. Base metal coupons receiving pretreatment were relatively free of attached bacteria. However, well-developed biofilms were found in the heat-affected regions of welded coupons receiving Oxone and hypochlorite pretreatments. Few bacteria were observed in the same regions of the ozone pretreatment sample.

  7. Effect of Thiols, Zinc, and Redox Conditions on Hg Uptake in Shewanella oneidensis

    DOE PAGES

    Szczuka, Aleksandra; Morel, Francois M. M.; Schaefer, Jeffra K.

    2015-05-18

    Mercury uptake in bacteria represents a key first step in the production and accumulation Of methylmercury in biota. Previous experiments with mercury methylating bacteria have shown that Hg uptake is enhanced by some thiols, in particular cysteine, and that it is an energy-dependent process through heavy Metal TA transporters. In this study, we examine Hg uptake in the nonmethylating facultative aerobe, Shewanella oneidensis, under both anaerobic and aerobic conditions. Our results demonstrate similar characteristics of the Hg uptake system to those of the Hg methylating strains: uptake is enhanced in the presence of some thiols but not others; uptake ismore » energy dependent as evidenced by inhibition by a protonophore; and uptake is inhibited by high Zn(II) concentrations. Initial cellular uptake rates in S. oneidensis were remarkably similar under aerobic and fumarate-reducing conditions. In conclusion, these data support a similar Hg(II) uptake mechanism within the proteobacteria of accidental Hg(II) transport through heavy metal transporters with similar rates of uptake but differences in the ability to take up Hg bound to different thiols.« less

  8. Metal-like transport in proteins: A new paradigm for biological electron transfer

    NASA Astrophysics Data System (ADS)

    Malvankar, Nikhil; Vargas, Madeline; Tuominen, Mark; Lovley, Derek

    2012-02-01

    Electron flow in biologically proteins generally occurs via tunneling or hopping and the possibility of electron delocalization has long been discounted. Here we report metal-like transport in protein nanofilaments, pili, of bacteria Geobacter sulfurreducens that challenges this long-standing belief [1]. Pili exhibit conductivities comparable to synthetic organic metallic nanostructures. The temperature, magnetic field and gate-voltage dependence of pili conductivity is akin to that of quasi-1D disordered metals, suggesting a metal-insulator transition. Magnetoresistance (MR) data provide evidence for quantum interference and weak localization at room temperature, as well as a temperature and field-induced crossover from negative to positive MR. Furthermore, pili can be doped with protons. Structural studies suggest the possibility of molecular pi stacking in pili, causing electron delocalization. Reducing the disorder increases the metallic nature of pili. These electronically functional proteins are a new class of electrically conductive biological proteins that can be used to generate future generation of inexpensive and environmentally-sustainable nanomaterials and nanolectronic devices such as transistors and supercapacitors. [1] Malvankar et al. Nature Nanotechnology, 6, 573-579 (2011)

  9. STUDIES ON THERMOPHILIC SULFATE-REDUCING BACTERIA II.

    PubMed Central

    Akagi, J. M.; Campbell, L. Leon

    1961-01-01

    Akagi, J. M. (Western Reserve University, Cleveland, Ohio) and L. Leon Campbell. Studies on thermophilic sulfate-reducing bacteria. II. Hydrogenase activity of Clostridium nigrificans. J. Bacteriol. 82:927–932. 1961.—The hydrogenase of Clostridium nigrificans has been found to be associated with the cell-free particulate fraction which can be sedimented at 105,000 × g in 1 hr. The specific activity of this fraction was increased 2 to 3 fold over that of the crude extract. It was not found possible to liberate the enzyme from the particulate fraction by methods of enzymatic digestion, chemical extraction, or physical disruption. The optimum temperature for H2 utilization using benzyl viologen as an electron acceptor was found to be 55 C, and the optimum pH range was 7 to 8. Employing metal complexing agents it was found that the enzyme required Fe++ ions for H2 utilization. In contrast, Fe++ ions were not required to catalyze the evolution of H2 from reduced methyl viologen. The role of Fe++ ions in the hydrogenase activity of this organism is discussed. PMID:13859876

  10. Staphylococcal surface display of metal-binding polyhistidyl peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samuelson, P.; Wernerus, H.; Svedberg, M.

    2000-03-01

    Recombinant Staphylococcus xylosus and Staphylococcus carnosus strains were generated with surface-exposed chimeric proteins containing polyhistidyl peptides designed for binding to divalent metal ions. Surface accessibility of the chimeric surface proteins was demonstrated and the chimeric surface proteins were found to be functional in terms of metal binding, since the recombinant staphylococcal cells were shown to have gained Ni{sup 2+}- and Cd{sup 2+}-binding capacity, suggesting that such bacteria could find use in bioremediation of heavy metals. This is, to their knowledge, the first time that recombinant, surface-exposed metal-binding peptides have been expressed on gram-positive bacteria. Potential environmental or biosensor applications formore » such recombinant staphylococci as biosorbents are discussed.« less

  11. Mathematical modelling of CRISPR-Cas system effects on biofilm formation.

    PubMed

    Ali, Qasim; Wahl, Lindi M

    2017-08-01

    Clustered regularly interspaced short palindromic repeats (CRISPR), linked with CRISPR associated (Cas) genes, can confer adaptive immunity to bacteria, against bacteriophage infections. Thus from a therapeutic standpoint, CRISPR immunity increases biofilm resistance to phage therapy. Recently, however, CRISPR-Cas genes have been implicated in reducing biofilm formation in lysogenized cells. Thus CRISPR immunity can have complex effects on phage-host-lysogen interactions, particularly in a biofilm. In this contribution, we develop and analyse a series of dynamical systems to elucidate and disentangle these interactions. Two competition models are used to study the effects of lysogens (first model) and CRISPR-immune bacteria (second model) in the biofilm. In the third model, the effect of delivering lysogens to a CRISPR-immune biofilm is investigated. Using standard analyses of equilibria, stability and bifurcations, our models predict that lysogens may be able to displace CRISPR-immune bacteria in a biofilm, and thus suggest strategies to eliminate phage-resistant biofilms.

  12. Microbial community induces a plant defense system under growing on the lunar regolith analogue

    NASA Astrophysics Data System (ADS)

    Zaetz, Irina; Mytrokhyn, Olexander; Lukashov, Dmitry; Mashkovska, Svitlana; Kozyrovska, Natalia; Foing, Bernard H.

    The lunar rock considered as a potential source of chemical elements essential for plant nutrition, however, this substrate is of a low bioavailability. The use of microorganisms for decomposition of silicate rocks and stimulation of plant growth is a key idea in precursory scenario of growing pioneer plants for a lunar base (Kozyrovska et al., 2004; 2006; Zaetz et al., 2006). In model experiments a consortium of well-defined plant-associated bacteria were used for growing of French marigold (Tagetes patula L.) in anorthosite, analogous to a lunar rock. Inoculated plants appeared better seed germination, more fast development and also increased accumulation of K, Mg, Mn, Co, Cu and lowered level of the toxic Zn, Ni, Cr, comparing to control tagetes'. Bacteria regulate metal homeostasis in plants by changing their bioavailability and by stimulating of plant defense mechanisms. Inoculated plants were being accommodated to growth under stress conditions on anorthosite used as a substrate. In contrast, control plants manifested a heavy metal-induced oxidative stress, as quantified by protein carbonyl accumulation. Depending on the plant organ sampled and developmental stage there were increases or loses in the antioxidant enzyme activities (guaiacol peroxidase and glutathione-S-transferase). These changes were most evident in inoculated plants. Production of phenolic compounds, known as antioxidants and heavy metal chelators, is rised in variants of inoculated marigolds. Guaiacol peroxidase plays the main role, finally, in a reducing toxicity of heavy metals in plant leaves, while glutathione-S-transferase and phenolics overcome stress in roots.

  13. Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein.

    PubMed

    Kinoshita, Hideki; Sohma, Yui; Ohtake, Fumika; Ishida, Mitsuharu; Kawai, Yasushi; Kitazawa, Haruki; Saito, Tadao; Kimura, Kazuhiko

    2013-09-01

    Heavy metals cause various health hazards. Using lactic acid bacteria (LAB), we tested the biosorption of heavy metals e.g. cadmium (Cd) (II), lead (Pb) (II), arsenic (As) (III), and mercury (Hg) (II). Cd (II) sorption was tested in 103 strains using atomic absorption spectrophotometery (AAS). Weissella viridescens MYU 205 (1 × 10(8) cells/ml) decreased Cd (II) levels in citrate buffer (pH 6.0) from one ppm to 0.459 ± 0.016 ppm, corresponding to 10.46 μg of Cd (II). After screening, 11 LAB strains were tested using various pH (pH 4.0, 5.0, 6.0, 7.0) showing the sorption was acid sensitive; and was cell concentration dependent, where the Cd (II) concentration decreased from one ppm to 0.042 (max)/0.255 (min) ppm at 1 × 10(10) cells/ml. Additionally, the biosorption of Pb (II), As (III), and Hg (II) were tested using an inductively coupled plasma mass spectrometer (ICP-MS). The Hg (II) concentration was reduced the most followed by Pb (II) and As (III). Many of the bacterial cell surface proteins of W. viridescens MYU 205 showed binding to Hg (II) using the Hg (II) column assay. Having a CXXC motif, a ∼14 kDa protein may be one of the Hg (II) binding proteins. LAB biosorption may aid the detoxification of people exposed to heavy metals. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  14. Biosorption of heavy metals by Pseudomonas species isolated from sugar industry.

    PubMed

    Naz, Tayyaba; Khan, Muhammad Daud; Ahmed, Iftikhar; Rehman, Shafiq Ur; Rha, Eui Shik; Malook, Ijaz; Jamil, Muhammad

    2016-09-01

    Heavy metal-resistant bacteria can be efficient bioremediators of metals and may provide an alternative or additional method to conventional methods of metal removal. In this study, 10 bacterial isolates were isolated from soil samples of a sugar industry, located at Peshawar, Pakistan. Morphological, physiological, and biochemical characteristics of these isolates were observed. Sequence analysis (16S ribosomal RNA) revealed that isolated strains were closely related to the species belonging to the genera Pseudomonas, Arthrobacter, Exiguobacterium, Citrobacter, and Enterobacter Bacterial isolates were resistant with a minimum inhibitory concentration (500-900 ppm) to lead ion (Pb(2+)), (500-600 ppm) nickel ion (Ni(2+)), (500-800 ppm) copper ion (Cu(2+)), and (600-800 ppm) chromium ion (Cr(3+)) in solid media. Furthermore, biosorption of metals proved considerable removal of heavy metals by isolated metal-resistant strains. Pseudomonas sp. reduced 37% (Pb(2+)), 32% (Ni(2+)), 29% (Cu(2+)), and 32% (Cr(3+)) and was thus found to be most effective, whereas Enterobacter sp. reduced 19% (Pb(2+)), 7% (Ni(2+)), 14% (Cu(2+)), and 21% (Cr(3+)) and was found to be least effective. While average reduction of Pb(2+), Ni(2+), Cu(2+), and Cr(3+) by Citrobacter sp. was found to be 24%, 18%, 23%, and 27%, respectively, among recognized species. This study revealed that Pseudomonas sp. may provide a new microbial community that can be used for enhanced remediation of contaminated environment. © The Author(s) 2015.

  15. Facile biological synthetic strategy to morphologically aligned CeO2/ZrO2 core nanoparticles using Justicia adhatoda extract and ionic liquid: Enhancement of its bio-medical properties.

    PubMed

    Pandiyan, Nithya; Murugesan, Balaji; Sonamuthu, Jegatheeswaran; Samayanan, Selvam; Mahalingam, Sundrarajan

    2018-01-01

    In this study, a typical green synthesis route has approached for CeO 2 /ZrO 2 core metal oxide nanoparticles using ionic liquid mediated Justicia adhatoda extract. This synthesis method is carried out at simple room temperature condition to obtain the core metal oxide nanoparticles. XRD, SEM and TEM studies employed to study the crystalline and surface morphological properties under nucleation, growth, and aggregation processes. CeO 2 /ZrO 2 core metal oxides display agglomerated nano stick-like structure with 20-45nm size. GC-MS spectroscopy confirms the presence of vasicinone and N,N-Dimethylglycine present in the plant extract, which are capable of converting the corresponding metal ion precursor to CeO 2 /ZrO 2 core metal oxide nanoparticles. In FTIR, the corresponding stretching for Ce-O and Zr-O bands indicated at 498 and 416cm -1 and Raman spectroscopy also supports typical stretching frequencies at 463 and 160cm -1 . Band gap energy of the CeO 2 /ZrO 2 core metal oxide is 3.37eV calculated from UV- DRS spectroscopy. The anti-bacterial studies performed against a set of bacterial strains the result showed that core metal oxide nanoparticles more susceptible to gram-positive (G+) bacteria than gram-negative (G-) bacteria. A unique feature of the antioxidant behaviors core metal oxides reduces the concentration of DPPH radical up to 89%. The CeO 2 /ZrO 2 core metal oxide nanoparticles control the S. marcescent bio-film formation and restrict the quorum sensing. The toxicology behavior of CeO 2 /ZrO 2 core metal oxide NPs is found due to the high oxygen site vacancies, ROS formation, smallest particle size and higher surface area. This type of green synthesis route may efficient and the core metal oxide nanoparticles will possess a good bio-medical agent in future. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Role of microbial iron reduction in the dissolution of iron hydroxysulfate minerals

    USGS Publications Warehouse

    Jones, E.J.P.; Nadeau, T.-L.; Voytek, M.A.; Landa, E.R.

    2006-01-01

    Iron-hydroxysulfate minerals can be important hosts for metals such as lead, mercury, copper, zinc, silver, chromium, arsenic, and selenium and for radionuclides such as 226Ra. These mineral-bound contaminants are considered immobilized under oxic conditions. However, when anoxic conditions develop, the activities of sulfate- or iron-reducing bacteria could result in mineral dissolution, releasing these bound contaminants. Reduction of structural sulfate in the iron-hydroxysulfate mineral jarosite by sulfate-reducing bacteria has previously been demonstrated. The primary objective of this work was to evaluate the potential for anaerobic dissolution of the iron-hydroxysulfate minerals jarosite and schwertmannite at neutral PH by iron-reducing bacteria. Mineral dissolution was tested using a long-term cultivar, Geobacter metallireducens strain GS-15, and a fresh isolate Geobacter sp. strain ENN1, previously undescribed. ENN1 was isolated from the discharge site of Shadle Mine, in the southern anthracite coalfield of Pennsylvania, where schwertmannite was the predominant iron-hydroxysulfate mineral. When jarosite from Elizabeth Mine (Vermont) was provided as the sole terminal electron acceptor, resting cells of both G. metallireducens and ENN1 were able to reduce structural Fe(III), releasing Fe+2, SO4-2, and K+ ions. A lithified jarosite sample from Utah was more resistant to microbial attack, but slow release of Fe+2 was observed. Neither bacterium released Fe+2 from poorly crystalline synthetic schwertmannite. Our results indicate that exposure of jarosite to iron-reducing conditions at neutral pH is likely to promote the mobility of hazardous constituents and should therefore be considered in evaluating waste disposal and/or reclamation options involving jarosite-bearing materials.

  17. Evidence the U.S. autism epidemic initiated by acetaminophen (Tylenol) is aggravated by oral antibiotic amoxicillin/clavulanate (Augmentin) and now exponentially by herbicide glyphosate (Roundup).

    PubMed

    Good, Peter

    2018-02-01

    Because certain hereditary diseases show autistic behavior, and autism often runs in families, researchers seek genes underlying the pathophysiology of autism, thus core behaviors. Other researchers argue environmental factors are decisive, citing compelling evidence of an autism epidemic in the United States beginning about 1980. Recognition that environmental factors influence gene expression led to synthesis of these views - an 'epigenetic epidemic' provoked by pervasive environmental agents altering expression of vulnerable genes, inducing characteristic autistic biochemistries in many mothers and infants. Two toxins most implicated in the U.S. autism epidemic are analgesic/antipyretic acetaminophen (Tylenol) and oral antibiotic amoxicillin/clavulanate (Augmentin). Recently herbicide glyphosate (Roundup) was exponentially implicated. What do these toxins have in common? Acetaminophen depletes sulfate and glutathione required to detoxify it. Oral antibiotics kill and glyphosate inhibits intestinal bacteria that synthesize methionine (precursor of sulfate and glutathione, and required to methylate DNA), bacteria that synthesize tryptophan (sole precursor of neuroinhibitor serotonin), and bacteria that restrain ammonia-generating anaerobes. Sulfate plus glutathione normally sulfate fetal adrenal androgen dehydroepiandrosterone to DHEAS - major precursor of placental/postnatal estrogens. Glyphosate (and heavy metals) also inhibit aromatase that turns androgens to estrogens. Placental/postnatal estrogens dehydrate/mature brain myelin sheaths, mature corpus callosum and left hemisphere preferentially, dilate brain blood vessels, and elevate brain serotonin and oxytocin. Stress-induced weak androgens and estrogen depletion coherently explain white matter asymmetry and dysconnection in autism, extreme male brain, low brain blood flow, hyperexcitability, social anxiety, and insufficient maternal oxytocin at birth to limit fetal brain chloride/water and mature GABA. Copyright © 2017 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  18. Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance.

    PubMed

    Fashola, Muibat Omotola; Ngole-Jeme, Veronica Mpode; Babalola, Olubukola Oluranti

    2016-10-26

    Mining activities can lead to the generation of large quantities of heavy metal laden wastes which are released in an uncontrolled manner, causing widespread contamination of the ecosystem. Though some heavy metals classified as essential are important for normal life physiological processes, higher concentrations above stipulated levels have deleterious effects on human health and biota. Bacteria able to withstand high concentrations of these heavy metals are found in the environment as a result of various inherent biochemical, physiological, and/or genetic mechanisms. These mechanisms can serve as potential tools for bioremediation of heavy metal polluted sites. This review focuses on the effects of heavy metal wastes generated from gold mining activities on the environment and the various mechanisms used by bacteria to counteract the effect of these heavy metals in their immediate environment.

  19. Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance

    PubMed Central

    Fashola, Muibat Omotola; Ngole-Jeme, Veronica Mpode; Babalola, Olubukola Oluranti

    2016-01-01

    Mining activities can lead to the generation of large quantities of heavy metal laden wastes which are released in an uncontrolled manner, causing widespread contamination of the ecosystem. Though some heavy metals classified as essential are important for normal life physiological processes, higher concentrations above stipulated levels have deleterious effects on human health and biota. Bacteria able to withstand high concentrations of these heavy metals are found in the environment as a result of various inherent biochemical, physiological, and/or genetic mechanisms. These mechanisms can serve as potential tools for bioremediation of heavy metal polluted sites. This review focuses on the effects of heavy metal wastes generated from gold mining activities on the environment and the various mechanisms used by bacteria to counteract the effect of these heavy metals in their immediate environment. PMID:27792205

  20. Cell surface engineering of microorganisms towards adsorption of heavy metals.

    PubMed

    Li, Peng-Song; Tao, Hu-Chun

    2015-06-01

    Heavy metal contamination has become a worldwide environmental concern due to its toxicity, non-degradability and food-chain bioaccumulation. Conventional physical and chemical treatment methods for heavy metal removal have disadvantages such as cost-intensiveness, incomplete removal, secondary pollution and the lack of metal specificity. Microbial biomass-based biosorption is one of the approaches gaining increasing attention because it is effective, cheap, and environmental friendly and can work well at low concentrations. To enhance the adsorption properties of microbial cells to heavy metal ions, the cell surface display of various metal-binding proteins/peptides have been performed using a cell surface engineering approach. The surface engineering of Gram-negative bacteria, Gram-positive bacteria and yeast towards the adsorption of heavy metals are reviewed in this article. The problems and future perspectives of this technology are discussed.

  1. Evolution of Microbial “Streamer” Growths in an Acidic, Metal-Contaminated Stream Draining an Abandoned Underground Copper Mine

    PubMed Central

    Kay, Catherine M.; Rowe, Owen F.; Rocchetti, Laura; Coupland, Kris; Hallberg, Kevin B.; Johnson, D. Barrie

    2013-01-01

    A nine year study was carried out on the evolution of macroscopic “acid streamer” growths in acidic, metal-rich mine water from the point of construction of a new channel to drain an abandoned underground copper mine. The new channel became rapidly colonized by acidophilic bacteria: two species of autotrophic iron-oxidizers (Acidithiobacillus ferrivorans and “Ferrovum myxofaciens”) and a heterotrophic iron-oxidizer (a novel genus/species with the proposed name “Acidithrix ferrooxidans”). The same bacteria dominated the acid streamer communities for the entire nine year period, with the autotrophic species accounting for ~80% of the micro-organisms in the streamer growths (as determined by terminal restriction enzyme fragment length polymorphism (T-RFLP) analysis). Biodiversity of the acid streamers became somewhat greater in time, and included species of heterotrophic acidophiles that reduce ferric iron (Acidiphilium, Acidobacterium, Acidocella and gammaproteobacterium WJ2) and other autotrophic iron-oxidizers (Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans). The diversity of archaea in the acid streamers was far more limited; relatively few clones were obtained, all of which were very distantly related to known species of euryarchaeotes. Some differences were apparent between the acid streamer community and planktonic-phase bacteria. This study has provided unique insights into the evolution of an extremophilic microbial community, and identified several novel species of acidophilic prokaryotes. PMID:25371339

  2. Unprecedented Silver Resistance in Clinically Isolated Enterobacteriaceae: Major Implications for Burn and Wound Management

    PubMed Central

    Norton, Rhy; Austin, Cindy; Mitchell, Amber; Zank, Sara; Durham, Paul

    2015-01-01

    Increased utilization of inorganic silver as an adjunctive to many medical devices has raised concerns of emergent silver resistance in clinical bacteria. Although the molecular basis for silver resistance has been previously characterized, to date, significant phenotypic expression of these genes in clinical settings is yet to be observed. Here, we identified the first strains of clinical bacteria expressing silver resistance at a level that could significantly impact wound care and the use of silver-based dressings. Screening of 859 clinical isolates confirmed 31 harbored at least 1 silver resistance gene. Despite the presence of these genes, MIC testing revealed most of the bacteria displayed little or no increase in resistance to ionic silver (200 to 300 μM Ag+). However, 2 isolates (Klebsiella pneumonia and Enterobacter cloacae) were capable of robust growth at exceedingly high silver concentrations, with MIC values reaching 5,500 μM Ag+. DNA sequencing of these two strains revealed the presence of genes homologous to known genetic determinants of heavy metal resistance. Darkening of the bacteria's pigment was observed after exposure to high silver concentrations. Scanning electron microscopy images showed the presence of silver nanoparticles embedded in the extracellular polymeric substance of both isolates. This finding suggested that the isolates may neutralize ionic silver via reduction to elemental silver. Antimicrobial testing revealed both organisms to be completely resistant to many commercially available silver-impregnated burn and wound dressings. Taken together, these findings provide the first evidence of clinical bacteria capable of expressing silver resistance at levels that could significantly impact wound management. PMID:26014954

  3. Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies

    PubMed Central

    Olaniran, Ademola O.; Balgobind, Adhika; Pillay, Balakrishna

    2013-01-01

    Co-contamination of the environment with toxic chlorinated organic and heavy metal pollutants is one of the major problems facing industrialized nations today. Heavy metals may inhibit biodegradation of chlorinated organics by interacting with enzymes directly involved in biodegradation or those involved in general metabolism. Predictions of metal toxicity effects on organic pollutant biodegradation in co-contaminated soil and water environments is difficult since heavy metals may be present in a variety of chemical and physical forms. Recent advances in bioremediation of co-contaminated environments have focussed on the use of metal-resistant bacteria (cell and gene bioaugmentation), treatment amendments, clay minerals and chelating agents to reduce bioavailable heavy metal concentrations. Phytoremediation has also shown promise as an emerging alternative clean-up technology for co-contaminated environments. However, despite various investigations, in both aerobic and anaerobic systems, demonstrating that metal toxicity hampers the biodegradation of the organic component, a paucity of information exists in this area of research. Therefore, in this review, we discuss the problems associated with the degradation of chlorinated organics in co-contaminated environments, owing to metal toxicity and shed light on possible improvement strategies for effective bioremediation of sites co-contaminated with chlorinated organic compounds and heavy metals. PMID:23676353

  4. Exploitation of Endophytic Bacteria to Enhance the Phytoremediation Potential of the Wetland Helophyte Juncus acutus

    PubMed Central

    Syranidou, Evdokia; Christofilopoulos, Stavros; Gkavrou, Georgia; Thijs, Sofie; Weyens, Nele; Vangronsveld, Jaco; Kalogerakis, Nicolas

    2016-01-01

    This study investigated the potential of indigenous endophytic bacteria to improve the efficiency of the wetland helophyte Juncus acutus to deal with a mixed pollution consisting of emerging organic contaminants (EOCs) and metals. The beneficial effect of bioaugmentation with selected endophytic bacteria was more prominent in case of high contamination: most of the inoculated plants (especially those inoculated with the mixed culture) removed higher percentages of organics and metals from the liquid phase in shorter times compared to the non-inoculated plants without exhibiting significant oxidative stress. When exposed to the lower concentrations, the tailored mixed culture enhanced the performance of the plants to decrease the organics and metals from the water. The composition of the root endophytic community changed in response to increased levels of contaminants while the inoculated bacteria did not modify the community structure. Our results indicate that the synergistic relationships between endophytes and the macrophyte enhance plants’ performance and may be exploited in constructed wetlands treating water with mixed contaminations. Taking into account that the concentrations of EOCs used in this study are much higher than the average contents of typical wastewaters, we can conclude that the macrophyte J. acutus with the aid of a mixed culture of tailored endophytic bacteria represents a suitable environmentally friendly alternative for treating pharmaceuticals and metals. PMID:27458433

  5. Pb2+ Effects on Growth, Lipids, and Protein and DNA Profiles of the Thermophilic Bacterium Thermus Thermophilus

    PubMed Central

    Nicolaus, Barbara; Poli, Annarita; Di Donato, Paola; Romano, Ida; Laezza, Giusi; Gioiello, Alessia; Ulgiati, Sergio; Fratianni, Florinda; Nazzaro, Filomena; Orlando, Pierangelo; Dumontet, Stefano

    2016-01-01

    Extremophiles are organisms able to thrive in extreme environmental conditions and some of them show the ability to survive high doses of heavy metals thanks to defensive mechanisms provided by primary and secondary metabolic products, i.e., extremolytes, lipids, and extremozymes. This is why there is a growing scientific and industrial interest in the use of thermophilic bacteria in a host of tasks, from the environmental detoxification of heavy metal to industrial activities, such as bio-machining and bio-metallurgy. In this work Thermus thermophilus was challenged against increasing Pb2+ concentrations spanning from 0 to 300 ppm in order to ascertain the sensitiveness of this bacteria to the Pb environmental pollution and to give an insight on its heavy metal resistance mechanisms. Analysis of growth parameters, enzyme activities, protein profiles, and lipid membrane modifications were carried out. In addition, genotyping analysis of bacteria grown in the presence of Pb2+, using random amplified polymorphic DNA-PCR and DNA melting evaluation, were also performed. A better knowledge of the response of thermophilic bacteria to the different pollutants, as heavy metals, is necessary for optimizing their use in remediation or decontamination processes. PMID:27929414

  6. Metals-contaminated benthic invertebrates in the Clark Fork River, Montana: Effects on age-0 brown trout and rainbow trout

    USGS Publications Warehouse

    Woodward, Daniel F.; Farag, Aïda M.; Bergman, Harold L.; Delonay, Aaron J.; Little, Edward E.; Smiths, Charlie E.; Barrows, Frederic T.

    1995-01-01

    Benthic organisms in the upper Clark Fork River have recently been implicated as a dietary source of metals that may be a chronic problem for young-of-the-year rainbow trout (Oncorhynchus mykiss). In this present study, early life stage brown trout (Salmo trutta) and rainbow trout were exposed for 88 d to simulated Clark Fork River water and a diet of benthic invertebrates collected from the river. These exposures resulted in reduced growth and elevated levels of metals in the whole body of both species. Concentrations of As, Cd, Cu, and Pb increased in whole brown trout; in rainbow trout, As and Cd increased in whole fish, and As also increased in liver. Brown trout on the metals-contaminated diets exhibited constipation, gut impaction, increased cell membrane damage (lipid peroxidation), decreased digestive enzyme production (zymogen), and a sloughing of intestinal mucosal epithelial cells. Rainbow trout fed the contaminated diets exhibited constipation and reduced feeding activity. We believe that the reduced standing crop of trout in the Clark Fork River results partly from chronic effects of metals contamination in benthic invertebrates that are important as food for young-of-the-year fish.

  7. The redox potential of boron nitride and implications for its use as a crucible material in experimental petrology

    NASA Technical Reports Server (NTRS)

    Wendlandt, R. F.; Huebner, J. S.; Harrison, W. J.

    1982-01-01

    The suitability of boron nitride for use as a crucible material in silicate and oxygen-bearing metal sulfide systems has been investigated. Boron nitride is unsatisfactory for use with many silicate systems because its presence in combination with a source of oxygen establishes the oxygen fugacity at values below that of the assemblage quartz + fayalite + iron, reducing transition metal ions such as Ni(2+) and Fe(2+) to the metallic state. B2O3, resulting from the oxidation of BN, acts as a flux to promote formation of melt.

  8. Bioaccumulation of Vanadium by Vanadium-Resistant Bacteria Isolated from the Intestine of Ascidia sydneiensis samea.

    PubMed

    Romaidi; Ueki, Tatsuya

    2016-06-01

    Isolation of naturally occurring bacterial strains from metal-rich environments has gained popularity due to the growing need for bioremediation technologies. In this study, we found that the vanadium concentration in the intestine of the vanadium-rich ascidian Ascidia sydneiensis samea could reach 0.67 mM, and thus, we isolated vanadium-resistant bacteria from the intestinal contents and determined the ability of each bacterial strain to accumulate vanadium and other heavy metals. Nine strains of vanadium-resistant bacteria were successfully isolated, of which two strains, V-RA-4 and S-RA-6, accumulated vanadium at a higher rate than did the other strains. The maximum vanadium absorption by these bacteria was achieved at pH 3, and intracellular accumulation was the predominant mechanism. Each strain strongly accumulated copper and cobalt ions, but accumulation of nickel and molybdate ions was relatively low. These bacterial strains can be applied to protocols for bioremediation of vanadium and heavy metal toxicity.

  9. Influence of Reactive Transport on the Reduction of U(VI) in the Presence of Fe(III) and Nitrate: Implications for U(VI) Immobilization by Bioremediation / Biobarriers- Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.D. Wood

    2007-01-01

    Subsurface contamination by metals and radionuclides represent some of the most challenging remediation problems confronting the Department of Energy (DOE) complex. In situ remediation of these contaminants by dissimilatory metal reducing bacteria (DMRB) has been proposed as a potential cost effective remediation strategy. The primary focus of this research is to determine the mechanisms by which the fluxes of electron acceptors, electron donors, and other species can be controlled to maximize the transfer of reductive equivalents to the aqueous and solid phases. The proposed research is unique in the NABIR portfolio in that it focuses on (i) the role ofmore » flow and transport in the initiation of biostimulation and the successful sequestration of metals and radionuclides [specifically U(VI)], (ii) the subsequent reductive capacity and stability of the reduced sediments produced by the biostimulation process, and (iii) the potential for altering the growth of biomass in the subsurface by the addition of specific metabolic uncoupling compounds. A scientifically-based understanding of these phenomena are critical to the ability to design successful bioremediation schemes. The laboratory research will employ Shewanella putrefaciens (CN32), a facultative DMRB that can use Fe(III) oxides as a terminal electron acceptor. Sediment-packed columns will be inoculated with this organism, and the reduction of U(VI) by the DMRB will be stimulated by the addition of a carbon and energy source in the presence of Fe(III). Separate column experiments will be conducted to independently examine: (1) the importance of the abiotic reduction of U(VI) by biogenic Fe(II); (2) the influence of the transport process on Fe(III) reduction and U(VI) immobilization, with emphasis on methods for controlling the fluxes of aqueous species to maximize uranium reduction; (3) the reductive capacity of biologically-reduced sediments (with respect to re-oxidation by convective fluxes of O2 and NO3-) and the long-term stability of immobilized uranium mineral phases after bioremediation processes are complete, and (4) the ability for metabolic uncoupling compounds to maintain microbial growth while limiting biomass production. The results of the laboratory experiments will be used to develop mathematical descriptive models for the coupled transport and reduction processes.« less

  10. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review.

    PubMed

    Mahar, Amanullah; Wang, Ping; Ali, Amjad; Awasthi, Mukesh Kumar; Lahori, Altaf Hussain; Wang, Quan; Li, Ronghua; Zhang, Zengqiang

    2016-04-01

    Mining operations, industrial production and domestic and agricultural use of metal and metal containing compound have resulted in the release of toxic metals into the environment. Metal pollution has serious implications for the human health and the environment. Few heavy metals are toxic and lethal in trace concentrations and can be teratogenic, mutagenic, endocrine disruptors while others can cause behavioral and neurological disorders among infants and children. Therefore, remediation of heavy metals contaminated soil could be the only effective option to reduce the negative effects on ecosystem health. Thus, keeping in view the above facts, an attempt has been made in this article to review the current status, challenges and opportunities in the phytoremediation for remediating heavy metals from contaminated soils. The prime focus is given to phytoextraction and phytostabilization as the most promising and alternative methods for soil reclamation. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Bioleaching of metals from spent refinery petroleum catalyst using moderately thermophilic bacteria: effect of particle size.

