Science.gov

Sample records for metalated ruthenium complexes

  1. Metal-metal interactions in linear tri-, penta-, hepta-, and nona-nuclear ruthenium string complexes.

    PubMed

    Niskanen, Mika; Hirva, Pipsa; Haukka, Matti

    2012-05-01

    Density functional theory (DFT) methodology was used to examine the structural properties of linear metal string complexes: [Ru(3)(dpa)(4)X(2)] (X = Cl(-), CN(-), NCS(-), dpa = dipyridylamine(-)), [Ru(5)(tpda)(4)Cl(2)], and hypothetical, not yet synthesized complexes [Ru(7)(tpta)(4)Cl(2)] and [Ru(9)(ppta)(4)Cl(2)] (tpda = tri-α-pyridyldiamine(2-), tpta = tetra-α-pyridyltriamine(3-), ppta = penta-α-pyridyltetraamine(4-)). Our specific focus was on the two longest structures and on comparison of the string complexes and unsupported ruthenium backboned chain complexes, which have weaker ruthenium-ruthenium interactions. The electronic structures were studied with the aid of visualized frontier molecular orbitals, and Bader's quantum theory of atoms in molecules (QTAIM) was used to study the interactions between ruthenium atoms. The electron density was found to be highest and distributed most evenly between the ruthenium atoms in the hypothetical [Ru(7)(tpta)(4)Cl(2)] and [Ru(9)(ppta)(4)Cl(2)] string complexes.

  2. Metals fact sheet: Ruthenium

    SciTech Connect

    1996-06-01

    Ruthenium, named after Ruthenia, a province in Western Russia, was discovered in 1827 by Osann in placer ores from Russia`s Ural mountains. A minor platinum group metal (PGM), Ruthenium was the last of the PGMs to be isolated. In 1844, Klaus prepared the first 6 grams of pure ruthenium metal.

  3. Vibrational energy transfer dynamics in ruthenium polypyridine transition metal complexes.

    PubMed

    Fedoseeva, Marina; Delor, Milan; Parker, Simon C; Sazanovich, Igor V; Towrie, Michael; Parker, Anthony W; Weinstein, Julia A

    2015-01-21

    Understanding the dynamics of the initial stages of vibrational energy transfer in transition metal complexes is a challenging fundamental question which is also of crucial importance for many applications, such as improving the performance of solar devices or photocatalysis. The present study investigates vibrational energy transport in the ground and the electronic excited state of Ru(4,4'-(COOEt)2-2,2-bpy)2(NCS)2, a close relative of the efficient "N3" dye used in dye-sensitized solar cells. Using the emerging technique of ultrafast two-dimensional infrared spectroscopy, we show that, similarly to other transition-metal complexes, the central Ru heavy atom acts as a "bottleneck" making the energy transfer from small ligands with high energy vibrational stretching frequencies less favorable and thereby affecting the efficiency of vibrational energy flow in the complex. Comparison of the vibrational relaxation times in the electronic ground and excited state of Ru(4,4'-(COOEt)2-2,2-bpy)2(NCS)2 shows that it is dramatically faster in the latter. We propose to explain this observation by the intramolecular electrostatic interactions between the thiocyanate group and partially oxidised Ru metal center, which increase the degree of vibrational coupling between CN and Ru-N modes in the excited state thus reducing structural and thermodynamic barriers that slow down vibrational relaxation and energy transport in the electronic ground state. As a very similar behavior was earlier observed in another transition-metal complex, Re(4,4'-(COOEt)2-2,2'-bpy)(CO)3Cl, we suggest that this effect in vibrational energy dynamics might be common for transition-metal complexes with heavy central atoms.

  4. Optical nonlinearity, limiting and switching characteristics of novel ruthenium metal-organic complex

    NASA Astrophysics Data System (ADS)

    Manjunatha, K. B.; Rajarao, Ravindra; Umesh, G.; Ramachandra Bhat, B.; Poornesh, P.

    2017-10-01

    We report the nonlinear optical properties of Ruthenium metal complex a promising organic material for use in scientific and technological applications. The thin films of newly synthesized ruthenium metal-organic complex were fabricated using spin coating technique. Z-scan and degenerate four wave mixing (DFWM) techniques used to extract the third-order nonlinear optical (NLO) parameters. The data reveals the investigated material exhibited relatively large NLO properties. The pump-probe experiments shows that the switch-on and off times of the material were in the order of μs at different pump intensities and the energy dependent transmission studies reveal good limiting property of the material in nanosecond regime.

  5. Ruthenium complexes as antimicrobial agents.

    PubMed

    Li, Fangfei; Collins, J Grant; Keene, F Richard

    2015-04-21

    One of the major advances in medical science has been the development of antimicrobials; however, a consequence of their widespread use has been the emergence of drug-resistant populations of microorganisms. There is clearly a need for the development of new antimicrobials--but more importantly, there is the need for the development of new classes of antimicrobials, rather than drugs based upon analogues of known scaffolds. Due to the success of the platinum anticancer agents, there has been considerable interest in the development of therapeutic agents based upon other transition metals--and in particular ruthenium(II/III) complexes, due to their well known interaction with DNA. There have been many studies of the anticancer properties and cellular localisation of a range of ruthenium complexes in eukaryotic cells over the last decade. However, only very recently has there been significant interest in their antimicrobial properties. This review highlights the types of ruthenium complexes that have exhibited significant antimicrobial activity and discusses the relationship between chemical structure and biological processing--including site(s) of intracellular accumulation--of the ruthenium complexes in both bacterial and eukaryotic cells.

  6. Special Issue on Ruthenium Complexes.

    PubMed

    Dragutan, Ileana; Dragutan, Valerian; Demonceau, Albert

    2017-02-08

    The organic chemistry of ruthenium has been one of the most vigorously growing research areas over the past decades. Considerable effort has been extended towards the design and application of a broad series of ruthenium complexes, which culminated with the development by Ryoji Noyori (2001 Nobel Prize for Chemistry) of chiral ruthenium catalysts for stereoselective hydrogenation reactions [1], and the discovery by Robert H. Grubbs (2005 Nobel Prize for Chemistry) of well-defined ruthenium- benzylidene catalysts for olefin metathesis [2] [...].

  7. Enantioselective syntheses of sulfoxides in octahedral ruthenium(II) complexes via a chiral-at-metal strategy.

    PubMed

    Li, Zheng-Zheng; Wen, A-Hao; Yao, Su-Yang; Ye, Bao-Hui

    2015-03-16

    The preparation of chiral 2-(alkylsulfinyl)phenol compounds by enantioselective coordination-oxidation of the thioether ruthenium complexes with a chiral-at-metal strategy has been developed. The enantiomerically pure sulfoxide complexes Δ-[Ru(bpy)2{(R)-LO-R}](PF6) (bpy is 2,2'-bipyridine, HLO-R is 2-(alkylsulfinyl)phenol, R = Me (Δ-1a), Et (Δ-2a), iPr (Δ-3a), Bn (Δ-4a), and Nap (Δ-5a)) and Λ-[Ru(bpy)2{(S)-LO-R}](PF6) (R = Me (Λ-1a), Et (Λ-2a), iPr (Λ-3a), Bn (Λ-4a), and Nap (Λ-5a)) have been synthesized by the reaction of Δ-[Ru(bpy)2(py)2](2+) or Λ-[Ru(bpy)2(py)2](2+) with the prochiral thioether ligands 2-(alkylthio)phenol (HL-R), followed by enantioselective oxidation with m-CPBA as oxidant. The X-ray crystallography was used to verify the stereochemistry of ruthenium complexes and sulfur atoms. The configurations of the ruthenium complexes are stable during the coordination and oxidation reactions. Moreover, the chiral sulfoxide ligands are enantioselectively generated by controlling of the configuration of ruthenium centers in the course of oxidation reaction. That is, the Λ configuration at the ruthenium center generates the S sulfoxide ligand; on the contrary, the Δ configuration of the ruthenium complex originates the R sulfoxide ligand. Acidolysis of Λ-[Ru(bpy)2{(R)-LO-R}](PF6) and Δ-[Ru(bpy)2{(S)-LO-R}](PF6) complexes in the presence of TFA-MeCN afforded the chiral ligands (R)-HLO-R and (S)-HLO-R in 96-99% ee values, respectively. Importantly, the chiral ruthenium complexes can be recycled as Δ/Λ-[Ru(bpy)2(MeCN)2](PF6)2 and reused in a next reaction cycle with complete retention of the configurations at ruthenium centers.

  8. Luminescent tetrametallic complexes of ruthenium

    SciTech Connect

    Murphy, W.R. Jr.; Brewer, K.J.; Gettliffe, G.; Petersen, J.D. )

    1989-01-11

    Tetrametallic complexes constructed around the metal core Ru(dpp){sub 3}{sup 2+} (where dpp = 2,3-bis(2-pyridyl)pyrazine) have been prepared and characterized. The complexes, which have the general formula Ru((dpp)ML{sub 2}){sub 3}{sup n+}, where ML{sub 2} = Ru{sup II}(bpy){sub 2} (n = 8), Ru{sup II}(phen){sub 2} (n = 8), and Ru{sup II}(tpy)Cl (n = 5) and bpy = 2,2{prime}-bipyridine, phen = 1,10-phenanthroline, and tpy = 2,2{prime}:6{prime},2{double prime}-terpyridine, are prepared from the reaction of Ru(dpp){sub 3}{sup 2+} with ML{sub 2}Cl{sub 2} in ethanol/water. The tetrametallic complexes luminesce at room temperature in acetonitrile with emissions characteristic of a single ruthenium center with excited-state lifetimes in the 100-ns range. Electrochemically, the most facile reductions occur at the dpp ligand, and the lower energy oxidation is a single peak associated with the three peripheral ruthenium centers. 13 refs., 1 fig., 2 tabs.

  9. Photophysical Studies of Bioconjugated Ruthenium Metal-Ligand Complexes Incorporated in Phospholipid Membrane Bilayers

    PubMed Central

    Sharmin, Ayesha; Salassa, Luca; Rosenberg, Edward; Ross, J. B. Alexander; Abbott, Geoffrey; Black, Labe; Terwilliger, Michelle; Brooks, Robert

    2013-01-01

    Luminescent, mono-diimine, ruthenium complexes, [(H)Ru(CO)(PPh3)2(dcbpy)][PF6] (1, dcbpy = 4,4′-dicarboxy bipyridyl) and [(H)Ru(CO)(dppene)(5-amino-1,10-phen)][PF6] (2, dppene = bis diphenylphosphino-ethylene, phen = 9,10-phenanthroline), have been conjugated with 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DPPE) and with cholesterol in the case of 2. Compound 1 gives the bis-lipid derivative [(H)Ru(CO)(PPh3)2(dcbpy-N-DPPE2)][PF6] (3), while 2 provides the mono-lipid conjugate [(H)Ru(CO)(dppene)(1,10-phen-5-NHC(S)-N-DPPE)][ PF6] (4), and the cholesterol derivative [(H)Ru(CO)(dppene)(1,10-phen-5-NHC(O)OChol)][PF6] (5, Chol = cholesteryl), using standard conjugation techniques. These compounds were characterized by spectroscopic methods, and their photophysical properties were measured in organic solvents. The luminescence of lipid conjugates 3 and is quenched in organic solvents while compound 4 a weak, short-lived, blue-shifted emission in solution. The cholesterol conjugate shows the long-lived, microsecond-timescale emission associated with triplet metal-to-ligand charge-transfer (3MLCT) excited states. Incorporation of conjugate 3 in lipid bilayer vesicles restores the luminescence, but with blue shifts (~80 nm) accompanied by nanosecond-timescale lifetimes. In the vesicles conjugate 4 shows a similar short-lived and blue-shifted emission to that observed in solution but with increased intensity. Conjugation of the complex [(H)Ru(CO)(PhP2C2H4C(O)O-N-succinimidyl)2(bpy)][PF6] (6”) with DPPE gives the phosphine-conjugated complex [(H)Ru(CO)(PhP2C2H4C(O)-N-DPPE)2(bpy)][PF6] (7). Complex 7 also exhibits a short-lived and blue-shifted emission in solution and in vesicles as observed for 3 and 4. We have also conjugated the complex [Ru(bpy)2(5-amino-1,10-phenanthroline)][PF6]2 (8) with both cholesterol (9) and DPPE (10). Neither 9 nor the previously reported 10 exhibited the blue shifts observed for 3 and 4 when incorporated into LUVs. The anisotropies of

  10. Characteristics and reactivity of ruthenium-oxo complexes.

    PubMed

    Ishizuka, Tomoya; Kotani, Hiroaki; Kojima, Takahiko

    2016-11-14

    In this perspective, we have surveyed the synthetic procedure, characteristics, and reactivity of high-valent ruthenium-oxo complexes. The ruthenium-oxo complexes have served as ideal species to elucidate the characteristics of metal-oxo complexes in terms of not only geometrical and electronic structures but also oxidation reactivity and mechanisms of oxidation reactions. Due to the high stability and excellent reversibility of redox processes, ruthenium-oxo complexes have provided significant mechanistic insights into the oxidation of organic compounds including alcohols, alkenes, and alkanes and also water on the basis of detailed kinetic analysis.

  11. Control and utilization of ruthenium and rhodium metal complex excited states for photoactivated cancer therapy

    PubMed Central

    Knoll, Jessica D.; Turro, Claudia

    2015-01-01

    The use of visible light to produce highly selective and potent drugs through photodynamic therapy (PDT) holds much potential in the treatment of cancer. PDT agents can be designed to follow an O2-dependent mechanism by producing highly reactive species such as 1O2 and/or an O2 independent mechanism through processes such as excited state electron transfer, covalent binding to DNA or photoinduced drug delivery. Ru(II)-polypyridyl and Rh2(II,II) complexes represent an important class of compounds that can be tailored to exhibit desired photophysical properties and photochemical reactivity by judicious selection of the ligand set. Complexes with relatively long-lived excited states and planar, intercalating ligands localize on the DNA strand and photocleave DNA through 1O2 production or guanine oxidation by the excited state of the chromophore. Photoinduced ligand substitution occurs through the population of triplet metal centered (3MC) excited states and facilitates covalent binding of the metal complex to DNA in a mode similar to cisplatin. Ligand photodissociation also provides a route to selective drug delivery. The ability to construct metal complexes with desired light absorbing and excited state properties by ligand variation enables the design of PDT agents that can potentially provide combination therapy from a single metal complex. PMID:25729089

  12. Ruthenium-Ruthenium-Bonded [Bis{corrolato-ruthenium(III)}](n) (n=0, +1, -1) Complexes: Model Compounds for the Photosynthetic Special Pair.

    PubMed

    Sinha, Woormileela; Sommer, Michael G; Hettmanczyk, Lara; Patra, Bratati; Filippou, Vasileios; Sarkar, Biprajit; Kar, Sanjib

    2017-02-16

    We present herein the synthesis of three new bis(corrolato-ruthenium(III)) complexes containing unsupported Ru-Ru bonds and their characterization in different redox states. The (1) H NMR spectra of the bis(corrolato-ruthenium(III)) complexes displayed "normal" chemical shifts and the compounds proved to be EPR-silent. Crystallographic characterization of the dimers indicated Ru-Ru distances of 2.175 Å, consistent with a triple bond between the two ruthenium centers. All of the synthesized complexes undergo two successive reversible oxidations and a single reversible reduction. A combination of UV/Vis/NIR/EPR spectroelectrochemical studies and DFT calculations established the redox state distributions in these ruthenium-ruthenium-bonded dimers. Whereas reduction of the dimers is metal-based and leads to metal-metal-bonded mixed-valent Ru(II) -Ru(III) species, one-electron oxidation largely retains the Ru(III) -Ru(III) situation with the generation of metal-bound corrolato radicals. The present study thus concerns the first UV/Vis/NIR/EPR spectroelectrochemical characterization and DFT calculations of ruthenium-ruthenium-bonded rotationally ordered corrole dimers. The mean plane separation between the two corrole units in these dimers is around 3.543 Å, which is in close agreement to that in the "special pair" in chlorophyll. Oxidation of these ruthenium-ruthenium-bonded dimers gives rise to two new electronic absorption bands in the NIR region (similar to those of the special pair), which have apparently not been mentioned/observed in earlier reports on ruthenium-ruthenium-bonded corrole dimers. These bands mainly originate from inter-corrole transitions.

  13. Essentially Molecular Metal Complexes Anchored to Zeolite: Synthesis and Characterization of Rhodium Complexes and Ruthenium Complexes Prepared from Rh(acac)(2-C2H4)2 and cis-Ru(acac)2( -C2H4)2

    SciTech Connect

    Ogino, I.; Gates, B

    2010-01-01

    Mononuclear complexes of rhodium and of ruthenium, Rh(acac)({eta}{sup 2}-C{sub 2}H{sub 4}){sub 2} and cis-Ru(acac)2({eta}{sup 2}-C{sub 2}H{sub 4}){sub 2} (acac = C{sub 5}H{sub 7}O{sub 2}{sup -}), were used as precursors to synthesize metal complexes bonded to zeolite {beta}. Infrared (IR) and extended X-ray absorption fine structure (EXAFS) spectra show that the species formed from Rh(acac)({eta}{sup 2}-C{sub 2}H{sub 4}){sub 2} was Rh({eta}{sup 2}-C{sub 2}H{sub 4}){sub 2}{sup +}, which was bonded to the zeolite at aluminum sites via two Rh-O bonds. Reaction of this supported rhodium complex with CO gave the supported rhodium gem-dicarbonyl Rh(CO){sub 2}{sup +}, which was characterized by two {nu}{sub CO} bands in the IR spectrum, at 2048 and 2115 cm{sup -1}, that were sharp (fwhm of 2115-cm{sup -1} band = 5 cm{sup -1}), indicating a high degree of uniformity of the supported species. Nearly the same result was observed (Liang, A. et al. J. Am. Chem. Soc. 2009, 131, 8460) for the isostructural rhodium complex supported on dealuminated HY zeolite, which was characterized by frequencies of the {nu}{sub CO} bands that were 4 and 2 cm{sup -1}, respectively, greater than those characterizing the zeolite {beta}-supported complex. This comparison indicates that the Rh atoms in Rh({eta}{sup 2}-C{sub 2}H{sub 4}){sub 2}{sup +} anchored on zeolite {beta} were slightly more electron-rich than those on zeolite Y. This inference is supported by EXAFS results showing shorter Rh-C bonds in the zeolite {beta}-supported rhodium ethene complex than in the zeolite Y-supported rhodium ethene complex. In contrast to these supported rhodium complexes, the zeolite {beta}-supported ruthenium samples were shown by IR and EXAFS spectroscopies to consist of mixtures of mononuclear ruthenium complexes with various numbers of acac ligands; when CO reacted with the supported ruthenium complexes, the resultant ruthenium carbonyls were characterized by {nu}{sub CO} spectra characteristic of both

  14. Antimicrobial ruthenium complex coating on the surface of titanium alloy. High efficiency anticorrosion protection of ruthenium complex.

    PubMed

    El-Gamel, Nadia E A; Fekry, Amany M

    2015-08-01

    A ruthenium complex was prepared and structurally characterized using various techniques. Antibacterial and antifungal activities of ruthenium complex were evaluated. High significant antimicrobial activity against Escherichia coli, Staphylococcus aureus and Candida albicans was recorded. Minor cytotoxicity records were reported at the highest concentration level using MTT assay. The influence of Cu(II), Cr(III), Fe(III) and Ru(III) metal ions of salen Schiff base on the corrosion resistance of Ti-alloy in 0.5M HCl was studied. In vitro corrosion resistance was investigated using electrochemical impedance spectroscopy (EIS) measurements and confirmed by surface examination via scanning electron microscope (SEM) technique. Both impedance and phase angle maximum (θ(max)) values were at maximum in the case of the ruthenium complex with promising antibacterial and antifungal activities. The surface film created by the ruthenium complex was highly resistant against attack or deterioration by bacteria. The EIS study showed high impedance values for the ruthenium complex with increasing exposure time up to 8 days. SEM images showed uniform distribution and adsorption of Ru(III) ions on Ti-alloy surface. The ruthenium complex, as a model of organic-inorganic hybrid complex, offered new prospects with desired properties in industrial and medical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Reduction of transition metal complexes by tris(bipyridyl)ruthenium(1+) ion, chromium(II) ion, and the 10-hydroxy-1-methylethyl radical

    SciTech Connect

    Connolly, P. II

    1985-01-01

    The kinetics and mechanisms of the reactions of photochemically generated tris(bipyridyl)ruthenium(1+) ion with various metal complexes were studied. The rates of reduction of some Co(III) complexes were at, or near, the diffusion controlled limit. Several rare earth ions, Eu/sup 3 +/, Yb/sup 3 +/, and Sm/sup 3 +/ were also reacted with the ruthenium(1+) complex. Yb/sup 3 +/ was reduced; however, the reaction was just above the limits of detection. Sm/sup 3 +/ was not reduced, in accord with the thermodynamics of the reaction. The reductions of some Cr(III) complexes, including pentaaquo(organo)chromium(2+) ions and pentaaquo(pyridine)chromium(3+) ions, were also studied. The reduction of the organochromium(2+) complexes proceeded at a rate that was similar to the Cr(H/sub 2/O)/sub 6//sup 3 +/ ion. The homogeneous catalytic production of H/sub 2/ from reduced metal halide solutions (M/sup 2 +/ = Cr/sup 2 +/, Eu/sup 2 +/, V/sup 2 +/) is presented. The catalyst is a cobalt(II) macrocyclic complex, Co(dmgBF/sub 2/)/sub 2/, which is reduced by the M/sup 2 +/ ions to form, ultimately, a hydridometal complex. This complex leads to the evolution of H/sub 2/ in the acidic solutions employed. The mechanism of the reaction is discussed in terms of the Michaelis-Menten scheme for enzyme catalysis. A photochemical method for the generation of 1-hydroxy-1-methylethyl radical for kinetic study is presented. This radical is reacted with BrCo(dmgH)/sub 2/ and ClCo(dmgH)/sub 2/ to produce the highly colored Co(dmgH)/sub 2/ complex, which serves as the indicator for the reaction.

  16. Dinuclear ruthenium(ii) complexes containing one inert metal centre and one coordinatively-labile metal centre: syntheses and biological activities.

    PubMed

    Li, Xin; Heimann, Kirsten; Li, Fangfei; Warner, Jeffrey M; Richard Keene, F; Grant Collins, J

    2016-03-07

    A series of non-symmetric dinuclear polypyridylruthenium(ii) complexes (Rubbn-Cl) that contain one inert metal centre and one coordinatively-labile metal centre, linked by the bis[4(4'-methyl-2,2'-bipyridyl)]-1,n-alkane ligand ("bbn" for n = 7, 12 and 16), have been synthesised and their potential as antimicrobial agents examined. The minimum inhibitory concentrations (MIC) of the ruthenium(II) complexes were determined against four strains of bacteria--Gram-positive Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA), and Gram-negative Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa). The Rubbn-Cl complexes displayed good antimicrobial activity, with Rubb12-Cl being the most active complex against both Gram-positive and Gram-negative strains. Interestingly, Rubb7-Cl was found to be eight- and sixteen-fold more active towards E. coli than against S. aureus and MRSA, respectively. The cytotoxicities of the Rubbn-Cl complexes against three eukaryotic cell lines--two kidney cell lines (BHK and HEK-293) and one liver cell line (HepG2)--were examined. The Rubbn-Cl complexes were found to be considerably less toxic towards eukaryotic cells than S. aureus, MRSA and E. coli, with Rubb12-Cl being thirty- to eighty-times more toxic to the bacteria than to BHK, HEK-293 or HepG2 cells. Unexpectedly, Rubb7-Cl was far more toxic to HepG2 cells (24 h-IC50 = 3.7 μM) and far less toxic to BHK cells (24 h-IC50 = 238 μM) than the Rubb12-Cl and Rubb16-Cl complexes. In order to understand the unexpected large differences in the cytotoxicities of the Rubbn-Cl complexes towards eukaryotic cells, a confocal microscopic study of their intracellular localisation was undertaken. The results suggest that the observed cytotoxicity might be related to the extent of DNA binding.

  17. Metal-drug synergy: new ruthenium(II) complexes of ketoconazole are highly active against Leishmania major and Trypanosoma cruzi and nontoxic to human or murine normal cells.

    PubMed

    Iniguez, Eva; Sánchez, Antonio; Vasquez, Miguel A; Martínez, Alberto; Olivas, Joanna; Sattler, Aaron; Sánchez-Delgado, Roberto A; Maldonado, Rosa A

    2013-10-01

    In our ongoing search for new metal-based chemotherapeutic agents against leishmaniasis and Chagas disease, six new ruthenium-ketoconazole (KTZ) complexes have been synthesized and characterized, including two octahedral coordination complexes-cis,fac-[Ru(II)Cl2(DMSO)3(KTZ)] (1) and cis-[Ru(II)Cl2(bipy)(DMSO)(KTZ)] (2) (where DMSO is dimethyl sulfoxide and bipy is 2,2'-bipyridine)-and four organometallic compounds-[Ru(II)(η(6)-p-cymene)Cl2(KTZ)] (3), [Ru(II)(η(6)-p-cymene)(en)(KTZ)][BF4]2 (4), [Ru(II)(η(6)-p-cymene)(bipy)(KTZ)][BF4]2 (5), and [Ru(II)(η(6)-p-cymene)(acac)(KTZ)][BF4] (6) (where en is ethylenediamine and acac is acetylacetonate); the crystal structure of 3 is described. The central hypothesis of our work is that combining a bioactive compound such as KTZ and a metal in a single molecule results in a synergy that can translate into improved activity and/or selectivity against parasites. In agreement with this hypothesis, complexation of KTZ with Ru(II) in compounds 3-5 produces a marked enhancement of the activity toward promastigotes and intracellular amastigotes of Leishmania major, when compared with uncomplexed KTZ, or with similar ruthenium compounds not containing KTZ. Importantly, the selective toxicity of compounds 3-5 toward the leishmania parasites, in relation to human fibroblasts and osteoblasts or murine macrophages, is also superior to the selective toxicities of the individual constituents of the drug. When tested against Trypanosoma cruzi epimastigotes, some of the organometallic complexes displayed activity and selectivity comparable to those of free KTZ. A dual-target mechanism is suggested to account for the antiparasitic properties of these complexes.

  18. Complex of transferrin with ruthenium for medical applications

    DOEpatents

    Richards, Powell; Srivastava, Suresh C.; Meinken, George E.

    1984-05-15

    A novel Ruthenium-transferrin complex, prepared by reacting iron-free human transferrin dissolved in a sodium acetate solution at pH 7 with ruthenium by heating at about 40.degree. C. for about 2 hours, and purifying said complex by means of gel chromotography with pH 7 sodium acetate as eluent. The mono- or di-metal complex produced can be used in nuclear medicine in the diagnosis and/or treatment of tumors and abscesses. Comparative results with Ga-67-citrate, which is the most widely used tumor-localizing agent in nuclear medicine, indicate increased sensitivity of detection and greater tumor uptake with the Ru-transferrin complex.

  19. Complex of transferrin with ruthenium for medical applications

    DOEpatents

    Richards, P.; Srivastava, S.C.; Meinken, G.E.

    1984-05-15

    A novel ruthenium-transferrin complex is disclosed which is prepared by reacting iron-free human transferrin dissolved in a sodium acetate solution at pH 7 with ruthenium by heating at about 40 C for about 2 hours. The complex is purified by means of gel chromotography with pH 7 sodium acetate as eluent. The mono- or di-metal complex produced can be used in nuclear medicine in the diagnosis and/or treatment of tumors and abscesses. Comparative results with Ga-67-citrate, which is the most widely used tumor-localizing agent in nuclear medicine, indicate increased sensitivity of detection and greater tumor uptake with the Ru-transferrin complex. No Drawings

  20. Chiral-auxiliary-mediated asymmetric synthesis of ruthenium polypyridyl complexes.

    PubMed

    Gong, Lei; Wenzel, Marianne; Meggers, Eric

    2013-11-19

    An octahedral metal complex with 6 different monodentate ligands can form 15 diastereomers as pairs of enantiomers. As a result, the elaborate stereochemistry of octahedral coordination geometries provides tremendous opportunities in the fields of catalysis, the materials sciences, and the life sciences. The demand for enantiomerically pure coordination complexes for tasks related to the selective molecular recognition of biomacromolecules led us to develop synthetic methods to control the absolute stereochemistry at octahedral metal centers. A few years ago our laboratory therefore embarked on a project exploring new and general synthetic strategies for the asymmetric synthesis of inert octahedral transition metal complexes. We initially used the example of thermally inert ruthenium polypyridyl complexes and developed a family of chiral bidentate ligands, including salicyloxazolines, (mercaptophenyl)oxazolines, sulfinylphenols, N-acetylsulfinamides, a phosphinohydroxybinaphthyl, and even the amino acid proline to serve as chiral auxiliaries for asymmetric coordination chemistry. All these chiral auxiliaries strongly coordinate to ruthenium(II) in a bidentate, deprotonated fashion, allowing them to control the absolute metal-centered configuration in the course of subsequent ligand exchange reactions. Finally, we can remove them from the metal without any loss of chiral information and without leaving a chemical trace. A key feature of these chiral auxiliary ligands is their switchable binding strength. A chelate effect ensures that the chiral ligands coordinate very tightly to the metal center, placing their carbon-based, sulfur-based, or axial chirality in a well-defined position close to the metal center to efficiently establish the absolute metal-centered configuration. At the same time a coordinating phenolate, carboximidate, carboxylate, or thiophenolate moiety makes the coordination reversible by weakening the binding strength through protonation or

  1. The synthesis, characterization, and reactivity of some alkyne, vinylidene, and butatrienylidene complexes of ruthenium

    SciTech Connect

    Lomprey, J.R.

    1993-01-01

    Cumulene complexes of ruthenium were studied in regard to their preparation, characterization, and reactivity. This work is divided into two parts: first, a study of the alkyne to vinylidene isomerization on a ruthenium (II) center, and second the study of the synthesis of metal butatrienylidene complexes. The isomeric C[sub 2]H[sub 2] complexes [Ru([eta][sup 2]-HC[triple bond]CH) (PMe[sub 2]-Ph)[sub 2] (Cp)] [BF[sub 4

  2. Preparation, stability, and photoreactivity of thiolato ruthenium polypyridyl complexes: Can cysteine derivatives protect ruthenium-based anticancer complexes?

    PubMed

    van Rixel, Vincent H S; Busemann, Anja; Göttle, Adrien J; Bonnet, Sylvestre

    2015-09-01

    Ruthenium polypyridyl complexes may act as light-activatable anticancer prodrugs provided that they are protected by well-coordinated ligands that i) prevent coordination of other biomolecules to the metal center in the dark and ii) can be removed by visible light irradiation. In this paper, the use of monodentate thiol ligands RSH as light-cleavable protecting groups for the ruthenium complex [Ru(tpy)(bpy)(OH2)](PF6)2 ([1](PF6)2; tpy=2,2';6',2″-terpyridine, bpy=2,2'-bypyridine), is investigated. The reaction of [1](2+) with RSH=H2Cys (L-cysteine), H2Acys (N-acetyl-L-cysteine), and HAcysMe (N-acetyl-L-cysteine methyl ester), is studied by UV-visible spectroscopy, NMR spectroscopy, and mass spectrometry. Coordination of the monodentate thiol ligands to the ruthenium complex takes place upon heating to 353 K, but full conversion to the protected complex [Ru(tpy)(bpy)(SR)]PF6 is only possible when a large excess of ligand is used. Isolation and characterization of the two new thiolato complexes [Ru(tpy)(bpy)(κS-HCys)]PF6 ([2]PF6) and [Ru(tpy)(bpy)(κS-HAcys)]PF6 ([3]PF6) is reported. [3]PF6 shows a metal-to-ligand charge-transfer absorption band that is red shifted (λmax=492 nm in water) compared to its methionine analogue [Ru(tpy)(bpy)(κS-HAmet)](Cl)2 ([5](Cl)2, λmax=452 nm; HAmet=N-acetyl-methionine). In the dark the thiolate ligand coordinated to ruthenium is oxidized even by traces of oxygen, which first leads to the sulfenato, sulfinato, and disulfide ruthenium complexes, and finally to the formation of the aqua complex [1](2+). [3]PF6 showed slow photosubstitution of the thiolate ligand by water under blue light irradiation, together with faster photooxidation of the thiolate ligand compared to dark conditions. The use of thiol vs. thioether monodentate ligands is discussed for the protection of anticancer ruthenium-based prodrugs. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Characterization of low energy charge transfer transitions in (terpyridine)(bipyridine)ruthenium(II) complexes and their cyanide-bridged bi- and tri-metallic analogues.

    PubMed

    Tsai, Chia-Nung; Allard, Marco M; Lord, Richard L; Luo, Dao-Wen; Chen, Yuan-Jang; Schlegel, H Bernhard; Endicott, John F

    2011-12-05

    The lowest energy metal-to-ligand charge transfer (MLCT) absorption bands found in ambient solutions of a series of [Ru(tpy)(bpy)X](m+) complexes (tpy = 2,2':3',2''-terpyridine; bpy = 2,2'-bipyridine; and X = a monodentate ancillary ligand) feature one or two partly resolved weak absorptions (bands I and/or II) on the low energy side of their absorption envelopes. Similar features are found for the related cyanide-bridged bi- and trimetallic complexes. However, the weak absorption band I of [(bpy)(2)Ru{CNRu(tpy)(bpy)}(2)](4+) is missing in its [(bpy)(2)Ru{NCRu(tpy)(bpy)}(2)](4+) linkage isomer demonstrating that this feature arises from a Ru(II)/tpy MLCT absorption. The energies of the MLCT band I components of the [Ru(tpy)(bpy)X](m+) complexes are proportional to the differences between the potentials for the first oxidation and the first reduction waves of the complexes. Time-dependent density functional theory (TD-DFT) computational modeling indicates that these band I components correspond to the highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) transition, with the HOMO being largely ruthenium-centered and the LUMO largely tpy-centered. The most intense contribution to a lowest energy MLCT absorption envelope (band III) of these complexes corresponds to the convolution of several orbitally different components, and its absorption maximum has an energy that is about 5000 cm(-1) higher than that of band I. The multimetallic complexes that contain Ru(II) centers linked by cyanide have mixed valence excited states in which more than 10% of electronic density is delocalized between the nearest neighbor ruthenium centers, and the corresponding stabilization energy contributions in the excited states are indistinguishable from those of the corresponding ground states. Single crystal X-ray structures and computational modeling indicate that the Ru-(C≡N)-Ru linkage is quite flexible and that there is not an appreciable variation

  4. Ruthenium Complexes: An Emerging Ground to the Development of Metallopharmaceuticals for Cancer Therapy.

    PubMed

    Abid, Mohammad; Shamsi, Farheen; Azam, Amir

    2016-01-01

    GLOBOCAN 2012 estimates 14.1 million new cancer cases and 8.2 million cancer-related deaths worldwide. Cancer is rapidly becoming a major public health concern in India as well, with the number of new cancer cases anticipated to double within the next 20 years. The percentage of currently approved metallodrugs is very low, in contrast to the majority of drugs available as organic compounds. The search for alternative drugs to cisplatin, carboplatin and other derivatives is highly needed due to their severe side effects including nephrotoxicity and neurotoxicity. Ruthenium, among other transition metal complexes appears to be a possible candidate for cancer therapy in the near future. The most significant rationale is ruthenium's octahedral chemistry and greater propensity to undergo redox reactions. The hypoxic environment of tumors favors the reduction of inert ruthenium (III) to active ruthenium (II) which opens new prospects for the development of novel prodrugs. Although studies suggest that ruthenium complexes penetrate well within the tumor cells and bind effectively to DNA, its binding to proteins is not very well explained. Ruthenium complexes are presently receiving great attention in the fields of biological, pharmaceutical and medicinal chemistry as anticancer agents. This review poses a comprehensive overview of the studies on competent anticancer ruthenium complexes and the role of these metal complexes in relation to their anticancer properties as well as those under clinical trials.

  5. Arene-ruthenium(II) complexes with hydrophilic P-donor ligands: versatile catalysts in aqueous media.

    PubMed

    Crochet, Pascale; Cadierno, Victorio

    2014-09-07

    In the last few years there has been increasing interest in the use of water as a reaction medium for catalysis, and therefore in designing water-soluble transition-metal catalysts. Half-sandwich (η(6)-arene)-ruthenium(ii) complexes are a versatile and well-known family of ruthenium compounds that exhibit a rich catalytic and coordination chemistry. This Perspective article focuses on the catalytic applications in aqueous media of (η(6)-arene)-ruthenium(ii) complexes containing water-soluble phosphines, and related hydrophilic P-donor ligands.

  6. Zeolite-supported Metal Complexes of Rhodium and of Ruthenium: a General Synthesis Method Influenced by Molecular Sieving Effects

    SciTech Connect

    Ogino, I.; Chen, C; Gates , B

    2010-01-01

    A general method for synthesis of supported metal complexes having a high degree of uniformity is presented, whereby organometallic precursors incorporating acetylacetonate (C{sub 5}H{sub 7}O{sub 2}{sup -}, acac) ligands react with zeolites incorporating OHgroups near Al sites. The method is illustrated by the reactions of Rh(acac)(CO){sub 2} and of cis-Ru(acac){sub 2}({eta}{sup 2}-C{sub 2}H{sub 4}){sub 2} with zeolites slurried in n-pentane at room temperature. The zeolites were H-Beta, H-SSZ-42, H-Mordenite, and HZSM-5. Infrared (IR) and extended X-ray absorption fine structure spectra of the zeolites incorporating rhodium complexes indicate the formation of Rh(CO){sub 2}{sup +} bonded near Al sites; similar results have been reported for the formation of zeolite-supported Rh({eta}{sup 2}-C{sub 2}H{sub 4}){sup 2+} from Rh(acac)({eta}{sup 2}-C{sub 2}H{sub 4}){sub 2}. IR spectra of the supported rhodiumgem-dicarbonyls include sharp, well-resolved {nu}{sub CO} bands, demonstrating that the sites surrounding each metal complex are nearly equivalent. The frequencies of the {nu}{sub CO} bands show how the composition of the zeolite influences the bonding of the supported species, demonstrating subtle differences in the roles of the zeolite as ligands. When the zeolite has pore openings larger than the critical diameter of the precursor organometallic compound, the latter undergoes facile transport into the interior of the zeolite, so that a uniform distribution of the supported species results, but when the precursors barely fit through the zeolite apertures, the mass transport resistance is significant and the supported metal complexes are concentrated near the pore mouths.

  7. Transient photocyclization in ruthenium(ii) polypyridine complexes of indolamines.

    PubMed

    Carrone, G; Zayat, L; Slep, L D; Etchenique, R

    2017-01-18

    Ruthenium polypyridine complexes have proved to be useful caging groups for visible-light photodelivery of biomolecules. In most photoreactions, one ligand is expelled upon irradiation, yielding ruthenium mono-aqua complexes and no other photoproduct. In this work we show that a long-lived transient photoproduct is generated when the ruthenium complexes involve indolamines. The spatial conformation of this species is compatible with a cyclic structure that contains both the amine and the normally non-coordinating aromatic ring coordinated to the ruthenium center.

  8. Ruthenium(II) Complex Incorporated UiO-67 Metal-Organic Framework Nanoparticles for Enhanced Two-Photon Fluorescence Imaging and Photodynamic Cancer Therapy.

    PubMed

    Chen, Rui; Zhang, Jinfeng; Chelora, Jipsa; Xiong, Yuan; Kershaw, Stephen V; Li, King Fai; Lo, Pik-Kwan; Cheah, Kok Wai; Rogach, Andrey L; Zapien, Juan Antonio; Lee, Chun-Sing

    2017-02-22

    Ruthenium(II) tris(bipyridyl) cationic complex (Ru(bpy)3(2+)) incorporated UiO-67 (Universitetet i Oslo) nanoscale metal-organic frameworks (NMOFs) with an average diameter of ∼92 nm were developed as theranostic nanoplatform for in vitro two-photon fluorescence imaging and photodynamic therapy. After incorporation into porous UiO-67 nanoparticles, the quantum yield, luminescence lifetime, and two-photon fluorescence intensity of Ru(bpy)3(2+) guest molecules were much improved owing to the steric confinement effect of MOF pores. Benefiting from these merits, the as-synthesized nanoparticles managed to be internalized by A549 cells while providing excellent red fluorescence in cytoplasm upon excitation with 880 nm irradiation. Photodynamic therapeutic application of the Ru(bpy)3(2+)-incorporated UiO-67 NMOFs was investigated in vitro. The Ru(bpy)3(2+)-incorporated UiO-67 NMOFs exhibited good biocompatibility without irradiation while having good cell-killing rates upon irradiation. In view of these facts, the developed Ru(bpy)3(2+)-incorporated NMOFs give a new potential pathway to achieve enhanced two-photon fluorescence imaging and photodynamic therapy.

  9. Synthesis, characterisation, and preliminary anti-cancer photodynamic therapeutic in vitro studies of mixed-metal binuclear ruthenium(II)-vanadium(IV) complexes

    PubMed Central

    Taylor, Patrick; Magnusen, Anthony R.; Moffett, Erick T.; Meyer, Kyle; Hong, Yiling; Ramsdale, Stuart E.; Gordon, Michelle; Stubbs, Javelyn; Seymour, Luke A.; Acharya, Dhiraj; Weber, Ralph T.; Smith, Paul F.; Dismukes, G. Charles; Ji, Ping; Menocal, Laura; Bai, Fengwei; Williams, Jennie L.; Cropek, Donald M.; Jarrett, William L.

    2013-01-01

    We report the synthesis and characterisation of mixed-metal binuclear ruthenium(II)-vanadium(IV) complexes, which were used as potential photodynamic therapeutic agents for melanoma cell growth inhibition. The novel complexes, [Ru(pbt)2(phen2DTT)](PF6)2•1.5H2O 1 (where phen2DTT = 1,4-bis(1,10-phenanthrolin-5-ylsulfanyl)butane-2,3-diol and pbt = 2-(2'-pyridyl)benzothiazole) and [Ru(pbt)2(tpphz)](PF6)2•3H2O 2 (where tpphz = tetrapyrido[3,2-a:2′,3′-c:3″,2″-h:2‴,3‴-j]phenazine) were synthesised and characterised. Compound 1 was reacted with [VO(sal-L-tryp)(H2O)] (where sal-L-tryp = N-salicylidene-L-tryptophanate) to produce [Ru(pbt)2(phen2DTT)VO(sal-L-tryp)](PF6)2•5H2O 4; while [VO(sal-L-tryp)(H2O)] was reacted with compound 2 to produce [Ru(pbt)2(tpphz)VO(sal-L-tryp)](PF6)2•6H2O 3. All complexes were characterised by elemental analysis, HRMS, ESI MS, UV-visible absorption, ESR spectroscopy, and cyclic voltammetry, where appropriate. In vitro cell toxicity studies (with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay) via dark and light reaction conditions were carried out with sodium diaqua-4,4',4”,4”'tetrasulfophthalocyaninecobaltate(II) (Na4[Co(tspc)(H2O)2]), [VO(sal-L-tryp)(phen)]•H2O, and the chloride salts of complexes 3 and 4. Such studies involved A431, human epidermoid carcinoma cells; human amelanotic malignant melanoma cells; and HFF, non-cancerous human skin fibroblast cells. Both chloride salts of complexes 3 and 4 were found to be more toxic to melanoma cells than to non-cancerous fibroblast cells, and preferentially led to apoptosis of the melanoma cells over non-cancerous skin cells. The anti-cancer property of the chloride salts of complexes 3 and 4 was further enhanced when treated cells were exposed to light, while no such effect was observed on non-cancerous skin fibroblast cells. ESR and 51V NMR spectroscopic studies were also used to assess the stability of the chloride salts of

  10. Ruthenium(II) Complexes as Potential Apoptosis Inducers in Chemotherapy.

    PubMed

    Zheng, Kangdi; Wu, Qiong; Wang, Chengxi; Tan, Weijun; Mei, Wenjie

    2017-01-01

    Herein, the development of ruthenium complexes as potential apoptosis inducers, as well as their underlying mechanism has been reviewed. In recent years, various ruthenium complexes have been designed and their in vitro and in vivo inhibitory activities against various types of tumor cells have been evaluated extensively. It's demonstrated that ruthenium complexes can induce apoptosis of tumor cells through the signal pathway of mitochondria-mediated, death receptor-mediated, and/or endoplasmic reticulum (ER) stress pathways. Alternately, the binding behavior of these ruthenium(II) complexes with DNA, especially with Gquadruplex DNA may play a key role in the DNA damage of tumor cells, and thus provides a versatile tool to rational design novel ruthenium complexes with high activity and selectivity.

  11. Side-on bound diazene and hydrazine complexes of ruthenium.

    PubMed

    Field, Leslie D; Li, Hsiu L; Dalgarno, Scott J

    2010-07-05

    The reaction of cis-[RuCl(2)(PP)(2)] (PP = depe, dmpe) with hydrazine afforded end-on bound ruthenium(II) hydrazine complexes. Treatment of the hydrazine complexes with strong base afforded the side-on bound ruthenium(0) diazene complexes cis-[Ru(eta(2)-NH=NH)(PP)(2)]. Treatment of cis-[Ru(eta(2)-NH=NH)(depe)(2)] with weak acid under chloride-free conditions afforded the side-on bound hydrazine complex cis-[Ru(eta(2)-N(2)H(4))(depe)(2)](2+). These are the first reported side-on bound diazene and hydrazine complexes of ruthenium, and they have been characterized by NMR spectroscopy ((1)H, (31)P, (15)N) and by X-ray crystallography. The interconversion between the ruthenium diazene and the ruthenium hydrazine by acid-base treatment was reversible.

  12. Similar Biological Activities of Two Isostructural Ruthenium and Osmium Complexes

    SciTech Connect

    Maksimoska,J.; Williams, D.; Atilla-Gokcumen, G.; Smalley, K.; Carroll, P.; Webster, R.; Filippakopoulos, P.; Knapp, S.; Herlyn, M.; Meggers, E.

    2008-01-01

    In this study, we probe and verify the concept of designing unreactive bioactive metal complexes, in which the metal possesses a purely structural function, by investigating the consequences of replacing ruthenium in a bioactive half-sandwich kinase inhibitor scaffold by its heavier congener osmium. The two isostructural complexes are compared with respect to their anticancer properties in 1205?Lu melanoma cells, activation of the Wnt signaling pathway, IC50 values against the protein kinases GSK-3? and Pim-1, and binding modes to the protein kinase Pim-1 by protein crystallography. It was found that the two congeners display almost indistinguishable biological activities, which can be explained by their nearly identical three-dimensional structures and their identical mode of action as protein kinase inhibitors. This is a unique example in which the replacement of a metal in an anticancer scaffold by its heavier homologue does not alter its biological activity.

  13. Effect of the Piperazine Unit and Metal-Binding Site Position on the Solubility and Anti-Proliferative Activity of Ruthenium(II)- and Osmium(II)- Arene Complexes of Isomeric Indolo[3,2-c]quinoline—Piperazine Hybrids

    PubMed Central

    2014-01-01

    In this study, the indoloquinoline backbone and piperazine were combined to prepare indoloquinoline–piperazine hybrids and their ruthenium- and osmium-arene complexes in an effort to generate novel antitumor agents with improved aqueous solubility. In addition, the position of the metal-binding unit was varied, and the effect of these structural alterations on the aqueous solubility and antiproliferative activity of their ruthenium- and osmium-arene complexes was studied. The indoloquinoline–piperazine hybrids L1–3 were prepared in situ and isolated as six ruthenium and osmium complexes [(η6-p-cymene)M(L1–3)Cl]Cl, where L1 = 6-(4-methylpiperazin-1-yl)-N-(pyridin-2-yl-methylene)-11H-indolo[3,2-c]quinolin-2-N-amine, M = Ru ([1a]Cl), Os ([1b]Cl), L2 = 6-(4-methylpiperazin-1-yl)-N-(pyridin-2-yl-methylene)-11H-indolo[3,2-c]quinolin-4-N-amine, M = Ru ([2a]Cl), Os ([2b]Cl), L3 = 6-(4-methylpiperazin-1-yl)-N-(pyridin-2-yl-methylene)-11H-indolo[3,2-c]quinolin-8-N-amine, M = Ru ([3a]Cl), Os ([3b]Cl). The compounds were characterized by elemental analysis, one- and two-dimensional NMR spectroscopy, ESI mass spectrometry, IR and UV–vis spectroscopy, and single-crystal X-ray diffraction. The antiproliferative activity of the isomeric ruthenium and osmium complexes [1a,b]Cl–[3a,b]Cl was examined in vitro and showed the importance of the position of the metal-binding site for their cytotoxicity. Those complexes containing the metal-binding site located at the position 4 of the indoloquinoline scaffold ([2a]Cl and [2b]Cl) demonstrated the most potent antiproliferative activity. The results provide important insight into the structure–activity relationships of ruthenium- and osmium-arene complexes with indoloquinoline–piperazine hybrid ligands. These studies can be further utilized for the design and development of more potent chemotherapeutic agents. PMID:24927493

  14. Hydrogen bonding and proton transfer to ruthenium hydride complex CpRuH(dppe): metal and hydride dichotomy.

    PubMed

    Silantyev, Gleb A; Filippov, Oleg A; Tolstoy, Peter M; Belkova, Natalia V; Epstein, Lina M; Weisz, Klaus; Shubina, Elena S

    2013-02-18

    The combination of variable temperature (190-297 K) IR and NMR spectroscopy studies with quantum-chemical calculations at the DFT/B3PW91 and AIM level had the aim to determine the mechanism of proton transfer to CpRuH(dppe) (1, dppe = Ph(2)P(CH(2))(2)PPh(2)) and the structures of intermediates. Dihydrogen bond (DHB) formation was established in the case of interaction with weak proton donors like CF(3)CH(2)OH. Low-temperature protonation (at about 200 K) by stronger proton donors leads via DHB complex to the cationic nonclassical complex [CpRu(η(2)-H(2))(dppe)](+) (2). Thermodynamic parameters of DHB formation (for CF(3)CH(2)OH: ΔH°(HB) = -4.9 ± 0.2 kcal·mol(-1), ΔS°(HB) = -17.8 ± 0.7 cal·mol(-1)·K(-1)) and proton transfer (for (CF(3))(2)CHOH: ΔH°(PT) = -5.2 ± 0.3 kcal·mol(-1), ΔS°(PT) = -23 ± 1 cal·mol(-1)·K(-1)) were determined. Above 240 K 2 transforms into trans-[CpRu(H)(2)(dppe)](+) (3) yielding a mixture of 2 and 3 in 1:2 ratio. Kinetic analysis and activation parameters for the "[Ru(η(2)-H(2))](+) → trans-[Ru(H)(2)](+)" transformation indicate reversibility of this process in contrast to irreversible intramolecular isomerization of the Cp* analogue. Calculations show that the driving force of this process is greater stability (by 1.5 kcal·mol(-1) in ΔE scale) of the dihydride cation in comparison with the dihydrogen complex. The calculations of the potential energy profile indicate the low barrier for deprotonation of 2 suggesting that the formation of trans-[CpRu(H)(2)(dppe)](+) proceeds via deprotonation of [Ru(η(2)-H(2))](+) to DHB complex, formation of hydrogen bond with Ru atom and subsequent proton transfer to the metal site.

  15. Ruthenium metalation of proteins: the X-ray structure of the complex formed between NAMI-A and hen egg white lysozyme.

    PubMed

    Messori, Luigi; Merlino, Antonello

    2014-04-28

    A crystallographic study of the adduct formed between hen egg white lysozyme (HEWL) and NAMI-A, an established ruthenium(III) anticancer agent in clinical trials, is presented here. The X-ray structure reveals that NAMI-A coordinates the protein, as a naked ruthenium ion, at two distinct sites (namely Asp101 or Asp119) after releasing all its original ligands (DMSO, imidazole and Cl(-)). Structural data of the HEWL/NAMI-A adduct are compared with those previously obtained for the HEWL adduct of AziRu, a NAMI-A analogue bearing a pyridine in place of imidazole. The present results further support the view that NAMI-A exerts its biological effects acting as a classical "prodrug" first undergoing activation and then causing extensive metalation of relevant protein targets. It is also proposed that the original Ru-ligands, although absent in the final adduct, play a major role in directing the ruthenium center to its ultimate anchoring site on the protein surface.

  16. Making oxygen with ruthenium complexes.

    PubMed

    Concepcion, Javier J; Jurss, Jonah W; Brennaman, M Kyle; Hoertz, Paul G; Patrocinio, Antonio Otávio T; Murakami Iha, Neyde Yukie; Templeton, Joseph L; Meyer, Thomas J

    2009-12-21

    hundreds of turnovers without decomposition with Ce(IV) as oxidant. Detailed mechanistic studies and DFT calculations have revealed a stepwise mechanism: initial 2e(-)/2H(+) oxidation, to Ru(IV)=O(2+), 1e(-) oxidation to Ru(V)=(3+), nucleophilic H(2)O attack to give Ru(III)-OOH(2+), further oxidation to Ru(IV)(O(2))(2+), and, finally, oxygen loss, which is in competition with further oxidation of Ru(IV)(O(2))(2+) to Ru(V)(O(2))(3+), which loses O(2) rapidly. An extended family of 10-15 catalysts based on Mebimpy (Mebimpy is 2,6-bis(1-methylbenzimidazol-2-yl)pyridine), tpy, and heterocyclic carbene ligands all appear to share a common mechanism. The osmium complex Os(tpy)(bpy)(OH(2))(2+) also functions as a water oxidation catalyst. Mechanistic experiments have revealed additional pathways for water oxidation one involving Cl(-) catalysis and another, rate enhancement of O-O bond formation by concerted atom-proton transfer (APT). Surface-bound [(4,4'-((HO)(2)P(O)CH(2))(2)bpy)(2)Ru(II)(bpm)Ru(II)(Mebimpy)(OH(2))](4+) and its tpy analog are impressive electrocatalysts for water oxidation, undergoing thousands of turnovers without loss of catalytic activity. These catalysts were designed for use in dye-sensitized solar cell configurations on TiO(2) to provide oxidative equivalents by molecular excitation and excited-state electron injection. Transient absorption measurements on TiO(2)-[(4,4'((HO)(2)P(O)CH(2))(2)bpy)(2)Ru(II)(bpm)Ru(II)(Mebimpy)(OH(2))](4+), (TiO(2)-Ru(II)-Ru(II)OH(2)) and its tpy analog have provided direct insight into the interfacial and intramolecular electron transfer events that occur following excitation. With added hydroquinone in a PEC configuration, APCE (absorbed-photon-to-current-efficiency) values of 4-5% are obtained for dehydrogenation of hydroquinone, H(2)Q + 2hnu --> Q + H(2). In more recent experiments, we are using the same PEC configuration to investigate water splitting.

  17. Lightening up Ruthenium Complexes to Fight Cancer?

    PubMed

    Mari, Cristina; Gasser, Gilles

    2015-01-01

    In medicine, light is used in a medical treatment called photodynamic therapy (PDT) to treat some types of cancer and skin diseases. This technique generally allows for reduced side effects compared to traditional chemotherapy. However, PDT is not fully effective on hypoxic tumors (i.e. lacking oxygen). To overcome this important drawback, photoactivated chemotherapy (PACT) agents have been designed to obtain light-mediated cancer cell death via an oxygen-independent mechanism. Ruthenium complexes have already been and are currently deeply explored as traditional anticancer agents. However, as reported in this short review article, such compounds can also bring novel opportunities in the field of light-mediated cancer treatment. Herein, we report on our findings in the optimization of Ru(II) polypyridyl complexes as PDT and PACT agents for the potential treatment of cancer and, interestingly, also of bacterial infections.

  18. Nuclear targets of photodynamic tridentate ruthenium complexes.

    PubMed

    Zhao, Ran; Hammitt, Richard; Thummel, Randolph P; Liu, Yao; Turro, Claudia; Snapka, Robert M

    2009-12-28

    Octahedral ruthenium complexes, capable of photodynamic singlet oxygen production at near 100% efficiency, were shown to cause light-dependent covalent crosslinking of p53 and PCNA subunits in mammalian cells and cell lysates. Azide, a singlet oxygen quencher, greatly reduced the p53 photocrosslinking, consistent with the idea that singlet oxygen is the reactive oxygen species involved in p53 photocrosslinking. A photodynamically inactive ruthenium complex, [Ru(tpy)(2)](2+) (tpy = [2,2';6',2'']-terpyridine), had no effect on p53 or PCNA photocrosslinking. Photodynamic damage to p53 has particular relevance since p53 status is an important determinant of phototoxicity and the effectiveness of photodynamic cancer therapy. The two photodynamic complexes studied, [Ru(tpy)(pydppn)](2+), where pydppn = (3-(pyrid-2'-yl)-4,5,9,16-tetraaza-dibenzo[a,c]naphthacene, and [Ru(pydppn)(2)](2+), differed in their efficiency of p53 and PCNA photocrosslinking in cells, but showed similar efficiency of photocrosslinking in cell lysates, suggesting that they differ in their ability to enter cells. Photocrosslinking of PCNA by [Ru(tpy)(pydppn)](2+) increased linearly with concentration, time of uptake, or light exposure. Both [Ru(tpy)(pydppn)](2+) and [Ru(pydppn)(2)](2+) caused photodynamic protein-DNA crosslinking in cells, but [Ru(tpy)(pydppn)](2+) was more efficient. The efficiency of photodynamic protein-DNA crosslinking by [Ru(tpy)(pydppn)](2+) in cells increased with increasing levels of photodynamic damage. Photodynamic damage by [Ru(tpy)(pydppn)](2+) caused inhibition of DNA replication in a classical biphasic response, suggesting that DNA damage signaling and cell cycle checkpoint pathways were still operative after significant damage to nuclear proteins.

  19. Mononuclear ruthenium polypyridine complexes that catalyze water oxidation

    PubMed Central

    2016-01-01

    Over the past decade, significant advances have been made in the development of molecular water oxidation catalysts (WOCs) in the context of developing a system that would accomplish artificial photosynthesis. Mononuclear ruthenium complexes with polypyridine ligands have drawn considerable attention in this regard, due to their high catalytic activity and relatively simple structure. In this perspective review, we will discuss mononuclear Ru polypyridine WOCs by organizing them into four groups according to their ligand environments. Each group will be discussed with regard to three fundamental questions: first, how does the catalyst initiate O–O bond formation? Second, which step in the catalytic cycle is rate-determining? Third, how efficient is the catalyst according to the specific descriptors such as turnover frequency? All discussion is based on the high-valent ruthenium intermediates that are proposed in the catalytic cycle according to experimental observation and theoretical simulation. Two fundamental mechanisms are set forth. An acid–base mechanism that involves the attack of a water molecule on the oxo of a high valent Ru 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000

  20. Disaggregation of human islet amyloid polypeptide fibril formation by ruthenium polypyridyl complexes.

    PubMed

    Zhu, Dengsen; Gong, Gehui; Wang, Wenji; Du, Weihong

    2017-05-01

    The toxicity of amyloid proteins is associated with many degenerative and systematic diseases. The aggregation of human islet amyloid polypeptide may induce pancreatic β-cell death, which is linked to type II diabetes. Ruthenium complexes are inhibitors of various proteins and potential anticancer metallodrugs, which can also be used to disaggregate amyloid proteins. This work reported that several ruthenium polypyridyl complexes remarkably affected the peptide aggregation by predominant hydrophobic interaction and metal coordination, as reflected by thermodynamic parameters and mass spectrometry analysis. Morphology and particle size analysis showed that the amyloid fibrils were disaggregated from long fibrils into small nano particles. Addition of these complexes also decreased the cytotoxicity induced by the peptide. The results indicated that ruthenium polypyridyl complexes may be potential metallodrugs to treat amyloidosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Trimethylsilyl-Substituted Hydroxycyclopentadienyl Ruthenium Hydrides as Benchmarks to Probe Ligand and Metal Effects on the Reactivity of Shvo Type Complexes.

    PubMed

    Casey, Charles P; Guan, Hairong

    2012-01-01

    The bis(trimethylsilyl)-substituted hydroxycyclopentadienyl ruthenium hydride [2,5-(SiMe(3))(2)-3,4-(CH(2)OCH(2))(η(5)-C(4)COH)]Ru(CO)(2)H (10) is an efficient catalyst for hydrogenation of aldehydes and ketones. Because 10 transfers hydrogen rapidly to aldehydes and ketones and because it does not form an inactive bridging hydride during reaction, hydrogenation of aldehydes and ketones can be performed at room temperature under relatively low hydrogen pressure (3 atm); this is a significant improvement compared with previously developed Shvo type catalysts. Kinetic and (2)H NMR spectroscopic studies of the stoichiometric reduction of aldehydes and ketones by 10 established a two-step process for the hydrogen transfer: (1) rapid and reversible hydrogen bond formation between OH of 10 and the oxygen of the aldehyde or ketone, (2) followed by slow transfer of both proton and hydride from 10 to the aldehyde or ketone. The stoichiometric and catalytic activities of complex 10 are compared to those of other Shvo type ruthenium hydrides and related iron hydrides.

  2. Trimethylsilyl-Substituted Hydroxycyclopentadienyl Ruthenium Hydrides as Benchmarks to Probe Ligand and Metal Effects on the Reactivity of Shvo Type Complexes

    PubMed Central

    Guan, Hairong

    2011-01-01

    The bis(trimethylsilyl)-substituted hydroxycyclopentadienyl ruthenium hydride [2,5-(SiMe3)2-3,4-(CH2OCH2)(η5-C4COH)]Ru(CO)2H (10) is an efficient catalyst for hydrogenation of aldehydes and ketones. Because 10 transfers hydrogen rapidly to aldehydes and ketones and because it does not form an inactive bridging hydride during reaction, hydrogenation of aldehydes and ketones can be performed at room temperature under relatively low hydrogen pressure (3 atm); this is a significant improvement compared with previously developed Shvo type catalysts. Kinetic and 2H NMR spectroscopic studies of the stoichiometric reduction of aldehydes and ketones by 10 established a two-step process for the hydrogen transfer: (1) rapid and reversible hydrogen bond formation between OH of 10 and the oxygen of the aldehyde or ketone, (2) followed by slow transfer of both proton and hydride from 10 to the aldehyde or ketone. The stoichiometric and catalytic activities of complex 10 are compared to those of other Shvo type ruthenium hydrides and related iron hydrides. PMID:23087535

  3. Thermochemistry and Molecular Structure of a Remarkable Agostic Interaction in a Heterobifunctional Ruthenium-Boron Complex

    PubMed Central

    Conley, Brian L.; Williams, Travis J.

    2010-01-01

    A boron-pendant ruthenium species forms a unique agostic methyl bridge between the boron and ruthenium atoms in the presence of a ligating solvent, acetonitrile. NMR inversion-recovery experiments enable measurement of the activation and equilibrium thermochemistry for formation of the agostic bridge. The mechanism for bridge formation involves displacement of an acetonitrile ligand; thus, this is a rare example of a case where an agostic C—H ligand competitively displaces another tight-binding ligand from a coordinatively saturated complex. Characterization of this complex gives unique insights into development of C—H activation catalysis based on this ligand-metal bifunctional motif. PMID:20088526

  4. Inhibitory effects of NAMI-A-like ruthenium complexes on prion neuropeptide fibril formation.

    PubMed

    Wang, Xuesong; Zhu, Dengsen; Zhao, Cong; He, Lei; Du, Weihong

    2015-05-01

    Prion diseases are a group of infectious and fatal neurodegenerative disorders caused by the conformational conversion of a cellular prion protein (PrP) into its abnormal isoform PrP(Sc). PrP106-126 resembles PrP(Sc) in terms of physicochemical and biological characteristics and is used as a common model for the treatment of prion diseases. Inhibitory effects on fibril formation and neurotoxicity of the prion neuropeptide PrP106-126 have been investigated using metal complexes as potential inhibitors. Nevertheless, the binding mechanism between metal complexes and the peptide remains unclear. The present study is focused on the interaction of PrP106-126 with NAMI-A and NAMI-A-like ruthenium complexes, including KP418, KP1019, and KP1019-2. Results demonstrated that these ruthenium complexes could bind to PrP106-126 in a distinctive binding mode through electrostatic and hydrophobic interactions. NAMI-A-like ruthenium complexes can also effectively inhibit the aggregation and fibril formation of PrP106-126. The complex KP1019 demonstrated the optimal inhibitory ability upon peptide aggregation, and cytotoxicity because of its large aromatic ligand contribution. The studied complexes could also regulate the copper redox chemistry of PrP106-126 and effectually inhibit the formation of reactive oxygen species. Given these findings, ruthenium complexes with relatively low cellular toxicity may be used to develop potential pharmaceutical products against prion diseases.

  5. Structural basis and anticancer properties of ruthenium-based drug complexed with human serum albumin.

    PubMed

    Zhang, Yao; Ho, Andy; Yue, Jiping; Kong, Linlin; Zhou, Zuping; Wu, Xiaoyang; Yang, Feng; Liang, Hong

    2014-10-30

    Ruthenium-based anticancer complexes have become increasingly popular for study over the last two decades. Although ruthenium complexes are currently being investigated in clinical trials, there are still some difficulties with their delivery and associated side effects. Human serum albumin (HSA)-based delivery systems are promising for improving anticancer drug targeting and reducing negative side effects. However, there have been few studies regarding the HSA delivery system for metal-based anticancer compounds and no mention of its structural mechanism. Therefore, we studied the structure and anticancer properties of the ruthenium-based compound [RuCl5(ind)](2-) in complex with HSA. The structure revealed that [RuCl5(ind)](2-) has two binding sites in HSA. In the IB subdomain, [RuCl5(ind)](2-) binds to a new sub-site by coordinating with His-146. In the IIA subdomain, ruthenium (III) of [RuCl5(ind)](2-) binds to the hydrophobic cavity and forms coordination bonds by replacing chlorine atoms with the His-242 and Lys-199 residues of HSA. Interestingly, [RuCl5(ind)](2-), together with HSA, can enhance cytotoxicity by two to five times in cancer cells but has no effect on normal cells in vitro. Compared with unbound drug, the HSA-[RuCl5(ind)](2-) complex promotes MGC-803 cell apoptosis and also has a stronger capacity for cell cycle arrest at the G2 phase in MGC-803. In conclusion, this study will guide the rational design and development of ruthenium-containing or ruthenium-centered drugs and an HSA delivery system for ruthenium-based drugs.

  6. Sweetening ruthenium and osmium: organometallic arene complexes containing aspartame.

    PubMed

    Gray, Jennifer C; Habtemariam, Abraha; Winnig, Marcel; Meyerhof, Wolfgang; Sadler, Peter J

    2008-09-01

    The novel organometallic sandwich complexes [(eta(6)-p-cymene)Ru(eta(6)-aspartame)](OTf)(2) (1) (OTf = trifluoromethanesulfonate) and [(eta(6)-p-cymene)Os(eta(6)-aspartame)](OTf)(2) (2) incorporating the artificial sweetener aspartame have been synthesised and characterised. A number of properties of aspartame were found to be altered on binding to either metal. The pK(a) values of both the carboxyl and the amino groups of aspartame are lowered by between 0.35 and 0.57 pH units, causing partial deprotonation of the amino group at pH 7.4 (physiological pH). The rate of degradation of aspartame to 3,6-dioxo-5-phenylmethylpiperazine acetic acid (diketopiperazine) increased over threefold from 0.12 to 0.36 h(-1) for 1, and to 0.43 h(-1) for 2. Furthermore, the reduction potential of the ligand shifted from -1.133 to -0.619 V for 2. For the ruthenium complex 1 the process occurred in two steps, the first (at -0.38 V) within a biologically accessible range. This facilitates reactions with biological reductants such as ascorbate. Binding to and activation of the sweet taste receptor was not observed for these metal complexes up to concentrations of 1 mM. The factors which affect the ability of metal-bound aspartame to interact with the receptor site are discussed.

  7. Analysis of the cytotoxic effects of ruthenium-ketoconazole and ruthenium-clotrimazole complexes on cancer cells

    PubMed Central

    Robles-Escajeda, Elisa; Martínez, Alberto; Varela-Ramirez, Armando; Sánchez-Delgado, Roberto A.; Aguilera, Renato J.

    2014-01-01

    Ruthenium-based compounds have intriguing anti-cancer properties and some of these novel compounds are currently in clinical trials. To continue the development of new metal-based drug combinations, we coupled ruthenium (Ru) with the azole compounds ketoconazole (KTZ) and clotrimazole (CTZ), which are well-known antifungal agents that also display anticancer properties. We report the activity of a series of twelve Ru-KTZ and Ru-CTZ compounds against three prostate tumor cell lines with different androgen sensitivity, as well as cervical cancer and lymphoblastic lymphoma cell lines. In addition, human cell lines were used to evaluate the toxicity against non-transformed cells and to establish selectivity indexes. Our results indicate that the combination of ruthenium and KTZ/CTZ in a single molecule results in complexes that are more cytotoxic than the individual components alone, displaying in some cases low micromolar CC50 values and high selectivity indexes. Additionally, all compounds are more cytotoxic against prostate cell lines with lower cytotoxicity against non-transformed epidermal cell lines. Some of the compounds were found to primarily induce cell death via apoptosis yet weakly interact with DNA. Our studies also demonstrate that the cytotoxicity induced by our Ru-based compounds is not directly related to their ability to interact with DNA. PMID:24272524

  8. Cytoxicity and Apoptotic Mechanism of Ruthenium(II) Amino Acid Complexes in Sarcoma-180 Tumor Cells

    PubMed Central

    Lima, Aliny Pereira; Pereira, Flávia Castro; Almeida, Marcio Aurelio Pinheiro; Mello, Francyelli Mariana Santos; Pires, Wanessa Carvalho; Pinto, Thallita Monteiro; Delella, Flávia Karina; Felisbino, Sérgio Luis; Moreno, Virtudes; Batista, Alzir Azevedo; de Paula Silveira-Lacerda, Elisângela

    2014-01-01

    Over the past several decades, much attention has been focused on ruthenium complexes in antitumor therapy. Ruthenium is a transition metal that possesses several advantages for rational antitumor drug design and biological applications. In the present study, five ruthenium complexes containing amino acids were studied in vitro to determine their biological activity against sarcoma-180 tumor cells. The cytotoxicity of the complexes was evaluated by an MTT assay, and their mechanism of action was investigated. The results demonstrated that the five complexes inhibited the growth of the S180 tumor cell line, with IC50 values ranging from 22.53 µM to 50.18 µM, and showed low cytotoxicity against normal L929 fibroblast cells. Flow cytometric analysis revealed that the [Ru(gly)(bipy)(dppb)]PF6 complex (2) inhibited the growth of the tumor cells by inducing apoptosis, as evidenced by an increased number of Annexin V-positive cells and G0/G1 phase cell cycle arrest. Further investigation showed that complex 2 caused a loss of mitochondrial membrane potential; activated caspases 3, caspase-8, and caspase-9 and caused a change in the mRNA expression levels of caspase 3, caspase-9 as well as the bax genes. The levels of the pro-apoptotic Bcl-2 family protein Bak were increased. Thus, we demonstrated that ruthenium amino acid complexes are promising drugs against S180 tumor cells, and we recommend further investigations of their role as chemotherapeutic agents for sarcomas. PMID:25329644

  9. Cytoxicity and apoptotic mechanism of ruthenium(II) amino acid complexes in sarcoma-180 tumor cells.

    PubMed

    Lima, Aliny Pereira; Pereira, Flávia Castro; Almeida, Marcio Aurelio Pinheiro; Mello, Francyelli Mariana Santos; Pires, Wanessa Carvalho; Pinto, Thallita Monteiro; Delella, Flávia Karina; Felisbino, Sérgio Luis; Moreno, Virtudes; Batista, Alzir Azevedo; de Paula Silveira-Lacerda, Elisângela

    2014-01-01

    Over the past several decades, much attention has been focused on ruthenium complexes in antitumor therapy. Ruthenium is a transition metal that possesses several advantages for rational antitumor drug design and biological applications. In the present study, five ruthenium complexes containing amino acids were studied in vitro to determine their biological activity against sarcoma-180 tumor cells. The cytotoxicity of the complexes was evaluated by an MTT assay, and their mechanism of action was investigated. The results demonstrated that the five complexes inhibited the growth of the S180 tumor cell line, with IC50 values ranging from 22.53 µM to 50.18 µM, and showed low cytotoxicity against normal L929 fibroblast cells. Flow cytometric analysis revealed that the [Ru(gly)(bipy)(dppb)]PF6 complex (2) inhibited the growth of the tumor cells by inducing apoptosis, as evidenced by an increased number of Annexin V-positive cells and G0/G1 phase cell cycle arrest. Further investigation showed that complex 2 caused a loss of mitochondrial membrane potential; activated caspases 3, caspase-8, and caspase-9 and caused a change in the mRNA expression levels of caspase 3, caspase-9 as well as the bax genes. The levels of the pro-apoptotic Bcl-2 family protein Bak were increased. Thus, we demonstrated that ruthenium amino acid complexes are promising drugs against S180 tumor cells, and we recommend further investigations of their role as chemotherapeutic agents for sarcomas.

  10. Biological properties of novel ruthenium- and osmium-nitrosyl complexes with azole heterocycles.

    PubMed

    Novak, Maria S; Büchel, Gabriel E; Keppler, Bernhard K; Jakupec, Michael A

    2016-06-01

    Since the discovery that nitric oxide (NO) is a physiologically relevant molecule, there has been great interest in the use of metal nitrosyl compounds as antitumor pharmaceuticals. Particularly interesting are those complexes which can deliver NO to biological targets. Ruthenium- and osmium-based compounds offer lower toxicity compared to other metals and show different mechanisms of action as well as different spectra of activity compared to platinum-based drugs. Novel ruthenium- and osmium-nitrosyl complexes with azole heterocycles were studied to elucidate their cytotoxicity and possible interactions with DNA. Apoptosis induction, changes of mitochondrial transmembrane potential and possible formation of reactive oxygen species were investigated as indicators of NO-mediated damage by flow cytometry. Results suggest that ruthenium- and osmium-nitrosyl complexes with the general formula (indazolium)[cis/trans-MCl4(NO)(1H-indazole)] have pronounced cytotoxic potency in cancer cell lines. Especially the more potent ruthenium complexes strongly induce apoptosis associated with depolarization of mitochondrial membranes, and elevated reactive oxygen species levels. Furthermore, a slight yet not unequivocal trend to accumulation of intracellular cyclic guanosine monophosphate attributable to NO-mediated effects was observed.

  11. Molecular dinitrogen complexes of ruthenium(II) porphyrins

    SciTech Connect

    Camenzind, M.J.; James, B.R.; Dolphin, D.; Sparapany, J.W.; Ibers, J.A.

    1988-08-24

    The existence of both mono- and bis(nitrogen) complexes of ruthenium have been previously established. Details on a series of complexes are presented herein, and results of an x-ray crystallographic study of Ru(TMP) (THF) (N/sub 2/) are reported. 30 references, 4 tables.

  12. Luminescence-Functionalized Metal-Organic Frameworks Based on a Ruthenium(II) Complex: A Signal Amplification Strategy for Electrogenerated Chemiluminescence Immunosensors.

    PubMed

    Xiong, Cheng-Yi; Wang, Hai-Jun; Liang, Wen-Bin; Yuan, Ya-Li; Yuan, Ruo; Chai, Ya-Qin

    2015-06-26

    Novel luminescence-functionalized metal-organic frameworks (MOFs) with superior electrogenerated chemiluminescence (ECL) properties were synthesized based on zinc ions as the central ions and tris(4,4'-dicarboxylicacid-2,2'-bipyridyl)ruthenium(II) dichloride ([Ru(dcbpy)3](2+)) as the ligands. For potential applications, the synthesized MOFs were used to fabricate a "signal-on" ECL immunosensor for the detection of N-terminal pro-B-type natriuretic peptide (NT-proBNP). As expected, enhanced ECL signals were obtained through a simple fabrication strategy because luminescence-functionalized MOFs not only effectively increased the loading of [Ru(dcbpy)3](2+), but also served as a loading platform in the ECL immunosensor. Furthermore, the proposed ECL immunosensor had a wide linear range from 5 pg mL(-1) to 25 ng mL(-1) and a relatively low detection limit of 1.67 pg mL(-1) (signal/noise=3). The results indicated that luminescence-functionalized MOFs provided a novel amplification strategy in the construction of ECL immunosensors and might have great prospects for application in bioanalysis.

  13. Combining Ruthenium(II) Complexes with Metal-Organic Frameworks to Realize Effective Two-Photon Absorption for Singlet Oxygen Generation.

    PubMed

    Zhang, Wenxiang; Li, Bin; Ma, Heping; Zhang, Liming; Guan, Yunlong; Zhang, Yihe; Zhang, Xindan; Jing, Pengtao; Yue, Shumei

    2016-08-24

    Singlet oxygen ((1)O2), as a reactive oxygen species, has garnered serious attention in physical, chemical, and biological studies. In this paper, we designed and synthesized a new type of singlet-oxygen generation system by exchanging cationic ruthenium complexes (RCs) into anionic bio-MOF-1. The resulting bio-MOF-1&RCs can be used as effective photocatalysts for generation of singlet oxygen under both single-photon and two-photon excitation. Especially, the excellent two-photon absorption (TPA) behavior of bio-MOF-1&RCs aroused our interest greatly because their two-photon absorption band lies in the optical window of biological tissue. Here, we measured the ability of bio-MOF-1&RCs to generate (1)O2 by irradiation under both 490 and 800 nm wavelength light in DMF. 1,3-Diphenylisobenzofuran (DPBF) and 2',7'-dichlorofluorescein (DCFH) were used as typical (1)O2 traps to detect and evaluate the efficiency of generation of (1)O2 under single-photon and two-photon excitation, respectively. Results indicated that bio-MOF-1&[Ru(phen)3](2+) was able to effectively generate (1)O2 under both conditions. Our work creates a novel synergistic TPA system with the excellent photophysical properties of RCs and the unique microporous structure benefit of MOFs, which may open a new avenue for creation of a cancer treatment system with both photodynamic therapy and chemotherapy.

  14. Molecular Models of Ruthenium(II) Organometallic Complexes

    ERIC Educational Resources Information Center

    Coleman, William F.

    2007-01-01

    This article presents the featured molecules for the month of March, which appear in the paper by Ozerov, Fafard, and Hoffman, and which are related to the study of the reactions of a number of "piano stool" complexes of ruthenium(II). The synthesis of compound 2a offers students an alternative to the preparation of ferrocene if they are only…

  15. Molecular Models of Ruthenium(II) Organometallic Complexes

    ERIC Educational Resources Information Center

    Coleman, William F.

    2007-01-01

    This article presents the featured molecules for the month of March, which appear in the paper by Ozerov, Fafard, and Hoffman, and which are related to the study of the reactions of a number of "piano stool" complexes of ruthenium(II). The synthesis of compound 2a offers students an alternative to the preparation of ferrocene if they are only…

  16. Complex of transferrin with ruthenium for medical applications. [Ru 97, Ru 103

    DOEpatents

    Richards, P.; Srivastava, S.C.; Meinken, G.E.

    1980-11-03

    A novel Ruthenium-transferrin complex, prepared by reacting iron-free human transferrin dissolved in a sodium acetate solution at pH 7 with ruthenium by heating at about 40/sup 0/C for about 2 hours, and purifying said complex by means of gel chromatography with pH 7 sodium acetate as eluent. The mono- or di-metal complex produced can be used in nuclear medicine in the diagnosis and/or treatment of tumors and abscesses. Comparitive results with Ga-67-citrate, which is the most widely used tumor-localizing agent in nuclear medicine, indicate increased sensitivity of detection and greater tumor uptake with the Ru-transferrin complex.

  17. Ruthenium complexes of substituted hydrazine: new solution- and solid-state binding modes.

    PubMed

    Dabb, Serin L; Messerle, Barbara A; Otting, Gottfried; Wagler, Jörg; Willis, Anthony

    2008-01-01

    The methylhydrazine complex [Ru(NH(2)NHMe)(PyP)(2)]Cl(BPh(4)) (PyP=1-[2-(diphenylphosphino)ethyl]pyrazole) was synthesised by addition of methylhydrazine to the bimetallic complex [Ru(mu-Cl)(PyP)(2)](2)(BPh(4))(2). The methylhydrazine ligand of the ruthenium complex has two different binding modes: side-on (eta(2)-) when the complex is in the solid state and end-on (eta(1)-) when the complex is in solution. The solid-state structure of [Ru(PyP)(2)(NH(2)NHMe)]Cl(BPh(4)) was determined by X-ray crystallography. 2D NMR spectroscopic experiments with (15)N at natural abundance confirmed that in solution the methylhydrazine is bound to the metal centre by only the -NH(2) group and the ruthenium complex retains an octahedral conformation. Hydrazine complexes [RuCl(PyP)(2)(eta(1)-NH(2)NRR')]OSO(2)CF(3) (in which R=H, R'=Ph, R=R'=Me and NRR'=NC(5)H(10)) were formed in situ by the addition of phenylhydrazine, 1,1-dimethylhydrazine and N-aminopiperidine, respectively, to a solution of the bimetallic complex [Ru(mu-Cl)(PyP)(2)](2)(OSO(2)CF(3))(2) in dichloromethane. These substituted hydrazine complexes of ruthenium were shown to exist in an equilibrium mixture with the bimetallic starting material.

  18. Biological processing of dinuclear ruthenium complexes in eukaryotic cells.

    PubMed

    Li, Xin; Heimann, Kirsten; Dinh, Xuyen Thi; Keene, F Richard; Collins, J Grant

    2016-10-20

    The biological processing - mechanism of cellular uptake, effects on the cytoplasmic and mitochondrial membranes, intracellular sites of localisation and induction of reactive oxygen species - of two dinuclear polypyridylruthenium(ii) complexes has been examined in three eukaryotic cells lines. Flow cytometry was used to determine the uptake of [{Ru(phen)2}2{μ-bb12}](4+) (Rubb12) and [Ru(phen)2(μ-bb7)Ru(tpy)Cl](3+) {Rubb7-Cl, where phen = 1,10-phenanthroline, tpy = 2,2':6',2''-terpyridine and bbn = bis[4(4'-methyl-2,2'-bipyridyl)]-1,n-alkane} in baby hamster kidney (BHK), human embryonic kidney (HEK-293) and liver carcinoma (HepG2) cell lines. The results demonstrated that the major uptake mechanism for Rubb12 and Rubb7-Cl was active transport, although with a significant contribution from carrier-assisted diffusion for Rubb12 and passive diffusion for Rubb7-Cl. Flow cytometry coupled with Annexin V/TO-PRO-3 double-staining was used to compare cell death by membrane damage or apoptosis. Rubb12 induced significant direct membrane damage, particularly with HepG2 cells, while Rubb7-Cl caused considerably less membrane damage but induced greater levels of apoptosis. Confocal microscopy, coupled with JC-1 assays, demonstrated that Rubb12 depolarises the mitochondrial membrane, whereas Rubb7-Cl had a much smaller affect. Cellular localisation experiments indicated that Rubb12 did not accumulate in the mitochondria, whereas significant mitochondrial accumulation was observed for Rubb7-Cl. The effect of Rubb12 and Rubb7-Cl on intracellular superoxide dismutase activity showed that the ruthenium complexes could induce cell death via a reactive oxygen species-mediated pathway. The results of this study demonstrate that Rubb12 predominantly kills eukaryotic cells by damaging the cytoplasmic membrane. As this dinuclear ruthenium complex has been previously shown to exhibit greater toxicity towards bacteria than eukaryotic cells, the results of the present study suggest that

  19. Kinetics and Photochemistry of Ruthenium Bisbipyridine Diacetonitrile Complexes: An Interdisciplinary Inorganic and Physical Chemistry Laboratory Exercise

    ERIC Educational Resources Information Center

    Rapp, Teresa L.; Phillips, Susan R.; Dmochowski, Ivan J.

    2016-01-01

    The study of ruthenium polypyridyl complexes can be widely applied across disciplines in the undergraduate curriculum. Ruthenium photochemistry has advanced many fields including dye-sensitized solar cells, photoredox catalysis, lightdriven water oxidation, and biological electron transfer. Equally promising are ruthenium polypyridyl complexes…

  20. Kinetics and Photochemistry of Ruthenium Bisbipyridine Diacetonitrile Complexes: An Interdisciplinary Inorganic and Physical Chemistry Laboratory Exercise

    ERIC Educational Resources Information Center

    Rapp, Teresa L.; Phillips, Susan R.; Dmochowski, Ivan J.

    2016-01-01

    The study of ruthenium polypyridyl complexes can be widely applied across disciplines in the undergraduate curriculum. Ruthenium photochemistry has advanced many fields including dye-sensitized solar cells, photoredox catalysis, lightdriven water oxidation, and biological electron transfer. Equally promising are ruthenium polypyridyl complexes…

  1. The Development and Study of Surface Bound Ruthenium Organometallic Complexes

    NASA Astrophysics Data System (ADS)

    Abbott, Geoffrey Reuben

    The focus of this project has been on the use of mono-diimine ruthenium organometallic complexes, of the general structure [H(Ru)(CO)(L)2(L') 2][PF6] (L=PPh3, DPPENE and L'=Bpy, DcBpy, MBpyC, Phen, AminoPhen) bound to surfaces as luminescent probes. Both biological and inorganic/organic hybrid surfaces have been studied. The complexes were characterized both bound and unbound using standard analytical techniques such as NMR, IR and X-ray crystallography, as well as through several photophysical methods as well. Initially the study focused on how the photophyscial properties of the complexes were affected by incorporation into biological membranes. It was found that by conjugating the probes to a more rigid cholesterol moiety that luminescence was conserved, compared to conjugation with a far more flexible lipid moiety, where luminescence was either lost or reduced. Both the cholesterol and lipid conjugates were able to insert into a lipid membrane, and in the more rigid environment some of the lipid conjugates regained some of their luminescence, but often blue shifted and reduced, depending on the conjugation site. Silica Polyamine Composites (SPCs) were a hybrid material developed in the Rosenberg Lab as useful metal separation materials, that could be easily modified, and had several benefits over current commercially available polymers, or inorganic materials. These SPCs also provided an opportunity for the development of a heterogeneous platform for luminescent complexes as either catalysts or sensors. Upon binding of the luminescent Ru complexes to the surface no loss, or major change in luminescence was seen, however, when bound to the rigid surface a significant increase in excited state lifetime was measured. It is likely that through binding and interacting with the surface that the complexes lost non-radiative decay pathways, resulting in the increase in lifetime, however, these interactions do not seem to affect the energy level of the MLCT band in a

  2. Regression of Lung Cancer by Hypoxia Sensitizing Ruthenium Polypyridyl Complexes

    PubMed Central

    Yadav, Abhishek; Janaratne, Thamara; Krishnan, Arthi; Singhal, Sharad S.; Yadav, Sushma; Dayoub, Adam S.; Hawkins, Doyle L.; Awasthi, Sanjay; MacDonnell, Frederick M.

    2013-01-01

    The ruthenium (II) polypyridyl complexes (RPCs) Δ-[(phen)2Ru(tatpp)]Cl2 (Δ-[3]Cl2) and ΔΔ-[(phen)2Ru(tatpp)Ru(phen)2]Cl4 (ΔΔ-[4]Cl4) are a new generation of metal-based anti-tumor agents. These RPCs bind DNA via intercalation of the tatpp ligand which itself is redox-active and easily reduced at biologically relevant potentials. We have previously shown that RPC 44+ cleaves DNA when reduced by glutathione to a radical species, and that this DNA cleavage is potentiated under hypoxic conditions in vitro. Here we show that 32+ also exhibits free-radical mediated DNA cleavage in vitro, and that 32+ and 44+ both exhibit selective cytotoxicity towards cultured malignant cell lines, and marked inhibition of tumor growth in vivo. The murine acute toxicity of RPCs 32+ and 44+ (maximum tolerable doses (MTD’s) ~ 65 µmol/kg) is comparable with that for cisplatin (LD50 ~57 µmol/kg) but unlike cisplatin, RPC’s are generally cleared from the body unchanged via renal excretion without appreciable metabolism or nephrotoxic side effects. RPCs 32+ and 44+ are demonstrated to suppress growth of human non-small cell lung carcinoma (~83%), show potentiated cytotoxicity in vitro under hypoxic conditions, and induce apoptosis through both intrinsic and extrinsic pathways. The novel hypoxia-enhanced DNA cleavage activity and biological activity suggest a promising new anti-cancer pharmacophore based on metal complexes with aromatic ligands that are easily reduced at biologically accessible potentials. PMID:23443803

  3. Photoinduced interactions of supramolecular ruthenium(II) complexes with plasmid DNA: synthesis and spectroscopic, electrochemical, and DNA photocleavage studies.

    PubMed

    Swavey, Shawn; DeBeer, Madeleine; Li, Kaiyu

    2015-04-06

    Two new bridging ligands have been synthesized by combining substituted benzaldehydes with phenanthrolinopyrrole (php), resulting in new polyazine bridging ligands. The ligands have been characterized by (1)H NMR, mass spectroscopy, and elemental analysis. These new ligands display π-π* transitions above 500 nm with modest molar absorptivities. Upon excitation at the ligand-centered charge-transfer transition, weak emission with a maximum wavelength of 612 nm is observed. When coordinated to two ruthenium(II) bis(bipyridyl) groups, the new bimetallic complexes generated give an overall 4+ charge. The electronic transitions of the bimetallic ruthenium(II) complexes display traditional π-π* transitions at 287 nm and metal-to-ligand charge-transfer transitions at 452 nm with molar absorptivities greater than 30000 M(-1) cm(-1). Oxidation of the ruthenium(II) metal centers to ruthenium(III) occurs at potentials above 1.4 V versus the Ag/AgCl reference electrode. Spectroscopic and electrochemical measurements indicate that the ruthenium(II) moieties behave independently. Both complexes are water-soluble and show the ability to photonick plasmid DNA when irradiated with low-energy light above 550 nm. In addition, one of the complexes, [Ru(bpy)2php]2Van(4+), shows the ability to linearize plasmid DNA and gives evidence, by gel electrophoresis, of photoinduced binding to plasmid DNA.

  4. Mononuclear ruthenium(III) complexes containing chelating thiosemicarbazones: Synthesis, characterization and catalytic property

    NASA Astrophysics Data System (ADS)

    Raja, N.; Ramesh, R.

    2010-02-01

    Mononuclear ruthenium(III) complexes of the type [RuX(EPh 3) 2(L)] (E = P or As; X = Cl or Br; L = dibasic terdentate dehydroacetic acid thiosemicarbazones) have been synthesized from the reaction of thiosemicarbazone ligands with ruthenium(III) precursors, [RuX 3(EPh 3) 3] (where E = P, X = Cl; E = As, X = Cl or Br) and [RuBr 3(PPh 3) 2(CH 3OH)] in benzene. The compositions of the complexes have been established by elemental analysis, magnetic susceptibility measurement, FT-IR, UV-vis and EPR spectral data. These complexes are paramagnetic and show intense d-d and charge transfer transitions in dichloromethane. The complexes show rhombic EPR spectra at LNT which are typical of low-spin distorted octahedral ruthenium(III) species. All the complexes are redox active and display an irreversible metal centered redox processes. Complex [RuCl(PPh 3) 2(DHA-PTSC)] ( 5) was used as catalyst for transfer hydrogenation of ketones in the presence of isopropanol/KOH and was found to be the active species.

  5. Is photoisomerization required for NO photorelease in ruthenium nitrosyl complexes?

    PubMed

    García, Juan Sanz; Alary, Fabienne; Boggio-Pasqua, Martial; Dixon, Isabelle M; Heully, Jean-Louis

    2016-11-01

    The factors that explain the competition between intramolecular NO linkage photoisomerization and NO photorelease in five ruthenium nitrosyl complexes were investigated. By applying DFT-based methods, it was possible to characterize the ground states and lowest triplet potential energy surfaces of these species, and to establish that both photoisomerization and photorelease processes can occur in the lowest triplet state of each species. This work highlights the crucial role of the sideways-bonded isomer, a metastable state also known as the MS2 isomer, in the photochemical loss of NO, while the results obtained also indicate that the population of the triplet state of this isomer is compulsory for both processes and show how photoisomerization and photorelease interfere. Graphical Abstract Illustration of the crucial role of the (3)MS2 state in the photoreactivities of ruthenium nitrosyl complexes.

  6. "Long-range" metal-ligand cooperation in H2 activation and ammonia-promoted hydride transfer with a ruthenium-acridine pincer complex.

    PubMed

    Gunanathan, Chidambaram; Gnanaprakasam, Boopathy; Iron, Mark A; Shimon, Linda J W; Milstein, David

    2010-10-27

    The acridine-based pincer complex 1 exhibits an unprecedented mode of metal-ligand cooperation involving a "long-range" interaction between the distal acridine C9 position and the metal center. Reaction of 1 with H(2)/KOH results in H(2) splitting between the Ru center and C9 with concomitant dearomatization of the acridine moiety. DFT calculations show that this process involves the formation of a Ru dihydride intermediate bearing a bent acridine ligand in which C9 is in close proximity to a hydride ligand followed by through-space hydride transfer. Ammonia induces transfer of a hydride from the Ru center of 1 to C9 of the flexible acridine pincer ligand, forming an unusual dearomatized fac-acridine PNP complex.

  7. Antiparasitic activities of novel ruthenium/lapachol complexes.

    PubMed

    Barbosa, Marília I F; Corrêa, Rodrigo S; de Oliveira, Katia Mara; Rodrigues, Claudia; Ellena, Javier; Nascimento, Otaciro R; Rocha, Vinícius P C; Nonato, Fabiana R; Macedo, Taís S; Barbosa-Filho, José Maria; Soares, Milena B P; Batista, Alzir A

    2014-07-01

    The present study describes the synthesis, characterization, antileishmanial and antiplasmodial activities of novel diimine/(2,2'-bipyridine (bipy), 1,10-phenanthroline (phen), 4,4'-methylbipyridine (Me-bipy) and 4,4'-methoxybipyridine (MeO-bipy)/phosphine/ruthenium(II) complexes containing lapachol (Lap, 2-hydroxy-3-(3-33 methyl-2-buthenyl)-1,4-naphthoquinone) as bidentate ligand. The [Ru(Lap)(PPh3)2(bipy)]PF6 (1), [Ru(Lap)(PPh3)2(Me-bipy)]PF6 (2), [Ru(Lap)(PPh3)2(MeO-bipy)]PF6(3) and[Ru(Lap)(PPh3)2(phen)]PF6 (4) complexes, PPh3=triphenylphospine, were synthesized from the reactions of cis-[RuCl2(PPh3)2(X-bipy)] or cis-[RuCl2(PPh3)2(phen)], with lapachol. The [RuCl2(Lap)(dppb)] (5) [dppb=1,4-bis(diphenylphosphine)butane] was synthesized from the mer-[RuCl3(dppb)(H2O)] complex. The complexes were characterized by elemental analysis, molar conductivity, infrared and UV-vis spectroscopy, (31)P{(1)H} and (1)H NMR, and cyclic voltammetry. The Ru(III) complex, [RuCl2(Lap)(dppb)], was also characterized by the EPR technique. The structure of the complexes [Ru(Lap)(PPh3)2(bipy)]PF6 and [RuCl2(Lap)(dppb)] was elucidated by X-ray diffraction. The evaluation of the antiparasitic activities of the complexes against Leishmania amazonensis and Plasmodium falciparum demonstrated that lapachol-ruthenium complexes are more potent than the free lapachol. The [RuCl2(Lap)(dppb)] complex is the most potent and selective antiparasitic compound among the five new ruthenium complexes studied in this work, exhibiting an activity comparable to the reference drugs.

  8. Anticancer activity of structurally related ruthenium(II) cyclopentadienyl complexes.

    PubMed

    Côrte-Real, Leonor; Mendes, Filipa; Coimbra, Joana; Morais, Tânia S; Tomaz, Ana Isabel; Valente, Andreia; Garcia, M Helena; Santos, Isabel; Bicho, Manuel; Marques, Fernanda

    2014-08-01

    A set of structurally related Ru(η(5)-C5H5) complexes with bidentate N,N'-heteroaromatic ligands have been evaluated as prospective metallodrugs, with focus on exploring the uptake and cell death mechanisms and potential cellular targets. We have extended these studies to examine the potential of these complexes to target cancer cell metabolism, the energetic-related phenotype of cancer cells. The observations that these complexes can enter cells, probably facilitated by binding to plasma transferrin, and can be retained preferentially at the membranes prompted us to explore possible membrane targets involved in cancer cell metabolism. Most malignant tumors present the Warburg effect, which consists in increasing glycolytic rates with production of lactate, even in the presence of oxygen. The reliance of glycolytic cancer cells on trans-plasma-membrane electron transport (TPMET) systems for their continued survival raises the question of their appropriateness as a target for anticancer drug development strategies. Considering the interesting findings that some anticancer drugs in clinical use are cytotoxic even without entering cells and can inhibit TPMET activity, we investigated whether redox enzyme modulation could be a potential mechanism of action of antitumor ruthenium complexes. The results from this study indicated that ruthenium complexes can inhibit lactate production and TPMET activity in a way dependent on the cancer cell aggressiveness and the concentration of the complex. Combination approaches that target cell metabolism (glycolytic inhibitors) as well as proliferation are needed to successfully cure cancer. This study supports the potential use of some of these ruthenium complexes as adjuvants of glycolytic inhibitors in the treatment of aggressive cancers.

  9. Spectroscopic investigation on the interaction of ruthenium complexes with tumor specific lectin, jacalin.

    PubMed

    Ayaz Ahmed, Khan Behlol; Reshma, Elamvazhuthi; Mariappan, Mariappan; Anbazhagan, Veerappan

    2015-02-25

    Several ruthenium complexes are regarded as anticancer agents and considered as an alternative to the widely used platinum complexes. Owing to the preferential interaction of jacalin with tumor-associated T-antigen, we report the interaction of jacalin with four ruthenium complex namely, tris(1,10-phenanthroline)ruthenium(II)chloride, bis(1,10-phenanthroline)(N-[1,10]phenanthrolin-5-yl-pyrenylmethanimine)ruthenium(II)chloride, bis(1,10-phenanthroline)(dipyrido[3,2-a:2',3'-c]-phenazine)ruthenium(II)chloride, bis(1,10-phenanthroline)(11-(9-acridinyl)dipyrido[3,2-a:2',3'-c]phenazine)ruthenium(II) chloride. Fluorescence spectroscopic analysis revealed that the ruthenium complexes strongly quenched the intrinsic fluorescence of jacalin through a static quenching procedure, and a non-radiative energy transfer occurred within the molecules. Association constants obtained for the interaction of different ruthenium complexes with jacalin are in the order of 10(5) M(-1), which is in the same range as those obtained for the interaction of lectin with carbohydrate and hydrophobic ligand. Each subunit of the tetrameric jacalin binds one ruthenium complex, and the stoichiometry is found to be unaffected by the presence of the specific sugar, galactose. In addition, agglutination activity of jacalin is largely unaffected by the presence of the ruthenium complexes, indicating that the binding sites for the carbohydrate and the ruthenium complexes are different. These results suggest that the development of lectin-ruthenium complex conjugate would be feasible to target malignant cells in chemo-therapeutics. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Spectroscopic investigation on the interaction of ruthenium complexes with tumor specific lectin, jacalin

    NASA Astrophysics Data System (ADS)

    Ayaz Ahmed, Khan Behlol; Reshma, Elamvazhuthi; Mariappan, Mariappan; Anbazhagan, Veerappan

    2015-02-01

    Several ruthenium complexes are regarded as anticancer agents and considered as an alternative to the widely used platinum complexes. Owing to the preferential interaction of jacalin with tumor-associated T-antigen, we report the interaction of jacalin with four ruthenium complex namely, tris(1,10-phenanthroline)ruthenium(II)chloride, bis(1,10-phenanthroline)(N-[1,10]phenanthrolin-5-yl-pyrenylmethanimine)ruthenium(II)chloride, bis(1,10-phenanthroline)(dipyrido[3,2-a:2‧,3‧-c]-phenazine)ruthenium(II)chloride, bis(1,10-phenanthroline)(11-(9-acridinyl)dipyrido[3,2-a:2‧,3‧-c]phenazine)ruthenium(II) chloride. Fluorescence spectroscopic analysis revealed that the ruthenium complexes strongly quenched the intrinsic fluorescence of jacalin through a static quenching procedure, and a non-radiative energy transfer occurred within the molecules. Association constants obtained for the interaction of different ruthenium complexes with jacalin are in the order of 105 M-1, which is in the same range as those obtained for the interaction of lectin with carbohydrate and hydrophobic ligand. Each subunit of the tetrameric jacalin binds one ruthenium complex, and the stoichiometry is found to be unaffected by the presence of the specific sugar, galactose. In addition, agglutination activity of jacalin is largely unaffected by the presence of the ruthenium complexes, indicating that the binding sites for the carbohydrate and the ruthenium complexes are different. These results suggest that the development of lectin-ruthenium complex conjugate would be feasible to target malignant cells in chemo-therapeutics.

  11. Radiosensitisation of human colorectal cancer cells by ruthenium(II) arene anticancer complexes.

    PubMed

    Carter, R; Westhorpe, A; Romero, M J; Habtemariam, A; Gallevo, C R; Bark, Y; Menezes, N; Sadler, P J; Sharma, R A

    2016-02-12

    Some of the largest improvements in clinical outcomes for patients with solid cancers observed over the past 3 decades have been from concurrent treatment with chemotherapy and radiotherapy (RT). The lethal effects of RT on cancer cells arise primarily from damage to DNA. Ruthenium (Ru) is a transition metal of the platinum group, with potentially less toxicity than platinum drugs. We postulated that ruthenium-arene complexes are radiosensitisers when used in combination with RT. We screened 14 ruthenium-arene complexes and identified AH54 and AH63 as supra-additive radiosensitisers by clonogenic survival assays and isobologram analyses. Both complexes displayed facial chirality. At clinically relevant doses of RT, radiosensitisation of cancer cells by AH54 and AH63 was p53-dependent. Radiation enhancement ratios for 5-10 micromolar drug concentrations ranged from 1.19 to 1.82. In p53-wildtype cells, both drugs induced significant G2 cell cycle arrest and apoptosis. Colorectal cancer cells deficient in DNA damage repair proteins, EME1 and MUS81, were significantly more sensitive to both agents. Both drugs were active in cancer cell lines displaying acquired resistance to oxaliplatin or cisplatin. Our findings broaden the potential scope for these drugs for use in cancer therapy, including combination with radiotherapy to treat colorectal cancer.

  12. Radiosensitisation of human colorectal cancer cells by ruthenium(II) arene anticancer complexes

    PubMed Central

    Carter, R; Westhorpe, A; Romero, MJ; Habtemariam, A; Gallevo, CR; Bark, Y; Menezes, N; Sadler, PJ; Sharma, RA

    2016-01-01

    Some of the largest improvements in clinical outcomes for patients with solid cancers observed over the past 3 decades have been from concurrent treatment with chemotherapy and radiotherapy (RT). The lethal effects of RT on cancer cells arise primarily from damage to DNA. Ruthenium (Ru) is a transition metal of the platinum group, with potentially less toxicity than platinum drugs. We postulated that ruthenium-arene complexes are radiosensitisers when used in combination with RT. We screened 14 ruthenium-arene complexes and identified AH54 and AH63 as supra-additive radiosensitisers by clonogenic survival assays and isobologram analyses. Both complexes displayed facial chirality. At clinically relevant doses of RT, radiosensitisation of cancer cells by AH54 and AH63 was p53-dependent. Radiation enhancement ratios for 5–10 micromolar drug concentrations ranged from 1.19 to 1.82. In p53-wildtype cells, both drugs induced significant G2 cell cycle arrest and apoptosis. Colorectal cancer cells deficient in DNA damage repair proteins, EME1 and MUS81, were significantly more sensitive to both agents. Both drugs were active in cancer cell lines displaying acquired resistance to oxaliplatin or cisplatin. Our findings broaden the potential scope for these drugs for use in cancer therapy, including combination with radiotherapy to treat colorectal cancer. PMID:26867983

  13. Gas-phase chemistry of ruthenium and rhodium carbonyl complexes.

    PubMed

    Cao, Shiwei; Wang, Yang; Qin, Zhi; Fan, Fangli; Haba, Hiromitsu; Komori, Yukiko; Wu, Xiaolei; Tan, Cunmin; Zhang, Xin

    2016-01-07

    Short-lived ruthenium and rhodium isotopes were produced from a (252)Cf spontaneous fission (SF) source. Their volatile carbonyl complexes were formed in gas-phase reactions in situ with the carbon-monoxide containing gas. A gas-jet system was employed to transport the volatile carbonyls from the recoil chamber to the chemical separation apparatus. The gas-phase chemical behaviors of these carbonyl complexes were studied using an online low temperature isothermal chromatography (IC) technique. Long IC columns made up of FEP Teflon were used to obtain the chemical information of the high-volatile Ru and Rh carbonyls. By excluding the influence of precursor effects, short-lived isotopes of (109-110)Ru and (111-112)Rh were used to represent the chemical behaviours of Ru and Rh carbonyls. Relative chemical yields of about 75% and 20% were measured for Ru(CO)5 and Rh(CO)4, respectively, relative to the yields of KCl aerosols transported in Ar gas. The adsorption enthalpies of ruthenium and rhodium carbonyl complexes on a Teflon surface were determined to be around ΔHads = -33(+1)(-2) kJ mol(-1) and -36(+2)(-1) kJ mol(-1), respectively, by fitting the breakthrough curves of the corresponding carbonyl complexes with a Monte Carlo simulation program. Different from Mo and Tc carbonyls, a small amount of oxygen gas was found to be not effective for the chemical yields of ruthenium and rhodium carbonyl complexes. The general chemical behaviors of short-lived carbonyl complexes of group VI-IX elements were discussed, which can be used in the future study on the gas-phase chemistry of superheavy elements - Bh, Hs, and Mt carbonyls.

  14. CuAAC click reactions for the design of multifunctional luminescent ruthenium complexes.

    PubMed

    Zabarska, Natalia; Stumper, Anne; Rau, Sven

    2016-02-14

    CuAAC (Cu(i) catalyzed azide-alkyne cycloaddition) click chemistry has emerged as a versatile tool in the development of photoactive ruthenium complexes with multilateral potential applicability. In this contribution we discuss possible synthetic approaches towards CuAAC reactions with ruthenium(ii) polypyridine complexes and their differences with respect to possible applications. We focus on two main application possibilities of the click-coupled ruthenium assemblies. New results within the development of ruthenium based photosensitizers for the field of renewable energy supply, i.e. DSSCs (dye-sensitized solar cells) and artificial photocatalysis for the production of hydrogen, or for anticancer photodynamic therapeutic applications are reviewed.

  15. Graphene-Ruthenium(II) complex composites for sensitive ECL immunosensors.

    PubMed

    Xiao, Fang-Nan; Wang, Min; Wang, Feng-Bin; Xia, Xing-Hua

    2014-02-26

    Non-covalent modification method has been proven as an effective strategy for enhancing the chemical properties of graphene while the structure and electronic properties of graphene can be retained. This work describes a novel strategy to fabricate a solid-state electrochemiluminescent (ECL) immunosensor based on ruthenium(II) complex/3,4,9,10-perylenetetracarboxylic acid (PTCA)/graphene nanocomposites (Ru-PTCA/G) for sensitive detection of α-fetoprotein (AFP). It is found that immobilization of PTCA and reduction of GO can be simultaneously achieved in one-pot synthesis method under alkaline condition and moderate temperature, forming PTCA/G nanocomposites. Further covalent attachment of ruthenium(II) complex to the PTCA assembled on graphene sheets produces the functional Ru-PTCA/G nanocomposites which show good electrochemical activity and ca. 21 times higher luminescence quantum efficiency than the adsorbed derivative ruthenium(II) complex. The Ru-PTCA/G nanocomposites based solid-state ECL sensor exhibits high stability toward the determination of tripropylamine (TPA) coreactant. In addition, a new ECL immunosensor based on steric hindrance effect is fabricated by cross-linking α-fetoprotein antibody (anti-AFP) with chitosan covered on Ru-PTCA/G composites modified electrode for detection of cancer biomarker AFP. This ECL immunosensor shows an extremely sensitive response to AFP in a linear range of 5 pg·mL(-1) -10 ng·mL(-1) with a detection limit of 0.2 pg·mL(-1) . The present approach is effective for various molecules immobilization and may become a promising technique for biomolecular detection.

  16. Dicarba-closo-dodecarborane-containing half-sandwich complexes of ruthenium, osmium, rhodium and iridium: biological relevance and synthetic strategies.

    PubMed

    Barry, Nicolas P E; Sadler, Peter J

    2012-04-21

    This review describes how the incorporation of dicarba-closo-dodecarboranes into half-sandwich complexes of ruthenium, osmium, rhodium and iridium might lead to the development of a new class of compounds with applications in medicine. Such a combination not only has unexplored potential in traditional areas such as Boron Neutron Capture Therapy agents, but also as pharmacophores for the targeting of biologically important proteins and the development of targeted drugs. The synthetic pathways used for the syntheses of dicarba-closo-dodecarboranes-containing half-sandwich complexes of ruthenium, osmium, rhodium and iridium are also reviewed. Complexes with a wide variety of geometries and characteristics can be prepared. Examples of addition reactions on the metal centre, B-H activation, transmetalation reactions and/or direct formation of metal-metal bonds are discussed (103 references).

  17. Solution studies of the antitumor complex dichloro 1,2-propylendiaminetetraacetate ruthenium (III) and of its interactions with proteins.

    PubMed

    Gonzalez Vilchez, F; Vilaplana, R; Blasco, G; Messori, L

    1998-08-01

    A mixed complex of ruthenium (III) with 1,2-propylendiaminetetraacetate (PDTA) and chloride--RAP hereafter--has been found to exhibit favorable anticancer properties in vivo. To get some insight into the possible mechanism of action of this ruthenium (III) complex, its solution behavior and reactivity with proteins were investigated through absorption, circular dichroism and 1H NMR spectroscopies. Under physiological conditions RAP slowly looses the two coordinated chlorine atoms to produce a number of ruthenium (III) reactive species; a description of the distribution of these species on the dependence of pH has been obtained through 1H NMR studies of the hyperfine shifted signals. Remarkably, through the different solution conditions employed in this study, the ruthenium ion always remains in the 3+ oxidation state and the PDTA ligand is always bound to the metal. Upon reaction with albumin, apotransferrin or diferric transferrin, at a 1:1 ratio, RAP rapidly binds to these proteins to produce substantially equivalent and relatively stable adducts. This behavior is tentatively interpreted in terms of a tight interaction between RAP and surface residues of these proteins. The implications of these findings for the biological action of this novel ruthenium (III) compound are discussed.

  18. First polymer "ruthenium-cyclopentadienyl" complex as potential anticancer agent.

    PubMed

    Valente, Andreia; Garcia, Maria Helena; Marques, Fernanda; Miao, Yong; Rousseau, Cyril; Zinck, Philippe

    2013-10-01

    d-glucose end-capped polylactide ruthenium cyclopentadienyl complex (RuPMC) was newly synthesized by a straightforward method. RuPMC was tested against human MCF7 and MDAMB231 breast and A2780 ovarian adenocarcinoma revealing IC50 values in the micromolar range. A pH dependent hydrolysis is advanced by preliminary UV-visible spectroscopy. Cellular distribution studies showed that RuPMC is predominantly found in the nucleus and in the membrane. Data suggest potential application of RuPMC as a new drug delivery system for Ru(II)Cp compounds. © 2013.

  19. Threading of Binuclear Ruthenium Complex Through DNA Bases

    NASA Astrophysics Data System (ADS)

    Paramanathan, Thayaparan; Westerlund, Fredrik; McCauley, Micah; Lincoln, Per; Rouzina, Ioulia; Williams, Mark

    2009-03-01

    Due to steric constraints the dumb-bell shaped binuclear ruthenium complex can only intercalate DNA by threading, which requires local melting of the DNA to occur. By mechanically manipulating a single DNA molecule held with optical tweezers, we lower the barrier to threading compared to bulk experiments. Stretching single DNA molecules with different drug concentrations and holding a constant force allows the binding to reach equilibrium. We can obtain the equilibrium fractional ligand binding and length of DNA at saturation. Fitting these results yields quantitative measurements of the binding thermodynamics and kinetics. In addition, we obtain the minimum binding site size, which may be determined by either electrostatic repulsion or steric constraints.

  20. Enantioselective Olefin Metathesis with Cyclometalated Ruthenium Complexes

    PubMed Central

    2015-01-01

    The success of enantioselective olefin metathesis relies on the design of enantioenriched alkylidene complexes capable of transferring stereochemical information from the catalyst structure to the reactants. Cyclometalation of the NHC ligand has proven to be a successful strategy to incorporate stereogenic atoms into the catalyst structure. Enantioenriched complexes incorporating this design element catalyze highly Z- and enantioselective asymmetric ring opening/cross metathesis (AROCM) of norbornenes and cyclobutenes, and the difference in ring strain between these two substrates leads to different propagating species in the catalytic cycle. Asymmetric ring closing metathesis (ARCM) of a challenging class of prochiral trienes has also been achieved. The extent of reversibility and effect of reaction setup was also explored. Finally, promising levels of enantioselectivity in an unprecedented Z-selective asymmetric cross metathesis (ACM) of a prochiral 1,4-diene was demonstrated. PMID:25137310

  1. Chiral salicyloxazolines as auxiliaries for the asymmetric synthesis of ruthenium polypyridyl complexes.

    PubMed

    Gong, Lei; Mulcahy, Seann P; Devarajan, Deepa; Harms, Klaus; Frenking, Gernot; Meggers, Eric

    2010-09-06

    Chiral auxiliaries are promising emerging tools for the asymmetric synthesis of octahedral metal complexes. We recently introduced chiral salicyloxazolines as coordinating bidentate chiral ligands which provide excellent control over the metal-centered configuration in the course of ligand substitution reactions and can be removed afterward in an acid-induced fashion under complete retention of configuration (J. Am. Chem. Soc. 2009, 131, 9602-9603). Here reported is our detailed investigation of this sequence of reactions, affording virtually enantiopure ruthenium polypyridyl complexes. The control of the metal-centered chirality by the coordinated chiral salicyloxazolinate ligand was evaluated as a function of reaction conditions, the employed bidentate 2,2'-bipyridine and 1,10-phenanthroline ligands, and the substituent at the asymmetric 5-position of the oxazoline heterocycle. Most striking was the strong influence of the reaction solvent, with aprotic solvents of lower polarity providing the most favorable diastereoselectivities. Through a combination of computational and experimental results, it was revealed that the observed stereoselectivities are under thermodynamic control. The removal of the chiral salicyloxazoline auxiliary under retention of the configuration requires acidic conditions and a coordinating solvent such as MeCN or THF in order to prevent partial racemization. This method represents the first general strategy for the asymmetric synthesis of enantiopure heteroleptic ruthenium polypyridyl complexes.

  2. Luminescent ruthenium complexes for theranostic applications.

    PubMed

    Cardoso, Carolina R; Lima, Márcia V S; Cheleski, Juliana; Peterson, Erica J; Venâncio, Tiago; Farrell, Nicholas P; Carlos, Rose M

    2014-06-12

    The water-soluble and visible luminescent complexes cis-[Ru(L-L)2(L)2](2+) where L-L = 2,2-bipyridine and 1,10-phenanthroline and L= imidazole, 1-methylimidazole, and histamine have been synthesized and characterized by spectroscopic techniques. Spectroscopic (circular dichroism, saturation transfer difference NMR, and diffusion ordered spectroscopy NMR) and isothermal titration calorimetry studies indicate binding of cis-[Ru(phen)2(ImH)2](2+) and human serum albumin occurs via noncovalent interactions with K(b) = 9.8 × 10(4) mol(-1) L, ΔH = -11.5 ± 0.1 kcal mol(-1), and TΔS = -4.46 ± 0.3 kcal mol(-1). High uptake of the complex into HCT116 cells was detected by luminescent confocal microscopy. Cytotoxicity of cis-[Ru(phen)2(ImH)2](2+) against proliferation of HCT116p53(+/+) and HCT116p53(-/-) shows IC50 values of 0.1 and 0.7 μmol L(-1). Flow cytometry and western blot indicate RuphenImH mediates cell cycle arrest in the G1 phase in both cells and is more prominent in p53(+/+). The complex activates proapoptotic PARP in p53(-/-), but not in p53(+/+). A cytostatic mechanism based on quantification of the number of cells during the time period of incubation is suggested.