    PubMed

    Srichandan, Haragobinda; Singh, Sradhanjali; Pathak, Ashish; Kim, Dong-Jin; Lee, Seoung-Won; Heyes, Graeme

    2014-01-01

    The present work investigated the leaching potential of moderately thermophilic bacteria in the recovery of metals from spent petroleum catalyst of varying particle sizes. The batch bioleaching experiments were conducted by employing a mixed consortium of moderate thermophilic bacteria at 45°C and by using five different particle sizes (from 45 to >2000 μm) of acetone-washed spent catalyst. The elemental mapping by FESEM confirmed the presence of Al, Ni, V and Mo along with sulfur in the spent catalyst. During bioleaching, Ni (92-97%) and V (81-91%) were leached in higher concentrations, whereas leaching yields of Al (23-38%) were found to be lowest in all particle sizes investigated. Decreasing the particle size from >2000 μm to 45-106 μm caused an increase in leaching yields of metals during initial hours. However, the final metals leaching yields were almost independent of particle sizes of catalyst. Leaching kinetics was observed to follow the diffusion-controlled model showing the linearity more close than the chemical control. The results of the present study suggested that bioleaching using moderate thermophilic bacteria was highly effective in removing the metals from spent catalyst. Moreover, bioleaching can be conducted using spent catalyst of higher particle size (>2000 μm), thus saving the grinding cost and making process attractive for larger scale application.

  12. Effect of citric acid and rhizosphere bacteria on metal plaque formation and metal accumulation in reeds in synthetic acid mine drainage solution.

    PubMed

    Guo, Lin; Cutright, Teresa J

    2014-06-01

    Many of regions in the world have been affected by acid mine drainage (AMD). The study assessed the effect of rhizosphere bacteria and citric acid (CA) on the metal plaque formation and heavy metal uptake in Phragmites australis cultured in synthetic AMD solution. Mn and Al plaque were not formed, but Fe plaque which was mediated by rhizosphere iron oxidizing bacteria (Fe(II)OB) was observed on the root system of reeds. Fe plaque did not significantly influence the uptake of Fe, Al and Mn into tissues of reeds. CA significantly (p<0.01) inhibited the growth of Fe(II)OB and decreased the formation of Fe plaque. CA also significantly improved (p<0.05) the accumulation of Fe, Mn and Al in all the tissues of reeds. Roots and rhizomes were the main organs to store metals. The roots contained 0.08±0.01mg/g Mn, 2.39±0.26mg/g Fe and 0.19±0.02mg/g Al, while the shoots accumulated 0.04±0.00mg/g Mn, 0.20±0.01mg/g Fe, 0.11±0.00mg/g Al in reeds cultured in solution amended with 2.101g/l CA and without inoculation of rhizosphere bacteria. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.; Saffarini, D.

    1994-01-01

    Dissimilatory iron and/or manganese reduction is known to occur in several organisms, including anaerobic sulfur-reducing organisms such as Geobacter metallireducens or Desulfuromonas acetoxidans, and facultative aerobes such as Shewanella putrefaciens. These bacteria couple both carbon oxidation and growth to the reduction of these metals, and inhibitor and competition experiments suggest that Mn(IV) and Fe(III) are efficient electron acceptors similar to nitrate in redox abilities and capable of out-competing electron acceptors of lower potential, such as sulfate (sulfate reduction) or CO2 (methanogenesis). Field studies of iron and/or manganese reduction suggest that organisms with such metabolic abilities play important roles in coupling the oxidation of organic carbon to metal reduction under anaerobic conditions. Because both iron and manganese oxides are solids or colloids, they tend to settle downward in aquatic environments, providing a physical mechanism for the movement of oxidizing potential into anoxic zones. The resulting biogeochemical metal cycles have a strong impact on many other elements including carbon, sulfur, phosphorous, and trace metals.

  14. Heavy metal removal from synthetic wastewaters in an anaerobic bioreactor using stillage from ethanol distilleries as a carbon source.

    PubMed

    Gonçalves, M M M; da Costa, A C A; Leite, S G F; Sant'Anna, G L

    2007-11-01

    This work was conducted to investigate the possibility of using stillage from ethanol distilleries as substrate for sulfate reducing bacteria (SRB) growth and to evaluate the removal efficiency of heavy metals present in wastewaters containing sulfates. The experiments were carried out in a continuous bench-scale Upflow Anaerobic Sludge Blanket reactor (13 l) operated with a hydraulic retention time of 18 h. The bioreactor was inoculated with 7 l of anaerobic sludge. Afterwards, an enrichment procedure to increase SRB numbers was started. After this, cadmium and zinc were added to the synthetic wastewater, and their removal as metal sulfide was evaluated. The synthetic wastewater used represented the drainage from a dam of a metallurgical industry to which a carbon source (stillage) was added. The results showed that high percentages of removal (>99%) of Cd and Zn were attained in the bioreactor, and that the removal as sulfide precipitates was not the only form of metal removal occurring in the bioreactor environment.

  15. Synthesis of Silver Polymer Nanocomposites and Their Antibacterial Activity

    NASA Astrophysics Data System (ADS)

    Gavade, Chaitali; Shah, Sunil; Singh, N. L.

    2011-07-01

    PVA (Polyvinyl Alcohol) silver nanocomposites of different sizes were prepared by chemical reduction method. Silver nitrate was taken as the metal precursor and amine hydrazine as a reducing agent. The formation of the silver nanoparticles was noticed using UV- visible absorption spectroscopy. The UV-visible spectroscopy revealed the formation of silver nanoparticles by exhibiting the surface plasmon resonance. The bactericidal activity due to silver release from the surface was determined by the modification of conventional diffusion method. Salmonella typhimurium, Serratia sps and Shigella sps were used as test bacteria which are gram-negative type bacteria. Effect of the different sizes of silver nano particles on antibacterial efficiency was discussed. Zones of inhibition were measured after 24 hours of incubation at 37 °C which gave 20 mm radius for high concentration of silver nanoparticles.

  16. Identification of proteins capable of metal reduction from the proteome of the Gram-positive bacterium Desulfotomaculum reducens MI-1 using an NADH-based activity assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otwell, Annie E.; Sherwood, Roberts; Zhang, Sheng

    Metal reduction capability has been found in numerous species of environmentally abundant Gram-positive bacteria. However, understanding of microbial metal reduction is based almost solely on studies of Gram-negative organisms. In this study, we focus on Desulfotomaculum reducens MI-1, a Gram-positive metal reducer whose genome lacks genes with similarity to any characterized metal reductase. D. reducens has been shown to reduce not only Fe(III), but also the environmentally important contaminants U(VI) and Cr(VI). By extracting, separating, and analyzing the functional proteome of D. reducens, using a ferrozine-based assay in order to screen for chelated Fe(III)-NTA reduction with NADH as electron donor,more » we have identified proteins not previously characterized as iron reductases. Their function was confirmed by heterologous expression in E. coli. These are the protein NADH:flavin oxidoreductase (Dred_2421) and a protein complex composed of oxidoreductase FAD/NAD(P)-binding subunit (Dred_1685) and dihydroorotate dehydrogenase 1B (Dred_1686). Dred_2421 was identified in the soluble proteome and is predicted to be a cytoplasmic protein. Dred_1685 and Dred_1686 were identified in both the soluble as well as the insoluble (presumably membrane) protein fraction, suggesting a type of membrane-association, although PSORTb predicts both proteins are cytoplasmic. Furthermore, we show that these proteins have the capability to reduce soluble Cr(VI) and U(VI) with NADH as electron donor. This study is the first functional proteomic analysis of D. reducens, and one of the first analyses of metal and radionuclide reduction in an environmentally relevant Gram-positive bacterium.« less

  17. Effect of Drying on Heavy Metal Fraction Distribution in Rice Paddy Soil

    PubMed Central

    Qi, Yanbing; Huang, Biao; Darilek, Jeremy Landon

    2014-01-01

    An understanding of how redox conditions affect soil heavy metal fractions in rice paddies is important due to its implications for heavy metal mobility and plant uptake. Rice paddy soil samples routinely undergo oxidation prior to heavy metal analysis. Fraction distribution of Cu, Pb, Ni, and Cd from paddy soil with a wide pH range was investigated. Samples were both dried according to standard protocols and also preserved under anaerobic conditions through the sampling and analysis process and heavy metals were then sequentially extracted for the exchangeable and carbonate bound fraction (acid soluble fraction), iron and manganese oxide bound fraction (reducible fraction), organic bound fraction (oxidizable fraction), and residual fraction. Fractions were affected by redox conditions across all pH ranges. Drying decreased reducible fraction of all heavy metals. Curesidual fraction, Pboxidizable fraction, Cdresidual fraction, and Niresidual fraction increased by 25%, 33%, 35%, and >60%, respectively. Pbresidual fraction, Niacid soluble fraction, and Cdoxidizable fraction decreased 33%, 25%, and 15%, respectively. Drying paddy soil prior to heavy metal analysis overestimated Pb and underestimated Cu, Ni, and Cd. In future studies, samples should be stored after injecting N2 gas to maintain the redox potential of soil prior to heavy metal analysis, and investigate the correlation between heavy metal fraction distribution under field conditions and air-dried samples. PMID:24823670

  18. Bacteria influence mountain pine beetle brood development through interactions with symbiotic and antagonistic fungi: implications for climate-driven host range expansion.

    PubMed

    Therrien, Janet; Mason, Charles J; Cale, Jonathan A; Adams, Aaron; Aukema, Brian H; Currie, Cameron R; Raffa, Kenneth F; Erbilgin, Nadir

    2015-10-01

    Bark beetles are associated with diverse communities of symbionts. Although fungi have received significant attention, we know little about how bacteria, and in particular their interactions with fungi, affect bark beetle reproduction. We tested how interactions between four bacterial associates, two symbiotic fungi, and two opportunistic fungi affect performance of mountain pine beetles (Dendroctonus ponderosae) in host tissue. We compared beetle performance in phloem of its historical host, lodgepole pine (Pinus contorta), and its novel host recently accessed through warming climate, jack pine (Pinus banksiana). Overall, beetles produced more larvae, and established longer ovipositional and larval galleries in host tissue predominantly colonized by the symbiotic fungi, Grosmannia clavigera, or Ophiostoma montium than by the opportunistic colonizer Aspergillus and to a lesser extent, Trichoderma. This occurred in both historical and naïve hosts. Impacts of bacteria on beetle reproduction depended on particular fungus-bacterium combinations and host species. Some bacteria, e.g., Pseudomonas sp. D4-22 and Hy4T4 in P. contorta and Pseudomonas sp. Hy4T4 and Stenotrophomonas in P. banksiana, reduced antagonistic effects by Aspergillus and Trichoderma resulting in more larvae and longer ovipositional and larval galleries. These effects were not selective, as bacteria also reduced beneficial effects by symbionts in both host species. Interestingly, Bacillus enhanced antagonistic effects by Aspergillus in both hosts. These results demonstrate that bacteria influence brood development of bark beetles in host tissue. They also suggest that climate-driven range expansion of D. ponderosae through the boreal forest will not be significantly constrained by requirements of, or interactions among, its microbial associates.

  19. Guar Gum Stimulates Biogenic Sulfide Production at Elevated Pressures: Implications for Shale Gas Extraction

    PubMed Central

    Nixon, Sophie L.; Walker, Leanne; Streets, Matthew D. T.; Eden, Bob; Boothman, Christopher; Taylor, Kevin G.; Lloyd, Jonathan R.

    2017-01-01

    Biogenic sulfide production is a common problem in the oil industry, and can lead to costly hydrocarbon processing and corrosion of extraction infrastructure. The same phenomenon has recently been identified in shale gas extraction by hydraulic fracturing, and organic additives in fracturing fluid have been hypothesized to stimulate this process. Constraining the relative effects of the numerous organic additives on microbial metabolism in situ is, however, extremely challenging. Using a bespoke bioreactor system we sought to assess the potential for guar gum, the most commonly used gelling agent in fracturing fluids, to stimulate biogenic sulfide production by sulfate-reducing microorganisms at elevated pressure. Two pressurized bioreactors were fed with either sulfate-amended freshwater medium, or low-sulfate natural surface water, in addition to guar gum (0.05 w/v%) and an inoculum of sulfate-reducing bacteria for a period of 77 days. Sulfide production was observed in both bioreactors, even when the sulfate concentration was low. Analysis of 16S rRNA gene sequences indicate that heterotrophic bacteria closely associated with the genera Brevundimonas and Acinetobacter became enriched early in the bioreactor experiments, followed by an increase in relative abundance of 16S rRNA genes associated with sulfate-reducing bacteria (Desulfosporosinus and Desulfobacteraceae) at later time points. Results demonstrate that guar gum can stimulate acid- and sulfide-producing microorganisms at elevated pressure, and may have implications for the potential role in microbially induced corrosion during hydraulic fracturing operations. Key differences between experimental and in situ conditions are discussed, as well as additional sources of carbon and energy for biogenic sulfide production during shale gas extraction. Our laboratory approach can be tailored to better simulate deep subsurface conditions in order to probe the role of other fracturing fluid additives and downhole parameters on microbial metabolisms observed in these systems. Such baseline studies will prove essential for effective future development of shale gas worldwide. PMID:28469616

  20. Guar Gum Stimulates Biogenic Sulfide Production at Elevated Pressures: Implications for Shale Gas Extraction.

    PubMed

    Nixon, Sophie L; Walker, Leanne; Streets, Matthew D T; Eden, Bob; Boothman, Christopher; Taylor, Kevin G; Lloyd, Jonathan R

    2017-01-01

    Biogenic sulfide production is a common problem in the oil industry, and can lead to costly hydrocarbon processing and corrosion of extraction infrastructure. The same phenomenon has recently been identified in shale gas extraction by hydraulic fracturing, and organic additives in fracturing fluid have been hypothesized to stimulate this process. Constraining the relative effects of the numerous organic additives on microbial metabolism in situ is, however, extremely challenging. Using a bespoke bioreactor system we sought to assess the potential for guar gum, the most commonly used gelling agent in fracturing fluids, to stimulate biogenic sulfide production by sulfate-reducing microorganisms at elevated pressure. Two pressurized bioreactors were fed with either sulfate-amended freshwater medium, or low-sulfate natural surface water, in addition to guar gum (0.05 w/v%) and an inoculum of sulfate-reducing bacteria for a period of 77 days. Sulfide production was observed in both bioreactors, even when the sulfate concentration was low. Analysis of 16S rRNA gene sequences indicate that heterotrophic bacteria closely associated with the genera Brevundimonas and Acinetobacter became enriched early in the bioreactor experiments, followed by an increase in relative abundance of 16S rRNA genes associated with sulfate-reducing bacteria ( Desulfosporosinus and Desulfobacteraceae) at later time points. Results demonstrate that guar gum can stimulate acid- and sulfide-producing microorganisms at elevated pressure, and may have implications for the potential role in microbially induced corrosion during hydraulic fracturing operations. Key differences between experimental and in situ conditions are discussed, as well as additional sources of carbon and energy for biogenic sulfide production during shale gas extraction. Our laboratory approach can be tailored to better simulate deep subsurface conditions in order to probe the role of other fracturing fluid additives and downhole parameters on microbial metabolisms observed in these systems. Such baseline studies will prove essential for effective future development of shale gas worldwide.

  1. Unique microbial community in drilling fluids from Chinese continental scientific drilling

    USGS Publications Warehouse

    Zhang, Gengxin; Dong, Hailiang; Jiang, Hongchen; Xu, Zhiqin; Eberl, Dennis D.

    2006-01-01

    Circulating drilling fluid is often regarded as a contamination source in investigations of subsurface microbiology. However, it also provides an opportunity to sample geological fluids at depth and to study contained microbial communities. During our study of deep subsurface microbiology of the Chinese Continental Scientific Deep drilling project, we collected 6 drilling fluid samples from a borehole from 2290 to 3350 m below the land surface. Microbial communities in these samples were characterized with cultivation-dependent and -independent techniques. Characterization of 16S rRNA genes indicated that the bacterial clone sequences related to Firmicutes became progressively dominant with increasing depth. Most sequences were related to anaerobic, thermophilic, halophilic or alkaliphilic bacteria. These habitats were consistent with the measured geochemical characteristics of the drilling fluids that have incorporated geological fluids and partly reflected the in-situ conditions. Several clone types were closely related to Thermoanaerobacter ethanolicus, Caldicellulosiruptor lactoaceticus, and Anaerobranca gottschalkii, an anaerobic metal-reducer, an extreme thermophile, and an anaerobic chemoorganotroph, respectively, with an optimal growth temperature of 50–68°C. Seven anaerobic, thermophilic Fe(III)-reducing bacterial isolates were obtained and they were capable of reducing iron oxide and clay minerals to produce siderite, vivianite, and illite. The archaeal diversity was low. Most archaeal sequences were not related to any known cultivated species, but rather to environmental clone sequences recovered from subsurface environments. We infer that the detected microbes were derived from geological fluids at depth and their growth habitats reflected the deep subsurface conditions. These findings have important implications for microbial survival and their ecological functions in the deep subsurface.

  2. Lead absorption mechanisms in bacteria as strategies for lead bioremediation.

    PubMed

    Tiquia-Arashiro, Sonia M

    2018-05-08

    Bacteria exhibit a number of metabolism-dependent and metabolism-independent processes for the uptake and accumulation of toxic metals. The removal of these metals from environmental sources such as soil, sludge, and wastewaters using microbe-based technologies provide an alternative for their recovery and remediation. Lead (Pb) is a pervasive metal in the environment that adversely affects all living organisms. Many aspects of metal-microbe interactions remain unexploited in biotechnology and further development and application is necessary, particularly to the problem of Pb release into the environment. Thus, this review provides a synopsis of the most important bacterial phenotypes and biochemical attributes that are instrumental in lead bioremediation, along with what is known of their genetic background that can be exploited or improved through genetic engineering. This review also highlights the potential of Pb-resistant bacteria in bringing about detoxification of Pb-contaminated terrestrial and aquatic systems in a highly sustainable and environmental friendly manner, and the existing challenges that still lie in the path to in situ and large-scale bioremediation.

  3. Abiotic ammonium formation in the presence of Ni-Fe metals and alloys and its implications for the Hadean nitrogen cycle

    PubMed Central

    Smirnov, Alexander; Hausner, Douglas; Laffers, Richard; Strongin, Daniel R; Schoonen, Martin AA

    2008-01-01

    Experiments with dinitrogen-, nitrite-, nitrate-containing solutions were conducted without headspace in Ti reactors (200°C), borosilicate septum bottles (70°C) and HDPE tubes (22°C) in the presence of Fe and Ni metal, awaruite (Ni80Fe20) and tetrataenite (Ni50Fe50). In general, metals used in this investigation were more reactive than alloys toward all investigated nitrogen species. Nitrite and nitrate were converted to ammonium more rapidly than dinitrogen, and the reduction process had a strong temperature dependence. We concluded from our experimental observations that Hadean submarine hydrothermal systems could have supplied significant quantities of ammonium for reactions that are generally associated with prebiotic synthesis, especially in localized environments. Several natural meteorites (octahedrites) were found to contain up to 22 ppm Ntot. While the oxidation state of N in the octahedrites was not determined, XPS analysis of metals and alloys used in the study shows that N is likely present as nitride (N3-). This observation may have implications toward the Hadean environment, since, terrestrial (e.g., oceanic) ammonium production may have been supplemented by reduced nitrogen delivered by metal-rich meteorites. This notion is based on the fact that nitrogen dissolves into metallic melts. PMID:18489746

  4. Does oral exposure to cadmium and lead mediate susceptibility to colitis? The dark-and-bright sides of heavy metals in gut ecology

    NASA Astrophysics Data System (ADS)

    Breton, Jérôme; Daniel, Catherine; Vignal, Cécile; Body-Malapel, Mathilde; Garat, Anne; Plé, Coline; Foligné, Benoît

    2016-01-01

    Although the heavy metals cadmium (Cd) and lead (Pb) are known environmental health concerns, their long-term impacts on gut ecology and susceptibility to gastrointestinal autoimmune diseases have not been extensively investigated. We sought to determine whether subchronic oral exposure to Cd or Pb is a risk factor for the development and progression of inflammatory bowel disease (IBD). Mice were exposed to various doses of CdCl2 or PbCl2 in drinking water for 1, 4 or 6 weeks prior to infection with Salmonella, the induction of colitis with dextran sodium sulfate (DSS) or trinitrobenzene sulfonic acid (TNBS). In human cell-based models, exposure to Cd and Pb is associated with reduced transepithelial electric resistance and changes in bacteria-induced cytokine responses. Although 1- and 6-week exposures did not have clear effects on the response to Salmonella infectious challenges, 1-week short-term treatments with CdCl2 tended to enhance intestinal inflammation in mice. Unexpectedly, subchronic exposure to Cd and (to a lesser extent) Pb significantly mitigated some of the symptoms of DSS-induced colitis and reduced the severity of TNBS colitis in a dose-dependent manner. The possible adaptive and immunosuppressive mechanisms by which heavy metals might reduce intestinal inflammation are explored and discussed.

  5. Corrosion of low carbon steel by microorganisms from the 'pigging' operation debris in water injection pipelines.

    PubMed

    Cote, Claudia; Rosas, Omar; Sztyler, Magdalena; Doma, Jemimah; Beech, Iwona; Basseguy, Régine

    2014-06-01

    Present in all environments, microorganisms develop biofilms adjacent to the metallic structures creating corrosion conditions which may cause production failures that are of great economic impact to the industry. The most common practice in the oil and gas industry to annihilate these biofilms is the mechanical cleaning known as "pigging". In the present work, microorganisms from the "pigging" operation debris are tested biologically and electrochemically to analyse their effect on the corrosion of carbon steel. Results in the presence of bacteria display the formation of black corrosion products allegedly FeS and a sudden increase (more than 400mV) of the corrosion potential of electrode immersed in artificial seawater or in field water (produced water mixed with aquifer seawater). Impedance tests provided information about the mechanisms of the interface carbon steel/bacteria depending on the medium used: mass transfer limitation in artificial seawater was observed whereas that in field water was only charge transfer phenomenon. Denaturing Gradient Gel Electrophoresis (DGGE) results proved that bacterial diversity decreased when cultivating the debris in the media used and suggested that the bacteria involved in the whole set of results are mainly sulphate reducing bacteria (SRB) and some other bacteria that make part of the taxonomic order Clostridiales. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Foliar bacteria and soil fertility mediate seedling performance: a new and cryptic dimension of niche differentiation.

    PubMed

    Griffin, Eric A; Traw, M Brian; Morin, Peter J; Pruitt, Jonathan N; Wright, S Joseph; Carson, Walter P

    2016-11-01

    The phyllosphere (comprising the leaf surface and interior) is one of the world's largest microbial habitats and is host to an abundant and diverse array of bacteria. Nonetheless, the degree to which bacterial communities are benign, harmful, or beneficial to plants in situ is unknown. We tested the hypothesis that the net effect of reducing bacterial abundance and diversity would vary substantially among host species (from harmful to beneficial) and this would be strongly mediated by soil resource availability. To test this, we monitored tree seedling growth responses to commercial antibiotics among replicated resource supply treatments (N, P, K) in a tropical forest in Panama for 29 months. We applied either antibiotics or control water to replicated seedlings of five common tree species (Alseis blackiana, Desmopsis panamensis, Heisteria concinna, Sorocea affinis, and Tetragastris panamensis). These antibiotic treatments significantly reduced both the abundance and diversity of bacteria epiphytically as well as endophytically. Overall, the effect of antibiotics on performance was highly host specific. Applying antibiotics increased growth for three species by as much as 49% (Alseis, Heisteria, and Tetragastris), decreased growth for a fourth species by nearly 20% (Sorocea), and had no impact on a fifth species (Desmopsis). Perhaps more importantly, the degree to which foliar bacteria were harmful or not varied with soil resource supply. Specifically, applying antibiotics had no effect when potassium was added but increased growth rate by almost 40% in the absence of potassium. Alternatively, phosphorus enrichment caused the effect of bacteria to switch from being primarily beneficial to harmful or vice versa, but this depended entirely on the presence or absence of nitrogen enrichment (i.e., important and significant interactions). Our results are the first to demonstrate that the net effect of reducing the abundance and diversity of bacteria can have very strong positive and negative effects on seedling performance. Moreover, these effects were clearly mediated by soil resource availability. Though speculative, we suggest that foliar bacteria may interact with soil fertility to comprise an important, yet cryptic dimension of niche differentiation, which can have important implications for species coexistence. © 2016 by the Ecological Society of America.

  7. Extraction of copper from an oxidized (lateritic) ore using bacterially catalysed reductive dissolution.

    PubMed

    Nancucheo, Ivan; Grail, Barry M; Hilario, Felipe; du Plessis, Chris; Johnson, D Barrie

    2014-01-01

    An oxidized lateritic ore which contained 0.8 % (by weight) copper was bioleached in pH- and temperature-controlled stirred reactors under acidic reducing conditions using pure and mixed cultures of the acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans. Sulfur was provided as the electron donor for the bacteria, and ferric iron present in goethite (the major ferric iron mineral present in the ore) acted as electron acceptor. Significantly more copper was leached by bacterially catalysed reductive dissolution of the laterite than in aerobic cultures or in sterile anoxic reactors, with up to 78 % of the copper present in the ore being extracted. This included copper that was leached from acid-labile minerals (chiefly copper silicates) and that which was associated with ferric iron minerals in the lateritic ore. In the anaerobic bioreactors, soluble iron in the leach liquors was present as iron (II) and copper as copper (I), but both metals were rapidly oxidized (to iron (III) and copper (II)) when the reactors were aerated. The number of bacteria added to the reactors had a critical role in dictating the rate and yield of copper solubilised from the ore. This work has provided further evidence that reductive bioprocessing, a recently described approach for extracting base metals from oxidized deposits, has the potential to greatly extend the range of metal ores that can be biomined.

  8. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria.

    PubMed

    Sand, Wolfgang; Gehrke, Tilman

    2006-01-01

    Extracellular polymeric substances seem to play a pivotal role in biocorrosion of metals and bioleaching, biocorrosion of metal sulfides for the winning of precious metals as well as acid rock drainage. For better control of both processes, the structure and function of extracellular polymeric substances of corrosion-causing or leaching bacteria are of crucial importance. Our research focused on the extremophilic bacteria Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, because of the "simplicity" and knowledge about the interactions of these bacteria with their substrate/substratum and their environment. For this purpose, the composition of the corresponding extracellular polymeric substances and their functions were analyzed. The extracellular polymeric substances of both species consist mainly of neutral sugars and lipids. The functions of the exopolymers seem to be: (i) to mediate attachment to a (metal) sulfide surface, and (ii) to concentrate iron(III) ions by complexation through uronic acids or other residues at the mineral surface, thus, allowing an oxidative attack on the sulfide. Consequently, dissolution of the metal sulfide is enhanced, which may result in an acceleration of 20- to 100-fold of the bioleaching process over chemical leaching. Experiments were performed to elucidate the importance of the iron(III) ions complexed by extracellular polymeric substances for strain-specific differences in oxidative activity for pyrite. Strains of A. ferrooxidans with a high amount of iron(III) ions in their extracellular polymeric substances possess greater oxidation activity than those with fewer iron(III) ions. These data provide insight into the function of and consequently the advantages that extracellular polymeric substances provide to bacteria. The role of extracellular polymeric substances for attachment under the conditions of a space station and resulting effects like biofouling, biocorrosion, malodorous gases, etc. will be discussed.

  9. In Vitro Investigation of the Effect of Oral Bacteria in the Surface Oxidation of Dental Implants.

    PubMed

    Sridhar, Sathyanarayanan; Wilson, Thomas G; Palmer, Kelli L; Valderrama, Pilar; Mathew, Mathew T; Prasad, Shalini; Jacobs, Michael; Gindri, Izabelle M; Rodrigues, Danieli C

    2015-10-01

    Bacteria are major contributors to the rising number of dental implant failures. Inflammation secondary to bacterial colonization and bacterial biofilm is a major etiological factor associated with early and late implant failure (peri-implantitis). Even though there is a strong association between bacteria and bacterial biofilm and failure of dental implants, their effect on the surface of implants is yet not clear. To develop and establish an in vitro testing methodology to investigate the effect of early planktonic bacterial colonization on the surface of dental implants for a period of 60 days. Commercial dental implants were immersed in bacterial (Streptococcus mutans in brain-heart infusion broth) and control (broth only) media. Immersion testing was performed for a period of 60 days. During testing, optical density and pH of immersion media were monitored. The implant surface was surveyed with different microscopy techniques post-immersion. Metal ion release in solution was detected with an electrochemical impedance spectroscopy sensor platform called metal ion electrochemical biosensor (MIEB). Bacteria grew in the implant-containing medium and provided a sustained acidic environment. Implants immersed in bacterial culture displayed various corrosion features, including surface discoloration, deformation of rough and smooth interfaces, pitting attack, and severe surface rusting. The surface features were confirmed by microscopic techniques, and metal particle generation was detected by the MIEB. Implant surface oxidation occurred in bacteria-containing medium even at early stages of immersion (2 days). The incremental corrosion resulted in dissolution of metal ions and debris into the testing solution. Dissolution of metal ions and particles in the oral environment can trigger or contribute to the development of peri-implantitis at later stages. © 2015 Wiley Periodicals, Inc.

  10. Tungsten and Molybdenum Regulation of Formate Dehydrogenase Expression in Desulfovibrio vulgaris Hildenborough ▿

    PubMed Central

    da Silva, Sofia M.; Pimentel, Catarina; Valente, Filipa M. A.; Rodrigues-Pousada, Claudina; Pereira, Inês A. C.

    2011-01-01

    Formate is an important energy substrate for sulfate-reducing bacteria in natural environments, and both molybdenum- and tungsten-containing formate dehydrogenases have been reported in these organisms. In this work, we studied the effect of both metals on the levels of the three formate dehydrogenases encoded in the genome of Desulfovibrio vulgaris Hildenborough, with lactate, formate, or hydrogen as electron donors. Using Western blot analysis, quantitative real-time PCR, activity-stained gels, and protein purification, we show that a metal-dependent regulatory mechanism is present, resulting in the dimeric FdhAB protein being the main enzyme present in cells grown in the presence of tungsten and the trimeric FdhABC3 protein being the main enzyme in cells grown in the presence of molybdenum. The putatively membrane-associated formate dehydrogenase is detected only at low levels after growth with tungsten. Purification of the three enzymes and metal analysis shows that FdhABC3 specifically incorporates Mo, whereas FdhAB can incorporate both metals. The FdhAB enzyme has a much higher catalytic efficiency than the other two. Since sulfate reducers are likely to experience high sulfide concentrations that may result in low Mo bioavailability, the ability to use W is likely to constitute a selective advantage. PMID:21498650

  11. Natural attenuation of trichloroethylene in fractured shale bedrock.

    PubMed

    Lenczewski, M; Jardine, P; McKay, L; Layton, A

    2003-07-01

    This paper describes one of the first well-documented field examples of natural attenuation of trichloroethylene (TCE) in groundwater in a fractured shale bedrock. The study was carried out adjacent to a former waste burial site in Waste Area Grouping 5 (WAG5) on the Oak Ridge Reservation, Oak Ridge, TN. A contaminant plume containing TCE and its daughter products were detected downgradient from the buried waste pits, with most of the contamination occurring in the upper 6 m of the bedrock. The monitoring well array consists of a 35-m-long transect of multilevel sampling wells, situated along a line between the waste pits and a seep which discharges into a small stream. Concentrations of volatile organic carbons (VOCs) were highest in the waste trenches and decreased with distance downgradient towards the seep. Sampling wells indicated the presence of overlapping plumes of TCE, cis-dichloroethylene (cDCE), vinyl chloride (VC), ethylene, ethane, and methane, with the daughter products extending further downgradient than the parent (TCE). This type of distribution suggests anaerobic biodegradation. Measurements of redox potential at the site indicated that iron-reduction, sulfate reduction, and potentially methanogensis were occurring and are conducive to dechlorination of TCE. Bacteria enrichment of groundwater samples revealed the presence of methanotrophs, methanogens, iron-reducing bacteria and sulfate-reducing bacteria, all of which have previously been implicated in anaerobic biodegradation of TCE. 16S rDNA sequence from DNA extracted from two wells were similar to sequences of organisms previously implicated in the anaerobic biodegradation of chlorinated solvents. The combined data strongly suggest that anaerobic biodegradation of the highly chlorinated compounds is occurring. Aerobic biodegradation may also be occurring in oxygenated zones, including near a seep where groundwater exits the site, or in the upper bedrock during seasonal fluctuations in water table elevation and oxygen levels.

  12. Reduction of ferric iron by acidophilic heterotrophic bacteria: evidence for constitutive and inducible enzyme systems in Acidiphilium spp.

    PubMed

    Johnson, D B; Bridge, T A M

    2002-01-01

    To compare the abilities of two obligately acidophilic heterotrophic bacteria, Acidiphilium acidophilum and Acidiphilium SJH, to reduce ferric iron to ferrous when grown under different culture conditions. Bacteria were grown in batch culture, under different aeration status, and in the presence of either ferrous or ferric iron. The specific rates of ferric iron reduction by fermenter-grown Acidiphilium SJH were unaffected by dissolved oxygen (DO) concentrations, while iron reduction by A. acidophilum was highly dependent on DO concentrations in the growth media. The ionic form of iron present (ferrous or ferric) had a minimal effect on the abilities of harvested cells to reduce ferric iron. Whole cell protein profiles of Acidiphilium SJH were very similar, regardless of the DO status of the growth medium, while additional proteins were present in A. acidophilum grown microaerobically compared with aerobically-grown cells. The dissimilatory reduction of ferric iron is constitutive in Acidiphilium SJH while it is inducible in A. acidophilum. Ferric iron reduction by Acidiphilium spp. may occur in oxygen-containing as well as anoxic acidic environments. This will detract from the effectiveness of bioremediation systems where removal of iron from polluted waters is mediated via oxidation and precipitation of the metal.