  3. Structure of ruthenium(II) complexes with coproporphyrin I tetraethyl ester

    NASA Astrophysics Data System (ADS)

    Zverev, S. A.; Andreev, S. V.; Zamilatskov, I. A.; Kurochkina, N. M.; Tyurin, V. S.; Senchikhin, I. N.; Ponomarev, G. V.; Erzina, D. R.; Chernyshev, V. V.

    2017-08-01

    The reaction between coproporphyrin I tetraethyl ester and ruthenium(II) dodecacarbonyl in toluene is investigated. The formation of two different products, complexes 2 and 3 of ruthenium(II) with coproporphyrin I tetraethyl ester, studied by means of mass spectrometry, electronic absorption spectroscopy, NMR, X-ray diffraction, and thermogravimetric analysis, is revealed. Structures are proposed for the products, of which ( 2) is a monocarbonyl complex of ruthenium(II) porphyrin that exists as a coordination polymer formed owing to intermolecular axial bonding between the oxygen atoms of carboethoxyl groups and ruthenium(II). The structure proposed for second product ( 3) is in the form of the corresponding monomer of a monocarbonyl complex of ruthenium(II) porphyrin. It is established that polymeric complex 2 transforms into monomeric complex 3 when it is heating in pyridine.

  4. Ruthenium(II)-PNN pincer complex catalyzed dehydrogenation of benzyl alcohol to ester: A DFT study

    NASA Astrophysics Data System (ADS)

    Tao, Jingcong; Wen, Li; Lv, Xiaobo; Qi, Yong; Yin, Hailiang

    2016-04-01

    The molecular mechanism of the dehydrogenation of primary alcohol to ester catalyzed by the ruthenium(II)-PNN pincer complex Ru(H)(η2-BH4)(PNN), [PNN: (2-(di-tert-butylphosphinomethyl)-6-(diethlaminomethyl)-pyridine)] has been investigated using density functional theory calculations. The catalytic cycle includes three stages: (stage I) alcohol dehydrogenation to form aldehyde, (stage II) coupling of aldehyde with alcohol to give hemiacetal or ester, and (stage III) hemiacetal dehydrogenation to form ester. Two dehydrogenation reactions occur via the β-H elimination mechanism rather than the bifunctional double hydrogen transfer mechanism, which could be rationalized as the fluxional behavior of the BH4- ligand. At the second stage, the coupling reaction requires alcohol or the ruthenium catalyst as mediator. The formation of hemiacetal through the alcohol-mediated pathway is kinetically favorable than the ruthenium catalyst-mediated one, which may be attributed to the smaller steric hindrance when the aldehyde approaches the alcohol moiety in the reaction system. Our results would be helpful for experimental chemists to design more effective transition metal catalysts for dehydrogenation of alcohols.

  5. DMSO containing ruthenium(ii) hydrazone complexes: in vitro evaluation of biomolecular interaction and anticancer activity.

    PubMed

    Alagesan, M; Sathyadevi, P; Krishnamoorthy, P; Bhuvanesh, N S P; Dharmaraj, N

    2014-11-14

    Synthesis, spectral, electrochemical and single crystal X-ray diffraction data of a new series of DMSO containing bivalent ruthenium hydrazone complexes are presented. XRD data of two of the new complexes revealed an octahedral coordination around the ruthenium ion satisfied by NOS2Cl2 atoms. Electrochemical studies showed the metal centred, quasi-reversible, one-electron redox behaviour of the new complexes. The binding of these complexes with biomolecules such as calf thymus DNA (CT-DNA) and bovine serum albumin (BSA) protein investigated by different spectrophotometric methods revealed an intercalative mode of interaction. The in vitro cytotoxicity of these complexes evaluated by the MTT assay on a panel of cancer and normal cell lines indicated that the above complexes are more toxic to cancer cells with a few micromolar concentrations as the IC50 value, but are significantly less toxic to normal cell lines. The observed variations in the binding interactions and cytotoxicity of the complexes were attributed to the nature of the hydrazide moiety of the hydrazones that influences their biological activities.

  6. Hydrido-ruthenium cluster complexes as models for reactive surface hydrogen species of ruthenium nanoparticles. Solid-state 2H NMR and quantum chemical calculations.

    PubMed

    Gutmann, Torsten; Walaszek, Bernadeta; Yeping, Xu; Wächtler, Maria; del Rosal, Iker; Grünberg, Anna; Poteau, Romuald; Axet, Rosa; Lavigne, Guy; Chaudret, Bruno; Limbach, Hans-Heinrich; Buntkowsky, Gerd

    2010-08-25

    The (2)H quadrupolar interaction is a sensitive tool for the characterization of deuterium-metal binding states. In the present study, experimental solid-state (2)H MAS NMR techniques are used in the investigations of two ruthenium clusters, D(4)Ru(4)(CO)(12) (1) and D(2)Ru(6)(CO)(18) (2), which serve as model compounds for typical two-fold, three-fold, and octahedral coordination sites on metal surfaces. By line-shape analysis of the (2)H MAS NMR measurements of sample 1, a quadrupolar coupling constant of 67 +/- 1 kHz, an asymmetry parameter of 0.67 +/- 0.1, and an isotropic chemical shift of -17.4 ppm are obtained. In addition to the neutral complex, sample 2 includes two ionic clusters, identified as anionic [DRu(6)(CO)(18)](-) (2(-)) and cationic [D(3)Ru(6)(CO)(18)](+) (2(+)). By virtue of the very weak quadrupolar interaction (<2 kHz) and the strong low-field shift (+16.8 ppm) of 2(-), it is shown that the deuteron is located in the symmetry center of the octahedron spanned by the six ruthenium atoms. For the cationic 2(+), the quadrupolar interaction is similar to that of the neutral 2. Quantum chemical DFT calculations at different model structures for these ruthenium clusters were arranged in order to help in the interpretation of the experimental results. It is shown that the (2)H nuclear quadrupolar interaction is a sensitive tool for distinguishing the binding state of the deuterons to the transition metal. Combining the data from the polynuclear complexes with the data from mononuclear complexes, a molecular ruler for quadrupolar interactions is created. This ruler now permits the solid-state NMR spectroscopic characterization of deuterium adsorbed on the surfaces of catalytically active metal nanoparticles.

  7. Controlling the binding of dihydrogen using ruthenium complexes containing N-mono-functionalised 1,4,7-triazacyclononane ligand systems.

    PubMed

    Gott, Andrew L; McGowan, Patrick C; Podesta, Thomas J

    2008-07-28

    Pendant arm macrocycles derived from 1,4,7-triazacyclononane were reacted with RuHCl(CO)(PPh(3))(3) and RuHCl(PPh(3))(3) to yield air-stable cationic ruthenium hydrides that were characterised by a variety of techniques, including X-ray crystallography. Protonation of the metal hydride complexes with a proton source yielded eta(2)-dihydrogen complexes. The lifetime of the dihydrogen ligand was effected by a judicious choice of ancillary ligands.

  8. Synthesis and structures of ruthenium di- and tricarbonyl complexes derived from 4,5-diazafluoren-9-one.

    PubMed

    Jimenez, Jorge; Chakraborty, Indranil; Mascharak, Pradip

    2015-11-01

    Carbon monoxide (CO) has recently been shown to impart beneficial effects in mammalian physiology and considerable research attention is now being directed toward metal-carbonyl complexes as a means of delivering CO to biological targets. Two ruthenium carbonyl complexes, namely trans-dicarbonyldichlorido(4,5-diazafluoren-9-one-κ(2)N,N')ruthenium(II), [RuCl2(C11H6N2O)(CO)2], (1), and fac-tricarbonyldichlorido(4,5-diazafluoren-9-one-κN)ruthenium(II), [RuCl2(C11H6N2O)(CO)3], (2), have been isolated and structurally characterized. In the case of complex (1), the trans-directing effect of the CO ligands allows bidentate coordination of the 4,5-diazafluoren-9-one (dafo) ligand despite a larger bite distance between the N-donor atoms. In complex (2), the cis disposition of two chloride ligands restricts the ability of the dafo molecule to bind ruthenium in a bidentate fashion. Both complexes exhibit well defined (1)H NMR spectra confirming the diamagnetic ground state of Ru(II) and display a strong absorption band around 300 nm in the UV.

  9. Single-mismatch position-sensitive detection of DNA based on a bifunctional ruthenium complex.

    PubMed

    García, T; Revenga-Parra, M; Abruña, H D; Pariente, F; Lorenzo, E

    2008-01-01

    A ruthenium complex, pentaamine ruthenium [3-(2-phenanthren-9-yl-vinyl)-pyridine] (which we refer to as RuL in the text) generated in situ has been used as a sensitive and selective electrochemical indicator in DNA sensing. The complex incorporates dual functionalities with the Ru center providing a redox probe and the ligand (L) providing a fluorescent tag. The presence of the aromatic groups in the ligand endows the complex with an intercalative character and makes it capable of binding to double-stranded DNA (dsDNA) more efficiently than to single-stranded DNA (ssDNA). Combining spectroscopic and electrochemical techniques, we have elucidated the nature of the interactions. From these data we conclude that the binding mode is fundamentally intercalative. The ligand-based fluorescence allows characterization of the complex formation as well as for melting experiments to be carried out. The metal-based redox center is employed as an electrochemical indicator to detect the hybridization event in a DNA biosensor. The biosensor has been developed by immobilization of a thiolated capture probe sequence from Helicobacter pylori onto gold electrodes. With the use of this approach, complementary target sequences of Helicobacter can be quantified over the range of 106 to 708 pmol with a detection limit of 92+/-0.4 pmol and a linear correlation coefficient of 0.995. In addition, this approach allows the detection, without the need for a hybridization suppressor in solution, such as formamide, of not only a single mismatch but also its position in a specific sequence of H. pylori, due to the selective interaction of this bifunctional ruthenium complex with dsDNA.

  10. Synthesis and Single-Molecule Conductance Study of Redox-Active Ruthenium Complexes with Pyridyl and Dihydrobenzo[b]thiophene Anchoring Groups.

    PubMed

    Ozawa, Hiroaki; Baghernejad, Masoud; Al-Owaedi, Oday A; Kaliginedi, Veerabhadrarao; Nagashima, Takumi; Ferrer, Jaime; Wandlowski, Thomas; García-Suárez, Víctor M; Broekmann, Peter; Lambert, Colin J; Haga, Masa-Aki

    2016-08-26

    The ancillary ligands 4'-(4-pyridyl)-2,2':6',2''-terpyridine and 4'-(2,3-dihydrobenzo[b]thiophene)-2,2'-6',2"-terpyridine were used to synthesize two series of mono- and dinuclear ruthenium complexes differing in their lengths and anchoring groups. The electrochemical and single-molecular conductance properties of these two series of ruthenium complexes were studied experimentally by means of cyclic voltammetry and the scanning tunneling microscopy-break junction technique (STM-BJ) and theoretically by means of density functional theory (DFT). Cyclic voltammetry data showed clear redox peaks corresponding to both the metal- and ligand-related redox reactions. Single-molecular conductance demonstrated an exponential decay of the molecular conductance with the increase in molecular length for both the series of ruthenium complexes, with decay constants of βPY =2.07±0.1 nm(-1) and βBT =2.16±0.1 nm(-1) , respectively. The contact resistance of complexes with 2,3-dihydrobenzo[b]thiophene (BT) anchoring groups is found to be smaller than the contact resistance of ruthenium complexes with pyridine (PY) anchors. DFT calculations support the experimental results and provided additional information on the electronic structure and charge transport properties in those metal|ruthenium complex|metal junctions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Kinetics of third-order nonlinear optical susceptibilities in alkynyl ruthenium complexes

    NASA Astrophysics Data System (ADS)

    Migalska-Zalas, A.; Luc, J.; Sahraoui, B.; Kityk, I. V.

    2006-07-01

    Kinetics of third-order optical susceptibilities obtained for a new series of alkynyl ruthenium complexes was investigated in using pump-dependent transmission experiment and the degenerate four-wave mixing (DFWM) technique. We investigate electron rich σ-acetylide ruthenium complexes in which the d-transition metal is incorporated in the same plane as the π-system of formyl alkynyl ligands. The obtained results show that the presence of a bilaterally ligands leads to substantial increase of the χ<3>. The maximally achieved third optical susceptibility was χ<3> = 0.9 × 10 -20 m 2 V -2 at λ = 0.53 μm for chloroform solution concentration 0.4 mol l -1. The value of second-order optical hyperpolarizabilities γ for the investigated compounds were four orders of magnitude larger compared to the known values of CS 2. The quasi-periodic relaxation time kinetics of the DFWM with period about 7 ns was found after switching off the pumping beams. Such kinetics of the DFWM is explained by tunnelling between the occupied d-transition metal levels and electron-phonon trapping levels after interruption of the pumping signals.

  12. Square-planar ruthenium(II) complexes: control of spin state by pincer ligand functionalization.

    PubMed

    Askevold, Bjorn; Khusniyarov, Marat M; Kroener, Wolfgang; Gieb, Klaus; Müller, Paul; Herdtweck, Eberhardt; Heinemann, Frank W; Diefenbach, Martin; Holthausen, Max C; Vieru, Veacheslav; Chibotaru, Liviu F; Schneider, Sven

    2015-01-07

    Functionalization of the PNP pincer ligand backbone allows for a comparison of the dialkyl amido, vinyl alkyl amido, and divinyl amido ruthenium(II) pincer complex series [RuCl{N(CH2 CH2 PtBu2 )2 }], [RuCl{N(CHCHPtBu2 )(CH2 CH2 PtBu2 )}], and [RuCl{N(CHCHPtBu2 )2 }], in which the ruthenium(II) ions are in the extremely rare square-planar coordination geometry. Whereas the dialkylamido complex adopts an electronic singlet (S=0) ground state and energetically low-lying triplet (S=1) state, the vinyl alkyl amido and the divinyl amido complexes exhibit unusual triplet (S=1) ground states as confirmed by experimental and computational examination. However, essentially non-magnetic ground states arise for the two intermediate-spin complexes owing to unusually large zero-field splitting (D>+200 cm(-1) ). The change in ground state electronic configuration is attributed to tailored pincer ligand-to-metal π-donation within the PNP ligand series.

  13. Neutron activation increases activity of ruthenium-based complexes and induces cell death in glioma cells independent of p53 tumor suppressor gene.

    PubMed

    Montel, Aline Monezi; Dos Santos, Raquel Gouvêa; da Costa, Pryscila Rodrigues; Silveira-Lacerda, Elisângela de Paula; Batista, Alzir Azevedo; Dos Santos, Wagner Gouvêa

    2017-04-01

    Novel metal complexes have received great attention in the last decades due to their potential anticancer activity. Notably, ruthenium-based complexes have emerged as good alternative to the currently used platinum-based drugs for cancer therapy, providing less toxicity and side effects to patients. Glioblastoma is an aggressive and invasive type of brain tumor and despite of advances is the field of neurooncology there is no effective treatment until now. Therefore, we sought to investigate the potential antiproliferative activity of phosphine-ruthenium-based complexes on human glioblastoma cell lines. Due to its octahedral structure as opposed to the square-planar geometry of platinum(II) compounds, ruthenium(II) complexes exhibit different structure-function relationship probably acting through a different mechanism from that of cisplatin beyond their ability to bind DNA. To better improve the pharmacological activity of metal complexes we hypothesized that neutron activation of ruthenium in the complexes would allow to decrease the effective concentration of the compound needed to kill tumor cells. Herein we report on the effect of unmodified and neutron activated phosphine ruthenium II complexes on glioblastoma cell lines carrying wild-type and mutated p53 tumor suppressor gene. Induction of apoptosis/authophagy as well as generation of reactive oxygen species were determined. The phosphine ruthenium II complexes tested were highly active against glioblastoma cell lines inducing cell death both through apoptosis and autophagy in a p53 independent fashion. Neutron activation of ruthenium compounds rendered them more active than their original counterparts suggesting a new strategy to improve the antitumor activity of these compounds.

  14. Synthesis, characterization, and anticancer activity of ruthenium-pyrazole complexes.

    PubMed

    David, Solene; Perkins, Richard S; Fronczek, Frank R; Kasiri, Sahba; Mandal, Subhrangsu S; Srivastava, Radhey S

    2012-06-01

    A series of new water soluble Ru(III) pyrazole complexes mer-[RuCl(3)(DMSO-S)(pyz)(2)] 1, mer-[RuCl(3)(DMSO-S)(DMSO-O)(pyz)] 2, mer-[RuCl(3)(bpy)(dmpyz)] 3, and mer-[RuCl(3)(DMSO-S)(dmpyz)(2)] 4 (pyz=pyrazole; dmpyz=3,5-dimethylpyrazole, bpy=2,2'-bipyridine) have been synthesized and characterized by use of a combination of spectroscopy (IR and UV-visible), X-ray diffraction, and cyclic voltammetry. The molecular X-ray structure of all reported compounds (1-4) revealed distorted octahedral coordination around ruthenium. The cytotoxicity assay on human breast cancer cells (MCF7) demonstrated that compounds 1 and 4 affect cell viability, whereas compounds 2 and 3 do not show appreciable activity. The IC(50) values for 1 and 4 lie within the range of 71-32μM in MCF7 cells.

  15. Modulating the Anticancer Activity of Ruthenium(II)-Arene Complexes.

    PubMed

    Clavel, Catherine M; Păunescu, Emilia; Nowak-Sliwinska, Patrycja; Griffioen, Arjan W; Scopelliti, Rosario; Dyson, Paul J

    2015-04-23

    Following the identification of [Ru(η(6)-p-cymene)Cl2(1H,1H,2H,2H-perfluorodecyl-3-(pyridin-3-yl)propanoate)], a ruthenium(II)-arene complex with a perfluoroalkyl-modified ligand that displays remarkable in vitro cancer cell selectivity, a series of structurally related compounds were designed. In the new derivatives, the p-cymene ring and/or the chloride ligands are substituted by other ligands to modulate the steric bulk or aquation kinetics. The new compounds were evaluated in both in vitro (cytotoxicity and migration assays) and in vivo (chicken chorioallantoic membrane) models and were found to exhibit potent antivascular effects.

  16. Electron Transfer Studies of Ruthenium(II) Complexes with Biologically Important Phenolic Acids and Tyrosine.

    PubMed

    Rajeswari, Angusamy; Ramdass, Arumugam; Muthu Mareeswaran, Paulpandian; Rajagopal, Seenivasan

    2016-03-01

    The ruthenium(II) complexes having 2,2'-bipyridine and phenanthroline derivatives are synthesized and characterized. The photophysical properties of these complexes at pH 12.5 are studied. The electron transfer reaction of biologically important phenolic acids and tyrosine are studied using absorption, emission and transient absorption spectral techniques. Semiclassical theory is applied to calculate the rate of electron transfer between ruthenium(II) complexes and biologically important phenolic acids.

  17. Osmium, ruthenium, iridium and uranium in silicates and chromite from the eastern Bushveld Complex, South Africa

    USGS Publications Warehouse

    Gijbels, R.h.; Millard, H.T.; Desborough, G.A.; Bartel, A.J.

    1974-01-01

    Osmium, ruthenium, iridium and uranium contents were determined in eight ortho pyroxene, seven plagioclase, and three chromite mineral separates from the eastern Bushveld Complex. Neutron activation analysis was used to measure the platinum metals, and uranium was determined by a fission track technique. The platinum metals were found to be present within each mine??ral in the proportions Os:Ru:Ir = 1:7:1, while the concentrations of these metals in the minerals are in the ratios orthopyroxene:plagioclase:chromite = 1:16:700. The concentration of uranium was found to range from 11 to 66 ppb (parts per billion) and not to vary significantly from mineral to mineral. The data for the platinum metals are consistent with a model in which the eastern Bushveld Complex was formed by the fractional crystallization of two separately injected magmas. A computer fit of this model to these data indicates that the initial concentrations of Os, Ru and Ir in the first magma were 0.24, 2.0 and 0.21 ppb and in the second magma were 0.16, 1.1 and 0.18 ppb, respectively. The fit also yields the distribution coefficients for the partitioning between the liquid and cumulus orthopyroxene, cumulus plagioclase and cumulus chromite. These coefficients (mineral/liquid) for osmium are 4.5, 66 and 2700; for ruthenium, they are 5, 65 and 2700; and for iridium, they are 4, 60 and 1600. To make this fit, it was necessary to hypothesize the existence of two types of chromite: one type with a large distribution coefficient, presumably formed as a cumulus phase at high temperature, and another, more prevalent type with a smaller distribution coefficient, which may have been formed by postcumulus growth at a lower temperature. This hypothesis is supported by data for coexisting chromite-silicate pairs, which indicate that the chromite grains expelled these platinum metals as they cooled. ?? 1974.

  18. Enantioselective assembly of a ruthenium(II) polypyridyl complex into a double helix.

    PubMed

    Van Hecke, Kristof; Cardinaels, Thomas; Nockemann, Peter; Jacobs, Jeroen; Vanpraet, Louis; Parac-Vogt, Tatjana N; Van Deun, Rik; Binnemans, Koen; Van Meervelt, Luc

    2014-08-18

    Evolution can increase the complexity of matter by self-organization into helical architectures, the best example being the DNA double helix. One common aspect, apparently shared by most of these architectures, is the presence of covalent bonds within the helix backbone. Here, we report the unprecedented crystal structures of a metal complex that self-organizes into a continuous double helical structure, assembled by non-covalent building blocks. Built up solely by weak stacking interactions, this alternating tread stairs-like double helical assembly mimics the DNA double helix structure. Starting from a racemic mixture in aqueous solution, the ruthenium(II) polypyridyl complex forms two polymorphic structures of a left-handed double helical assembly of only the Λ-enantiomer. The stacking of the helices is different in both polymorphs: a crossed woodpile structure versus a parallel columnar stacking. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Chlorido-containing ruthenium(II) and iridium(III) complexes as antimicrobial agents.

    PubMed

    Pandrala, Mallesh; Li, Fangfei; Feterl, Marshall; Mulyana, Yanyan; Warner, Jeffrey M; Wallace, Lynne; Keene, F Richard; Collins, J Grant

    2013-04-07

    A series of polypyridyl-ruthenium(II) and -iridium(III) complexes that contain labile chlorido ligands, [{M(tpy)Cl}(2){μ-bb(n)}](2/4+) {Cl-Mbb(n); where M = Ru or Ir; tpy = 2,2':6',2''-terpyridine; and bb(n) = bis[4(4'-methyl-2,2'-bipyridyl)]-1,n-alkane (n = 7, 12 or 16)} have been synthesised and their potential as antimicrobial agents examined. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of the series of metal complexes against four strains of bacteria - Gram positive Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA), and Gram negative Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) - have been determined. All the ruthenium complexes were highly active and bactericidal. In particular, the Cl-Rubb(12) complex showed excellent activity against all bacterial cell lines with MIC values of 1 μg mL(-1) against the Gram positive bacteria and 2 and 8 μg mL(-1) against E. coli and P. aeruginosa, respectively. The corresponding iridium(III) complexes also showed significant antimicrobial activity in terms of MIC values; however and surprisingly, the iridium complexes were bacteriostatic rather than bactericidal. The inert iridium(III) complex, [{Ir(phen)(2)}(2){μ-bb(12)}](6+) {where phen = 1,10-phenanthroline) exhibited no antimicrobial activity, suggesting that it could not cross the bacterial membrane. The mononuclear model complex, [Ir(tpy)(Me(2)bpy)Cl]Cl(2) (where Me(2)bpy = 4,4'-dimethyl-2,2'-bipyridine), was found to aquate very rapidly, with the pK(a) of the iridium-bound water in the corresponding aqua complex determined to be 6.0. This suggests the dinuclear complexes [Ir(tpy)Cl}(2){μ-bb(n)}](4+) aquate and deprotonate rapidly and enter the bacterial cells as 4+ charged hydroxo species.

  20. Ruthenium or osmium complexes and their uses as catalysts for water oxidation

    DOEpatents

    Corbea, Javier Jesus Concepcion; Chen, Zoufeng; Jurss, Jonah Wesley; Templeton, Joseph L.; Hoertz, Paul; Meyer, Thomas J.

    2016-06-07

    The present invention provides ruthenium or osmium complexes and their uses as a catalyst for catalytic water oxidation. Another aspect of the invention provides an electrode and photo-electrochemical cells for electrolysis of water molecules.

  1. Ruthenium or osmium complexes and their uses as catalysts for water oxidation

    DOEpatents

    Concepcion Corbea, Javier Jesus; Chen, Zuofeng; Jurss, Jonah Wesley; Templeton, Joseph L; Hoertz, Paul; Meyer, Thomas J

    2014-10-28

    The present invention provides ruthenium or osmium complexes and their uses as a catalyst for catalytic water oxidation. Another aspect of the invention provides an electrode and photo-electrochemical cells for electrolysis of water molecules.

  2. Ruthenium or osmium complexes and their uses as catalysts for water oxidation

    DOEpatents

    Corbea, Javier Jesus Concepcion; Chen, Zuofeng; Jurss, Jonah Wesley; Templeton, Joseph L.; Hoertz, Paul; Meyer, Thomas J.

    2013-09-03

    The present invention provides ruthenium or osmium complexes and their uses as a catalyst for catalytic water oxidation. Another aspect of the invention provides an electrode and photo-electrochemical cells for electrolysis of water molecules.

  3. Ruthenium complexes containing bis-benzimidazole derivatives as a new class of apoptosis inducers.

    PubMed

    Li, Linlin; Wong, Yum-Shing; Chen, Tianfeng; Fan, Cundong; Zheng, Wenjie

    2012-01-28

    A series of ruthenium complexes containing bis-benzimidazole derivatives have been synthesized and identified as able to target mitochondria and induce caspase-dependent apoptosis in cancer cells through superoxide overproduction.

  4. Water oxidation by Ruthenium complexes incorporating multifunctional biipyridyl diphosphonate ligands

    DOE PAGES

    Xie, Yan; Shaffer, David W.; Lewandowska-Andralojc, Anna; ...

    2016-05-11

    Here, we describe herein the synthesis and characterization of ruthenium complexes with multifunctional bipyridyl diphosphonate ligands as well as initial water oxidation studies. In these complexes, the phosphonate groups provide redox-potential leveling through charge compensation and σ donation to allow facile access to high oxidation states. These complexes display unique pH-dependent electrochemistry associated with deprotonation of the phosphonic acid groups. The position of these groups allows them to shuttle protons in and out of the catalytic site and reduce activation barriers. A mechanism for water oxidation by these catalysts is proposed on the basis of experimental results and DFT calculations.more » The unprecedented attack of water at a neutral six-coordinate [RuIV] center to yield an anionic seven-coordinate [RuIV–OH]– intermediate is one of the key steps of a single-site mechanism in which all species are anionic or neutral. These complexes are among the fastest single-site catalysts reported to date.« less

  5. Homobimetallic Ruthenium-N-Heterocyclic Carbene Complexes For Olefin Metathesis

    NASA Astrophysics Data System (ADS)

    Sauvage, Xavier; Demonceau, Albert; Delaude, Lionel

    In this chapter, the synthesis and catalytic activity towards olefin metathesis of homobimetallic ruthenium (Ru)-alkylidene, -cyclodiene or -arene complexes bearing phosphine or N-heterocyclic carbene (NHC) ligands are reviewed. Emphasis is placed on the last category of bimetallic compounds. Three representatives of this new type of molecular scaffold were investigated. Thus, [(p-cymene)Ru(m-Cl)3RuCl (h2-C2H4)(L)] complexes with L = PCy3 (15a), IMes (16a), or IMesCl2 (16b) were prepared. They served as catalyst precursors for cross-metathesis (CM) of various styrene derivatives. These experiments revealed the outstanding aptitude of complex 16a (and to a lesser extent of 16b) to catalyze olefin metathesis reactions. Contrary to monometallic Ru-arene complexes of the [RuCl2(p-cymene)(L)] type, the new homobimetallic species did not require the addition of a diazo compound nor visible light illumination to initiate the ring-opening metathesis of norbornene or cyclooctene. When diethyl 2,2-diallylmalonate and N,N-diallyltosylamide were exposed to 16a,b, a mixture of cycloisomerization and ring-closing metathesis (RCM) products was obtained in a nonselective way. Addition of phenylacetylene enhanced the metathetical activity while completely repressing the cycloisomerization process.

  6. Water oxidation by Ruthenium complexes incorporating multifunctional biipyridyl diphosphonate ligands

    SciTech Connect

    Xie, Yan; Shaffer, David W.; Lewandowska-Andralojc, Anna; Szalda, David J.; Concepcion, Javier J.

    2016-05-11

    Here, we describe herein the synthesis and characterization of ruthenium complexes with multifunctional bipyridyl diphosphonate ligands as well as initial water oxidation studies. In these complexes, the phosphonate groups provide redox-potential leveling through charge compensation and σ donation to allow facile access to high oxidation states. These complexes display unique pH-dependent electrochemistry associated with deprotonation of the phosphonic acid groups. The position of these groups allows them to shuttle protons in and out of the catalytic site and reduce activation barriers. A mechanism for water oxidation by these catalysts is proposed on the basis of experimental results and DFT calculations. The unprecedented attack of water at a neutral six-coordinate [RuIV] center to yield an anionic seven-coordinate [RuIV–OH] intermediate is one of the key steps of a single-site mechanism in which all species are anionic or neutral. These complexes are among the fastest single-site catalysts reported to date.

  7. Water oxidation by Ruthenium complexes incorporating multifunctional biipyridyl diphosphonate ligands

    SciTech Connect

    Xie, Yan; Shaffer, David W.; Lewandowska-Andralojc, Anna; Szalda, David J.; Concepcion, Javier J.

    2016-05-11

    Here, we describe herein the synthesis and characterization of ruthenium complexes with multifunctional bipyridyl diphosphonate ligands as well as initial water oxidation studies. In these complexes, the phosphonate groups provide redox-potential leveling through charge compensation and σ donation to allow facile access to high oxidation states. These complexes display unique pH-dependent electrochemistry associated with deprotonation of the phosphonic acid groups. The position of these groups allows them to shuttle protons in and out of the catalytic site and reduce activation barriers. A mechanism for water oxidation by these catalysts is proposed on the basis of experimental results and DFT calculations. The unprecedented attack of water at a neutral six-coordinate [RuIV] center to yield an anionic seven-coordinate [RuIV–OH] intermediate is one of the key steps of a single-site mechanism in which all species are anionic or neutral. These complexes are among the fastest single-site catalysts reported to date.

  8. Ruthenium complexes with chiral tetradentate PNNP ligands: asymmetric catalysis from the viewpoint of inorganic chemistry.

    PubMed

    Mezzetti, Antonio

    2010-09-14

    This is a personal account of the application of ruthenium complexes containing chiral tetradentate ligands with a P(2)N(2) ligand set (PNNP) as catalyst precursors for enantioselective "atom transfer" reactions. Therewith are meant reactions that involve bond formation between a metal-coordinated molecule and a free reagent. The reactive fragment (e.g. carbene) is transferred either from the metal to the non-coordinated substrate (e.g. olefin) or from the free reagent (e.g. F(+)) to the metal-bound substrate (e.g.beta-ketoester), depending on the class of catalyst (monocationic, Class A; or dicationic, Class B). The monocationic five-coordinate species [RuCl(PNNP)](+) and the six-coordinate complexes [RuCl(L)(PNNP)](+) (L = Et(2)O, H(2)O) of Class A catalyse asymmetric epoxidation, cyclopropanation (carbene transfer from the metal to the free olefin), and imine aziridination. Alternatively, the dicationic complexes [Ru(L-L)(PNNP)](2+) (Class B), which contain substrates that act as neutral bidentate ligands L-L (e.g., beta-ketoesters), catalyse Michael addition, electrophilic fluorination, and hydroxylation reactions. Additionally, unsaturated beta-ketoesters form dicationic complexes of Class B that catalyse Diels-Alder reactions with acyclic dienes to produce tetrahydro-1-indanones and estrone derivatives. Excellent enantioselectivity has been achieved in several of the catalytic reactions mentioned above. The study of key reaction intermediates (both in the solid state and in solution) has revealed significant mechanistic aspects of the catalytic reactions.

  9. 2-Nitroimidazole-ruthenium polypyridyl complex as a new conjugate for cancer treatment and visualization.

    PubMed

    Mazuryk, Olga; Maciuszek, Monika; Stochel, Grażyna; Suzenet, Franck; Brindell, Małgorzata

    2014-05-01

    A novel long-lifetime highly luminescent ruthenium polypyridyl complex containing 2-nitroimidazole moiety [Ru(dip)2(bpy-2-nitroIm)]Cl2 (dip=4,7-diphenyl-1,10-phenanthroline, bpy-2-nitroIm=4-[3-(2-nitro-1H-imidazol-1-yl)propyl]-2,2'-bipyridine) has been designed cancer treatment and imaging. The luminescence properties of the synthesized compound strongly depend on the oxygen concentration. Under oxygen-free conditions quantum yield of luminescence and the average lifetime of emission were found to be 0.034 and 1.9 μs, respectively, which is ca. three times higher in comparison to values obtained in air-equilibrated solution. The binding properties of the investigated ruthenium complex to human serum albumin have been studied and the apparent binding constant for the formation of the protein-ruthenium adduct was determined to be 1.1×10(5)M(-1). The quantum yield and the average lifetime of emission are greatly enhanced upon binding of ruthenium compound to the protein. The DNA binding studies revealed two distinguished binding modes which lead to a decrease in luminescence intensity of ruthenium complex up to 60% for [DNA]/[Ru]<2, and enhancement of emission for [DNA]/[Ru]>80. Preliminary biological studies confirmed fast and efficient accumulation of the ruthenium complex inside cells. Furthermore, the ruthenium complex was found to be relatively cytotoxic with LD50 of 12 and 13 μM for A549 and CT26 cell lines, respectively, under normoxic conditions. The retention and cellular uptake of ruthenium complex is enhanced under hypoxic conditions and its LD50 decreases to 8 μM for A549 cell line. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Phosphorescent ruthenium complexes with a nitroimidazole unit that image oxygen fluctuation in tumor tissue.

    PubMed

    Son, Aoi; Kawasaki, Atsushi; Hara, Daiki; Ito, Takeo; Tanabe, Kazuhito

    2015-02-02

    Understanding oxygen fluctuation in a cancerous tumor is important for effective treatment, especially during radiotherapy. In this paper, ruthenium complexes bearing a nitroimidazole group are shown to report the oxygen status in tumor tissue directly. The nitroimidazole group was known to be accumulated in hypoxic tumor tissues. On the other hand, the ruthenium complex showed strong phosphorescence around 600 nm. The emission of ruthenium is quenched instantaneously by molecular oxygen due to energy transfer between triplet states of oxygen and ruthenium complex, but the emission is then recovered by the removal of oxygen. Thus, we could observe oxygen fluctuation in tumor tissue in a real-time manner by monitoring the phosphorescence of the ruthenium complex. The versatility of the probe is demonstrated by monitoring oxygen fluctuation in living cells and tumor tissue planted in mice. The ruthenium complex promptly penetrated plasma membrane and accumulated in cells to emit its oxygen-dependent phosphorescence. In vivo experiments revealed that the oxygen level in tumor tissue seems to fluctuate at the sub-minute timescale. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synthesis, structures and properties of new hybrid solids containing ruthenium complexes and polyoxometalates

    SciTech Connect

    Yan Bangbo; Hodsdon, Samantha A.; Li Yanfen; Carmichael, Christopher N.; Cao Yan; Pan Weiping

    2011-12-15

    Two new organic-inorganic hybrid solids containing Keggin ions and ruthenium complexes have been synthesized and characterized by FT-IR, UV-vis, luminescence, X-ray, and TG analysis. In KNa[Ru(bpy){sub 3}]{sub 2}[H{sub 2}W{sub 12}O{sub 40}]{center_dot}8H{sub 2}O (1), the [Ru(bpy){sub 3}]{sup 2+} (bpy=2,2 Prime -bipyridine) complex ions are located in between the infinite one-dimensional double-chains formed by adjacent Keggin anions [H{sub 2}W{sub 12}O{sub 40}]{sup 6-} linked through {l_brace}KO{sub 7}{r_brace} and {l_brace}NaO{sub 6}{r_brace} polyhedra, while in K{sub 6}[Ru(pzc){sub 3}]{sub 2}[SiW{sub 12}O{sub 40}] Bullet 12H{sub 2}O (2), the [Ru(pzc){sub 3}]{sup -} (pzc=pyrazine-2-carboxylate) complex anions are confined by layered networks of the [SiW{sub 12}O{sub 40}]{sup 4-} clusters connected by potassium ions. Both compounds exhibit three-dimensional frameworks through noncovalent interactions such as hydrogen bonds and anion Midline-Horizontal-Ellipsis {pi} interactions. Additionally, compound 1 shows strong luminescence at 604 nm in solid state at room temperature. - Graphical abstract: Two three-dimensional framework solids are constructed from polyoxoanions and ruthenium-organic complexes through noncovalent interactions. Highlights: Black-Right-Pointing-Triangle Ru complexes form hybrid solids with polyoxometalates. Black-Right-Pointing-Triangle Anion Midline-Horizontal-Ellipsis {pi} interaction between polyoxometalates and metal complexes was observed. Black-Right-Pointing-Triangle Noncovalent interactions play an important role in the assembly of solids. Black-Right-Pointing-Triangle The hybrid solid shows luminescence properties.

  12. Radiochemistry of ruthenium

    SciTech Connect

    Schulz, W W; Metcalf, S G; Barney, G S

    1984-06-01

    Information on ruthenium is presented. Topics include the following; isotopes and nuclear properties of ruthenium; review of the chemistry of ruthenium including metal and alloys, compounds of ruthenium, and solution chemistry; separation methods including volatilization of RuO{sub 4}, precipitation and coprecipitation, solvent extraction, chromatographic techniques, and analysis for radioruthenium. 445 refs., 7 figs., 23 tabs.

  13. A selective, long-lived deep-red emissive ruthenium(II) polypyridine complexes for the detection of BSA.

    PubMed

    Babu, Eththilu; Muthu Mareeswaran, Paulpandian; Singaravadivel, Subramanian; Bhuvaneswari, Jayaraman; Rajagopal, Seenivasan

    2014-09-15

    A selective, label free luminescence sensor for bovine serum albumin (BSA) is investigated using ruthenium(II) complexes over the other proteins. Interaction between BSA and ruthenium(II) complexes has been studied using absorption, emission, excited state lifetime and circular dichroism (CD) spectral techniques. The luminescence intensity of ruthenium(II) complexes (I and II), has enhanced at 602 and 613 nm with a large hypsochromic shift of 18 and 5 nm respectively upon addition of BSA. The mode of binding of ruthenium(II) complexes with BSA has analyzed using computational docking studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Polynuclear ruthenium, osmium and gold complexes. The quest for innovative anticancer chemotherapeutics.

    PubMed

    Hartinger, Christian G; Phillips, Andrew D; Nazarov, Alexey A

    2011-01-01

    Polynuclear compounds are a relatively new and successful approach in metal-based cancer chemotherapy as typified by the trinuclear Pt compound BBR3464 which was evaluated in clinical trials. In this review, we discuss newer developments of polynuclear ruthenium, osmium and gold complexes, focusing on their anticancer activity. The compounds presented are often supposed to exert their anticancer activity by different modes of action as compared to established drugs, including newly proposed mechanisms such as enzyme inhibition, crosslinking of biomacromolecules or through photo-activation, though many of the examples are also capable of binding to DNA nucleobases. Important metabolization and chemical characteristics of such compounds are discussed, and if the appropriate data is available, molecular modes of action are highlighted.

  15. A ruthenium(II) complex-based lysosome-targetable multisignal chemosensor for in vivo detection of hypochlorous acid.

    PubMed

    Cao, Liyan; Zhang, Run; Zhang, Wenzhu; Du, Zhongbo; Liu, Chunjun; Ye, Zhiqiang; Song, Bo; Yuan, Jingli

    2015-11-01

    Although considerable efforts have been made for the development of ruthenium(II) complex-based chemosensors and bioimaging reagents, the multisignal chemosensor using ruthenium(II) complexes as the reporter is scarce. In addition, the mechanisms of cellular uptake of ruthenium(II)-based chemosensors and their intracellular distribution are ill-defined. Herein, a new ruthenium(II) complex-based multisignal chemosensor, Ru-Fc, is reported for the highly sensitive and selective detection of lysosomal hypochlorous acid (HOCl). Ru-Fc is weakly luminescent because the MLCT (metal-to-ligand charge transfer) state is corrupted by the efficient PET (photoinduced electron transfer) process from Fc (ferrocene) moiety to Ru(II) center. The cleavage of Fc moiety by a HOCl-induced specific reaction leads to elimination of PET, which re-establishes the MLCT state of the Ru(II) complex, accompanied by remarkable photoluminescence (PL) and electrochemiluminescence (ECL) enhancements. The result of MTT assay showed that the proposed chemosensor, Ru-Fc, was low cytotoxicity. The applicability of Ru-Fc for the quantitative detection of HOCl in live cells was demonstrated by the confocal microscopy imaging and flow cytometry analysis. Dye colocalization studies confirmed very precise distribution of the Ru(II) complex in lysosomes, and inhibition studies revealed that the caveolae-mediated endocytosis played an important role during the cellular internalization of Ru-Fc. By using Ru-Fc as a chemosensor, the imaging of the endogenous HOCl generated in live macrophage cells during the stimulation was achieved. Furthermore, the practical applicability of Ru-Fc was demonstrated by the visualizing of HOCl in laboratory model animals, Daphnia magna and zebrafish. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. In vitro evaluation of ruthenium complexes for photodynamic therapy.

    PubMed

    Li, Wenna; Xie, Qiang; Lai, Linglin; Mo, Zhentao; Peng, Xiaofang; Leng, Ennian; Zhang, Dandan; Sun, Hongxia; Li, Yiqi; Mei, Wenjie; Gao, Shuying

    2017-06-01

    Photodynamic therapy (PDT) is a promising anti-tumor treatment strategy. Photosensitizer is one of the most important components of PDT. In this work, the anticancer activities of PDT mediated by six new ruthenium porphyrin complexes were screened. The mechanisms of the most efficacious candidate were investigated. Photocytotoxicity of the six porphyrins was tested. The most promising complex, Rup-03, was further investigated using Geimsa staining, which indirectly detects reactive oxygen species (ROS) and subcellular localization. Mitochondrial membrane potential (MMP), cell apoptosis, DNA fragmentation, c-Myc gene expression, and telomerase activities were also assayed. Rup-03 and Rup-04 had the lowest IC50 values. Rup-03 had an IC50 value of 29.5±2.3μM in HepG2 cells and 59.0±6.1μM in RAW264.7 cells, while Rup-04 had an IC50 value of 40.0±3.8μM in SGC-7901 cells. The complexes also induced cellular morphological changes and impaired cellular ability to scavenge ROS, and accumulated preferentially in mitochondria and endoplasmic reticulum. Rup-03 reduced MMP levels, induced apoptosis, and repressed both c-Myc mRNA expression and telomerase activity in HepG2 cells. Among six candidates, Rup-03-mediated PDT is most effective against HepG2 and RAW264.7, with a similar efficacy as that of Rup-04-mediated PDT against SGC-7901 cells. Repression of ROS scavenging activities and c-Myc expression, which mediated DNA damage-induced cell apoptosis and repression of telomerase activity, respectively, were found to be involved in the anticancer mechanisms of Rup-03. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Anticancer Activity and Modes of Action of (arene) ruthenium(II) Complexes Coordinated to C-, N-, and O-ligands.

    PubMed

    Biersack, Bernhard

    2016-01-01

    An overview of anticancer active (arene)ruthenium(II) complexes coordinated to period 2 element-based ligand systems, i.e., carbon-, nitrogen-, and oxygen-coordinated ligands, is provided in this mini-review. A bridge is forged from the large group of anticancer active ruthenium compounds with monodentate and chelating nitrogen ligands via complexes of O,O-chelating ligands to organometallic ruthenium derivatives coordinated to carbon. (Arene)ruthenium(II) complexes with reduced side-effects and enhanced efficacy against cancer are highlighted. Pertinent literature is covered up to 2014.

  18. Synthesis, characterization, DNA interaction and in vitro cytotoxicity activities of ruthenium(II) Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Sathiyaraj, Subbaiyan; Butcher, Ray J.; Jayabalakrishnan, Chinnasamy

    2012-12-01

    DNA binding, cleavage and cytotoxicity characteristics of a novel Schiff base ligand 3-(benzothiazol-2-yliminomethyl)-naphthalen-2-ol and ruthenium(II) complexes have been investigated. The DNA interaction properties of the complexes have been investigated using absorption spectra, as well as gel electrophoresis studies. Intrinsic binding constant (Kb) has been estimated under similar set of experimental conditions. Absorption spectral study indicate that the ligand and ruthenium(II) complexes has intrinsic binding constant in the range of 1.4-7.2 × 104 M-1. Ruthenium(II) complexes show more binding ability than the ligand. Further, in vitro cytotoxicity study of the ligand and the complexes exhibited antitumor activity against HeLa and HEp2 tumor cells.

  19. Proton-coupled electron transfer and multielectron oxidations in complexes of ruthenium and osmium

    SciTech Connect

    Dovletoglou, A.

    1992-01-01

    This doctoral research concerns the mechanism of proton-coupled electron transfer over an extended pH range. These processes between ruthenium and osmium complexes and hydroquinones have been studied using spectrophotometric methods and cyclic voltammetry. Elucidation of the mechanistic details has been attempted by using isotopic labelling, kinetic analysis, and numerical simulation of complex kinetic schemes. The coordination and redox chemistry of polypyridyl-acetylacetonato and -oxalato complexes of ruthenium and the role of ancillary ligands in defining the properties of Ru[sup IV]O complexes were explored. These studies represent the first attempt to probe possible 2e[sup [minus

  20. Alkyl Chain Growth on a Transition Metal Center: How Does Iron Compare to Ruthenium and Osmium?

    PubMed

    Sainna, Mala A; de Visser, Sam P

    2015-09-28

    Industrial Fischer-Tropsch processes involve the synthesis of hydrocarbons usually on metal surface catalysts. On the other hand, very few homogeneous catalysts are known to perform a Fischer-Tropsch style of reaction. In recent work, we established the catalytic properties of a diruthenium-platinum carbene complex, [(CpRu)₂(μ²-H) (μ²-NHCH₃)(μ³-C)PtCH₃(P(CH₃)₃)₂](CO)n⁺ with n=0, 2 and Cp=η⁵-C₅(CH₃)₅, and showed it to react efficiently by initial hydrogen atom transfer followed by methyl transfer to form an alkyl chain on the Ru-center. In particular, the catalytic efficiency was shown to increase after the addition of two CO molecules. As such, this system could be viewed as a potential homogeneous Fischer-Tropsch catalyst. Herein, we have engineered the catalytic center of the catalyst and investigated the reactivity of trimetal carbene complexes of the same type using iron, ruthenium and osmium at the central metal scaffold. The work shows that the reactivity should increase from diosmium to diruthenium to diiron; however, a non-linear trend is observed due to multiple factors contributing to the individual barrier heights. We identified all individual components of these reaction steps in detail and established the difference in reactivity of the various complexes.

  1. Dual-targeting organometallic ruthenium(II) anticancer complexes bearing EGFR-inhibiting 4-anilinoquinazoline ligands.

    PubMed

    Zhang, Yang; Zheng, Wei; Luo, Qun; Zhao, Yao; Zhang, Erlong; Liu, Suyan; Wang, Fuyi

    2015-08-07

    We have recently demonstrated that complexation with (η(6)-arene)Ru(II) fragments confers 4-anilinoquinazoline pharmacophores a higher potential for inducing cellular apoptosis while preserving the highly inhibitory activity of 4-anilinoquinazolines against EGFR and the reactivity of the ruthenium centre to 9-ethylguanine (Chem. Commun., 2013, 49, 10224-10226). Reported herein are the synthesis, characterisation and evaluation of the biological activity of a new series of ruthenium(ii) complexes of the type [(η(6)-arene)Ru(N,N-L)Cl]PF6 (arene = p-cymene, benzene, 2-phenylethanol or indane, L = 4-anilinoquinazolines). These organometallic ruthenium complexes undergo fast hydrolysis in aqueous solution. Intriguingly, the ligation of (arene)Ru(II) fragments with 4-anilinoquinazolines not only makes the target complexes excellent EGFR inhibitors, but also confers the complexes high affinity to bind to DNA minor grooves while maintaining their reactivity towards DNA bases, characterising them with dual-targeting properties. Molecular modelling studies reveal that the hydrolysis of these complexes is a favourable process which increases the affinity of the target complexes to bind to EGFR and DNA. In vitro biological activity assays show that most of this group of ruthenium complexes are selectively active inhibiting the EGF-stimulated growth of the HeLa cervical cancer cell line, and the most active complex [(η(6)-arene)Ru(N,N-L13)Cl]PF6 (, IC50 = 1.36 μM, = 4-(3'-chloro-4'-fluoroanilino)-6-(2-(2-aminoethyl)aminoethoxy)-7-methoxyquinazoline) is 29-fold more active than its analogue, [(η(6)-arene)Ru(N,N-ethylenediamine)Cl]PF6, and 21-fold more active than gefitinib, a well-known EGFR inhibitor in use clinically. These results highlight the strong promise to develop highly active ruthenium anticancer complexes by ligation of cytotoxic ruthenium pharmacophores with bioactive organic molecules.

  2. Recent developments in the nanostructured materials functionalized with ruthenium complexes for targeted drug delivery to tumors.

    PubMed

    Thangavel, Prakash; Viswanath, Buddolla; Kim, Sanghyo

    2017-01-01

    In recent years, the field of metal-based drugs has been dominated by other existing precious metal drugs, and many researchers have focused their attention on the synthesis of various ruthenium (Ru) complexes due to their potential medical and pharmaceutical applications. The beneficial properties of Ru, which make it a highly promising therapeutic agent, include its variable oxidation states, low toxicity, high selectivity for diseased cells, ligand exchange properties, and the ability to mimic iron binding to biomolecules. In addition, Ru complexes have favorable adsorption properties, along with excellent photochemical and photophysical properties, which make them promising tools for photodynamic therapy. At present, nanostructured materials functionalized with Ru complexes have become an efficient way to administer Ru-based anticancer drugs for cancer treatment. In this review, the recent developments in the nanostructured materials functionalized with Ru complexes for targeted drug delivery to tumors are discussed. In addition, information on "traditional" (ie, non-nanostructured) Ru-based cancer therapies is included in a precise manner.

  3. Immobilization and electrochemical properties of ruthenium and iridium complexes on carbon electrodes

    NASA Astrophysics Data System (ADS)

    Gupta, Ayush; Blakemore, James D.; Brunschwig, Bruce S.; Gray, Harry B.

    2016-03-01

    We report the synthesis and surface immobilization of two new pyrene-appended molecular metal complexes: a ruthenium tris(bipyridyl) complex (1) and a bipyridyl complex of [Cp*Ir] (2) (Cp*  =  pentamethylcyclopentadienyl). X-ray photoelectron spectroscopy confirmed successful immobilization on high surface area carbon electrodes, with the expected elemental ratios for the desired compounds. Electrochemical data collected in acetonitrile solution revealed a reversible reduction of 1 near  -1.4 V, and reduction of 2 near  -0.75 V. The noncovalent immobilization, driven by association of the appended pyrene groups with the surface, was sufficiently stable to enable studies of the molecular electrochemistry. Electroactive surface coverage of 1 was diminished by only 27% over three hours soaking in electrolyte solution as measured by cyclic voltammetry. The electrochemical response of 2 resembled its soluble analogues, and suggested that ligand exchange occurred on the surface. Together, the results demonstrate that noncovalent immobilization routes are suitable for obtaining fundamental understanding of immobilized metal complexes and their reductive electrochemical properties.

  4. Exploring the Interaction of Ruthenium(II) Polypyridyl Complexes with DNA Using Single-Molecule Techniques†

    PubMed Central

    Mihailovic, Aleksandra; Vladescu, Ioana; McCauley, Micah; Ly, Elaine; Williams, Mark C.; Spain, Eileen M.; Nuñez, Megan E.

    2008-01-01

    Here we explore DNA binding by a family of ruthenium(II) polypyridyl complexes using an atomic force microscope (AFM) and optical tweezers. We demonstrate using AFM that Ru(bpy)2dppz2+ intercalates into DNA (Kb= 1.5 × 105 M−1), as does its close relative Ru(bpy)2dppx2+ (Kb= 1.5 × 105 M−1). However, intercalation by Ru(phen)32+ and other Ru(II) complexes with Kb's lower than Ru(bpy)2dppz2+ are difficult to determine using AFM because of competing aggregation and surface-binding phenomena. At the high Ru(II) concentrations required to evaluate intercalation, most of the DNA strands acquire a twisted, curled conformation that is impossible to measure accurately. The condensation of DNA on mica in the presence of polycations is well known, but it clearly precludes the accurate assessment by AFM of DNA intercalation by most Ru(II) complexes, though not by ethidium bromide and other monovalent intercalators. When stretching individual DNA molecules using optical tweezers the same limitation on high metal concentration does not exist. Using optical tweezers we show that Ru(phen)2dppz2+ intercalates avidly (Kb = 3.2 × 106 M−1) while Ru(bpy)32+ does not intercalate, even at micromolar ruthenium concentrations. Ru(phen)32+ is shown to intercalate weakly, i.e. at micromolar concentrations (Kb= 8.8 × 103 M−1). The distinct differences in DNA stretching behavior between Ru(phen)32+ and Ru(bpy)32+ clearly illustrate that intercalation can be distinguished from groove binding by pulling the DNA with optical tweezers. Our results demonstrate both the benefits and challenges of two single-molecule methods in exploring DNA binding, and help to elucidate the mode of binding of Ru(phen)32+. PMID:16649785

  5. Nonlinear optics and surface relief gratings in alkynyl-ruthenium complexes

    NASA Astrophysics Data System (ADS)

    Sahraoui, B.; Luc, J.; Meghea, A.; Czaplicki, R.; Fillaut, J.-L.; Migalska-Zalas, A.

    2009-02-01

    Generally, the organometallic complexes rich in carbon and containing π-conjugated chains are materials interesting for the study of electronic transfer processes. Currently, the ruthenium-acetylide organometallic complexes form part of the most studied organometallic compounds in nonlinear optics. In this work, we highlight the nonlinear optical properties and the photo-induced structure of new organometallic complexes containing a ruthenium-acetylide donor fragment able to compete with the strongest organic donors. We determine, using various experimental techniques (degenerate four-wave mixing, second and third harmonic generation), the influence of the functionalization of these molecular structures on the improvement of their second-and third-order nonlinear optical properties exploiting in particular the nature of the acceptor fragment and the π-conjugated transmitter. Also we present the dynamics of formation of photo-induced surface relief gratings using a transmission holographic technique and the atomic force microscopy on ruthenium-acetylide complexes containing an azobenzene fragment.

  6. Stoichiometric photoisomerization of mononuclear ruthenium(II) monoaquo complexes controlling redox properties and water oxidation catalysis.

    PubMed

    Yamazaki, Hirosato; Hakamata, Tomoya; Komi, Manabu; Yagi, Masayuki

    2011-06-15

    Although various reactions involved in photoexcited states of polypyridyl ruthenium(II) complexes have been extensively studied, photoisomerization of the complexes is very rare. We report the first illustration of stoichiometric photoisomerization of trans-[Ru(tpy)(pynp)OH(2)](2+) (1a) [tpy = 2,2':6',2''-terpyridine; pynp = 2-(2-pyridyl)-1,8-naphthyridine] to cis-[Ru(tpy)(pynp)OH(2)](2+) (1a') and the isolation of 1a and 1a' for X-ray crystallographic analysis. Polypyridyl ruthenium(II) aquo complexes are attracting much attention related to proton-coupled electron transfer and water oxidation catalysis. We demonstrate that the photoisomerization significantly controls the redox reactions and water oxidation catalyses involving the ruthenium(II) aquo complexes 1a and 1a'.

  7. Metalation dictates remote regioselectivity: ruthenium-catalyzed functionalization of meta C(Ar)-H Bonds.

    PubMed

    Juliá-Hernández, Francisco; Simonetti, Marco; Larrosa, Igor

    2013-10-25

    Remote control: The title reaction is effective for the sulfonation and alkylation of arenes bearing directing groups. Initial ortho metalation of the substrate forms an intermediate which does not evolve towards functionalization at the CM bond. Instead, the ruthenium catalyst acts as a strong electron-donating group, thus directing a remote electrophilic attack.

  8. ECL performance of ruthenium tris-bipyridyl complexes covalently linked with phenothiazine through different bridge.

    PubMed

    Sun, Shiguo; Yang, Yang; Liu, Fengyu; Fan, Jiangli; Kehr, Jan; Sun, Licheng; Peng, Xiaojun

    2010-10-07

    Three ruthenium complexes 1a, 1b and 1c were synthesized, in which the phenothiazine moiety was covalently linked to the ruthenium complex through a 4 carbon chain and amide bond, respectively. The results demonstrate that one PTZ moiety is preferred to reach a good ECL performance, and the 4 carbon chain linked complex 1a exhibits the highest ECL enhancement (up to about 9 times), in comparison with the commonly utilized parent Ru(bpy)(3)(2+), permitting a lower detection limit of 1.0 x 10(-14) M with signal to noise of 3 for 20 mM DBAE at Au electrode.

  9. An electrochemical study of antineoplastic gallium, iron and ruthenium complexes with redox noninnocent alpha-N-heterocyclic chalcogensemicarbazones.

    PubMed

    Kowol, Christian R; Reisner, Erwin; Chiorescu, Ion; Arion, Vladimir B; Galanski, Markus; Deubel, Dirk V; Keppler, Bernhard K

    2008-12-01

    The electrochemical properties of a series of alpha-N-heterocyclic chalcogensemicarbazones (HL), namely, thiosemicarbazones, selenosemicarbazones, and semicarbazones, and their gallium(III), iron(III), and ruthenium(III) complexes with the general formula [ML(2)][Y] (M = Ga, Fe or Ru; Y = PF(6)(-), NO(3)(-), or FeCl(4)(-)) were studied by cyclic voltammetry. The novel compounds were characterized by elemental analysis, a number of spectroscopic methods (NMR, UV-vis, IR), mass spectrometry and by X-ray crystallography. All complexes show several, mostly reversible, redox waves attributable to the reduction of the noninnocent chalcogensemicarbazone ligands at lower potentials (<-0.4 V vs NHE) than the metal-centered iron or ruthenium redox waves (>0 V vs NHE) in organic electrolyte solutions. The cyclic voltammograms of the gallium complexes display at least two consecutive reversible one-electron reduction waves. These reductions are shifted by approximately 0.6 V to lower potentials in the corresponding iron and ruthenium complexes. The electrochemical, chemical, and spectroscopic data indicate that the ligand-centered reduction takes place at the CH(3)CN double bond. Quantum chemical calculations on the geometric and electronic structures of 2-acetylpyridine (4)N,(4)N-dimethylthiosemicarbazone (HL(B)), the corresponding metal complexes [Ga(L(B))(2)](+) and [Fe(II)(L(B))(2)], and the one-electron reduction product for each of these species support the assignment of the reduction site and elucidate the observed order of the ligand-centered redox potentials, E(1/2)([Fe(II)(L)(2)]) < E(1/2)(HL) < E(1/2)([Ga(L)(2)](+)). The influence of water on the redox potentials of the complexes is reported and the physiological relevance of the electrochemical data for cytotoxicity as well as for ribonucleotide reductase inhibitory capacity are discussed.

  10. Functionalization of a ruthenium-diacetylide organometallic complex as a next-generation push-pull chromophore.

    PubMed

    De Sousa, Samuel; Ducasse, Laurent; Kauffmann, Brice; Toupance, Thierry; Olivier, Céline

    2014-06-02

    The design and preparation of an asymmetric ruthenium-diacetylide organometallic complex was successfully achieved to provide an original donor-π-[M]-π-acceptor architecture, in which [M] corresponds to the [Ru(dppe)2] (dppe: bisdiphenylphosphinoethane) metal fragment. The charge-transfer processes occurring upon photoexcitation of the push-pull metal-dialkynyl σ complex were investigated by combining experimental and theoretical data. The novel push-pull complex, appropriately end capped with an anchoring carboxylic acid function, was further adsorbed onto a semiconducting metal oxide porous thin film to serve as a photosensitizer in hybrid solar cells. The resulting photoactive material, when embedded in dye-sensitized solar cell devices, showed a good spectral response with a broad incident photon-to-current conversion efficiency profile and a power conversion efficiency that reached 7.3 %. Thus, this material paves the way to a new generation of organometallic chromophores for photovoltaic applications.

  11. Recent advances in ruthenium complex-based light-driven water oxidation catalysts.

    PubMed

    Xue, Long-Xin; Meng, Ting-Ting; Yang, Wei; Wang, Ke-Zhi

    2015-11-01

    The light driven splitting of water is one of the most attractive approaches for direct conversion of solar energy into chemical energy in the future. Ruthenium complexes as the water oxidation catalysts (WOCs) and light sensitizers have attracted increasing attention, and have made a great progress. This mini-review highlights recent progress on ruthenium complex-based photochemical and photoelectrochemical water oxidation catalysts. The recent representative examples of these ruthenium complexes that are in homogeneous solution or immobilized on solid electrodes, are surveyed. In particular, special attention has been paid on the supramolecular dyads with photosensitizer and WOC being covalently hold together, and grafted onto the solid electrode. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Syntheses and Characterization of Ruthenium(II) Tetrakis(pyridine)complexes: An Advanced Coordination Chemistry Experiment or Mini-Project

    ERIC Educational Resources Information Center

    Coe, Benjamin J.

    2004-01-01

    An experiment for third-year undergraduate a student is designed which provides synthetic experience and qualitative interpretation of the spectroscopic properties of the ruthenium complexes. It involves the syntheses and characterization of several coordination complexes of ruthenium, the element found directly beneath iron in the middle of the…

  13. Syntheses and Characterization of Ruthenium(II) Tetrakis(pyridine)complexes: An Advanced Coordination Chemistry Experiment or Mini-Project

    ERIC Educational Resources Information Center

    Coe, Benjamin J.

    2004-01-01

    An experiment for third-year undergraduate a student is designed which provides synthetic experience and qualitative interpretation of the spectroscopic properties of the ruthenium complexes. It involves the syntheses and characterization of several coordination complexes of ruthenium, the element found directly beneath iron in the middle of the…

  14. Transient Spectroscopic Characterization of the Genesis of a Ruthenium Complex Catalyst Supported on Zeolite Y

    SciTech Connect

    Ogino, Isao; Gates, Bruce C.

    2010-01-12

    A mononuclear ruthenium complex anchored to dealuminated zeolite HY, Ru(acac)(C{sub 2}H{sub 4}){sup 2+} (acac = acetylacetonate, C{sub 5}H{sub 7}O{sup 2}{sup -}), was characterized in flow reactors by transient infrared (IR) spectroscopy and Ru K edge X-ray absorption spectroscopy. The combined results show how the supported complex was converted into a form that catalyzes ethene conversion to butene. The formation of these species resulted from the removal of acac ligands from the ruthenium (as shown by IR and extended X-ray absorption fine structure (EXAFS) spectra) and the simultaneous decrease in the symmetry of the ruthenium complex, with the ruthenium remaining mononuclear and its oxidation state remaining essentially unchanged (as shown by EXAFS and X-ray absorption near-edge structure spectra). The removal of anionic acac ligands from the ruthenium was evidently compensated by the bonding of other anionic ligands, such as hydride from H2 in the feed stream, to form species suggested to be Ru(H)(C{sub 2}H{sub 4}){sub 2}{sup +}, which is coordinatively unsaturated and inferred to react with ethene, leading to the observed formation of butene in a catalytic process.

  15. A SAR study of novel antiproliferative ruthenium and osmium complexes with quinoxalinone ligands in human cancer cell lines.

    PubMed

    Ginzinger, Werner; Mühlgassner, Gerhard; Arion, Vladimir B; Jakupec, Michael A; Roller, Alexander; Galanski, Markus; Reithofer, Michael; Berger, Walter; Keppler, Bernhard K

    2012-04-12

    A series of ruthenium(II) arene complexes with 3-(1H-benzimidazol-2-yl)-1H-quinoxalin-2-one, bearing pharmacophoric groups of known protein kinase inhibitors, and related benzoxazole and benzothiazole derivatives have been synthesized. In addition, the corresponding osmium complexes of the unsubstituted ligands have also been prepared. The compounds have been characterized by NMR, UV-vis, and IR spectroscopy, ESI mass spectrometry, elemental analysis, and by X-ray crystallography. Antiproliferative activity in three human cancer cell lines (A549, CH1, SW480) was determined by MTT assays, yielding IC(50) values of 6-60 μM for three unsubstituted metal-free ligands, whereas values for the metal complexes vary in a broad range from 0.3 to 140 μM. Complexation with osmium of quinoxalinone derivatives with benzimidazole or benzothiazole results in a more consistent increase in cytotoxicity than complexation with ruthenium. For selected compounds, the capacity to induce apoptosis was confirmed by fluorescence microscopy and flow-cytometric analysis, whereas cell cycle effects are only moderate.

  16. A new designed hydrazine group-containing ruthenium complex used for catalytic hydrogenation of esters.

    PubMed

    Tan, Xuefeng; Wang, Qingli; Liu, Yuanhua; Wang, Fangyuan; Lv, Hui; Zhang, Xumu

    2015-08-07

    A hydrazine group-containing nitrogen-phosphine ligand and corresponding ruthenium complexes were synthesized. When these complexes were used for hydrogenation of esters, excellent performance was observed (TON up to 17, 200). A wide substrate scope was suitable for this catalytic system.

  17. Striking Difference in Antiproliferative Activity of Ruthenium- and Osmium-Nitrosyl Complexes with Azole Heterocycles

    PubMed Central

    2013-01-01

    Ruthenium nitrosyl complexes of the general formulas (cation)+[cis-RuCl4(NO)(Hazole)]−, where (cation)+ = (H2ind)+, Hazole = 1H-indazole (Hind) (1c), (cation)+ = (H2pz)+, Hazole = 1H-pyrazole (Hpz) (2c), (cation)+ = (H2bzim)+, Hazole = 1H-benzimidazole (Hbzim) (3c), (cation)+ = (H2im)+, Hazole = 1H-imidazole (Him) (4c) and (cation)+[trans-RuCl4(NO)(Hazole)]−, where (cation)+ = (H2ind)+, Hazole = 1H-indazole (1t), (cation)+ = (H2pz)+, Hazole = 1H-pyrazole (2t), as well as osmium analogues of the general formulas (cation)+[cis-OsCl4(NO)(Hazole)]−, where (cation)+ = (n-Bu4N)+, Hazole =1H-indazole (5c), 1H-pyrazole (6c), 1H-benzimidazole (7c), 1H-imidazole (8c), (cation)+ = Na+; Hazole =1H-indazole (9c), 1H-benzimidazole (10c), (cation)+ = (H2ind)+, Hazole = 1H-indazole (11c), (cation)+ = H2pz+, Hazole = 1H-pyrazole (12c), (cation)+ = (H2im)+, Hazole = 1H-imidazole (13c), and (cation)+[trans-OsCl4(NO)(Hazole)]−, where (cation)+ = n-Bu4N+, Hazole = 1H-indazole (5t), 1H-pyrazole (6t), (cation)+ = Na+, Hazole = 1H-indazole (9t), (cation)+ = (H2ind)+, Hazole = 1H-indazole (11t), (cation)+ = (H2pz)+, Hazole = 1H-pyrazole (12t), have been synthesized. The compounds have been comprehensively characterized by elemental analysis, ESI mass spectrometry, spectroscopic techniques (IR, UV–vis, 1D and 2D NMR) and X-ray crystallography (1c·CHCl3, 1t·CHCl3, 2t, 3c, 6c, 6t, 8c). The antiproliferative activity of water-soluble compounds (1c, 1t, 3c, 4c and 9c, 9t, 10c, 11c, 11t, 12c, 12t, 13c) in the human cancer cell lines A549 (nonsmall cell lung carcinoma), CH1 (ovarian carcinoma), and SW480 (colon adenocarcinoma) has been assayed. The effects of metal (Ru vs Os), cis/trans isomerism, and azole heterocycle identity on cytotoxic potency and cell line selectivity have been elucidated. Ruthenium complexes (1c, 1t, 3c, and 4c) yielded IC50 values in the low micromolar concentration range. In contrast to most pairs of analogous ruthenium and osmium complexes known, they turned

  18. Striking difference in antiproliferative activity of ruthenium- and osmium-nitrosyl complexes with azole heterocycles.

    PubMed

    Büchel, Gabriel E; Gavriluta, Anatolie; Novak, Maria; Meier, Samuel M; Jakupec, Michael A; Cuzan, Olesea; Turta, Constantin; Tommasino, Jean-Bernard; Jeanneau, Erwann; Novitchi, Ghenadie; Luneau, Dominique; Arion, Vladimir B

    2013-06-03

    Ruthenium nitrosyl complexes of the general formulas (cation)(+)[cis-RuCl4(NO)(Hazole)](-), where (cation)(+) = (H2ind)(+), Hazole = 1H-indazole (Hind) (1c), (cation)(+) = (H2pz)(+), Hazole = 1H-pyrazole (Hpz) (2c), (cation)(+) = (H2bzim)(+), Hazole = 1H-benzimidazole (Hbzim) (3c), (cation)(+) = (H2im)(+), Hazole = 1H-imidazole (Him) (4c) and (cation)(+)[trans-RuCl4(NO)(Hazole)](-), where (cation)(+) = (H2ind)(+), Hazole = 1H-indazole (1t), (cation)(+) = (H2pz)(+), Hazole = 1H-pyrazole (2t), as well as osmium analogues of the general formulas (cation)(+)[cis-OsCl4(NO)(Hazole)](-), where (cation)(+) = (n-Bu4N)(+), Hazole =1H-indazole (5c), 1H-pyrazole (6c), 1H-benzimidazole (7c), 1H-imidazole (8c), (cation)(+) = Na(+); Hazole =1H-indazole (9c), 1H-benzimidazole (10c), (cation)(+) = (H2ind)(+), Hazole = 1H-indazole (11c), (cation)(+) = H2pz(+), Hazole = 1H-pyrazole (12c), (cation)(+) = (H2im)(+), Hazole = 1H-imidazole (13c), and (cation)(+)[trans-OsCl4(NO)(Hazole)](-), where (cation)(+) = n-Bu4N(+), Hazole = 1H-indazole (5t), 1H-pyrazole (6t), (cation)(+) = Na(+), Hazole = 1H-indazole (9t), (cation)(+) = (H2ind)(+), Hazole = 1H-indazole (11t), (cation)(+) = (H2pz)(+), Hazole = 1H-pyrazole (12t), have been synthesized. The compounds have been comprehensively characterized by elemental analysis, ESI mass spectrometry, spectroscopic techniques (IR, UV-vis, 1D and 2D NMR) and X-ray crystallography (1c·CHCl3, 1t·CHCl3, 2t, 3c, 6c, 6t, 8c). The antiproliferative activity of water-soluble compounds (1c, 1t, 3c, 4c and 9c, 9t, 10c, 11c, 11t, 12c, 12t, 13c) in the human cancer cell lines A549 (nonsmall cell lung carcinoma), CH1 (ovarian carcinoma), and SW480 (colon adenocarcinoma) has been assayed. The effects of metal (Ru vs Os), cis/trans isomerism, and azole heterocycle identity on cytotoxic potency and cell line selectivity have been elucidated. Ruthenium complexes (1c, 1t, 3c, and 4c) yielded IC50 values in the low micromolar concentration range. In contrast to most

  19. Dinuclear Ruthenium(II) Complexes as Two-Photon, Time-Resolved Emission Microscopy Probes for Cellular DNA**

    PubMed Central

    Baggaley, Elizabeth; Gill, Martin R; Green, Nicola H; Turton, David; Sazanovich, Igor V; Botchway, Stanley W; Smythe, Carl; Haycock, John W; Weinstein, Julia A; Thomas, Jim A

    2014-01-01

    The first transition-metal complex-based two-photon absorbing luminescence lifetime probes for cellular DNA are presented. This allows cell imaging of DNA free from endogenous fluorophores and potentially facilitates deep tissue imaging. In this initial study, ruthenium(II) luminophores are used as phosphorescent lifetime imaging microscopy (PLIM) probes for nuclear DNA in both live and fixed cells. The DNA-bound probes display characteristic emission lifetimes of more than 160 ns, while shorter-lived cytoplasmic emission is also observed. These timescales are orders of magnitude longer than conventional FLIM, leading to previously unattainable levels of sensitivity, and autofluorescence-free imaging. PMID:24458590

  20. Isomerization of methyl linoleate on ruthenium(III) alkoxide complex; Mathematical modeling

    SciTech Connect

    Mukesh, D.; Narasimhan, C.S.; Ramnarayan, K.; Deshpande, V.M

    1989-08-01

    The isomerization of methyl linoleate using ruthenium alkoxide complexes is described. With alcohols, such as isopropyl alcohol (IPA), 1-butanol, 1-hexanol, and 1-octanol, isomerization of double bonds to produce a conjugated system is the main reaction, with hydrogenation being the side reaction. The latter is formed via the conjugated product. Based on kinetic and infrared spectroscopic data, it is concluded that the active catalytic species is a ruthenium hydride complex formed by the decomposition of the unstable alkoxide. The reaction is mathematically modeled, and the rate parameters are obtained by fitting the simulation to experimental data. These values are compared with data obtained from reactions carried out with supported ruthenium-nickel heterogeneous catalyst.

  1. Ultrafast relaxation dynamics of amine-substituted bipyridyl ruthenium(II) complexes

    NASA Astrophysics Data System (ADS)

    Song, Hongwei; Wang, Xian; Yang, WenWen; He, Guiying; Kuang, Zhuoran; Li, Yang; Xia, Andong; Zhong, Yu-Wu; Kong, Fan'ao

    2017-09-01

    The excited state properties of a series of ruthenium(II) amine-substituted bipyridyl complexes, [Ru(bpy)n(NNbpy)3-n]2+, were investigated by steady-state and transient absorption spectroscopy, as well as quantum chemical calculations. The steady-state absorption spectra of these complexes in CH3CN show a distinct red-shift of the 1MLCT absorption with increasing numbers of amine substituent, whereas the emission spectra indicate an energy gap order of [Ru(bpy)3]2+ > [Ru(bpy)2(NNbpy)]2+ > [Ru(NNbpy)3]2+ > [Ru(bpy)(NNbpy)2]2+. Nanosecond, femtosecond transient absorption and electrochemical measurements suggest that NNbpy ligand has a strong influence on the electronic and emission properties of these complexes, due to electron-rich amine substituent. We illustrate how the numbers of amine substituent modulate the spectroscopic properties of transition metal complexes, which is related to the design of new electro-active systems with novel photoelectrochemical properties.

  2. Reactions of a Ruthenium Complex with Substituted N-Propargyl Pyrroles.

    PubMed

    Chia, Pi-Yeh; Huang, Shou-Ling; Liu, Yi-Hong; Lin, Ying-Chih

    2016-04-05

    In an investigation into the chemical reactions of N-propargyl pyrroles 1 a-c, containing aldehyde, keto, and ester groups on the pyrrole ring, with [Ru]-Cl ([Ru]=Cp(PPh3 )2 Ru; Cp=C5 H5 ), an aldehyde group in the pyrrole ring is found to play a crucial role in stimulating the cyclization reaction. The reaction of 1 a, containing an aldehyde group, with [Ru]-Cl in the presence of NH4 PF6 yields the vinylidene complex 2 a, which further reacts with allyl amine to give the carbene complex 6 a with a pyrrolizine group. However, if 1 a is first reacted with allyl amine to yield the iminenyne 8 a, then the reaction of 8 a with [Ru]-Cl in the presence of NH4 PF6 yields the ruthenium complex 9 a, containing a cationic pyrrolopyrazinium group, which has been fully characterized by XRD analysis. These results can be adequately explained by coordination of the triple bond of the propargyl group to the ruthenium metal center first, followed by two processes, that is, formation of a vinylidene intermediate or direct nucleophilic attack. Additionally, the deprotonation of 2 a by R4 NOH yields the neutral acetylide complex 3 a. In the presence of NH4 PF6 , the attempted alkylation of 3 a resulted in the formation the Fischer-type amino-carbene complex 5 a as a result of the presence of NH3, which served as a nucleophile. With KPF6, the alkylation of 3 a with ethyl and benzyl bromoacetates afforded the disubstituted vinylidene complexes 10 a and 11 a, containing ester groups, which underwent deprotonation reactions to give the furyl complexes 12 a and 13 a, respectively. For 13 a, containing an O-benzyl group, subsequent 1,3-migration of the benzyl group was observed to yield product 14 a with a lactone unit. Similar reactivity was not observed for the corresponding N-propargyl pyrroles 1 b and 1 c, which contained keto and ester groups, respectively, on the pyrrole ring. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Ruthenium(II) carbonyl complexes containing pyridine carboxamide ligands and PPh3/AsPh3/Py coligands: Synthesis, spectral characterization, catalytic and antioxidant studies

    NASA Astrophysics Data System (ADS)

    Ramachandran, Rangasamy; Viswanathamurthi, Periasamy

    2013-02-01

    New ruthenium(II) carbonyl complexes bearing pyridine carboxamide and triphenylphosphine/triphenylarsine/pyridine have been prepared by direct reaction of ruthenium(II) precursors with some pyridine carboxamide ligands, N,N-bis(2-pyridinecarboxamide)-1,2-ethane (H2L1), N,N-bis(2-pyridinecarboxamide)-1,2-benzene (H2L2) and N,N-bis(2-pyridinecarboxamide)-trans-1,2-cyclohexane (H2L3). The organic ligands offering two Namide and two Npyridine donor sites to the metal centre. They have been characterized by elemental analyses, FT-IR, UV-Visible, NMR (1H, 13C and 31P) and ESI-MS techniques. Based on the above data, an octahedral structure has been assigned for all the complexes. The catalytic efficiency of the complexes in transfer hydrogenation of ketones in the presence of iPrOH/KOH and N-alkylation of amine in the presence of tBuOK was examined. Furthermore, the antioxidant activity of the ligands and its ruthenium(II) complexes were determined by DPPH radical, nitric oxide radical, hydroxyl radical and hydrogen peroxide scavenging methods, which indicates that the ruthenium(II) complexes exhibit more effective antioxidant activity than the ligands alone.

  4. Dithia[3.3]paracyclophane-based monometal ruthenium acetylide complexes: synthesis, characterization and substituent effects.

    PubMed

    Zhu, Xingxun; Ou, Yaping; Zhang, Jing; Xia, Jian-Long; Yin, Jun; Yu, Guang-Ao; Liu, Sheng Hua

    2013-05-21

    A series of dithia[3.3]metaparacyclophane-based monometal ruthenium acetylide complexes have been synthesized. All of the complexes have been fully characterised by NMR spectrometry, X-ray crystallography and elemental analyses. At the same time, their basic optical properties, such as UV/Vis absorption spectra, and electrochemical properties have been determined. (1)H NMR and X-ray crystal structure studies reveal that there are intramolecular C-H···π interactions in these ruthenium complexes, in both solution and solid states. Electrochemical studies reveal that the substituted groups on the dithia[3.3]paracyclophane ring can clearly affect the oxidation activities of the ruthenium center by way of the intramolecular C-H···π interaction. In addition, electron-donating groups facilitate the oxidation of the ruthenium center compared with electron-deficient groups. UV/Vis absorption and IR spectra of some complexes in neutral and oxidized states also have been studied. IR spectra studies indicated that the substituents in the cyclophane have some effects on the ν(C≡C) bands of these complexes in the neutral state and little effect on ν(C≡C) of these complexes in the oxidized state.

  5. Selective nuclei accumulation of ruthenium(II) complex enantiomers that target G-quadruplex DNA.

    PubMed

    Sun, Dongdong; Liu, Yanan; Yu, Qianqian; Liu, Du; Zhou, Yanhui; Liu, Jie

    2015-09-01

    Different enantiomers exhibit large differences in their biological activity and/or toxicity, but they rarely involve the relationship of the agents for molecular and cellular imaging with the chiral structure of ruthenium complexes. Here, we report that an enantiomer of a polypyridyl ruthenium complex can selectively accumulate in the nucleus of HepG2 cells. Confocal laser scanning microscopy studies show that this phenomenon occurs via a non-endocytotic, but temperature-dependent, mechanism of cellular uptake in HepG2 cells. DNA oligonucleotides with repetitive tracts of guanine bases that can form G-quadruplex structures have aroused interest as therapeutic agents and as targets for anticancer drug design. Various biophysical techniques show that the Λ-enantiomer of ruthenium complexes can selectively stabilize human telomeric G-quadruplex DNA and has a strong preference for G-quadruplex over duplex DNA. Judged from the NMR results, we speculate that at higher 4:1 ligand/G-quadruplex stoichiometry, complex Λ-Ru is likely to bind with each groove of the tetraplex in a dimeric form or intercalate with the G-tetrad in the 3' terminal face and coexist with other modes. The molecular modeling analysis is in agreement with the NMR titrations performed in this investigation indicating that ruthenium complexes are actually characterized by a mixed binding mode. The results provide many opportunities for the development of novel agents for living cell-related studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Bis(allyl)-ruthenium(iv) complexes with phosphinous acid ligands as catalysts for nitrile hydration reactions.

    PubMed

    Tomás-Mendivil, Eder; Francos, Javier; González-Fernández, Rebeca; González-Liste, Pedro J; Borge, Javier; Cadierno, Victorio

    2016-09-14

    Several mononuclear ruthenium(iv) complexes with phosphinous acid ligands [RuCl2(η(3):η(3)-C10H16)(PR2OH)] have been synthesized (78-86% yield) by treatment of the dimeric precursor [{RuCl(μ-Cl)(η(3):η(3)-C10H16)}2] (C10H16 = 2,7-dimethylocta-2,6-diene-1,8-diyl) with 2 equivalents of different aromatic, heteroaromatic and aliphatic secondary phosphine oxides R2P([double bond, length as m-dash]O)H. The compounds [RuCl2(η(3):η(3)-C10H16)(PR2OH)] could also be prepared, in similar yields, by hydrolysis of the P-Cl bond in the corresponding chlorophosphine-Ru(iv) derivatives [RuCl2(η(3):η(3)-C10H16)(PR2Cl)]. In addition to NMR and IR data, the X-ray crystal structures of representative examples are discussed. Moreover, the catalytic behaviour of complexes [RuCl2(η(3):η(3)-C10H16)(PR2OH)] has been investigated for the selective hydration of organonitriles in water. The best results were achieved with the complex [RuCl2(η(3):η(3)-C10H16)(PMe2OH)], which proved to be active under mild conditions (60 °C), with low metal loadings (1 mol%), and showing good functional group tolerance.

  7. Antimalarial activity of ruthenium(II) and osmium(II) arene complexes with mono- and bidentate chloroquine analogue ligands.

    PubMed

    Ekengard, Erik; Glans, Lotta; Cassells, Irwin; Fogeron, Thibault; Govender, Preshendren; Stringer, Tameryn; Chellan, Prinessa; Lisensky, George C; Hersh, William H; Doverbratt, Isa; Lidin, Sven; de Kock, Carmen; Smith, Peter J; Smith, Gregory S; Nordlander, Ebbe

    2015-11-28

    Eight new ruthenium and five new osmium p-cymene half-sandwich complexes have been synthesized, characterized and evaluated for antimalarial activity. All complexes contain ligands that are based on a 4-chloroquinoline framework related to the antimalarial drug chloroquine. Ligands HL(1-8) are salicylaldimine derivatives, where HL(1) = N-(2-((2-hydroxyphenyl)methylimino)ethyl)-7-chloroquinolin-4-amine, and HL(2-8) contain non-hydrogen substituents in the 3-position of the salicylaldimine ring, viz. F, Cl, Br, I, NO2, OMe and (t)Bu for HL(2-8), respectively. Ligand HL(9) is also a salicylaldimine-containing ligand with substitutions in both 3- and 5-positions of the salicylaldimine moiety, i.e. N-(2-((2-hydroxy-3,5-di-tert-butylphenyl)methyl-imino)ethyl)-7-chloroquinolin-4-amine, while HL(10) is N-(2-((1-methyl-1H-imidazol-2-yl)methylamino)ethyl)-7-chloroquinolin-4-amine) The half sandwich metal complexes that have been investigated are [Ru(η(6)-cym)(L(1-8))Cl] (Ru-1-Ru-8, cym = p-cymene), [Os(η(6)-cym)(L(1-3,5,7))Cl] (Os-1-Os-3, Os-5, and Os-7), [M(η(6)-cym)(HL(9))Cl2] (M = Ru, Ru-HL(9); M = Os, Os-HL(9)) and [M(η(6)-cym)(L(10))Cl]Cl (M = Ru, Ru-10; M = Os, Os-10). In complexes Ru-1-Ru-8 and Ru-10, Os-1-Os-3, Os-5 and Os-7 and Os-10, the ligands were found to coordinate as bidentate N,O- and N,N-chelates, while in complexes Ru-HL(9) and Os-HL(9), monodentate coordination of the ligands through the quinoline nitrogen was established. The antimalarial activity of the new ligands and complexes was evaluated against chloroquine sensitive (NF54 and D10) and chloroquine resistant (Dd2) Plasmodium falciparum malaria parasite strains. Coordination of ruthenium and osmium arene moieties to the ligands resulted in lower antiplasmodial activities relative to the free ligands, but the resistance index is better for the ruthenium complexes compared to chloroquine. Overall, osmium complexes appeared to be less active than the corresponding ruthenium complexes.

  8. Bis(Cyclic Alkyl Amino Carbene) Ruthenium Complexes: A Versatile, Highly Efficient Tool for Olefin Metathesis

    PubMed Central

    Gawin, Rafał; Kozakiewicz, Anna; Guńka, Piotr A.; Dąbrowski, Paweł

    2016-01-01

    Abstract The state‐of‐the‐art in olefin metathesis is application of N‐heterocyclic carbene (NHC)‐containing ruthenium alkylidenes for the formation of internal C=C bonds and of cyclic alkyl amino carbene (CAAC)‐containing ruthenium benzylidenes in the production of terminal olefins. A straightforward synthesis of bis(CAAC)Ru indenylidene complexes, which are highly effective in the formation of both terminal and internal C=C bonds at loadings as low as 1 ppm, is now reported. PMID:27943616

  9. Bis(Cyclic Alkyl Amino Carbene) Ruthenium Complexes: A Versatile, Highly Efficient Tool for Olefin Metathesis.

    PubMed

    Gawin, Rafał; Kozakiewicz, Anna; Guńka, Piotr A; Dąbrowski, Paweł; Skowerski, Krzysztof

    2017-01-19

    The state-of-the-art in olefin metathesis is application of N-heterocyclic carbene (NHC)-containing ruthenium alkylidenes for the formation of internal C=C bonds and of cyclic alkyl amino carbene (CAAC)-containing ruthenium benzylidenes in the production of terminal olefins. A straightforward synthesis of bis(CAAC)Ru indenylidene complexes, which are highly effective in the formation of both terminal and internal C=C bonds at loadings as low as 1 ppm, is now reported.

  10. Enantiotopos-selective C-H oxygenation catalyzed by a supramolecular ruthenium complex.

    PubMed

    Frost, James R; Huber, Stefan M; Breitenlechner, Stefan; Bannwarth, Christoph; Bach, Thorsten

    2015-01-07

    Spirocyclic oxindoles undergo an enantioselective oxygenation reaction (nine examples; e.r. up to 97:3) upon catalysis by a chiral ruthenium porphyrin complex (1 mol %). The catalyst exhibits a lactam ring, which is responsible for substrate association through hydrogen bonds, and an active ruthenium center, which is in a defined spatial relationship to the oxygenation substrate. DFT calculations illustrate the perfect alignment of the active site with the reactive C-H bond and suggest--in line with the kinetic isotope effect--an oxygen rebound mechanism for the reaction.

  11. Thermolysis of polymeric [Ru(CO)4]infinity to metallic ruthenium: molecular shape of the precursor affects the nanoparticle shape.

    PubMed

    Li, Chunxiang; Leong, Weng Kee

    2008-10-21

    Pyrolysis of the organometallic polymer [Ru(CO) 4] infinity affords metallic ruthenium nanofibers. The molecular structure, especially the presence of metal-metal bonds, appears to direct the aggregation of the metal atom chains upon loss of the carbonyl ligands.

  12. A high molar extinction coefficient mono-anthracenyl bipyridyl heteroleptic ruthenium(II) complex: synthesis, photophysical and electrochemical properties.

    PubMed

    Adeloye, Adewale O; Ajibade, Peter A

    2011-06-03

    In our quest to develop good materials as photosensitizers for photovoltaic dye-sensitized solar cells (DSSCs), cis-dithiocyanato-4-(2,3-dimethylacrylic acid)-2,2'-bipyridyl-4-(9-anthracenyl-(2,3-dimethylacrylic)-2,2'-bipyridyl ruthenium(II) complex, a high molar extinction coefficient charge transfer sensitizer, was designed, synthesized and characterized by spectroscopy and electrochemical techniques. Earlier studies on heteroleptic ruthenium(II) complex analogues containing functionalized oligo-anthracenyl phenanthroline ligands have been reported and documented. Based on a general linear correlation between increase in the length of π-conjugation bond and the molar extinction coefficients, herein, we report the photophysical and electrochemical properties of a Ru(II) bipyridyl complex analogue with a single functionalized anthracenyl unit. Interestingly, the complex shows better broad and intense metal-to ligand charge transfer (MLCT) band absorption with higher molar extinction coefficient (λ(max) = 518 nm, e = 44900 M⁻¹ cm⁻¹), and appreciable photoluminescence spanning the visible region than those containing higher anthracenyl units. It was shown that molar absorption coefficient of the complexes may not be solely depended on the extended π-conjugation but are reduced by molecular aggregation in the molecules.

  13. Synthesis and cytotoxicity of dinuclear complexes containing ruthenium(II) bipyridyl units linked by a bis(pyridylimine) ligand.

    PubMed

    McDonnell, Ursula; Kerchoffs, Jessica M C A; Castineiras, Rosa P M; Hicks, Matthew R; Hotze, Anna C G; Hannon, Michael J; Rodger, Alison

    2008-02-07

    Enantiopure dinuclear ruthenium polypyridyl complexes of the form [Ru(2)(LL)(4)L(1)](PF(6))(4) (LL = 2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen); L(1)= C(25)H(20)N(4) a bis(pyridylimine) ligand containing a diphenylmethane spacer) have been synthesized using the chiral building blocks cis-[Ru(bpy)(2)(py)(2)](2+) and cis-[Ru(phen)(2)(py)(2)](2+). These dinuclear ruthenium complexes have been characterised using NMR, mass spectrometry, UV-visible absorbance, circular dichroism and linear dichroism. The compounds exhibit good photo and thermal stability. The extinction coefficient for the bpy complex at 478 nm is epsilon(478) = 15,700 mol(-1) cm(-1) dm(3) and for the phen complex is epsilon(478) = 24,900 mol(-1) cm(-1) dm(3). Both complexes have their longest wavelength (metal to ligand charge transfer) transition predominantly x/y (short axis)-polarised while the transitions at shorter wavelength are a mixture of x/y and z-polarisations, similar to both the copper helicate and iron triple helicate studied previously. Cytotoxicity studies reveal that the compounds are dramatically less active against cancer cell lines than the recently reported supramolecular cylinders prepared from the same bis(pyridylimine) ligand.

  14. Mechanism elucidation of the cis-trans isomerization of an azole ruthenium-nitrosyl complex and its osmium counterpart.

    PubMed

    Gavriluta, Anatolie; Büchel, Gabriel E; Freitag, Leon; Novitchi, Ghenadie; Tommasino, Jean Bernard; Jeanneau, Erwann; Kuhn, Paul-Steffen; González, Leticia; Arion, Vladimir B; Luneau, Dominique

    2013-06-03

    Synthesis and X-ray diffraction structures of cis and trans isomers of ruthenium and osmium metal complexes of general formulas (nBu4N)[cis-MCl4(NO)(Hind)], where M = Ru (1) and Os (3), and (nBu4N)[trans-MCl4(NO)(Hind)], where M = Ru (2) and Os (4) and Hind = 1H-indazole are reported. Interconversion between cis and trans isomers at high temperatures (80-130 °C) has been observed and studied by NMR spectroscopy. Kinetic data indicate that isomerizations correspond to reversible first order reactions. The rates of isomerization reactions even at 110 °C are very low with rate constants of 10(-5) s(-1) and 10(-6) s(-1) for ruthenium and osmium complexes, respectively, and the estimated rate constants of isomerization at room temperature are of ca. 10(-10) s(-1). The activation parameters, which have been obtained from fitting the reaction rates at different temperatures to the Eyring equation for ruthenium [ΔH(cis-trans)‡ = 122.8 ± 1.3; ΔH(trans-cis)‡ = 138.8 ± 1.0 kJ/mol; ΔS(cis-trans)‡ = -18.7 ± 3.6; ΔS(trans-cis)‡ = 31.8 ± 2.7 J/(mol·K)] and osmium [ΔH(cis-trans)‡ = 200.7 ± 0.7; ΔH(trans-cis)‡ = 168.2 ± 0.6 kJ/mol; ΔS(cis-trans)‡ = 142.7 ± 8.9; ΔS(trans-cis)‡ = 85.9 ± 3.9 J/(mol·K)] reflect the inertness of these systems. The entropy of activation for the osmium complexes is highly positive and suggests the dissociative mechanism of isomerization. In the case of ruthenium, the activation entropy for the cis to trans isomerization is negative [-18.6 J/(mol·K)], while being positive [31.0 J/(mol·K)] for the trans to cis conversion. The thermodynamic parameters for cis to trans isomerization of [RuCl4(NO)(Hind)]-, viz. ΔH° = 13.5 ± 1.5 kJ/mol and ΔS° = -5.2 ± 3.4 J/(mol·K) indicate the low difference between the energies of cis and trans isomers. The theoretical calculation has been carried out on isomerization of ruthenium complexes with DFT methods. The dissociative, associative, and intramolecular twist isomerization

  15. Recent Advances on Dark and Light-Activated Cytotoxity of Imidazole-Containing Ruthenium Complexes.

    PubMed

    Liu, Ping; Jia, Jia; Zhao, Yue; Wang, Ke-Zhi

    2016-01-01

    Imidazole derivatives have known to possess a diverse range of pharmacological activity. In particular, one of ruthenium-based derivatives, imidazolium [trans-RuCl4(1H-imidazole)(DMSOS)] (NAMI-A) which is now in clinical trials, opens a new avenue for developing promising ruthenium-based anticancer drugs alternative to Cisplatin. This mini-review overviews some representative examples of imidazole-containing ruthenium complexes (ICRCs) with in vitro anticancer activities. Special attention is paid on ICRCs with the activities more potent than Cisplatin, and their correlation with their DNA binding properties in the context of possible cancer chemotherapeutic applications. The ICRCs are divided into two main categories according to their dark and light activated cytotoxicity; the former case is further clarified into mononuclear complexes including tris(bidentate polypyridyl) ruthenium complexes and those containing monodentatively coordinative imidazole ligands as well as polynuclear complexes. The perspective, challenges and future efforts for investigations into ICRCs are pointed out or suggested.

  16. Synthesis, Anticancer Activity, and Genome Profiling of Thiazolo Arene Ruthenium Complexes.

    PubMed

    Grozav, Adriana; Balacescu, Ovidiu; Balacescu, Loredana; Cheminel, Thomas; Berindan-Neagoe, Ioana; Therrien, Bruno

    2015-11-12

    Sixteen hydrazinyl-thiazolo arene ruthenium complexes of the general formula [(η(6)-p-cymene)Ru(N,N'-hydrazinyl-thiazolo)Cl]Cl were synthesized. All complexes were tested in vitro for their antiproliferative activity on three tumor cell lines (HeLa, A2780, and A2780cisR) and on a noncancerous cell line (HFL-1). A superior cytotoxic activity of the ruthenium complexes as compared to cisplatin and oxaliplatin, on both cisplatin-sensitive and cisplatin resistant ovarian cancer cells, was observed. In addition, the biological activity of two selected derivatives was evaluated using microarray gene expression assay and ingenuity pathway analysis. p53 signaling was identified as an important pathway modulated by both arene ruthenium compounds. New activated molecules such as FAS, ZMAT3, PRMT2, BBC3/PUMA, and PDCD4, whose overexpressions are correlated with overcoming resistance to cisplatin therapy, were also identified as potential targets. Moreover, the arene ruthenium complexes can be used in association with cisplatin to prevent cisplatin resistance development and synergistically to induce cell death in ovarian cancer cells.

  17. Use of Ruthenium Photooxidation Techniques to Study Electron Transfer in the Cytochrome bc1 Complex

    PubMed Central

    Millett, Francis; Durham, Bill

    2009-01-01

    Ruthenium photooxidation methods are presented to study electron transfer between the cytochrome bc1 complex and cytochrome c, and within the cytochrome bc1 complex. Methods are described to prepare a ruthenium cytochrome c derivative, Ruz-39-Cc, by labeling the single sulfhydryl on yeast H39C;C102T iso-1-Cc with the reagent Ru(bpz)2(4-bromomethyl-4′-methylbipyridine). The ruthenium complex attached to Cys-39 on the opposite side of Cc from the heme crevice does not affect the interaction with cyt bc1. Laser excitation of reduced Ruz-39-Cc results in photooxidation of heme c within 1 μs with a yield of 20%. Flash photolysis of a 1:1 complex between reduced yeast cytochrome bc1 and Ruz-39-Cc leads to electron transfer from heme c1 to heme c with a rate constant of 1.4 × 104 s-1. Methods are described for the use of the ruthenium dimer, Ru2D, to photooxidize cyt c1 in the cytochrome bc1 complex within 1 μs with a yield of 20%. Electron transfer from the Rieske iron-sulfur center [2Fe2S] to cyt c1 was detected with a rate constant of 6 × 104 s-1 in R. sphaeroides cyt bc1 using this method. This electron transfer step is rate-limited by the rotation of the Rieske iron-sulfur protein in a conformational gating mechanism. This method provides critical information on the dynamics of rotation of the iron-sulfur protein (ISP) as it transfers electrons from QH2 in the Qo site to cyt c1 These ruthenium photooxidation methods can be used to measure many of the electron transfer reactions in cytochrome bc1 complexes from any source. PMID:19348884

  18. Photoexpulsion of Surface-Grafted Ruthenium Complexes and Subsequent Release of Cytotoxic Cargos to Cancer Cells from Mesoporous Silica Nanoparticles

    PubMed Central

    Frasconi, Marco; Liu, Zhichang; Lei, Juying; Wu, Yilei; Strekalova, Elena; Malin, Dmitry; Ambrogio, Michael W.; Chen, Xinqi; Botros, Youssry Y.; Cryns, Vincent L.; Sauvage, Jean-Pierre; Stoddart, J. Fraser

    2014-01-01

    Ruthenium(II) polypyridyl complexes have emerged both as promising probes of DNA structure and as anticancer agents because of their unique photophysical and cytotoxic properties. A key consideration in the administration of those therapeutic agents is the optimization of their chemical reactivities to allow facile attack on the target sites, yet avoid unwanted side effects. Here, we present a drug delivery platform technology, obtained by grafting the surface of mesoporous silica nanoparticles (MSNPs) with ruthenium(II) dipyridophenazine (dppz) complexes. This hybrid nanomaterial displays enhanced luminescent properties relative to that of the ruthenium(II) dppz complex in a homogeneous phase. Since the coordination between the ruthenium(II) complex and a monodentate ligand linked covalently to the nanoparticles can be cleaved under irradiation with visible light, the ruthenium complex can be released from the surface of the nanoparticles by selective substitution of this ligand with a water molecule. Indeed, the modified MSNPs undergo rapid cellular uptake, and after activation with light, the release of an aqua ruthenium(II) complex is observed. We have delivered, in combination, the ruthenium(II) complex and paclitaxel, loaded in the mesoporous structure, to breast cancer cells. This hybrid material represents a promising candidate as one of the so-called theranostic agents that possess both diagnostic and therapeutic functions. PMID:23815127

  19. Ruthenium(II) polypyridyl complex as inhibitor of acetylcholinesterase and Aβ aggregation.

    PubMed

    Vyas, Nilima A; Bhat, Satish S; Kumbhar, Avinash S; Sonawane, Uddhavesh B; Jani, Vinod; Joshi, Rajendra R; Ramteke, Shefali N; Kulkarni, Prasad P; Joshi, Bimba

    2014-03-21

    Two ruthenium(II) polypyridyl complexes [Ru(phen)3](2+) (1) and [Ru(phen)2(bxbg)](2+) (2) (where phen = 1,10 phenanthroline, bxbg = bis(o-xylene)bipyridine glycoluril) have been evaluated for acetylcholinesterase (AChE) and Amyloid-β peptide (Aβ) aggregation inhibition. Complex 2 exhibits higher potency of AChE inhibition and kinetics and molecular modeling studies indicate that ancillary ligand plays significant role in inhibitory potency exhibited by complex 2. The inhibitory effect of these complexes on Aβ (1-40) aggregation is investigated using Thioflavin T fluorescence and Transmission Electron Microscopy. Both complexes efficiently inhibit Aβ (1-40) aggregation and are negligibly toxic to human neuroblastoma cells. This is the first demonstration that ruthenium(II) polypyridyl complexes simultaneously inhibit AChE and Aβ aggregation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Kinetics and Photochemistry of Ruthenium Bisbipyridine Diacetonitrile Complexes: An Interdisciplinary Inorganic and Physical Chemistry Laboratory Exercise.

    PubMed

    Rapp, Teresa L; Phillips, Susan R; Dmochowski, Ivan J

    2016-12-13

    The study of ruthenium polypyridyl complexes can be widely applied across disciplines in the undergraduate curriculum. Ruthenium photochemistry has advanced many fields including dye-sensitized solar cells, photoredox catalysis, light-driven water oxidation, and biological electron transfer. Equally promising are ruthenium polypyridyl complexes that provide a sterically bulky, photolabile moiety for transiently "caging" biologically active molecules. Photouncaging involves the use of visible (1-photon) or near-IR (2-photon) light to break one or more bonds between ruthenium and coordinated ligand(s), which can occur on short time scales and in high quantum yields. In this work we demonstrate the use of a model "caged" acetonitrile complex, Ru(2,2'-bipyridine)2(acetonitrile)2, or RuMeCN in an advanced synthesis and physical chemistry laboratory. Students made RuMeCN in an advanced synthesis laboratory course and performed UV-vis spectroscopy and electrochemistry. The following semester students investigated RuMeCN photolysis kinetics in a physical chemistry laboratory. These two exercises may also be combined to create a 2-week module in an advanced undergraduate laboratory course.

  1. Simultaneous determination of iron and ruthenium as ternary complexes by extractive second derivative spectrophotometry.

    PubMed

    Toral, M I; Richter, P; Tapia, A E; Hernández, J

    1999-08-23

    A highly sensitive and selective second derivative spectrophotometric method has been developed for the determination of ruthenium and iron in mixtures. The method is based on the formation of the binary complexes of iron and ruthenium with 4,7-diphenyl-1,10-phenanthroline (bathophenanthroline) in the presence of ethyleneglycol. These complexes are formed at pH 4.0-6.0 upon heating at 90 degrees C for 60 min. The ternary perchlorate complexes are then separated by liquid-liquid extraction. The extracts were evaluated directly by derivative spectrophotometric measurement, using the zero-crossing approach for determination of both analytes. Ruthenium and iron were thus determined in the ranges 9.6-450 and 16.3-280 ng/ml, respectively, in the presence of one another. The detection limits achieved (3sigma) were found to be 2.9 ng/ml of ruthenium and 4.9 ng/ml of iron. The relative standard deviations were in all instances less than 1.5%. The proposed method was applied to the determination of both analytes in synthetic mixtures.

  2. Cyclometalated ruthenium(II) complexes with a bis-carbene CCC-pincer ligand.

    PubMed

    Zhang, You-Ming; Shao, Jiang-Yang; Yao, Chang-Jiang; Zhong, Yu-Wu

    2012-08-21

    The first series of cyclometalated ruthenium complexes with a CCC-pincer bis-carbene ligand have been obtained as bench-stable compounds. Single-crystal X-ray analysis of one of these complexes with 4'-di-p-anisylamino-2,2':6',2''-terpyridine is presented. The Ru(II/III) redox potentials and MLCT absorptions of these complexes can be varied by attaching an electron-donating or -withdrawing group on the noncyclometalating ligand.

  3. Synthesis and resolution of planar-chiral ruthenium-palladium complexes with ECE' pincer ligands.

    PubMed

    Bonnet, Sylvestre; Li, Jie; Siegler, Maxime A; von Chrzanowski, Lars S; Spek, Anthony L; van Koten, Gerard; Klein Gebbink, Robertus J M

    2009-01-01

    Feel the pinch! Planar-chiral, cationic, ruthenium-palladium complexes based on eta(6),eta(1)-coordinated ECE' pincer ligands are synthesized as racemic mixtures by reacting ECE'-palladium complexes and [Ru(C(5)R(5))(MeCN)(3)](+) arenophiles (R=H or Me). Chiral resolution of the cationic complexes was achieved by using the chiral counterion [Delta-TRISPHAT](-), and solving the X-ray crystal structure of one diastereoisomer (shown here).

  4. DNA Interactions with Ruthenium(ll) Polypyridine Complexes Containing Asymmetric Ligands

    PubMed Central

    Chao, Hui

    2005-01-01

    In an attempt to probe nucleic acid structures, numerous Ru(II) complexes with different ligands have been synthesized and investigated. In this contribution we focus on the DNA-binding properties of ruthenium(II) complexes containing asymmetric ligands that have attracted little attention in the past decades. The influences of the shape and size of the ligand on the binding modes, affinity, enantioselectivities and photocleavage of the complexes to DNA are described. PMID:18365086

  5. Precision targeted ruthenium(ii) luminophores; highly effective probes for cell imaging by stimulated emission depletion (STED) microscopy† †Electronic supplementary information (ESI) available: Detailed synthesis and characterisation of metal complexes and peptides. See DOI: 10.1039/c6sc02588a Click here for additional data file.

    PubMed Central

    Byrne, Aisling; Burke, Christopher S.

    2016-01-01

    Fluorescence microscopy has undergone a dramatic evolution over the past two decades with development of super-resolution far-field microscopy methods that break the light diffraction limited resolution of conventional microscopy, offering unprecedented opportunity to interrogate cellular processes at the nanoscale. However, these methods make special demands of the luminescent agents used for contrast and development of probes suited to super-resolution fluorescent methods is still relatively in its infancy. In spite of their many photophysical advantages, metal complex luminophores have not yet been considered as probes in this regard, where to date, only organic fluorophores have been applied. Here, we report the first examples of metal complex luminophores applied as probes for use in stimulated emission depletion (STED) microscopy. Exemplified with endoplasmic reticulum and nuclear targeting complexes we demonstrate that luminescent Ru(ii) polypyridyl complexes can, through signal peptide targeting, be precisely and selectively delivered to key cell organelles without the need for membrane permeabilization, to give high quality STED images of these organelles. Detailed features of the tubular ER structure are revealed and in the case of the nuclear targeting probe we exploit the molecular light switch properties of a dipyrido[3,2-a:2′,3′-c]phenazine containing complex which emits only on DNA/RNA binding to give outstanding STED contrast and resolution of the chromosomes within the nucleus. Comparing performance with a member of the AlexaFluor family commonly recommended for STED, we find that the performance of the ruthenium complexes is superior across both CW and gated STED microscopy methods in terms of image resolution and photostability. The large Stokes shifts of the Ru probes permit excellent matching of the stimulating depletion laser with their emission whilst avoiding anti-Stokes excitation. Their long lifetimes make them particularly amenable to

  6. Formation and reactivity of surface-bound high oxidation state Ruthenium-oxo complexes.

    SciTech Connect

    Hornstein, B. J.; Dattelbaum, D. M.; Schoonover, J. R.; Meyer, T. J.

    2004-01-01

    Ruthenium polypyridyl oxalate complexes are precursors to high oxidation state species that can catalyze the oxidation of a variety of substrates. Covalent attachment of these reactive species to surfaces such at ZrO{sub 2} or TiO{sub 2} inhibit catalyst deactivation and provide supports from which to build electrocatalytic and photoelectrocatalytic devices. Unfortunately, few details of the effects of surface binding on reactivity are available in the literature. To this end, precursors such as, Ru(H{sub 2}O{sub 3}Ptpy)(C{sub 2}O{sub 4})(H{sub 2}O) and (C{sub 2}O{sub 4})(H{sub 2}O{sub 3}Ptpy)Ru-O-Ru(H{sub 2}O{sub 3}Ptpy)(C{sub 2}O{sub 4}) (tpy is terpyridine) have been synthesized and attached to TiO{sub 2}. Quantitative surface binding studies were carried out and acid catalyzed solvolysis was used to form the aqua species. The complexes were oxidized with Ce(IV) to their high-valent analogs and their reactivity toward selected substrates was tested. These studies not only provide information about the effects of surface binding on the reactivity of metal oxides but also have implications for the development of light-driven catalysts.

  7. Mono and binuclear ruthenium(II) complexes containing 5-chlorothiophene-2-carboxylic acid ligands: Spectroscopic analysis and computational studies

    NASA Astrophysics Data System (ADS)

    Swarnalatha, Kalaiyar; Kamalesu, Subramaniam; Subramanian, Ramasamy

    2016-11-01

    New Ruthenium complexes I, II and III were synthesized using 5-chlorothiophene-2-carboxylic acid (5TPC), as ligand and the complexes were characterized by elemental analysis, FT-IR, 1H, 13C NMR, and mass spectroscopic techniques. Photophysical and electrochemical studies were carried out and the structures of the synthesized complex were optimized using density functional theory (DFT). The molecular geometry, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) energies and Mulliken atomic charges of the molecules are determined at the B3LYP method and standard 6-311++G (d,p) basis set starting from optimized geometry. They possess excellent stabilities and their thermal decomposition temperatures are 185 °C, 180 °C and 200 °C respectively, indicating that the metal complexes are suitable for the fabrication processes of optoelectronic devices.

  8. Systematic investigation of the catalytic cycle of a single site ruthenium oxygen evolving complex using density functional theory.

    PubMed

    Hughes, Thomas F; Friesner, Richard A

    2011-07-28

    The mechanism of water oxidation by a single site ruthenium oxygen evolving complex is investigated using fully unrestricted pseudospectral B3LYP with the effective core potential LACV3P in continuum solvent with some quantum mechanical waters. Guess wave functions have been used that allow greater flexibility in sampling different electronic configurations of the complex. Systematic comparison with experiment is improved using these guesses because they provide a complete analysis of the low energy manifold and help to alleviate the formal disconnect between theory and experiment in assigning Lewis structures for transition metal complexes. In agreement with results from the literature, the challenging 4e(-)and 4H(+) oxidation of water is accomplished using a mechanism that features three proton coupled electron transfers, one electron transfer, one atom proton transfer (APT), and one ligand exchange (LE). Calculations on a large database of ruthenium complexes allows us to benchmark the computation of reduction half potentials and free energies of activation and to investigate systematic ligand variations and their effect on the reaction mechanism. Mean unsigned errors of reduction half potentials in comparison to experiment are generally small (100-200 mV). The APT and LE steps are found to be rate limiting with free energy barriers of 19.27 and 19.53 kcal/mol respectively, which is in excellent agreement with the ∼20 kcal/mol barrier obtained from experimental rate constants using classical transition state theory.

  9. Transferring the Concept of Multinuclearity to Ruthenium Complexes for Improvement of Anticancer Activity

    PubMed Central

    Mendoza-Ferri, Maria G.; Hartinger, Christian G.; Mendoza, Marco A.; Groessl, Michael; Egger, Alexander E.; Eichinger, Rene E.; Mangrum, John B.; Farrell, Nicholas P.; Maruszak, Magdalena; Bednarski, Patrick J.; Klein, Franz; Jakupec, Michael A.; Nazarov, Alexey A.; Severin, Kay; Keppler, Bernhard K.

    2010-01-01

    Multinuclear platinum anticancer complexes are a proven option to overcome resistance of established anticancer compounds. Transferring this concept to ruthenium complexes led to the synthesis of dinuclear Ru(II)–arene compounds containing a bis(pyridinone)alkane ligand linker. A pronounced influence of the spacer length on the in vitro anticancer activity was found, which is correlated to the lipophilicity of the complexes. IC50 values in the same dimension as for established platinum drugs were found in human tumor cell lines. No cross-resistance to oxoplatin, a cisplatin prodrug, was observed for the most active complex in three resistant cell lines; in fact, a 10-fold reversal of sensitivity in two of the oxoplatin-resistant lines was found. (Bio)analytical characterization of the representative examples showed that the ruthenium complexes hydrolyze rapidly, forming predominantly diaqua species that exhibit affinity toward transferrin and DNA, indicating that both proteins and nucleobases are potential targets. PMID:19170599

  10. Transferring the concept of multinuclearity to ruthenium complexes for improvement of anticancer activity.

    PubMed

    Mendoza-Ferri, Maria G; Hartinger, Christian G; Mendoza, Marco A; Groessl, Michael; Egger, Alexander E; Eichinger, Rene E; Mangrum, John B; Farrell, Nicholas P; Maruszak, Magdalena; Bednarski, Patrick J; Klein, Franz; Jakupec, Michael A; Nazarov, Alexey A; Severin, Kay; Keppler, Bernhard K

    2009-02-26

    Multinuclear platinum anticancer complexes are a proven option to overcome resistance of established anticancer compounds. Transferring this concept to ruthenium complexes led to the synthesis of dinuclear Ru(II)-arene compounds containing a bis(pyridinone)alkane ligand linker. A pronounced influence of the spacer length on the in vitro anticancer activity was found, which is correlated to the lipophilicity of the complexes. IC(50) values in the same dimension as for established platinum drugs were found in human tumor cell lines. No cross-resistance to oxoplatin, a cisplatin prodrug, was observed for the most active complex in three resistant cell lines; in fact, a 10-fold reversal of sensitivity in two of the oxoplatin-resistant lines was found. (Bio)analytical characterization of the representative examples showed that the ruthenium complexes hydrolyze rapidly, forming predominantly diaqua species that exhibit affinity toward transferrin and DNA, indicating that both proteins and nucleobases are potential targets.

  11. Ruthenium dihydroxybipyridine complexes are tumor activated prodrugs due to low pH and blue light induced ligand release.

    PubMed

    Hufziger, Kyle T; Thowfeik, Fathima Shazna; Charboneau, David J; Nieto, Ismael; Dougherty, William G; Kassel, W Scott; Dudley, Timothy J; Merino, Edward J; Papish, Elizabeth T; Paul, Jared J

    2014-01-01

    Ruthenium drugs are potent anti-cancer agents, but inducing drug selectivity and enhancing their modest activity remain challenging. Slow Ru ligand loss limits the formation of free sites and subsequent binding to DNA base pairs. Herein, we designed a ligand that rapidly dissociates upon irradiation at low pH. Activation at low pH can lead to cancer selectivity, since many cancer cells have higher metabolism (and thus lower pH) than non-cancerous cells. We have used the pH sensitive ligand, 6,6'-dihydroxy-2,2'-bipyridine (66'bpy(OH)2), to generate [Ru(bpy)2(66'(bpy(OH)2)](2+), which contains two acidic hydroxyl groups with pKa1=5.26 and pKa2=7.27. Irradiation when protonated leads to photo-dissociation of the 66'bpy(OH)2 ligand. An in-depth study of the structural and electronic properties of the complex was carried out using X-ray crystallography, electrochemistry, UV/visible spectroscopy, and computational techniques. Notably, RuN bond lengths in the 66'bpy(OH)2 complex are longer (by ~0.3Å) than in polypyridyl complexes that lack 6 and 6' substitution. Thus, the longer bond length predisposes the complex for photo-dissociation and leads to the anti-cancer activity. When the complex is deprotonated, the 66'bpy(O(-))2 ligand molecular orbitals mix heavily with the ruthenium orbitals, making new mixed metal-ligand orbitals that lead to a higher bond order. We investigated the anti-cancer activities of [Ru(bpy)2(66'(bpy(OH)2)](2+), [Ru(bpy)2(44'(bpy(OH)2)](2+), and [Ru(bpy)3](2+) (44'(bpy(OH)2=4,4'-dihydroxy-2,2'-bipyridine) in HeLa cells, which have a relatively low pH. It is found that [Ru(bpy)2(66'(bpy(OH)2)](2+) is more cytotoxic than the other ruthenium complexes studied. Thus, we have identified a pH sensitive ruthenium scaffold that can be exploited for photo-induced anti-cancer activity. © 2013.