  13. Perchlorate Reduction by Yeast for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Sharma, Alaisha

    2015-01-01

    Martian soil contains high levels (0.6 percentage by mass) of calcium perchlorate (Ca(ClO4)2), which readily dissociates into calcium and the perchlorate ion (ClO4-) in water. Even in trace amounts, perchlorates are toxic to humans and have been implicated in thyroid dysfunction. Devising methods to lessen perchlorate contamination is crucial to minimizing the health risks associated with human exploration and colonization of Mars. We designed a perchlorate reduction pathway, which sequentially reduces perchlorate to chloride (Cl-) and oxygen (O2), for implementation in the yeast Saccharomyces cerevisiae. Using genes obtained from perchlorate reducing bacteria Azospira oryzae and Dechloromonas aromatica, we plan to assemble this pathway directly within S. cerevisiae through recombinational cloning. A perchlorate reduction pathway would enable S. cerevisiae to lower perchlorate levels and produce oxygen, which may be harvested or used directly by S. cerevisiae for aerobic growth and compound synthesis. Moreover, using perchlorate as an external electron acceptor could improve the efficiency of redox-imbalanced production pathways in yeast. Although several perchlorate reducing bacteria have been identified and utilized in water treatment systems on Earth, the widespread use of S. cerevisiae as a synthetic biology platform justifies the development of a perchlorate reducing strain for implementation on Mars.

  14. Does antifouling paint select for antibiotic resistance?

    PubMed

    Flach, Carl-Fredrik; Pal, Chandan; Svensson, Carl Johan; Kristiansson, Erik; Östman, Marcus; Bengtsson-Palme, Johan; Tysklind, Mats; Larsson, D G Joakim

    2017-07-15

    There is concern that heavy metals and biocides contribute to the development of antibiotic resistance via co-selection. Most antifouling paints contain high amounts of such substances, which risks turning painted ship hulls into highly mobile refuges and breeding grounds for antibiotic-resistant bacteria. The objectives of this study were to start investigate if heavy-metal based antifouling paints can pose a risk for co-selection of antibiotic-resistant bacteria and, if so, identify the underlying genetic basis. Plastic panels with one side painted with copper and zinc-containing antifouling paint were submerged in a Swedish marina and biofilms from both sides of the panels were harvested after 2.5-4weeks. DNA was isolated from the biofilms and subjected to metagenomic sequencing. Biofilm bacteria were cultured on marine agar supplemented with tetracycline, gentamicin, copper sulfate or zinc sulfate. Biofilm communities from painted surfaces displayed lower taxonomic diversity and enrichment of Gammaproteobacteria. Bacteria from these communities showed increased resistance to both heavy metals and tetracycline but not to gentamicin. Significantly higher abundance of metal and biocide resistance genes was observed, whereas mobile antibiotic resistance genes were not enriched in these communities. In contrast, we found an enrichment of chromosomal RND efflux system genes, including such with documented ability to confer decreased susceptibility to both antibiotics and biocides/heavy metals. This was paralleled by increased abundances of integron-associated integrase and ISCR transposase genes. The results show that the heavy metal-based antifouling paint exerts a strong selection pressure on marine bacterial communities and can co-select for certain antibiotic-resistant bacteria, likely by favoring species and strains carrying genes that provide cross-resistance. Although this does not indicate an immediate risk for promotion of mobile antibiotic resistance, the clear increase of genes involved in mobilizing DNA provides a foundation for increased opportunities for gene transfer in such communities, which might also involve yet unknown resistance mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Complete genome sequence of the chromate-reducing bacterium Thermoanaerobacter thermohydrosulfuricus strain BSB-33

    DOE PAGES

    Bhattacharya, Pamela; Barnebey, Adam; Zemla, Marcin; ...

    2015-10-05

    Thermoanaerobacter thermohydrosulfuricus BSB-33 is a thermophilic gram positive obligate anaerobe isolated from a hot spring in West Bengal, India. Unlike other T. thermohydrosulfuricus strains, BSB-33 is able to anaerobically reduce Fe(III) and Cr(VI) optimally at 60 °C. BSB-33 is the first Cr(VI) reducing T. thermohydrosulfuricus genome sequenced and of particular interest for bioremediation of environmental chromium contaminations. Here we discuss features of T. thermohydrosulfuricus BSB-33 and the unique genetic elements that may account for the peculiar metal reducing properties of this organism. The T. thermohydrosulfuricus BSB-33 genome comprises 2597606 bp encoding 2581 protein genes, 12 rRNA, 193 pseudogenes and hasmore » a G + C content of 34.20 %. Lastly, putative chromate reductases were identified by comparative analyses with other Thermoanaerobacter and chromate-reducing bacteria.« less

  16. Sorption and precipitation of Mn2+ by viable and autoclaved Shewanella putrefaciens: Effect of contact time

    NASA Astrophysics Data System (ADS)

    Chubar, Natalia; Visser, Tom; Avramut, Cristina; de Waard, Helen

    2013-01-01

    The sorption of Mn(II) by viable and inactivated cells of Shewanella putrefaciens, a non-pathogenic, facultative anaerobic, gram-negative bacterium characterised as a Mn(IV) and Fe(III) reducer, was studied under aerobic conditions, as a function of pH, bacterial density and metal loading. During a short contact time (3-24 h), the adsorptive behaviour of live and dead bacteria toward Mn(II) was sufficiently similar, an observation that was reflected in the studies on adsorption kinetics at various metal loadings, effects of pH, bacteria density, isotherms and drifting of pH during adsorption. Continuing the experiment for an additional 2-30 days demonstrated that the Mn(II) sorption by suspensions of viable and autoclaved cells differed significantly from one another. The sorption to dead cells was characterised by a rapid equilibration and was described by an isotherm. In contrast, the sorption (uptake) to live bacteria exhibited a complex time-dependent uptake. This uptake began as adsorption and ion exchange processes followed by bioprecipitation, and it was accompanied by the formation of polymeric sugars (EPS) and the release of dissolved organic substances. FTIR, EXAFS/XANES and XPS demonstrated that manganese(II) phosphate was the main precipitate formed in 125 ml batches, which is the first evidence of the ability of microbes to synthesise manganese phosphates. XPS and XANES spectra did not detect Mn(II) oxidation. Although the release of protein-like compounds by the viable bacteria increased in the presence of Mn2+ (and, by contrast, the release of carbohydrates did not change), electrochemical analyses did not indicate any aqueous complexation of Mn(II) by the organic ligands.

  17. Microbial community activities during establishment, performance, and decline of bench-scale passive treatment systems for mine drainage.

    PubMed

    Logan, Miranda V; Reardon, Kenneth F; Figueroa, Linda A; McLain, Jean E T; Ahmann, Dianne M

    2005-11-01

    Permeable reactive barrier (PRB) technology, in which sulfate-reducing bacteria (SRB) facilitate precipitation of metal sulfides, is a promising approach for remediation of sulfate- and metal-laden mine drainage. While PRBs are easily established, they often decline for reasons not well understood. SRB depend on or compete with multiple dynamic microbial populations within a PRB; as a result, performance depends on the changing PRB chemical composition and on succession and competition within the microbial community. To investigate these interactions, we constructed and monitored eight bench-scale PRBs to define periods of establishment, performance, and decline. We then conducted short-term batch studies, using substrate-supplemented column materials, on Days 0 (pre-establishment), 27 (establishment), 41 (performance), and 99 (decline) to reveal potential activities of cellulolytic bacteria, fermenters + anaerobic respirers, SRB, and methanogens. PRBs showed active sulfate reduction, with sulfate removal rates (SRR) of approximately 1-3 mol/m3/d, as well as effective removal of Zn2+. Potential activities of fermentative + anaerobic respiratory bacteria were initially high but diminished greatly during establishment and dropped further during performance and decline. In contrast, potential SRB activity rose during establishment, peaked during performance, and diminished as performance declined. Potential methanogen activity was low; in addition, SRB-methanogen substrate competition was shown not to limit SRB activity. Cellulolytic bacteria showed no substrate limitation at any time. However, fermenters experienced substrate limitation by Day 0, SRB by Day 27, and methanogens by Day 41, showing the dependence of each group on upstream populations to provide substrates. All potential activities, except methanogenesis, were ultimately limited by cellulose hydrolysis; in addition, all potential activities except methanogenesis declined substantially by Day 99, showing that long-term substrate deprivation strongly diminished the intrinsic capacity of the PRB community to perform.

  18. pH, dissolved oxygen, and adsorption effects on metal removal in anaerobic bioreactors.

    PubMed

    Willow, Mark A; Cohen, Ronald R H

    2003-01-01

    Anaerobic bioreactors were used to test the effect of the pH of influent on the removal efficiency of heavy metals from acid-rock drainage. Two studies used a near-neutral-pH, metal-laden influent to examine the heavy metal removal efficiency and hydraulic residence time requirements of the reactors. Another study used the more typical low-pH mine drainage influent. Experiments also were done to (i) test the effects of oxygen content of feed water on metal removal and (ii) the adsorptive capacity of the reactor organic substrate. Analysis of the results indicates that bacterial sulfate reduction may be a zero-order kinetic reaction relative to sulfate concentrations used in the experiments, and may be the factor that controls the metal mass removal efficiency in the anaerobic treatment systems. The sorptive capacities of the organic substrate used in the experiments had not been exhausted during the experiments as indicated by the loading rates of removal of metals exceeding the mass production rates of sulfide. Microbial sulfate reduction was less in the reactors receiving low-pH influent during experiments with short residence times. Sulfate-reducing bacteria may have been inhibited by high flows of low-pH water. Dissolved oxygen content of the feed waters had little effect on sulfate reduction and metal removal capacity.

  19. Microbial communities in low permeability, high pH uranium mine tailings: characterization and potential effects.

    PubMed

    Bondici, V F; Lawrence, J R; Khan, N H; Hill, J E; Yergeau, E; Wolfaardt, G M; Warner, J; Korber, D R

    2013-06-01

    To describe the diversity and metabolic potential of microbial communities in uranium mine tailings characterized by high pH, high metal concentration and low permeability. To assess microbial diversity and their potential to influence the geochemistry of uranium mine tailings using aerobic and anaerobic culture-based methods, in conjunction with next generation sequencing and clone library sequencing targeting two universal bacterial markers (the 16S rRNA and cpn60 genes). Growth assays revealed that 69% of the 59 distinct culturable isolates evaluated were multiple-metal resistant, with 15% exhibiting dual-metal hypertolerance. There was a moderately positive correlation coefficient (R = 0·43, P < 0·05) between multiple-metal resistance of the isolates and their enzyme expression profile. Of the isolates tested, 17 reduced amorphous iron, 22 reduced molybdate and seven oxidized arsenite. Based on next generation sequencing, tailings depth was shown to influence bacterial community composition, with the difference in the microbial diversity of the upper (0-20 m) and middle (20-40 m) tailings zones being highly significant (P < 0·01) from the lower zone (40-60 m) and the difference in diversity of the upper and middle tailings zone being significant (P < 0·05). Phylotypes closely related to well-known sulfate-reducing and iron-reducing bacteria were identified with low abundance, yet relatively high diversity. The presence of a population of metabolically-diverse, metal-resistant micro-organisms within the tailings environment, along with their demonstrated capacity for transforming metal elements, suggests that these organisms have the potential to influence the long-term geochemistry of the tailings. This study is the first investigation of the diversity and functional potential of micro-organisms present in low permeability, high pH uranium mine tailings. © 2013 The Society for Applied Microbiology.

  20. Isolation, identification, and environmental adaptability of heavy-metal-resistant bacteria from ramie rhizosphere soil around mine refinery.

    PubMed

    Jiang, Jie; Pan, Chaohu; Xiao, Aiping; Yang, Xiai; Zhang, Guimin

    2017-05-01

    Six bacteria strains from heavy-metal-polluted ramie rhizosphere soil were isolated through Cd 2+ stress, which were numbered as JJ1, JJ2, JJ10, JJ11, JJ15, and JJ18. Sequence alignment and phylogenic analysis showed that strain JJ1 belonged to Pseudomonas, strain JJ2 belonged to Cupriavidus, strains JJ11 and JJ15 belonged to Bacillus, and strains JJ10 and JJ18 belonged to Acinetobacter. The tolerance capability of all the strains was the trend of Pb 2+  > Zn 2+  > Cu 2+  > Cd 2+ , the maximum tolerance concentration to Cd 2+ was 200 mg/L, to Pb 2+ was 1600 mg/L, to Zn 2+ was 600 mg/L, and to Cu 2+ was 265 mg/L. Strains JJ1, JJ11, JJ15, and JJ18 could grow well under pH 9.0, and strains JJ2, JJ11, and JJ18 could grow well under 7% of NaCl. The results showed that as a whole these strains had high environmental adaptability. This is the first report that heavy-metal-tolerant bacteria were found from ramie rhizosphere soil, which could be as a foundation to discover the relationship between ramie, rhizosphere bacteria and heavy metals.

  1. Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation.

    PubMed

    Navarro, Claudio A; von Bernath, Diego; Jerez, Carlos A

    2013-01-01

    Microbial solubilizing of metals in acid environments is successfully used in industrial bioleaching of ores or biomining to extract metals such as copper, gold, uranium and others. This is done mainly by acidophilic and other microorganisms that mobilize metals and generate acid mine drainage or AMD, causing serious environmental problems. However, bioremediation or removal of the toxic metals from contaminated soils can be achieved by using the specific properties of the acidophilic microorganisms interacting with these elements. These bacteria resist high levels of metals by using a few "canonical" systems such as active efflux or trapping of the metal ions by metal chaperones. Nonetheless, gene duplications, the presence of genomic islands, the existence of additional mechanisms such as passive instruments for pH and cation homeostasis in acidophiles and an inorganic polyphosphate-driven metal resistance mechanism have also been proposed. Horizontal gene transfer in environmental microorganisms present in natural ecosystems is considered to be an important mechanism in their adaptive evolution. This process is carried out by different mobile genetic elements, including genomic islands (GI), which increase the adaptability and versatility of the microorganism. This mini-review also describes the possible role of GIs in metal resistance of some environmental microorganisms of importance in biomining and bioremediation of metal polluted environments such as Thiomonas arsenitoxydans, a moderate acidophilic microorganism, Acidithiobacillus caldus and Acidithiobacillus ferrooxidans strains ATCC 23270 and ATCC 53993, all extreme acidophiles able to tolerate exceptionally high levels of heavy metals. Some of these bacteria contain variable numbers of GIs, most of which code for high numbers of genes related to metal resistance. In some cases there is an apparent correlation between the number of metal resistance genes and the metal tolerance of each of these microorganisms. It is expected that a detailed knowledge of the mechanisms that these environmental microorganisms use to adapt to their harsh niche will help to improve biomining and metal bioremediation in industrial processes.

  2. Phylogenetic analysis of a biofilm bacterial population in a water pipeline in the Gulf of Mexico.

    PubMed

    López, Miguel A; Zavala-Díaz de la Serna, F Javier; Jan-Roblero, Janet; Romero, Juan M; Hernández-Rodríguez, César

    2006-10-01

    The aim of this study was to assess the bacterial diversity associated with a corrosive biofilm in a steel pipeline from the Gulf of Mexico used to inject marine water into the oil reservoir. Several aerobic and heterotrophic bacteria were isolated and identified by 16S rRNA gene sequence analysis. Metagenomic DNA was also extracted to perform a denaturing gradient gel electrophoresis analysis of ribosomal genes and to construct a 16S rRNA gene metagenomic library. Denaturing gradient gel electrophoresis profiles and ribosomal libraries exhibited a limited bacterial diversity. Most of the species detected in the ribosomal library or isolated from the pipeline were assigned to Proteobacteria (Halomonas spp., Idiomarina spp., Marinobacter aquaeolei, Thalassospira sp., Silicibacter sp. and Chromohalobacter sp.) and Bacilli (Bacillus spp. and Exiguobacterium spp.). This is the first report that associates some of these bacteria with a corrosive biofilm. It is relevant that no sulfate-reducing bacteria were isolated or detected by a PCR-based method. The diversity and relative abundance of bacteria from water pipeline biofilms may contribute to an understanding of the complexity and mechanisms of metal corrosion during marine water injection in oil secondary recovery.

  3. Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants.

    PubMed

    Mao, Daqing; Yu, Shuai; Rysz, Michal; Luo, Yi; Yang, Fengxia; Li, Fengxiang; Hou, Jie; Mu, Quanhua; Alvarez, P J J

    2015-11-15

    The propagation of antibiotic resistance genes (ARGs) is an emerging health concern worldwide. Thus, it is important to understand and mitigate their occurrence in different systems. In this study, 30 ARGs that confer resistance to tetracyclines, sulfonamides, quinolones or macrolides were detected in two activated sludge wastewater treatment plants (WWTPs) in northern China. Bacteria harboring ARGs persisted through all treatment units, and survived disinfection by chlorination in greater percentages than total Bacteria (assessed by 16S rRNA genes). Although the absolute abundances of ARGs were reduced from the raw influent to the effluent by 89.0%-99.8%, considerable ARG levels [(1.0 ± 0.2) × 10(3) to (9.5 ± 1.8) × 10(5) copies/mL)] were found in WWTP effluent samples. ARGs were concentrated in the waste sludge (through settling of bacteria and sludge dewatering) at (1.5 ± 2.3) × 10(9) to (2.2 ± 2.8) × 10(11) copies/g dry weight. Twelve ARGs (tetA, tetB, tetE, tetG, tetH, tetS, tetT, tetX, sul1, sul2, qnrB, ermC) were discharged through the dewatered sludge and plant effluent at higher rates than influent values, indicating overall proliferation of resistant bacteria. Significant antibiotic concentrations (2%-50% of raw influent concentrations) remained throughout all treatment units. This apparently contributed selective pressure for ARG replication since the relative abundance of resistant bacteria (assessed by ARG/16S rRNA gene ratios) was significantly correlated to the corresponding effluent antibiotic concentrations. Similarly, the concentrations of various heavy metals (which induce a similar bacterial resistance mechanism as antibiotics - efflux pumps) were also correlated to the enrichment of some ARGs. Thus, curtailing the release of antibiotics and heavy metals to sewage systems (or enhancing their removal in pre-treatment units) may alleviate their selective pressure and mitigate ARG proliferation in WWTPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Heavy-metal resistance in Gram-negative bacteria isolated from Kongsfjord, Arctic.

    PubMed

    Neethu, C S; Mujeeb Rahiman, K M; Saramma, A V; Mohamed Hatha, A A

    2015-06-01

    Isolation and characterization of heterotrophic Gram-negative bacteria was carried out from the sediment and water samples collected from Kongsfjord, Arctic. In this study, the potential of Arctic bacteria to tolerate heavy metals that are of ecological significance to the Arctic (selenium (Se), mercury (Hg), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn)) was investigated. Quantitative assay of 130 isolates by means of plate diffusion and tube dilution methods was carried out by incorporation of different concentrations of metals. Growth in Se and Pb at a concentration of 3000 μg/L was significantly lower (P≤0.0001) than at 2000 μg/L. The minimum inhibitory concentration for Cd and Hg was 50 μg/L (P≤0.0001, F=264.23 and P≤0.0001, F=291.08, respectively) even though in the tube dilution test, Hg-containing tubes showed much less growth, revealing its superior toxicity to Cd. Thus, the level of toxicity of heavy metals was found to be in the order of Hg>Cd>Cu>Zn>Pb>Se. Multiple-metal-resistant isolates were investigated for their resistance against antibiotics, and a positive correlation was observed between antibiotic and metal resistance for all the isolates tested. The resistant organisms thus observed might influence the organic and inorganic cycles in the Arctic and affect the ecosystem.

  5. Implications of nutrient release from iron metal for microbial regrowth in water distribution systems.

    PubMed

    Morton, Siyuan C; Zhang, Yan; Edwards, Marc A

    2005-08-01

    Control of microbial regrowth in iron pipes is a major challenge for water utilities. This work examines the inter-relationship between iron corrosion and bacterial regrowth, with a special focus on the potential of iron pipe to serve as a source of phosphorus. Under some circumstances, corroding iron and steel may serve as a source for all macronutrients necessary for bacterial regrowth including fixed carbon, fixed nitrogen and phosphorus. Conceptual models and experimental data illustrate that levels of phosphorus released from corroding iron are significant relative to that necessary to sustain high levels of biofilm bacteria. Consequently, it may not be possible to control regrowth on iron surfaces by limiting phosphorus in the bulk water.

  6. Effect of Toxic Metals on Indigenous Soil β-Subgroup Proteobacterium Ammonia Oxidizer Community Structure and Protection against Toxicity by Inoculated Metal-Resistant Bacteria

    PubMed Central

    Stephen, John R.; Chang, Yun-Juan; Macnaughton, Sarah J.; Kowalchuk, George A.; Leung, Kam T.; Flemming, Cissy A.; White, David C.

    1999-01-01

    Contamination of soils with toxic metals is a major problem on military, industrial, and mining sites worldwide. Of particular interest to the field of bioremediation is the selection of biological markers for the end point of remediation. In this microcosm study, we focus on the effect of addition of a mixture of toxic metals (cadmium, cobalt, cesium, and strontium as chlorides) to soil on the population structure and size of the ammonia oxidizers that are members of the beta subgroup of the Proteobacteria (β-subgroup ammonia oxidizers). In a parallel experiment, the soils were also treated by the addition of five strains of metal-resistant heterotrophic bacteria. Effects on nitrogen cycling were measured by monitoring the NH3 and NH4+ levels in soil samples. The gene encoding the α-subunit of ammonia monooxygenase (amoA) was selected as a functional molecular marker for the β-subgroup ammonia oxidizing bacteria. Community structure comparisons were performed with clone libraries of PCR-amplified fragments of amoA recovered from contaminated and control microcosms for 8 weeks. Analysis was performed by restriction digestion and sequence comparison. The abundance of ammonia oxidizers in these microcosms was also monitored by competitive PCR. All amoA gene fragments recovered grouped with sequences derived from cultured Nitrosospira. These comprised four novel sequence clusters and a single unique clone. Specific changes in the community structure of β-subgroup ammonia oxidizers were associated with the addition of metals. These changes were not seen in the presence of the inoculated metal-resistant bacteria. Neither treatment significantly altered the total number of β-subgroup ammonia-oxidizing cells per gram of soil compared to untreated controls. Following an initial decrease in concentration, ammonia began to accumulate in metal-treated soils toward the end of the experiment. PMID:9872765

  7. Chironomidae bloodworms larvae as aquatic amphibian food.

    PubMed

    Fard, Mojdeh Sharifian; Pasmans, Frank; Adriaensen, Connie; Laing, Gijs Du; Janssens, Geert Paul Jules; Martel, An

    2014-01-01

    Different species of chironomids larvae (Diptera: Chironomidae) so-called bloodworms are widely distributed in the sediments of all types of freshwater habitats and considered as an important food source for amphibians. In our study, three species of Chironomidae (Baeotendipes noctivagus, Benthalia dissidens, and Chironomus riparius) were identified in 23 samples of larvae from Belgium, Poland, Russia, and Ukraine provided by a distributor in Belgium. We evaluated the suitability of these samples as amphibian food based on four different aspects: the likelihood of amphibian pathogens spreading, risk of heavy metal accumulation in amphibians, nutritive value, and risk of spreading of zoonotic bacteria (Salmonella, Campylobacter, and ESBL producing Enterobacteriaceae). We found neither zoonotic bacteria nor the amphibian pathogens Ranavirus and Batrachochytrium dendrobatidis in these samples. Our data showed that among the five heavy metals tested (Hg, Cu, Cd, Pb, and Zn), the excess level of Pb in two samples and low content of Zn in four samples implicated potential risk of Pb accumulation and Zn inadequacy. Proximate nutritional analysis revealed that, chironomidae larvae are consistently high in protein but more variable in lipid content. Accordingly, variations in the lipid: protein ratio can affect the amount and pathway of energy supply to the amphibians. Our study indicated although environmentally-collected chironomids larvae may not be vectors of specific pathogens, they can be associated with nutritional imbalances and may also result in Pb bioaccumulation and Zn inadequacy in amphibians. Chironomidae larvae may thus not be recommended as single diet item for amphibians. © 2014 Wiley Periodicals, Inc.

  8. Role of transition metal exporters in virulence: the example of Neisseria meningitidis.

    PubMed

    Guilhen, Cyril; Taha, Muhamed-Kheir; Veyrier, Frédéric J

    2013-01-01

    Transition metals such as iron, manganese, and zinc are essential micronutrients for bacteria. However, at high concentration, they can generate non-functional proteins or toxic compounds. Metal metabolism is therefore regulated to prevent shortage or overload, both of which can impair cell survival. In addition, equilibrium among these metals has to be tightly controlled to avoid molecular replacement in the active site of enzymes. Bacteria must actively maintain intracellular metal concentrations to meet physiological needs within the context of the local environment. When intracellular buffering capacity is reached, they rely primarily on membrane-localized exporters to maintain metal homeostasis. Recently, several groups have characterized new export systems and emphasized their importance in the virulence of several pathogens. This article discusses the role of export systems as general virulence determinants. Furthermore, it highlights the contribution of these exporters in pathogens emergence with emphasis on the human nasopharyngeal colonizer Neisseria meningitidis.

  9. Mathematical Models of Cobalt and Iron Ions Catalyzed Microwave Bacterial Deactivation

    PubMed Central

    Benjamin, Earl; Reznik, Aron; Benjamin, Ellis; Williams, Arthur L.

    2007-01-01

    Time differences for Enterococcus faecalis, Staphylococcus aureus, and Escherichia coli survival during microwave irradiation (power 130 W) in the presence of aqueous cobalt and iron ions were investigated. Measured dependencies had “bell” shape forms with maximum bacterial viability between 1 – 2 min becoming insignificant at 3 minutes. The deactivation time for E. faecalis, S. aureus and E.coli in the presence of metal ions were smaller compared to a water control (4–5 min). Although various sensitivities to the metal ions were observed, S. aureus and E. coli and were the most sensitive for cobalt and iron, respectively. The rapid reduction of viable bacteria during microwave treatment in the presence of metal ions could be explained by increased metal ion penetration into bacteria. Additionally, microwave irradiation may have increased the kinetic energy of the metal ions resulting in lower survival rates. The proposed mathematical model for microwave heating took into account the “growth” and “death” factors of the bacteria, forming second degree polynomial functions. Good relationships were found between the proposed mathematical models and the experimental data for bacterial deactivation (coefficient of correlation 0.91 – 0.99). PMID:17911658

  10. Plant growth-promoting bacteria for phytostabilization of mine tailings.

    PubMed

    Grandlic, Christopher J; Mendez, Monica O; Chorover, Jon; Machado, Blenda; Maier, Raina M

    2008-03-15

    Eolian dispersion of mine tailings in arid and semiarid environments is an emerging global issue for which economical remediation alternatives are needed. Phytostabilization, the revegetation of these sites with native plants, is one such alternative. Revegetation often requires the addition of bulky amendments such as compost which greatly increases cost. We report the use of plant growth-promoting bacteria (PGPB) to enhance the revegetation of mine tailings and minimize the need for compost amendment. Twenty promising PGPB isolates were used as seed inoculants in a series of greenhouse studies to examine revegetation of an extremely acidic, high metal contenttailings sample previously shown to require 15% compost amendment for normal plant growth. Several isolates significantly enhanced growth of two native species, quailbush and buffalo grass, in tailings. In this study, PGPB/compost outcomes were plant specific; for quailbush, PGPB were most effective in combination with 10% compost addition while for buffalo grass, PGPB enhanced growth in the complete absence of compost. Results indicate that selected PGPB can improve plant establishment and reduce the need for compost amendment. Further, PGPB activities necessary for aiding plant growth in mine tailings likely include tolerance to acidic pH and metals.

  11. Plant Growth-Promoting Bacteria for Phytostabilization of Mine Tailings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grandlic, C.J.; Mendez, M.O.; Chorover, J.

    2009-05-19

    Eolian dispersion of mine tailings in arid and semiarid environments is an emerging global issue for which economical remediation alternatives are needed. Phytostabilization, the revegetation of these sites with native plants, is one such alternative. Revegetation often requires the addition of bulky amendments such as compost which greatly increases cost. We report the use of plant growth-promoting bacteria (PGPB) to enhance the revegetation of mine tailings and minimize the need for compost amendment. Twenty promising PGPB isolates were used as seed inoculants in a series of greenhouse studies to examine revegetation of an extremely acidic, high metal content tailings samplemore » previously shown to require 15% compost amendment for normal plant growth. Several isolates significantly enhanced growth of two native species, quailbush and buffalo grass, in tailings. In this study, PGPB/compost outcomes were plant specific; for quailbush, PGPB were most effective in combination with 10% compost addition while for buffalo grass, PGPB enhanced growth in the complete absence of compost. Results indicate that selected PGPB can improve plant establishment and reduce the need for compost amendment. Further, PGPB activities necessary for aiding plant growth in mine tailings likely include tolerance to acidic pH and metals.« less

  12. Body malodours and their topical treatment agents.

    PubMed

    Kanlayavattanakul, M; Lourith, N

    2011-08-01

    Body malodour, including foot odour, suppresses social interaction by diminishing self-confidence and accelerating damage to the wearer's clothes and shoes. Most treatment agents, including aluminium anti-perspirant salts, inhibit the growth of malodourous bacteria. These metallic salts also reduce sweat by blocking the excretory ducts of sweat glands, minimizing the water source that supports bacterial growth. However, there are some drawback effects that limit the use of aluminium anti-perspirant salts. In addition, over-the-counter anti-perspirant and deodourant products may not be sufficiently effective for heavy sweaters, and strong malodour producers. Body odour treatment agents are rarely mentioned in the literature compared with other cosmetic ingredients. This review briefly summarizes the relationship among sweat, skin bacteria, and body odour; describes how odourous acids, thiols, and steroids are formed; and discusses the active ingredients, including metallic salts and herbs, that are used to treat body odour. A new class of ingredients that function by regulating the release of malodourants will also be described. These ingredients do not alter the balance of the skin flora. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  13. Biocorrosion of dental alloys due to Desulfotomaculum nigrificans bacteria.

    PubMed

    Mystkowska, Joanna

    2016-01-01

    Degradation processes of metallic biomaterials in the oral cavity limit the stability and reliability of dental materials. The influence of environment bacteria Desulfotomaculum nigrificans sulfate reducing bacteria on the corrosion processes of Co-Cr-Mo and Ti-6Al-4V alloys was assessed. After 28 and 56 days of contact of the materials with the bacterial environment, the surfaces of the biomaterials tested were observed by means of confocal scanning laser microscopy (CSLM), and their chemical composition was studied using X-Ray Photoelectron Spectrometry (XPS). Corrosive changes and the presence of sulfur (with medium atomic concentration of 0.5% for Co-Cr-Mo and 0.3% for Ti-6AL-4V) were observed on the surface of the biomaterials. Image analysis conducted using Aphelion software indicated that corrosion pits took up approx. 2.3% and 1.8% (after 28 days) and 4.2% and 3.1% (after 56 days) of the total test surfaces of cobalt and titanium alloys respectively. The greatest number of corrosion pits had a surface area within the range of 1-50 m2. They constituted from 37% up to 83% of all changes, depending on the type of material. An evident influence of the SRB on the surfaces of cobalt and titanium alloys was observed. Significant corrosive losses caused by the activity of microorganisms were observed on the metallic surfaces under study. The results of this study have much cognitive and utilitarian significance.

  14. Microbiological-enhanced mixing across scales during in-situ bioreduction of metals and radionuclides at Department of Energy Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valocchi, Albert; Werth, Charles; Liu, Wen-Tso

    Bioreduction is being actively investigated as an effective strategy for subsurface remediation and long-term management of DOE sites contaminated by metals and radionuclides (i.e. U(VI)). These strategies require manipulation of the subsurface, usually through injection of chemicals (e.g., electron donor) which mix at varying scales with the contaminant to stimulate metal reducing bacteria. There is evidence from DOE field experiments suggesting that mixing limitations of substrates at all scales may affect biological growth and activity for U(VI) reduction. Although current conceptual models hold that biomass growth and reduction activity is limited by physical mixing processes, a growing body of literaturemore » suggests that reaction could be enhanced by cell-to-cell interaction occurring over length scales extending tens to thousands of microns. Our project investigated two potential mechanisms of enhanced electron transfer. The first is the formation of single- or multiple-species biofilms that transport electrons via direct electrical connection such as conductive pili (i.e. ‘nanowires’) through biofilms to where the electron acceptor is available. The second is through diffusion of electron carriers from syntrophic bacteria to dissimilatory metal reducing bacteria (DMRB). The specific objectives of this work are (i) to quantify the extent and rate that electrons are transported between microorganisms in physical mixing zones between an electron donor and electron acceptor (e.g. U(IV)), (ii) to quantify the extent that biomass growth and reaction are enhanced by interspecies electron transport, and (iii) to integrate mixing across scales (e.g., microscopic scale of electron transfer and macroscopic scale of diffusion) in an integrated numerical model to quantify these mechanisms on overall U(VI) reduction rates. We tested these hypotheses with five tasks that integrate microbiological experiments, unique micro-fluidics experiments, flow cell experiments, and multi-scale numerical models. Continuous fed-batch reactors were used to derive kinetic parameters for DMRB, and to develop an enrichment culture for elucidation of syntrophic relationships in a complex microbial community. Pore and continuum scale experiments using microfluidic and bench top flow cells were used to evaluate the impact of cell-to-cell and microbial interactions on reaction enhancement in mixing-limited bioactive zones, and the mechanisms of this interaction. Some of the microfluidic experiments were used to develop and test models that considers direct cell-to-cell interactions during metal reduction. Pore scale models were incorporated into a multi-scale hybrid modeling framework that combines pore scale modeling at the reaction interface with continuum scale modeling. New computational frameworks for combining continuum and pore-scale models were also developed« less

  15. Bacillithiol, a New Player in Bacterial Redox Homeostasis

    PubMed Central

    2011-01-01

    Abstract Bacillithiol (BSH), the α-anomeric glycoside of l-cysteinyl-d-glucosamine with l-malic acid, plays a dominant role in the cytosolic thiol redox chemistry of the low guanine and cytosine (GC) Gram-positive bacteria (phylum Firmicutes). BSH is functionally analogous to glutathione (GSH) but differs sufficiently in chemical structure that cells have evolved a distinct set of enzymes that use BSH as cofactor. BSH was discovered in Bacillus subtilis as a mixed disulfide with the redox-sensing repressor OhrR and in B. anthracis by biochemical analysis of pools of labeled thiols. The structure of BSH was determined after purification from Deinococcus radiodurans. Similarities in structure between BSH and mycothiol (MSH) facilitated the identification of biosynthetic genes for BSH in the model organism B. subtilis. Phylogenomic analyses have identified several candidate BSH-using or associated proteins, including a BSH reductase, glutaredoxin-like thiol-dependent oxidoreductases (bacilliredoxins), and a BSH-S-transferase (FosB) involved in resistance to the epoxide antibiotic fosfomycin. Preliminary results implicate BSH in cellular processes to maintain cytosolic redox balance and for adaptation to reactive oxygen, nitrogen, and electrophilic species. BSH also is predicted to chelate metals avidly, in part due to the appended malate moiety, although the implications of BSH for metal ion homeostasis have yet to be explored in detail. Antioxid. Redox Signal. 15, 123–133. PMID:20712413

  16. Multiresistant opportunistic pathogenic bacteria isolated from polluted rivers and first detection of nontuberculous mycobacteria in the Algerian aquatic environment.

    PubMed

    Djouadi, Lydia Neïla; Selama, Okba; Abderrahmani, Ahmed; Bouanane-Darenfed, Amel; Abdellaziz, Lamia; Amziane, Meriam; Fardeau, Marie-Laure; Nateche, Farida

    2017-08-01

    Opportunistic infections constitute a major challenge for modern medicine mainly because the involved bacteria are usually multiresistant to antibiotics. Most of these bacteria possess remarkable ability to adapt to various ecosystems, including those exposed to anthropogenic activities. This study isolated and identified 21 multiresistant opportunistic bacteria from two polluted rivers, located in Algiers. Cadmium, lead, and copper concentrations were determined for both water samples to evaluate heavy metal pollution. High prevalence of Enterobacteria and non-fermentative Gram-negative rods was found and a nontuberculous Mycobacterium (NTM) strain was isolated. To the best of our knowledge, this is the first detection of NTM in the Algerian environment. The strains were tested for their resistance against 34 antibiotics and 8 heavy metals. Multiple antibiotics and heavy metals resistance was observed in all isolates. The two most resistant strains, identified as Acinetobacter sp. and Citrobacter freundii, were submitted to plasmid curing to determine if resistance genes were plasmid or chromosome encoded. Citrobacter freundii strain P18 showed a high molecular weight plasmid which seems to code for resistance to zinc, lead, and tetracycline, at the same time. These findings strongly suggest that anthropized environments constitute a reservoir for multiresistant opportunistic bacteria and for circulating resistance genes.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogura, Toshihiko, E-mail: t-ogura@aist.go.jp

    Highlights: • We developed a high-sensitive frequency transmission electric-field (FTE) system. • The output signal was highly enhanced by applying voltage to a metal layer on SiN. • The spatial resolution of new FTE method is 41 nm. • New FTE system enables observation of the intact bacteria and virus in water. - Abstract: The high-resolution structural analysis of biological specimens by scanning electron microscopy (SEM) presents several advantages. Until now, wet bacterial specimens have been examined using atmospheric sample holders. However, images of unstained specimens in water using these holders exhibit very poor contrast and heavy radiation damage. Recently,more » we developed the frequency transmission electric-field (FTE) method, which facilitates the SEM observation of biological specimens in water without radiation damage. However, the signal detection system presents low sensitivity. Therefore, a high EB current is required to generate clear images, and thus reducing spatial resolution and inducing thermal damage to the samples. Here a high-sensitivity detection system is developed for the FTE method, which enhances the output signal amplitude by hundredfold. The detection signal was highly enhanced when voltage was applied to the metal layer on silicon nitride thin film. This enhancement reduced the EB current and improved the spatial resolution as well as the signal-to-noise ratio. The spatial resolution of a high-sensitive FTE system is 41 nm, which is considerably higher than previous FTE system. New FTE system can easily be utilised to examine various unstained biological specimens in water, such as living bacteria and viruses.« less

  18. Silane-based coatings on the pyrite for remediation of acid mine drainage.

    PubMed

    Diao, Zenghui; Shi, Taihong; Wang, Shizhong; Huang, Xiongfei; Zhang, Tao; Tang, Yetao; Zhang, Xiaying; Qiu, Rongliang

    2013-09-01

    Acid mine drainage (AMD) resulting from the oxidation of pyrite and other metal sulfides has caused significant environmental problems, including acidification of rivers and streams as well as leaching of toxic metals. With the goal of controlling AMD at the source, we evaluated the potential of tetraethylorthosilicate (TEOS) and n-propyltrimethoxysilane (NPS) coatings to suppress pyrite oxidation. The release of total Fe and SO4(-2) from uncoated and coated pyrite in the presence of a chemical oxidizing agent (H2O2) or iron-oxidizing bacteria (Acidithiobacillus ferrooxidans) was measured. Results showed that TEOS- and NPS-based coatings reduced chemical oxidation of pyrite by as much as 59 and 96% (based on Fe release), respectively, while biological oxidation of pyrite was reduced by 69 and 95%, respectively. These results were attributed to the formation of a dense network of Fe-O-Si and Si-O-Si bonds on the pyrite surface that limited permeation of oxygen, water, and bacteria. Compared with results for TEOS-coated pyrite, higher pH and lower concentrations of total Fe and SO4(-2) were observed for oxidation of NPS-coated pyrite, which was attributed to its crack-free morphology and the presence of hydrophobic groups on the NPS-based coating surface. The silane-based NPS coating was shown to be highly effective in suppressing pyrite oxidation, making it a promising alternative for remediation of AMD at its source. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Effects of chlortetracycline and copper on tetracyclines and copper resistance genes and microbial community during swine manure anaerobic digestion.

    PubMed

    Wang, Rui; Chen, Meixue; Feng, Feng; Zhang, Junya; Sui, Qianwen; Tong, Juan; Wei, Yuansong; Wei, Dongbin

    2017-08-01

    As antibiotic and heavy metals are over used in the livestock industry, animal manure is a reservoir of antibiotic resistance genes (ARGs). Anaerobic digestion has been reported to have the potential to reduce ARGs. However, few studies investigated whether reduction of ARGs would be affected by different external pressures including antibiotics and heavy metals during anaerobic digestion. The purpose of this study was thus to investigate effects of both chlortetracycline (CTC) and Cu on reduction of ARGs, heavy metal resistance genes (HMRGs) and mobile genetic elements (MGEs) during the swine manure anaerobic digestion. The results showed that the predominant ARGs (tetO, tetW, tetX, tetL) could be effectively reduced (approximately 1.00 log copies/g TS) through mesophilic anaerobic digestion. Microbial community evolution was the main driver. It was interesting that Treponema might indicate the termination of anaerobic digestion and compete with ARGs host bacteria. Addition of CTC, Cu and CTC+Cu affected microbial community change and hindered removal of ARGs, especially, CTC+Cu seriously affected Treponema and ARGs during anaerobic digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. BIORECOVERY OF METALS FROM ACID MINE DRAINAGE

    EPA Science Inventory

    Acid mine water is an acidic, metal-bearing wastewater generated by the oxidation of metallic sulfides by certain bacteria in both active and abandoned mining operations. The wastewaters contain substantial quantities of dissolved solids with the particular pollutants dependant u...

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myneni, Satish C. B.; Fein, Jeremy; Mishra, Bhoopesh

    Bacteria are ubiquitous in a wide-range of low temperature aqueous systems, and can strongly affect the distribution and transport of metals and radionuclides in the environment. However, the role of metal adsorption onto bacteria, via the reactive cell wall functional groups, has been largely overlooked. Previous macroscale metal sorption, and XAS studies have shown that carboxyl and phosphoryl functional groups to be the important metal binding groups on bacterial cell walls and the sulfhydryl groups were not considered. The goal of our investigation was to evaluate the density of the sulfhydryl sites on different bacterial cell membranes that are commonmore » to soil systems, the binding affinities of these reactive groups towards Hg, and how this binding modifies the speciation of Hg in the natural waters.« less

  2. Metal-Organic Synthetic Transporters (MOST): Efficient Chloride and Antibiotic Transmembrane Transporters.

    PubMed

    Kempf, Julie; Schmitzer, Andreea R

    2017-05-05

    We present the synthesis of two functionalized 2,4,7-triphenylbenzimidazole ligands and demonstrate the formation of their respective metal assemblies in phospholipid membranes. Anion transport experiments demonstrate the formation of metal-organic synthetic transporters (MOST) directly in phospholipid membranes. The formation of MOST in phospholipid membranes results in efficient architectures for chloride transport. We also demonstrate the insertion of these ligands and the formation of their metal-organic assemblies in bacterial membranes; the use of MOST makes the membranes of resistant bacteria more permeable to antibiotics. We also demonstrate that a combination of MOST with tetracycline lowers the sensitivity of resistant bacteria to tetracycline by 60-fold. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The use of seaweed and sugarcane bagasse for the biological treatment of metal-contaminated waters under sulfate-reducing conditions.

    PubMed

    Gonçalves, Márcia Monteiro Machado; de Oliveira Mello, Luiz Antonio; da Costa, Antonio Carlos Augusto

    2008-03-01

    When wetlands reach maximum treatment capacity to remove heavy metals, removal can still take place through precipitation as sulfide because of the biological reduction of sulfate. To achieve this goal, anaerobic conditions must be attained, a sulfate source must exist, and an adequate substrate for sulfate-reducing bacteria (SRB) is also required. In the present work, two ligneous-cellulosic materials, a brown seaweed and sugarcane bagasse, have been selected as substrates for SRB growth. Experiments were simultaneously conducted in continuous operation in two columns (0.57 L each), one containing the ligneous-cellulosic material plus inoculum and another containing only the ligneous-cellulosic material. In this work, the removal of cadmium and zinc was studied because of their presence in effluents from mining/metallurgy operations. Results obtained indicated that the inoculated reactor was able to treat the effluent more efficiently than the noninoculated reactor considering the time course of the tests.

  4. Functional Ginger Extracts from Supercritical Fluid Carbon Dioxide Extraction via In Vitro and In Vivo Assays: Antioxidation, Antimicroorganism, and Mice Xenografts Models

    PubMed Central

    Lee, Chih-Chen; Chiou, Li-Yu; Wang, Jheng-Yang; Chou, Sin-You; Lan, John Chi-Wei; Huang, Tsi-Shu; Huang, Kuo-Chuan

    2013-01-01

    Supercritical fluid carbon dioxide extraction technology was developed to gain the active components from a Taiwan native plant, Zingiber officinale (ginger). We studied the biological effects of ginger extracts via multiple assays and demonstrated the biofunctions in each platform. Investigations of ginger extracts indicated antioxidative properties in dose-dependant manners on radical scavenging activities, reducing powers and metal chelating powers. We found that ginger extracts processed moderate scavenging values, middle metal chelating levels, and slight ferric reducing powers. The antibacterial susceptibility of ginger extracts on Staphylococcus aureus, Streptococcus sobrinus, S. mutans, and Escherichia coli was determined with the broth microdilution method technique. The ginger extracts had operative antimicroorganism potentials against both Gram-positive and Gram-negative bacteria. We further discovered the strong inhibitions of ginger extracts on lethal carcinogenic melanoma through in vivo xenograft model. To sum up, the data confirmed the possible applications as medical cosmetology agents, pharmaceutical antibiotics, and food supplements. PMID:23983624

  5. Uranium Interaction with Two Multi-Resistant Environmental Bacteria: Cupriavidus metallidurans CH34 and Rhodopseudomonas palustris

    PubMed Central

    Llorens, Isabelle; Untereiner, Guillaume; Jaillard, Danielle; Gouget, Barbara; Chapon, Virginie; Carriere, Marie

    2012-01-01

    Depending on speciation, U environmental contamination may be spread through the environment or inversely restrained to a limited area. Induction of U precipitation via biogenic or non-biogenic processes would reduce the dissemination of U contamination. To this aim U oxidation/reduction processes triggered by bacteria are presently intensively studied. Using X-ray absorption analysis, we describe in the present article the ability of Cupriavidus metallidurans CH34 and Rhodopseudomonas palustris, highly resistant to a variety of metals and metalloids or to organic pollutants, to withstand high concentrations of U and to immobilize it either through biosorption or through reduction to non-uraninite U(IV)-phosphate or U(IV)-carboxylate compounds. These bacterial strains are thus good candidates for U bioremediation strategies, particularly in the context of multi-pollutant or mixed-waste contaminations. PMID:23251623

  6. Microbial copper resistance: importance in biohydrometallurgy.

    PubMed

    Martínez-Bussenius, Cristóbal; Navarro, Claudio A; Jerez, Carlos A

    2017-03-01

    Industrial biomining has been extensively used for many years to recover valuable metals such as copper, gold, uranium and others. Furthermore, microorganisms involved in these processes can also be used to bioremediate places contaminated with acid and metals. These uses are possible due to the great metal resistance that these extreme acidophilic microorganisms possess. In this review, the most recent findings related to copper resistance mechanisms of bacteria and archaea related to biohydrometallurgy are described. The recent search for novel metal resistance determinants is not only of scientific interest but also of industrial importance, as reflected by the genomic sequencing of microorganisms present in mining operations and the search of those bacteria with extreme metal resistance to improve the extraction processes used by the biomining companies. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. Are Russian propolis ethanol extracts the future for the prevention of medical and biomedical implant contaminations?

    PubMed

    Ambi, Ashwin; Bryan, Julia; Borbon, Katherine; Centeno, Daniel; Liu, Tianchi; Chen, Tung Po; Cattabiani, Thomas; Traba, Christian

    2017-07-01

    Most studies reveal that the mechanism of action of propolis against bacteria is functional rather than structural and is attributed to a synergism between the compounds in the extracts. Propolis is said to inhibit bacterial adherence, division, inhibition of water-insoluble glucan formation, and protein synthesis. However, it has been shown that the mechanism of action of Russian propolis ethanol extracts is structural rather than functional and may be attributed to the metals found in propolis. If the metals found in propolis are removed, cell lysis still occurs and these modified extracts may be used in the prevention of medical and biomedical implant contaminations. The antibacterial activity of metal-free Russian propolis ethanol extracts (MFRPEE) on two biofilm forming bacteria: penicillin-resistant Staphylococcus aureus and Escherichia coli was evaluated using MTT and a Live/Dead staining technique. Toxicity studies were conducted on mouse osteoblast (MC-3T3) cells using the same viability assays. In the MTT assay, biofilms were incubated with MTT at 37°C for 30min. After washing, the purple formazan formed inside the bacterial cells was dissolved by SDS and then measured using a microplate reader by setting the detecting and reference wavelengths at 570nm and 630nm, respectively. Live and dead distributions of cells were studied by confocal laser scanning microscopy. Complete biofilm inactivation was observed when biofilms were treated for 40h with 2µg/ml of MFRPEE. Results indicate that the metals present in propolis possess antibacterial activity, but do not have an essential role in the antibacterial mechanism of action. Additionally, the same concentration of metals found in propolis samples, were toxic to tissue cells. Comparable to samples with metals, metal free samples caused damage to the cell membrane structures of both bacterial species, resulting in cell lysis. Results suggest that the structural mechanism of action of Russian propolis ethanol extracts stem predominate from the organic compounds. Further studies revealed drastically reduced toxicity to mammalian cells when metals were removed from Russian propolis ethanol extracts, suggesting a potential for medical and biomedical applications. Published by Elsevier GmbH.

  8. Non-enzymatic U(VI) interactions with biogenic mackinawite

    NASA Astrophysics Data System (ADS)

    Veeramani, H.; Qafoku, N. P.; Kukkadapu, R. K.; Murayama, M.; Hochella, M. F.

    2011-12-01

    Reductive immobilization of hexavalent uranium [U(VI)] by stimulation of dissimilatory metal and/or sulfate reducing bacteria (DMRB or DSRB) has been extensively researched as a remediation strategy for subsurface U(VI) contamination. These bacteria derive energy by reducing oxidized metals as terminal electron acceptors, often utilizing organic substrates as electron donors. Thus, when evaluating the potential for in-situ uranium remediation in heterogeneous subsurface media, it is important to understand how the presence of alternative electron acceptors such as Fe(III) and sulfate affect U(VI) remediation and the long term behavior and reactivity of reduced uranium. Iron, an abundant subsurface element, represents a substantial sink for electrons from DMRB, and the reduction of Fe(III) leads to the formation of dissolved Fe(II) or to reactive biogenic Fe(II)- and mixed Fe(II)/Fe(III)- mineral phases. Consequently, abiotic U(VI) reduction by reactive forms of biogenic Fe(II) minerals could be a potentially important process for uranium immobilization. In our study, the DMRB Shewanella putrefaciens CN32 was used to synthesize a biogenic Fe(II)-bearing sulfide mineral: mackinawite, that has been characterized by XRD, SEM, HRTEM and Mössbauer spectroscopy. Batch experiments involving treated biogenic mackinawite and uranium (50:1 molar ratio) were carried out at room temperature under strict anoxic conditions. Following complete removal of uranium from solution, the biogenic mackinawite was analyzed by a suite of analytical techniques including XAS, HRTEM and Mössbauer spectroscopy to determine the speciation of uranium and investigate concomitant Fe(II)-phase transformation. Determining the speciation of uranium is critical to success of a remediation strategy. The present work elucidates non-enzymatic/abiotic molecular scale redox interactions between biogenic mackinawite and uranium.

  9. Enrichment of specific protozoan populations during in situ bioremediation of uranium-contaminated groundwater.

    PubMed

    Holmes, Dawn E; Giloteaux, Ludovic; Williams, Kenneth H; Wrighton, Kelly C; Wilkins, Michael J; Thompson, Courtney A; Roper, Thomas J; Long, Philip E; Lovley, Derek R

    2013-07-01

    The importance of bacteria in the anaerobic bioremediation of groundwater polluted with organic and/or metal contaminants is well recognized and in some instances so well understood that modeling of the in situ metabolic activity of the relevant subsurface microorganisms in response to changes in subsurface geochemistry is feasible. However, a potentially significant factor influencing bacterial growth and activity in the subsurface that has not been adequately addressed is protozoan predation of the microorganisms responsible for bioremediation. In field experiments at a uranium-contaminated aquifer located in Rifle, CO, USA, acetate amendments initially promoted the growth of metal-reducing Geobacter species, followed by the growth of sulfate reducers, as observed previously. Analysis of 18S rRNA gene sequences revealed a broad diversity of sequences closely related to known bacteriovorous protozoa in the groundwater before the addition of acetate. The bloom of Geobacter species was accompanied by a specific enrichment of sequences most closely related to the ameboid flagellate, Breviata anathema, which at their peak accounted for over 80% of the sequences recovered. The abundance of Geobacter species declined following the rapid emergence of B. anathema. The subsequent growth of sulfate-reducing Peptococcaceae was accompanied by another specific enrichment of protozoa, but with sequences most similar to diplomonadid flagellates from the family Hexamitidae, which accounted for up to 100% of the sequences recovered during this phase of the bioremediation. These results suggest a prey-predator response with specific protozoa responding to increased availability of preferred prey bacteria. Thus, quantifying the influence of protozoan predation on the growth, activity and composition of the subsurface bacterial community is essential for predictive modeling of in situ uranium bioremediation strategies.

  10. Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium.

    PubMed

    Watts, Mathew P; Khijniak, Tatiana V; Boothman, Christopher; Lloyd, Jonathan R

    2015-08-15

    Chromium in its toxic Cr(VI) valence state is a common contaminant particularly associated with alkaline environments. A well-publicized case of this occurred in Glasgow, United Kingdom, where poorly controlled disposal of a cementitious industrial by-product, chromite ore processing residue (COPR), has resulted in extensive contamination by Cr(VI)-contaminated alkaline leachates. In the search for viable bioremediation treatments for Cr(VI), a variety of bacteria that are capable of reduction of the toxic and highly soluble Cr(VI) to the relatively nontoxic and less mobile Cr(III) oxidation state, predominantly under circumneutral pH conditions, have been isolated. Recently, however, alkaliphilic bacteria that have the potential to reduce Cr(VI) under alkaline conditions have been identified. This study focuses on the application of a metal-reducing bacterium to the remediation of alkaline Cr(VI)-contaminated leachates from COPR. This bacterium, belonging to the Halomonas genus, was found to exhibit growth concomitant to Cr(VI) reduction under alkaline conditions (pH 10). Bacterial cells were able to rapidly remove high concentrations of aqueous Cr(VI) (2.5 mM) under anaerobic conditions, up to a starting pH of 11. Cr(VI) reduction rates were controlled by pH, with slower removal observed at pH 11, compared to pH 10, while no removal was observed at pH 12. The reduction of aqueous Cr(VI) resulted in the precipitation of Cr(III) biominerals, which were characterized using transmission electron microscopy and energy-dispersive X-ray analysis (TEM-EDX) and X-ray photoelectron spectroscopy (XPS). The effectiveness of this haloalkaliphilic bacterium for Cr(VI) reduction at high pH suggests potential for its use as an in situ treatment of COPR and other alkaline Cr(VI)-contaminated environments. Copyright © 2015, Watts et al.

  11. Optimization study for Pb(II) and COD sequestration by consortium of sulphate-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Verma, Anamika; Bishnoi, Narsi R.; Gupta, Asha

    2017-09-01

    In this study, initial minimum inhibitory concentration (MIC) of Pb(II) ions was analysed to check optimum concentration of Pb(II) ions at which the growth of sulphate-reducing consortium (SRC) was found to be maximum. 80 ppm of Pb(II) ions was investigated as minimum inhibitory concentration for SRC. Influence of electron donors such as lactose, sucrose, glucose and sodium lactate was examined to investigate best carbon source for growth and activity of sulphate-reducing bacteria. Sodium lactate was found to be the prime carbon source for SRC. Later optimization of various parameters was executed using Box-Behnken design model of response surface methodology to explore the effectiveness of three independent operating variables, namely, pH (5.0-9.0), temperature (32-42 °C) and time (5.0-9.0 days), on dependent variables, i.e. protein content, precipitation of Pb(II) ions, and removal of COD by SRC biomass. Maximum removal of COD and Pb(II) was observed to be 91 and 98 %, respectively, at pH 7.0 and temperature 37 °C and incubation time 7 days. According to response surface analysis and analysis of variance, the experimental data were perfectly fitted to the quadratic model, and the interactive influence of pH, temperature and time on Pb(II) and COD removal was highly significant. A high regression coefficient between the variables and response ( r 2 = 0.9974) corroborate eminent evaluation of experimental data by second-order polynomial regression model. SEM and Fourier transform infrared analysis was performed to investigate morphology of PbS precipitates, sorption mechanism and involved functional groups in metal-free and metal-loaded biomass of SRC for Pb(II) binding.

  12. Enrichment of specific protozoan populations during in situ bioremediation of uranium-contaminated groundwater

    PubMed Central

    Holmes, Dawn E; Giloteaux, Ludovic; Williams, Kenneth H; Wrighton, Kelly C; Wilkins, Michael J; Thompson, Courtney A; Roper, Thomas J; Long, Philip E; Lovley, Derek R

    2013-01-01

    The importance of bacteria in the anaerobic bioremediation of groundwater polluted with organic and/or metal contaminants is well recognized and in some instances so well understood that modeling of the in situ metabolic activity of the relevant subsurface microorganisms in response to changes in subsurface geochemistry is feasible. However, a potentially significant factor influencing bacterial growth and activity in the subsurface that has not been adequately addressed is protozoan predation of the microorganisms responsible for bioremediation. In field experiments at a uranium-contaminated aquifer located in Rifle, CO, USA, acetate amendments initially promoted the growth of metal-reducing Geobacter species, followed by the growth of sulfate reducers, as observed previously. Analysis of 18S rRNA gene sequences revealed a broad diversity of sequences closely related to known bacteriovorous protozoa in the groundwater before the addition of acetate. The bloom of Geobacter species was accompanied by a specific enrichment of sequences most closely related to the ameboid flagellate, Breviata anathema, which at their peak accounted for over 80% of the sequences recovered. The abundance of Geobacter species declined following the rapid emergence of B. anathema. The subsequent growth of sulfate-reducing Peptococcaceae was accompanied by another specific enrichment of protozoa, but with sequences most similar to diplomonadid flagellates from the family Hexamitidae, which accounted for up to 100% of the sequences recovered during this phase of the bioremediation. These results suggest a prey–predator response with specific protozoa responding to increased availability of preferred prey bacteria. Thus, quantifying the influence of protozoan predation on the growth, activity and composition of the subsurface bacterial community is essential for predictive modeling of in situ uranium bioremediation strategies. PMID:23446832

  13. Enrichment of specific protozoan populations during in situ bioremediation of uranium-contaminated groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmes, Dawn; Giloteaux, L.; Williams, Kenneth H.

    2013-07-28

    The importance of bacteria in the anaerobic bioremediation of groundwater polluted with organic and/or metal contaminants is well-recognized and in some instances so well understood that modeling of the in situ metabolic activity of the relevant subsurface microorganisms in response to changes in subsurface geochemistry is feasible. However, a potentially significant factor influencing bacterial growth and activity in the subsurface that has not been adequately addressed is protozoan predation of the microorganisms responsible for bioremediation. In field experiments at a uranium-contaminated aquifer located in Rifle, CO, acetate amendments initially promoted the growth of metal-reducing Geobacter species followed by the growthmore » of sulfate-reducers, as previously observed. Analysis of 18S rRNA gene sequences revealed a broad diversity of sequences closely related to known bacteriovorous protozoa in the groundwater prior to the addition of acetate. The bloom of Geobacter species was accompanied by a specific enrichment of sequences most closely related to the amoeboid flagellate, Breviata anathema, which at their peak accounted for over 80% of the sequences recovered. The abundance of Geobacter species declined following the rapid emergence of B. anathema. The subsequent growth of sulfate-reducing Peptococcaceae was accompanied by another specific enrichment of protozoa, but with sequences most similar to diplomonadid flagellates from the family Hexamitidae, which accounted for up to 100% of the sequences recovered during this phase of the bioremediation. These results suggest a prey-predator response with specific protozoa responding to increased availability of preferred prey bacteria. Thus, quantifying the influence of protozoan predation on the growth, activity, and composition of the subsurface bacterial community is essential for predictive modeling of in situ uranium bioremediation strategies.« less

  14. Surface characteristics of spacecraft components affect the aggregation of microorganisms and may lead to different survival rates of bacteria on Mars landers.

    PubMed

    Schuerger, Andrew C; Richards, Jeffrey T; Hintze, Paul E; Kern, Roger G

    2005-08-01

    Layers of dormant endospores of Bacillus subtilis HA101 were applied to eight different spacecraft materials and exposed to martian conditions of low pressure (8.5 mbar), low temperature (-10 degrees C), and high CO(2) gas composition and irradiated with a Mars-normal ultraviolet (UV-visible- near-infrared spectrum. Bacterial layers were exposed to either 1 min or 1 h of Mars-normal UV irradiation, which simulated clear-sky conditions on equatorial Mars (0.1 tau). When exposed to 1 min of Mars UV irradiation, the numbers of viable endospores of B. subtilis were reduced three to four orders of magnitude for two brands of aluminum (Al), stainless steel, chemfilm-treated Al, clear-anodized Al, and black-anodized Al coupons. In contrast, bacterial survival was reduced only one to two orders of magnitude for endospores on the non-metal materials astroquartz and graphite composite when bacterial endospores were exposed to 1 min of Mars UV irradiation. When bacterial monolayers were exposed to 1 h of Mars UV irradiation, no viable bacteria were recovered from the six metal coupons listed above. In contrast, bacterial survival was reduced only two to three orders of magnitude for spore layers on astroquartz and graphite composite exposed to 1 h of Mars UV irradiation. Scanning electron microscopy images of the bacterial monolayers on all eight spacecraft materials revealed that endospores of B. subtilis formed large aggregates of multilayered spores on astroquartz and graphite composite, but not on the other six spacecraft materials. It is likely that the formation of multilayered aggregates of endospores on astroquartz and graphite composite is responsible for the enhanced survival of bacterial cells on these materials.

  15. Surface characteristics of spacecraft components affect the aggregation of microorganisms and may lead to different survival rates of bacteria on Mars landers

    NASA Technical Reports Server (NTRS)

    Schuerger, Andrew C.; Richards, Jeffrey T.; Hintze, Paul E.; Kern, Roger G.

    2005-01-01

    Layers of dormant endospores of Bacillus subtilis HA101 were applied to eight different spacecraft materials and exposed to martian conditions of low pressure (8.5 mbar), low temperature (-10 degrees C), and high CO(2) gas composition and irradiated with a Mars-normal ultraviolet (UV-visible- near-infrared spectrum. Bacterial layers were exposed to either 1 min or 1 h of Mars-normal UV irradiation, which simulated clear-sky conditions on equatorial Mars (0.1 tau). When exposed to 1 min of Mars UV irradiation, the numbers of viable endospores of B. subtilis were reduced three to four orders of magnitude for two brands of aluminum (Al), stainless steel, chemfilm-treated Al, clear-anodized Al, and black-anodized Al coupons. In contrast, bacterial survival was reduced only one to two orders of magnitude for endospores on the non-metal materials astroquartz and graphite composite when bacterial endospores were exposed to 1 min of Mars UV irradiation. When bacterial monolayers were exposed to 1 h of Mars UV irradiation, no viable bacteria were recovered from the six metal coupons listed above. In contrast, bacterial survival was reduced only two to three orders of magnitude for spore layers on astroquartz and graphite composite exposed to 1 h of Mars UV irradiation. Scanning electron microscopy images of the bacterial monolayers on all eight spacecraft materials revealed that endospores of B. subtilis formed large aggregates of multilayered spores on astroquartz and graphite composite, but not on the other six spacecraft materials. It is likely that the formation of multilayered aggregates of endospores on astroquartz and graphite composite is responsible for the enhanced survival of bacterial cells on these materials.

  16. Fractionation of Hydrogen Isotopes by Sulfate- and Nitrate-Reducing Bacteria.

    PubMed

    Osburn, Magdalena R; Dawson, Katherine S; Fogel, Marilyn L; Sessions, Alex L

    2016-01-01

    Hydrogen atoms from water and food are incorporated into biomass during cellular metabolism and biosynthesis, fractionating the isotopes of hydrogen-protium and deuterium-that are recorded in biomolecules. While these fractionations are often relatively constant in plants, large variations in the magnitude of fractionation are observed for many heterotrophic microbes utilizing different central metabolic pathways. The correlation between metabolism and lipid δ(2)H provides a potential basis for reconstructing environmental and ecological parameters, but the calibration dataset has thus far been limited mainly to aerobes. Here we report on the hydrogen isotopic fractionations of lipids produced by nitrate-respiring and sulfate-reducing bacteria. We observe only small differences in fractionation between oxygen- and nitrate-respiring growth conditions, with a typical pattern of variation between substrates that is broadly consistent with previously described trends. In contrast, fractionation by sulfate-reducing bacteria does not vary significantly between different substrates, even when autotrophic and heterotrophic growth conditions are compared. This result is in marked contrast to previously published observations and has significant implications for the interpretation of environmental hydrogen isotope data. We evaluate these trends in light of metabolic gene content of each strain, growth rate, and potential flux and reservoir-size effects of cellular hydrogen, but find no single variable that can account for the differences between nitrate- and sulfate-respiring bacteria. The emerging picture of bacterial hydrogen isotope fractionation is therefore more complex than the simple correspondence between δ(2)H and metabolic pathway previously understood from aerobes. Despite the complexity, the large signals and rich variability of observed lipid δ(2)H suggest much potential as an environmental recorder of metabolism.

  17. Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence

    PubMed Central

    Porcheron, Gaëlle; Garénaux, Amélie; Proulx, Julie; Sabri, Mourad; Dozois, Charles M.

    2013-01-01

    For all microorganisms, acquisition of metal ions is essential for survival in the environment or in their infected host. Metal ions are required in many biological processes as components of metalloproteins and serve as cofactors or structural elements for enzymes. However, it is critical for bacteria to ensure that metal uptake and availability is in accordance with physiological needs, as an imbalance in bacterial metal homeostasis is deleterious. Indeed, host defense strategies against infection either consist of metal starvation by sequestration or toxicity by the highly concentrated release of metals. To overcome these host strategies, bacteria employ a variety of metal uptake and export systems and finely regulate metal homeostasis by numerous transcriptional regulators, allowing them to adapt to changing environmental conditions. As a consequence, iron, zinc, manganese, and copper uptake systems significantly contribute to the virulence of many pathogenic bacteria. However, during the course of our experiments on the role of iron and manganese transporters in extraintestinal Escherichia coli (ExPEC) virulence, we observed that depending on the strain tested, the importance of tested systems in virulence may be different. This could be due to the different set of systems present in these strains, but literature also suggests that as each pathogen must adapt to the particular microenvironment of its site of infection, the role of each acquisition system in virulence can differ from a particular strain to another. In this review, we present the systems involved in metal transport by Enterobacteria and the main regulators responsible for their controlled expression. We also discuss the relative role of these systems depending on the pathogen and the tissues they infect. PMID:24367764

  18. Diversity, metal resistance and uranium sequestration abilities of bacteria from uranium ore deposit in deep earth stratum.