  12. Ruthenium Dihydroxybipyridine Complexes are Tumor Activated Prodrugs Due to Low pH and Blue Light Induced Ligand Release

    PubMed Central

    Hufziger, Kyle T.; Thowfeik, Fathima Shazna; Charboneau, David J.; Nieto, Ismael; Dougherty, William G.; Kassel, W. Scott; Dudley, Timothy J.; Merino, Edward J.; Papish, Elizabeth T.; Paul, Jared J.

    2013-01-01

    Ruthenium drugs are potent anti-cancer agents, but inducing drug selectivity and enhancing their modest activity remain challenging. Slow Ru ligand loss limits the formation of free sites and subsequent binding to DNA base pairs. Herein, we designed a ligand that rapidly dissociates upon irradiation at low pH. Activation at low pH can lead to cancer selectivity, since many cancer cells have higher metabolism (and thus lower pH) than non-cancerous cells. We have used the pH sensitive ligand, 6,6′-dihydroxy-2,2′-bipyridine (66′bpy(OH)2), to generate [Ru(bpy)2(66′(bpy(OH)2)]2+, which contains two acidic hydroxyl groups with pKa1 = 5.26 and pKa2 = 7.27. Irradiation when protonated leads to photo-dissociation of the 66′bpy(OH)2 ligand. An in-depth study of the structural and electronic properties of the complex was carried out using X-Ray crystallography, electrochemistry, UV/visible spectroscopy, and computational techniques. Notably, Ru-N bond lengths in the 66′bpy(OH)2 complex are longer (by ~0.3 Å) than in polypyridyl complexes that lack 6 and 6′ substitution. Thus, the longer bond length predisposes the complex for photo-dissociation and leads to the anti-cancer activity. When the complex is deprotonated, the 66′bpy(O−)2 ligand molecular orbitals mix heavily with the ruthenium orbitals, making new mixed metal-ligand orbitals that lead to a higher bond order. We investigated the anti-cancer activities of [Ru(bpy)2(66′(bpy(OH)2)]2+, [Ru(bpy)2(44′(bpy(OH)2)]2+, and [Ru(bpy)3]2+ (44′(bpy(OH)2 = 4,4′-dihydroxy-2,2′-bipyridine) in HeLa cells, which have a relatively low pH. It is found that [Ru(bpy)2(66′(bpy(OH)2)]2+ is more cytotoxic than the other ruthenium complexes studied. Thus, we have identified a pH sensitive ruthenium scaffold that can be exploited for photo-induced anti-cancer activity. PMID:24184694

  13. Novel C,N-Cyclometalated Benzimidazole Ruthenium(II) and Iridium(III) Complexes as Antitumor and Antiangiogenic Agents: A Structure-Activity Relationship Study.

    PubMed

    Yellol, Jyoti; Pérez, Sergio A; Buceta, Alicia; Yellol, Gorakh; Donaire, Antonio; Szumlas, Piotr; Bednarski, Patrick J; Makhloufi, Gamall; Janiak, Christoph; Espinosa, Arturo; Ruiz, José

    2015-09-24

    A series of novel C,N-cyclometalated benzimidazole ruthenium(II) and iridium(III) complexes of the types [(η(6)-p-cymene)RuCl(κ(2)-N,C-L)] and [(η(5)-C5Me5)IrCl(κ(2)-N,C-L)] (HL = methyl 1-butyl-2-arylbenzimidazolecarboxylate) with varying substituents (H, Me, F, CF3, MeO, NO2, and Ph) in the R4 position of the phenyl ring of 2-phenylbenzimidazole chelating ligand of the ruthenium (3a-g) and iridium complexes (4a-g) have been prepared. The cytotoxic activity of the new ruthenium(II) and iridium(III) compounds has been evaluated in a panel of cell lines (A2780, A2780cisR, A427, 5637, LCLC, SISO, and HT29) in order to investigate structure-activity relationships. Phenyl substitution at the R4 position shows increased potency in both Ru and Ir complexes (3g and 4g, respectively) as compared to their parent compounds (3a and 4a) in all cell lines. In general, ruthenium complexes are more active than the corresponding iridium complexes. The new ruthenium and iridium compounds increased caspase-3 activity in A2780 cells, as shown for 3a,d and 4a,d. Compound 4g is able to increase the production of ROS in A2780 cells. Furthermore, all the new compounds are able to overcome the cisplatin resistance in A2780cisR cells. In addition, some of the metal complexes effectively inhibit angiogenesis in the human umbilical vein endothelial cell line EA.hy926 at 0.5 μM, the ruthenium derivatives 3g (Ph) and 3d (CF3) being the best performers. QC calculations performed on some ruthenium model complexes showed only moderate or slight electron depletion at the phenyl ring of the C,N-cyclometalated ligand and the chlorine atom on increasing the electron withdrawing effect of the R substituent.

  14. Synthesis and anticancer activity of carbosilane metallodendrimers based on arene ruthenium(ii) complexes.

    PubMed

    Maroto-Díaz, Marta; Elie, Benelita T; Gómez-Sal, Pilar; Pérez-Serrano, Jorge; Gómez, Rafael; Contel, María; Javier de la Mata, F

    2016-04-28

    A series of new organometallic carbosilane dendrimers (first and second generation) and the corresponding non-dendritic mononuclear based on ruthenium arene fragments are described. The metallodendrimers were prepared by reactions of the precursor [Ru(η(6)-p-cymene)Cl2]2 with carbosilane dendrimers functionalized with N-donor monodentate ligands such as NH2- and pyridine, or with N,O-, N,N-chelating imine ligands. While the dendrimer precursors are insoluble in DMSO or water, novel metallodendrimers are soluble in DMSO and some of them are even highly soluble in water. The molecular structure of the "Ru-NH2" mononuclear compound (zero generation) was determined by single-crystal X-ray crystallography. The cytotoxicity activity of these dendritic structures was evaluated in several human cancer cell lines and compared with that of the corresponding mononuclear ruthenium complexes. Most compounds display significant cytotoxic activities in the low micromolar range with the first generation ruthenium dendrimers being the most active compounds. The cell death type for selected compounds has been studied as well as their reactivity towards relevant biomolecules such as DNA, Human Serum Albumin (HSA) and Cathepsin-B. All the data point to a mode of action different from that of cisplatin for most complexes. First generation ruthenium dendrimers inhibit Cathepsin-B, which may suggest potential antimetastatic properties of these compounds.

  15. Tri- and tetra-nuclear polypyridyl ruthenium(II) complexes as antimicrobial agents.

    PubMed

    Gorle, Anil K; Feterl, Marshall; Warner, Jeffrey M; Wallace, Lynne; Keene, F Richard; Collins, J Grant

    2014-11-28

    A series of inert tri- and tetra-nuclear polypyridylruthenium(II) complexes that are linked by the bis[4(4'-methyl-2,2'-bipyridyl)]-1,n-alkane ligand ("bb(n)" for n = 10, 12 and 16) have been synthesised and their potential as antimicrobial agents examined. Due to the modular nature of the synthesis of the oligonuclear complexes, it was possible to make both linear and non-linear tetranuclear ruthenium species. The minimum inhibitory concentrations (MIC) of the ruthenium(II) complexes were determined against four strains of bacteria--Gram positive Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA), and Gram negative Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa). In order to gain an understanding of the relative antimicrobial activities, the cellular uptake and water-octanol partition coefficients (log P) were determined for a selection of the ruthenium complexes. Although the trinuclear complexes were the most lipophilic based upon log P values and showed the greatest cellular uptake, the linear tetranuclear complexes were generally more active, with MIC values <1 μM against the Gram positive bacteria. Similarly, although the non-linear tetranuclear complexes were slightly more lipophilic and were taken up to a greater extent by the bacteria, they were consistently less active than their linear counterparts. Of particular note, the cellular accumulation of the oligonuclear ruthenium complexes was greater in the Gram negative strains compared to that in the Gram positive S. aureus and MRSA. The results demonstrate that the lower antimicrobial activity of polypyridylruthenium(II) complexes towards Gram negative bacteria, particularly P. aeruginosa, is not strongly correlated to the cellular accumulation but rather to a lower intrinsic ability to kill the Gram negative cells.

  16. Synthesis and spectral and redox properties of three triply bridged complexes of ruthenium

    USGS Publications Warehouse

    Llobet, A.; Curry, M.E.; Evans, H.T.; Meyer, T.J.

    1989-01-01

    Syntheses are described for the ligand-bridged complexes [(tpm)RuIII(??-O)(??-L)2RuIII(tpm) n+ (L = O2P(O)(OH), n = 0 (1); L = O2CO, n = 0 (2); L = O2CCH3, n = 2 (3); tpm is the tridentate, facial ligand tris(1-pyrazolyl)methane. The X-ray crystal structure of [(tpm)Ru(??-O)(??-O2P(O)(OH))2Ru(tpm)]??8H 2O was determined from three-dimensional X-ray counter data. The complex crystallizes in the trigonal space group P3221 with three molecules in a cell of dimensions a = 18.759 (4) A?? and c = 9.970 (6) A??. The structure was refined to a weighted R factor of 0.042 based on 1480 independent reflections with I ??? 3??(I). The structure reveals that the complex consists of two six-coordinate ruthenium atoms that are joined by a ??-oxo bridge (rRU-O = 1.87 A??; ???RuORu = 124.6??) and two ??-hydrogen phosphato bridges (average rRu-O = 2.07 A??) which are capped by two tpm ligands. The results of cyclic voltammetric and coulometric experiments show that the complexes undergo both oxidative and reductive processes in solution. Upon reduction, the ligand-bridged structure is lost and the monomer [(tpm)Ru(H2O)3]2+ appears quantitatively. All three complexes are diamagnetic in solution. The diamagnetism is a consequence of strong electronic coupling between the low-spin d5 Ru(III) metal ions through the oxo bridge and the relatively small Ru-O-Ru angle. ?? 1989 American Chemical Society.

  17. Interactions of ruthenium complexes containing indoloquinoline moiety with human telomeric G-quadruplex DNA.

    PubMed

    Yu, Hui-juan; Yu, Lin; Hao, Zhi-feng; Zhao, Ying

    2014-04-24

    G-quadruplex structures are attractive targets for the development of anticancer drugs, as their formation in human telomere could impair telomerase activity, thus inducing apoptosis in cancer cells. Vast majority of G-quadruplex binding molecules have been designed and synthesized. Ruthenium complexes have also been reported to induction or stabilization of G-quadruplex structure of human telomeric sequence, whereas most of them generally promote the formation of antiparallel or hybrid-type G-quadruplex structure. Ruthenium complex that selectively promotes the formation of parallel G-quadruplex structure has rarely been reported. We reported here the interaction of two ruthenium complexes [Ru(bpy)2(mitatp)](2+)1 and [Ru(phen)2(mitatp)](2+)2 (bpy=2,2' bipyridine, phen=1,10-phenanthroline, mitatp=5-methoxy-isatino[1,2-b]-1,4,8,9-tetraazatriphenylene) containing indoloquinoline moiety with human telomeric G-quadruplex DNA (Telo22). Complex 1 binds to Telo22 tightly via a stable π-π stacking interaction and efficiently stabilizes the G-quadruplex structure. Circular dichroism (CD) spectra titration results suggest that complex 1 could induce Telo22 to fold into antiparallel G-quadruplex conformation. Complex 2 exhibits moderate G-quadruplex binding and stabilizing ability, while CD titration data reveals that complex 2 could promote the formation of parallel G-quadruplex structure.

  18. Transferrin serves as a mediator to deliver organometallic ruthenium(II) anticancer complexes into cells.

    PubMed

    Guo, Wei; Zheng, Wei; Luo, Qun; Li, Xianchan; Zhao, Yao; Xiong, Shaoxiang; Wang, Fuyi

    2013-05-06

    We report herein a systematic study on interactions of organometallic ruthenium(II) anticancer complex [(η(6)-arene)Ru(en)Cl](+) (arene = p-cymene (1) or biphenyl (2), en = ethylenediamine) with human transferrin (hTf) and the effects of the hTf-ligation on the bioavailability of these complexes with cisplatin as a reference. Incubated with a 5-fold excess of complex 1, 2, or cisplatin, 1 mol of diferric hTf (holo-hTf) attached 0.62 mol of 1, 1.01 mol of 2, or 2.14 mol of cisplatin. Mass spectrometry revealed that both ruthenium complexes coordinated to N-donors His242, His273, His578, and His606, whereas cisplatin bound to O donors Tyr136 and Tyr317 and S-donor Met256 in addition to His273 and His578 on the surface of both apo- and holo-hTf. Moreover, cisplatin could bind to Thr457 within the C-lobe iron binding cleft of apo-hTf. Neither ruthenium nor platinum binding interfered with the recognition of holo-hTf by the transferrin receptor (TfR). The ruthenated/platinated holo-hTf complexes could be internalized via TfR-mediated endocytosis at a similar rate to that of holo-hTf itself. Moreover, the binding to holo-hTf well preserved the bioavailability of the ruthenium complexes, and the hTf-bound 1 and 2 showed a similar cytotoxicity toward the human breast cancer cell line MCF-7 to those of the complexes themselves. However, the conjugation with holo-hTf significantly reduced the cellular uptake of cisplatin and the amount of platinated DNA adducts formed intracellularly, leading to dramatic reduction of cisplatin cytotoxicity toward MCF-7. These findings suggest that hTf can serve as a mediator for the targeting delivery of Ru(arene) anticancer complexes while deactivating cisplatin.

  19. RNA and DNA binding of inert oligonuclear ruthenium(II) complexes in live eukaryotic cells.

    PubMed

    Li, Xin; Gorle, Anil K; Ainsworth, Tracy D; Heimann, Kirsten; Woodward, Clifford E; Collins, J Grant; Keene, F Richard

    2015-02-28

    Confocal microscopy was used to study the intracellular localisation of a series of inert polypyridylruthenium(II) complexes with three eukaryotic cells lines - baby hamster kidney (BHK), human embryonic kidney (HEK-293) and liver carcinoma (Hep-G2). Co-staining experiments with the DNA-selective dye DAPI demonstrated that the di-, tri- and tetra-nuclear polypyridylruthenium(II) complexes that are linked by the bis[4(4'-methyl-2,2'-bipyridyl)]-1,12-dodecane bridging ligand ("bb12") showed a high degree of selectivity for the nucleus of the eukaryotic cells. Additional co-localisation experiments with the general nucleic acid stain SYTO 9 indicated that the ruthenium complexes showed a considerable preference for the RNA-rich nucleolus, rather than chromosomal DNA. No significant differences were observed in the intracellular localisation between the ΔΔ and ΛΛ enantiomers of the dinuclear complex. Cytotoxicity assays carried out over 72 hours indicated that the ruthenium complexes, particularly the tri- and tetra-nuclear species, were significantly toxic to the eukaryotic cells. However, when the activity of the least cytotoxic compound (the ΔΔ enantiomer of the dinuclear species) was determined over a 24 hour period, the results indicated that the ruthenium complex was approximately a 100-fold less toxic to liver and kidney cells than to Gram positive bacteria. Circular dichroism (CD) spectroscopy was used to examine the effect of the ΔΔ and ΛΛ enantiomers of the dinuclear complex on the solution conformations of RNA and DNA. The CD experiments indicated that the RNA maintained the A-type conformation, and the DNA the B-type structure, upon binding by the ruthenium complexes.

  20. Bifunctional ruthenium(II) hydride complexes with pendant strong Lewis acid moieties: structure, dynamics, and cooperativity.

    PubMed

    Ostapowicz, Thomas G; Merkens, Carina; Hölscher, Markus; Klankermayer, Jürgen; Leitner, Walter

    2013-02-13

    The synthesis of a novel class of bifunctional ruthenium hydride complexes incorporating Lewis acidic BR(2) moieties is reported. Determination of the molecular structures in the solid state and in solution provided evidence for tunable interaction between the two functionalities. Cooperative effects on the reactivity of the complexes were demonstrated including the activation of small Lewis basic molecules by reversible anchoring at the boron center.

  1. Synthesis, characterization and antibacterial studies of ruthenium(III) complexes derived from chitosan schiff base.

    PubMed

    Vadivel, T; Dhamodaran, M

    2016-09-01

    Chitosan can be modified chemically by condensation reaction of deacetylated chitosan with aldehyde in homogeneous phase. This condensation is carried by primary amine (NH2) with aldehyde (CHO) to form corresponding schiff base. The chitosan biopolymer schiff base derivatives are synthesized with substituted aldehydes namely 4-hydroxy-3-methoxy benzaldehyde, 2-hydroxy benzaldehyde, and 2-hydroxy-3-methoxy benzaldehyde, becomes a complexing agent or ligand. The Ruthenium(III) complexes were obtained by complexation of Ruthenium with schiff base ligands and this product exhibits as an excellent solubility and more biocompatibility. The novel series of schiff base Ruthenium(III) complexes are characterized by Elemental analysis, FT-IR spectroscopy, and Thermo-gravimetric analysis (TGA). The synthesized complexes have been subjected to antibacterial study. The antibacterial results indicated that the antibacterial activity of the complexes were more effective against Gram positive and Gram negative pathogenic bacteria. These findings are giving suitable support for developing new antibacterial agent and expand our scope for applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Design of Photoactive Ruthenium Complexes to Study Electron Transfer and Proton Pumping in Cytochrome Oxidase

    PubMed Central

    Durham, Bill; Millett, Francis

    2011-01-01

    This review describes the development and application of photoactive ruthenium complexes to study electron transfer and proton pumping reactions in cytochrome c oxidase (CcO). CcO uses four electrons from Cc to reduce O2 to two waters, and pumps four protons across the membrane. The electron transfer reactions in cytochrome oxidase are very rapid, and cannot be resolved by stopped-flow mixing techniques. Methods have been developed to covalently attach a photoactive tris(bipyridine)ruthenium group [Ru(II)] to Cc to form Ru-39-Cc. Photoexcitation of Ru(II) to the excited state Ru(II*), a strong reductant, leads to rapid electron transfer to the ferric heme group in Cc, followed by electron transfer to CuA in CcO with a rate constant of 60,000 s−1. Ruthenium kinetics and mutagenesis studies have been used to define the domain for the interaction between Cc and CcO. New ruthenium dimers have also been developed to rapidly inject electrons into CuA of CcO with yields as high as 60%, allowing measurement of the kinetics of electron transfer and proton release at each step in the oxygen reduction mechanism. PMID:21939635

  3. Design of photoactive ruthenium complexes to study electron transfer and proton pumping in cytochrome oxidase.

    PubMed

    Durham, Bill; Millett, Francis

    2012-04-01

    This review describes the development and application of photoactive ruthenium complexes to study electron transfer and proton pumping reactions in cytochrome c oxidase (CcO). CcO uses four electrons from Cc to reduce O(2) to two waters, and pumps four protons across the membrane. The electron transfer reactions in cytochrome oxidase are very rapid, and cannot be resolved by stopped-flow mixing techniques. Methods have been developed to covalently attach a photoactive tris(bipyridine)ruthenium group [Ru(II)] to Cc to form Ru-39-Cc. Photoexcitation of Ru(II) to the excited state Ru(II*), a strong reductant, leads to rapid electron transfer to the ferric heme group in Cc, followed by electron transfer to Cu(A) in CcO with a rate constant of 60,000s(-1). Ruthenium kinetics and mutagenesis studies have been used to define the domain for the interaction between Cc and CcO. New ruthenium dimers have also been developed to rapidly inject electrons into Cu(A) of CcO with yields as high as 60%, allowing measurement of the kinetics of electron transfer and proton release at each step in the oxygen reduction mechanism.

  4. Thiolate-bridged dinuclear ruthenium and iron complexes as robust and efficient catalysts toward oxidation of molecular dihydrogen in protic solvents.

    PubMed

    Yuki, Masahiro; Sakata, Ken; Hirao, Yoshifumi; Nonoyama, Nobuaki; Nakajima, Kazunari; Nishibayashi, Yoshiaki

    2015-04-01

    Thiolate-bridged dinuclear ruthenium and iron complexes are found to work as efficient catalysts toward oxidation of molecular dihydrogen in protic solvents such as water and methanol under ambient reaction conditions. Heterolytic cleavage of the coordinated molecular dihydrogen at the dinuclear complexes and the sequential oxidation of the produced hydride complexes are involved as key steps to promote the present catalytic reaction. The catalytic activity of the dinuclear complexes toward the chemical oxidation of molecular dihydrogen achieves up to 10000 TON (turnover number), and electrooxidation of molecular dihydrogen proceeds quite rapidly. The result of the density functional theory (DFT) calculation on the reaction pathway indicates that a synergistic effect between the two ruthenium atoms plays an important role to realize the catalytic oxidation of molecular dihydrogen efficiently. The present dinuclear ruthenium complex is found to work as an efficient organometallic anode catalyst for the fuel cell. It is noteworthy that the present dinuclear complex worked not only as an effective catalyst toward chemical and electrochemical oxidation of molecular dihydrogen but also as a good anode catalyst for the fuel cell. We consider that the result described in this paper provides useful and valuable information to develop highly efficient and low-cost transition metal complexes as anode catalysts in the fuel cell.

  5. Photoinduced electron transfer reactions of ruthenium(II)-complexes containing amino acid with quinones.

    PubMed

    Eswaran, Rajkumar; Kalayar, Swarnalatha; Paulpandian, Muthu Mareeswaran; Seenivasan, Rajagopal

    2014-05-01

    With the aim of mimicking, at basic level the photoinduced electron transfer process in the reaction center of photosystem II, ruthenium(II)-polypyridyl complexes, carrying amino acids were synthesized and studied their photoinduced electron transfer reactions with quinones by steady state and time resolved measurements. The reaction of quinones with excited state of ruthenium(II)-complexes, I-V in acetonitrile has been studied by luminescence quenching technique and the rate constant, k(q), values are close to the diffusion controlled rate. The detection of the semiquinone anion radical in this system using time-resolved transient absorption spectroscopy confirms the electron transfer nature of the reaction. The semiclassical theory of electron transfer has been successfully applied to the photoluminescence quenching of Ru(II)-complexes with quinones.

  6. Ruthenium (II) complexes interact with human serum albumin and induce apoptosis of tumor cells.

    PubMed

    Sun, Jing; Huang, Yongchao; Zheng, Chuping; Zhou, Yanhui; Liu, Ying; Liu, Jie

    2015-02-01

    The interaction of ruthenium (II) complex [Ru(bpy)2(mal)](2+) (RBM) and [Ru(phen)2(mal)](2+) (RPM) (bpy = 2, 2-bipyridine, phen = 1,10-phenanthroline, mal = malonyl carboxylate) with human serum albumin (HSA) has been investigated by using fluorescence, UV absorption and circular dichroism (CD) spectroscopy approaches. A strong fluorescence quenching reaction of complexes to HSA was observed and the quenching mechanism was suggested as static quenching according to the Stern-Volmer (S-V) equation. The number of binding sites n and observed binding constant Kb was measured by fluorescence quenching method. The thermodynamic parameters ΔH, ΔS, and ΔG at different temperatures were calculated and the results indicate the binding reaction is mainly entropy-driven and Vander Waals force played a major role in the reaction. The result of CD showed that the secondary structure of HSA molecules was changed in the presence of the ruthenium (II) complexes. Furthermore, the cell viability of ruthenium (II) complexes was evaluated by MTT and complex RPM has shown significant higher anticancer potency than RBM against all the cell lines screened. RPM showed a significant antitumor activity through induction of apoptosis in A549 cells.

  7. Understanding the Excited State Behavior of Cyclometalated Bis(tridentate)ruthenium(II) Complexes: A Combined Experimental and Theoretical Study.

    PubMed

    Kreitner, Christoph; Erdmann, Elisa; Seidel, Wolfram W; Heinze, Katja

    2015-12-07

    The synthesis and characterization of the donor-acceptor substituted cyclometalated ruthenium(II) polypyridine complex isomers [Ru(dpb-NHCOMe)(tpy-COOEt)](PF6) 1(PF6) and [Ru(dpb-COOEt)(tpy-NHCOMe)](PF6) 2(PF6) (dpbH = 1,3-dipyridin-2-ylbenzene, tpy = 2,2';6,2"-terpyridine) with inverted functional group pattern are described. A combination of resonance Raman spectroscopic and computational techniques shows that all intense visible range absorption bands arise from mixed Ru → tpy/Ru → dpb metal-to-ligand charge transfer (MLCT) excitations. 2(PF6) is weakly phosphorescent at room temperature in fluid solution and strongly emissive at 77 K in solid butyronitrile matrix, which is typical for ruthenium(II) polypyridine complexes. Density functional theory calculations revealed that the weak emission of 2(PF6) arises from a (3)MLCT state that is efficiently thermally depopulated via metal-centered ((3)MC) excited states. The activation barrier for the deactivation process was estimated experimentally from variable-temperature emission spectroscopic measurements as 11 kJ mol(-1). In contrast, 1(PF6) is nonemissive at room temperature in fluid solution and at 77 K in solid butyronitrile matrix. Examination of the electronic excited states of 1(PF6) revealed a ligand-to-ligand charge-transfer ((3)LL'CT) as lowest-energy triplet state due to the very strong push-pull effect across the metal center. Because of the orthogonality of the participating ligands, emission from the (3)LL'CT is symmetry-forbidden. Hence, in this type of complex a stronger push-pull effect does not increase the phosphorescence quantum yields but completely quenches the emission.

  8. Improved antiparasitic activity by incorporation of organosilane entities into half-sandwich ruthenium(II) and rhodium(III) thiosemicarbazone complexes.

    PubMed

    Adams, Muneebah; de Kock, Carmen; Smith, Peter J; Land, Kirkwood M; Liu, Nicole; Hopper, Melissa; Hsiao, Allyson; Burgoyne, Andrew R; Stringer, Tameryn; Meyer, Mervin; Wiesner, Lubbe; Chibale, Kelly; Smith, Gregory S

    2015-02-07

    A series of ferrocenyl- and aryl-functionalised organosilane thiosemicarbazone compounds was obtained via a nucleophilic substitution reaction with an amine-terminated organosilane. The thiosemicarbazone (TSC) ligands were further reacted with either a ruthenium dimer [(η(6-i)PrC6H4Me)Ru(μ-Cl)Cl]2 or a rhodium dimer [(Cp*)Rh(μ-Cl)Cl]2 to yield a series of cationic mono- and binuclear complexes. The thiosemicarbazone ligands, as well as their metal complexes, were characterised using NMR and IR spectroscopy, and mass spectrometry. The molecular structure of the binuclear ruthenium(ii) complex was determined by single-crystal X-ray diffraction analysis. The thiosemicarbazones and their complexes were evaluated for their in vitro antiplasmodial activities against the chloroquine-sensitive (NF54) and chloroquine-resistant (Dd2) Plasmodium falciparum strains, displaying activities in the low micromolar range. Selected compounds were screened for potential β-haematin inhibition activity, and it was found that two Rh(iii) complexes exhibited moderate to good inhibition. Furthermore, the compounds were screened for their antitrichomonal activities against the G3 Trichomonas vaginalis strain, revealing a higher percentage of growth inhibition for the ruthenium and rhodium complexes over their corresponding ligand.

  9. Biochemical action of new complexes of ruthenium with quinolones as potential antitumor agents.

    PubMed

    Gruia, Maria Iuliana; Negoita, Valentina; Vasilescu, Monica; Panait, Marieta; Gruia, Ion; Velescu, Bruno Stefan; Uivarosi, Valentina

    2015-06-01

    The aim of the present study paper was to identify the role of reactive oxygen species (ROS) in apoptosis signaling mechanisms. We used for this purpose two ruthenium complex compounds based on that overproduce these reactive species by their metabolism thus manifesting their antitumor activity too. In vivo studies were performed in Walker 256 carcinoma-bearing Wistar rats treated with two ruthenium (III) (Ru(III)) complexes with -fluoroquinolones norfloxacin and ofloxacin. The treatment started 7 days after tumor grafting. We assayed the dynamics of apoptosis by flow-cytometry and the biochemical oxidative status parameters. The biological samples used were serum and whole-tumor tissues; the results were compared to the untreated control group. The results showed an increase of apoptosis from 14.79% to 59.72% 14.79% to 59.72% in tumor cells treated with the most active combination, ruthenium complex with norfloxacin. We also noted an increase of the oxidative status and ROS production during treatment. The newly-synthesized complexes are less toxic and their activity is based on the induction of oxidative stress. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Photo-induced DNA cleavage and cytotoxicity of a ruthenium(II) arene anticancer complex.

    PubMed

    Brabec, Viktor; Pracharova, Jitka; Stepankova, Jana; Sadler, Peter J; Kasparkova, Jana

    2016-07-01

    We report DNA cleavage by ruthenium(II) arene anticancer complex [(η(6)-p-terp)Ru(II)(en)Cl](+) (p-terp=para-terphenyl, en=1,2-diaminoethane, complex 1) after its photoactivation by UVA and visible light, and the toxic effects of photoactivated 1 in cancer cells. It was shown in our previous work (T. Bugarcic et al., J. Med. Chem. 51 (2008) 5310-5319) that this complex exhibits promising toxic effects in several human tumor cell lines and concomitantly its DNA binding mode involves combined intercalative and monofunctional (coordination) binding modes. We demonstrate in the present work that when photoactivated by UVA or visible light, 1 efficiently photocleaves DNA, also in hypoxic media. Studies of the mechanism underlying DNA cleavage by photoactivated 1 reveal that the photocleavage reaction does not involve generation of reactive oxygen species (ROS), although contribution of singlet oxygen ((1)O2) to the DNA photocleavage process cannot be entirely excluded. Notably, the mechanism of DNA photocleavage by 1 appears to involve a direct modification of mainly those guanine residues to which 1 is coordinatively bound. As some tumors are oxygen-deficient and cytotoxic effects of photoactivated ruthenium compounds containing {Ru(η(6)-arene)}(2+) do not require the presence of oxygen, this class of ruthenium complexes may be considered potential candidate agents for improved photodynamic anticancer chemotherapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Enantiomeric separations of ruthenium (II) polypyridyl complexes using HPLC with cyclofructan chiral stationary phases.

    PubMed

    Shu, Yang; Breitbach, Zachary S; Dissanayake, Milan K; Perera, Sirantha; Aslan, Joseph M; Alatrash, Nagham; MacDonnell, Frederick M; Armstrong, Daniel W

    2015-01-01

    The enantiomeric separation of 21 ruthenium (II) polypyridyl complexes was achieved with a novel class of cyclofructan-based chiral stationary phases (CSPs) in the polar organic mode. Aromatic derivatives on the chiral selectors proved to be essential for enantioselectivity. The R-napthylethyl carbamate functionalized cyclofructan 6 (LARIHC CF6-RN) column proved to be the most effective overall, while the dimethylphenyl carbamate cyclofructan 7 (LARIHC CF7-DMP) showed complementary selectivity. A combination of acid and base additives was necessary for optimal separations. The retention factor vs. acetonitrile/methanol ratio plot showed a U-shaped retention curve, indicating that different interactions take place at different polar organic solvent compositions. The separation results indicated that π-π interactions, steric effects, and hydrogen bonding contribute to the enantiomeric separation of ruthenium (II) polypyridyl complexes with cyclofructan chiral stationary phases in the polar organic mode.

  12. A combined experimental and computational study on the cycloisomerization of 2-ethynylbiaryls catalyzed by dicationic arene ruthenium complexes.

    PubMed

    Yamamoto, Yoshihiko; Matsui, Kazuma; Shibuya, Masatoshi

    2015-05-04

    Ruthenium-catalyzed cycloisomerization of 2-ethynylbiaryls was investigated to identify an optimal ruthenium catalyst system. A combination of [η(6) -(p-cymene)RuCl2 (PR3 )] and two equivalents of AgPF6 effectively converted 2-ethynylbiphenyls into phenanthrenes in chlorobenzene at 120 °C over 20 h. Moreover, 2-ethynylheterobiaryls were found to be favorable substrates for this ruthenium catalysis, thus achieving the cycloisomerization of previously unused heterocyclic substrates. Moreover, several control experiments and DFT calculations of model complexes were performed to propose a plausible reaction mechanism. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Experimental and Theoretical Study of CO2 Insertion into Ruthenium Hydride Complexes.

    PubMed

    Ramakrishnan, Srinivasan; Waldie, Kate M; Warnke, Ingolf; De Crisci, Antonio G; Batista, Victor S; Waymouth, Robert M; Chidsey, Christopher E D

    2016-02-15

    The ruthenium hydride [RuH(CNN)(dppb)] (1; CNN = 2-aminomethyl-6-tolylpyridine, dppb = 1,4-bis(diphenylphosphino)butane) reacts rapidly and irreversibly with CO2 under ambient conditions to yield the corresponding Ru formate complex 2. In contrast, the Ru hydride 1 reacts with acetone reversibly to generate the Ru isopropoxide, with the reaction free energy ΔG°(298 K) = -3.1 kcal/mol measured by (1)H NMR in tetrahydrofuran-d8. Density functional theory (DFT), calibrated to the experimentally measured free energies of ketone insertion, was used to evaluate and compare the mechanism and energetics of insertion of acetone and CO2 into the Ru-hydride bond of 1. The calculated reaction coordinate for acetone insertion involves a stepwise outer-sphere dihydrogen transfer to acetone via hydride transfer from the metal and proton transfer from the N-H group on the CNN ligand. In contrast, the lowest energy pathway calculated for CO2 insertion proceeds by an initial Ru-H hydride transfer to CO2 followed by rotation of the resulting N-H-stabilized formate to a Ru-O-bound formate. DFT calculations were used to evaluate the influence of the ancillary ligands on the thermodynamics of CO2 insertion, revealing that increasing the π acidity of the ligand cis to the hydride ligand and increasing the σ basicity of the ligand trans to it decreases the free energy of CO2 insertion, providing a strategy for the design of metal hydride systems capable of reversible, ergoneutral interconversion of CO2 and formate.

  14. Prototypes of molecular motors based on star-shaped organometallic ruthenium complexes.

    PubMed

    Vives, Guillaume; de Rouville, Henri-Pierre Jacquot; Carella, Alexandre; Launay, Jean-Pierre; Rapenne, Gwénaël

    2009-06-01

    This tutorial review presents our strategy to control the rotation in a molecular rotary motor, and the family of star-shaped ruthenium complexes designed to perform such a task. The molecules have a piano-stool structure with a "stator" meant to be grafted on a surface, and a "rotor" bearing redox-active groups, so that addressing the molecule with nano-electrodes would trigger rotation.

  15. Synthesis and ECL performance of highly efficient bimetallic ruthenium tris-bipyridyl complexes.

    PubMed

    Sun, Shiguo; Li, Fusheng; Liu, Fengyu; Yang, Xue; Fan, Jiangli; Song, Fengling; Sun, Licheng; Peng, Xiaojun

    2012-10-28

    In order to find the ideal carbon chain linkage number n for achieving the highest ECL in bimetallic ruthenium tris-bipyridyl complexes, a series of novel complexes [(bpy)(2)Ru(bpy')(CH(2))(n)(bpy')Ru(bpy)(2)](4+) (, where bpy is 2,2'-bipyridyl, n = 10, 12, 14) for a coreactant electrochemiluminescence (ECL) system have been synthesized. Their ECL properties at a Au electrode have been studied in 0.1 M phosphate buffer by using tripropylamine (TPrA), 2-(dibutylamino)ethanol (DBAE) and melamine as the coreactant, to compare with that of the previously reported bimetallic ruthenium analogous complex [(bpy)(2)Ru(bpy')(CH(2))(8)(bpy')Ru(bpy)(2)](4+). The results demonstrate that the ECL intensity depends largely on the length of the saturated carbon chain linkage number n. The highest ECL is reached when n = 10, suggesting that a synergistic effect on ECL enhancement co-exists between the two intramolecular linked ruthenium activating centers. Density functional theory (DFT) calculation demonstrated that the optimized bond distances between Ru and N(bpy') are the longest both in the ground and the excited triplet states in the case of n = 10, while those for Ru and N(bpy) are the shortest in the excited triplet states. All these factors may be responsible for the above mentioned results. This study provided a methodology to further improve and tune ECL efficiency by using bimetallic ruthenium complexes linked by a flexible saturated carbon chain.

  16. Oligocyclopentadienyl transition metal complexes

    SciTech Connect

    de Azevedo, Cristina G.; Vollhardt, K. Peter C.

    2002-01-18

    Synthesis, characterization, and reactivity studies of oligocyclopentadienyl transition metal complexes, namely those of fulvalene, tercyclopentadienyl, quatercyclopentadienyl, and pentacyclopentadienyl(cyclopentadienyl) are the subject of this account. Thermal-, photo-, and redox chemistries of homo- and heteropolynuclear complexes are described.

  17. Biological Potential of Halfsandwich Ruthenium(II) and Iridium (III) Complexes.

    PubMed

    Ludwig, Gerd; Mojić, Marija; Bulatović, Mirna; Mijatović, Sanja; Maksimović-Ivanić, Danijela; Steinborn, Dirk; Kaluđerović, Goran N

    2016-01-01

    In vitro studies with the ruthenium(II) and analogous iridium(III) complexes [Ru(η6- p-cymene)Cl2{Ph2PCH2CH2CH2S(O)xPh-κP}], [Ru(η6-p-cymene)Cl{Ph2PCH2CH2CH2S(O)xPh- κP,κS}][PF6] (1-4), [Ir(η5-C5Me5)Cl2{Ph2PCH2CH2CH2S(O)xPh-κP}] and [Ir(η5-C5Me5)Cl{Ph2 PCH2CH2CH2S(O)xPh-κP,κS}][PF6] (5-8; x = 0, 1) revealed the high selectivity toward the 8505C, A253, MCF-7, SW480 and 518A2 cancer cell lines. Thus, the cationic ruthenium complex 4 proved to be the most selective one. In case of the neutral and cationic ruthenium complexes 1-4 the caspase-dependent apoptotic cell death was proven as the main cause of the drug's tumoricidal action on 8505C cell line.

  18. C-H Bond Activation/Arylation Catalyzed by Arene-Ruthenium-Aniline Complexes in Water.

    PubMed

    Binnani, Chinky; Tyagi, Deepika; Rai, Rohit K; Mobin, Shaikh M; Singh, Sanjay K

    2016-11-07

    Water-soluble arene-ruthenium complexes coordinated with readily available aniline-based ligands were successfully employed as highly active catalysts in the C-H bond activation and arylation of 2-phenylpyridine with aryl halides in water. A variety of (hetero)aryl halides were also used for the ortho-C-H bond arylation of 2-phenylpyridine to afford the corresponding ortho- monoarylated products as major products in moderate to good yields. Our investigations, including time-scaled NMR spectroscopy and mass spectrometry studies, evidenced that the coordinating aniline-based ligands, having varying electronic and steric properties, had a significant influence on the catalytic activity of the resulting arene-ruthenium-aniline-based complexes. Moreover, mass spectrometry identification of the cycloruthenated species, {(η(6) -arene)Ru(κ(2) -C,N-phenylpyridine)}(+) , and several ligand-coordinated cycloruthenated species, such as [(η(6) -arene)Ru(4-methylaniline)(κ(2) -C,N-phenylpyridine)](+) , found during the reaction of 2-phenylpyridine with the arene-ruthenium-aniline complexes further authenticated the crucial roles of these species in the observed highly active and tuned catalyst. At last, the structures of a few of the active catalysts were also confirmed by single-crystal X-ray diffraction studies.

  19. Aryl-Substituted Ruthenium(II) Complexes: A Strategy for Enhanced Photocleavage and Efficient DNA Binding.

    PubMed

    Abreu, Felipe Diógenes; Paulo, Tercio de F; Gehlen, Marcelo H; Ando, Rômulo A; Lopes, Luiz G F; Gondim, Ana Cláudia S; Vasconcelos, Mayron A; Teixeira, Edson H; Sousa, Eduardo Henrique Silva; de Carvalho, Idalina Maria Moreira

    2017-08-07

    Ruthenium polypyridine complexes have shown promise as agents for photodynamic therapy (PDT) and tools for molecular biology (chromophore-assisted light inactivation). To accomplish these tasks, it is important to have at least target selectivity and great reactive oxygen species (ROS) photogeneration: two properties that are not easily found in the same molecule. To prepare such new agents, we synthesized two new ruthenium complexes that combine an efficient DNA binding moiety (dppz ligand) together with naphthyl-modified (1) and anthracenyl-modified (2) bipyridine as a strong ROS generator bound to a ruthenium complex. The compounds were fully characterized and their photophysical and photochemical properties investigated. Compound 2 showed one of the highest quantum yields for singlet oxygen production ever reported (ΦΔ= 0.96), along with very high DNA binding (log Kb = 6.78). Such photochemical behavior could be ascribed to the lower triplet state involving the anthracenyl-modified bipyridine, which is associated with easier oxygen quenching. In addition, the compounds exhibited moderate selectivity toward G-quadruplex DNA and binding to the minor groove of DNA, most likely driven by the pendant ligands. Interestingly, they also showed DNA photocleavage activity even upon exposure to a yellow light-emitting diode (LED). Regarding their biological activity, the compounds exhibited an exciting antibacterial action, particularly against Gram-positive bacteria, which was enhanced upon blue LED irradiation. Altogether, these results showed that our strategy succeeded in producing light-triggered DNA binding agents with pharmacological and biotechnological potential.

  20. Binuclear ruthenium(III) bis(thiosemicarbazone) complexes: synthesis, spectral, electrochemical studies and catalytic oxidation of alcohol.

    PubMed

    Mohamed Subarkhan, M; Ramesh, R

    2015-03-05

    A new series of binuclear ruthenium(III) thiosemicarbazone complexes of general formula [(EPh3)2(X)2Ru-L-Ru(X)2(EPh3)2] (where E=P or As; X=Cl or Br; L=NS chelating bis(thiosemicarbazone ligands) has been synthesized and characterized by analytical and spectral (FT-IR, UV-Vis and EPR). IR spectra show that the thiosemicarbazones behave as monoanionic bidentate ligands coordinating through the azomethine nitrogen and thiolate sulphur. The electronic spectra of the complexes indicate that the presence of d-d and intense LMCT transitions in the visible region. The complexes are paramagnetic (low spin d(5)) in nature and all the complexes show rhombic distortion around the ruthenium ion with three different 'g' values (gx≠gy≠gz) at 77K. All the complexes are redox active and exhibit an irreversible metal centered redox processes (Ru(III)-Ru(III)/Ru(IV)-Ru(IV); Ru(III)-Ru(III)/Ru(II)-Ru(II)) within the potential range of 0.38-0.86V and -0.39 to -0.66 V respectively, versus Ag/AgCl. Further, the catalytic efficiency of one of the complexes [Ru2Cl2(AsPh3)4(L1)] (4) has been investigated in the case of oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine-N-oxide(NMO) as co-oxidant. The formation of high valent Ru(V)O species is proposed as catalytic intermediate for the catalytic cycle.

  1. Experimental and computational exploration of ground and excited state properties of highly strained ruthenium terpyridine complexes.

    PubMed

    Vallett, Paul J; Damrauer, Niels H

    2013-08-01

    Dissociative electron transfer reactions are prevalent in one-electron reduced aryl halides; however, calculations applied to charge-transfer excited states of metal complexes suggest that this reaction would be strongly endergonic unless attention is paid to specific structural details. In this current study, we explore the effect of introducing intramolecular strain into a series of halogenated ruthenium(II) polypyridyls. Parent [Ru(tpy)2](2+) (1) (tpy = 2,2':6',2″-terpyridine) is compared with two complexes, [Ru(6,6″-Br2-tpy)(tpy)](2+) (2) and [Ru(6,6″-Br2-tpy)2](2+) (3) (6,6″-Br2-tpy = 6,6″-dibromo-tpy) that incorporate interligand van der Waals strain derived from the large halogen substituents. DFT calculations and the crystal structure of 3 show how this strain distorts the geometry of 3 as compared to 1. Time-dependent DFT calculations are used to explain the effect of this strain on electronic absorption spectra where, in particular, a transition observed in 3 is attenuated in 2 and absent in 1 and heralds interligand charge transfer mediated by the halogen substituent. Ultrafast transient absorption spectroscopy reveals coherent vibrational dynamics particularly in 3 but also in 2 that is interpreted as reflecting heavy-atom motion. Surprisingly, in spite of the additional strain, the excited-state lifetime of 3 is observed to be approximately a factor of 6 longer than 2. Constrained-DFT calculations show that while the excited behavior of 2 is similar to 1, the strain-induced geometric distortions in 3 cause a nesting of excited state triplet surfaces resulting in a longer excited state lifetime. This may afford the additional time needed to engage in photochemistry, and kinetic evidence is observed for the breaking of a C-Br bond in 3 and formation of a contact ion pair state.

  2. Catalytic water oxidation by ruthenium(II) quaterpyridine (qpy) complexes: evidence for ruthenium(III) qpy-N,N'''-dioxide as the real catalysts.

    PubMed

    Liu, Yingying; Ng, Siu-Mui; Yiu, Shek-Man; Lam, William W Y; Wei, Xi-Guang; Lau, Kai-Chung; Lau, Tai-Chu

    2014-12-22

    Polypyridyl and related ligands have been widely used for the development of water oxidation catalysts. Supposedly these ligands are oxidation-resistant and can stabilize high-oxidation-state intermediates. In this work a series of ruthenium(II) complexes [Ru(qpy)(L)2 ](2+) (qpy=2,2':6',2'':6'',2'''-quaterpyridine; L=substituted pyridine) have been synthesized and found to catalyze Ce(IV) -driven water oxidation, with turnover numbers of up to 2100. However, these ruthenium complexes are found to function only as precatalysts; first, they have to be oxidized to the qpy-N,N'''-dioxide (ONNO) complexes [Ru(ONNO)(L)2 ](3+) which are the real catalysts for water oxidation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Pharmacological Activities of Ruthenium Complexes Related to Their NO Scavenging Properties.

    PubMed

    Castellarin, Anna; Zorzet, Sonia; Bergamo, Alberta; Sava, Gianni

    2016-08-02

    Angiogenesis is considered responsible for the growth of primary tumours and of their metastases. With the present study, the effects of three ruthenium compounds, potassiumchlorido (ethylendiamminotetraacetate)rutenate(III) (RuEDTA), sodium (bis-indazole)tetrachloro-ruthenate(III), Na[trans-RuCl₄Ind₂] (KP1339) and trans-imidazoledimethylsulphoxidetetrachloro-ruthenate (NAMI-A), are studied in vitro in models mimicking the angiogenic process. The ruthenium compounds reduced the production and the release of nitrosyls from either healthy macrophages and immortalized EA.hy926 endothelial cells. The effects of NAMI-A are qualitatively similar and sometimes quantitatively superior to those of RuEDTA and KP1339. NAMI-A reduces the production and release of nitric oxide (NO) by the EA.hy926 endothelial cells and correspondingly inhibits their invasive ability; it also strongly inhibits the angiogenesis in matrigel sponges implanted subcutaneously in healthy mice. Taken together, these data support the anti-angiogenic activity of the tested ruthenium compounds and they contribute to explain the selective activity of NAMI-A against solid tumour metastases, the tumour compartment on which angiogenesis is strongly involved. This anti-angiogenic effect may also contribute to the inhibition of the release of metastatic cells from the primary tumour. Investigations on the anti-angiogenic effects of NAMI-A at this level will increase knowledge of its pharmacological properties and it will give a further impulse to the development of this class of innovative metal-based drugs.

  4. Pharmacological Activities of Ruthenium Complexes Related to Their NO Scavenging Properties

    PubMed Central

    Castellarin, Anna; Zorzet, Sonia; Bergamo, Alberta; Sava, Gianni

    2016-01-01

    Angiogenesis is considered responsible for the growth of primary tumours and of their metastases. With the present study, the effects of three ruthenium compounds, potassiumchlorido (ethylendiamminotetraacetate)rutenate(III) (RuEDTA), sodium (bis-indazole)tetrachloro-ruthenate(III), Na[trans-RuCl4Ind2] (KP1339) and trans-imidazoledimethylsulphoxidetetrachloro-ruthenate (NAMI-A), are studied in vitro in models mimicking the angiogenic process. The ruthenium compounds reduced the production and the release of nitrosyls from either healthy macrophages and immortalized EA.hy926 endothelial cells. The effects of NAMI-A are qualitatively similar and sometimes quantitatively superior to those of RuEDTA and KP1339. NAMI-A reduces the production and release of nitric oxide (NO) by the EA.hy926 endothelial cells and correspondingly inhibits their invasive ability; it also strongly inhibits the angiogenesis in matrigel sponges implanted subcutaneously in healthy mice. Taken together, these data support the anti-angiogenic activity of the tested ruthenium compounds and they contribute to explain the selective activity of NAMI-A against solid tumour metastases, the tumour compartment on which angiogenesis is strongly involved. This anti-angiogenic effect may also contribute to the inhibition of the release of metastatic cells from the primary tumour. Investigations on the anti-angiogenic effects of NAMI-A at this level will increase knowledge of its pharmacological properties and it will give a further impulse to the development of this class of innovative metal-based drugs. PMID:27490542

  5. Nanoformulation improves activity of the (pre)clinical anticancer ruthenium complex KP1019.

    PubMed

    Heffeter, P; Riabtseva, A; Senkiv, Y; Kowol, C R; Körner, W; Jungwith, U; Mitina, N; Keppler, B K; Konstantinova, T; Yanchuk, I; Stoika, R; Zaichenko, A; Berger, W

    2014-05-01

    Ruthenium anticancer drugs belong to the most promising non-platinum anticancer metal compounds in clinical evaluation. However, although the clinical results are promising regarding both activity and very low adverse effects, the clinical application is currently hampered by the limited solubility and stability of the drug in aqueous solution. Here, we present a new nanoparticle formulation based on polymer-based micelles loaded with the anticancer lead ruthenium compound KP1019. Nanoprepared KP1019 was characterised by enhanced stability in aqueous solutions. Moreover, the nanoparticle formulation facilitated cellular accumulation of KP1019 (determined by ICP-MS measurements) resulting in significantly lowered IC50 values. With regard to the mode of action, increased cell cycle arrest in G2/M phase (PI-staining), DNA damage (Comet assay) as well as enhanced levels of apoptotic cell death (caspase 7 and PARP cleavage) were found in HCT116 cells treated with the new nanoformulation of KP1019. Summarizing, we present for the first time evidence that nanoformulation is a feasible strategy for improving the stability as well as activity of experimental anticancer ruthenium compounds.

  6. Thermodynamic and kinetic hydricity of ruthenium(II) hydride complexes.

    PubMed

    Matsubara, Yasuo; Fujita, Etsuko; Doherty, Mark D; Muckerman, James T; Creutz, Carol

    2012-09-26

    Despite the fundamental importance of the hydricity of a transition metal hydride (ΔG(H–)°(MH) for the reaction M–H → M+ + H–) in a range of reactions important in catalysis and solar energy storage, ours (J. Am. Chem. Soc.2009, 131, 2794) are the only values reported for water solvent, and there has been no basis for comparison of these with the wider range already determined for acetonitrile solvent, in particular. Accordingly, we have used a variety of approaches to determine hydricity values in acetonitrile of Ru(II) hydride complexes previously studied in water. For [Ru(η(6)-C6Me6)(bpy)H]+ (bpy = 2,2′-bipyridine), we used a thermodynamic cycle based on evaluation of the acidity of [Ru(η(6)-C6Me6)(bpy)H]+ pKa = 22.5 ± 0.1 and the [Ru(η(6)-C6Me6)(bpy)(NCCH3)(1/0)](2+/0) electrochemical potential (−1.22 V vs Fc+/Fc). For [Ru(tpy)(bpy)H]+ (tpy = 2,2′:6′,2″-terpyridine) we utilized organic hydride ion acceptors (A+) of characterized hydricity derived from imidazolium cations and pyridinium cations, and determined K for the hydride transfer reaction, S + MH+ + A+ → M(S)2+ + AH (S = CD3CN, MH+ = [Ru(tpy)(bpy)H]+), by 1H NMR measurements. Equilibration of initially 7 mM solutions was slow--on the time scale of a day or more. When E°(H+/H–) is taken as 79.6 kcal/mol vs Fc+/Fc as a reference, the hydricities of [Ru(η(6)-C6Me6)(bpy)H]+ and [Ru(tpy)(bpy)H]+ were estimated as 54 ± 2 and 39 ± 3 kcal/mol, respectively, in acetonitrile to be compared with the values 31 and 22 kcal/mol, respectively, found for aqueous media. The pKa estimated for [Ru(tpy)(bpy)H]+ in acetonitrile is 32 ± 3. UV–vis spectroscopic studies of [Ru(η(6)-C6Me6)(bpy)]0 and [Ru(tpy)(bpy)]0 indicate that they contain reduced bpy and tpy ligands, respectively. These conclusions are supported by DFT electronic structure results. Comparison of the hydricity values for acetonitrile and water reveals a flattening or compression of the hydricity range upon transferring the

  7. Enhancing vascular relaxing effects of nitric oxide-donor ruthenium complexes.

    PubMed

    Paulo, Michele; Banin, Tamy M; de Andrade, Fernanda A; Bendhack, Lusiane M

    2014-05-01

    Ruthenium-derived complexes have emerged as new nitric oxide (NO) donors that may help circumvent the NO deficiency that impairs vasodilation. NO in vessels can be produced by the endothelial cells and/or released by NO donors. NO interacts with soluble guanylyl-cyclase to produce cGMP to activate the kinase-G pathway. As a result, conductance arteries, veins and resistance arteries dilate, whereas the cytosolic Ca(2+) levels in the smooth muscle cells decrease. NO also reacts with oxygen or the superoxide anion, to generate reactive oxygen species that modulate NO-induced vasodilation. In this article, we focus on NO production by NO synthase and discuss the vascular changes taking place during hypertension originating from endothelial dysfunction. We will describe how the NO released from ruthenium-derived complexes enhances the vascular effects arising from failed NO generation or lack of NO bioavailability. In addition, how ruthenium-derived NO donors induce the hypotensive effect by vasodilation is also discussed.

  8. Voltammetric determination of ruthenium in the form of complexes with biologically active ligands

    SciTech Connect

    Medyantseva, E.P.; Budnikov, G.K.; Balakaeva, T.A.

    1992-02-10

    The interest in the analytical chemistry of ruthenium and its compounds has recently been increasing. Ruthenium compounds can be used an antitumor agents and in the treatment of tuberculosis and fungal infections. It has been suggested that there is a specific relationship between the reduction potentials of the compounds and their biological activity. Of greatest interest among the biologically active compounds are the compounds with nitrogen-containing heterocycles. In order to obtain information on the degree of oxidation of the central atom in the complexes and to select the optimum conditions for the determination of the mono- and bi-nuclear complexes of ruthenium compounds with biologically active ligands such as imidazole (Im), histidine (His), benzimidazole (BIm) and its methyl derivative [1,2(CH{sub 3}){sub 2} - BIm], benzohyroxamic acid (Bha), and 1-phenyl-2-methylamino-1-propanol or ephedrine (Eph) in the present work, the authors studied their electrochemical behavior at dropping mercury (dme) and a platinum electrodes. 6 refs., 1 fig., 2 tabs.

  9. Organometallic ruthenium anticancer complexes inhibit human glutathione-S-transferase π.

    PubMed

    Lin, Yu; Huang, Yongdong; Zheng, Wei; Wang, Fuyi; Habtemariam, Abraha; Luo, Qun; Li, Xianchan; Wu, Kui; Sadler, Peter J; Xiong, Shaoxiang

    2013-11-01

    The organometallic ruthenium(II) anticancer complexes [(η(6)-arene)Ru(en)Cl](+) (arene = p-cymene (1), biphenyl (2) or 9,10-dihydrophenanthrene (3); en = ethylenediamine), exhibit in vitro and in vivo anticancer activities. In the present work, we show that they inhibit human glutathione-S-transferase π (GSTπ) with IC50 values of 59.4 ± 1.3, 63.2 ± 0.4 and 37.2 ± 1.1 μM, respectively. Mass spectrometry revealed that complex 1 binds to the S-donors of Cys15, Cys48 within the G-site and Cys102 at the interface of the GSTπ dimer, while complex 2 binds to Cys48 and Met92 at the dimer interface and complex 3 to Cys15, Cys48 and Met92. Moreover, the binding of complex 1 to Cys15 and Cys102, complex 2 to Cys48 and complex 3 to Cys15 induces the irreversible oxidation of the coordinated thiolates to sulfenates. Molecular modeling studies indicate that the coordination of the {(arene)Ru(en)}(2+) fragment to Cys48 blocks the hydrophilic G-site sterically, perhaps preventing substrate from proper positioning and accounting for the reduction in enzymatic activity of ruthenated GSTπ. The binding of the ruthenium arene complexes to Cys102 or Met92 disrupts the dimer interface which is an essential structural feature for the proper functioning of GSTπ, perhaps also contributing to the inhibition of GSTπ. © 2013.

  10. Catalytic mechanism of water oxidation with single-site ruthenium-heteropolytungstate complexes.

    PubMed

    Murakami, Masato; Hong, Dachao; Suenobu, Tomoyoshi; Yamaguchi, Satoru; Ogura, Takashi; Fukuzumi, Shunichi

    2011-08-03

    Catalytic water oxidation to generate oxygen was achieved using all-inorganic mononuclear ruthenium complexes bearing Keggin-type lacunary heteropolytungstate, [Ru(III)(H(2)O)SiW(11)O(39)](5-) (1) and [Ru(III)(H(2)O)GeW(11)O(39)](5-) (2), as catalysts with (NH(4))(2)[Ce(IV)(NO(3))(6)] (CAN) as a one-electron oxidant in water. The oxygen atoms of evolved oxygen come from water as confirmed by isotope-labeled experiments. Cyclic voltammetric measurements of 1 and 2 at various pH's indicate that both complexes 1 and 2 exhibit three one-electron redox couples based on ruthenium center. The Pourbaix diagrams (plots of E(1/2) vs pH) support that the Ru(III) complexes are oxidized to the Ru(V)-oxo complexes with CAN. The Ru(V)-oxo complex derived from 1 was detected by UV-visible absorption, EPR, and resonance Raman measurements in situ as an active species during the water oxidation reaction. This indicates that the Ru(V)-oxo complex is involved in the rate-determining step of the catalytic cycle of water oxidation. The overall catalytic mechanism of water oxidation was revealed on the basis of the kinetic analysis and detection of the catalytic intermediates. Complex 2 exhibited a higher catalytic reactivity for the water oxidation with CAN than did complex 1.