    PubMed

    Islam, Ekramul; Sar, Pinaki

    2016-05-01

    Metal resistance and uranium (U) sequestration abilities of bacteria residing in subsurface U ore was investigated using 122 pure culture strains isolated through enrichment. The cumulative frequencies of isolates resistant to each metal tested were as follows: As(V), 74%; Zn, 58%; Ni, 53%; Cd, 47%; Cr(VI), 41%; Co, 40%; Cu, 20%; and Hg, 4%. 16S rRNA gene analysis revealed that isolated bacteria belonged to 14 genera with abundance of Arthrobacter, Microbacterium, Acinetobacter and Stenotrophomonas. Cobalt did not interfere with the growth of most of the bacterial isolates belonging to different groups while U allowed growth of four different genera of which Stenotrophomonas and Microbacterium showed high U tolerance. Interestingly, tolerance to Ni, Zn, Cu, and Hg was observed only in Microbacterium, Arthrobacter, Paenibacillus¸ and Acinetobacter, respectively. However, Microbacterium was found to be dominant when isolated from other five different metal enrichments including U. Uranium removal study showed that 84% of the test bacteria could remove more than 50mgUg(-1) dry weight from 80 or 160mgL(-1) U within 48h. In general, Microbacterium, Arthrobacter and Acinetobacter could remove a higher amount of U. High resolution transmission electron microscopy (HRTEM) study of U exposed cells revealed that accumulated U sequestered mostly around the cell periphery. The study highlights that indigenous U ore deposit bacteria have the potential to interact with U, and thus could be applied for bioremediation of U contaminated sites or wastes. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Characterization of microbial communities in subsurface nuclear blast cavities of the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Duane P; Czerwinski, Ken; Russell, Charles E

    2010-07-13

    This US Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program's Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse andmore » divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.« less

  20. Characterization of Microbial Communities in Subsurface Nuclear Blast Cavities of the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Duane P.; Bruckner, Jim; Fisher, Jen

    2010-09-01

    This U.S. Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program’s Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse andmore » divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.« less

  1. Unique Organic Matter and Microbial Properties in the Rhizosphere of a Wetland Soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, Daniel I.; Xu, Chen; Huang, Shan

    Wetlands attenuate the migration of many contaminants through a wide range of biogeochemical reactions. Recent research has shown that the rhizosphere, the zone near plant roots, in wetlands is especially effective at promoting contaminant attenuation. The objective of this study was to compare the soil organic matter (OM) composition and microbial communities of a rhizosphere soil (primarily an oxidized environment) to that of the bulk wetland soil (primarily a reduced environment). The rhizosphere had elevated C, N, Mn, and Fe concentrations and total bacteria, including Anaeromyxobacter, counts (as identified by qPCR). Furthermore, the rhizosphere contained several organic molecules that weremore » not identified in the nonrhizosphere soil (54% of the >2200 ESI-FTICR-MS identified compounds). The rhizosphere OM molecules generally had (1) greater overall molecular weights, (2) less aromaticity, (3) more carboxylate and N-containing COO functional groups, and (4) a greater hydrophilic character. These latter two OM properties typically promote metal binding. This study showed for the first time that not only the amount but also the molecular characteristics of OM in the rhizosphere may in part be responsible for the enhanced immobilization of contaminants in wetlands. These finding have implications on the stewardship and long-term management of contaminated wetlands« less

  2. Association of metal tolerance with multiple antibiotic resistance of bacteria isolated from drinking water.

    PubMed

    Calomiris, J J; Armstrong, J L; Seidler, R J

    1984-06-01

    Bacterial isolates from the drinking water system of an Oregon coastal community were examined to assess the association of metal tolerance with multiple antibiotic resistance. Positive correlations between tolerance to high levels of Cu2+, Pb2+, and Zn2+ and multiple antibiotic resistance were noted among bacteria from distribution waters but not among bacteria from raw waters. Tolerances to higher levels of Al3+ and Sn2+ were demonstrated more often by raw water isolates which were not typically multiple antibiotic resistant. A similar incidence of tolerance to Cd2+ was demonstrated by isolates of both water types and was not associated with multiple antibiotic resistance. These results suggest that simultaneous selection phenomena occurred in distribution water for bacteria which exhibited unique patterns of tolerance to Cu2+, Pb2+, and Zn2+ and antibiotic resistance.

  3. Pollution Prevention Case Studies: Implications for Army Institutional Processes

    DTIC Science & Technology

    1994-06-01

    waste (FAMC), Optical Fabrication by switching from glass to Laboratory (OFL) plastiC lens production Fort Lewis FORSCOM Develop installation...Role of Compliance Pressures ...................................................................................... 51 6.8 Waste and Recyclables ...Anny Depot AMC Reduce chromium waste (CCAD) through change in Aluminum coating process Fitzsimmons Anny Medical Center HSC Decrease heavy metal

  4. Extracellular Electron Transport-Mediated Fe(III) Reduction by a Community of Alkaliphilic Bacteria That Use Flavins as Electron Shuttles

    PubMed Central

    Fuller, Samuel J.; McMillan, Duncan G. G.; Renz, Marc B.; Schmidt, Martin

    2014-01-01

    The biochemical and molecular mechanisms used by alkaliphilic bacterial communities to reduce metals in the environment are currently unknown. We demonstrate that an alkaliphilic (pH > 9) consortium dominated by Tissierella, Clostridium, and Alkaliphilus spp. is capable of using iron (Fe3+) as a final electron acceptor under anaerobic conditions. Iron reduction is associated with the production of a freely diffusible species that, upon rudimentary purification and subsequent spectroscopic, high-performance liquid chromatography, and electrochemical analysis, has been identified as a flavin species displaying properties indistinguishable from those of riboflavin. Due to the link between iron reduction and the onset of flavin production, it is likely that riboflavin has an import role in extracellular metal reduction by this alkaliphilic community. PMID:24141133

  5. Production of Volatile Derivatives of Metal(loid)s by Microflora Involved in Anaerobic Digestion of Sewage Sludge

    PubMed Central

    Michalke, K.; Wickenheiser, E. B.; Mehring, M.; Hirner, A. V.; Hensel, R.

    2000-01-01

    Gases released from anaerobic wastewater treatment facilities contain considerable amounts of volatile methyl and hydride derivatives of metals and metalloids, such as arsine (AsH3), monomethylarsine, dimethylarsine, trimethylarsine, trimethylbismuth (TMBi), elemental mercury (Hg0), trimethylstibine, dimethyltellurium, and tetramethyltin. Most of these compounds could be shown to be produced by pure cultures of microorganisms which are representatives of the anaerobic sewage sludge microflora, i.e., methanogenic archaea (Methanobacterium formicicum, Methanosarcina barkeri, Methanobacterium thermoautotrophicum), sulfate-reducing bacteria (Desulfovibrio vulgaris, D. gigas), and a peptolytic bacterium (Clostridium collagenovorans). Additionally, dimethylselenium and dimethyldiselenium could be detected in the headspace of most of the pure cultures. This is the first report of the production of TMBi, stibine, monomethylstibine, and dimethylstibine by a pure culture of M. formicicum. PMID:10877769

  6. Separation of solute and particulate vectors of heavy metal uptake in controlled suspension-feeding experiments with Macoma balthica

    USGS Publications Warehouse

    Harvey, R.W.; Luoma, S.N.

    1985-01-01

    Radioisotope labelling experiments with the estuarine clam, Macoma balthica, are described, in which a filter chamber device was used to separate solute metal uptake from uptake, of metals associated with suspended bacteria. Solute uptake contributed a majority of the 14-day total body burdens of 65Zn and 109Cd, whereas 57Co uptake largely resulted from ingestion of isotope-laden bacteria. In contrast to those for 109Cd and 65Zn, 57Co tissue distributions at 3 weeks differed significantly (p < 0.05) between feeding and non-feeding clams (housed within filter chambers). ?? 1985 Dr W. Junk Publishers.

  7. Metabolism of Oxo-Bile Acids and Characterization of Recombinant 12α-Hydroxysteroid Dehydrogenases from Bile Acid 7α-Dehydroxylating Human Gut Bacteria.

    PubMed

    Doden, Heidi; Sallam, Lina A; Devendran, Saravanan; Ly, Lindsey; Doden, Greta; Daniel, Steven L; Alves, João M P; Ridlon, Jason M

    2018-05-15

    Bile acids are important cholesterol-derived nutrient signaling hormones, synthesized in the liver, that act as detergents to solubilize dietary lipids. Bile acid 7α-dehydroxylating gut bacteria generate the toxic bile acids deoxycholic acid and lithocholic acid from host bile acids. The ability of these bacteria to remove the 7-hydroxyl group is partially dependent on 7α-hydroxysteroid dehydrogenase (HSDH) activity, which reduces 7-oxo-bile acids generated by other gut bacteria. 3α-HSDH has an important enzymatic activity in the bile acid 7α-dehydroxylation pathway. 12α-HSDH activity has been reported for the low-activity bile acid 7α-dehydroxylating bacterium Clostridium leptum ; however, this activity has not been reported for high-activity bile acid 7α-dehydroxylating bacteria, such as Clostridium scindens , Clostridium hylemonae , and Clostridium hiranonis Here, we demonstrate that these strains express bile acid 12α-HSDH. The recombinant enzymes were characterized from each species and shown to preferentially reduce 12-oxolithocholic acid to deoxycholic acid, with low activity against 12-oxochenodeoxycholic acid and reduced activity when bile acids were conjugated to taurine or glycine. Phylogenetic analysis suggests that 12α-HSDH is widespread among Firmicutes , Actinobacteria in the Coriobacteriaceae family, and human gut Archaea IMPORTANCE 12α-HSDH activity has been established in the medically important bile acid 7α-dehydroxylating bacteria C. scindens , C. hiranonis , and C. hylemonae Experiments with recombinant 12α-HSDHs from these strains are consistent with culture-based experiments that show a robust preference for 12-oxolithocholic acid over 12-oxochenodeoxycholic acid. Phylogenetic analysis identified novel members of the gut microbiome encoding 12α-HSDH. Future reengineering of 12α-HSDH enzymes to preferentially oxidize cholic acid may provide a means to industrially produce the therapeutic bile acid ursodeoxycholic acid. In addition, a cholic acid-specific 12α-HSDH expressed in the gut may be useful for the reduction in deoxycholic acid concentration, a bile acid implicated in cancers of the gastrointestinal (GI) tract. Copyright © 2018 American Society for Microbiology.

  8. ADVANCES IN BIOTREATMENT OF ACID MINE DRAINAGE AND BIORECOVERY OF METALS: 1. METAL PRECIPITATION FOR RECOVERY AND RECYCLE

    EPA Science Inventory

    Acid-mine drainage (AMD) is a severe pollution problem attributed to past mining activities. AMD is an acidic, metal-bearing wastewater generated by the oxidation of metal sulfides to sulfates by Thiobacillus bacteria in both active and abandoned mining operations. The wastewater...

  9. Influence of biogeochemical interactions on metal bioleaching performance in contaminated marine sediment.

    PubMed

    Fonti, Viviana; Dell'Anno, Antonio; Beolchini, Francesca

    2013-09-15

    Bioleaching strategies are still far from finding real applications in sediment clean-up, although metabolic mechanisms governing bioleaching processes have been deeply studied and can be considered well established. In this study, we carried out bioleaching experiments, using autotrophic and heterotrophic acidophilic bacteria strains, and worked with marine sediments characterized by different geochemical properties and metal concentrations and speciations. The solubilization efficiency of the metals was highly variable, with the highest for Zn (40%-76%) and the lowest for Pb (0%-7%). Our data suggest that the role of autotrophic Fe/S oxidizing bacteria is mainly associated with the production and re-cycling of leaching chemical species, mainly as protons and ferric ions. Metal solubilization appears to be more related to establishing environmental conditions that allow each metal or semimetal to remain stable in the solution phase. Thus, the maintenance of acid and oxidative conditions, the chemical behavior in aqueous environment of each metal species and the geochemical characteristics of sediment interact intimately to influence metal solubilization in site-specific and metal-specific way. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Bacterial Exopolysaccharides For Corrosion Inhibition on Metal Substrates

    USDA-ARS?s Scientific Manuscript database

    Biofilms, composed of extra-cellular polymers secreted by bacteria, have been observed to both increase as well as decrease the rate of metal corrosion. Exopolysaccharides derived from Leuconostoc mesenteroides cultures have been shown to inhibit corrosion on corrosion-sensitive metals. The substa...

  11. Chemically reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite.

    PubMed

    Ambrosi, Adriano; Chua, Chun Kiang; Khezri, Bahareh; Sofer, Zdeněk; Webster, Richard D; Pumera, Martin

    2012-08-07

    Graphene-related materials are in the forefront of nanomaterial research. One of the most common ways to prepare graphenes is to oxidize graphite (natural or synthetic) to graphite oxide and exfoliate it to graphene oxide with consequent chemical reduction to chemically reduced graphene. Here, we show that both natural and synthetic graphite contain a large amount of metallic impurities that persist in the samples of graphite oxide after the oxidative treatment, and chemically reduced graphene after the chemical reduction. We demonstrate that, despite a substantial elimination during the oxidative treatment of graphite samples, a significant amount of impurities associated to the chemically reduced graphene materials still remain and alter their electrochemical properties dramatically. We propose a method for the purification of graphenes based on thermal treatment at 1,000 °C in chlorine atmosphere to reduce the effect of such impurities on the electrochemical properties. Our findings have important implications on the whole field of graphene research.

  12. Chemically reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite

    PubMed Central

    Ambrosi, Adriano; Chua, Chun Kiang; Khezri, Bahareh; Sofer, Zdeněk; Webster, Richard D.; Pumera, Martin

    2012-01-01

    Graphene-related materials are in the forefront of nanomaterial research. One of the most common ways to prepare graphenes is to oxidize graphite (natural or synthetic) to graphite oxide and exfoliate it to graphene oxide with consequent chemical reduction to chemically reduced graphene. Here, we show that both natural and synthetic graphite contain a large amount of metallic impurities that persist in the samples of graphite oxide after the oxidative treatment, and chemically reduced graphene after the chemical reduction. We demonstrate that, despite a substantial elimination during the oxidative treatment of graphite samples, a significant amount of impurities associated to the chemically reduced graphene materials still remain and alter their electrochemical properties dramatically. We propose a method for the purification of graphenes based on thermal treatment at 1,000 °C in chlorine atmosphere to reduce the effect of such impurities on the electrochemical properties. Our findings have important implications on the whole field of graphene research. PMID:22826262

  13. Recolonization by heterotrophic bacteria after UV irradiation or ozonation of seawater; a simulation of ballast water treatment.

    PubMed

    Hess-Erga, Ole-Kristian; Blomvågnes-Bakke, Bente; Vadstein, Olav

    2010-10-01

    Transport of ballast water with ships represents a risk for introduction of foreign species. If ballast water is treated during uptake, there will be a recolonization of the ballast water by heterotrophic bacteria during transport. We investigated survival and succession of heterotrophic bacteria after disinfection of seawater in the laboratory, representing a model system of ballast water treatment and transport. The seawater was exposed to ultraviolet (UV) irradiation, ozone (2 doses) or no treatment, incubated for 16 days and examined with culture-dependent and -independent methods. The number of colony-forming units (CFU) was reduced below the detection level after disinfection with UV and high ozone dose (700 mV), and 1% of the initial level for the low ozone dose (400 mV). After less than 3 days, the CFU was back or above the starting point for the control, UV and low ozone treatment, whereas it took slightly more than 6 days for the high ozone treatment. Disinfection increased substrate availability and reduced cell densities. Lack of competition and predation induced the recolonization by opportunistic bacteria (r-strategists), with significant increase in bacterial numbers and a low diversity (based on DGGE band pattern). All cultures stabilized after the initial recolonization phase (except Oz700) where competition due to crowding and nutrient limitation favoured bacteria with high substrate affinity (K-strategists), resulting in higher species richness and diversity (based on DGGE band pattern). The bacterial community was significantly altered qualitatively and quantitatively and may have a higher potential as invaders in the recipient depending on disinfection method and the time of release. These results have implications for the treatment strategy used for ballast water. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Nontoxic colloidal particles impede antibiotic resistance of swarming bacteria by disrupting collective motion and speed

    NASA Astrophysics Data System (ADS)

    Lu, Shengtao; Liu, Fang; Xing, Bengang; Yeow, Edwin K. L.

    2015-12-01

    A monolayer of swarming B. subtilis on semisolid agar is shown to display enhanced resistance against antibacterial drugs due to their collective behavior and motility. The dynamics of swarming motion, visualized in real time using time-lapse microscopy, prevents the bacteria from prolonged exposure to lethal drug concentrations. The elevated drug resistance is significantly reduced when the collective motion of bacteria is judiciously disrupted using nontoxic polystyrene colloidal particles immobilized on the agar surface. The colloidal particles block and hinder the motion of the cells, and force large swarming rafts to break up into smaller packs in order to maneuver across narrow spaces between densely packed particles. In this manner, cohesive rafts rapidly lose their collectivity, speed, and group dynamics, and the cells become vulnerable to the drugs. The antibiotic resistance capability of swarming B. subtilis is experimentally observed to be negatively correlated with the number density of colloidal particles on the engineered surface. This relationship is further tested using an improved self-propelled particle model that takes into account interparticle alignment and hard-core repulsion. This work has pertinent implications on the design of optimal methods to treat drug resistant bacteria commonly found in swarming colonies.

  15. Generation of acid mine drainage around the Karaerik copper mine (Espiye, Giresun, NE Turkey): implications from the bacterial population in the Acısu effluent.

    PubMed

    Sağlam, Emine Selva; Akçay, Miğraç; Çolak, Dilşat Nigar; İnan Bektaş, Kadriye; Beldüz, Ali Osman

    2016-09-01

    The Karaerik Cu mine is a worked-out deposit with large volumes of tailings and slags which were left around the mine site without any protection. Natural feeding of these material and run-off water from the mineralised zones into the Acısu effluent causes a serious environmental degradation and creation of acid mine drainage (AMD) along its entire length. This research aims at modelling the formation of AMD with a specific attempt on the characterisation of the bacterial population in association with AMD and their role on its occurrence. Based on 16SrRNA analyses of the clones obtained from a composite water sample, the bacterial community was determined to consist of Acidithiobacillus ferrivorans, Ferrovum myxofaciens, Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans as iron-oxidising bacteria, Acidocella facilis, Acidocella aluminiidurans, Acidiphilium cryptum and Acidiphilium multivorum as iron-reducing bacteria, and Acidithiobacillus ferrivorans, Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Acidiphilium cryptum as sulphur-oxidising bacteria. This association of bacteria with varying roles was interpreted as evidence of a concomitant occurrence of sulphur and iron cycles during the generation of AMD along the Acısu effluent draining the Karaerik mine.

  16. Inexpensive and fast pathogenic bacteria screening using field-effect transistors.

    PubMed

    Formisano, Nello; Bhalla, Nikhil; Heeran, Mel; Reyes Martinez, Juana; Sarkar, Amrita; Laabei, Maisem; Jolly, Pawan; Bowen, Chris R; Taylor, John T; Flitsch, Sabine; Estrela, Pedro

    2016-11-15

    While pathogenic bacteria contribute to a large number of globally important diseases and infections, current clinical diagnosis is based on processes that often involve culturing which can be time-consuming. Therefore, innovative, simple, rapid and low-cost solutions to effectively reduce the burden of bacterial infections are urgently needed. Here we demonstrate a label-free sensor for fast bacterial detection based on metal-oxide-semiconductor field-effect transistors (MOSFETs). The electric charge of bacteria binding to the glycosylated gates of a MOSFET enables quantification in a straightforward manner. We show that the limit of quantitation is 1.9×10(5) CFU/mL with this simple device, which is more than 10,000-times lower than is achieved with electrochemical impedance spectroscopy (EIS) and matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-ToF) on the same modified surfaces. Moreover, the measurements are extremely fast and the sensor can be mass produced at trivial cost as a tool for initial screening of pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Submicron-Scale Heterogeneities in Nickel Sorption of Various Cell-Mineral Aggregates Formed by Fe(II)-Oxidizing Bacteria.

    PubMed

    Schmid, Gregor; Zeitvogel, Fabian; Hao, Likai; Ingino, Pablo; Adaktylou, Irini; Eickhoff, Merle; Obst, Martin

    2016-01-05

    Fe(II)-oxidizing bacteria form biogenic cell-mineral aggregates (CMAs) composed of microbial cells, extracellular organic compounds, and ferric iron minerals. CMAs are capable of immobilizing large quantities of heavy metals, such as nickel, via sorption processes. CMAs play an important role for the fate of heavy metals in the environment, particularly in systems characterized by elevated concentrations of dissolved metals, such as mine drainage or contaminated sediments. We applied scanning transmission (soft) X-ray microscopy (STXM) spectrotomography for detailed 3D chemical mapping of nickel sorbed to CMAs on the submicron scale. We analyzed different CMAs produced by phototrophic or nitrate-reducing microbial Fe(II) oxidation and, in addition, a twisted stalk structure obtained from an environmental biofilm. Nickel showed a heterogeneous distribution and was found to be preferentially sorbed to biogenically precipitated iron minerals such as Fe(III)-(oxyhydr)oxides and, to a minor extent, associated with organic compounds. Some distinct nickel accumulations were identified on the surfaces of CMAs. Additional information obtained from scatter plots and angular distance maps, showing variations in the nickel-iron and nickel-organic carbon ratios, also revealed a general correlation between nickel and iron. Although a high correlation between nickel and iron was observed in 2D maps, 3D maps revealed this to be partly due to projection artifacts. In summary, by combining different approaches for data analysis, we unambiguously showed the heterogeneous sorption behavior of nickel to CMAs.

  18. The vaginal microbiome, vaginal anti-microbial defence mechanisms and the clinical challenge of reducing infection-related preterm birth.

    PubMed

    Witkin, S S

    2015-01-01

    Ascending bacterial infection is implicated in about 40-50% of preterm births. The human vaginal microbiota in most women is dominated by lactobacilli. In women whose vaginal microbiota is not lactobacilli-dominated anti-bacterial defence mechanisms are reduced. The enhanced proliferation of pathogenic bacteria plus degradation of the cervical barrier increase bacterial passage into the endometrium and amniotic cavity and trigger preterm myometrial contractions. Evaluation of protocols to detect the absence of lactobaciili dominance in pregnant women by self-measuring vaginal pH, coupled with measures to promote growth of lactobacilli are novel prevention strategies that may reduce the occurrence of preterm birth in low-resource areas. © 2014 Royal College of Obstetricians and Gynaecologists.

  19. Metabolic primers for detection of (Per)chlorate-reducing bacteria in the environment and phylogenetic analysis of cld gene sequences.

    PubMed

    Bender, Kelly S; Rice, Melissa R; Fugate, William H; Coates, John D; Achenbach, Laurie A

    2004-09-01

    Natural attenuation of the environmental contaminant perchlorate is a cost-effective alternative to current removal methods. The success of natural perchlorate remediation is dependent on the presence and activity of dissimilatory (per)chlorate-reducing bacteria (DPRB) within a target site. To detect DPRB in the environment, two degenerate primer sets targeting the chlorite dismutase (cld) gene were developed and optimized. A nested PCR approach was used in conjunction with these primer sets to increase the sensitivity of the molecular detection method. Screening of environmental samples indicated that all products amplified by this method were cld gene sequences. These sequences were obtained from pristine sites as well as contaminated sites from which DPRB were isolated. More than one cld phylotype was also identified from some samples, indicating the presence of more than one DPRB strain at those sites. The use of these primer sets represents a direct and sensitive molecular method for the qualitative detection of (per)chlorate-reducing bacteria in the environment, thus offering another tool for monitoring natural attenuation. Sequences of cld genes isolated in the course of this project were also generated from various DPRB and provided the first opportunity for a phylogenetic treatment of this metabolic gene. Comparisons of the cld and 16S ribosomal DNA (rDNA) gene trees indicated that the cld gene does not track 16S rDNA phylogeny, further implicating the possible role of horizontal transfer in the evolution of (per)chlorate respiration.

  20. Isolation, identification and characterization of indigenous fungi for bioremediation of hexavalent chromium, nickel and cobalt

    NASA Astrophysics Data System (ADS)

    Hernahadini, Nelis; Suhandono, Sony; Choesin, Devi N.; Chaerun, Siti K.; Kadarusman, Ade

    2014-03-01

    Waste from nickel mining of Sorowako in South Sulawesi contains hexavalent chromium, nickel and cobalt metals in high concentration and may have a negative impact to the environment. Common waste treatment systems such as chemical treatment using a reducing reagent may still have a negative impact. Bioremediation using fungi or bacteria becomes more popular because it is an environmentally friendly alternative. The purposes of this study are to isolate and identify indigenous fungi that are resistant to heavy metals (hexavalent chromium, nickel, and cobalt) and are capable of reducing the concentration of metals in mining wastes. Ten fungal isolates were successfully isolated from the soils and pond sediments in the area of nickel mining in Sorowako. Selection of superior isolate was carried out by growing all the isolates on PDA medium, which contained all of the three metals. One superior isolate was identified to be able to grow on medium with concentrations of 6400 ppm hexavalent chromium, 200 ppm nickel and 50 ppm cobalt. Molecular identification and phylogenetic studies of the isolate using fungal PCR primers developed to amplify the ITS (internal transcribed spacer) region showed that the isolate sequence was very close to Trichoderma atroviride with 99.8% similarity. Optimum incubation time for the uptake of hexavalent chromium was 3 days, nickel and cobalt was 5 days, respectively, with an optimum pH of 4.

  1. Physiological and Metagenomic Analyses of Microbial Mats Involved in Self-Purification of Mine Waters Contaminated with Heavy Metals

    PubMed Central

    Drewniak, Lukasz; Krawczyk, Pawel S.; Mielnicki, Sebastian; Adamska, Dorota; Sobczak, Adam; Lipinski, Leszek; Burec-Drewniak, Weronika; Sklodowska, Aleksandra

    2016-01-01

    Two microbial mats found inside two old (gold and uranium) mines in Zloty Stok and Kowary located in SW Poland seem to form a natural barrier that traps heavy metals leaking from dewatering systems. We performed complex physiological and metagenomic analyses to determine which microorganisms are the main driving agents responsible for self-purification of the mine waters and identify metabolic processes responsible for the observed features. SEM and energy dispersive X-ray microanalysis showed accumulation of heavy metals on the mat surface, whereas, sorption experiments showed that neither microbial mats were completely saturated with heavy metals present in the mine waters, indicating that they have a large potential to absorb significant quantities of metal. The metagenomic analysis revealed that Methylococcaceae and Methylophilaceae families were the most abundant in both communities, moreover, it strongly suggest that backbones of both mats were formed by filamentous bacteria, such as Leptothrix, Thiothrix, and Beggiatoa. The Kowary bacterial community was enriched with the Helicobacteraceae family, whereas the Zloty Stok community consist mainly of Sphingomonadaceae, Rhodobacteraceae, and Caulobacteraceae families. Functional (culture-based) and metagenome (sequence-based) analyses showed that bacteria involved in immobilization of heavy metals, rather than those engaged in mobilization, were the main driving force within the analyzed communities. In turn, a comparison of functional genes revealed that the biofilm formation and heavy metal resistance (HMR) functions are more desirable in microorganisms engaged in water purification than the ability to utilize heavy metals in the respiratory process (oxidation-reduction). These findings provide insight on the activity of bacteria leading, from biofilm formation to self-purification, of mine waters contaminated with heavy metals. PMID:27559332

  2. Cotransport of Herbaspirillum chlorophenolicum FA1 and heavy metals in saturated porous media: column studies and modeling approaches

    NASA Astrophysics Data System (ADS)

    Li, X.; Xu, H.; Wu, J.

    2017-12-01

    For in situ biodegradation of organic contaminants in soil and groundwater, precise prediction and monitoring of the movement of the bio-agent is vital for the effectiveness of the subsurface bioremediation technologies. Therefore, the fate and transport of functional microorganisms in porous media has been extensively investigated in the literature, and the effects of a number of physical and chemical factors have been explored. During the bioremediation of contaminated sites, it is highly likely that functional bacteria and heavy metals would be simultaneously present for heavy metals often co-exist with organic contaminants like polycyclic aromatic hydrocarbons (PAHs) in polluted environment. To date, relevant studies on the interactions between heavy metals and functional agents such as PAHs-degrading bacteria are lacking and thus require investigation. In this study, the cotransport of bioremediation agents and heavy metals were evaluated through batch and column experiments. Herbaspirillum chlorophenolicum FA1, a pure bacterial strain capable of absorbing heavy metals and degrading polycyclic aromatic hydrocarbons (PAHs), was used as the model remediation agent, and metal ions of Pb(Ⅱ) and Cd(Ⅱ) were used as the representative heavy metals. Effects of metal species, the concentration of heavy metals, the sequence of entering the media, and the activity of biomass were investigated in detail. In addition, numerical simulations of breakthrough curves (BTC) data were also performed for information gathering. Results of this study could advance our understanding of interactions between functional bacteria and heavy metals during bioremediation process and help to develop successful bioremediation strategies.This work was financially supported by the National Natural Science Foundation of China -Xinjiang Project (U1503282), the National Natural Science Foundation of China (41030746, 41102148), and the Natural Science Foundation of Jiangsu Province (BK20151385). Keywords: Herbaspirillum chlorophenolicum FA1, heavy metal, porous media, cotransport, modeling

  3. Structural, spectral and biological studies of binuclear tetradentate metal complexes of N 3O Schiff base ligand synthesized from 4,6-diacetylresorcinol and diethylenetriamine

    NASA Astrophysics Data System (ADS)

    Emara, Adel A. A.

    2010-09-01

    The binuclear Schiff base, H 2L, ligand was synthesized by reaction of 4,6-diacetylresorcinol with diethylenetriamine in the molar ratio 1:2. The coordination behavior of the H 2L towards Cu(II), Ni(II), Co(II), Zn(II), Fe(III), Cr(III), VO(IV) and UO 2(VI) ions has been investigated. The elemental analyses, magnetic moments, thermal studies and IR, electronic, 1H NMR, ESR and mass spectra were used to characterize the isolated ligand and its metal complexes. The ligand acts as dibasic with two N 3O-tetradentate sites and can coordinate with two metal ions to form binuclear complexes. The bonding sites are the nitrogen atoms of the azomethine and amine groups and the oxygen atoms of the phenolic groups. The metal complexes exhibit either square planar, tetrahedral, square pyramid or octahedral structures. The Schiff base ligand and its metal complexes were tested against four pathogenic bacteria ( Staphylococcus aureus and Streptococcus pyogenes) as Gram-positive bacteria, and ( Pseudomonas fluorescens and Pseudomonas phaseolicola) as Gram-negative bacteria and two pathogenic fungi ( Fusarium oxysporum and Aspergillus fumigatus) to assess their antimicrobial properties. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms.

  4. Bacteria in atmospheric waters: Detection, characteristics and implications

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Niu, Hongya; Murata, Kotaro; Wu, Zhijun; Hu, Min; Kojima, Tomoko; Zhang, Daizhou

    2018-04-01

    In this review paper, we synthesize the current knowledges about bacteria in atmospheric waters, e.g., cloud, fog, rain, and snow, most of which were obtained very recently. First, we briefly describe the importance of bacteria in atmospheric waters, i.e., the essentiality of studying bacteria in atmospheric waters in understanding aerosol-cloud-precipitation-climate interactions in the Earth system. Next, approaches to collect atmospheric water samples for the detection of bacteria and methods to identify the bacteria are summarized and compared. Then the available data on the abundance, viability and community composition of bacteria in atmospheric waters are summarized. The average bacterial concentration in cloud water was usually on the order 104-105 cells mL-1, while that in precipitation on the order 103-104 cells mL-1. Most of the bacteria were viable or metabolically active. Their community composition was highly diverse and differed at various sites. Factors potentially influencing the bacteria, e.g., air pollution levels and sources, meteorological conditions, seasonal effect, and physicochemical properties of atmospheric waters, are described. After that, the implications of bacteria present in atmospheric waters, including their effect on nucleation in clouds, atmospheric chemistry, ecosystems and public health, are briefly discussed. Finally, based on the current knowledges on bacteria in atmospheric waters, which in fact remains largely unknown, we give perspectives that should be paid attention to in future studies.

  5. Biosorption of Heavy Metals from Aqueous Solution by Bacteria Isolated from Contaminated Soil.

    PubMed

    Dhanwal, Pradeep; Kumar, Anil; Dudeja, Shruti; Badgujar, Hemlata; Chauhan, Rohit; Kumar, Abhishek; Dhull, Poonam; Chhokar, Vinod; Beniwal, Vikas

    2018-05-01

      This study was carried out to analyze the heavy metals biosorption potential of bacteria isolated from soil contaminated with electroplating industrial effluents. Bacterial isolates were screened for their multi-metal biosorption potential against copper, nickel, lead, and chromium. Bacterial isolate CU4A showed the maximum uptake of copper, nickel, lead, and chromium in aqueous solution, with a biosorption efficiency of 87.16 %, 79.62%, 84.92%, and 68.12%, respectively. The bacterial strain CU4A was identified as Bacillus cereus, following 16S rRNA gene sequence analysis. The surface chemical functional groups of bacterial biomass were identified by Fourier transform infrared (FTIR) spectroscopy as hydroxyl, carboxyl, amine, and halide, which may be involved in the biosorption of heavy metals. Analysis with scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) confirmed the adsorption of metals on the bacterial cell mass. The results of this study are significant and could be further investigated for the removal of heavy metals from contaminated environments.

  6. Association of metal tolerance with multiple antibiotic resistance of bacteria isolated from drinking water.

    PubMed Central

    Calomiris, J J; Armstrong, J L; Seidler, R J

    1984-01-01

    Bacterial isolates from the drinking water system of an Oregon coastal community were examined to assess the association of metal tolerance with multiple antibiotic resistance. Positive correlations between tolerance to high levels of Cu2+, Pb2+, and Zn2+ and multiple antibiotic resistance were noted among bacteria from distribution waters but not among bacteria from raw waters. Tolerances to higher levels of Al3+ and Sn2+ were demonstrated more often by raw water isolates which were not typically multiple antibiotic resistant. A similar incidence of tolerance to Cd2+ was demonstrated by isolates of both water types and was not associated with multiple antibiotic resistance. These results suggest that simultaneous selection phenomena occurred in distribution water for bacteria which exhibited unique patterns of tolerance to Cu2+, Pb2+, and Zn2+ and antibiotic resistance. PMID:6742841

  7. Heavy Metal Stress, Signaling, and Tolerance Due to Plant-Associated Microbes: An Overview

    PubMed Central

    Tiwari, Shalini; Lata, Charu

    2018-01-01

    Several anthropogenic activities including mining, modern agricultural practices, and industrialization have long-term detrimental effect on our environment. All these factors lead to increase in heavy metal concentration in soil, water, and air. Soil contamination with heavy metals cause several environmental problems and imparts toxic effect on plant as well as animals. In response to these adverse conditions, plants evolve complex molecular and physiological mechanisms for better adaptability, tolerance, and survival. Nowadays conventional breeding and transgenic technology are being used for development of metal stress resistant varieties which, however, are time consuming and labor intensive. Interestingly the use of microbes as an alternate technology for improving metal tolerance of plants is gaining momentum recently. The use of these beneficial microorganisms is considered as one of the most promising methods for safe crop-management practices. Interaction of plants with soil microorganisms can play a vital role in acclimatizing plants to metalliferous environments, and can thus be explored to improve microbe-assisted metal tolerance. Plant-associated microbes decrease metal accumulation in plant tissues and also help to reduce metal bioavailability in soil through various mechanisms. Nowadays, a novel phytobacterial strategy, i.e., genetically transformed bacteria has been used to increase remediation of heavy metals and stress tolerance in plants. This review takes into account our current state of knowledge of the harmful effects of heavy metal stress, the signaling responses to metal stress, and the role of plant-associated microbes in metal stress tolerance. The review also highlights the challenges and opportunities in this continued area of research on plant–microbe–metal interaction. PMID:29681916

  8. Enzymatic iron and uranium reduction by sulfate-reducing bacteria

    USGS Publications Warehouse

    Lovley, D.R.; Roden, E.E.; Phillips, E.J.P.; Woodward, J.C.

    1993-01-01

    The potential for sulfate-reducing bacteria (SRB) to enzymatically reduce Fe(III) and U(VI) was investigated. Five species of Desulfovibrio as well as Desulfobacterium autotrophicum and Desulfobulbus propionicus reduced Fe(III) chelated with nitrilotriacetic acid as well as insoluble Fe(III) oxide. Fe(III) oxide reduction resulted in the accumulation of magnetite and siderite. Desulfobacter postgatei reduced the chelated Fe(III) but not Fe(III) oxide. Desulfobacter curvatus, Desulfomonile tiedjei, and Desulfotomaculum acetoxidans did not reduce Fe(III). Only Desulfovibrio species reduced U(VI). U(VI) reduction resulted in the precipitation of uraninite. None of the SRB that reduced Fe(III) or U(VI) appeared to conserve enough energy to support growth from this reaction. However, Desulfovibrio desulfuricans metabolized H2 down to lower concentrations with Fe(III) or U(VI) as the electron acceptor than with sulfate, suggesting that these metals may be preferred electron acceptors at the low H2 concentrations present in most marine sediments. Molybdate did not inhibit Fe(III) reduction by D. desulfuricans. This indicates that the inability of molybdate to inhibit Fe(III) reduction in marine sediments does not rule out the possibility that SRB are important catalysts for Fe(III) reduction. The results demonstrate that although SRB were previously considered to reduce Fe(III) and U(VI) indirectly through the production of sulfide, they may also directly reduce Fe(III) and U(VI) through enzymatic mechanisms. These findings, as well as our recent discovery that the So-reducing microorganism Desulfuromonas acetoxidans can reduce Fe(III), demonstrate that there are close links between the microbial sulfur, iron, and uranium cycles in anaerobic marine sediments. ?? 1993.

  9. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals.

    PubMed

    Wu, Qihang; Leung, Jonathan Y S; Geng, Xinhua; Chen, Shejun; Huang, Xuexia; Li, Haiyan; Huang, Zhuying; Zhu, Libin; Chen, Jiahao; Lu, Yayin

    2015-02-15

    Illegal e-waste recycling activity has caused heavy metal pollution in many developing countries, including China. In recent years, the Chinese government has strengthened enforcement to impede such activity; however, the heavy metals remaining in the abandoned e-waste recycling site can still pose ecological risk. The present study aimed to investigate the concentrations of heavy metals in soil and water in the vicinity of an abandoned e-waste recycling site in Longtang, South China. Results showed that the surface soil of the former burning and acid-leaching sites was still heavily contaminated with Cd (>0.39 mg kg(-1)) and Cu (>1981 mg kg(-1)), which exceeded their respective guideline levels. The concentration of heavy metals generally decreased with depth in both burning site and paddy field, which is related to the elevated pH and reduced TOM along the depth gradient. The pond water was seriously acidified and contaminated with heavy metals, while the well water was slightly contaminated since heavy metals were mostly retained in the surface soil. The use of pond water for irrigation resulted in considerable heavy metal contamination in the paddy soil. Compared with previous studies, the reduced heavy metal concentrations in the surface soil imply that heavy metals were transported to the other areas, such as pond. Therefore, immediate remediation of the contaminated soil and water is necessary to prevent dissemination of heavy metals and potential ecological disaster. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Non-contact electromagnetic induction heating for eradicating bacteria and yeasts on biomaterials and possible relevance to orthopaedic implant infections: In vitro findings.

    PubMed

    Pijls, B G; Sanders, I M J G; Kuijper, E J; Nelissen, R G H H

    2017-05-01

    Infection of implants is a major problem in elective and trauma surgery. Heating is an effective way to reduce the bacterial load in food preparation, and studies on hyperthermia treatment for cancer have shown that it is possible to heat metal objects with pulsed electromagnetic fields selectively (PEMF), also known as induction heating. We therefore set out to answer the following research question: is non-contact induction heating of metallic implants effective in reducing bacterial load in vitro ? Titanium alloy cylinders (Ti6Al4V) were exposed to PEMF from an induction heater with maximum 2000 watts at 27 kHz after being contaminated with five different types of micro-organisms: Staphylococcus epidermidis; Staphylococcus aureus; Pseudomonas aeruginosa ; spore-forming Bacillus cereus; and yeast Candida albicans . The cylinders were exposed to incremental target temperatures (35°C, 45°C, 50°C, 55°C, 60°C, 65°C, 70°C) for up to 3.5 minutes. There was an average linear heating rate of 0.39°C per second up to the target temperature, and thereafter the target temperature was maintained until the end of the experiment. At 60°C and higher (duration 3.5 minutes), there was a 6-log reduction or higher for every micro-organism tested. At 60°C, we found that the shortest duration of effective induction heating was 1.5 minutes. This resulted in a 5-log reduction or higher for every micro-organism tested. Non-contact induction heating of a titanium disk is effective in reducing bacterial load in vitro . These promising results can be further explored as a new treatment modality for infections of metal orthopaedic implants. Cite this article : B. G. Pijls, I. M. J. G. Sanders, E. J. Kuijper, R. G. H. H. Nelissen. Non-contact electromagnetic induction heating for eradicating bacteria and yeasts on biomaterials and possible relevance to orthopaedic implant infections: In vitro findings. Bone Joint Res 2017;6:323-330. DOI: 10.1302/2046-3758.65.BJR-2016-0308.R1. © 2017 Pijls et al.

  11. Comparative Transcriptome Analysis of Desulfovibrio Vulgaris Grown in Planktonic Culture and Mature Biofilm on a Steel Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Weiwen; Culley, David E.; Nie, Lei

    2007-08-01

    The build-up of biofilms of sulphate -reducing bacteria (SRB) on metals surfaces may lead to severe corrosion of iron. To understand the processes at molecular level, in this study, a whole-genome oligonucleotide microarray was used to examine differential expression patterns between planktonic populations and mature biofilm of model SRB species Desulfovibrio vulgaris. Statistical analysis revealed that 472 genes were differentially expressed (1.5 fold or more with a p value less than 0.025) when comparing biofilm to planktonic cells. Among the differentially expressed genes were several that corresponded to biofilm formation genes identified in many aerobic bacterial biofilms (i.e., Pseudomonas speciesmore » and Escherichia coli), such as down-regulation of genes encoding flagellin, flagellar motor switch protein and chemotaxis proteins involved in cell motility and induction of genes encoding sugar transferase and glycogen synthase involved in exopolysaccharide biosynthesis. In addition, D. vulgaris biofilm-bound cells exhibited decreased transcription of genes involved in protein synthesis, energy metabolism and sulfate reduction, as well as genes involved in general stress responses. These findings were all consistent with early suggestion that the average physiology of biofilm cells were similar to planktonic cells of stationary phases. Most notably, up-regulation of large number of outer membrane proteins was observed in D. vulgaris biofilm. Although their function is still unknown, the higher expression of these genes in D. vulgaris biofilm could implicate important roles formation and maintenance of multi-cellular consortium on metal surface. The study provided insights into the metabolic networks associated with D. vulgaris biofilm formation and maintenance on an iron surface.« less

  12. Gut microbiota modulation of chemotherapy efficacy and toxicity.

    PubMed

    Alexander, James L; Wilson, Ian D; Teare, Julian; Marchesi, Julian R; Nicholson, Jeremy K; Kinross, James M

    2017-06-01

    Evidence is growing that the gut microbiota modulates the host response to chemotherapeutic drugs, with three main clinical outcomes: facilitation of drug efficacy; abrogation and compromise of anticancer effects; and mediation of toxicity. The implication is that gut microbiota are critical to the development of personalized cancer treatment strategies and, therefore, a greater insight into prokaryotic co-metabolism of chemotherapeutic drugs is now required. This thinking is based on evidence from human, animal and in vitro studies that gut bacteria are intimately linked to the pharmacological effects of chemotherapies (5-fluorouracil, cyclophosphamide, irinotecan, oxaliplatin, gemcitabine, methotrexate) and novel targeted immunotherapies such as anti-PD-L1 and anti-CLTA-4 therapies. The gut microbiota modulate these agents through key mechanisms, structured as the 'TIMER' mechanistic framework: Translocation, Immunomodulation, Metabolism, Enzymatic degradation, and Reduced diversity and ecological variation. The gut microbiota can now, therefore, be targeted to improve efficacy and reduce the toxicity of current chemotherapy agents. In this Review, we outline the implications of pharmacomicrobiomics in cancer therapeutics and define how the microbiota might be modified in clinical practice to improve efficacy and reduce the toxic burden of these compounds.

  13. Influence of zinc, lead, and cadmium pollutants on the microflora of hawthorn leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bewley, R.J.F.; Campbell, R.

    1980-01-01

    Transect studies were conducted to determine the relative effects of zinc, lead, and cadmium pollution on microorganisms occurring on hawthorn leaves at varying distances from a smelting complex. Sporobolomyces roseus was absent from the most heavily contaminated leaves but, although lead was inhibitory, other environmental factors were also important in determining its overall population level. Conversely, Aureobasidium pullulans and nonpigmented yeasts showed a significant partial positive correlation with lead but were inhibited by zinc and/or cadmium. Numbers of bacterial colonies were only slightly reduced by the combined effect of all three metals, but total numbers of bacteria were highly negativelymore » correlated with lead. Filamentous fungi, isolated by leaf washing, were only slightly inhibited by all three metals, and the degree of mycelial proliferation on senescent leaves was little affected by heavy metal pollution. Computer-generated maps were produced of the distribution of A. pullulans in relation to zinc and lead fallout. 14 references, 7 figures, 2 tables.« less

  14. Evidence for Microbial Fe(III) Reduction in Anoxic, Mining-Impacted Lake Sediments (Lake Coeur d'Alene, Idaho)

    PubMed Central

    Cummings, David E.; March, Anthony W.; Bostick, Benjamin; Spring, Stefan; Caccavo, Frank; Fendorf, Scott; Rosenzweig, R. Frank

    2000-01-01

    Mining-impacted sediments of Lake Coeur d'Alene, Idaho, contain more than 10% metals on a dry weight basis, approximately 80% of which is iron. Since iron (hydr)oxides adsorb toxic, ore-associated elements, such as arsenic, iron (hydr)oxide reduction may in part control the mobility and bioavailability of these elements. Geochemical and microbiological data were collected to examine the ecological role of dissimilatory Fe(III)-reducing bacteria in this habitat. The concentration of mild-acid-extractable Fe(II) increased with sediment depth up to 50 g kg−1, suggesting that iron reduction has occurred recently. The maximum concentrations of dissolved Fe(II) in interstitial water (41 mg liter−1) occurred 10 to 15 cm beneath the sediment-water interface, suggesting that sulfidogenesis may not be the predominant terminal electron-accepting process in this environment and that dissolved Fe(II) arises from biological reductive dissolution of iron (hydr)oxides. The concentration of sedimentary magnetite (Fe3O4), a common product of bacterial Fe(III) hydroxide reduction, was as much as 15.5 g kg−1. Most-probable-number enrichment cultures revealed that the mean density of Fe(III)-reducing bacteria was 8.3 × 105 cells g (dry weight) of sediment−1. Two new strains of dissimilatory Fe(III)-reducing bacteria were isolated from surface sediments. Collectively, the results of this study support the hypothesis that dissimilatory reduction of iron has been and continues to be an important biogeochemical process in the environment examined. PMID:10618217

  15. The effect of probiotic bacteria (Lactobacillus acidophilus and Bifidobacterium lactis) on the accumulation of lead in rat brains.

    PubMed

    Zanjani, Saman Yahyavi; Eskandari, Mohammad Reza; Kamali, Koorosh; Mohseni, Mehran

    2017-01-01

    Lead is a toxic metal present in different concentrations in a wide variety of food products. Exposure to lead, even to low levels, causes acute and chronic toxicities. Lead can cross the blood-brain barrier and accumulate in the nervous system. Probiotics are live microorganisms that, when used in adequate amounts, confer a health benefit on the host. Although a recent study demonstrated that the studied bacteria have a protective effect against acute lead toxicity, no research has been found that shows the long-term impact of these bacteria in vivo. The current study surveyed the protective effects of two species of probiotics, Lactobacillus acidophilus LA-5 and Bifidobacterium lactis BB-12, that are most widely used in many functional foods against oral lead exposure (4 weeks) in rat brains. The results revealed that, at the end of the second week of chronic exposure to lead and probiotic bacteria, the lowest level of lead belonged to the Lactobacillus group. At the end of the fourth week, the lowest amount of lead was related to the group receiving both types of probiotics. With the physiological benefits of probiotic consumption, the bacterial solution in this study did not show high efficacy in reducing brain lead concentrations.

  16. Surface density: a new parameter in the fundamental metallicity relation of star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tetsuya; Goto, Tomotsugu; Momose, Rieko

    2018-04-01

    Star-forming galaxies display a close relation among stellar mass, metallicity, and star formation rate (or molecular-gas mass). This is known as the fundamental metallicity relation (FMR) (or molecular-gas FMR), and it has a profound implication on models of galaxy evolution. However, there still remains a significant residual scatter around the FMR. We show here that a fourth parameter, the surface density of stellar mass, reduces the dispersion around the molecular-gas FMR. In a principal component analysis of 29 physical parameters of 41 338 star-forming galaxies, the surface density of stellar mass is found to be the fourth most important parameter. The new 4D fundamental relation forms a tighter hypersurface that reduces the metallicity dispersion to 50 per cent of that of the molecular-gas FMR. We suggest that future analyses and models of galaxy evolution should consider the FMR in a 4D space that includes surface density. The dilution time-scale of gas inflow and the star-formation efficiency could explain the observational dependence on surface density of stellar mass.

  17. The bioleaching potential of a bacterial consortium.

    PubMed

    Latorre, Mauricio; Cortés, María Paz; Travisany, Dante; Di Genova, Alex; Budinich, Marko; Reyes-Jara, Angélica; Hödar, Christian; González, Mauricio; Parada, Pilar; Bobadilla-Fazzini, Roberto A; Cambiazo, Verónica; Maass, Alejandro

    2016-10-01

    This work presents the molecular foundation of a consortium of five efficient bacteria strains isolated from copper mines currently used in state of the art industrial-scale biotechnology. The strains Acidithiobacillus thiooxidans Licanantay, Acidiphilium multivorum Yenapatur, Leptospirillum ferriphilum Pañiwe, Acidithiobacillus ferrooxidans Wenelen and Sulfobacillus thermosulfidooxidans Cutipay were selected for genome sequencing based on metal tolerance, oxidation activity and bioleaching of copper efficiency. An integrated model of metabolic pathways representing the bioleaching capability of this consortium was generated. Results revealed that greater efficiency in copper recovery may be explained by the higher functional potential of L. ferriphilum Pañiwe and At. thiooxidans Licanantay to oxidize iron and reduced inorganic sulfur compounds. The consortium had a greater capacity to resist copper, arsenic and chloride ion compared to previously described biomining strains. Specialization and particular components in these bacteria provided the consortium a greater ability to bioleach copper sulfide ores. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Genetically engineered acidophilic heterotrophic bacteria by bacteriophage transduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, T.E.; Bruhn, D.F.; Bulmer, D.F.

    1989-05-10

    A bacteriophage capable of infecting acidophilic heterotrophic bacteria and processes for genetically engineering acidophilic bacteria for biomining or sulfur removal from coal are disclosed. The bacteriophage is capable of growth in cells existing at pH at or below 3.0. Lytic forms of the phage introduced into areas experiencing acid drainage kill the bacteria causing such drainage. Lysogenic forms of the phage having genes for selective removal of metallic or nonmetallic elements can be introduced into acidophilic bacteria to effect removal of the desired element from ore or coal. 1 fig., 1 tab.

  19. The influence of metal speciation in combustion waste on the efficiency of Cu, Pb, Zn, Cd, Ni and Cr bioleaching in a mixed culture of sulfur-oxidizing and biosurfactant-producing bacteria.

    PubMed

    Karwowska, Ewa; Wojtkowska, Małgorzata; Andrzejewska, Dorota

    2015-12-15

    Metal leachability from ash and combustion slag is related to the physico-chemical properties, including their speciation in the waste. Metals speciation is an important factor that influences the efficiency of metal bioleaching from combustion wastes in a mixed culture of acidophilic and biosurfactant-producing bacteria. It was observed that individual metals tended to occur in different fractions, which reflects their susceptibility to bioleaching. Cr and Ni were readily removed from wastes when present with a high fraction bound to carbonates. Cd and Pb where not effectively bioleached when present in high amounts in a fraction bound to organic matter. The best bioleaching results were obtained for power plant slag, which had a high metal content in the exchangeable, bound to carbonates and bound to Fe and Mg oxides fractions- the metal recovery percentage for Zn, Cu and Ni from this waste exceeded 90%. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. ANTIMICROBIAL RESISTANCE AMONG ENTERIC BACTERIA ISOLATED FROM HUMAN AND ANIMAL WASTES AND IMPACTED SURFACE WATERS: COMPARISON WITH NARMS FINDINGS

    EPA Science Inventory

    Human infection with bacteria exhibiting mono or multiple antimicrobial resistance (MAR) has been a growing problem in the US, and studies have implicated livestock as a source of MAR bacteria primarily through foodborne transmission routes. However, waterborne transmission of...

  1. Osteocyte physiology and response to fluid shear stress are impaired following exposure to cobalt and chromium: Implications for bone health following joint replacement

    PubMed Central

    Shah, Karan M.; Orton, Peter; Mani, Nick

    2016-01-01

    ABSTRACT The effects of metal ion exposure on osteocytes, the most abundant cell type in bone and responsible for coordinating bone remodeling, remain unclear. However, several studies have previously shown that exposure to cobalt (Co2+) and chromium (Cr3+), at concentrations equivalent to those found clinically, affect osteoblast and osteoclast survival and function. In this study, we tested the hypothesis that metal ions would similarly impair the normal physiology of osteocytes. The survival, dendritic morphology, and response to fluid shear stress of the mature osteocyte‐like cell‐line MLO‐Y4 following exposure to clinically relevant concentrations and combinations of Co and Cr ions were measured in 2D‐culture. Exposure of MLO‐Y4 cells to metal ions reduced cell number, increased dendrites per cell and increased dendrite length. We found that combinations of metal ions had a greater effect than the individual ions alone, and that Co2+ had a predominate effect on changes to cell numbers and dendrites. Combined metal ion exposure blunted the responses of the MLO‐Y4 cells to fluid shear stress, including reducing the intracellular calcium responses and modulation of genes for the osteocyte markers Cx43 and Gp38, and the signaling molecules RANKL and Dkk‐1. Finally, we demonstrated that in the late osteoblasts/early osteocytes cell line MLO‐A5 that Co2+ exposure had no effect on mineralization, but Cr3+ treatment inhibited mineralization in a dose‐dependent manner, without affecting cell viability. Taken together, these data indicate that metal exposure can directly affect osteocyte physiology, with potential implications for bone health including osseointegration of cementless components, and periprosthetic bone remodeling. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:1716–1723, 2017. PMID:27673573

  2. [Informative indices of the biocorrosion activity for the determination of the character of the aggression ground].

    PubMed

    Chesnokova, M G; Shalai, V V; Kraus, Y A; Mironov, A Y; Blinova, E G

    2016-01-01

    Underground corrosion is referred to the most difficult types of corrosion in connection with that it is multifactorial and differs in progressive dynamics of the participation of each parameter in the process of destruction of the metal. With the aim of the evaluation of the informativeness of the index of the biocorrosion activity caused by the influence of various factors to determine the character of the soil aggressiveness in the district of pipeline laying there was studied the complex of microbiological and physical-chemical indices). There was determined the amount of sulfur cycle bacteria (autotrophic thiobacteria and sulphate-reducing bacteria), the total concentration of sulfur and iron in the soil samples adjacent to the surface of the underground pipelines in the territory of the Khanty-Mansi Autonomous District of Yugra, and the ratio of these indices with a specific electrical resistance of the soil. There was established the predominance ofsamples with weak aggressiveness of the soil (55.17% of cases), with the criterion ofbiocorrosion soil activity of 2,44 ± 0,19. The results show significant differences in the thiobacteria content and mobile iron in the studied soil-ground samples. There was revealed a direct correlation of the average force of concentrations of identified bacteria and iron content in the soil. There was shown the necessity of the implementation of dynamic control and the development of methods of protection of metal structures to prevent biocorrosion in the design and in the process of the operation of the pipeline.

  3. Relationship between microbial community dynamics and process performance during thermophilic sludge bioleaching.

    PubMed

    Chen, Shen-Yi; Chou, Li-Chieh

    2016-08-01

    Heavy metals can be removed from the sludge using bioleaching technologies at thermophilic condition, thereby providing an option for biotreatment of wasted sludge generated from wastewater treatment. The purposes of this study were to establish a molecular biology technique, real-time PCR, for the detection and enumeration of the sulfur-oxidizing bacteria during the thermophilic sludge bioleaching. The 16S rRNA gene for real-time PCR quantification targeted the bioleaching bacteria: Sulfobacillus thermosulfidooxidans, Sulfobacillus acidophilus, and Acidithiobacillus caldus. The specificity and stringency for thermophilic sulfur-oxidizing bacteria were tested before the experiments of monitoring the bacterial community, bacterial number during the thermophilic sludge bioleaching and the future application on testing various environmental samples. The results showed that S. acidophilus was identified as the dominant sulfur-oxidizing bacteria, while A. caldus and S. thermosulfidooxidans occurred in relatively low numbers. The total number of the sulfur-oxidizing bacteria increased during the thermophilic bioleaching process. Meanwhile, the decrease of pH, production of sulfate, degradation of SS/VSS, and solubilization of heavy metal were found to correlate well with the population of thermophilic sulfur-oxidizing bacteria during the bioleaching process. The real-time PCR used in this study is a suitable method to monitor numbers of thermophilic sulfur-oxidizing bacteria during the bioleaching process.

  4. Preventing bacterial growth on implanted device with an interfacial metallic film and penetrating X-rays.

    PubMed

    An, Jincui; Sun, An; Qiao, Yong; Zhang, Peipei; Su, Ming

    2015-02-01

    Device-related infections have been a big problem for a long time. This paper describes a new method to inhibit bacterial growth on implanted device with tissue-penetrating X-ray radiation, where a thin metallic film deposited on the device is used as a radio-sensitizing film for bacterial inhibition. At a given dose of X-ray, the bacterial viability decreases as the thickness of metal film (bismuth) increases. The bacterial viability decreases with X-ray dose increases. At X-ray dose of 2.5 Gy, 98% of bacteria on 10 nm thick bismuth film are killed; while it is only 25% of bacteria are killed on the bare petri dish. The same dose of X-ray kills 8% fibroblast cells that are within a short distance from bismuth film (4 mm). These results suggest that penetrating X-rays can kill bacteria on bismuth thin film deposited on surface of implant device efficiently.

  5. Calcite-accumulating large sulfur bacteria of the genus Achromatium in Sippewissett Salt Marsh

    PubMed Central

    Salman, Verena; Yang, Tingting; Berben, Tom; Klein, Frieder; Angert, Esther; Teske, Andreas

    2015-01-01

    Large sulfur bacteria of the genus Achromatium are exceptional among Bacteria and Archaea as they can accumulate high amounts of internal calcite. Although known for more than 100 years, they remain uncultured, and only freshwater populations have been studied so far. Here we investigate a marine population of calcite-accumulating bacteria that is primarily found at the sediment surface of tide pools in a salt marsh, where high sulfide concentrations meet oversaturated oxygen concentrations during the day. Dynamic sulfur cycling by phototrophic sulfide-oxidizing and heterotrophic sulfate-reducing bacteria co-occurring in these sediments creates a highly sulfidic environment that we propose induces behavioral differences in the Achromatium population compared with reported migration patterns in a low-sulfide environment. Fluctuating intracellular calcium/sulfur ratios at different depths and times of day indicate a biochemical reaction of the salt marsh Achromatium to diurnal changes in sedimentary redox conditions. We correlate this calcite dynamic with new evidence regarding its formation/mobilization and suggest general implications as well as a possible biological function of calcite accumulation in large bacteria in the sediment environment that is governed by gradients. Finally, we propose a new taxonomic classification of the salt marsh Achromatium based on their adaptation to a significantly different habitat than their freshwater relatives, as indicated by their differential behavior as well as phylogenetic distance on 16S ribosomal RNA gene level. In future studies, whole-genome characterization and additional ecophysiological factors could further support the distinctive position of salt marsh Achromatium. PMID:25909974

  6. Protein aggregation in bacteria: the thin boundary between functionality and toxicity.

    PubMed

    Bednarska, Natalia G; Schymkowitz, Joost; Rousseau, Frederic; Van Eldere, Johan

    2013-09-01

    Misfolding and aggregation of proteins have a negative impact on all living organisms. In recent years, aggregation has been studied in detail due to its involvement in neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's diseases, and type II diabetes--all associated with accumulation of amyloid fibrils. This research highlighted the central importance of protein homeostasis, or proteostasis for short, defined as the cellular state in which the proteome is both stable and functional. It implicates an equilibrium between synthesis, folding, trafficking, aggregation, disaggregation and degradation. In accordance with the eukaryotic systems, it has been documented that protein aggregation also reduces fitness of bacterial cells, but although our understanding of the cellular protein quality control systems is perhaps most detailed in bacteria, the use of bacterial proteostasis as a drug target remains little explored. Here we describe protein aggregation as a normal physiological process and its role in bacterial virulence and we shed light on how bacteria defend themselves against the toxic threat of aggregates. We review the impact of aggregates on bacterial viability and look at the ways that bacteria use to maintain a balance between aggregation and functionality. The proteostasis in bacteria can be interrupted via overexpression of proteins, certain antibiotics such as aminoglycosides, as well as antimicrobial peptides--all leading to loss of cell viability. Therefore intracellular protein aggregation and disruption of proteostatic balance in bacteria open up another strategy that should be explored towards the discovery of new antimicrobials.

  7. Calcite-accumulating large sulfur bacteria of the genus Achromatium in Sippewissett Salt Marsh.

    PubMed

    Salman, Verena; Yang, Tingting; Berben, Tom; Klein, Frieder; Angert, Esther; Teske, Andreas

    2015-11-01

    Large sulfur bacteria of the genus Achromatium are exceptional among Bacteria and Archaea as they can accumulate high amounts of internal calcite. Although known for more than 100 years, they remain uncultured, and only freshwater populations have been studied so far. Here we investigate a marine population of calcite-accumulating bacteria that is primarily found at the sediment surface of tide pools in a salt marsh, where high sulfide concentrations meet oversaturated oxygen concentrations during the day. Dynamic sulfur cycling by phototrophic sulfide-oxidizing and heterotrophic sulfate-reducing bacteria co-occurring in these sediments creates a highly sulfidic environment that we propose induces behavioral differences in the Achromatium population compared with reported migration patterns in a low-sulfide environment. Fluctuating intracellular calcium/sulfur ratios at different depths and times of day indicate a biochemical reaction of the salt marsh Achromatium to diurnal changes in sedimentary redox conditions. We correlate this calcite dynamic with new evidence regarding its formation/mobilization and suggest general implications as well as a possible biological function of calcite accumulation in large bacteria in the sediment environment that is governed by gradients. Finally, we propose a new taxonomic classification of the salt marsh Achromatium based on their adaptation to a significantly different habitat than their freshwater relatives, as indicated by their differential behavior as well as phylogenetic distance on 16S ribosomal RNA gene level. In future studies, whole-genome characterization and additional ecophysiological factors could further support the distinctive position of salt marsh Achromatium.

  8. A sulfate-reducing bacterium with unusual growing capacity in moderately acidic conditions.

    PubMed

    Rampinelli, L R; Azevedo, R D; Teixeira, M C; Guerra-Sá, R; Leão, V A

    2008-09-01

    The use of sulfate-reducing bacteria (SRB) is a cost-effective route to treat sulfate- contaminated waters and precipitate metals. The isolation and characterization of a SRB strain from an AMD in a Brazilian tropical region site was carried out. With a moderately acidic pH (5.5), the C.1 strain began its growth and with continued growth, modified the pH accordingly. The strain under these conditions reduced sulfate at the same rate as an experiment performed using an initial pH of 7.0. The dsrB gene-based molecular approach was used for the characterization of this strain and its phylogenetic affiliation was similar to genus Desulfovibrio sp. The results show an SRB isolate with unexpected sulfate reducing capacity in moderately acidic conditions, bringing new possibilities for the treatment of AMD, as acid water would be neutralized to a mildly acidic condition.

  9. Treatment of antimony mine drainage: challenges and opportunities with special emphasis on mineral adsorption and sulfate reducing bacteria.

    PubMed

    Li, Yongchao; Hu, Xiaoxian; Ren, Bozhi

    2016-01-01

    The present article summarizes antimony mine distribution, antimony mine drainage generation and environmental impacts, and critically analyses the remediation approach with special emphasis on iron oxidizing bacteria and sulfate reducing bacteria. Most recent research focuses on readily available low-cost adsorbents, such as minerals, wastes, and biosorbents. It is found that iron oxides prepared by chemical methods present superior adsorption ability for Sb(III) and Sb(V). However, this process is more costly and iron oxide activity can be inhibited by plenty of sulfate in antimony mine drainage. In the presence of sulfate reducing bacteria, sulfate can be reduced to sulfide and form Sb(2)S(3) precipitates. However, dissolved oxygen and lack of nutrient source in antimony mine drainage inhibit sulfate reducing bacteria activity. Biogenetic iron oxide minerals from iron corrosion by iron-oxidizing bacteria may prove promising for antimony adsorption, while the micro-environment generated from iron corrosion by iron oxidizing bacteria may provide better growth conditions for symbiotic sulfate reducing bacteria. Finally, based on biogenetic iron oxide adsorption and sulfate reducing bacteria followed by precipitation, the paper suggests an alternative treatment for antimony mine drainage that deserves exploration.

  10. Geothrix fermentans Secretes Two Different Redox-Active Compounds To Utilize Electron Acceptors across a Wide Range of Redox Potentials

    PubMed Central

    Mehta-Kolte, Misha G.