  11. Organometallic ruthenium(II) complexes: synthesis, structure and influence of substitution at azomethine carbon towards DNA/BSA binding, radical scavenging and cytotoxicity.

    PubMed

    Sathyadevi, Palanisamy; Krishnamoorthy, Paramasivam; Bhuvanesh, Nattamai S P; Kalaiselvi, Palaniswamy; Vijaya Padma, Viswanadha; Dharmaraj, Nallasamy

    2012-09-01

    Bivalent, ruthenium organometallics containing hydrazone ligands with the composition [RuH(CO)(PPh(3))(2)(L(1-3))] (4-6) have been synthesised from the reactions of [RuH(2)(CO)(PPh(3))(3)] and benzoic acid pyridine-2-ylmethylene-hydrazide (HL(1)) (1) /benzoic acid (1-pyridin-2-yl-ethylidene)-hydrazide (HL(2)) (2)/benzoic acid (phenyl-pyridin-2-yl-methylene)-hydrazide (HL(3)) (3) and characterised by various physico-chemical techniques. The X-ray crystal structure of one of the above complexes, [RuH(CO)(PPh(3))(2)(L(3))] (6) demonstrated a distorted octahedral coordination geometry around the metal centre. Results of our investigation on the effect of substitution (H or CH(3) or C(6)H(5)) at the azomethine carbon of coordinated hydrazone in these ruthenium chelates on the potential binding with DNA/BSA, free radical scavenging and cytotoxicity is presented.

  12. Synthesis, structure, and redox and catalytic properties of a new family of ruthenium complexes containing the tridentate bpea ligand.

    PubMed

    Rodríguez, M; Romero, I; Llobet, A; Deronzier, A; Biner, M; Parella, T; Stoeckli-Evans, H

    2001-08-13

    We have prepared a new family of ruthenium complexes containing the bpea ligand (where bpea stands for N,N-bis(2-pyridyl)ethylamine), with general formula [Ru(bpea)(bpy)(X)](n+) (2, X = Cl(-); 3, X = H(2)O; 4, X = OH(-)), and the trisaqua complex [Ru(bpea)(H2O)(3)](2+), 6. The complexes have been characterized through elemental analyses, UV-vis and (1)H NMR spectroscopy, and electrochemical studies. For complex 3, the X-ray diffraction structure has also been solved. The compound belongs to the monoclinic P2(1)/m space group, with Z = 2, a = 7.9298(6) A, b = 18.0226(19) A, c = 10.6911(8) A, and beta = 107.549(8) degrees. The Ru metal center has a distorted octahedral geometry, with the O atom of the aquo ligand placed in a trans position with regard to the aliphatic N atom of the bpea ligand so that the molecule possesses a symmetry plane. NMR spectra show that the complex maintains its structure in aqueous solution, and that the corresponding chloro complex also has a similar structural arrangement. The pH dependence of the redox potential for the complex [Ru(bpea)(bpy)(H2O)](PF(6))(2) is reported, as well as the ability of the corresponding oxo complex to catalyze the oxidation of benzylic alcohol to benzaldehyde in both chemical and electrochemical manners.

  13. Influence of PPh₃ moiety in the anticancer activity of new organometallic ruthenium complexes.

    PubMed

    Sáez, Rubén; Lorenzo, Julia; Prieto, Ma Jose; Font-Bardia, Mercè; Calvet, Teresa; Omeñaca, Nuria; Vilaseca, Marta; Moreno, Virtudes

    2014-07-01

    The effect of the PPh3 group in the antitumor activity of some new organometallic ruthenium(II) complexes has been investigated. Several complexes of the type [Ru((II))(Cl)(PPh3)(Lig-N)], [Ru((II))(Cl)2(Lig-N)] (where Lig-N=pyridine derivate) and [Ru((II))(Cl)(PPh3)2], have been synthesized and characterized. A noticeable increment of the antitumor activity and cytotoxicity of the complexes due to the presence of PPh3 moiety has also been demonstrated, affording IC50 values of 5.2 μM in HL-60 tumor cell lines. Atomic force microscopy, circular dichroism and electrophoresis experiments have proved that these complexes can bind DNA resulting in a distortion of both secondary and tertiary structures. Ethidium bromide displacement fluorescence spectroscopy studies and viscosity measurements support that the presence of PPh3 group induces intercalation interactions with DNA. Indeed, crystallographic analysis, suggest that intra-molecular π-π interactions could be involved in the intercalation within DNA base pairs. Furthermore, high performance liquid chromatography mass spectrometry (HPLC-MS) studies have confirmed a strong interaction between ruthenium complexes and proteins (ubiquitin and potato carboxypeptidase inhibitor - PCI) including slower kinetics due to the presence of PPh3 moiety, which could have an important role in detoxification mechanism and others. Finally, ion mobility mass spectrometry (IMMS) experiments have proved that there is no significant change in the gas phase structural conformation of the proteins owing to their bonding to ruthenium complexes. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Synthesis and Antiproliferative Activity of New Ruthenium Complexes with Ethacrynic-Acid-Modified Pyridine and Triphenylphosphine Ligands.

    PubMed

    Agonigi, Gabriele; Riedel, Tina; Zacchini, Stefano; Păunescu, Emilia; Pampaloni, Guido; Bartalucci, Niccolò; Dyson, Paul J; Marchetti, Fabio

    2015-07-06

    Pyridine- and phosphine-based ligands modified with ethacrynic acid (a broad acting glutathione transferase inhibitor) were prepared and coordinated to ruthenium(II)-arene complexes and to a ruthenium(III) NAMI-A type complex. All the compounds (ligands and complexes) were fully characterized by analytical and spectroscopic methods and, in one case, by single-crystal X-ray diffraction. The in vitro anticancer activity of the compounds was studied, with the compounds displaying moderate cytotoxicity toward the human ovarian cancer cell lines. All the complexes led to similar levels of residual GST activity in the different cell lines, irrespective of the stability of the Ru-ligand bond.

  15. Selenoquinones stabilized by ruthenium(II) arene complexes: synthesis, structure, and cytotoxicity.

    PubMed

    Dubarle-Offner, Julien; Clavel, Catherine M; Gontard, Geoffrey; Dyson, Paul J; Amouri, Hani

    2014-05-05

    A new series of monoselenoquinone and diselenoquinone π complexes, [(η(6) -p-cymene)Ru(η(4) -C6 R4 SeE)] (R=H, E=Se (6); R=CH3 , E=Se (7); R=H, E=O (8)), as well as selenolate π complexes [(η(6) -p-cymene)Ru(η(5) -C6 H3 R2 Se)][SbF6 ] (R=H (9); R=CH3 (10)), stabilized by arene ruthenium moieties were prepared in good yields through nucleophilic substitution reactions from dichlorinated-arene and hydroxymonochlorinated-arene ruthenium complexes [(η(6) -p-cymene)Ru(C6 R4 XCl)][SbF6 ]2 (R=H, X=Cl (1); R=CH3 , X=Cl (2); R=H, X=OH (3)) as well as the monochlorinated π complexes [(η(6) -p-cymene)Ru(η(5) -C6 H3 R2 Cl)][SbF6 ]2 (R=H (4); R=CH3 (5)). The X-ray crystallographic structures of two of the compounds, [(η(6) -p-cymene)Ru(η(4) -C6 Me4 Se2 )] (7) and [(η(6) -p-cymene)Ru(η(4) -C6 H4 SeO)] (8), were determined. The structures confirm the identity of the target compounds and ascertain the coordination mode of these unprecedented ruthenium π complexes of selenoquinones. Furthermore, these new compounds display relevant cytotoxic properties towards human ovarian cancer cells.

  16. Synthesis, spectral characterization, DNA interaction, radical scavenging and cytotoxicity studies of ruthenium(II) hydrazone complexes.

    PubMed

    Mohanraj, Maruthachalam; Ayyannan, Ganesan; Raja, Gunasekaran; Jayabalakrishnan, Chinnasamy

    2016-05-01

    Three new ruthenium(II) complexes with hydrazone ligands, furan-2-carboxylic acid (2,4-dihydroxy-benzylidene)-hydrazide (HL(1)), furan-2-carboxylic acid [4-(ethyl-propyl-amino)-2-hydroxy-benzylidene]-hydrazide (HL(2)) and furan-2-carboxylic acid (3-ethoxy-2-hydroxy-benzylidene)-hydrazide (HL(3)) were synthesized and characterized by various spectro-analytical techniques. The hydrazone ligands act as a tridendate ligand with ONO as the donor sites and are preferably found in the enol form in all the complexes. The molecular structure of the ligands was determined by single crystal X-ray diffraction technique. The interaction of the ligands and the complexes with CT-DNA were evaluated by an absorption titration method which revealed that the compounds interact with CT-DNA through intercalation. Gel electrophoresis assay demonstrated the ability of the complexes to cleave the calf thymus DNA hydrolytically. Antioxidant studies showed that the ruthenium(II) complexes have a strong radical-scavenging properties. Further, the cytotoxic effect of the compounds examined on cancerous cell lines showed that the complexes exhibited substantial anticancer activity.

  17. Characterization of the Activities of Dinuclear Thiolato-Bridged Arene Ruthenium Complexes against Toxoplasma gondii.

    PubMed

    Basto, Afonso P; Müller, Joachim; Rubbiani, Riccardo; Stibal, David; Giannini, Federico; Süss-Fink, Georg; Balmer, Vreni; Hemphill, Andrew; Gasser, Gilles; Furrer, Julien

    2017-09-01

    The in vitro effects of 18 dinuclear thiolato-bridged arene ruthenium complexes (1 monohiolato compound, 4 dithiolato compounds, and 13 trithiolato compounds), originally designed as anticancer agents, on the apicomplexan parasite Toxoplasma gondii grown in human foreskin fibroblast (HFF) host cells were studied. Some trithiolato compounds exhibited antiparasitic efficacy at concentrations of 250 nM and below. Among those, complex 1 and complex 2 inhibited T. gondii proliferation with 50% inhibitory concentrations (IC50s) of 34 and 62 nM, respectively, and they did not affect HFFs at dosages of 200 μM or above, resulting in selectivity indices of >23,000. The IC50s of complex 9 were 1.2 nM for T. gondii and above 5 μM for HFFs. Transmission electron microscopy detected ultrastructural alterations in the matrix of the parasite mitochondria at the early stages of treatment, followed by a more pronounced destruction of tachyzoites. However, none of the three compounds applied at 250 nM for 15 days was parasiticidal. By affinity chromatography using complex 9 coupled to epoxy-activated Sepharose followed by mass spectrometry, T. gondii translation elongation factor 1α and two ribosomal proteins, RPS18 and RPL27, were identified to be potential binding proteins. In conclusion, organometallic ruthenium complexes exhibit promising activities against Toxoplasma, and the potential mechanisms of action of these compounds as well as their prospective applications for the treatment of toxoplasmosis are discussed. Copyright © 2017 American Society for Microbiology.

  18. Architectures based on the use of gold nanoparticles and ruthenium complexes as a new route to improve genosensor sensitivity.

    PubMed

    García, T; Casero, E; Revenga-Parra, M; Martín-Benito, J; Pariente, F; Vázquez, L; Lorenzo, E

    2008-10-15

    The preparation of DNA-sensing architectures based on gold nanoparticles (Au-NPs) in conjunction with an "in situ" prepared ruthenium complex as a new route to improve the analytical properties of genosensors is described. In the development of these architectures several strategies to obtain Au-NPs modified gold electrodes (Au-NP/Au) have been essayed, in particular covalent binding and electrochemical deposition from a solution containing Au-NPs previously synthesized. UV-vis absorption measurements in conjunction with transmission electron microscope (TEM) images reveal that the synthesized Au-NPs are stable for at least 4 weeks and have a narrow size distribution. Atomic force microscopy (AFM) was employed to characterize the morphology and to estimate the Au-NPs surface coverage of the modified gold electrodes obtained following the different modification strategies. In order to assess the utility of these architectures as DNA-sensing devices, a thiolated capture probe sequence from Helicobacter pylori was immobilized onto the as-prepared surface. This sequence was chosen as a case of study within the framework of developing approaches of wide applicability. The hybridization event is detected using a water-soluble pentaamin ruthenium [3-(2-phenanthren-9-yl-vinyl)-pyridine] complex (Ru(NH(3))(5)L) prepared "in situ". This complex, due to its intercalative character, is able to bind to double stranded DNA more efficiently than to single stranded DNA. In addition, the metal provides with a redox center that can be used as an electrochemical indicator. On the basis of this strategy, complementary target sequences of H. pylori have been detected over the range of 40-800 pmol with a detection limit of 25+/-2 pmol.

  19. Base-induced dehydrogenation of ruthenium hydrazine complexes.

    PubMed

    Field, Leslie D; Li, Hsiu L; Dalgarno, Scott J; McIntosh, Ruaraidh D

    2013-02-04

    Treatment of [RuCl(PP(3)(iPr))](+)Cl(-) (PP(3)(iPr) = P(CH(2)CH(2)P(i)Pr(2))(3)) with hydrazine, phenylhydrazine, and methylhydrazine afforded side-on bound hydrazine complexes [RuCl(η(2)-H(2)N-NH(2))(η(3)-PP(3)(iPr))](+), [RuCl(η(2)-H(2)N-NHPh)(η(3)-PP(3)(iPr))](+), and [RuCl(η(2)-H(2)N-NHMe)(η(3)-PP(3)(iPr))](+). The analogous reactions of [RuCl(2)(PP(3)(Ph))] (PP(3)(Ph) = P(CH(2)CH(2)PPh(2))(3)) with hydrazine, phenylhydrazine, and methylhydrazine afforded end-on bound hydrazine complexes [RuCl(η(1)-H(2)N-NH(2))(PP(3)(Ph))](+), [RuCl(η(1)-H(2)N-NHPh)(PP(3)(Ph))](+), and [RuCl(η(1)-H(2)N-NHMe)(PP(3)(Ph))](+). Treatment of parent hydrazine complex [RuCl(N(2)H(4))(PP(3)(iPr))](+) with strong base afforded the dinitrogen and dihydride complexes [Ru(N(2))(PP(3)(iPr))] and [RuH(2)(PP(3)(iPr))]. Treatment of phenylhydrazine complex [RuCl(NH(2)NHPh)(PP(3)(iPr))](+) with strong base afforded the hydrido ruthenaindazole complex [RuH(η(2)-NH═NC(6)H(4))(η(3)-PP(3)(iPr))] while similar treatment of methylhydrazine complex [RuCl(NH(2)NHMe)(PP(3)(iPr))](+) afforded the hydrido methylenehydrazide complex [RuH(NHN═CH(2))(PP(3)(iPr))]. Treatment of the hydrazine complexes [RuCl(NH(2)NHR)(PP(3)(Ph))](+) (R = H, Ph, Me) with strong base afforded the dinitrogen complex [Ru(N(2))(PP(3)(Ph))].

  20. Molecular Chemistry in a Zeolite: Genesis of a Zeolite Y-Supported Ruthenium Complex Catalyst

    SciTech Connect

    Ogino, I.; Gates, B.C.

    2009-05-22

    Dealuminated zeolite Y was used as a crystalline support for a mononuclear ruthenium complex synthesized from cis-Ru(acac){sub 2}(C{sub 2}H{sub 4}){sub 2}. Infrared (IR) and extended X-ray absorption fine structure spectra indicated that the surface species were mononuclear ruthenium complexes, Ru(acac)(C{sub 2}H{sub 4}){sub 2}{sup 2+}, tightly bonded to the surface by two Ru-O bonds at Al{sup 3+} sites of the zeolite. The maximum loading of the anchored ruthenium complexes was one complex per two Al{sup 3+} sites; at higher loadings, some of the cis-Ru(acac){sub 2}(C{sub 2}H{sub 4}){sub 2} was physisorbed. In the presence of ethylene and H{sub 2}, the surface-bound species entered into a catalytic cycle for ethylene dimerization and operated stably. IR data showed that at the start of the catalytic reaction, the acac ligand of the Ru(acac)(C{sub 2}H{sub 4}){sub 2}{sup 2+} species was dissociated and captured by an Al{sup 3+} site. Ethylene dimerization proceeded 600 times faster with a cofeed of ethylene and H{sub 2} than without H{sub 2}. These results provide evidence of the importance of the cooperation of the Al{sup 3+} sites in the zeolite and the H{sub 2} in the feed for the genesis of the catalytically active species. The results presented here demonstrate the usefulness of dealuminated zeolite Y as a nearly uniform support that allows precise synthesis of supported catalysts and detailed elucidation of their structures.

  1. Effect of substituent of terpyridines on the DNA-interaction of polypyridyl ruthenium(II) complexes

    NASA Astrophysics Data System (ADS)

    Patel, Mohan N.; Gandhi, Deepen S.; Parmar, Pradhuman A.

    2011-12-01

    An octahedral complexes of ruthenium with 2,9-dimethyl-1,10-phenanthroline (dmphen) and substituted terpyridine have been synthesized. The Ru II complexes have been characterized by elemental analyses, thermogravimetric analyses, magnetic moment measurements, FT-IR, electronic, 1H NMR and FAB mass spectra. The binding strength and mode of interaction of the complexes with Herring Sperm DNA has been investigated using absorption titration and viscosity measurement studies. Results suggest that the substituent on terpyridine ligand affects the binding mode and binding ability of the complexes. Effect of time and ionic strength on DNA cleavage ability of complex has also been studied by gel electrophoresis. Results suggest that more than 200 mM concentration of NaCl decreases the cleavage ability of complex.

  2. Tunable Electrochemical and Catalytic Features of BIAN- and BIAO-Derived Ruthenium Complexes.

    PubMed

    Hazari, Arijit Singha; Das, Ankita; Ray, Ritwika; Agarwala, Hemlata; Maji, Somnath; Mobin, Shaikh M; Lahiri, Goutam Kumar

    2015-05-18

    This article deals with a class of ruthenium-BIAN-derived complexes, [Ru(II)(tpm)(R-BIAN)Cl]ClO4 (tpm = tris(1-pyrazolyl)methane, R-BIAN = bis(arylimino)acenaphthene, R = 4-OMe ([1a]ClO4), 4-F ([1b]ClO4), 4-Cl ([1c]ClO4), 4-NO2 ([1d]ClO4)) and [Ru(II)(tpm)(OMe-BIAN)H2O](2+) ([3a](ClO4)2). The R-BIAN framework with R = H, however, leads to the selective formation of partially hydrolyzed BIAO ([N-(phenyl)imino]acenapthenone)-derived complex [Ru(II)(tpm)(BIAO)Cl]ClO4 ([2]ClO4). The redox-sensitive bond parameters involving -N═C-C═N- or -N═C-C═O of BIAN or BIAO in the crystals of representative [1a]ClO4, [3a](PF6)2, or [2]ClO4 establish its unreduced form. The chloro derivatives 1a(+)-1d(+) and 2(+) exhibit one oxidation and successive reduction processes in CH3CN within the potential limit of ±2.0 V versus SCE, and the redox potentials follow the order 1a(+) < 1b(+) < 1c(+) < 1d(+) ≈ 2(+). The electronic structural aspects of 1a(n)-1d(n) and 2(n) (n = +2, +1, 0, -1, -2, -3) have been assessed by UV-vis and EPR spectroelectrochemistry, DFT-calculated MO compositions, and Mulliken spin density distributions in paramagnetic intermediate states which reveal metal-based (Ru(II) → Ru(III)) oxidation and primarily BIAN- or BIAO-based successive reduction processes. The aqua complex 3a(2+) undergoes two proton-coupled redox processes at 0.56 and 0.85 V versus SCE in phosphate buffer (pH 7) corresponding to {Ru(II)-H2O}/{Ru(III)-OH} and {Ru(III)-OH}/{Ru(IV)═O}, respectively. The chloro (1a(+)-1d(+)) and aqua (3a(2+)) derivatives are found to be equally active in functioning as efficient precatalysts toward the epoxidation of a wide variety of alkenes in the presence of PhI(OAc)2 as oxidant in CH2Cl2 at 298 K, though the analogous 2(+) remains virtually inactive. The detailed experimental analysis with the representative precatalyst 1a(+) suggests the involvement of the active {Ru(IV)═O} species in the catalytic cycle, and the reaction proceeds through the

  3. Synthesis and Characterization of Novel Ruthenium(III) Complexes with Histamine

    PubMed Central

    Kljun, Jakob; Petriček, Saša; Žigon, Dušan; Hudej, Rosana; Miklavčič, Damijan; Turel, Iztok

    2010-01-01

    Novel ruthenium(III) complexes with histamine [RuCl4(dmso-S)(histamineH)] · H2O (1a) and [RuCl4(dmso-S)(histamineH)] (1b) have been prepared and characterized by X-ray structure analysis. Their crystal structures are similar and show a protonated amino group on the side chain of the ligand which is not very common for a simple heterocyclic derivative such as histamine. Biological assays to test the cytotoxicity of the compound 1b combined with electroporation were performed to determine its potential for future medical applications in cancer treatment. PMID:20631838

  4. Chemiluminescence reactions with cationic, neutral, and anionic ruthenium(II) complexes containing 2,2'-bipyridine and bathophenanthroline disulfonate ligands.

    PubMed

    Francis, Paul S; Papettas, Dimitra; Zammit, Elizabeth M; Barnett, Neil W

    2010-07-15

    Ruthenium complexes containing 4,7-diphenyl-1,10-phenanthroline disulfonate (bathophenanthroline disulfonate; BPS) ligands, Ru(BPS)(3)(4-), Ru(BPS)(2)(bipy)(2-) and Ru(BPS)(bipy)(2), were compared to tris(2,2'-bipyridine)ruthenium(II) (Ru(bipy)(3)(2+)), including examination of the wavelengths of maximum absorption and corrected emission intensity, photoluminescence quantum yield, stability of their oxidised ruthenium(III) form, and relative chemiluminescence intensities and signal-to-blank ratios with cerium(IV) sulfate and six analytes (codeine, morphine cocaine, potassium oxalate, furosemide and hydrochlorothiazide) in acidic aqueous solution. The presence of BPS ligands in the complex increased the photoluminescence quantum yield, but decreased the stability of the oxidised form of the reagent. In contrast to previous evidence showing much greater electrochemiluminescence intensities using Ru(BPS)(2)(bipy)(2-) and Ru(BPS)(bipy)(2), these complexes did not provide superior chemiluminescence signals than their homoleptic analogues.

  5. Unmasking the Action of Phosphinous Acid Ligands in Nitrile Hydration Reactions Catalyzed by Arene-Ruthenium(II) Complexes.

    PubMed

    Tomás-Mendivil, Eder; Cadierno, Victorio; Menéndez, María I; López, Ramón

    2015-11-16

    The catalytic hydration of benzonitrile and acetonitrile has been studied by employing different arene-ruthenium(II) complexes with phosphinous (PR2OH) and phosphorous acid (P(OR)2OH) ligands as catalysts. Marked differences in activity were found, depending on the nature of both the P-donor and η(6)-coordinated arene ligand. Faster transformations were always observed with the phosphinous acids. DFT computations unveiled the intriguing mechanism of acetonitrile hydration catalyzed by these arene-ruthenium(II) complexes. The process starts with attack on the nitrile carbon atom of the hydroxyl group of the P-donor ligand instead of on a solvent water molecule, as previously suggested. The experimental results presented herein for acetonitrile and benzonitrile hydration catalyzed by different arene-ruthenium(II) complexes could be rationalized in terms of such a mechanism.

  6. A Ruthenium(III)-Oxyl Complex Bearing Strong Radical Character.

    PubMed

    Shimoyama, Yoshihiro; Ishizuka, Tomoya; Kotani, Hiroaki; Shiota, Yoshihito; Yoshizawa, Kazunari; Mieda, Kaoru; Ogura, Takashi; Okajima, Toshihiro; Nozawa, Shunsuke; Kojima, Takahiko

    2016-11-02

    Proton-coupled electron-transfer oxidation of a Ru(II) -OH2 complex, having an N-heterocyclic carbene ligand, gives a Ru(III) -O(.) species, which has an electronically equivalent structure of the Ru(IV) =O species, in an acidic aqueous solution. The Ru(III) -O(.) complex was characterized by spectroscopic methods and DFT calculations. The oxidation state of the Ru center was shown to be close to +3; the Ru-O bond showed a lower-energy Raman scattering at 732 cm(-1) and the Ru-O bond length was estimated to be 1.77(1) Å. The Ru(III) -O(.) complex exhibits high reactivity in substrate oxidation under catalytic conditions; particularly, benzaldehyde and the derivatives are oxidized to the corresponding benzoic acid through C-H abstraction from the formyl group by the Ru(III) -O(.) complex bearing a strong radical character as the active species. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Organometallic ruthenium complexes with thiosemicarbazone ligands: Synthesis, structure and cytotoxicity of [(η6-p-cymene)Ru(NS)Cl]+ (NS = 9-anthraldehyde thiosemicarbazones)

    PubMed Central

    Beckford, Floyd A.; Leblanc, Gabriel; Thessing, Jeffrey; Shaloski, Michael; Frost, Brian J.; Li, Liya; Seeram, Navindra P.

    2009-01-01

    A series of half-sandwich arene-ruthenium complexes of the type [(η6-p-cymene) Ru(thiosemicarbazone)Cl]+ have been synthesized and their biological activity investigated. The first structurally characterized arene-ruthenium half-sandwich complex with a thiosemicarbazone ligand is reported. PMID:20160909

  8. Synthesis, Structure, and Anticancer Activity of Arene-Ruthenium(II) Complexes with Acylpyrazolones Bearing Aliphatic Groups in the Acyl Moiety.

    PubMed

    Palmucci, Jessica; Marchetti, Fabio; Pettinari, Riccardo; Pettinari, Claudio; Scopelliti, Rosario; Riedel, Tina; Therrien, Bruno; Galindo, Agustin; Dyson, Paul J

    2016-11-21

    A series of neutral ruthenium(II) arene complexes [(arene)Ru(Q(R))Cl] (arene = p-cymene (cym) or hexamethylbenzene (hmb)) containing 4-acyl-5-pyrazolonate Q(R) ligands with different electronic and steric substituents (R = 4-cyclohexyl, 4-stearoyl, or 4-adamantyl) and related ionic complexes [(arene)Ru(Q(R))(PTA)][PF6] (PTA = 1,3,5-triaza-7-phosphaadamantane) were synthesized and characterized by spectroscopy (IR, UV-vis, ESI-MS, and (1)H and (13)C NMR), elemental analysis, X-ray crystallography, and density functional theory studies. The cytotoxicity of the proligands and metal complexes was evaluated in vitro against human ovarian carcinoma cells (A2780 and A2780cisR), as well as against nontumorous human embryonic kidney (HEK293) cells. In general the cationic PTA-containing complexes are more cytotoxic than their neutral precursors with a chloride ligand in place of the PTA. Moreover, the complexes do not show cross-resistance and are essentially equally cytotoxic to both the A2780 and A2780cisR cell lines, although they only show limited selectivity toward the cancer cell lines.

  9. Bipyrimidine ruthenium(II) arene complexes: structure, reactivity and cytotoxicity.

    PubMed

    Betanzos-Lara, Soledad; Novakova, Olga; Deeth, Robert J; Pizarro, Ana M; Clarkson, Guy J; Liskova, Barbora; Brabec, Viktor; Sadler, Peter J; Habtemariam, Abraha

    2012-10-01

    The synthesis and characterization of complexes [(η(6)-arene)Ru(N,N')X][PF(6)], where arene is para-cymene (p-cym), biphenyl (bip), ethyl benzoate (etb), hexamethylbenzene (hmb), indane (ind) or 1,2,3,4-tetrahydronaphthalene (thn), N,N' is 2,2'-bipyrimidine (bpm) and X is Cl, Br or I, are reported, including the X-ray crystal structures of [(η(6)-p-cym)Ru(bpm)I][PF(6)], [(η(6)-bip)Ru(bpm)Cl][PF(6)], [(η(6)-bip)Ru(bpm)I][PF(6)] and [(η(6)-etb)Ru(bpm)Cl][PF(6)]. Complexes in which N,N' is 1,10-phenanthroline (phen), 1,10-phenanthroline-5,6-dione or 4,7-diphenyl-1,10-phenanthroline (bathophen) were studied for comparison. The Ru(II) arene complexes undergo ligand-exchange reactions in aqueous solution at 310 K; their half-lives for hydrolysis range from 14 to 715 min. Density functional theory calculations on [(η(6)-p-cym)Ru(bpm)Cl][PF(6)], [(η(6)-p-cym)Ru(bpm)Br][PF(6)], [(η(6)-p-cym)Ru(bpm)I][PF(6)], [(η(6)-bip)Ru(bpm)Cl][PF(6)], [(η(6)-bip)Ru(bpm)Br][PF(6)] and [(η(6)-bip)Ru(bpm)I][PF(6)] suggest that aquation occurs via an associative pathway and that the reaction is thermodynamically favourable when the leaving ligand is I > Br ≈ Cl. pK (a)* values for the aqua adducts of the complexes range from 6.9 to 7.32. A binding preference for 9-ethylguanine (9-EtG) compared with 9-ethyladenine (9-EtA) was observed for [(η(6)-p-cym)Ru(bpm)Cl][PF(6)], [(η(6)-hmb)Ru(bpm)Cl](+), [(η(6)-ind)Ru(bpm)Cl](+), [(η(6)-thn)Ru(bpm)Cl](+), [(η(6)-p-cym)Ru(phen)Cl](+) and [(η(6)-p-cym)Ru(bathophen)Cl](+) in aqueous solution at 310 K. The X-ray crystal structure of the guanine complex [(η(6)-p-cym)Ru(bpm)(9-EtG-N7)][PF(6)](2) shows multiple hydrogen bonding. Density functional theory calculations show that the 9-EtG adducts of all complexes are thermodynamically preferred compared with those of 9-EtA. However, the bmp complexes are inactive towards A2780 human ovarian cancer cells. Calf thymus DNA interactions for [(η(6)-p-cym)Ru(bpm)Cl][PF(6)] and [(η(6)-p

  10. Electronic Spectra of Bare and Solvated Ruthenium Polypyridine Complexes

    NASA Astrophysics Data System (ADS)

    Xu, Shuang; Smith, James E. T.; Weber, J. Mathias

    2016-06-01

    We present work on a prototypical water oxidation catalyst, namely the aqua-complex [(bpy)(tpy)Ru-OH_2]2+ (2,2'-bpy = bipyridine, tpy = 2,2':6',2"-terpyridine), and its hydrated clusters [(bpy)(tpy)Ru-OH_2]2+ ·(H2O)_n, with n = 1 - 4. This complex is the starting species in a catalytic cycle for water oxidation. We couple electrospray ionization mass spectrometry with laser spectroscopy to circumvent challenges that arise in reactive solutions from speciation. Here, we report the electronic spectrum of [(bpy)(tpy)Ru-OH_2]2+ by photodissociation spectroscopy of mass selected, cryogenically prepared ions, and we examine effects of its microhydration environment on its electronic structure. In particular, we investigate the solvatochromic shift of the spectral envelope upon sequential addition of water molecules up to the tetrahydrate.

  11. ESR study of reduced monosubstituted ruthenium(II) diimine complexes

    SciTech Connect

    Samuels, A.C.; DeArmond, M.K.

    1995-10-25

    Electron spin resonance spectroscopy (ESR) was used in the characterization of [Ru(bpy)(CN){sub 4}]{sup 2{minus}}, [Ru(bpm)(CN){sub 4}]{sup 2{minus}}, and [Ru(bpz)(CN){sub 4}]{sup 2{minus}}. Hyperfine structure and coupling constants for the ESR spectra were reported. Further characterization of these complexes was accomplished using absorption and emission spectroscopy and cyclic voltammetry.

  12. A star-shaped ruthenium complex with five ferrocenyl-terminated arms bridged by trans-platinum fragments.

    PubMed

    Vives, Guillaume; Carella, Alexandre; Launay, Jean-Pierre; Rapenne, Gwénaël

    2006-06-04

    We present the synthesis of the new heteropolytopic penta(4-ethynylphenyl)cyclopentadiene ligand, its complexation through the Cp ring to ruthenium tris(indazolyl)borate and through the terminal alkyne groups to five ferrocenyl ethynyl platinum units, yielding an undecanuclear heterotrimetallic complex.

  13. Structural and catalytic properties of some azo-rhodanine Ruthenium(III) complexes

    NASA Astrophysics Data System (ADS)

    Shoair, A. F.; El-Bindary, A. A.; Abd El-Kader, M. K.

    2017-09-01

    Novel azo-rhodanine ruthenium(III) complexes of the type trans-[Ru(Ln)2(AsPh3)2]Cl (Ln = monobasic bidentate anions of 5-(4‧-methoxyphenylazo)-3-phenylamino-2-thioxothiazolidin-4-one (HL1), 5-(phenylazo)-3-phenylamino-2-thioxothiazolidin-4-one (HL2) and 5-(4‧-chlorophenylazo)-3-phenylamino-2-thioxothiazolidin-4-one (HL3); AsPh3 = triphenylarsine) have been synthesized and characterized by elemental analysis, spectroscopic (IR, 1H NMR and UV-VIS), magnetic, X-ray diffraction, mass spectra and thermal analysis techniques. These techniques confirm the formation of octahedral ruthenium(III) complexes. The Ru(III) complexes were tested as a catalysts for the oxidation of benzyl alcohol to benzaldehyde with N-methylmorpholine-N-oxide as a co-oxidant. The effect of time, temperature, and solvent were also studied and the mechanism of this catalytic oxidation reaction is suggested. Molecular docking was used to predict the binding between azo rhodanine derivatives (HLn) with the receptor of 3qum- immune system receptor of human prostate specific antigen (PSA) in a Fab sandwich with a high affinity and a PCa selective antibody.

  14. Direct Synthesis of Symmetrical Azines from Alcohols and Hydrazine Catalyzed by a Ruthenium Pincer Complex: Effect of Hydrogen Bonding

    PubMed Central

    2016-01-01

    Azines (2,3-diazabuta-1,3-dienes) are a widely used class of compounds with conjugated C=N double bonds. Herein, we present a direct synthesis of azines from alcohols and hydrazine hydrate. The reaction, catalyzed by a ruthenium pincer complex, evolves dihydrogen and can be run in a base-free version. The dehydrogenative coupling of benzylic and aliphatic alcohols led to good conversions and yields. Spectroscopic evidence for a hydrazine-coordinated dearomatized ruthenium pincer complex was obtained. Isolation of a supramolecular crystalline compound provided evidence for the important role of hydrogen bonding networks under the reaction conditions. PMID:27990319

  15. The synthesis, lipophilicity and cytotoxic effects of new ruthenium(II) arene complexes with chromone derivatives.

    PubMed

    Pastuszko, Adam; Majchrzak, Kinga; Czyz, Malgorzata; Kupcewicz, Bogumiła; Budzisz, Elzbieta

    2016-06-01

    A series of arene ruthenium(II) complexes with the general formula [(η(6)-arene)Ru(L)X2] (where arene=p-cymene, benzene, hexamethylbenzene or mesitylene, L=aminoflavone or aminochromone derivatives and X=Cl, I) were synthesized and characterized by elemental analysis, MS, IR and (1)H NMR spectroscopy. The stability of the selected complexes was assessed by UV-Vis spectroscopy in 24-hour period. The lipophilicity of the synthesized complexes was determined by the shake-flask method, and their cytotoxicity evaluated in vitro on patient-derived melanoma populations. The most active complexes against melanoma cells contain 7-aminoflavone and 6-aminoflavone as a ligand. The relationship between the cytotoxicity of all the obtained compounds and their logP values was determined and briefly analyzed with two different patterns observed. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Syntheses and properties of phosphine-substituted ruthenium(II) polypyridine complexes with nitrogen oxides.

    PubMed

    Nakamura, Go; Kondo, Mio; Crisalli, Meredith; Lee, Sze Koon; Shibata, Akane; Ford, Peter C; Masaoka, Shigeyuki

    2015-10-21

    Four novel phosphine-substituted ruthenium(ii) polypyridine complexes with nitrogen oxides-trans(P,NO2)-[Ru(trpy)(Pqn)(NO2)]PF6 (trans-NO2), cis(P,NO2)-[Ru(trpy)(Pqn)(NO2)]PF6 (cis-NO2), [Ru(trpy)(dppbz)(NO2)]PF6 (PP-NO2), and cis(P,NO)-[Ru(trpy)(Pqn)(NO)](PF6)3 (cis-NO)-were synthesised (trpy = 2,2':6',2''-terpyridine, Pqn = 8-(diphenylphosphanyl)quinoline, and dppbz = 1,2-bis(diphenylphosphanyl)benzene). The influence of the number and position of the phosphine group(s) on the electronic structure of these complexes was investigated using single-crystal X-ray structural analysis, UV-vis absorption spectroscopy, and electrochemical measurements. The substitution lability of the nitrogen oxide ligand of each complex is discussed in comparison with that of the corresponding acetonitrile complexes.

  17. Luminescence lifetime standards for the nanosecond to microsecond range and oxygen quenching of ruthenium(II) complexes.

    PubMed

    Morris, Kaleem J; Roach, Michael S; Xu, Wenying; Demas, J N; DeGraff, B A

    2007-12-15

    A rapid and reproducible method for determining the temperature dependence of luminescence lifetimes has been developed. With the use of this method, a set of standards for the excited-state lifetime oxygen quenching of several ruthenium(II) transition metal complexes was established. With the use of three solvents of different viscosities and two metal complexes with widely different lifetimes, an overlapping range of ca. 100 ns to 6 micros was obtained. The decays are pure single exponentials, which means that they can be used reliably with both phase and pulsed lifetime instruments. For a pure single-exponential decay, a properly operating phase shift instrument will give the same lifetime as a time domain instrument. With the use of a thermal deactivation model and a three-parameter temperature-dependent oxygen quenching constant, the lifetime temperature-dependent data was well fit by a simple six-parameter equation that covers the temperature range of 10-50 degrees C and oxygen pressures from 0 to 1 atm of oxygen with excellent precision (ca. <1%). This permits both laboratory and field calibration of instruments.

  18. Förster resonance energy transfer studies of luminescent gold nanoparticles functionalized with ruthenium(II) and rhenium(I) complexes: modulation via esterase hydrolysis.

    PubMed

    Leung, Frankie Chi-Ming; Tam, Anthony Yiu-Yan; Au, Vonika Ka-Man; Li, Mei-Jin; Yam, Vivian Wing-Wah

    2014-05-14

    A number of ruthenium(II) and rhenium(I) bipyridine complexes functionalized with lipoic acid moieties have been synthesized and characterized. Functionalization of gold nanoparticles with these chromophoric ruthenium(II) and rhenium(I) complexes has resulted in interesting supramolecular assemblies with Förster resonance energy transfer (FRET) properties that could be modulated via esterase hydrolysis. The luminescence of the metal complex chromophores was turned on upon cleavage of the ester bond linkage by esterase to reduce the efficiency of FRET quenching. The prepared nanoassembly conjugates have been characterized by transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), UV-visible spectroscopy, and emission spectroscopy. The quenching mechanism has also been studied by transient absorption and time-resolved emission decay measurements. The FRET efficiencies were found to vary with the nature of the chromophores and the length of the spacer between the donor (transition metal complexes) and the acceptor (gold nanoparticles).

  19. Synthesis, electronic structure and catalytic activity of ruthenium-iodo-carbonyl complexes with thioether containing NNS donor ligand

    NASA Astrophysics Data System (ADS)

    Jana, Subrata; Jana, Mahendra Sekhar; Biswas, Sujan; Sinha, Chittaranjan; Mondal, Tapan Kumar

    2014-05-01

    The ruthenium carbonyl complexes 1 and 2 with redox noninnocent NNS donor ligand, 1-methyl-2-{(o-thiomethyl)phenylazo}imidazole (L) have been synthesized and characterized by various analytical and spectroscopic (IR, UV-Vis and 1H NMR) techniques. The complexes exhibit a quasi-reversible one electron Ru(II)/Ru(III) oxidation couple at 1.11 V for 1 and 0.76 V for 2 along with two successive one electron ligand reductions. Catalytic activity of the compounds has been investigated to the oxidation of PhCH2OH to PhCHO, 2-butanol (C4H9OH) to 2-butanone, 1-phenylethanol (PhC2H4OH) to acetophenone, cyclopentanol (C5H9OH) to cyclopentanone, cyclohexanol to cyclohexanone, cycloheptanol to cycloheptanone and cycloctanol to cycloctanone using N-methylmorpholine-N-oxide (NMO) as oxidant. The catalytic efficiency of 2 is greater than complex 1 and well correlate with the metal oxidation potential. DFT, NBO and TDDFT calculations in DFT/B3LYP/6-31G(d)/lanL2TZ(f) method are employed to interpret the structural and electronic features of the complexes.

  20. Synthesis of ruthenium hydride

    NASA Astrophysics Data System (ADS)

    Kuzovnikov, M. A.; Tkacz, M.

    2016-02-01

    Ruthenium hydride was synthesized at a hydrogen pressure of about 14 GPa in a diamond-anvil cell. Energy-dispersive x-ray diffraction was used to monitor the ruthenium crystal structure as a function of hydrogen pressure up to 30 GPa. The hydride formation was accompanied by phase transition from the original hcp structure of the pristine metal to the fcc structure. Our results confirmed the theoretical prediction of ruthenium hydride formation under hydrogen pressure. The standard Gibbs free energy of the ruthenium hydride formation reaction was calculated assuming the pressure of decomposition as the equilibrium pressure.

  1. A Liposome Encapsulated Ruthenium Polypyridine Complex as a Theranostic Platform for Triple-Negative Breast Cancer.

    PubMed

    Shen, Jianliang; Kim, Han-Cheon; Wolfram, Joy; Mu, Chaofeng; Zhang, Wei; Liu, Haoran; Xie, Yan; Mai, Junhua; Zhang, Hang; Li, Zhi; Guevara, Maria; Mao, Zong-Wan; Shen, Haifa

    2017-05-10

    Ruthenium coordination complexes have the potential to serve as novel theranostic agents for cancer. However, a major limitation in their clinical implementation is effective tumor accumulation. In this study, we have developed a liposome-based theranostic nanodelivery system for [Ru(phen)2dppz](ClO4)2 (Lipo-Ru). This ruthenium polypyridine complex emits a strong fluorescent signal when incorporated in the hydrophobic lipid bilayer of the delivery vehicle or in the DNA helix, enabling visualization of the therapeutic agent in tumor tissues. Incubation of MDA-MB-231 breast cancer cells with Lipo-Ru induced double-strand DNA breaks and triggers apoptosis. In a mouse model of triple-negative breast cancer, treatment with Lipo-Ru dramatically reduced tumor growth. Biodistribution studies of Lipo-Ru revealed that more than 20% of the injected dose accumulated in the tumor. These results suggest that Lipo-Ru could serve as a promising theranostic platform for cancer.

  2. Ruthenium complexes as inhibitors of the aldo-keto reductases AKR1C1-1C3.

    PubMed

    Traven, Katja; Sinreih, Maša; Stojan, Jure; Seršen, Sara; Kljun, Jakob; Bezenšek, Jure; Stanovnik, Branko; Turel, Iztok; Rižner, Tea Lanišnik

    2015-06-05

    The human aldo-keto reductases (AKRs) from the 1C subfamily are important targets for the development of new drugs. In this study, we have investigated the possible interactions between the recombinant AKR1C enzymes AKR1C1-AKR1C3 and ruthenium(II) complexes; in particular, we were interested in the potential inhibitory actions. Five novel ruthenium complexes (1a, 1b, 2a, 2b, 2c), two precursor ruthenium compounds (P1, P2), and three ligands (a, b, c) were prepared and included in this study. Two different types of novel ruthenium(II) complexes were synthesized. First, bearing the sulphur macrocycle [9]aneS3, S-bonded dimethylsulphoxide (dmso-S), and an N,N-donor ligand, with the general formula of [Ru([9]aneS3)(dmso)(N,N-ligand)](PF6)2 (1a, 1b), and second, with the general formula of [(η(6)-p-cymene)RuCl(N,N-ligand)]Cl (2a, 2b, 2c). All of these synthesized compounds were characterized by high-resolution NMR spectroscopy, X-ray crystallography (compounds a, b, c, 1a, 1b) and other standard physicochemical methods. To evaluate the potential inhibitory actions of these compounds on the AKR1C enzymes, we followed enzymatically catalyzed oxidation of the substrate 1-acenaphthenol by NAD(+) in the absence and presence of various micromolar concentrations of the individual compounds. Among 10 compounds, one ruthenium complex (2b) and two precursor ruthenium compounds (P1, P2) inhibited all three AKR1C enzymes, and one ruthenium complex (2a) inhibited only AKR1C3. Ligands a, b and c revealed no inhibition of the AKR1C enzymes. All four of the active compounds showed multiple binding with the AKR1C enzymes that was characterized by an initial instantaneous inhibition followed by a slow quasi-irreversible step. To the best of our knowledge, this is the first study that has examined interactions between these AKR1C enzymes and ruthenium(II) complexes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Preparation of Different Substitued Polypyridine Ligands, Ruthenium(II)-Bridged Complexes and Spectoscopıc Studies.

    PubMed

    Obali, Aslihan Yilmaz; Ucan, Halil Ismet

    2016-09-01

    Novel different substitued polypyridine ligands 4-((4-(1H-imidazo[4,5-f][1,10]phenanthroline-2-yl)phenoxy)methyl)benzaldehyde (BA-PPY), (E)-N-(4-((4-(1H-imidazo[4,5-f][1,10]phenanthroline-2-yl)phenoxy)methyl)benzylidene)-pyrene-4-amine (PR-PPY), (E)-N-(4-((4-(1H-imidazo[4,5-f][1,10] phenanthroline-2-yl)phenoxy)methyl)benzylidene)-1,10-phenanthroline-5amine (FN-PPY), 2-(4-(bromomethyl)phenyl)-1H-imidazo[4,5-f][1,10] phenanthroline (BR-PPY), 2-(4-(azidomethyl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (N3-PPY) and triazole containing polypyridine ligand 3,4-bis[(4-(metoxy)-1,2,3-triazole)1-methylphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline)] benzaldehyde (BA-DIPPY) and Ruthenium(II) complexes were synthesized and characterized. Their photopysical properties were investigated. The complexes RuP(PR-PPY), RuB(PR-PPY, RuP(FN-PPY) and RuB(FN-PPY) exhibited a broad absorption bands at 485, 475, 476, and 453 nm, respectively, assignable to the spin-allowed MLCT (dπ-π*) transition. The emission maxima of the pyrene-appended polypyridine ligand PR-PPY was observed at λems = 616 nm and the phenanthroline-appended polypyridine ligand FN-PPY was observed at λems = 668 nm. And the emission maxima of the complexes RuP(PR-PPY), RuB(PR-PPY), RuP(FN-PPY) and RuB(FN-PPY) were observed at λems = 646, 646, 685 and 685 nm, respectively. As seen in fluorescence spectra, the fluorescence intensities of the ligands are higher than their metal complexes. This is because of quenching effect of Ruthenium(II) metal on chromophore groups.

  4. Synthesis, Characterization, and in Vitro Antitumor Activity of Ruthenium(II) Polypyridyl Complexes Tethering EGFR-Inhibiting 4-Anilinoquinazolines.

    PubMed

    Du, Jun; Kang, Yan; Zhao, Yao; Zheng, Wei; Zhang, Yang; Lin, Yu; Wang, Zhaoying; Wang, Yuanyuan; Luo, Qun; Wu, Kui; Wang, Fuyi

    2016-05-02

    Ruthenium-based anticancer complexes are promising antitumor agents for their low system toxicity and versatile chemical structures. Epidermal growth factor receptor (EGFR) has been found to be overexpressed in a broad range of tumor cells and is regarded as a drug target in developing novel antitumor drugs. In this work, five ruthenium(II) polypyridyl complexes containing EGFR-inhibiting 4-anilinoquinazoline pharmacophores were synthesized and characterized. These complexes showed both high EGFR-inhibiting activity and strong DNA minor groove-binding activity. In vitro antiproliferation screening demonstrated that the prepared ruthenium complexes are highly cytotoxic against a series of cancer cell lines, in particular non-small-cell lung A549 and human epidermoid carcinoma A431. Fluorescence-activated cell sorting analysis and fluorescence microscopy revealed that the most active complex, K4, induced much more late-stage cell apoptosis and necrosis than gefitinib, the first EGFR-targeting antitumor drug in clinical use. These results indicate that the ruthenium(II) polypyridyl complexes bearing EGFR-inhibiting 4-anilinoquinazolines possess highly active dual-targeting anticancer activity and are promising in developing new anticancer agents.

  5. Ruthenium(II) hydrazone Schiff base complexes: Synthesis, spectral study and catalytic applications

    NASA Astrophysics Data System (ADS)

    Manikandan, R.; Viswanathamurthi, P.; Muthukumar, M.

    2011-12-01

    Ruthenium(II) hydrazone Schiff base complexes of the type [RuCl(CO)(B)(L)] (were B = PPh 3, AsPh 3 or Py; L = hydrazone Schiff base ligands) were synthesized from the reactions of hydrazone Schiff base ligand (obtained from isonicotinoylhydrazide and different hydroxy aldehydes) with [RuHCl(CO)(EPh 3) 2(B)] (where E = P or As; B = PPh 3, AsPh 3 or Py) in 1:1 molar ratio. All the new complexes have been characterized by analytical and spectral (FT-IR, electronic, 1H, 13C and 31P NMR) data. They have been tentatively assigned an octahedral structure. The synthesized complexes have exhibited catalytic activity for oxidation of benzyl alcohol to benzaldehyde and cyclohexanol to cyclohexanone in the presence of N-methyl morpholine N-oxide (NMO) as co-oxidant. They were also found to catalyze the transfer hydrogenation of aliphatic and aromatic ketones to alcohols in KOH/Isopropanol.

  6. RutheniumII complexes bearing fused polycyclic ligands: from fundamental aspects to potential applications.

    PubMed

    Troian-Gautier, Ludovic; Moucheron, Cécile

    2014-04-22

    In this review, we first discuss the photophysics reported in the literature for mononuclear ruthenium complexes bearing ligands with extended aromaticity such as dipyrido[3,2-a:2',3'-c]phenazine (DPPZ), tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]-phenazine (TPPHZ),  tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]acridine (TPAC), 1,10-phenanthrolino[5,6-b]1,4,5,8,9,12-hexaazatriphenylene (PHEHAT) 9,11,20,22-tetraaza- tetrapyrido[3,2-a:2',3'-c:3'',2''-l:2''',3'''-n]pentacene (TATPP), etc. Photophysical properties of binuclear and polynuclear complexes based on these extended ligands are then reported. We finally develop the use of binuclear complexes with extended π-systems for applications such as photocatalysis.

  7. A simple synthetic route to obtain pure trans-ruthenium(II) complexes for dye-sensitized solar cell applications.

    PubMed

    Barolo, Claudia; Yum, Jun-Ho; Artuso, Emma; Barbero, Nadia; Di Censo, Davide; Lobello, Maria Grazia; Fantacci, Simona; De Angelis, Filippo; Grätzel, Michael; Nazeeruddin, Mohammed Khaja; Viscardi, Guido

    2013-11-01

    We report a facile synthetic route to obtain functionalized quaterpyridine ligand and its trans-dithiocyanato ruthenium complex, based on a microwave-assisted procedure. The ruthenium complex has been purified using a silica chromatographic column by protecting carboxylic acid groups as iso-butyl ester, which are subsequently hydrolyzed. The highly pure complex exhibits panchromatic response throughout the visible region. DFT/time-dependent DFT calculations have been performed on the ruthenium complex in solution and adsorbed onto TiO2 to analyze relative electronic and optical properties. The ruthenium complex endowed with the functionalized quaterpyridine ligand was used as a sensitizer in dye-sensitized solar cell yielding a short-circuit photocurrent density of more than 19 mA cm(-2) with a broad incident photon to current conversion efficiency spectra ranging from 400 to 900 nm, exceeding 80 % at 700 nm. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. In Vitro and In Vivo Activities of Ruthenium(II) Phosphine/Diimine/Picolinate Complexes (SCAR) against Mycobacterium tuberculosis

    PubMed Central

    Pavan, Fernando R.; Poelhsitz, Gustavo V.; da Cunha, Lucas V. P.; Barbosa, Marilia I. F.; Leite, Sergio R. A.; Batista, Alzir A.; Cho, Sang H.; Franzblau, Scott G.; de Camargo, Mariana S.; Resende, Flávia A.; Varanda, Eliana A.; Leite, Clarice Q. F.

    2013-01-01

    Rifampicin, discovered more than 50 years ago, represents the last novel class of antibiotics introduced for the first-line treatment of tuberculosis. Drugs in this class form part of a 6-month regimen that is ineffective against MDR and XDR TB, and incompatible with many antiretroviral drugs. Investments in R&D strategies have increased substantially in the last decades. However, the number of new drugs approved by drug regulatory agencies worldwide does not increase correspondingly. Ruthenium complexes (SCAR) have been tested in our laboratory and showed promising activity against Mycobacterium tuberculosis. These complexes showed up to 150 times higher activity against MTB than its organic molecule without the metal (free ligand), with low cytotoxicity and high selectivity. In this study, promising results inspired us to seek a better understanding of the biological activity of these complexes. The in vitro biological results obtained with the SCAR compounds were extremely promising, comparable to or better than those for first-line drugs and drugs in development. Moreover, SCAR 1 and 4, which presented low acute toxicity, were assessed by Ames test, and results demonstrated absence of mutagenicity. PMID:23724039

  9. Synthesis and Catalytic Activity of Ruthenium-Indenylidene Complexes for Olefin Metathesis: Microscale Experiments for the Undergraduate Inorganic or Organometallic Laboratories

    ERIC Educational Resources Information Center

    Pappenfus, Ted M.; Hermanson, David L.; Ekerholm, Daniel P.; Lilliquist, Stacie L.; Mekoli, Megan L.

    2007-01-01

    A series of experiments for undergraduate laboratory courses (e.g., inorganic, organometallic or advanced organic) have been developed. These experiments focus on understanding the design and catalytic activity of ruthenium-indenylidene complexes for olefin metathesis. Included in the experiments are the syntheses of two ruthenium-indenylidene…

  10. Synthesis and Catalytic Activity of Ruthenium-Indenylidene Complexes for Olefin Metathesis: Microscale Experiments for the Undergraduate Inorganic or Organometallic Laboratories

    ERIC Educational Resources Information Center

    Pappenfus, Ted M.; Hermanson, David L.; Ekerholm, Daniel P.; Lilliquist, Stacie L.; Mekoli, Megan L.

    2007-01-01

    A series of experiments for undergraduate laboratory courses (e.g., inorganic, organometallic or advanced organic) have been developed. These experiments focus on understanding the design and catalytic activity of ruthenium-indenylidene complexes for olefin metathesis. Included in the experiments are the syntheses of two ruthenium-indenylidene…

  11. Reactions of ruthenium complexes having pyridyl-containing ligands, 2-pyridinecarboxylato and 2,2'-bipyridine, with an azide ion: formation of nitrido-bridged diruthenium complexes.

    PubMed

    Matsumura, Sayuri; Shikano, Kazunori; Oi, Takao; Suzuki, Noriyuki; Nagao, Hirotaka

    2008-10-20

    Reactions of ruthenium complexes having 2-pyridinecarboxylato and 2,2'-bipyridine ligands with sodium azide in alcohol afforded nitrido-bridged diruthenium complexes, [{Ru(OR)(pyca)(bpy)}2(mu-N)](+) (R = CH3, C2H5). Diruthenium complexes showed diamagnetic properties, a linear Ru-N-Ru coordination configuration, and two irreversible oxidation waves and two reversible reduction waves.

  12. Synthesis, tailoring and characterization of silica nanoparticles containing a highly stable ruthenium complex

    NASA Astrophysics Data System (ADS)

    Wencel, D.; Dolan, C.; Barczak, M.; Keyes, T. E.; McDonagh, C.

    2013-09-01

    This paper describes the synthesis and characterization of sol-gel silica nanoparticles (NPs) derived from tetraethoxysilane (TEOS) and from tetraethoxysilane and methyltriethoxysilane (TEOS-MTEOS) in which is encapsulated, an in-house synthesized, stable oxygen-sensitive ruthenium complex, ruthenium (II) (bis-2,2-bipyridyl)-2(4-carboxylphenyl) imidazo[4,5-f][1,10]phenanthroline. These NPs were characterized using dynamic light scattering, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller analysis. The spherical, stable and monodispersed NPs have been prepared using the Stöber method. It was found that the addition of prehydrolyzed MTEOS-based sol prepared in an acidic environment to the reaction mixture containing TEOS NPs synthesized for 6 h produced material with increased porosity when compared to pure silica NPs. Oxygen sensitivity, stability, photobleaching and leaching have been characterized. The hybrid NPs exhibit enhanced O2 sensitivity but a high degree of leaching when compared to pure silica NPs, which have minimum O2 sensitivity and no leaching.

  13. Synthesis of organometallic ruthenium(II) complexes with strong activity against several human cancer cell lines.

    PubMed

    Morais, Tânia S; Silva, Tiago J L; Marques, Fernanda; Robalo, M Paula; Avecilla, Fernando; Amorim Madeira, Paulo J; Mendes, Paulo J G; Santos, Isabel; Garcia, M Helena

    2012-09-01

    A new family of "RuCp" (Cp=η(5)-C(5)H(5)) derivatives with bidentate N,O and N,N'-heteroaromatic ligands revealed outstanding cytotoxic properties against several human cell lines namely, A2780, A2780CisR, HT29, MCF7, MDAMB231, and PC3. IC(50) values were much lower than those found for cisplatin. Crystal structure of compound 4 was determined by X-ray diffraction studies. Density functional theory (DFT) calculations performed for compound 1 showed electronic flow from the ruthenium center to the coordinated bidentate ligand, in agreement with the electrochemical studies and the existence of a metal-to-ligand charge-transfer (MLCT) band evidenced by spectroscopic data. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Synthesis, characterization, electronic structure and catalytic activity of new ruthenium carbonyl complexes of N-[(2-pyridyl)methylidene]-2-aminothiazole

    NASA Astrophysics Data System (ADS)

    Kundu, Subhankar; Sarkar, Deblina; Jana, Mahendra Sekhar; Pramanik, Ajoy Kumar; Jana, Subrata; Mondal, Tapan Kumar

    2013-03-01

    Reaction of ruthenium carbonyls, [Ru(CO)2Cl2]n/[Ru(CO)4I2] with bidentate Schiffs base ligands derived by the condensation of pyridine-2-carboxaldehyde with 2-aminothiazole in a 1:1 mole ratio in acetonitrile led to the formation of complexes having general formula [Ru(CO)2(L)X2] (X = Cl (1) and I (2)) (L = N-[(2-pyridyl)methylidene]-2-aminothiazole). The compounds have been characterized by various analytical and spectroscopic (IR, electronic and 1H NMR) studies. In acetonitrile solution the complexes exhibit a weak broad metal-ligand to ligand charge transfer (MLLCT) band along with ILCT transitions. The compounds are emissive in room temperature upon excitation in the ILCT band. The complexes exhibit a quasi-reversible one electron Ru(II)/Ru(III) oxidation couple at 1.44 V for 1 and 0.94 V for 2. Catalytic activity of these compounds is investigated to the oxidation of PhCH2OH to PhCHO, 2-butanol (C4H9OH) to 2-butanone, 1-phenylethanol (PhC2H4OH) to acetophenone, cyclopentanol (C5H9OH) to cyclopentanone, cyclohexanol to cyclohexanone, cycloheptanol to cycloheptanone and cycloctanol to cycloctanone using N-methylmorpholine-N-oxide (NMO) as oxidant. The catalytic efficiency of 2 is greater than complex 1 and well correlate with the metal oxidation potential of the complexes. DFT, NBO and TDDFT calculations are employed to explain the structural and electronic features and to support the spectroscopic assignments.

  15. Theoretical characterization of the lowest triplet excited states of the tris-(1,4,5,8-tetraazaphenanthrene) ruthenium dication complex.

    PubMed

    Alary, Fabienne; Boggio-Pasqua, Martial; Heully, Jean-Louis; Marsden, Colin J; Vicendo, Patricia

    2008-06-16

    We present a theoretical study of the ground and the lowest triplet excited states of the tris-(1,4,5,8-tetraazaphenanthrene) ruthenium complex [Ru(tap)3]2+. Density functional theory (DFT) was used to obtain the relaxed geometries and emission energies (Delta-SCF), whereas time-dependent DFT (TD-DFT) was used to compute the absorption spectrum. Our calculations have revealed the presence of three low-lying excited-state minima, which may be relevant in the photophysical/photochemical properties of this complex. Two minima with similar energies correspond to the MLCT 3A2 and MLCT 3B metal-to-ligand charge-transfer states, the first one corresponding to a D3 structure, whereas the second is a slightly localized C2 species. The third and lowest one corresponds to the metal-centered MC 3A state and displays a pronounced C2 distortion. We have examined for the first time the localized character of the excitation in the computed MLCT states. In particular, we have evaluated the pseudorotation barrier between the Jahn-Teller C2 MLCT 3B minima in the moat around the D3 conical intersection. We have shown that the complex should be viewed as a delocalized [Ru3+(tap(-1/3))3]2+ complex in the lowest MLCT states, in agreement with subpicosecond interligand electron transfer observed by femtosecond transient absorption anisotropy study. Upper-bound estimates of the MLCT-->MC (3 kcal/mol) and MC-->MLCT (10 kcal/mol) activation energy barriers obtained from potential energy profiles in vacuum corroborate the high photoinstability of the MLCT states of the [Ru(tap)3]2+complex.

  16. Optimum bifunctionality in a 2-(2-pyridyl-2-ol)-1,10-phenanthroline based ruthenium complex for transfer hydrogenation of ketones and nitriles: impact of the number of 2-hydroxypyridine fragments.

    PubMed

    Paul, Bhaskar; Chakrabarti, Kaushik; Kundu, Sabuj

    2016-07-05

    Considerable differences in reactivity and selectivity for 2-hydroxypyridine (2-HP) derived ruthenium complexes in transfer hydrogenation are described. Bifunctional Ru(ii)-(phenpy-OH) [phenpy-OH: 2-(2-pyridyl-2-ol)-1,10-phenanthroline] complex () exhibited excellent catalytic activity in transfer hydrogenation (TH) of ketones and nitriles. Notably, in comparison with all the reported 2-hydroxypyridine (2-HP) derived ruthenium complexes in transfer hydrogenation, complex displayed significantly higher activity. Additionally, exploiting the metal-ligand cooperativity in complex , chemoselective TH of ketones was achieved and sterically demanding ketones were readily reduced. An outer-sphere mechanism is proposed for this system as exogenous PPh3 has no significant effect on the rate of this reaction. This is a rare example of a highly active bifunctional Ru(ii) catalyst bearing only one 2-HP unit.

  17. An efficient synthesis and in vitro antibacterial evaluation of ruthenium-quinolinol complexes.

    PubMed

    Malipeddi, Mahima; Lakhani, Chirag; Chhabra, Mohit; Paira, Priyankar; Vidya, R

    2015-08-01

    A series of ruthenium-quinolinol complexes were synthesized using a simple and effective pathway and their in vitro antibacterial activity against various resistant gram-positive and gram-negative bacteria were evaluated. It was established that compound [(η6-pcymene)RuCl(κ2-O,N-5,7-dibromo-HyQ)]·Cl (3b) & [(η6-pcymene)RuCl(κ2-O,N-5,7-dibromo-HyQ)]·Cl (3e) were significantly active against Staphylococcus aureus, Escherichia coli, Bacillus subtilis &Salmonella sp. The structures of the new compounds were elucidated by the analysis of spectroscopic data. The stability of complex [(η6-pcymene)RuCl(κ2-O,N-5,7-dibromo-HyQ)]·Cl (3b) was measured by UV spectroscopy & time dependent NMR spectroscopy. Compound 3b also shows remarkable fluorescence.

  18. Charge Storage Effect on In2O3 Nanowires with Ruthenium Complex Molecules

    NASA Astrophysics Data System (ADS)

    Choi, Insung; Lee, Junghyun; Jo, Gunho; Seo, Kyoungja; Choi, Nak-Jin; Lee, Takhee; Lee, Hyoyoung

    2009-01-01

    Charge storage effect on In2O3 nanowire field-effect transistors (FETs) is controlled by a chemical gate, ruthenium(II) terpyridine (RuII-tpy) complex molecules. In2O3 nanowire FETs functionalized with a self-assembled monolayer of the molecules exhibit large hysteretic characteristics with regard to source-drain current vs gate voltage characteristics. The devices are operated with reversible switching behavior at gate voltage cycles of writing, reading, erasing, and reading, and their retention time is in excess of 1000 s. These results reveal that the reversible chemical reaction (i.e., oxidation and reduction of the molecules) of RuII-tpy complexes produces a charging/discharging process of In2O3 nanowire FETs.

  19. Discovery of a highly tumor-selective organometallic ruthenium(II)-arene complex.

    PubMed

    Clavel, Catherine M; Păunescu, Emilia; Nowak-Sliwinska, Patrycja; Griffioen, Arjan W; Scopelliti, Rosario; Dyson, Paul J

    2014-04-24

    A ruthenium(II)-arene complex with a perfluoroalkyl-ligand was found to display remarkable selectivity toward cancer cells. IC50 values on several cancer cell lines are in the range of 25-45 μM, and no cytotoxic effect was observed on nontumorigenic (HEK-293) cells at concentrations up to 500 μM (the maximum concentration tested). Consequently, this complex was used as the basis for the development of a number of related derivatives, which were screened in cancerous and noncancerous cell lines. The lead compound was then evaluated in vivo for antiangiogenic activity in the CAM model and in a xenografted ovarian carcinoma tumor (A2780) grown on the CAM. A 90% reduction in the tumor growth was observed.

  20. Bimetallic octahedral ruthenium-nickel carbido cluster complexes. Synthesis and structural characterization.

    PubMed

    Saha, Sumit; Zhu, Lei; Captain, Burjor

    2013-03-04

    The reaction of Ru5(CO)15(μ5-C) with Ni(COD)2 in acetonitrile at 80 °C affords the bimetallic octahedral ruthenium-nickel cluster complex Ru5Ni(NCMe)(CO)15(μ6-C), 3. The acetonitrile ligand in 3 can be replaced by CO and NH3 to yield Ru5Ni(CO)16(μ6-C), 4, and Ru5Ni(NH3)(CO)15(μ6-C), 5, respectively. Photolysis of compound 3 in benzene and toluene solvent yielded the η(6)-coordinated benzene and toluene Ru5Ni carbido cluster complexes Ru5Ni(CO)13(η(6)-C6H6)(μ6-C), 6, and Ru5Ni(CO)13(η(6)-C7H8)(μ6-C), 7, respectively. All five new compounds were structurally characterized by single-crystal X-ray diffraction analyses.

  1. Iminophosphanes: Synthesis, Rhodium Complexes, and Ruthenium(II)-Catalyzed Hydration of Nitriles

    PubMed Central

    2017-01-01

    Highly stable iminophosphanes, obtained from alkylating nitriles and reaction of the resulting nitrilium ions with secondary phosphanes, were explored as tunable P-monodentate and 1,3-P,N bidentate ligands in rhodium complexes. X-ray crystal structures are reported for both κ1 and κ2 complexes with the counterion in one of them being an unusual anionic coordination polymer of silver triflate. The iminophosphane-based ruthenium(II)-catalyzed hydration of benzonitrile in 1,2-dimethoxyethane (180 °C, 3 h) and water (100 °C, 24 h) and under solvent free conditions (180 °C, 3 h) results in all cases in the selective formation of benzamide with yields of up to 96%, thereby outperforming by far the reactions in which the common 2-pyridyldiphenylphosphane is used as the 1,3-P,N ligand. PMID:28316361

  2. Mitochondrial fragmentation is an important cellular event induced by ruthenium(II) polypyridyl complexes in osteosarcoma cells.

    PubMed

    Du, Yanxin; Fu, Xiaoyan; Li, Hong; Chen, Bolai; Guo, Yuhai; Su, Guoyi; Zhang, Hu; Ning, Feipeng; Lin, Yongpeng; Mei, Wenjie; Chen, Tianfeng

    2014-04-01

    A series of ruthenium(II) polypyridyl complexes were synthesized and evaluated for their in vitro anticancer activities. The results showed that ruthenium polypyridyl complexes, especially [Ru(bpy)2 (p-tFPIP)](2+) (2 a; bpy=bipyridine, tFPIP=2-(2-trifluoromethane phenyl)imidazole[4,5-f][1,10]phenanthroline), exhibited novel anticancer activity against human cancer cell lines, but with less toxicity to a human normal cell line. The results of flow cytometry and caspase activities analysis indicated that the 2 a-induced growth inhibition against MG-63 osteosarcoma cells was mainly caused by mitochondria-mediated apoptosis. DNA fragmentation and nuclear condensation as detected by TUNEL-DAPI co-staining further confirmed 2 a-induced apoptotic cell death. Further, fluorescence imaging revealed that ruthenium(II) polypyridyl complexes could target mitochondria to induce mitochondrial fragmentation, accompanied by depletion of mitochondrial membrane potential. Taken together, these findings suggest a potential application of theses ruthenium(II) complexes in the treatment of cancers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Synthesis and electron-transfer properties of benzimidazole-functionalized ruthenium complexes for highly efficient dye-sensitized solar cells.

    PubMed

    Huang, Wei-Kai; Cheng, Chi-Wen; Chang, Shu-Mei; Lee, Yuan-Pern; Diau, Eric Wei-Guang

    2010-12-21

    Novel heteroleptic ruthenium complexes--RD1, RD5, RD10 and RD11--with ligands based on benzimidazole were synthesized and characterized for application to dye-sensitized solar cells (DSSC); the remarkable performance of RD5-based DSSC is understood for its superior light-harvesting ability and slower charge-recombination kinetics.

  4. The thermodynamic effects of ligand structure on the molecular recognition of mononuclear ruthenium polypyridyl complexes with B-DNA

    USDA-ARS?s Scientific Manuscript database

    The ruthenium(II) polypyridyl complexes (RPCs), [(phen)2Ru(tatpp)]Cl2 (3Cl2) and [(phen)2Ru (tatpp)Ru(phen)2]Cl4 (4Cl4), containing the large planar and redox-active tetraazatetrapyrido- pentacene (tatpp) ligand, cleave DNA in the presence of reducing agents in cell-free assays and show significant...

  5. A Ruthenium(II) Complex Supported by Trithiacyclononane and Aromatic Diimine Ligand as Luminescent Switch-On Probe for Biomolecule Detection and Protein Staining

    PubMed Central

    Wong, Chun-Yuen; Chung, Lai-Hon; Lin, Sheng; Chan, Daniel Shiu-Hin; Ma, Dik-Lung

    2014-01-01

    A new ruthenium(II) complex has been developed for detection of biomolecules. This complex is highly selective for histidine over other amino acids and has been applied to protein staining in an SDS-PAGE gel. PMID:25409703

  6. DNA interaction, antioxidant activity, and bioactivity studies of two ruthenium(II) complexes

    NASA Astrophysics Data System (ADS)

    Han, Bing-Jie; Jiang, Guang-Bin; Yao, Jun-Hua; Li, Wei; Wang, Ji; Huang, Hong-Liang; Liu, Yun-Jun

    2015-01-01

    Two new ruthenium(II) polypyridyl complexes [Ru(dmb)2(dcdppz)](ClO4)2 (1) and [Ru(bpy)2(dcdppz)](ClO4)2 (2) were prepared and characterized. The crystal structure of the complex 2 was solved by single crystal X-ray diffraction. The complex crystallizes in the monoclinic system, space group P21/n with a = 12.9622(14) Å, b = 17.1619(19) Å, c = 22.7210(3) Å, β = 100.930(2)°, R = 0.0536, Rω = 0.1111. The DNA-binding constants for complexes 1 and 2 were determined to be 1.92 × 105 (s = 1.72) and 2.24 × 105 (s = 1.86) M-1, respectively. The DNA-binding behaviors showed that complexes 1 and 2 interact with DNA by intercalative mode. The antioxidant activities of the ligand and the complexes were performed. Ligand, dcdppz, has no cytotoxicity against the selected cell lines. Complex 1 shows higher cytotoxicity than complex 2, but lower than cisplatin toward selected cell lines. The apoptosis and cell cycle arrest were investigated, and the apoptotic mechanism of BEL-7402 cells was studied by reactive oxygen species (ROS), mitochondrial membrane potential and western blot analysis. Complex 1 induces apoptosis in BEL-7402 cells through ROS-mediated mitochondrial dysfunction pathway and by regulating the expression of Bcl-2 family proteins.

  7. DNA interaction, antioxidant activity, and bioactivity studies of two ruthenium(II) complexes.

    PubMed

    Han, Bing-Jie; Jiang, Guang-Bin; Yao, Jun-Hua; Li, Wei; Wang, Ji; Huang, Hong-Liang; Liu, Yun-Jun

    2015-01-25

    Two new ruthenium(II) polypyridyl complexes [Ru(dmb)2(dcdppz)](ClO4)2 (1) and [Ru(bpy)2(dcdppz)](ClO4)2 (2) were prepared and characterized. The crystal structure of the complex 2 was solved by single crystal X-ray diffraction. The complex crystallizes in the monoclinic system, space group P21/n with a=12.9622(14)Å, b=17.1619(19)Å, c=22.7210(3)Å, β=100.930(2)(°), R=0.0536, Rω=0.1111. The DNA-binding constants for complexes 1 and 2 were determined to be 1.92×10(5) (s=1.72) and 2.24×10(5) (s=1.86)M(-1), respectively. The DNA-binding behaviors showed that complexes 1 and 2 interact with DNA by intercalative mode. The antioxidant activities of the ligand and the complexes were performed. Ligand, dcdppz, has no cytotoxicity against the selected cell lines. Complex 1 shows higher cytotoxicity than complex 2, but lower than cisplatin toward selected cell lines. The apoptosis and cell cycle arrest were investigated, and the apoptotic mechanism of BEL-7402 cells was studied by reactive oxygen species (ROS), mitochondrial membrane potential and western blot analysis. Complex 1 induces apoptosis in BEL-7402 cells through ROS-mediated mitochondrial dysfunction pathway and by regulating the expression of Bcl-2 family proteins. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Ruthenium(II) polypyridyl complexes as mitochondria-targeted two-photon photodynamic anticancer agents.

    PubMed

    Liu, Jiangping; Chen, Yu; Li, Guanying; Zhang, Pingyu; Jin, Chengzhi; Zeng, Leli; Ji, Liangnian; Chao, Hui

    2015-07-01

    Clinical acceptance of photodynamic therapy is currently hindered by poor depth efficacy and inefficient activation of the cell death machinery in cancer cells during treatment. To address these issues, photoactivation using two-photon absorption (TPA) is currently being examined. Mitochondria-targeted therapy represents a promising approach to target tumors selectively and may overcome the resistance in current anticancer therapies. Herein, four ruthenium(II) polypyridyl complexes (RuL1-RuL4) have been designed and developed to act as mitochondria-targeted two-photon photodynamic anticancer agents. These complexes exhibit very high singlet oxygen quantum yields in methanol (0.74-0.81), significant TPA cross sections (124-198 GM), remarkable mitochondrial accumulation, and deep penetration depth. Thus, RuL1-RuL4 were utilized as one-photon and two-photon absorbing photosensitizers in both monolayer cells and 3D multicellular spheroids (MCSs). These Ru(II) complexes were almost nontoxic towards cells and 3D MCSs in the dark and generate sufficient singlet oxygen under one- and two-photon irradiation to trigger cell death. Remarkably, RuL4 exhibited an IC50 value as low as 9.6 μM in one-photon PDT (λirr = 450 nm, 12 J cm(-2)) and 1.9 μM in two-photon PDT (λirr = 830 nm, 800 J cm(-2)) of 3D MCSs; moreover, RuL4 is an order of magnitude more toxic than cisplatin in the latter test system. The combination of mitochondria-targeting and two-photon activation provides a valuable paradigm to develop ruthenium(II) complexes for PDT applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Photocatalytic degradation of bromothymol blue with Ruthenium(II) bipyridyl complex in aqueous basic solution

    NASA Astrophysics Data System (ADS)

    Fui, Mark Lee Wun; Hang, Ng Kim; Arifin, Khuzaimah; Minggu, Lorna Jeffery; Kassim, Mohammad Bin

    2016-11-01

    Ru(II) bipyridyl photocatalyst with the formula, [Ru(bpy)2(o-CH3-bzpypz)](PF6)2] (Ru01) and [Ru(bpy)2(o-Cl-bzpypz)](PF6)2] (Ru02), where bpy = 2,2'-bipyridyl, o-CH3-bzpypz = (3-(pyridin-2-yl)-1H-pyrazol-1-yl)(o-tolyl)methanone and o-Cl-bzpypz = (2-chlorophenyl)(3-(pyridin-2-yl)-1H-pyrazol-1-yl)methanone, has been successfully synthesized and characterized on the basis of C, H, N elemental analysis, IR, UV-Vis and NMR spectroscopy. Both Ru(II) complexes showed Infrared stretching frequencies at 1742-1736 cm-1 v(C=O), 1605 cm-1 v(C=N) and 842-837 cm-1 v(PF). Full geometry optimization of the complex structures were carried out using DFT method with B3LYP exchange-correlation functional and 6-31G (d,p) basis-set for H, C, N, O and Cl; and LAN2LDZ basis set as effective core potential for the ruthenium centre. The highest-occupied molecular orbital (HOMO) energy levels of Ru01 and Ru02 are -5.63 and -5.55 eV, respectively. The photocatalytic properties of the Ru(II) complexes were evaluated by studying the degradation of aqueous bromothymol blue (BTB) under light illumination. The mechanisms are presented and discussed to highlight the role of the ruthenium complex in the degradation process.

  10. Photorefractive effect of a novel conjugate polymer containing transition metal complex

    NASA Astrophysics Data System (ADS)

    Liu, Chengyou

    2002-04-01

    The photorefractive effect (PR) of a novels σ- π alternating polymer having 2,2'-bipyridyl in the polymer backbone and their ruthenium complexes has been investigated. The ruthenium complex was used as the charge generator, the σ- π alternating polymer backbone as the charge transporting channel and second-order nonlinear (NLO) optical chromophore. The photorefractive properties were demonstrated by two-beam coupling (2BC), degenerated four-wave mixing (DFWM) and field-induced orientation birefringence at wavelength of 532 nm. This polymer shows a enhanced photorefractive effect due to the efficient photoinduced metal-to-ligand charge transfer (MLCT) inside the ruthenium complex. A net optical gain of about 22 cm-1 and the diffraction efficiency about 10% were obtained at the external electric field of 30 V/µm.

  11. Ruthenium Metal-Organic Frameworks with Different Defect Types: Influence on Porosity, Sorption, and Catalytic Properties.

    PubMed

    Zhang, Wenhua; Kauer, Max; Halbherr, Olesia; Epp, Konstantin; Guo, Penghu; Gonzalez, Miguel I; Xiao, Dianne J; Wiktor, Christian; LIabrés I Xamena, Francesc X; Wöll, Christof; Wang, Yuemin; Muhler, Martin; Fischer, Roland A

    2016-09-26

    By employing the mixed-component, solid-solution approach, various functionalized ditopic isophthalate (ip) defect-generating linkers denoted 5-X-ipH2 , where X=OH (1), H (2), NH2 (3), Br (4), were introduced into the mixed-valent ruthenium analogue of [Cu3 (btc)2 ]n (HKUST-1, btc=benzene-1,3,5-tricarboxylate) to yield Ru-DEMOFs (defect-engineered metal-organic frameworks) of the general empirical formula [Ru3 (btc)2-x (5-X-ip)x Yy ]n . Framework incorporation of 5-X-ip was confirmed by powder XRD, FTIR spectroscopy, ultrahigh-vacuum IR spectroscopy, thermogravimetric analysis, (1) H NMR spectroscopy, N2 sorption, and X-ray absorption near edge structure. Interestingly, Ru-DEMOF 1 c with 32 % framework incorporation of 5-OH-ip shows the highest BET surface area (≈1300 m(2)  g(-1) , N2 adsorption, 77 K) among all materials (including the parent framework [Ru3 (btc)2 Yy ]n ). The characterization data are consistent with two kinds of structural defects induced by framework incorporation of 5-X-ip: modified paddlewheel nodes featuring reduced ruthenium sites (Ru(δ+) , 0<δ<2, type A) and missing nodes leading to enhanced porosity (type B). Their relative abundances depend on the choice of the functional group X in the defect linkers. Defects A and B also appeared to play a key role in sorption of small molecules (i.e., CO2 , CO, H2 ) and the catalytic properties of the materials (i.e., ethylene dimerization and the Paal-Knorr reaction). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Triplet-triplet annihilation upconversion followed by FRET for the red light activation of a photodissociative ruthenium complex in liposomes.

    PubMed

    Askes, Sven H C; Kloz, Miroslav; Bruylants, Gilles; Kennis, John T M; Bonnet, Sylvestre

    2015-11-07

    Upconversion is a promising way to trigger high-energy photochemistry with low-energy photons. However, combining upconversion schemes with non-radiative energy transfer is challenging because bringing several photochemically active components in close proximity results in complex multi-component systems where quenching processes may deactivate the whole assembly. In this work, PEGylated liposomes were prepared that contained three photoactive components: a porphyrin dye absorbing red light, a perylene moiety emitting in the blue, and a light-activatable ruthenium prodrug sensitive to blue light. Time-dependent spectroscopic studies demonstrate that singlet perylene excited states are non-radiatively transferred to the nearby ruthenium complex by Förster resonance energy transfer (FRET). Under red-light irradiation of the three-component membranes, triplet-triplet annihilation upconversion (TTA-UC) occurs followed by FRET, which results in a more efficient activation of the ruthenium prodrug compared to a physical mixture of two-component upconverting liposomes and liposomes containing only the ruthenium complex. This work represents a rare example where TTA-UC and Förster resonance energy transfer are combined to achieve prodrug activation in the phototherapeutic window.

  13. Evaluation of an amperometric glucose biosensor based on a ruthenium complex mediator of low redox potential.

    PubMed

    Yamamoto, Katsunobu; Zeng, Haisheng; Shen, Yi; Ahmed, Md Mahiuddin; Kato, Takeshi

    2005-06-15

    An amperometric glucose ring-disk biosensor based on a ruthenium complex mediator of low redox potential was fabricated and evaluated. This thin-layer radial flow microsensor (10mul) with ring-disk working electrode displayed remarkable amperometric sensitivity. For Ru(3)(mu(3)-O)(AcO)(6)(Py)(3)(ClO(4)) (Ru-Py), a trinuclear oxo-acetate bridged cluster, a reversible redox curve of low redox potential and narrow potential window (redox potentials were -0.190 and -0.106V versus Ag/AgCl wire, respectively) was observed, which is comparable to many reported mediators such as ferrocene derivatives and other ruthenium complexes. The glucose and hydrogen peroxide assays were carried out with this complex-modified electrode Ru-Py-HRP-GOx/Nafion. The sensitivity was obtained 24nA (15.4mAM(-1)cm(-2)) for 10muM glucose and 126 nA (160mAM(-1)cm(-2)) for 5muM H(2)O(2), respectively with a working potential at 0V versus Ag/AgCl. Ascorbic acid was studied as interference to the glucose assay. The application of 0V potential versus Ag/AgCl did not avoid the occurrence of the oxidation of ascorbic acid, however, the pre-coating of ascorbate oxidase on the disk part of the ring-disk working electrode efficiently pre-oxidized the ascorbic acid and hence eliminated its interference on the glucose response. The practical reliability was also evaluated by assaying the dialysate from the prefrontal cortex of Wistar rats.

  14. An investigation on new ruthenium(II) hydrazone complexes as anticancer agents and their interaction with biomolecules.

    PubMed

    Alagesan, Mani; Bhuvanesh, Nattamai S P; Dharmaraj, Nallasamy

    2014-04-28

    A new set of ruthenium(II) hydrazone complexes [Ru(H)(CO)(PPh3)2(L)] (1) and [RuCl2(DMSO)2(HL)] (2), with triphenyl phosphine or DMSO as co-ligands was synthesized by reacting benzoyl pyridine furoic acid hydrazone (HL) with [Ru(H)(Cl)(CO)(PPh3)3] and [RuCl2(DMSO)4]. The single crystal X-ray data of complexes 1 and 2 revealed an octahedral geometry around the ruthenium ion in which the hydrazone is coordinated through ON and NN atoms in complexes 1 and 2 respectively. The interaction of the compounds with calf thymus DNA (CT-DNA) has been estimated by absorption and emission titration methods which indicated that the ligand and the complexes interacted with CT-DNA through intercalation. In addition, the DNA cleavage ability of these newly synthesized ruthenium complexes assessed by an agarose gel electrophoresis method demonstrated that complex 2 has a higher DNA cleavage activity than that of complex 1. The binding properties of the free ligand and its complexes with bovine serum albumin (BSA) protein have been investigated using UV-visible, fluorescence and synchronous fluorescence spectroscopic methods which indicated the stronger binding nature of the ruthenium complexes to BSA than the free hydrazone ligand. Furthermore, the cytotoxicity of the compounds examined in vitro on a human cervical cancer cell line (HeLa) and a normal mouse embryonic fibroblasts cell line (NIH 3T3) revealed that complex 2 exhibited a superior cytotoxicity than complex 1 to the cancer cells but was less toxic to the normal mouse embryonic fibroblasts under identical conditions.

  15. Spectroelectrochemical studies of hole percolation on functionalised nanocrystalline TiO2 films: a comparison of two different ruthenium complexes.

    PubMed

    Li, Xiaoe; Nazeeruddin, Mohammad K; Thelakkat, Mukundan; Barnes, Piers R F; Vilar, Ramón; Durrant, James R

    2011-01-28

    We report the application of spectroelectrochemical techniques to compare the hole percolation dynamics of molecular networks of two ruthenium bipyridyl complexes adsorbed onto mesoporous, nanocrystalline TiO(2) films. The percolation dynamics of the ruthenium complex cis-di(thiocyanato)(2,2'-bipyridyl-4,4'-dicarboxylic acid)-(2,2'-bipyridyl-4,4'-tridecyl) ruthenium(II), N621, is compared with those observed for an analogous dye with an additional tri-phenyl amine (TPA) donor moiety, cis-di(thiocyanato)(2,2'-bipyridyl-4,4'-dicarboxylic acid)-(2,2'-bipyridyl-4,4'-bis(vinyltriphenylamine)) ruthenium(II), HW456. The in situ oxidation of these ruthenium complexes adsorbed to the TiO(2) films is monitored by cyclic voltammetry and voltabsorptometry, whilst the dynamics of hole (cation) percolation between adsorbed ruthenium complexes is monitored by potentiometric spectroelectrochemistry and chronoabsorptometry. The hole diffusion coefficient, D(eff), is shown to be dependent on the dye loading on the nanocrystalline TiO(2) film, with a threshold observed at ∼60% monolayer surface coverage for both dyes. The hole diffusion coefficient of HW456 is estimated to be 2.6 × 10(-8) cm(2)/s, 20-fold higher than that obtained for the control N621, attributed to stronger electronic coupling between the TPA moieties of HW456 accelerating the hole percolation dynamics. The presence of mercuric ions, previously shown to bind to the thiocyanates of analogous ruthenium complexes, resulted in a quenching of the hole percolation for N621/TiO(2) films and an enhancement for HW456/TiO(2) films. These results strongly suggest that the hole percolation pathway is along the overlapped neighbouring -NCS groups for the N621 molecules, whereas in HW456 molecules cation percolation proceeds between intermolecular TPA ligands. These results are discussed in the context of their relevance to the process of dye regeneration in dye sensitised solar cells, and to the molecular wiring of wide

  16. DNA binding properties, histidine interaction and cytotoxicity studies of water soluble ruthenium(ii) terpyridine complexes.

    PubMed

    Lazić, Dejan; Arsenijević, Aleksandar; Puchta, Ralph; Bugarčić, Živadin D; Rilak, Ana

    2016-03-21

    In this study, two representatives of previously synthesized ruthenium(ii) terpyridine complexes, i.e., [Ru(Cl-tpy)(en)Cl][Cl] (1) and [Ru(Cl-tpy)(dach)Cl][Cl] (2), were chosen and a detailed study of the kinetic parameters of their reactivity toward l-histidine (l-His), using the UV-Vis and (1)H NMR techniques, was developed. The inner molecular rearrangement from N3-coordinated l-His to the N1 bound isomer, observable in the NMR data, was corroborated by DFT calculations favoring N1 coordination by nearly 4 kcal mol(-1). These two ruthenium(ii) terpyridine complexes were investigated for their interactions with DNA employing UV-Vis spectroscopy, DNA viscosity measurements and fluorescence quenching measurements. The high binding constants obtained in the DNA binding studies (Kb = 10(4)-10(5) M(-1)) suggest a strong binding of the complexes to calf thymus (CT) DNA. Competitive studies with ethidium bromide (EB) showed that the complexes can displace DNA-bound EB, suggesting strong competition with EB (Ksv = 1.5-2.5 × 10(4) M(-1)). In fact, the results indicate that these complexes can bind to DNA covalently and non-covalently. In order to gain insight of the behavior of a neutral compound, besides the four previously synthesized cationic complexes [Ru(Cl-tpy)(en)Cl][Cl] (1), [Ru(Cl-tpy)(dach)Cl][Cl] (2), [Ru(Cl-tpy)(bpy)Cl][Cl] (3) and [Ru(tpy)Cl3] (P2), a new complex, [Ru(Cl-tpy)(pic)Cl] (4), was used in the biological studies. Their cytotoxicity was investigated against three different tumor cell lines, i.e., A549 (human lung carcinoma cell line), HCT116 (human colon carcinoma cell line), and CT26 (mouse colon carcinoma cell line), by the MTT assay. Complexes 1 and 2 showed higher activity than complexes 3, 4 and P2 against all the selected cell lines. The results on in vitro anticancer activity confirmed that only compounds that hydrolyze the monodentate ligand at a reasonable rate show moderate activity, provided that the chelate ligand is a hydrogen bond

  17. Dehydrogenation of Formic Acid Catalyzed by a Ruthenium Complex with an N,N'-Diimine Ligand.

    PubMed

    Guan, Chao; Zhang, Dan-Dan; Pan, Yupeng; Iguchi, Masayuki; Ajitha, Manjaly J; Hu, Jinsong; Li, Huaifeng; Yao, Changguang; Huang, Mei-Hui; Min, Shixiong; Zheng, Junrong; Himeda, Yuichiro; Kawanami, Hajime; Huang, Kuo-Wei

    2017-01-03

    We report a ruthenium complex containing an N,N'-diimine ligand for the selective decomposition of formic acid to H2 and CO2 in water in the absence of any organic additives. A turnover frequency of 12 000 h(-1) and a turnover number of 350 000 at 90 °C were achieved in the HCOOH/HCOONa aqueous solution. Efficient production of high-pressure H2 and CO2 (24.0 MPa (3480 psi)) was achieved through the decomposition of formic acid with no formation of CO. Mechanistic studies by NMR and DFT calculations indicate that there may be two competitive pathways for the key hydride transfer rate-determining step in the catalytic process.

  18. Synergism and chemiluminescence of cerium ions and ruthenium complexes in the belousov-zhabotinskii reaction

    SciTech Connect

    Karavaev, A.D.; Kazakov, V.P.; Tolstikov, G.A.

    1986-04-01

    This paper studies chemiluminescence (CL) in the system BrO/sup -//sub 3/-CH/sub 2/ (COOH)/sub 2/ -Ce/sup 3 +/,4+-RuPbipy)/sub 3/ /SUP 2+,/ /sub 3/. The tests were carried out in a CL/sup 3/ unit that included a light-tight chamber, a photoelectron multiplier (FEU-97), a VS-22 high voltage power pack, and an EPPV-60M recording potentiometer. The synergism in chemiluminescence at low concentrations of ruthenium complex does not appear in the oscillation parameters. The periodic CL of this two-catalyst system may be a convenient chemical model for the study of combined chemical reactions in more complicated biochemiluminescent processes, such as that by which the firefly flashes in the dark.

  19. Oxygen kinetic isotope effects upon catalytic water oxidation by a monomeric ruthenium complex.

    PubMed

    Angeles-Boza, Alfredo M; Roth, Justine P

    2012-04-16

    Oxygen isotope fractionation is applied for the first time to probe the catalytic oxidation of water using a widely studied ruthenium complex, [Ru(II)(tpy)(bpy)(H(2)O)](ClO(4))(2) (bpy = 2,2'-bipyridine; tpy = 2,2';6",2"-terpyridine). Competitive oxygen-18 kinetic isotope effects ((18)O KIEs) derived from the ratio of (16,16)O(2) to (16,18)O(2) formed from natural-abundance water vary from 1.0132 ± 0.0005 to 1.0312 ± 0.0004. Experiments were conducted with cerium(IV) salts at low pH and a photogenerated ruthenium(III) tris(bipyridine) complex at neutral pH as the oxidants. The results are interpreted within the context of catalytic mechanisms using an adiabatic formalism to ensure the highest barriers for electron-transfer and proton-coupled electron-transfer steps. In view of these contributions, O-O bond formation is predicted to be irreversible and turnover-limiting. The reaction with the largest (18)O KIE exhibits the greatest degree of O-O coupling in the transition state. Smaller (18)O KIEs are observed due to multiple rate-limiting steps or transition-state structures which do not involve significant O-O motion. These findings provide benchmarks for systematizing mechanisms of O-O bond formation, the critical step in water oxidation by natural and synthetic catalysts. In addition, the measurements introduce a new tool for calibrating computational studies using relevant experimental data.

  20. Preparation, spectroscopy, EXAFS, electrochemistry and pharmacology of new ruthenium(II) carbonyl complexes containing ferrocenylthiosemicarbazone and triphenylphosphine/arsine

    NASA Astrophysics Data System (ADS)

    Prabhakaran, R.; Anantharaman, S.; Thilagavathi, M.; Kaveri, M. V.; Kalaivani, P.; Karvembu, R.; Dharmaraj, N.; Bertagnolli, H.; Dallemer, F.; Natarajan, K.

    2011-02-01

    A new series of new hetero-bimetallic complexes containing iron and ruthenium of the general formula [RuCl(CO)(B)(EPh 3)(L)] (where E = P or As; B = PPh 3, AsPh 3, py or pip; L = ferrocene derived monobasic bidentate thiosemicarbazone ligand) have been synthesized by the reaction between ferrocene-derived thiosemicarbazones and ruthenium(II) complexes of the type [RuHCl(CO)(B)(EPh 3) 2] (where E = P or As; B = PPh 3, AsPh 3, py or pip). The new complexes have been characterized by elemental analyses, IR, electronic, NMR ( 1H, 13C and 31P), EXAFS (extended X-ray absorption fine structure spectroscopy) and cyclic voltammetric techniques. Antibacterial activity of the new complexes has been screened against Escherichia coli, Vibrio cholerae, and Pseudomonas aeruginosa species.

  1. Selenophene transition metal complexes

    SciTech Connect

    White, Carter James

    1994-07-27

    This research shows that selenophene transition metal complexes have a chemistry that is similar to their thiophene analogs. Selenophene coordination has been demonstrated and confirmed by molecular structure in both the η5- and the η1(Se)-coordination modes. The reaction chemistry of selenophene complexes closely resembles that of the analogous thiophene complexes. One major difference, however, is that selenophene is a better donor ligand than thiophene making the selenophene complexes more stable than the corresponding thiophene complexes. The 77Se NMR chemical shift values for selenophene complexes fall within distinct regions primarily depending on the coordination mode of the selenophene ligand. In the final paper, the C-H bond activation of η1(S)-bound thiophenes, η1(S)-benzothiophene and η1(Se)-bound selenophenes has been demonstrated. The deprotonation and rearrangement of the η1(E)-bound ligand to the carbon bound L-yl complex readily occurs in the presence of base. Reprotonation with a strong acid gives a carbene complex that is unreactive towards nucleophilic attack at the carbene carbon and is stable towards exposure to air. The molecular structure of [Cp(NO)(PPh3)Re(2-benzothioenylcarbene)]O3SCF3 was determined and contains a Re-C bond with substantial double bond character. Methyl substitution for the thienylcarbene or selenylcarbene gives a carbene that rearranges thermally to give back the η1(E)-bound complex. Based on these model reactions, a new mechanism for the H/D exchange of thiophene over the hydrodesulfurization catalyst has been proposed.

  2. Metal- and ligand-assisted CO2 insertion into Ru-C, Ru-N, and Ru-O bonds of ruthenium(II) phosphine complexes: a density functional theory study.

    PubMed

    Vadivelu, Prabha; Suresh, Cherumuttathu H

    2015-01-20

    The CO2 insertion reactions of [L4Ru(η(2)-CH2C6H4)] (1), [L4Ru(η(2)-OC6H3Me)] (2), and [L4Ru(η(2)-NHC6H4)] (3), where L = PH3 and PMe3, are modeled using density functional theory methods. In 1 and 2, the metal-assisted CO2 insertion occurs because of the favorable initial axial phosphine dissociation mechanism, whereas in 3, the ligand (NHC6H4)-assisted mechanism operates (ΔG(⧧) = +19.0 kcal/mol), wherein the nucleophilic affinity of the -NHC6H4 moiety aids the CO2 insertion process. The modeled mechanisms are consistent with the experimental findings by Hartwig et al. (J. Am. Chem. Soc, 1991, 113, 6499), in which the rate of the reactions of 1 and 2 depends on the added phosphine concentration, whereas the rate of the reaction of 3 is independent of the added phosphine concentration. In 1 and 2, CO2 is preferably inserted into the Ru-Caryl bond rather than the competitive Ru-CH2 and Ru-O bonds, respectively. In 1, the π-type orbital interaction of the aryl ring with the metal center is found to stabilize the transition state for Ru-Caryl bond insertion (ΔG(⧧) = +25.7 kcal/mol). In 2, the Ru-Caryl insertion (ΔG(⧧) = +23.0 kcal/mol) is thermodynamically preferred, while the kinetically preferred Ru-O bond insertion (ΔG(⧧) = +17.4 kcal/mol) is highly reversible. The more electron-donating and sterically bulky PMe3 facilitates the CO2 insertion of 1 and 2 because the initial dissociation of axial PMe3 is easier than that of PH3 by ca. +11.0 kcal/mol, whereas in the case of 3, the effect of PMe3 slightly increases the ΔG(⧧) value of 3. The increase in the nucleophilic affinity of amido nitrogen in 3 and the increase in the polarity of the solvent decrease the ΔG(⧧) value of 3 by 48%. The inclusion of the chelating dimethylphosphinoethane ligand in 3 along with the electron-donating substituent at the -NHC6H4 moiety and the polar solvent further reduces the ΔG(⧧) value of 3 by 62%, which demonstrates the role of the chelating ligand, electron

  3. Cyclometalated ruthenium(II) complexes as efficient redox mediators in peroxidase catalysis.

    PubMed

    Alpeeva, Inna S; Soukharev, Valentin S; Alexandrova, Larissa; Shilova, Nadezhda V; Bovin, Nicolai V; Csöregi, Elisabeth; Ryabov, Alexander D; Sakharov, Ivan Yu

    2003-07-01

    Cyclometalated ruthenium(II) complexes, [Ru(II)(C~N)(N~N)(2)]PF(6) [HC~N=2-phenylpyridine (Hphpy) or 2-(4'-tolyl)pyridine; N~N=2,2'-bipyridine, 1,10-phenanthroline, or 4,4'-dimethyl-2,2'-bipyridine], are rapidly oxidized by H(2)O(2) catalyzed by plant peroxidases to the corresponding Ru(III) species. The commercial isoenzyme C of horseradish peroxidase (HRP-C) and two recently purified peroxidases from sweet potato (SPP) and royal palm tree (RPTP) have been used. The most favorable conditions for the oxidation have been evaluated by varying the pH, buffer, and H(2)O(2) concentrations and the apparent second-order rate constants ( k(app)) have been measured. All the complexes studied are oxidized by HRP-C at similar rates and the rate constants k(app) are identical to those known for the best substrates of HRP-C (10(6)-10(7) M(-1) s(-1)). Both cationic (HRP-C) and anionic (SPP and RPTP) peroxidases show similar catalytic efficiency in the oxidation of the Ru(II) complexes. The mediating capacity of the complexes has been evaluated using the SPP-catalyzed co-oxidation of [Ru(II)(phpy)(bpy)(2)]PF(6) and catechol as a poor peroxidase substrate as an example. The rate of enzyme-catalyzed oxidation of catechol increases more than 10000-fold in the presence of the ruthenium complex. A simple routine for calculating the rate constant k(c) for the oxidation of catechol by the Ru(III) complex generated enzymatically from [Ru(II)(phpy)(bpy)(2)](+) is proposed. It is based on the accepted mechanism of peroxidase catalysis and involves spectrophotometric measurements of the limiting Ru(II) concentration at different concentrations of catechol. The calculated k(c) value of 0.75 M(-1) s(-1) shows that the cyclometalated Ru(II) complexes are efficient mediators in peroxidase catalysis.

  4. Anti-tumor activity and mechanism of apoptosis of A549 induced by ruthenium complex.

    PubMed

    Sun, Dongdong; Mou, Zhipeng; Li, Nuan; Zhang, Weiwei; Wang, Yazhe; Yang, Endong; Wang, Weiyun

    2016-12-01

    Two new ruthenium (II) polypyridyl complexes [Ru(MeIm)4(pip)](2+) (1) and [Ru(MeIm)4(4-npip)](2+) (2) were synthesized under the guidance of computational studies (DFT). Their binding property to human telomeric G-quadruplex studied by UV-Vis absorption spectroscopy, the fluorescent resonance energy transfer (FRET) melting assay and circular dichroism (CD) spectroscopy for validating the theoretical prediction. Both of them were evaluated for their potential anti-proliferative activity against four human tumor cell lines. Complex 2 shows growth inhibition against all the cell lines tested, especially the human lung tumor cell (A549). The RTCA analysis not only validated the inhibition activity but also showed the ability of reducing A549 cells' migration. DNA-flow cytometric analysis, mitochondrial membrane potential (ΔΨm) and the scavenger measurements of reactive oxygen species (ROS) analysis carried out to investigate the mechanism of cell growth inhibition and apoptosis-inducing effect of complex 2. The results demonstrated that complex 2 induces tumor cells apoptosis by acting on both mitochondrial homeostasis destruction and death receptor signaling pathways. And those suggested that complex 2 could be a candidate for further evaluation as a chemotherapeutic agent against human tumor.

  5. Density functional theory studies of interactions of ruthenium-arene complexes with base pair steps.

    PubMed

    Mutter, Shaun T; Platts, James A

    2011-10-20

    Density functional theory (DFT) calculations have been performed to determine the strength and geometry of intermolecular interactions of "piano-stool" ruthenium arene complexes, which show potential as anticancer treatments. Model complexes with methane and benzene indicate that the coordinated arene has C-H···π acceptor ability similar to that of free benzene, whereas this arene acts as a much stronger C-H donor or partner in π-stacking than free benzene. The source of these enhanced interactions is identified as a combination of electrostatic and dispersion effects. Complexes of Ru-arene complexes with base-pair step fragments of DNA, in which the arene has the potential to act as an intercalator, have also been investigated. Binding energies are found to be sensitive to the size and nature of the arene, with larger and more flexible arenes having stronger binding. π-stacking and C-H···π interactions between arene and DNA bases and hydrogen bonds from coordinated N-H to DNA oxygen atoms, as well as covalent Ru-N bonding, contribute to the overall binding. The effect of complexation on DNA structure is also examined, with larger rise and more negative slide values than canonical B-DNA observed in all cases.

  6. Electrocatalytic and photocatalytic conversion of CO(2) to methanol using ruthenium complexes with internal pyridyl cocatalysts.

    PubMed

    Boston, David J; Pachón, Yeimi M Franco; Lezna, Reynaldo O; de Tacconi, N R; MacDonnell, Frederick M

    2014-07-07

    The ruthenium complexes [Ru(phen)2(ptpbα)](2+) (Ruα) and [Ru(phen)2(ptpbβ)](2+) (Ruβ), where phen =1,10-phenanthroline ; ptpbα = pyrido[2',3':5,6]pyrazino[2,3-f][1,10]phenanthroline; ptpbβ = pyrido[3',4':5,6]pyrazino[2,3-f][1,10]phenanthroline, are shown as electrocatalysts and photocatalysts for CO2 reduction to formate, formaldehyde, and methanol. Photochemical activity of both complexes is lost in water but is retained in 1 M H2O in DMF. Controlled current electrolysis of a solution of Ruβ in CO2 saturated DMF:H2O (1 M) yields predominantly methanol over a 6 h period at ∼ -0.60 V versus Ag/AgCl, with traces of formaldehyde. After this time, the potential jumped to -1.15 V producing both methanol and CO as products. Irradiation of Ruβ in a solution of DMF:H2O (1 M) containing 0.2 M TEA (as the sacrificial reductant) yields methanol, formaldehyde, and formate. Identifications of all of the relevant redox and protonated states of the respective complexes were obtained by a combination of voltammetry and differential reflectance measurements. Spectroelectrochemistry was particularly useful to probe the photochemical and electrochemical reduction mechanisms of both complexes as well as the complexes speciation in the absence and presence of CO2.

  7. A functional ruthenium(ii) complex for imaging biothiols in living bodies.

    PubMed

    Ye, Zhiqiang; Gao, Quankun; An, Xin; Song, Bo; Yuan, Jingli

    2015-05-07

    A unique ruthenium(ii) complex, [Ru(bpy)2(DNS-bpy)](PF6)2 [bpy: 2,2'-bipyridine, DNS-bpy: 4-(2,4-dinitrophenylthio)-2,2'-bipyridine], that can act as a probe for the recognition and luminescence sensing of biothiols has been designed and synthesized. Due to the presence of effective photo-induced electron transfer (PET) from the potent electron donor (Ru-bpy centre) to the strong electron acceptor (2,4-dinitrophenyl moiety), the Ru(ii) complex itself is weakly luminescent. Reaction of [Ru(bpy)2(DNS-bpy)](PF6)2 with biothiols leads to the replacement of the 2,4-dinitrophenyl moiety by biothiols, which results in the loss of PET within the complex, to allow recovery of the MLCT-based emission of the Ru(ii) complex with an 80-fold increase in luminescence intensity. Taking advantage of the high specificity and sensitivity, and the excellent photophysical properties of Ru(ii) complexes, [Ru(bpy)2(DNS-bpy)](PF6)2 was successfully applied to the luminescence imaging of biothiols in living Daphnia magna. The results demonstrated the practical applicability of [Ru(bpy)2(DNS-bpy)](PF6)2 as a luminescent probe for the monitoring of biothiols in living bodies.

  8. NO Exchange for a Water Molecule Favorably Changes Iontophoretic Release of Ruthenium Complexes to the Skin.

    PubMed

    de Santana, Danielle C A S; Dias, Karina; Souza, Joel G; Ogunjimi, Abayomi T; Souza, Marina C; Silva, Roberto S; Lopez, Renata F V

    2017-01-08

    Ruthenium (Ru) complexes have been studied as promising anticancer agents. Ru nitrosyl complex (Ru-NO) is one which acts as a pro-drug for the release of nitric oxide (NO). The Ru-aqueous complex formed by the exchange of NO for a water molecule after NO release could also possess therapeutic effects. This study evaluates the influence of iontophoresis on enhancing the skin penetration of Ru-NO and Ru-aqueous and assesses its applicability as a tool in treating diverse skin diseases. Passive and iontophoretic (0.5 mA·cm(-2)) skin permeation of the complexes were performed for 4 h. The amount of Ru and NO in the stratum corneum (SC), viable epidermis (VE), and receptor solution was quantified while the influence of iontophoresis and irradiation on NO release from Ru-NO complex was also evaluated. Iontophoresis increased the amount of Ru-NO and Ru-aqueous recovered from the receptor solution by 15 and 400 times, respectively, as compared to passive permeation. Iontophoresis produced a higher accumulation of Ru-aqueous in the skin layers as compared to Ru-NO. At least 50% of Ru-NO penetrated the SC was stable after 4 h. The presence of Ru-NO in this skin layer suggests that further controlled release of NO can be achieved by photo-stimulation after iontophoresis.

  9. Discovery of a dual-targeting organometallic ruthenium complex with high activity inducing early stage apoptosis of cancer cells.

    PubMed

    Du, Jun; Zhang, Erlong; Zhao, Yao; Zheng, Wei; Zhang, Yang; Lin, Yu; Wang, Zhaoying; Luo, Qun; Wu, Kui; Wang, Fuyi

    2015-12-01

    Ruthenium based complexes are promising antitumour candidates due to their lower toxicity and better water-solubility compared to the platinum antitumour complexes. An epidermal growth factor receptor (EGFR) has been found to be overexpressed in a large set of tumour cells. In this work, a series of organoruthenium complexes containing EGFR-inhibiting 4-anilinoquinazoline pharmacophores were synthesised and characterised. These complexes exhibited excellent inhibitory activity against EGFR and high affinity to interact with DNA via minor groove binding, featuring dual-targeting properties. In vitro screening demonstrated that the as-prepared ruthenium complexes are anti-proliferating towards a series of cancer cell lines, in particular the non-small-cell lung cancer cell line A549. Fluorescence-activated cell sorting analysis and fluorescence microscopy revealed that the most active complex 3 induced much more early-stage cell apoptosis than its cytotoxic arene ruthenium analogue and the EGFR-inhibiting 4-anilinoquinazolines, verifying the synergetic effect of the two mono-functional pharmacophores.

  10. Modification of multiwall carbon nanotubes with ruthenium(II) terpyridine complex

    NASA Astrophysics Data System (ADS)

    Li, Huayang; Wu, Jie; Jeilani, Yassin A.; Ingram, Conrad W.; Harruna, Issifu I.

    2012-06-01

    Multiwall carbon nanotubes (MWCNTs, 1-3 μM in length and 20-25 nm in diameter) were initially functionalized with a 2,2':6'2″-terpyridine-chelated ruthenium(II) complex by covalent amidation. The resulting functionalized ruthenium MWCNTs (RuMWCNTs, 1-2 μM in length and 10-20 nm in diameter) were characterized by thermogravimetric analysis, X-ray photoelectronic spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and scanning electron microscopy (SEM). Thermogravimetric experiments of RuMWCNTs show that the functional group coverage of terpyridine-rutheniun-terpyridine (tpy-Ru-tpy) is 0.7036 mmol/1.0 g carbon. The XPS results show N1s and Ru3d5/5 signals, confirming the presence of tpy-Ru-tpy groups on the surface of MWCNTs. The FTIR spectra of the RuMWCNTs display the typical stretching mode of the carboxyl group (amide I) and a combination of amide N-H and C-N stretching mode (amide II). The Raman D- and G-line peak intensity ratio of RuMWCNTs (ID/IG 2.21) exceeds that of pristine MWCNTs (ID/IG 1.93), suggesting covalent bonding of tpy-Ru-tpy to MWCNTs and supporting the disruption of the graphitic integrity due to the proposed covalent functionalization. High-resolution SEM images confirm that tpy-Ru-tpy moieties are interconnected or attached as aggregated structures (100-200-nm range) on the surfaces of the carbon nanotubes after functionalization. The electrical property of RuMWCNTs depicts higher resistance (10.10 M Ω) than that of OX-MWCNTs (15.38 kΩ).

  11. Bis(o-methylserotonin)-containing iridium(III) and ruthenium(II) complexes as new cellular imaging dyes: synthesis, applications, and photophysical and computational studies.

    PubMed

    Núñez, Cristina; Silva López, Carlos; Faza, Olalla Nieto; Fernández-Lodeiro, Javier; Diniz, Mario; Bastida, Rufina; Capelo, Jose Luis; Lodeiro, Carlos

    2013-08-01

    We report the synthesis, characterization, and scope of a new versatile emissive molecular probe functionalized with a 1,10-phenanthroline moiety containing methylserotonin groups as binding sites for metal ion recognition. The synthesis, characterization, and evaluation of the in vitro imaging capability of the iridium(III) and ruthenium(II) complexes [Ir(ppy)2(N-N)](+) and [Ru(bpy)2(N-N)](2+), in which ppy is 2-phenylpyridine, bpy is 2,2'-bipyridine, and N-N is a 1,10-phenanthroline ligand functionalized with two methylserotonin groups to serve as binding sites for metal ion recognition, is reported. The uptake of these compounds by living freshwater fish (Carassius auratus) was studied by fluorescence microscopy, and the cytotoxicity of ligand N-N and [Ru(bpy)2(N-N)](2+) in this species was also investigated.

  12. Electrochemical DNA biosensor for detection of porcine oligonucleotides using ruthenium(II) complex as intercalator label redox

    NASA Astrophysics Data System (ADS)

    Halid, Nurul Izni Abdullah; Hasbullah, Siti Aishah; Ahmad, Haslina; Heng, Lee Yook; Karim, Nurul Huda Abd; Harun, Siti Norain

    2014-09-01

    A DNA biosensor detection of oligonucleotides via the interactions of porcine DNA with redox active complex based on the electrochemical transduction is described. A ruthenium(II) complex, [Ru(bpy)2(PIP)]2+, (bpy = 2,2'bipyridine, PIP = 2-phenylimidazo[4,5-f[[1,10-phenanthroline]) as DNA label has been synthesized and characterized by 1H NMR and mass spectra. The study was carried out by covalent bonding immobilization of porcine aminated DNA probes sequences on screen printed electrode (SPE) modified with succinimide-acrylic microspheres and [Ru(bpy)2(PIP)]2+ was used as electrochemical redox intercalator label to detect DNA hybridization event. Electrochemical detection was performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) over the potential range where the ruthenium (II) complex was active. The results indicate that the interaction of [Ru(bpy)2(PIP)]2+ with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA.

  13. Ultrasensitive fluorescence detection of heparin based on quantum dots and a functional ruthenium polypyridyl complex.

    PubMed

    Cao, Yanlin; Shi, Shuo; Wang, Linlin; Yao, Junliang; Yao, Tianming

    2014-05-15

    A new strategy for the detection of heparin is developed by utilizing quantum dots (QDs) and a functional ruthenium polypyridyl complex [Ru(phen)2(dppz-idzo)](2+) (phen=1,10-phenanthroline, dppz-idzo=dipyrido-[3,2-a:2',3'-c] phenazine-imidazolone). The emission of CdTe QDs is found to be quenched by Ru complex due to electron transfer. Upon addition of the polyanionic heparin, it could remove the quencher (Ru complex) from the surface of QDs owing to the electrostatic and/or hydrogen bonding interactions between heparin and Ru complex, which led to significant fluorescence recovery of CdTe QDs. The fluorescence intensity enhanced with the increase of heparin and a linear relationship was observed in the range of 21-77 nM for heparin detection in buffer solution and the limit of detection (LOD) is 0.38 nM. Moreover, the strategy was successfully applied to detect heparin as low as 0.68 nM with a linear range of 35-98 nM in fetal bovine serum samples. The selectivity results of the fluorescence assay revealed that our system displayed excellent fluorescence selectivity towards heparin over its analogues, such as chondroitin 4-sulfate (Chs) or hyaluronic acid (Hya). This fluorescence "switch on" assay for heparin is label-free, convenient, sensitive and selective, which can be used to detect heparin in biological systems even with the naked eyes.

  14. Impact of cyclometalated ruthenium(II) complexes on lactate dehydrogenase activity and cytotoxicity in gastric and colon cancer cells.