    2012-01-01

    The current understanding of dissimilatory metal reduction is based primarily on isolates from the proteobacterial genera Geobacter and Shewanella. However, environments undergoing active Fe(III) reduction often harbor less-well-studied phyla that are equally abundant. In this work, electrochemical techniques were used to analyze respiratory electron transfer by the only known Fe(III)-reducing representative of the Acidobacteria, Geothrix fermentans. In contrast to previously characterized metal-reducing bacteria, which typically reach maximal rates of respiration at electron acceptor potentials of 0 V versus standard hydrogen electrode (SHE), G. fermentans required potentials as high as 0.55 V to respire at its maximum rate. In addition, G. fermentans secreted two different soluble redox-active electron shuttles with separate redox potentials (−0.2 V and 0.3 V). The compound with the lower midpoint potential, responsible for 20 to 30% of electron transfer activity, was riboflavin. The behavior of the higher-potential compound was consistent with hydrophilic UV-fluorescent molecules previously found in G. fermentans supernatants. Both electron shuttles were also produced when cultures were grown with Fe(III), but not when fumarate was the electron acceptor. This study reveals that Geothrix is able to take advantage of higher-redox-potential environments, demonstrates that secretion of flavin-based shuttles is not confined to Shewanella, and points to the existence of high-potential-redox-active compounds involved in extracellular electron transfer. Based on differences between the respiratory strategies of Geothrix and Geobacter, these two groups of bacteria could exist in distinctive environmental niches defined by redox potential. PMID:22843516

  11. Current perspectives of nanoparticles in medical and dental biomaterials

    PubMed Central

    Mohamed Hamouda, Ibrahim

    2012-01-01

    Nanotechnology is gaining tremendous impetus due to its capability of modulating metals into their nanosize, which drastically changes the chemical, physical and optical properties of metals. Nanoparticles have been introduced as materials with good potential to be extensively used in biological and medical applications. Nanoparticles are clusters of atoms in the size range of 1-100 nm. Inorganic nanoparticles and their nano-composites are applied as good antibacterial agents. Due to the outbreak of infectious diseases caused by different pathogenic bacteria and the development of antibiotic resistance, pharmaceutical companies and researchers are searching for new antibacterial agents. The metallic nanoparticles are the most promising as they show good antibacterial properties due to their large surface area to volume ratios, which draw growing interest from researchers due to increasing microbial resistance against metal ions, antibiotics and the development of resistant strains. Metallic nanoparticles can be used as effective growth inhibitors in various microorganisms and thereby are applicable to diverse medical devices. Nanotechnology discloses the use of elemental nanoparticles as active antibacterial ingredient for dental materials. In dentistry, both restorative materials and oral bacteria are believed to be responsible for restoration failure. Secondary caries is found to be the main reason to restoration failure. Secondary caries is primarily caused by invasion of plaque bacteria (acid-producing bacteria) such as Streptococcus mutans and lactobacilli in the presence of fermentable carbohydrates. To make long-lasting restorations, antibacterial materials should be made. The potential of nanoparticles to control the formation of biofilms within the oral cavity is also coming under increasing scrutiny. Possible uses of nanoparticles as topically applied agents within dental materials and the application of nanoparticles in the control of oral infections are also reviewed. PMID:23554743

  12. Bacteria Absorption-Based Mn2P2O7-Carbon@Reduced Graphene Oxides for High-Performance Lithium-Ion Battery Anodes.

    PubMed

    Yang, Yuhua; Wang, Bin; Zhu, Jingyi; Zhou, Jun; Xu, Zhi; Fan, Ling; Zhu, Jian; Podila, Ramakrishna; Rao, Apparao M; Lu, Bingan

    2016-05-24

    The development of freestanding flexible electrodes with high capacity and long cycle-life is a central issue for lithium-ion batteries (LIBs). Here, we use bacteria absorption of metallic Mn(2+) ions to in situ synthesize natural micro-yolk-shell-structure Mn2P2O7-carbon, followed by the use of vacuum filtration to obtain Mn2P2O7-carbon@reduced graphene oxides (RGO) papers for LIBs anodes. The Mn2P2O7 particles are completely encapsulated within the carbon film, which was obtained by carbonizing the bacterial wall. The resulting carbon microstructure reduces the electrode-electrolyte contact area, yielding high Coulombic efficiency. In addition, the yolk-shell structure with its internal void spaces is ideal for sustaining volume expansion of Mn2P2O7 during charge/discharge processes, and the carbon shells act as an ideal barrier, limiting most solid-electrolyte interphase formation on the surface of the carbon films (instead of forming on individual particles). Notably, the RGO films have high conductivity and robust mechanical flexibility. As a result of our combined strategies delineated in this article, our binder-free flexible anodes exhibit high capacities, long cycle-life, and excellent rate performance.

  13. ENHANCED BIOACCUMULATION OF HEAVY METAL BY BACTERIA CELLS DISPLAYING SYNTHETIC PHYTOCHELATINS. (R827227)

    EPA Science Inventory

    A novel strategy using synthetic phytochelatins is described for the purpose of developing microbial agents for enhanced bioaccumulation of toxic metals. Synthetic genes encoding for several metal-chelating phytochelatin analogs (Glu-Cys)nGly (EC8 (n = 8), EC11 (n = 11...

  14. Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants.

    PubMed

    Islam, Faisal; Yasmeen, Tahira; Riaz, Muhammad; Arif, Muhammad Saleem; Ali, Shafaqat; Raza, Syed Hammad

    2014-12-01

    Plant-associated bacteria can have beneficial effects on the growth and health of their host. However, the role of plant growth promoting bacteria (PGPR), under metal stress, has not been widely investigated. The present study investigated the possible mandatory role of plant growth promoting rhizobacteria in protecting plants from zinc (Zn) toxicity. The exposure of maize plants to 50µM zinc inhibited biomass production, decreased chlorophyll, total soluble protein and strongly increased accumulation of Zn in both root and shoot. Similarly, Zn enhanced hydrogen peroxide, electrolyte leakage and lipid peroxidation as indicated by malondaldehyde accumulation. Pre-soaking with novel Zn tolerant bacterial strain Proteus mirabilis (ZK1) isolated zinc (Zn) contaminated soil, alleviated the negative effect of Zn on growth and led to a decrease in oxidative injuries caused by Zn. Furthermore, strain ZK1 significantly enhanced the activities of catalase, guaiacol peroxidase, superoxide dismutase and ascorbic acid but lowered the Proline accumulation in Zn stressed plants. The results suggested that the inoculation of Zea mays plants with P. mirabilis during an earlier growth period could be related to its plant growth promoting activities and avoidance of cumulative damage upon exposure to Zn, thus reducing the negative consequences of oxidative stress caused by heavy metal toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Evaluation of a GFP Report Gene Construct for Environmental Arsenic Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberto, F.F.; Barnes, J.M.; Bruhn, D.F.

    Detection of arsenic and other heavy metal contaminants in the environment is critical to ensuring safe drinking water and effective cleanup of historic activities that have led to widespread contamination of soil and groundwater. Biosensors have the potential to significantly reduce the costs associated with site characterization and long term environmental monitoring. By exploiting the highly selective and sensitive natural mechanisms by which bacteria and other living organisms respond to heavy metals, and fusing transcriptionally active components of these mechanisms to reporter genes, such as B-galactosidase, bacterial luciferase (lux), or green fluorescent protein (GFP) from marine jellyfish, it is possiblemore » to produce inexpensive, yet effective biosensors. This article describes the response to submicrogram quantities of arsenite and arsenate of a whole cell arsenic biosensor utilizing a GFP reporter gene.« less

  16. The Siderophore Metabolome of Azotobacter vinelandii

    PubMed Central

    Baars, Oliver; Zhang, Xinning

    2015-01-01

    In this study, we performed a detailed characterization of the siderophore metabolome, or “chelome,” of the agriculturally important and widely studied model organism Azotobacter vinelandii. Using a new high-resolution liquid chromatography-mass spectrometry (LC-MS) approach, we found over 35 metal-binding secondary metabolites, indicative of a vast chelome in A. vinelandii. These include vibrioferrin, a siderophore previously observed only in marine bacteria. Quantitative analyses of siderophore production during diazotrophic growth with different sources and availabilities of Fe showed that, under all tested conditions, vibrioferrin was present at the highest concentration of all siderophores and suggested new roles for vibrioferrin in the soil environment. Bioinformatic searches confirmed the capacity for vibrioferrin production in Azotobacter spp. and other bacteria spanning multiple phyla, habitats, and lifestyles. Moreover, our studies revealed a large number of previously unreported derivatives of all known A. vinelandii siderophores and rationalized their origins based on genomic analyses, with implications for siderophore diversity and evolution. Together, these insights provide clues as to why A. vinelandii harbors multiple siderophore biosynthesis gene clusters. Coupled with the growing evidence for alternative functions of siderophores, the vast chelome in A. vinelandii may be explained by multiple, disparate evolutionary pressures that act on siderophore production. PMID:26452553

  17. Cd Mobility in Anoxic Fe-Mineral-Rich Environments - Potential Use of Fe(III)-Reducing Bacteria in Soil Remediation

    NASA Astrophysics Data System (ADS)

    Muehe, E. M.; Adaktylou, I. J.; Obst, M.; Schröder, C.; Behrens, S.; Hitchcock, A. P.; Tylsizczak, T.; Michel, F. M.; Krämer, U.; Kappler, A.

    2014-12-01

    Agricultural soils are increasingly burdened with heavy metals such as Cd from industrial sources and impure fertilizers. Metal contaminants enter the food chain via plant uptake from soil and negatively affect human and environmental health. New remediation approaches are needed to lower soil metal contents. To apply these remediation techniques successfully, it is necessary to understand how soil microbes and minerals interact with toxic metals. Here we show that microbial Fe(III) reduction initially mobilizes Cd before its immobilization under anoxic conditions. To study how microbial Fe(III) reduction influences Cd mobility, we isolated a new Cd-tolerant, Fe(III)-reducing Geobacter sp. from a heavily Cd-contaminated soil. In lab experiments, this Geobacter strain first mobilized Cd from Cd-loaded Fe(III) hydroxides followed by precipitation of Cd-bearing mineral phases. Using Mössbauer spectroscopy and scanning electron microscopy, the original and newly formed Cd-containing Fe(II) and Fe(III) mineral phases, including Cd-Fe-carbonates, Fe-phosphates and Fe-(oxyhydr)oxides, were identified and characterized. Using energy-dispersive X-ray spectroscopy and synchrotron-based scanning transmission X-ray microscopy, Cd was mapped in the Fe(II) mineral aggregates formed during microbial Fe(III) reduction. Microbial Fe(III) reduction mobilizes Cd prior to its precipitation in Cd-bearing mineral phases. The mobilized Cd could be taken up by phytoremediating plants, resulting in a net removal of Cd from contaminated sites. Alternatively, Cd precipitation could reduce Cd bioavailability in the environment, causing less toxic effects to crops and soil microbiota. However, the stability and thus bioavailability of these newly formed Fe-Cd mineral phases needs to be assessed thoroughly. Whether phytoremediation or immobilization of Cd in a mineral with reduced Cd bioavailability are feasible mechanisms to reduce toxic effects of Cd in the environment remains to be determined.

  18. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, DR. Jennifer; Yu, DR. Hang; Steele, Joshua

    2013-01-01

    Microbes have obligate requirements for trace metals in metalloenzymes that catalyse important biogeochemical reactions. In anoxic methane- and sulphiderich environments, microbes may have unique adaptations for metal acquisition and utilization because of decreased bioavailability as a result of metal sulphide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulphidic (> 1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5 270 nM), cobalt (0.5 6 nM), molybdenum (10 5600 nM) and tungsten (0.3 8more » nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalysing anaerobic oxidation of methane (AOM) utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulphate-reducing bacteria. Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrophilic microorganisms. Overall, our data suggest that AOM consortia use specialized biochemical strategies to overcome the challenges of metal availability in sulphidic environments.« less

  19. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulfidic marine sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, DR. Jennifer; Yu, DR. Hang; Steele, Joshua

    Microbes have obligate requirements for trace metals in metalloenzymes that catalyze important biogeochemical reactions. In anoxic methane- and sulfide-rich environments, microbes may have unique adaptations for metal acquisition and utilization due to decreased bioavailability as a result of metal sulfide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulfidic (>1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5-270 nM), cobalt (0.5-6 nM), molybdenum (10-5,600 nM) and tungsten (0.3-8 nM) in Hydrate Ridge sedimentmore » porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalyzing anaerobic oxidation of methane utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrotolerant microorganisms. Finally, our data suggest that chemical speciation of metals in highly sulfidic porewaters may exert a stronger influence on microbial bioavailability than total concentration« less

  20. Influence of sulfhydryl sites on metal binding by bacteria

    NASA Astrophysics Data System (ADS)

    Nell, Ryan M.; Fein, Jeremy B.

    2017-02-01

    The role of sulfhydryl sites within bacterial cell envelopes is still unknown, but the sites may control the fate and bioavailability of metals. Organic sulfhydryl compounds are important complexing ligands in aqueous systems and they can influence metal speciation in natural waters. Though representing only approximately 5-10% of the total available binding sites on bacterial surfaces, sulfhydryl sites exhibit high binding affinities for some metals. Due to the potential importance of bacterial sulfhydryl sites in natural systems, metal-bacterial sulfhydryl site binding constants must be determined in order to construct accurate models of the fate and distribution of metals in these systems. To date, only Cd-sulfhydryl binding has been quantified. In this study, the thermodynamic stabilities of Mn-, Co-, Ni-, Zn-, Sr- and Pb-sulfhydryl bacterial cell envelope complexes were determined for the bacterial species Shewanella oneidensis MR-1. Metal adsorption experiments were conducted as a function of both pH, ranging from 5.0 to 7.0, and metal loading, from 0.5 to 40.0 μmol/g (wet weight) bacteria, in batch experiments in order to determine if metal-sulfhydryl binding occurs. Initially, the data were used to calculate the value of the stability constants for the important metal-sulfhydryl bacterial complexes for each metal-loading condition studied, assuming a single binding reaction for the dominant metal-binding site type under the pH conditions of the experiments. For most of the metals that we studied, these calculated stability constant values increased significantly with decreasing metal loading, strongly suggesting that our initial assumption was not valid and that more than one type of binding occurs at the assumed binding site. We then modeled each dataset with two distinct site types with identical acidity constants: one site with a high metal-site stability constant value, which we take to represent metal-sulfhydryl binding and which dominates under low metal loading conditions, and another more abundant site that we term non-sulfhydryl sites that becomes important at high metal loadings. The resulting calculated stability constants do not vary significantly as a function of metal loading and yield reasonable fits to the observed adsorption behaviors as a function of both pH and metal loading. We use the results to calculate the speciation of metals bound by the bacterial envelope in realistic bacteria-bearing, heavy metal contaminated systems in order to demonstrate the potential importance of metal-sulfhydryl binding in the budget of bacterially-adsorbed metals under low metal-loading conditions.

  1. Metal shadowing for electron microscopy.

    PubMed

    Hendricks, Gregory M

    2014-01-01

    Metal shadowing of bacteria, viruses, isolated molecules, and macromolecular assemblies is another high-resolution method for observing the ultrastructure of biological specimens. The actual procedure for producing a metal shadow is relatively simple; a heavy metal is evaporated from a source at an oblique angle to the specimen. The metal atoms pile up on the surfaces that face the source, but the surfaces away from the source are shielded and receive little metal deposit, creating a "shadow." However, the process of producing biological specimens that are suitable for metal shadowing can be very complex. There are a whole host of specimen preparation techniques that can precede metal shadowing, and all provide superior preservation in comparison to air drying, a required step in negative staining procedures. The physical forces present during air drying (i.e., surface tension of the water-air interface) will literally crush most biological specimens as they dry. In this chapter I explain the development of and procedures for the production of biological specimens from macromolecular assemblies (e.g., DNA and RNA), purified isolated molecules (e.g., proteins), and isolated viruses and bacteria preparations suitable for metal shadowing. A variation on this basic technique is to rotate the specimen during the metal deposition to produce a high-resolution three-dimensional rendering of the specimen.

  2. A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria.

    PubMed

    Yuan, Meng; Ke, Yinggen; Huang, Renyan; Ma, Ling; Yang, Zeyu; Chu, Zhaohui; Xiao, Jinghua; Li, Xianghua; Wang, Shiping

    2016-07-29

    Transcription activator-like effectors (TALEs) are sequence-specific DNA binding proteins found in a range of plant pathogenic bacteria, where they play important roles in host-pathogen interactions. However, it has been unclear how TALEs, after they have been injected into the host cells, activate transcription of host genes required for infection success. Here, we show that the basal transcription factor IIA gamma subunit TFIIAγ5 from rice is a key component for infection by the TALE-carrying bacterium Xanthomonas oryzae pv. oryzae, the causal agent for bacterial blight. Direct interaction of several TALEs with TFIIAγ5 is required for activation of disease susceptibility genes. Conversely, reduced expression of the TFIIAγ5 host gene limits the induction of susceptibility genes and thus decreases bacterial blight symptoms. Suppression or mutation of TFIIAγ5 can also reduce bacterial streak, another devastating disease of rice caused by TALE-carrying X. oryzae pv. oryzicola. These results have important implications for formulating a widely applicable strategy with which to improve resistance of plants to TALE-carrying pathogens.

  3. Partitioning of zinc among common ferromagnesian minerals and implications for hydrothermal mobilization

    USGS Publications Warehouse

    Johnson, C.A.

    1994-01-01

    In systems where metals are scavenging from crystalline rocks by through-flowing fluids, the important host minerals must be dissolved or must undergo cation-exchange reactions with the fluid. Whereas copper resides in sulfides, zinc resides in magnetic and, to a lesser extent, in biotite, clinopyroxene and olivine. Magnetite is known from petrographic studies to be more resistant to alteration than sulfides. For metals extracted from crystalline rocks, the Cu:Zn mass ratio may thus decrease with progressive alteration. In systems where metals are scavenged from cooling magmas by exsolving fluids, the metals are partitioned among melt, fluid and any crystals that have fractionated. For zinc, crystal fractionation may be an important sink if magnetite or biotite crystallize before fluid saturation. The zinc concentrations of magmatic fluids will thus be reduced. -from Author

  4. Determination of antimicrobial and heavy metal resistance profiles of some bacteria isolated from aquatic amphibian and reptile species.

    PubMed

    Hacioglu, Nurcihan; Tosunoglu, Murat

    2014-01-01

    The aim of the present study was to determine the level of antibiotic resistance patterns and distribution of heavy metal resistance of bacterial isolates from aquatic animals (Lissotriton vulgaris, Pelophylax ridibundus, Emys orbicularis, Mauremys rivulata, and Natrix natrix) in Turkey (Kavak Delta). A total of 153 bacteria have been successfully isolated from cloaca and oral samples of the aquatic amphibians and reptilians which were found, namely, Aeromonas sp. (n = 29), Plesiomonas sp. (n = 7), Vibrio sp. (n = 12), Citrobacter sp. (n = 12), Enterobacter sp. (n = 11), Escherichia sp. (n = 22), Klebsiella sp. (n = 22), Edwardsiella sp. (n = 6), Hafnia sp. (n = 1), Proteus sp. (n = 19), Providencia sp. (n = 8), and Pseudomonas sp. (n = 4). In terms of antibiotic and heavy metal susceptibility testing, each isolate was tested against 12 antibiotics and 4 metals. There was a high incidence of resistance to cefoxitin (46.40 %), ampicillin (44.44 %), erythromycin (35.29 %), and a low incidence of resistance to gentamicin (6.53 %), kanamycin (8.49 %), chloramphenicol (9.15 %), and cefotaxime (10.45 %). The multiple antibiotic resistance index of each bacterial species indicated that bacteria from raised amphibians and reptiles have been exposed to tested antibiotics, with results ranging from 0 to 0.58. Most isolates showed tolerance to different concentrations of heavy metals, and minimal inhibition concentrations ranged from100 to >3,200 μg/mL. According to these results, a significant occurrence of bacteria in the internal organs of reptiles and amphibians, with a high incidence of resistance against antibiotics and heavy metals, may risk aquatic animals and the public health. These data appoint the importance of epidemiological surveillance and microbiological monitoring and reinforce the need to implement environment protection programs for amphibian and reptile species.

  5. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants.

    PubMed

    Zhang, Xiaokai; Wang, Hailong; He, Lizhi; Lu, Kouping; Sarmah, Ajit; Li, Jianwu; Bolan, Nanthi S; Pei, Jianchuan; Huang, Huagang

    2013-12-01

    Soil contamination with heavy metals and organic pollutants has increasingly become a serious global environmental issue in recent years. Considerable efforts have been made to remediate contaminated soils. Biochar has a large surface area, and high capacity to adsorb heavy metals and organic pollutants. Biochar can potentially be used to reduce the bioavailability and leachability of heavy metals and organic pollutants in soils through adsorption and other physicochemical reactions. Biochar is typically an alkaline material which can increase soil pH and contribute to stabilization of heavy metals. Application of biochar for remediation of contaminated soils may provide a new solution to the soil pollution problem. This paper provides an overview on the impact of biochar on the environmental fate and mobility of heavy metals and organic pollutants in contaminated soils and its implication for remediation of contaminated soils. Further research directions are identified to ensure a safe and sustainable use of biochar as a soil amendment for remediation of contaminated soils.

  6. Exploring Iron Silicate Precursors of Ancient Iron Formations through Rock Record, Laboratory and Field Analogue Investigations

    NASA Astrophysics Data System (ADS)

    Johnson, J. E.; Rasmussen, B.; Muhling, J.; Benzerara, K.; Jezequel, D.; Cosmidis, J.; Templeton, A. S.

    2016-12-01

    In direct contrast to today's oceans, iron-rich chemical precipitates dominate the deep marine sedimentary record > 2.3 billion years ago. The deposition of these minerals resulted in massive iron formations and indicate that the ocean was previously ferruginous and largely anoxic. To precipitate and concentrate iron in the sediments, many hypotheses have centered on the oxidation of soluble Fe(II) to solid Fe(III)-oxyhydroxides; these ideas have stimulated extensive research using iron-oxidizing bacteria to produce Fe(III)-oxides and trace metal sorption experiments on Fe(III)-oxides, leading to inferences of trace metal availability and implications for enzymatic and microbial evolution as well as pO2 levels and seawater chemistry. However, recent discoveries of disseminated iron-silicate nanoparticles in early-silicifying chert indicate that iron-silicates may have instead been the primary precipitates from these Archean ferruginous oceans (Rasmussen et al, 2015). Considering the significant paradigm shift this discovery implies for interpretations of Archean elemental cycling, redox state and potential microbial metabolisms, we investigated these iron-silicate inclusions and their implications for ancient seawater chemistry in a multi-faceted approach using spectroscopic- and diffraction-based techniques. The crystal structure, Fe oxidation state and Fe coordination environment of iron-silicate nanoparticles have been interrogated using microscale X-ray absorption spectroscopy, TEM and nanoscale scanning transmission X-ray microscopy. To further explore the chemical and potential biological controls on iron-silicate formation, we have also performed laboratory experiments to mimic Archean seawater and precipitate iron-bearing silicate minerals under abiotic conditions and in the presence of iron-oxidizing bacteria. In a complementary study, sediments from a natural Archean analogue system were sampled to determine if iron-silicate minerals form in Mexican crater lakes that are variably iron- and silica-rich. As we continue to probe the mechanism of Fe(II/III)-silicate formation, we can constrain the activity of silica, pH, and pO2 on early Earth and describe any potential influence of microbial activity on the precipitation of these phases.

  7. Emerging role of bacteria in oral carcinogenesis: a review with special reference to perio-pathogenic bacteria.

    PubMed

    Perera, Manosha; Al-Hebshi, Nezar Noor; Speicher, David J; Perera, Irosha; Johnson, Newell W

    2016-01-01

    Oral cancer, primarily oral squamous cell carcinoma (OSCC), continues to be a major global health problem with high incidence and low survival rates. While the major risk factors for this malignancy, mostly lifestyle related, have been identified, around 15% of oral cancer cases remain unexplained. In light of evidence implicating bacteria in the aetiology of some cancer types, several epidemiological studies have been conducted in the last decade, employing methodologies ranging from traditional culture techniques to 16S rRNA metagenomics, to assess the possible role of bacteria in OSCC. While these studies have demonstrated differences in microbial composition between cancerous and healthy tissues, they have failed to agree on specific bacteria or patterns of oral microbial dysbiosis to implicate in OSCC. On the contrary, some oral taxa, particularly Porphyromonas gingivalis and Fusobacterium nucleatum, show strong oral carcinogenic potential in vitro and in animal studies. Bacteria are thought to contribute to oral carcinogenesis via inhibition of apoptosis, activation of cell proliferation, promotion of cellular invasion, induction of chronic inflammation, and production of carcinogens. This narrative review provides a critical analysis of and an update on the association between bacteria and oral carcinogenesis and the possible mechanisms underlying it.

  8. Effect of bioaugmentation and biostimulation on sulfate-reducing column startup captured by functional gene profiling.

    PubMed

    Pereyra, Luciana P; Hiibel, Sage R; Perrault, Elizabeth M; Reardon, Kenneth F; Pruden, Amy

    2012-10-01

    Sulfate-reducing permeable reactive zones (SR-PRZs) depend upon a complex microbial community to utilize a lignocellulosic substrate and produce sulfides, which remediate mine drainage by binding heavy metals. To gain insight into the impact of the microbial community composition on the startup time and pseudo-steady-state performance, functional genes corresponding to cellulose-degrading (CD), fermentative, sulfate-reducing, and methanogenic microorganisms were characterized in columns simulating SR-PRZs using quantitative polymerase chain reaction (qPCR) and denaturing gradient gel electrophoresis (DGGE). Duplicate columns were bioaugmented with sulfate-reducing or CD bacteria or biostimulated with ethanol or carboxymethyl cellulose and compared with baseline dairy manure inoculum and uninoculated controls. Sulfate removal began after ~ 15 days for all columns and pseudo-steady state was achieved by Day 30. Despite similar performance, DGGE profiles of 16S rRNA gene and functional genes at pseudo-steady state were distinct among the column treatments, suggesting the potential to control ultimate microbial community composition via bioaugmentation and biostimulation. qPCR revealed enrichment of functional genes in all columns between the initial and pseudo-steady-state time points. This is the first functional gene-based study of CD, fermentative and sulfate-reducing bacteria and methanogenic archaea in a lignocellulose-based environment and provides new qualitative and quantitative insight into startup of a complex microbial system. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. Mercury uptake and allocation in Juncus maritimus: implications for phytoremediation and restoration of a mercury contaminated salt marsh.

    PubMed

    Figueira, Etelvina; Freitas, Rosa; Pereira, Eduarda; Duarte, Armando

    2012-08-01

    Juncus maritimus is the most abundant macrophyte in Laranjo bay, a Portuguese salt marsh heavily polluted by mercury (Hg). With the aim to elucidate the role of this species in the salt marsh Hg cycling and restoration, plants were harvested between March 2006 and January 2008 from four locations differing in Hg contamination. Metal uptake and distribution between plant organs were evaluated, biomass and Hg pools were also determined. Results showed that J. maritimus may influence the sediment pH and Eh, thus increasing the Hg available for uptake. Most (95-98%) of the absorbed Hg was retained belowground, phytostabilizing the metal and reducing the amount of Hg in the sediments. These results suggest that in salt marshes dominated by J. maritimus the approach could be phytostabilization, where these plants can be used to immobilize metals and store them belowground, reducing the pool of bioavailable Hg within contaminated marshes and acting as a sink rather than a source of contamination to the surrounding areas.

  10. Decrease in zinc adsorption onto soil in the presence of EPS-rich and EPS-poor Pseudomonas aureofaciens.

    PubMed

    Drozdova, O Yu; Pokrovsky, O S; Lapitskiy, S A; Shirokova, L S; González, A G; Demin, V V

    2014-12-01

    The adsorption of Zn onto the humic and illuvial horizons of the podzol soil in the presence of soil bacteria was studied using a batch-reactor technique as a function of the pH (from 2 to 9) and the Zn concentration in solution (from 0.076mM to 0.760mM). Exopolysaccharides-forming aerobic heterotrophs Pseudomonas aureofaciens were added at 0.1 and 1.0gwetL(-1) concentrations to two different soil horizons, and Zn adsorption was monitored as a function of the pH and the dissolved-Zn concentration. The pH-dependent adsorption edge demonstrated more efficient Zn adsorption by the humic horizon than the mineral horizon at otherwise similar soil concentrations. The Zn adsorption onto the EPS-poor strain was on slightly lower than that onto EPS-rich bacteria. Similar differences in the adsorption capacities between the soil and bacteria were also detected by "langmuirian" constant-pH experiments conducted in soil-Zn and bacteria-Zn binary systems. The addition of 0.1gwetL(-1)P. aureofaciens to a soil-bacteria system (4gdryL(-1)soil) resulted in statistically significant decrease in the adsorption yield, which was detectable from both the pH-dependent adsorption edge and the constant-pH isotherm experiments. Increasing the amount of added bacteria to 1gwetL(-1) further decreased the overall adsorption in the full range of the pH. This decrease was maximal for the EPS-rich bacteria and minimal for the EPS-poor bacteria (a factor of 2.8 and 2.2 at pH=6.9, respectively). These observations in binary and ternary systems were further rationalized by linear-programming modeling of surface equilibria that revealed the systematic differences in the number of binding sites and the surface-adsorption constant of zinc onto the two soil horizons with and without bacteria. The main finding of this work is that the adsorption of Zn onto the humic soil-bacteria system is lower than that in pure, bacteria-free soil systems. This difference is statistically significant (p<0.05). As such, EPS-rich bacteria are capable of efficiently shielding the soil particles from heavy-metal adsorption. The removal efficiency of heavy metals in an abiotic organic-rich soil system should therefore be significantly higher than that in the presence of bacteria. This effect can be explained by the shielding of strongly bound metal sites on the organic-rich soil particles by inert bacterial exopolysaccharides. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. A Conserved Metal Binding Motif in the Bacillus subtilis Competence Protein ComFA Enhances Transformation.

    PubMed

    Chilton, Scott S; Falbel, Tanya G; Hromada, Susan; Burton, Briana M

    2017-08-01

    Genetic competence is a process in which cells are able to take up DNA from their environment, resulting in horizontal gene transfer, a major mechanism for generating diversity in bacteria. Many bacteria carry homologs of the central DNA uptake machinery that has been well characterized in Bacillus subtilis It has been postulated that the B. subtilis competence helicase ComFA belongs to the DEAD box family of helicases/translocases. Here, we made a series of mutants to analyze conserved amino acid motifs in several regions of B. subtilis ComFA. First, we confirmed that ComFA activity requires amino acid residues conserved among the DEAD box helicases, and second, we show that a zinc finger-like motif consisting of four cysteines is required for efficient transformation. Each cysteine in the motif is important, and mutation of at least two of the cysteines dramatically reduces transformation efficiency. Further, combining multiple cysteine mutations with the helicase mutations shows an additive phenotype. Our results suggest that the helicase and metal binding functions are two distinct activities important for ComFA function during transformation. IMPORTANCE ComFA is a highly conserved protein that has a role in DNA uptake during natural competence, a mechanism for horizontal gene transfer observed in many bacteria. Investigation of the details of the DNA uptake mechanism is important for understanding the ways in which bacteria gain new traits from their environment, such as drug resistance. To dissect the role of ComFA in the DNA uptake machinery, we introduced point mutations into several motifs in the protein sequence. We demonstrate that several amino acid motifs conserved among ComFA proteins are important for efficient transformation. This report is the first to demonstrate the functional requirement of an amino-terminal cysteine motif in ComFA. Copyright © 2017 American Society for Microbiology.

  12. The study of Nickel Resistant Bacteria (NiRB) isolated from wastewaters polluted with different industrial sources

    PubMed Central

    2014-01-01

    Background Pollution due to the heavy metals is a problem that may have negative consequences on the hydrosphere. One of the best procedures in removing the toxic metals from the environment is using metal resistant bacteria. Results In the present study eight nickel resistant bacteria were isolated from industrial wastewaters. Three of them were selected as the most resistant based on their Maximum tolerable concentration (8, 16 and 24 mM Ni2+). Their identification was done according to morphological, biochemical characteristics and 16SrDNA gene sequencing and they were identified as Cupriavidus sp ATHA3, Klebsiella oxytoca ATHA6 and Methylobacterium sp ATHA7. The accession numbers assigned to ATHA3, ATHA6 and ATHA7 strains are JX120152, JX196648 and JX457333 respectively. The Growth rate of the most resistant isolate, Klebsiella oxytoca strain ATHA6, in the presence of Ni2+ and the reduction in Ni2+ concentration was revealed that K oxytoca ATHA6 could decrease 83 mg/mL of nickel from the medium after 3 days. Conclusion It can be concluded that the identified Ni resistant bacteria could be valuable for the bioremediation of Ni polluted waste water and sewage. PMID:24475932

  13. Biosorption of lead phosphates by lead-tolerant bacteria as a mechanism for lead immobilization.

    PubMed

    Rodríguez-Sánchez, Viridiana; Guzmán-Moreno, Jesús; Rodríguez-González, Vicente; Flores-de la Torre, Juan Armando; Ramírez-Santoyo, Rosa María; Vidales-Rodríguez, Luz Elena

    2017-08-01

    The study of metal-tolerant bacteria is important for bioremediation of contaminated environments and development of green technologies for material synthesis due to their potential to transform toxic metal ions into less toxic compounds by mechanisms such as reduction, oxidation and/or sequestration. In this study, we report the isolation of seven lead-tolerant bacteria from a metal-contaminated site at Zacatecas, México. The bacteria were identified as members of the Staphylococcus and Bacillus genera by microscopic, biochemical and 16S rDNA analyses. Minimal inhibitory concentration of these isolates was established between 4.5 and 7.0 mM of Pb(NO 3 ) 2 in solid and 1.0-4.0 mM of Pb(NO 3 ) 2 in liquid media. A quantitative analysis of the lead associated to bacterial biomass in growing cultures, revealed that the percentage of lead associated to biomass was between 1 and 37% in the PbT isolates. A mechanism of complexation/biosorption of lead ions as inorganic phosphates (lead hydroxyapatite and pyromorphite) in bacterial biomass, was determined by Fourier transform infrared spectroscopy and X-ray diffraction analyses. Thus, the ability of the lead-tolerant isolates to transform lead ions into stable and highly insoluble lead minerals make them potentially useful for immobilization of lead in mining waste.

  14. Water-quality characteristics of stormwater runoff in Rapid City, South Dakota, 2008-14

    USGS Publications Warehouse

    Hoogestraat, Galen K.

    2015-01-01

    For the Arrowhead and Meade-Hawthorne sites, event-mean concentrations typically exceeded the TSS and bacteria beneficial-use criteria for Rapid Creek by 1–2 orders of magnitude. Comparing the two drainage basins, median TSS event-mean concentrations were more than two times greater at the Meade-Hawthorne outlet (520 milligrams per liter) than the Arrowhead outlet (200 milligrams per liter). Median fecal coliform bacteria event-mean concentrations also were greater at the Meade-Hawthorne outlet site (30,000 colony forming units per 100 milliliters) than the Arrowhead outlet site (17,000 colony forming units per 100 milliliters). A comparison to relevant standards indicates that stormwater runoff from the Downtown drainage basin exceeded criteria for bacteria and TSS, but concentrations generally were below standards for nutrients and metals. Stormwater-quality conditions from the Downtown drainage basin outfalls were similar to or better than stormwater-quality conditions observed in the Arrowhead and Meade-Hawthorne drainage basins. Three wetland channels located at the outlet of the Downtown drainage basin were evaluated for their pollutant reduction capability. Mean reductions in TSS and lead concentrations were greater than 40 percent for all three wetland channels. Total nitrogen, phosphorus, copper, and zinc concentrations also were reduced by at least 20 percent at all three wetlands. Fecal coliform bacteria concentrations typically were reduced by about 21 and 36 percent at the 1st and 2nd Street wetlands, respectively, but the reduction at the 3rd Street wetland channel was nearly zero percent. Total wetland storage volume affected pollutant reductions because TSS, phosphorus, and ammonia reductions were greatest in the wetland with the greatest volume. Chloride concentrations typically increased from inflow to outflow at the 2nd and 3rd Street wetland channels.

  15. Condensation from Cluster-IDP Enriched Vapor Inside the Snow Line: Implications for Mercury, Asteroids, and Enstatite Chondrites

    NASA Technical Reports Server (NTRS)

    Ebel, D. S.; Alexander, C. M. OD.

    2005-01-01

    Enstatite chondrites (EC) contain highly reduced matrix minerals (e.g.- (Mg,Fe,Mn)S solid solution, CaS) that probably formed in thermodynamic equilibrium with a vapor phase. EC chondrules contain enstatite, Fs5 to Fs30, in which iron was reduced after formation, also by interaction with vapor [1, 2]. The origin and location of this reducing vapor bears upon the formation of the terrestrial planets (Mercury to Mars), the remnant chemical zoning of the asteroid belt (E, S, C, D-types), and the cosmochemistry of metals in the early solar system.

  16. Modeling Bacteria Surface Acid-Base Properties: The Overprint Of Biology

    NASA Astrophysics Data System (ADS)

    Amores, D. R.; Smith, S.; Warren, L. A.

    2009-05-01

    Bacteria are ubiquitous in the environment and are important repositories for metals as well as nucleation templates for a myriad of secondary minerals due to an abundance of reactive surface binding sites. Model elucidation of whole cell surface reactivity simplifies bacteria as viable but static, i.e., no metabolic activity, to enable fits of microbial data sets from models derived from mineral surfaces. Here we investigate the surface proton charging behavior of live and dead whole cell cyanobacteria (Synechococcus sp.) harvested from a single parent culture by acid-base titration using a Fully Optimized ContinUouS (FOCUS) pKa spectrum method. Viability of live cells was verified by successful recultivation post experimentation, whereas dead cells were consistently non-recultivable. Surface site identities derived from binding constants determined for both the live and dead cells are consistent with molecular analogs for organic functional groups known to occur on microbial surfaces: carboxylic (pKa = 2.87-3.11), phosphoryl (pKa = 6.01-6.92) and amine/hydroxyl groups (pKa = 9.56-9.99). However, variability in total ligand concentration among the live cells is greater than those between the live and dead. The total ligand concentrations (LT, mol- mg-1 dry solid) derived from the live cell titrations (n=12) clustered into two sub-populations: high (LT = 24.4) and low (LT = 5.8), compared to the single concentration for the dead cell titrations (LT = 18.8; n=5). We infer from these results that metabolic activity can substantively impact surface reactivity of morphologically identical cells. These results and their modeling implications for bacteria surface reactivities will be discussed.

  17. N2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species

    USGS Publications Warehouse

    Bazylinski, D.A.; Dean, A.J.; Schuler, D.; Phillips, E.J.P.; Lovley, D.R.

    2000-01-01

    Cells of Geobacter metallireducens, Magnetospirillum strain AMB-1, Magnetospirillum magnetotacticum and Magnetospirillum gryphiswaldense showed N2-dependent growth, the first anaerobically with Fe(lll) as the electron acceptor, and the latter three species micro-aerobically in semi-solid oxygen gradient cultures. Cells of the Magnetospirillum species grown with N2 under microaerobic conditions were magnetotactic and therefore produced magnetosomes. Cells of Geobacter metallireducens reduced acetylene to ethylene (11.5 ?? 5.9nmol C2H4 produced min-1 mg-1 cell protein) while growing with Fe(lll) as the electron acceptor in anaerobic growth medium lacking a fixed nitrogen source. Cells of the Magnetospirillum species, grown in a semi-solid oxygen gradient medium, also reduced acetylene at comparable rates. Uncut chromosomal and fragments from endonuclease-digested chromosomal DNA from these species, as well as Geobacter sulphurreducens organisms, hybridized with a nifHDK probe from Rhodospirillum rubrum, indicating the presence of these nitrogenase structural genes in these organisms. The evidence presented here shows that members of the metal-metabolizing genera, Geobacter and Magnetospirillum, fix atmospheric dinitrogen.

  18. Porewater dynamics of silver, lead and copper in coastal sediments and implications for benthic metal fluxes

    USGS Publications Warehouse

    Kalnejais, Linda H.; Martin, W. R.; Bothner, Michael H.

    2015-01-01

    To determine the conditions that lead to a diffusive release of dissolved metals from coastal sediments, porewater profiles of Ag, Cu, and Pb have been collected over seven years at two contrasting coastal sites in Massachusetts, USA. The Hingham Bay (HB) site is a contaminated location in Boston Harbor, while the Massachusetts Bay (MB) site is 11 km offshore and less impacted. At both sites, the biogeochemical cycles include scavenging by Fe-oxyhydroxides and release of dissolved metals when Fe-oxyhydroxides are reduced. Important differences in the metal cycles at the two sites, however, result from different redox conditions. Porewater sulfide and seasonal variation in redox zone depth is observed at HB, but not at MB. In summer, as the conditions become more reducing at HB, trace metals are precipitated as sulfides and are no longer associated with Fe-oxyhydroxides. Sulfide precipitation close to the sediment–water interface limits the trace metal flux in summer and autumn at HB, while in winter, oxidation of the sulfide phases drives high benthic fluxes of Cu and Ag, as oxic conditions return. The annual diffusive flux of Cu at HB is found to be significant and contributes to the higher than expected water column Cu concentrations observed in Boston Harbor. At MB, due to the lower sulfide concentrations, the association of trace metals with Fe-oxyhydroxides occurs throughout the year, leading to more stable fluxes. A surface enrichment of solid phase trace metals was found at MB and is attributed to the persistent scavenging by Fe-oxyhydroxides. This process is important, particularly at sites that are less reducing, because it maintains elevated metal concentrations at the surface despite the effects of bioturbation and sediment accumulation, and because it may increase the persistence of metal contamination in surface sediments.

  19. Isolation of Succinivibrionaceae implicated in low methane emissions from Tammar wallabies.

    PubMed

    Pope, P B; Smith, W; Denman, S E; Tringe, S G; Barry, K; Hugenholtz, P; McSweeney, C S; McHardy, A C; Morrison, M

    2011-07-29

    The Tammar wallaby (Macropus eugenii) harbors unique gut bacteria and produces only one-fifth the amount of methane produced by ruminants per unit of digestible energy intake. We have isolated a dominant bacterial species (WG-1) from the wallaby microbiota affiliated with the family Succinivibrionaceae and implicated in lower methane emissions from starch-containing diets. This was achieved by using a partial reconstruction of the bacterium's metabolism from binned metagenomic data (nitrogen and carbohydrate utilization pathways and antibiotic resistance) to devise cultivation-based strategies that produced axenic WG-1 cultures. Pure-culture studies confirm that the bacterium is capnophilic and produces succinate, further explaining a microbiological basis for lower methane emissions from macropodids. This knowledge also provides new strategic targets for redirecting fermentation and reducing methane production in livestock.

  20. The effect of heavy metal concentration and soil pH on the abundance of selected microbial groups within ArcelorMittal Poland steelworks in Cracow.

    PubMed

    Lenart, Anna; Wolny-Koładka, Katarzyna

    2013-01-01

    The present study aimed to identify the effect of heavy metal concentration and soil pH on the abundance of the selected soil microorganisms within ArcelorMittal Poland steelworks, Cracow. The analysis included 20 soil samples, where the concentration of Fe, Zn, Cd, Pb, Ni, Cu, Mn, Cr and soil pH were evaluated together with the number of mesophilic bacteria, fungi, Actinomycetes and Azotobacter spp. In the majority of samples soil pH was alkaline. The limits of heavy metals exceeded in eight samples and in one sample, the concentration of Zn exceeded 31-fold. Chromium was the element which most significantly limited the number of bacteria and Actinomycetes.

  1. ADVANCES IN BIOTREATMENT OF ACID MINE DRAINAGE AND BIORECOVERY OF METALS: 2. MEMBRANE BIOREACTOR SYSTEM FOR SULFATE REDUCTION

    EPA Science Inventory

    Acid-mine drainage (AMD) is a severe pollution problem attributed to past mining activities. AMD is an acidic, metal-bearing wastewater generated by the oxidation of metal sulfides to sulfates by Thiobacillus bacteria in both the active and abandoned mining operations. The wastew...

  2. Microbes Enhance Mobility of Arsenic in Pleistocene Aquifer Sand from Bangladesh

    PubMed Central

    Dhar, Ratan K.; Zheng, Yan; Saltikov, Chad W.; Radloff, Kathleen A.; Mailloux, Brian; Ahmed, Kazi. M.; van Geen, Alexander

    2018-01-01

    Dissimilatory metal-reducing bacteria can mobilize As, but few studies have studied such processes in deeper orange-colored Pleistocene sands containing 1–2 mg kg−1 As that are associated with low-As groundwater in Bangladesh. To address this gap, anaerobic incubations were conducted in replicate over 90 days using natural orange sands initially containing 0.14 mg kg−1 of 1 M phosphate-extractable As (24 hr), >99% as As(V), and 0.8 g kg−1 of 1.2 M HCl-leachable Fe (1 hr at 80°C), 95% as Fe(III). The sediment was resuspended in artificial groundwater, with or without lactate as a labile carbon source, and inoculated with metal-reducing Shewanella sp. ANA-3. Within 23 days, dissolved As concentrations increased to 17 μg L−1 with lactate, 97% as As(III), and 2 μg L−1 without lactate. Phosphate-extractable As concentrations increased 4-fold to 0.6 mg kg−1 in the same incubations, even without the addition of lactate. Dissolved As levels in controls without Shewanella, both with and without lactate, instead remained <1 μg L−1. These observations indicate that metal-reducers such as Shewanella can trigger As release to groundwater by converting sedimentary As to a more mobilizable form without the addition of high levels of labile carbon. Such interactions need to be better understood to determine the vulnerability of low-As aquifers from which drinking water is increasingly drawn in Bangladesh. PMID:21405115

  3. Bacterial killing in macrophages and amoeba: do they all use a brass dagger?

    PubMed

    German, Nadezhda; Doyscher, Dominik; Rensing, Christopher

    2013-10-01

    Macrophages are immune cells that are known to engulf pathogens and destroy them by employing several mechanisms, including oxidative burst, induction of Fe(II) and Mn(II) efflux, and through elevation of Cu(I) and Zn(II) concentrations in the phagosome ('brass dagger'). The importance of the latter mechanism is supported by the presence of multiple counteracting efflux systems in bacteria, responsible for the efflux of toxic metals. We hypothesize that similar bacteria-killing mechanisms are found in predatory protozoa/amoeba species. Here, we present a brief summary of soft metal-related mechanisms used by macrophages, and perhaps amoeba, to inactivate and destroy bacteria. Based on this, we think it is likely that copper resistance is also selected for by protozoan grazing in the environment.

  4. Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments

    NASA Astrophysics Data System (ADS)

    Aller, Robert C.; Rude, Peter D.

    1988-03-01

    During the physical or biological reworking of surficial marine sediments, metal oxides are often brought into contact with both solid and dissolved sulfides. Experiments simulating these mixing processes demonstrate that in natural sediments Mn-oxides can completely oxidize solid phase sulfides to SO 4- under anoxic conditions. The major source of sulfur is probably acid volatile sulfide. Minerals containing Mn +4 are apparently more effective than Mn +3 in driving the oxidation. There is slight or no evidence for complete sulfide oxidation by Fe-oxides under similar conditions. The reaction is inhibited by DNP (dinitrophenol) and azide, implying biological mediation by a group of chemolithotrophic bacteria such as the thiobacilli, having a well-organized cytochrome system, oxidative phosphorylation coupled with sulfide oxidation, and possibly aulolrophic CO 2 fixation. Lack of sensitivity to chlorate suggests that a No 3- reductase complex is not involved. Because of metal reduction and the overall stoichiometry of reaction, this sulfide oxidation causes a rise in pH in contrast to oxidation by O 2. Alkalinity is also simultaneously depeleted by Mn, Ca carbonate precipitation. Both manganoan kutnahorite and manganoan calcite are observed to form rapidly (days) during Mn reduction. The oxidation of sulfides by Mn-oxides is likely to be important, but highly variable, in organic-rich shelf sediments and environments such as hydrothermal vents where sulfidic plumes contact oxidized metals. A substantial Proportion of sedimentary sulfide may be oxidized and Mn reduced by this pathway, particularly in bioturbated sediments. The relative roles of lithotrophic (S) and heterotrophic (C) Mn-reduction in marine sediments are presently unknown.

  5. Shewanella secretes flavins that mediate extracellular electron transfer

    PubMed Central

    Marsili, Enrico; Baron, Daniel B.; Shikhare, Indraneel D.; Coursolle, Dan; Gralnick, Jeffrey A.; Bond, Daniel R.

    2008-01-01

    Bacteria able to transfer electrons to metals are key agents in biogeochemical metal cycling, subsurface bioremediation, and corrosion processes. More recently, these bacteria have gained attention as the transfer of electrons from the cell surface to conductive materials can be used in multiple applications. In this work, we adapted electrochemical techniques to probe intact biofilms of Shewanella oneidensis MR-1 and Shewanella sp. MR-4 grown by using a poised electrode as an electron acceptor. This approach detected redox-active molecules within biofilms, which were involved in electron transfer to the electrode. A combination of methods identified a mixture of riboflavin and riboflavin-5′-phosphate in supernatants from biofilm reactors, with riboflavin representing the dominant component during sustained incubations (>72 h). Removal of riboflavin from biofilms reduced the rate of electron transfer to electrodes by >70%, consistent with a role as a soluble redox shuttle carrying electrons from the cell surface to external acceptors. Differential pulse voltammetry and cyclic voltammetry revealed a layer of flavins adsorbed to electrodes, even after soluble components were removed, especially in older biofilms. Riboflavin adsorbed quickly to other surfaces of geochemical interest, such as Fe(III) and Mn(IV) oxy(hydr)oxides. This in situ demonstration of flavin production, and sequestration at surfaces, requires the paradigm of soluble redox shuttles in geochemistry to be adjusted to include binding and modification of surfaces. Moreover, the known ability of isoalloxazine rings to act as metal chelators, along with their electron shuttling capacity, suggests that extracellular respiration of minerals by Shewanella is more complex than originally conceived. PMID:18316736

  6. The development of Ti6Al4V based anti bacterial dental implant modified with TiO2 nanotube arrays doped silver metal (Ag)

    NASA Astrophysics Data System (ADS)

    Slamet, Bachtiar, B. M.; Wulan, P. P. D. K.; Setiadi, Sari, D. P.

    2017-05-01

    The development of Ti6Al4V based anti bacterial dental implant, modified with dopanted silver metal (Ag) TiO2 nanotube arrays (TiNTAs), is studied in this research. The condition inside the mouth is less foton energy, the dental implant material need to be modified with silver metal (Ag) dopanted TiNTAs. Modified TiNTAs used silver metal dopanted with Photo Assisted Deposition (PAD) method can be used as an electron trapper and produced hydroxyl radical, therefore it has antibacterial properties. The verification of antibacterial properties developed with biofilm static test using Streptococcus mutans bacteria model within 3 and 16 hours incubation, was characterized with XRD and SEM-EDX. Properties test result that resisting the biofilm growth effectively is TiNTAs/Ag/0,15, with 97,62 % disinfection bacteria sampel.

  7. Microbiologically influenced corrosion of orthodontic metallic appliances.

    PubMed

    Kameda, Takashi; Oda, Hirotake; Ohkuma, Kazuo; Sano, Natsuki; Batbayar, Nomintsetseg; Terashima, Yukari; Sato, Soh; Terada, Kazuto

    2014-01-01

    Biocorrosion (microbiologically influenced corrosion; MIC) occur in aquatic habitats varying in nutrient content, temperature, stress and pH. The oral environment of organisms, including humans, should be one of the most hospitable for MIC. Corrosion of metallic appliances in the oral region is one cause of metal allergy in patients. In this study, an inductively coupled plasma-optical emission spectrometer revealed elution of Fe, Cr and Ni from stainless steel (SUS) appliances incubated with oral bacteria. Three-dimensional laser confocal microscopy also revealed that oral bacterial culture promoted increased surface roughness and corrosion pits in SUS appliances. The pH of the supernatant was lowered after co-culture of appliances and oral bacteria in any combinations, but not reached at the level of depassivation pH of their metallic materials. This study showed that Streptococcus mutans and Streptococcus sanguinis which easily created biofilm on the surfaces of teeth and appliances, did corrode orthodontic SUS appliances.

  8. Enteric bacteria in aerobically digested sludge.

    PubMed Central

    Farrah, S R; Bitton, G

    1984-01-01

    Indicator bacteria, Salmonella spp., and total aerobic bacteria were determined in samples of undigested sludge and sludge that had been treated by one or two stages of aerobic digestion. Aerobic sludge digestion reduced the level of indicator bacteria by 1 to 2 log10 per g. The level of Salmonella spp. was also reduced during aerobic treatment of sludge. In general, aerobic treatment of sludge reduced, but did not eliminate, indicator bacteria and Salmonella spp. PMID:6721492

  9. Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria.

    PubMed

    Fang, Ge; Li, Weifeng; Shen, Xiaomei; Perez-Aguilar, Jose Manuel; Chong, Yu; Gao, Xingfa; Chai, Zhifang; Chen, Chunying; Ge, Cuicui; Zhou, Ruhong

    2018-01-09

    Noble metal-based nanomaterials have shown promise as potential enzyme mimetics, but the facet effect and underlying molecular mechanisms are largely unknown. Herein, with a combined experimental and theoretical approach, we unveil that palladium (Pd) nanocrystals exhibit facet-dependent oxidase and peroxidase-like activities that endow them with excellent antibacterial properties via generation of reactive oxygen species. The antibacterial efficiency of Pd nanocrystals against Gram-positive bacteria is consistent with the extent of their enzyme-like activity, that is {100}-faceted Pd cubes with higher activities kill bacteria more effectively than {111}-faceted Pd octahedrons. Surprisingly, a reverse trend of antibacterial activity is observed against Gram-negative bacteria, with Pd octahedrons displaying stronger penetration into bacterial membranes than Pd nanocubes, thereby exerting higher antibacterial activity than the latter. Our findings provide a deeper understanding of facet-dependent enzyme-like activities and might advance the development of noble metal-based nanomaterials with both enhanced and targeted antibacterial activities.

  10. Interactions between colloidal silver and photosynthetic pigments located in cyanobacteria fragments and in solution.

    PubMed

    Siejak, Przemysław; Frackowiak, Danuta

    2007-09-25

    Changes in the yield of the fluorescence emitted by pigments of photosynthetic organisms could be used for the establishment of the presence of some toxic substances. The presence of colloidal metals can be indicated by enhancement of pigments' emission as a result of plasmons generation. The spectra of the pigments of cyanobacterium Synechocystis located in the bacterium fragments and in solutions with and without colloidal silver additions have been measured. The quantum yield of the pigments' fluorescence in solution has been observed to increase at some wavelength of excitation, while the fluorescence of the pigments in the bacteria fragments has been only quenched as a consequence of interactions with colloidal silver particles. Close contact between pigment molecules located in bacteria fragments and silver particles is probably not possible. We plan in future to investigate the influence of other, more typical metal pollutants of water, using similar spectral methods and several other photosynthetic bacteria pigments, in solution, in cell fragments and in the whole bacteria organisms.

  11. Suppressing bacterial interaction with copper surfaces through graphene and hexagonal-boron nitride coatings.

    PubMed

    Parra, Carolina; Montero-Silva, Francisco; Henríquez, Ricardo; Flores, Marcos; Garín, Carolina; Ramírez, Cristian; Moreno, Macarena; Correa, Jonathan; Seeger, Michael; Häberle, Patricio

    2015-04-01

    Understanding biological interaction with graphene and hexagonal-boron nitride (h-BN) membranes has become essential for the incorporation of these unique materials in contact with living organisms. Previous reports show contradictions regarding the bacterial interaction with graphene sheets on metals. Here, we present a comprehensive study of the interaction of bacteria with copper substrates coated with single-layer graphene and h-BN. Our results demonstrate that such graphitic coatings substantially suppress interaction between bacteria and underlying Cu substrates, acting as an effective barrier to prevent physical contact. Bacteria do not "feel" the strong antibacterial effect of Cu, and the substrate does not suffer biocorrosion due to bacteria contact. Effectiveness of these systems as barriers can be understood in terms of graphene and h-BN impermeability to transfer Cu(2+) ions, even when graphene and h-BN domain boundary defects are present. Our results seem to indicate that as-grown graphene and h-BN films could successfully protect metals, preventing their corrosion in biological and medical applications.

  12. One step bioconversion of waste precious metals into Serratia biofilm-immobilized catalyst for Cr(VI) reduction.

    PubMed

    Yong, P; Liu, W; Zhang, Z; Beauregard, D; Johns, M L; Macaskie, L E

    2015-11-01

    For reduction of Cr(VI) the Pd-catalyst is excellent but costly. The objectives were to prove the robustness of a Serratia biofilm as a support for biogenic Pd-nanoparticles and to fabricate effective catalyst from precious metal waste. Nanoparticles (NPs) of palladium were immobilized on polyurethane reticulated foam and polypropylene supports via adhesive biofilm of a Serratia sp. The biofilm adhesion and cohesion strength were unaffected by palladization and catalytic biofilm integrity was also shown by magnetic resonance imaging. Biofilm-Pd and mixed precious metals on biofilm (biofilm-PM) reduced 5 mM Cr(VI) to Cr(III) when immobilized in a flow-through column reactor, at respective flow rates of 9 and 6 ml/h. The lower activity of the latter was attributed to fewer, larger, metal deposits on the bacteria. Activity was lost in each case at pH 7 but was restored by washing with 5 mM citrate solution or by exposure of columns to solution at pH 2, suggesting fouling by Cr(III) hydroxide product at neutral pH. A 'one pot' conversion of precious metal waste into new catalyst for waste decontamination was shown in a continuous flow system based on the use of Serratia biofilm to manufacture and support catalytic Pd-nanoparticles.

  13. Respiratory interactions of soil bacteria with (semi)conductive iron-oxide minerals.

    PubMed

    Kato, Souichiro; Nakamura, Ryuhei; Kai, Fumiyoshi; Watanabe, Kazuya; Hashimoto, Kazuhito

    2010-12-01

    Pure-culture studies have shown that dissimilatory metal-reducing bacteria are able to utilize iron-oxide nanoparticles as electron conduits for reducing distant terminal acceptors; however, the ecological relevance of such energy metabolism is poorly understood. Here, soil microbial communities were grown in electrochemical cells with acetate as the electron donor and electrodes (poised at 0.2 V versus Ag/AgCl) as the electron acceptors in the presence and absence of iron-oxide nanoparticles, and respiratory current generation and community structures were analysed. Irrespective of the iron-oxide species (hematite, magnetite or ferrihydrite), the supplementation with iron-oxide minerals resulted in large increases (over 30-fold) in current, while only a moderate increase (∼10-fold) was observed in the presence of soluble ferric/ferrous irons. During the current generation, insulative ferrihydrite was transformed into semiconductive goethite. Clone-library analyses of 16S rRNA gene fragments PCR-amplified from the soil microbial communities revealed that iron-oxide supplementation facilitated the occurrence of Geobacter species affiliated with subsurface clades 1 and 2. We suggest that subsurface-clade Geobacter species preferentially thrive in soil by utilizing (semi)conductive iron oxides for their respiration. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. The Extracellular Domain of Human High Affinity Copper Transporter (hNdCTR1), Synthesized by E. coli Cells, Chelates Silver and Copper Ions In Vivo

    PubMed Central

    Sankova, Tatiana P.; Orlov, Iurii A.; Saveliev, Andrey N.; Kirilenko, Demid A.; Babich, Polina S.; Brunkov, Pavel N.; Puchkova, Ludmila V.

    2017-01-01

    There is much interest in effective copper chelators to correct copper dyshomeostasis in neurodegenerative and oncological diseases. In this study, a recombinant fusion protein for expression in Escherichia coli cells was constructed from glutathione-S-transferase (GST) and the N-terminal domain (ectodomain) of human high affinity copper transporter CTR1 (hNdCTR1), which has three metal-bound motifs. Several biological properties of the GST-hNdCTR1 fusion protein were assessed. It was demonstrated that in cells, the protein was prone to oligomerization, formed inclusion bodies and displayed no toxicity. Treatment of E. coli cells with copper and silver ions reduced cell viability in a dose- and time-dependent manner. Cells expressing GST-hNdCTR1 protein demonstrated resistance to the metal treatments. These cells accumulated silver ions and formed nanoparticles that contained AgCl and metallic silver. In this bacterial population, filamentous bacteria with a length of about 10 µm were often observed. The possibility for the fusion protein carrying extracellular metal binding motifs to integrate into the cell’s copper metabolism and its chelating properties are discussed. PMID:29099786

  15. The Extracellular Domain of Human High Affinity Copper Transporter (hNdCTR1), Synthesized by E. coli Cells, Chelates Silver and Copper Ions In Vivo.

    PubMed

    Sankova, Tatiana P; Orlov, Iurii A; Saveliev, Andrey N; Kirilenko, Demid A; Babich, Polina S; Brunkov, Pavel N; Puchkova, Ludmila V

    2017-11-03

    There is much interest in effective copper chelators to correct copper dyshomeostasis in neurodegenerative and oncological diseases. In this study, a recombinant fusion protein for expression in Escherichia coli cells was constructed from glutathione-S-transferase (GST) and the N-terminal domain (ectodomain) of human high affinity copper transporter CTR1 (hNdCTR1), which has three metal-bound motifs. Several biological properties of the GST-hNdCTR1 fusion protein were assessed. It was demonstrated that in cells, the protein was prone to oligomerization, formed inclusion bodies and displayed no toxicity. Treatment of E. coli cells with copper and silver ions reduced cell viability in a dose- and time-dependent manner. Cells expressing GST-hNdCTR1 protein demonstrated resistance to the metal treatments. These cells accumulated silver ions and formed nanoparticles that contained AgCl and metallic silver. In this bacterial population, filamentous bacteria with a length of about 10 µm were often observed. The possibility for the fusion protein carrying extracellular metal binding motifs to integrate into the cell's copper metabolism and its chelating properties are discussed.

  16. Controls on O2 Production in Cyanobacterial Mats and Implications for Earth's Oxygenation

    NASA Astrophysics Data System (ADS)

    Dick, Gregory J.; Grim, Sharon L.; Klatt, Judith M.

    2018-05-01

    Cyanobacterial mats are widely assumed to have been globally significant hot spots of biogeochemistry and evolution during the Archean and Proterozoic, but little is known about their quantitative contributions to global primary productivity or Earth's oxygenation. Modern systems show that mat biogeochemistry is the outcome of concerted activities and intimate interactions between various microbial metabolisms. Emerging knowledge of the regulation of oxygenic and sulfide-driven anoxygenic photosynthesis by versatile cyanobacteria, and their interactions with sulfur-oxidizing bacteria and sulfate-reducing bacteria, highlights how ecological and geochemical processes can control O2 production in cyanobacterial mats in unexpected ways. This review explores such biological controls on O2 production. We argue that the intertwined effects of light availability, redox geochemistry, regulation and competition of microbial metabolisms, and biogeochemical feedbacks result in emergent properties of cyanobacterial mat communities that are all critical yet largely overlooked mechanisms to potentially explain the protracted nature of Earth's oxygenation.

  17. [Occupational exposure to airborne fungi and bacteria in a household recycled container sorting plant ].

    PubMed

    Solans, Xavier; Alonso, Rosa María; Constans, Angelina; Mansilla, Alfonso

    2007-06-01

    Several studies have showed an association between the work in waste treatment plants and occupational health problems such as irritation of skin, eyes and mucous membranes, pulmonary diseases, gastrointestinal problems and symptoms of organic dust toxic syndrome (ODTS). These symptoms have been related to bioaerosol exposure. The aim of this study was to investigate the occupational exposure to biological agents in a plant sorting source-separated packages (plastics materials, ferric and non-ferric metals) household waste. Airborne samples were collected with M Air T Millipore sampler. The concentration of total fungi and bacteria and gram-negative bacteria were determined and the most abundant genera were identified. The results shown that the predominant airborne microorganisms were fungi, with counts greater than 12,000 cfu/m(3) and gram-negative bacteria, with a environmental concentration between 1,395 and 5,280 cfu/m(3). In both cases, these concentrations were higher than levels obtained outside of the sorting plant. Among the fungi, the predominant genera were Penicillium and Cladosporium, whereas the predominant genera of gram-negative bacteria were Escherichia, Enterobacter, Klebsiella and Serratia. The present study shows that the workers at sorting source-separated packages (plastics materials, ferric and non-ferric metals) domestic waste plant may be exposed to airborne biological agents, especially fungi and gram-negative bacteria.

  18. The effect of metal microstructure on the initial attachment of Escherichia coli to 1010 carbon steel.

    PubMed

    Javed, M A; Stoddart, P R; McArthur, S L; Wade, S A

    2013-09-01

    Metallurgical features have been shown to play an important role in the attachment of microorganisms to metal surfaces. In the present study, the influence of the microstructure of as-received (AR) and heat-treated (HT) 1010 carbon steel on the initial attachment of bacteria was investigated. Heat treatment was carried out with the aim of increasing the grain size of the carbon steel coupons. Mirror-polished carbon steel coupons were immersed in a minimal medium inoculated with Escherichia coli (ATCC 25922) to investigate the early (15, 30 and 60 min) and relatively longer-term (4 h) stages of bacterial attachment. The results showed preferential colonisation of bacteria on the grain boundaries of the steel coupons. The bacterial attachment to AR steel coupons was relatively uniform compared to the HT steel coupons where an increased number of localised aggregates of bacteria were found. Quantitative analysis showed that the ratio of the total number of isolated (i.e., single) bacteria to the number of bacteria in aggregates was significantly higher on the AR coupons than the HT coupons. Longer-term immersion studies showed production of extracellular polymeric substances by the bacteria and corrosion at the grain boundaries on both types of steel coupon tested.

  19. Heteroepitaxial growth of Pt and Au thin films on MgO single crystals by bias-assisted sputtering

    DOE PAGES

    Tolstova, Yulia; Omelchenko, Stefan T.; Shing, Amanda M.; ...

    2016-03-17

    The crystallographic orientation of a metal affects its surface energy and structure, and has profound implications for surface chemical reactions and interface engineering, which are important in areas ranging from optoelectronic device fabrication to catalysis. However, it can be very difficult and expensive to manufacture, orient, and cut single crystal metals along different crystallographic orientations, especially in the case of precious metals. One approach is to grow thin metal films epitaxially on dielectric substrates. In this work, we report on growth of Pt and Au films on MgO single crystal substrates of (100) and (110) surface orientation for use asmore » epitaxial templates for thin film photovoltaic devices. We develop bias-assisted sputtering for deposition of oriented Pt and Au films with sub-nanometer roughness. We show that biasing the substrate decreases the substrate temperature necessary to achieve epitaxial orientation, with temperature reduction from 600 to 350 °C for Au, and from 750 to 550 °C for Pt, without use of transition metal seed layers. Additionally, this temperature can be further reduced by reducing the growth rate. Biased deposition with varying substrate bias power and working pressure also enables control of the film morphology and surface roughness.« less

  20. Biological synthesis of nanosized sulfide semiconductors: current status and future prospects.

    PubMed

    da Costa, João Pinto; Girão, Ana Violeta; Trindade, Tito; Costa, Maria Clara; Duarte, Armando; Rocha-Santos, Teresa

    2016-10-01

    There have been extensive and comprehensive reviews in the field of metal sulfide precipitation in the context of environmental remediation. However, these works have focused mainly on the removal of metals from aqueous solutions-usually, metal-contaminated effluents-with less emphasis on the precipitation process and on the end-products, frequently centering on metal removal efficiencies. Recently, there has been an increasing interest not only in the possible beneficial effects of these bioremediation strategies for metal-rich effluents but also on the formed precipitates. These metal sulfide materials are of special relevance in industry, due to their optical, electronic, and mechanical properties. Hence, identifying new routes for synthesizing these materials, as well as developing methodologies allowing for the control of the shape and size of particulates, is of environmental, economic, and practical importance. Multiple studies have shown proof-of-concept for the biological synthesis of inorganic metallic sulfide nanoparticles (NPs), resorting to varied organisms or cell components, though this information has scarcely been structured and compiled in a systematic manner. In this review, we overview the biological synthesis methodologies of nanosized metal sulfides and the advantages of these strategies when compared to more conventional chemical routes. Furthermore, we highlight the possibility of the use of numerous organisms for the synthesis of different metal sulfide NPs, with emphasis on sulfate-reducing bacteria (SRB). Finally, we put in perspective the potential of these methodologies in the emerging research areas of biohydrometallurgy and nanobiotechnology for the uptake of metals in the form of metal sulfide nanoparticles. A more complete understanding of the principles underlying the (bio)chemistry of formation of solids in these conditions may lead to the large-scale production of such metal sulfides, while simultaneously allowing an enhanced control over the size and shape of these biogenic nanomaterials.

Top