    PubMed

    Rico Bautista, Hugo; Saavedra Díaz, Rafael Omar; Shen, Longzhu Q; Orvain, Christophe; Gaiddon, Christian; Le Lagadec, Ronan; Ryabov, Alexander D

    2016-10-01

    Lactate dehydrogenase (LDH) is a redox enzyme often overexpressed in cancer cells allowing their survival in stressful metabolic tumor environment. Ruthenium(II) complexes have been shown to impact on the activity of purified horseradish peroxidase and glucose oxidase but the physiological relevance remains unclear. In this study we investigated how ruthenium complexes impact on the activity of LDH in vitro and in cancer cells and performed a comparative study using polypyridine ruthenium(II) complex [Ru(bpy)3](2+) (1) and its structurally related cyclometalated 2-phenylpyridinato counterpart [Ru(phpy)(bpy)2](+) (2) (bpy=2,2'-bipyridine, phpyH=2-phenylpyridine). We show that the cytotoxicity in gastric and colon cancer cells induced by 2 is significantly higher compared to 1. The kinetic inhibition mechanisms on purified LDH and the corresponding inhibition constants Ki or i0.5 values were calculated. Though complexes 1 and 2 are structurally very similar (one Ru-C bond in 2 replaces one Ru-N bond in 1), their inhibition modes are different. Cyclometalated complex 2 behaves exclusively as a non-competitive inhibitor of LDH from rabbit muscle (LDHrm), strongly suggesting that 2 does not interact with LDH in the vicinities of either lactate/pyruvate or NAD(+)/NADH binding sites. Sites of interaction of 1 and 2 with LDHrm were revealed theoretically through computational molecular docking. Inhibition of LDH activity by 2 was confirmed in cancer cells. Altogether, these results revealed an inhibition of LDH activity by ruthenium complex through a direct interaction structurally tuned by a Ru-C bond. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Multifunctional, defect-engineered metal-organic frameworks with ruthenium centers: sorption and catalytic properties.

    PubMed

    Kozachuk, Olesia; Luz, Ignacio; Llabrés i Xamena, Francesc X; Noei, Heshmat; Kauer, Max; Albada, H Bauke; Bloch, Eric D; Marler, Bernd; Wang, Yuemin; Muhler, Martin; Fischer, Roland A

    2014-07-01

    A mixed-linker solid-solution approach was employed to modify the metal sites and introduce structural defects into the mixed-valence Ru(II/III) structural analogue of the well-known MOF family [M3(II,II)(btc)2] (M=Cu, Mo, Cr, Ni, Zn; btc=benzene-1,3,5-tricarboxylate), with partly missing carboxylate ligators at the Ru2 paddle-wheels. Incorporation of pyridine-3,5-dicarboxylate (pydc), which is the same size as btc but carries lower charge, as a second, defective linker has led to the mixed-linker isoreticular derivatives of Ru-MOF, which display characteristics unlike those of the defect-free framework. Along with the creation of additional coordinatively unsaturated sites, the incorporation of pydc induces the partial reduction of ruthenium. Accordingly, the modified Ru sites are responsible for the activity of the "defective" variants in the dissociative chemisorption of CO2, the enhanced performance in CO sorption, the formation of hydride species, and the catalytic hydrogenation of olefins.

  16. Ruthenium Polypyridyl Complex Inhibits Growth and Metastasis of Breast Cancer Cells by Suppressing FAK signaling with Enhancement of TRAIL-induced Apoptosis

    NASA Astrophysics Data System (ADS)

    Cao, Wenqiang; Zheng, Wenjie; Chen, Tianfeng

    2015-03-01

    Ruthenium-based complexes have emerged as promising antitumor and antimetastatic agents during the past decades. However, the limited understanding of the antimetastatic mechanisms of these agents is a roadblock to their clinical application. Herein, we reported that, RuPOP, a ruthenium polypyridyl complex with potent antitumor activity, was able to effectively inhibit growth and metastasis of MDA-MB-231 cells and synergistically enhance TRAIL-induced apoptosis. The selective intracellular uptake and cytotoxic effect of RuPOP was found associated with transferring receptor (TfR)-mediated endocytosis. Further investigation on intracellular mechanisms reveled that RuPOP notably suppressed FAK-mediated ERK and Akt activation. Pretreatment of cells with ERK inhibitor (U0126) and PI3K inhibitor (LY294002) significantly potentiated the inhibitory effect of RuPOP on cell growth, migration and invasion. Moreover, the alternation in the expression levels of metastatic regulatory proteins, including uPA, MMP-2/-9, and inhibition of VEGF secretion were also observed after RuPOP treatment. These results demonstrate the inhibitory effect of RuPOP on the growth and metastasis of cancer cells and the enhancement of TRAIL-induced apoptosis though suppression of FAK-mediated signaling. Furthermore, RuPOP exhibits the potential to be developed as a metal-based antimetastatic agent and chemosensitizer of TRAIL for the treatment of human metastatic cancers.

  17. A dinuclear ruthenium(II) complex as turn-on luminescent probe for hypochlorous acid and its application for in vivo imaging

    PubMed Central

    Liu, Zonglun; Gao, Kuo; Wang, Beng; Yan, Hui; Xing, Panfei; Zhong, Chongmin; Xu, Yongqian; Li, Hongjuan; Chen, Jianxin; Wang, Wei; Sun, Shiguo

    2016-01-01

    A dinuclear ruthenium(II) complex Ruazo was designed and synthesized, in which oxidative cyclization of the azo and o-amino group was employed for the detection of hypochlorous acid (HClO) in aqueous solution. The non-emissive Ruazo formed highly luminescent triazole-ruthenium(II) complex in presence of HClO and successfully imaged HClO in living cell and living mouse. PMID:27356618

  18. Nitroimidazole derivatives of polypyridyl ruthenium complexes: Towards understanding their anticancer activity and mode of action.

    PubMed

    Mazuryk, Olga; Krysiak-Foria, Oksana; Żak, Agnieszka; Suzenet, Franck; Ptak-Belowska, Agata; Brzozowski, Tomasz; Stochel, Grażyna; Brindell, Małgorzata

    2017-04-01

    The mechanism of cell death induced by the ruthenium polypyridyl complexes comprising two 4,7-diphenyl-1,10-phenanthroline ligands as well as one unmodified 2,2'-bipyridyl or modified with 2-nitroimidazole moiety attached by shorter (C3H6) or longer (C6H12) linker was investigated. Cytotoxicity and proliferation assays revealed that the studied Ru polypyridyl complexes are more toxic against human pancreas carcinoma PANC-1 cell line than normal human keratinocytes HaCaT with IC50 of 3-5μM. The Ru complexes despite accumulation in mitochondria do not lead to mitochondrial disfunction, though decreasing of mitochondrial Ca(2+) causes mitochondria membrane hyperpolarization. The Ru polypyridyl conjugates induce some phenotypical characteristic of apoptosis, such as condensation of chromatin or phosphatidylserine translocation, however no caspase or calpain activation in the studied cell lines was observed, indicating that detected cell death does not occur via mitochondria- or ER-activated pathways. Caspase-independent cell death is caused by enormous ROS formation, mainly hydrogen peroxide and peroxyl radicals as well as by intracellular Ca(2+) homeostasis disruption. Accumulation of the Ru compounds inhibits the completion of DNA synthesis, arresting cells in S-phase of cell cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Synthesis, structures and properties of new hybrid solids containing ruthenium complexes and polyoxometalates

    NASA Astrophysics Data System (ADS)

    Yan, Bangbo; Hodsdon, Samantha A.; Li, Yan-Fen; Carmichael, Christopher N.; Cao, Yan; Pan, Wei-Ping

    2011-12-01

    Two new organic-inorganic hybrid solids containing Keggin ions and ruthenium complexes have been synthesized and characterized by FT-IR, UV-vis, luminescence, X-ray, and TG analysis. In KNa[Ru(bpy) 3] 2[H 2W 12O 40]·8H 2O ( 1), the [Ru(bpy) 3] 2+ (bpy=2,2'-bipyridine) complex ions are located in between the infinite one-dimensional double-chains formed by adjacent Keggin anions [H 2W 12O 40] 6- linked through {KO 7} and {NaO 6} polyhedra, while in K 6[Ru(pzc) 3] 2[SiW 12O 40]•12H 2O ( 2), the [Ru(pzc) 3] - (pzc=pyrazine-2-carboxylate) complex anions are confined by layered networks of the [SiW 12O 40] 4- clusters connected by potassium ions. Both compounds exhibit three-dimensional frameworks through noncovalent interactions such as hydrogen bonds and anion⋯π interactions. Additionally, compound 1 shows strong luminescence at 604 nm in solid state at room temperature.

  20. Poly(fluoroalkyl acrylate)-bound ruthenium carbene complex: a fluorous and recyclable catalyst for ring-closing olefin metathesis.

    PubMed

    Yao, Qingwei; Zhang, Yiliang

    2004-01-14

    The synthesis of a fluorous olefin metathesis catalyst derived from the Grubbs second-generation ruthenium carbene complex is described. The air stable fluorous polymer-bound ruthenium carbene complex 1 shows high reactivity in effecting the ring-closing metathesis of a broad spectrum of diene and enyne substrates leading to the formation of di-, tri-, and tetrasubstituted cyclic olefins in minimally fluorous solvent systems (PhCF3/CH2Cl2, 1:9-1:49 v/v). The catalyst can be readily separated from the reaction mixture by fluorous extraction with FC-72 and repeatedly reused. The practical advantage offered by the fluorous catalyst is demonstrated by its sequential use in up to five different metathesis reactions.

  1. Synthesis, electrochemical characterization, and photophysical studies of structurally tuned aryl-substituted terpyridyl ruthenium(II) complexes.

    PubMed

    Spettel, Karen E; Damrauer, Niels H

    2014-11-13

    Synthesis, electrochemical potentials, static emission, and temperature-dependent excited-state lifetimes of several 4'-aryl-substituted terpyridyl complexes of ruthenium(II) are reported. Synthetic tuning is explored within three conceptual series of complexes. The first series explores the impact of introducing a strong σ-donating 4,4',4″-tri-tert-butyl-2,2':6',2″-terpyridine (tbtpy) opposite to an arylated terpyridine ligand 4'-(4-methylphenyl)-2,2':6',2″-terpyridine (ttpy). It is found that (3)MLCT (triplet metal-to-ligand charge-transfer state) stabilization concomitant with (3)MC (triplet metal-centered state) destabilization in the heteroleptic parent complex [Ru(ttpy)(tbtpy)](2+) leads to an extended excited-state lifetime relative to the structurally related bis-homoleptic species [Ru(ttpy)2](2+). The second series explores the impact of introducing a carboxylic acid or a methyl ester moiety at the para-position of the arylterpyridyl ligand (R1 = R2 = H) within heteroleptic complexes as a platform for future semiconductor attachment studies. This substitution leads to further lifetime enhancements, understood as arising from (3)MLCT stabilization. Such complexes are referred to as [Ru(1)(tbtpy)](2+) (for the acid at R3) and [Ru(1')(tbtpy)](2+) (for the ester at R3). In the final series, methyl substituents are sequentially added at the R1 and R2 positions for both the acid ([Ru(2)(tbtpy)](2+) and [Ru(3)(tbtpy)](2+)) and ester ([Ru(2')(tbtpy)](2+) and [Ru(3')(tbtpy)](2+)) analogues to eventually explore dynamical electron transfer coupling at dye/semiconductor interfaces. In these complexes, sequential addition of steric bulk decreases excited state lifetimes. This can be understood to arise primarily from the increase of the (3)MLCT level, as excited-state electron delocalization is limited by inter-ring twisting in the lower-energy arylated ligand. The introduction of a dimethylated sterically encumbered ligand lead to a notable 14-fold increase in

  2. IR-doped ruthenium oxide catalyst for oxygen evolution

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I. (Inventor); Narayanan, Sekharipuram R. (Inventor)

    2012-01-01

    A method for preparing a metal-doped ruthenium oxide material by heating a mixture of a doping metal and a source of ruthenium under an inert atmosphere. In some embodiments, the doping metal is in the form of iridium black or lead powder, and the source of ruthenium is a powdered ruthenium oxide. An iridium-doped or lead-doped ruthenium oxide material can perform as an oxygen evolution catalyst and can be fabricated into electrodes for electrolysis cells.

  3. Electronic Spectra of TRIS(2,2'-BIPYRIDINE)-METAL Complex Ions in Gas Phase

    NASA Astrophysics Data System (ADS)

    Xu, Shuang; Smith, James E. T.; Weber, J. Mathias

    2016-06-01

    Tris(bpy)-metal complexes (bpy = 2,2'-bipyridine) and their derivatives are important systems in metal-organic chemistry. While tris(bpy)-ruthenium, Ru(bpy)32+, has been extensively studied, less attention has been paid to analogous complexes involving first row transition metals. Here we report the electronic spectra of a series of dicationic tris(bpy) chelates with different transition metals, measured by photodisscociation spectroscopy of cryogenically prepared ions. We focus our attention on the π-π* transitions in the UV region of the spectrum.

  4. Regulation of a cerium(IV)-driven O₂ evolution reaction using composites of liposome and lipophilic ruthenium complexes.

    PubMed

    Koshiyama, Tomomi; Kanda, Nao; Iwata, Koki; Honjo, Masayuki; Asada, Sana; Hatae, Tatsuru; Tsuji, Yasuhiro; Yoshida, Masaki; Okamura, Masaya; Kuga, Reiko; Masaoka, Shigeyuki; Ohba, Masaaki

    2015-09-14

    A composite containing a liposome and a lipophilic ruthenium complex was synthesized to regulate an O2 evolution reaction using cerium(IV) ammonium nitrate as an oxidizing reagent. We found that the surrounding environment of the reaction centre is an important factor for controlling the O2 evolution catalytic reaction. We successfully regulated the reaction activity using the linker length of the lipophilic ligand and using the head groups of the phospholipid component.

  5. Dual sensing of oxygen and temperature using quantum dots and a ruthenium complex.

    PubMed

    Jorge, P A S; Maule, C; Silva, A J; Benrashid, R; Santos, J L; Farahi, F

    2008-01-14

    A scheme for the simultaneous determination of oxygen and temperature using quantum dots and a ruthenium complex is demonstrated. The luminescent complex [Ru(II)-tris(4,7-diphenyl-1,10-phenanthroline)]2+ is immobilized in a non-hydrolytic sol-gel matrix and used as the oxygen sensor. The temperature information is provided by the luminescent emission of core-shell CdSe-ZnS semiconductor nanocrystals immobilized in the same material. Measurements of oxygen and temperature could be performed with associated errors of +/-2% of oxygen concentration and +/-1 degrees C, respectively. In addition, it is shown that while the dye luminescence intensity is quenched both by oxygen and temperature, the nanocrystals luminescent emission responds only to temperature. Results presented demonstrate that the combined luminescence response allows the simultaneous assessment of both parameters using a single optical fiber system. In particular, it was shown that a 10% error in the measured oxygen concentration, induced by a change in the sample temperature, could be compensated using the nanocrystals temperature information and a correction function.

  6. Mutual effect of ligands in nitrido and nitroso complexes of osmium and ruthenium from NQR data

    SciTech Connect

    Kravchenko. E.A.; Burtsev, M.Yu.; Sinitsyn, M.N.; Svetlov, A.A.; Kokunov, Ya.V.; Buslaev, A.

    1987-11-01

    The purpose of this investigation was to study by NQR the spectral results of the mutual ligand effect in complex compounds having various types of short bonds. The authors obtained the /sup 35/Cl, /sup 81/Br, and /sup 127/I NQR spectra of a large number of halogen complexes of osmium and ruthenium having short Os=N and M in equilibrium NO bonds of the following types: R(OsNHal/sub 4/) (R = (Ph/sub 4/P)/sup +/, (Bu/sub 4/N)/sup +/; Hal = Cl/sup -/, Br/sup -/, I/sup -/), K/sub 2/(OsNCl/sub 5/), Rb/sub 2/(OsNBr/sub 5/), (NH/sub 4/)/sub 2/(OsNBr/sub 5/), K(OsNHal/sub 4/L) (Hal = Cl/sup -/, Br/sup -/; L = H/sub 2/O, CH/sub 3/CN), K/sub 2/(MNOHal/sub 5/) (M = Os, Ru; Hal = Cl/sup -/, Br/sup -/, I/sup -/). The experimental NQR values measured are connected by the Townes and Dailey theory with the chemical bond characteristics i, sigma, ..pi.., the degree of the ionic, the sigma-covalent, and the ..pi..-covalent natures respectively ( i + sigma + ..pi.. = 1).

  7. A novel ruthenium(II)-cobaloxime supramolecular complex for photocatalytic H2 evolution: Synthesis, characterisation, and mechanistic studies

    PubMed Central

    Cropek, Donald M.; Metz, Anja; Müller, Astrid M.; Gray, Harry B.; Horne, Toyketa; Horton, Dorothy C.; Poluektov, Oleg; Tiede, David M.; Weber, Ralph T.; Jarrett, William L.; Phillips, Joshua D.

    2012-01-01

    We report the synthesis and characterization of novel mixed-metal binuclear ruthenium(II)-cobalt(II) photocatalysts for hydrogen evolution in acidic acetonitrile. First, 2-(2′-pyridyl)benzothiazole (pbt), 1, was reacted with RuCl3·xH2O to produce [Ru(pbt)2Cl2] ·0.25CH3COCH3, 2, which was then reacted with 1,10-phenanthroline-5,6-dione (phendione), 3 in order to produce [Ru(pbt)2(phendione)](PF6)2·4H2O, 4. Compound 4 was then reacted with 4-pyridinecarboxaldehyde in order to produce [Ru(pbt)2(L-pyr)](PF6)2·9.5H2O, 5 (where L-pyr = (4-pyridine)oxazolo[4,5-f]phenanthroline). Compound 5 was then reacted with [Co(dmgBF2)2(H2O)2] (where dmgBF2 = difluorboryldimethylglyoximate) in order to produce the mixed-metal binuclear complex, [Ru(pbt)2(L-pyr)Co(dmgBF2)2(H2O)](PF6)2·11H2O·1.5CH3COCH3, 6. [Ru(Me2bpy)2(L-pyr)Co(dmgBF2)2(OH2)](PF6)2, 7 (where Me2bpy = 1,10-phenanthroline, 4,4′-dimethyl-2,2′-bipyridine) and [Ru(phen)2(L-pyr)Co(dmgBF2)2(OH2)](PF6)2, 8 were also synthesised. All complexes were characterized by elemental analysis, UV-visible absorption, 11B, 19F, and 59Co NMR, ESR spectroscopy, and cyclic voltammetry, where appropriate. Photocatalytic studies carried out in acidified acetonitrile demonstrated constant hydrogen generation longer than a 42 hour period as detected by gas chromatography. Time resolved spectroscopic measurements were performed on compound 6, which proved an intramolecular electron transfer from an excited Ru(II) metal centre to the Co(II) metal centre via the bridging L-pyr ligand. This resulted in the formation of a cobalt(I)-containing species that is essential for the production of H2 gas in the presence of H+ ions. A proposed mechanism for the generation of hydrogen is presented. PMID:23001132

  8. A novel ruthenium(II)-cobaloxime supramolecular complex for photocatalytic H2 evolution: synthesis, characterisation and mechanistic studies.

    PubMed

    Cropek, Donald M; Metz, Anja; Müller, Astrid M; Gray, Harry B; Horne, Toyketa; Horton, Dorothy C; Poluektov, Oleg; Tiede, David M; Weber, Ralph T; Jarrett, William L; Phillips, Joshua D; Holder, Alvin A

    2012-11-14

    We report the synthesis and characterization of novel mixed-metal binuclear ruthenium(II)-cobalt(II) photocatalysts for hydrogen evolution in acidic acetonitrile. First, 2-(2'-pyridyl)benzothiazole (pbt), 1, was reacted with RuCl(3)·xH(2)O to produce [Ru(pbt)(2)Cl(2)]·0.25CH(3)COCH(3), 2, which was then reacted with 1,10-phenanthroline-5,6-dione (phendione), 3, in order to produce [Ru(pbt)(2)(phendione)](PF(6))(2)·4H(2)O, 4. Compound 4 was then reacted with 4-pyridinecarboxaldehyde in order to produce [Ru(pbt)(2)(L-pyr)](PF(6))(2)·9.5H(2)O, 5 (where L-pyr = (4-pyridine)oxazolo[4,5-f]phenanthroline). Compound 5 was then reacted with [Co(dmgBF(2))(2)(H(2)O)(2)] (where dmgBF(2) = difluoroboryldimethylglyoximato) in order to produce the mixed-metal binuclear complex, [Ru(pbt)(2)(L-pyr)Co(dmgBF(2))(2)(H(2)O)](PF(6))(2)·11H(2)O·1.5CH(3)COCH(3), 6. [Ru(Me(2)bpy)(2)(L-pyr)Co(dmgBF(2))(2)(OH(2))](PF(6))(2), 7 (where Me(2)bpy = 1,10-phenanthroline, 4,4'-dimethyl-2,2'-bipyridine) and [Ru(phen)(2)(L-pyr)Co(dmgBF(2))(2)(OH(2))](PF(6))(2), 8 were also synthesised. All complexes were characterized by elemental analysis, ESI MS, HRMS, UV-visible absorption, (11)B, (19)F, and (59)Co NMR, ESR spectroscopy, and cyclic voltammetry, where appropriate. Photocatalytic studies carried out in acidified acetonitrile demonstrated constant hydrogen generation longer than a 42 hour period as detected by gas chromatography. Time resolved spectroscopic measurements were performed on compound 6, which proved an intramolecular electron transfer from an excited Ru(II) metal centre to the Co(II) metal centre via the bridging L-pyr ligand. This resulted in the formation of a cobalt(I)-containing species that is essential for the production of H(2) gas in the presence of H(+) ions. A proposed mechanism for the generation of hydrogen is presented.

  9. Monometallic osmium(II) complexes with bis(N-methylbenzimidazolyl)benzene or -pyridine: a comparison study with ruthenium(II) analogues.

    PubMed

    Shao, Jiang-Yang; Zhong, Yu-Wu

    2013-06-03

    Seven bis-tridentate osmium complexes with Mebib or Mebip (Mebib is the 2-deprotonated form of 1,3-bis(N-methylbenzimidazolyl)benzene and Mebip is bis(N-methylbenzimidazolyl)pyridine) have been prepared, and their electrochemical and spectroscopic properties are compared with ruthenium structural analogues. Among them, four complexes have the [Os(NCN)(NNN)]-type coordination, including [Os(Mebib)(Mebip)](PF6)2 (1(PF6)2), [Os(dpb)(Mebip)](PF6) (2(PF6), dpb is the 2-deprotonated form of 1,3-di(pyrid-2-yl)benzene), [Os(Mebib)(ttpy)](PF6) (3(PF6), ttpy = 4'-tolyl-2,2':6',2"-terpyridine), and [Os(dpb)(ttpy)](PF6) (4(PF6)). The other three complexes are [Os(Mebip)2](PF6)2 (5(PF6)2), [Os(Mebip)(tpy)](PF6)2 (6(PF6)2, tpy = 2,2':6',2"-terpyridine), and [Os(ttpy)2](PF6)2 (7(PF6)2) with the [Os(NNN)(NNN)]-type coordination. Single crystals of 2(PF6) and 6(PF6)2 have been obtained, and their structures are studied by X-ray crystallographic analysis. The Os(II/III) redox potentials of 1(PF6)2 to 7(PF6)2 progressively increase from +0.04, +0.23, +0.24, +0.36, +0.56, +0.79 to +0.94 V vs Ag/AgCl, which are 200-300 mV less positive relative to the Ru(II/III) potentials of their ruthenium counterparts. The highest occupied molecular orbital energy levels of 1(+)-7(2+) are calculated to vary in a descending order. The ruthenium and osmium complexes have singlet metal-to-ligand charge-transfer (MLCT) transitions of similar energies and band shapes, while the osmium complexes display additional (3)MLCT transitions in the lower-energy region. Complexes 6(PF6)2 and 7(PF6)2 emit weakly at 780 and 740 nm, respectively. Complex 1(PF6)2 was synthesized as the oxidized Os(III) salt because of the low Os(II/III) potential. The transformation of 1(2+) to 1(+) by chemical reduction or electrolysis led to the emergence of the (1)MLCT transitions in the visible region.

  10. Superior Light-Harvesting Heteroleptic Ruthenium(II) Complexes with Electron-Donating Antennas for High Performance Dye-Sensitized Solar Cells.

    PubMed

    Chen, Wang-Chao; Kong, Fan-Tai; Li, Zhao-Qian; Pan, Jia-Hong; Liu, Xue-Peng; Guo, Fu-Ling; Zhou, Li; Huang, Yang; Yu, Ting; Dai, Song-Yuan

    2016-08-03

    Three heteroleptic polypyridyl ruthenium complexes, RC-41, RC-42, and RC-43, with efficient electron-donating antennas in the ancillary ligands were designed, synthesized, and characterized as sensitizers for dye-sensitized solar cell. All the RC dye sensitizers showed remarkable light-harvesting capacity and broadened absorption range. Significantly, RC-43 obtained the lower energy metal-ligand charge transfer (MLCT) band peaked at 557 nm with a high molar extinction coefficient of 27 400 M(-1) cm(-1). In conjunction with TiO2 photoanode of submicrospheres and iodide-based electrolytes, the DSSCs sensitizing with the RC sensitizers, achieved impressively high short-circuit current density (19.04 mA cm(-2) for RC-41, 19.83 mA cm(-2) for RC-42, and 20.21 mA cm(-2) for RC-43) and power conversion efficiency (10.07% for RC-41, 10.52% for RC-42, and 10.78% for RC-43). The superior performances of RC dye sensitizers were attributed to the enhanced light-harvesting capacity and incident-photon-to-current efficiency (IPCE) caused by the introduction of electron-donating antennas in the ancillary ligands. The interfacial charge recombination/regeneration kinetics and electron lifetime were further evaluated by the electrochemical impedance spectroscopy (EIS) and transient absorption spectroscopy (TAS). These data decisively revealed the dependences on the photovoltaic performance of ruthenium sensitizers incorporating electron-donating antennas.

  11. [Ru(pipe)(dppb)(bipy)]PF6: A novel ruthenium complex that effectively inhibits ERK activation and cyclin D1 expression in A549 cells.

    PubMed

    Ferreira-Silva, Guilherme A; Ortega, Marina M; Banionis, Marco A; Garavelli, Graciana Y; Martins, Felipe T; Dias, Julia S M; Viegas, Cláudio; Oliveira, Jaqueline C de; Nascimento, Fabio B do; Doriguetto, Antonio C; Barbosa, Marilia I F; Ionta, Marisa

    2017-10-01

    Lung cancer is the most frequent type of cancer worldwide. In Brazil, only 14% of the patients diagnosed with lung cancer survived 5years in the last decades. Although improvements in the therapeutic approach, it is relevant to identify new chemotherapeutic agents. In this framework, ruthenium metal compounds emerge as a promising alternative to platinum-based compounds once they displayed lower cytotoxicity and more selectivity for tumor cells. The present study aimed to evaluate the antitumor potential of innovative ruthenium(II) complex, [Ru(pipe)(dppb)(bipy)]PF6 (PIPE) on A549 cells, which is derived from non-small cell lung cancer. Results demonstrated that PIPE effectively reduced the viability and proliferation rate of A549 cells. When PIPE was used at 9μM there was increase in G0/G1 cell population with concomitant reduction in frequency of cells in S-phase, indicating cell cycle arrest in G1/S transition. Antiproliferative activity of PIPE was associated to its ability of reducing cyclin D1 expression and ERK phosphorylation levels. Cytotoxic activity of PIPE on A549 cells was observed when PIPE was used at 18μM, which was associated to its ability of inducing apoptosis by intrinsic pathway. Taken together, the data demonstrated that PIPE is a promising antitumor agent and further in vivo studies should be performed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. SOLVENT EXTRACTION OF RUTHENIUM

    DOEpatents

    Hyman, H.H.; Leader, G.R.

    1959-07-14

    The separation of rathenium from aqueous solutions by solvent extraction is described. According to the invention, a nitrite selected from the group consisting of alkali nitrite and alkaline earth nitrite in an equimolecular quantity with regard to the quantity of rathenium present is added to an aqueous solution containing ruthenium tetrantrate to form a ruthenium complex. Adding an organic solvent such as ethyl ether to the resulting mixture selectively extracts the rathenium complex.

  13. Chemical Activation in Blood Serum and Human Cell Culture: Improved Ruthenium Complex for Catalytic Uncaging of Alloc-Protected Amines.

    PubMed

    Völker, Timo; Meggers, Eric

    2017-06-19

    Chemical (as opposed to light-induced) activation of caged molecules is a rapidly advancing approach to trigger biological processes. We previously introduced the ruthenium-catalyzed release of allyloxycarbonyl (alloc)-protected amines in human cells. A restriction of this and all other methods is the limited lifetime of the catalyst, thus hampering meaningful applications. In this study, we addressed this problem with the development of a new generation of ruthenium complexes for the uncaging of alloc-protected amines with superior catalytic activity. Under biologically relevant conditions, we achieved a turnover number >300, a reaction rate of 580 m(-1)  s(-1) , and we observed high activity in blood serum. Furthermore, alloc-protected doxorubicin, as an anticancer prodrug, could be activated in human cell culture and induced apoptosis with a single low dose (1 μm) of the new catalyst. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Highly stable ECL active films formed by the electrografting of a diazotized ruthenium complex generated in situ from the amine.

    PubMed

    Piper, David J E; Barbante, Gregory J; Brack, Narelle; Pigram, Paul J; Hogan, Conor F

    2011-01-04

    The electrodeposition of the electrochemiluminescent (ECL) ruthenium complex, bis(2,2'-bipyridyl)(4'-(4-aminophenyl)-2,2'-bipyridyl)ruthenium(II), [Ru(bpy)(2)(apb)](2+), via the in situ formation of a diazonium species from aqueous media is reported. Surface characterization undertaken using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) determined that the layer is bound to the substrate via azo bonding. The layer displays good ECL activity and is stable over a long period of time. The excellent potential of this system for ECL sensing applications is demonstrated using the well-known ECL coreactant 2-(dibutylamino)ethanol (DBAE) as a model analyte, which can be detected to a level of 10 nM with a linear range between 10(-8) and 10(-4) M.

  15. Similarities of artificial photosystems by ruthenium oxo complexes and native water splitting systems

    PubMed Central

    Tanaka, Koji; Isobe, Hiroshi; Yamanaka, Shusuke; Yamaguchi, Kizashi

    2012-01-01

    The nature of chemical bonds of ruthenium(Ru)–quinine(Q) complexes, mononuclear [Ru(trpy)(3,5-t-Bu2Q)(OH2)](ClO4)2 (trpy = 2,2′:6′,2′′-terpyridine, 3,5-di-tert-butyl-1,2-benzoquinone) (1), and binuclear [Ru2(btpyan)(3,6-di-Bu2Q)2(OH2)]2+ (btpyan = 1,8-bis(2,2′:6′,2′′-terpyrid-4′-yl)anthracene, 3,6-t-Bu2Q = 3,6-di-tert-butyl-1,2-benzoquinone) (2), has been investigated by broken-symmetry (BS) hybrid density functional (DFT) methods. BS DFT computations for the Ru complexes have elucidated that the closed-shell structure (2b) Ru(II)–Q complex is less stable than the open-shell structure (2bb) consisting of Ru(III) and semiquinone (SQ) radical fragments. These computations have also elucidated eight different electronic and spin structures of tetraradical intermediates that may be generated in the course of water splitting reaction. The Heisenberg spin Hamiltonian model for these species has been derived to elucidate six different effective exchange interactions (J) for four spin systems. Six J values have been determined using total energies of the eight (or seven) BS solutions for different spin configurations. The natural orbital analyses of these BS DFT solutions have also been performed in order to obtain natural orbitals and their occupation numbers, which are useful for the lucid understanding of the nature of chemical bonds of the Ru complexes. Implications of the computational results are discussed in relation to the proposed reaction mechanisms of water splitting reaction in artificial photosynthesis systems and the similarity between artificial and native water splitting systems. PMID:22761310

  16. Energy Dependence of the Ruthenium(II)-Bipyridine Metal-to-Ligand-Charge-Transfer Excited State Radiative Lifetimes: Effects of ππ*(bipyridine) Mixing.

    PubMed

    Thomas, Ryan A; Tsai, Chia Nung; Mazumder, Shivnath; Lu, I Chen; Lord, Richard L; Schlegel, H Bernhard; Chen, Yuan Jang; Endicott, John F

    2015-06-18

    The variations in band shape with excited state energy found for the triplet metal to ligand charge transfer ((3)MLCT) emission spectra of ruthenium-bipyridine (Ru-bpy) chromophores at 77 K have been postulated to arise from excited state/excited state configurational mixing. This issue is more critically examined through the determination of the excited state energy dependence of the radiative rate constants (kRAD) for these emissions. Experimental values for kRAD were determined relative to known literature references for Ru-bpy complexes. When the lowest energy excited states are metal centered, kRAD can be anomalously small and such complexes have been identified using density functional theory (DFT) modeling. When such complexes are removed from the energy correlation, there is a strong (3)MLCT energy-dependent contribution to kRAD in addition to the expected classical energy cubed factor for complexes with excited state energies greater than 10 000 cm(-1). This correlates with the DFT calculations which show significant excited state electronic delocalization between a π(bpy-orbital) and a half-filled dπ*-(Ru(III)-orbital) for Ru-bpy complexes with (3)MLCT excited state energies greater than about 16 000 cm(-1). Overall, this work implicates the "stealing" of emission bandshapes as well as intensity from the higher energy, strongly allowed bpy-centered singlet ππ* excited state.

  17. Labile ruthenium(ii) complexes with extended phenyl-substituted terpyridyl ligands: synthesis, aquation and anticancer evaluation.

    PubMed

    Huang, Huaiyi; Zhang, Pingyu; Chen, Yu; Ji, Liangnian; Chao, Hui

    2015-09-21

    Ruthenium complexes have been considered as promising substitutes for cisplatin in cancer chemotherapy. However, novel ruthenium-based therapies are faced with some limitations, such as unimpressive cytotoxicity toward solid tumors. Herein, we designed and synthesized phenyl-substituted terpyridyl ruthenium(ii) complexes ([Ru(tpy)(bpy)Cl](+) (Ru1), [Ru(phtpy)(bpy)Cl](+) (Ru2) and [Ru(biphtpy)(bpy)Cl](+) (Ru3)) which exhibited distinctly different anticancer activity. Ru1-Ru3 all underwent moderate aquation in buffer solution and this process was significantly inhibited by high chloride concentration. Cancer cells were found to readily uptake the relatively hydrophobic Ru3, as quantified using inductively coupled plasma mass spectrometry (ICP-MS). Ru1 was found to be non-cytotoxic (IC50 > 100 μM) while Ru3 exhibited very promising cytotoxicity on both two-dimensional (2D) cancer cell monolayers and 3D MCTSs. An antiproliferative assay revealed that Ru3 significantly inhibited cellular DNA replication which ultimately induced apoptosis of cancer cells.

  18. Thermodynamic and structural study of phenanthroline derivative ruthenium complex/DNA interactions: probing partial intercalation and binding properties.

    PubMed

    Grueso, E; López-Pérez, G; Castellano, M; Prado-Gotor, R

    2012-01-01

    The binding of [Ru(PDTA-H(2))(phen)]Cl (PDTA = propylene-1,2-diaminetetra-acetic acid; phen = 1,10 phenanthroline) with ctDNA (=calf thymus DNA) has been investigated through intrinsic and induced circular dichroism, UV-visible absorption and fluorescence spectroscopies, steady-state fluorescence, thermal denaturation technique, viscosity and electrochemical measurements. The latter indicate that the cathodic and anodic peak potentials of the ruthenium complex shift to more positive values on increasing the DNA concentration, this behavior being a direct consequence of the interaction of both the reduced and oxidized form with DNA binding. From spectrophotometric titration experiments, the equilibrium binding constant and the number of monomer units of the polymer involved in the binding of one ruthenium molecule (site size) have been quantified. The intrinsic circular dichroism (CD) spectra show an unwinding and a conformational change of the DNA helix upon interaction of the ruthenium complex. Quenching process, thermal denaturation experiments and induced circular dichroism (ICD) are consistent with a partial intercalative binding mode. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Carboxylate-Assisted C(sp3)–H Activation in Olefin Metathesis-Relevant Ruthenium Complexes

    PubMed Central

    2015-01-01

    The mechanism of C–H activation at metathesis-relevant ruthenium(II) benzylidene complexes was studied both experimentally and computationally. Synthesis of a ruthenium dicarboxylate at a low temperature allowed for direct observation of the C–H activation step, independent of the initial anionic ligand-exchange reactions. A first-order reaction supports an intramolecular concerted metalation–deprotonation mechanism with ΔG⧧298K = 22.2 ± 0.1 kcal·mol–1 for the parent N-adamantyl-N′-mesityl complex. An experimentally determined ΔS⧧ = −5.2 ± 2.6 eu supports a highly ordered transition state for carboxylate-assisted C(sp3)–H activation. Experimental results, including measurement of a large primary kinetic isotope effect (kH/kD = 8.1 ± 1.7), agree closely with a computed six-membered carboxylate-assisted C–H activation mechanism where the deprotonating carboxylate adopts a pseudo-apical geometry, displacing the aryl ether chelate. The rate of cyclometalation was found to be influenced by both the electronics of the assisting carboxylate and the ruthenium ligand environment. PMID:24731019

  20. Hydrogen release from ammonia borane and derivatives in the presence of a ruthenium complex incorporating cooperative PNP ligands

    NASA Astrophysics Data System (ADS)

    Swinnen, Saartje; Nguyen, Vinh Son; Nguyen, Minh Tho

    2011-09-01

    A ruthenium complex bearing cooperative PNP ligands showed unprecedented activities in homogenous catalysis of the reversible dehydrogenation of ammonia borane at both N-functionality and ethylene backbone. Quantum chemical calculations on a simple model of Ru-complex are carried out to probe the H 2 release mechanism. The energy barrier for H 2 formation from NH 3BH 3 is found to be strongly reduced with the presence of Ru-catalyst, and one additional H 2 molecule can be produced. The Ru-complex can also be used as a catalyst for H 2 release from other potential materials for chemical hydrogen storage such as hydrazine and ammonia alane.

  1. Unprecedented coordination modes and demetalation pathways for unbridged polyenyl ligands. Ruthenium eta1,eta4-cycloheptadienyl complexes from allyl/alkyne cycloaddition.

    PubMed

    Older, Christina M; McDonald, Robert; Stryker, Jeffrey M

    2005-10-19

    Cationic (eta6-hexamethylbenzene)ruthenium(II) mediates the [3 + 2 + 2] cycloaddition of allyl and alkyne ligands, leading to the unexpected isolation of eta1,eta4-cycloheptadienyl complexes, an unprecedented coordination mode for transition metal complexes of simple organic rings. The nonconjugated, eta1,eta4-coordinated complex is obtained as the kinetic reaction product from treatment of the unsubstituted allyl complex with excess ethyne; this complex rearranges slowly at 80 degrees C to the thermodynamically more stable conjugated eta5-cycloheptadienyl isomer. The eta1,eta4-coordinated isomer is fluxional at room temperature, undergoing rapid and reversible equilibration with a cycloheptatriene hydride intermediate via facile beta-hydride elimination/reinsertion. The reinsertion process is remarkably regioselective, returning the nonconjugated eta1,eta4-cycloheptadienyl isomer exclusively at room temperature. For reactions incorporating dimethylacetylene dicarboxylate (DMAD) as one or both of the alkyne components, eta1,eta4-coordination appears to be both kinetically and thermodynamically favored, despite undergoing equilibration among all possible eta1,eta4-cycloheptadienyl and cycloheptatriene hydride isomers prior to arriving at one observed eta1,eta4-isomer. For this series, no isomerization to eta5-coordination is observed even upon prolonged heating. In contrast, the cyclization incorporating both DMAD and phenylacetylene proceeds directly to the eta5-cycloheptadienyl isomer at or below room temperature, indicating that eta5-coordination remains energetically accessible to this system. The DMAD-based cyclization reactions produce structurally diverse minor byproducts, including both eta1,eta4-methanocyclohexadiene and acyclic eta3,eta2-heptadienyl isomers, which have been isolated and rigorously characterized. The unusual eta1,eta4-coordination of the seven-membered ring leads to unique new organic products upon oxidative demetalation by iodinolysis

  2. Strong DNA deformation required for extremely slow DNA threading intercalation by a binuclear ruthenium complex

    PubMed Central

    Almaqwashi, Ali A.; Paramanathan, Thayaparan; Lincoln, Per; Rouzina, Ioulia; Westerlund, Fredrik; Williams, Mark C.

    2014-01-01

    DNA intercalation by threading is expected to yield high affinity and slow dissociation, properties desirable for DNA-targeted therapeutics. To measure these properties, we utilize single molecule DNA stretching to quantify both the binding affinity and the force-dependent threading intercalation kinetics of the binuclear ruthenium complex Δ,Δ-[μ‐bidppz‐(phen)4Ru2]4+ (Δ,Δ-P). We measure the DNA elongation at a range of constant stretching forces using optical tweezers, allowing direct characterization of the intercalation kinetics as well as the amount intercalated at equilibrium. Higher forces exponentially facilitate the intercalative binding, leading to a profound decrease in the binding site size that results in one ligand intercalated at almost every DNA base stack. The zero force Δ,Δ-P intercalation Kd is 44 nM, 25-fold stronger than the analogous mono-nuclear ligand (Δ-P). The force-dependent kinetics analysis reveals a mechanism that requires DNA elongation of 0.33 nm for association, relaxation to an equilibrium elongation of 0.19 nm, and an additional elongation of 0.14 nm from the equilibrium state for dissociation. In cells, a molecule with binding properties similar to Δ,Δ-P may rapidly bind DNA destabilized by enzymes during replication or transcription, but upon enzyme dissociation it is predicted to remain intercalated for several hours, thereby interfering with essential biological processes. PMID:25245944

  3. Ratiometric Dissolved Oxygen Sensors Based on Ruthenium Complex Doped with Silver Nanoparticles

    PubMed Central

    Jiang, Zike; Yu, Xinsheng; Zhai, Shikui; Hao, Yingyan

    2017-01-01

    A ratiometric optical sensor has been developed with electrospinning processing method for dissolved oxygen measurement. The sensing film is fabricated by using silver nano-particles (Ag NPs) doped with tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) dichloride complex (Ru(DPP)3Cl2) encapsulated in plasticized polymethyl methacrylate (PMMA). An insensitive 3-(2-benzothiazolyl)-7-(diethy lamino)-(6CI,7CI) (Coumarin6) is adopted as reference. The ratio of oxygenation is calculated at each image pixel of a 3CCD camera to quantify the oxygen concentration in aqueous environment. Compared to Ag-free film, the response time of Ag-containing films were improved from 1.5 s to 1.0 s upon switching from deoxygenated to air saturation and from 65 s to 45 s from air saturation to fully deoxygenated. The response times of the Ag-free film obtained by knifing was 2.0 s upon switching from deoxygenated to air saturation and 104 s from air saturation to fully deoxygenated. Results of the evaluation of accuracy, limit of detection, stability, and photostability are presented. An experiment measuring the spatiotemporal variation of oxygen distribution within the photosynthesis and respiration of Chlorella vulgaris is demonstrated. It is shown that the nanofiber-based optical sensor film could serve as a promising method for rapid oxygen monitoring in aqueous applications. PMID:28282946

  4. Ratiometric Dissolved Oxygen Sensors Based on Ruthenium Complex Doped with Silver Nanoparticles.

    PubMed

    Jiang, Zike; Yu, Xinsheng; Zhai, Shikui; Hao, Yingyan

    2017-03-09

    A ratiometric optical sensor has been developed with electrospinning processing method for dissolved oxygen measurement. The sensing film is fabricated by using silver nano-particles (Ag NPs) doped with tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) dichloride complex (Ru(DPP)₃Cl₂) encapsulated in plasticized polymethyl methacrylate (PMMA). An insensitive 3-(2-benzothiazolyl)-7-(diethy lamino)-(6CI,7CI) (Coumarin6) is adopted as reference. The ratio of oxygenation is calculated at each image pixel of a 3CCD camera to quantify the oxygen concentration in aqueous environment. Compared to Ag-free film, the response time of Ag-containing films were improved from 1.5 s to 1.0 s upon switching from deoxygenated to air saturation and from 65 s to 45 s from air saturation to fully deoxygenated. The response times of the Ag-free film obtained by knifing was 2.0 s upon switching from deoxygenated to air saturation and 104 s from air saturation to fully deoxygenated. Results of the evaluation of accuracy, limit of detection, stability, and photostability are presented. An experiment measuring the spatiotemporal variation of oxygen distribution within the photosynthesis and respiration of Chlorella vulgaris is demonstrated. It is shown that the nanofiber-based optical sensor film could serve as a promising method for rapid oxygen monitoring in aqueous applications.

  5. Using inclusion complexes with cyclodextrins to explore the aggregation behavior of a ruthenium metallosurfactant.

    PubMed

    Iza, Nerea; Guerrero-Martínez, Andrés; Tardajos, Gloria; Ortiz, María José; Palao, Eduardo; Montoro, Teresa; Radulescu, Aurel; Dreiss, Cécile A; González-Gaitano, Gustavo

    2015-03-10

    The aggregation behavior of a chiral metallosurfactant, bis(2,2'-bipyridine)(4,4'-ditridecyl-2,2'-bipyridine)ruthenium(II) dichloride (Ru2(4)C13), synthesized as a racemic mixture was characterized by small-angle neutron scattering, light scattering, NMR, and electronic spectroscopies. The analysis of the SANS data indicates that micelles are prolate ellipsoids over the range of concentrations studied, with a relatively low aggregation number, and the micellization takes place gradually with increasing concentration. The presence of cyclodextrins (β-CD and γ-CD) induces the breakup of the micelles and helps to establish that micellization occurs at a very slow exchange rate compared to the NMR time scale. The open structure of this metallosurfactant enables the formation of very stable complexes of 3:1 stoichiometry, in which one CD threads one of the hydrocarbon tails and two CDs the other, in close contact with the polar head. The complex formed with β-CD, more stable than the one formed with the wider γ-CD, is capable of resolving the Δ and Λ enantiomers at high CD/surfactant molar ratios. The chiral recognition is possible due to the very specific interactions taking place when the β-CD covers-via its secondary rim-part of the diimine moiety connected to the hydrophobic tails. A SANS model comprising a binary mixture of hard spheres (complex + micelles) was successfully used to study quantitatively the effect of the CDs on the aggregation of the surfactant.

  6. Synthesis, structures and reactivity of ruthenium nitrosyl complexes containing Kläui's oxygen tripodal ligand.

    PubMed

    Ip, Ho-Fai; Yi, Xiao-Yi; Wong, Wai-Yeung; Williams, Ian D; Leung, Wa-Hung

    2011-11-07

    Ruthenium nitrosyl complexes containing the Kläui's oxgyen tripodal ligand L(OEt)(-) ([CpCo{P(O)(OEt)(2)}(3)](-) where Cp = η(5)-C(5)H(5)) were synthesized and their photolysis studied. The treatment of [Ru(N^N)(NO)Cl(3)] with [AgL(OEt)] and Ag(OTf) afforded [L(OEt)Ru(N^N)(NO)][OTf](2) where N^N = 4,4'-di-tert-butyl-2,2'-bipyridyl (dtbpy) (2·[OTf](2)), 2,2'-bipyridyl (bpy) (3·[OTf](2)), N,N,N'N'-tetramethylethylenediamine (4·[OTf](2)). Anion metathesis of 3·[OTf](2) with HPF(6) and HBF(4) gave 3·[PF(6)](2) and 3·[BF(4)](2), respectively. Similarly, the PF(6)(-) salt 4·[PF(6)](2) was prepared by the reaction of 4·[OTf](2) with HPF(6). The irradiation of [L(OEt)Ru(NO)Cl(2)] (1) with UV light in CH(2)Cl(2)-MeCN and tetrahydrofuran (thf)-H(2)O afforded [L(OEt)RuCl(2)(MeCN)] (5) and the chloro-bridged dimer [L(OEt)RuCl](2)(μ-Cl)(2) (6), respectively. The photolysis of complex [2][OTf](2) in MeCN gave [L(OEt)Ru(dtbpy)(MeCN)][OTf](2) (7). Refluxing complex 5 with RNH(2) in thf gave [L(OEt)RuCl(2)(NH(2)R)] (R = tBu (8), p-tol (9), Ph (10)). The oxidation of complex 6 with PhICl(2) gave [L(OEt)RuCl(3)] (11), whereas the reduction of complex 6 with Zn and NH(4)PF(6) in MeCN yielded [L(OEt)Ru(MeCN)(3)][PF(6)] (12). The reaction of 3·[BF(4)](2) with benzylamine afforded the μ-dinitrogen complex [{L(OEt)Ru(bpy)}(2)(μ-N(2))][BF(4)](2) (13) that was oxidized by [Cp(2)Fe]PF(6) to a mixed valence Ru(II,III) species. The formal potentials of the RuL(OEt) complexes have been determined by cyclic voltammetry. The structures of complexes 5,6,10,11 and 13 have been established by X-ray crystallography.

  7. Spectroscopy and quantum-chemical calculations of nitro-bis-bipyridyl complexes of ruthenium(II) with 4-substituted pyridine ligands

    NASA Astrophysics Data System (ADS)

    Reshetova, K. I.; Krauklis, I. V.; Litke, S. V.; Ershov, A. Yu.; Chizhov, Yu. V.

    2016-04-01

    The luminescence, absorption, and luminescence excitation spectra of complexes cis-[Ru(bpy)2(L)(NO2)]+ [bpy = 2,2'-bipyridyl, L = pyridine, 4-aminopyridine, 4-dimethylaminopyridine, 4-picoline, isonicotinamide, or 4,4'-bipyridyl] in alcoholic (4 : 1 EtOH-MeOH) solutions are studied at 77 K. A linear correlation is established between the energy of the lowest electronically excited metal-toligand charge transfer state d π(Ru) → π*(bpy) of the complexes and the pKa parameter of the free 4-substituted pyridines used as ligands L. The B3LYP/[6-31G(d)+LanL2DZ(Ru)] hybrid density functional method is used to optimize the geometry of complexes and calculate their electronic structure and the charge distribution on the atoms of the nearest environment of ruthenium(II) ions. It is shown that there exists a mutually unambiguous correspondence between the charge on the nitrogen atom of ligands L coordinated in the complex and the pK a parameter of ligands. The calculated energies of the electronically excited metal-to-ligand charge transfer states of complexes linearly (correlation coefficient 0.99) depend on the charge on the nitrogen atom of ligands L, which completely agrees with the experimental data.

  8. Photocatalytic CO2 Reduction by Periodic Mesoporous Organosilica (PMO) Containing Two Different Ruthenium Complexes as Photosensitizing and Catalytic Sites.

    PubMed

    Kuramochi, Yusuke; Sekine, Masato; Kitamura, Kyohei; Maegawa, Yoshifumi; Goto, Yasutomo; Shirai, Soichi; Inagaki, Shinji; Ishida, Hitoshi

    2017-08-01

    A periodic mesoporous organosilica (PMO) containing 2,2'-bipyridine (bpy) ligands within the framework (BPy-PMO) has great potential for designing novel catalysts by modifying metal complexes. A photosensitizing site (Ru(PS)) was introduced by treating cis-[Ru(bpy)2 (dimethylsulfoxide)Cl]Cl with BPy-PMO. Then a catalytic site (Ru(Cat)) was brought in Ru(PS)x -BPy-PMO by reaction with a ruthenium polymer [Ru(CO)2 Cl2 ]n . The stepwise modification of BPy-PMO successfully affords a novel photocatalyst Ru(PS)x -Ru(Cat)y -BPy-PMO. The molar fractions (x, y) of Ru(PS) and Ru(Cat) were determined by energy dispersive X-ray (EDX) measurement and quantification of the amount of CO emitted in the photo-decarbonylation of Ru(Cat), respectively. Photochemical CO2 reduction (λex >430 nm) by Ru(PS)x -Ru(Cat)y -BPy-PMO in a CO2 -saturated N,N-dimethylacetamide/water solution containing 1-benzyl-1,4-dihydronicotinamide catalytically produced CO and formate. The total turnover frequency of CO and formate reached more than 162 h(-1) on x=0.11 and y=0.0055. The product selectivity (CO/formate) became large when the ratio of Ru(PS)-to-Ru(Cat) (x/y) was increased. The photocatalysts can be recycled at least three times without losing their catalytic activity, demonstrating that the Ru(PS) and Ru(Cat) units were strongly immobilized on the BPy-PMO framework. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. η(4) -HBCC-σ,π-Borataallyl Complexes of Ruthenium Comprising an Agostic Interaction.

    PubMed

    Saha, Koushik; Joseph, Benson; Ramalakshmi, Rongala; Anju, R S; Varghese, Babu; Ghosh, Sundargopal

    2016-06-01

    Thermolysis of [Cp*Ru(PPh2 (CH2 )PPh2 )BH2 (L2 )] 1 (Cp*=η(5) -C5 Me5 ; L=C7 H4 NS2 ), with terminal alkynes led to the formation of η(4) -σ,π-borataallyl complexes [Cp*Ru(μ-H)B{R-C=CH2 }(L)2 ] (2 a-c) and η(2) -vinylborane complexes [Cp*Ru(R-C=CH2 )BH(L)2 ] (3 a-c) (2 a, 3 a: R=Ph; 2 b, 3 b: R=COOCH3 ; 2 c, 3 c: R=p-CH3 -C6 H4 ; L=C7 H4 NS2 ) through hydroboration reaction. Ruthenium and the HBCC unit of the vinylborane moiety in 2 a-c are linked by a unique η(4) -interaction. Conversions of 1 into 3 a-c proceed through the formation of intermediates 2 a-c. Furthermore, in an attempt to expand the library of these novel complexes, chemistry of σ-borane complex [Cp*RuCO(μ-H)BH2 L] 4 (L=C7 H4 NS2 ) was investigated with both internal and terminal alkynes. Interestingly, under photolytic conditions, 4 reacts with methyl propiolate to generate the η(4) -σ,π-borataallyl complexes [Cp*Ru(μ-H)BH{R-C=CH2 }(L)] 5 and [Cp*Ru(μ-H)BH{HC=CH-R}(L)] 6 (R=COOCH3 ; L=C7 H4 NS2 ) by Markovnikov and anti-Markovnikov hydroboration. In an extension, photolysis of 4 in the presence of dimethyl acetylenedicarboxylate yielded η(4) -σ,π-borataallyl complex [Cp*Ru(μ-H)BH{R-C=CH-R}(L)] 7 (R=COOCH3 ; L=C7 H4 NS2 ). An agostic interaction was also found to be present in 2 a-c and 5-7, which is rare among the borataallyl complexes. All the new compounds have been characterized in solution by IR, (1) H, (11) B, (13) C NMR spectroscopy, mass spectrometry and the structural types were unequivocally established by crystallographic analysis of 2 b, 3 a-c and 5-7. DFT calculations were performed to evaluate possible bonding and electronic structures of the new compounds.

  10. Photochemical reactions of metal nitrosyl complexes. Mechanisms of NO reactions with biologically relevant metal centers

    DOE PAGES

    Ford, Peter C.

    2001-01-01

    Tmore » he discoveries that nitric oxide (a.k.a. nitrogen monoxide) serves important roles in mammalian bioregulation and immunology have stimulated intense interest in the chemistry and biochemistry of NO and derivatives such as metal nitrosyl complexes. Also of interest are strategies to deliver NO to biological targets on demand. One such strategy would be to employ a precursor which displays relatively low thermal reactivity but is photochemically active to release NO.his proposition led us to investigate laser flash and continuous photolysis kinetics of nitrosyl complexes such as the Roussin's iron-sulfur-nitrosyl cluster anions Fe 2 S 2 ( NO ) 4 2 − and Fe 4 S 3 ( NO ) 7 − and several ruthenium salen and porphyrin nitrosyls.hese include studies using metal-nitrosyl photochemistry as a vehicle for delivering NO to hypoxic cell cultures in order to sensitize γ -radiation damage. Also studied were the rates and mechanisms of NO “on” reactions with model water soluble heme compounds, the ferriheme protein met-myoglobin and various ruthenium complexes using ns laser flash photolysis techniques. An overview of these studies is presented.« less

  11. Water oxidation chemistry of a synthetic dinuclear ruthenium complex containing redox-active quinone ligands.

    PubMed

    Isobe, Hiroshi; Tanaka, Koji; Shen, Jian-Ren; Yamaguchi, Kizashi

    2014-04-21

    We investigated theoretically the catalytic mechanism of electrochemical water oxidation in aqueous solution by a dinuclear ruthenium complex containing redox-active quinone ligands, [Ru2(X)(Y)(3,6-tBu2Q)2(btpyan)](m+) [X, Y = H2O, OH, O, O2; 3,6-tBu2Q = 3,6-di-tert-butyl-1,2-benzoquinone; btpyan =1,8-bis(2,2':6',2″-terpyrid-4'-yl)anthracene] (m = 2, 3, 4) (1). The reaction involves a series of electron and proton transfers to achieve redox leveling, with intervening chemical transformations in a mesh scheme, and the entire molecular structure and motion of the catalyst 1 work together to drive the catalytic cycle for water oxidation. Two substrate water molecules can bind to 1 with simultaneous loss of one or two proton(s), which allows pH-dependent variability in the proportion of substrate-bound structures and following pathways for oxidative activation of the aqua/hydroxo ligands at low thermodynamic and kinetic costs. The resulting bis-oxo intermediates then undergo endothermic O-O radical coupling between two Ru(III)-O(•) units in an anti-coplanar conformation leading to bridged μ-peroxo or μ-superoxo intermediates. The μ-superoxo species can liberate oxygen with the necessity for the preceding binding of a water molecule, which is possible only after four-electron oxidation is completed. The magnitude of catalytic current would be limited by the inherent sluggishness of the hinge-like bending motion of the bridged μ-superoxo complex that opens up the compact, hydrophobic active site of the catalyst and thereby allows water entry under dynamic conditions. On the basis of a newly proposed mechanism, we rationalize the experimentally observed behavior of electrode kinetics with respect to potential and discuss what causes a high overpotential for water oxidation by 1.

  12. Cationic bis-N-heterocyclic carbene (NHC) ruthenium complex: structure and application as latent catalyst in olefin metathesis.

    PubMed

    Rouen, Mathieu; Queval, Pierre; Falivene, Laura; Allard, Jessica; Toupet, Loïc; Crévisy, Christophe; Caijo, Frédéric; Baslé, Olivier; Cavallo, Luigi; Mauduit, Marc

    2014-10-13

    An unexpected cationic bis-N-heterocyclic carbene (NHC) benzylidene ether based ruthenium complex (2 a) was prepared through the double incorporation of an unsymmetrical unsaturated N-heterocyclic carbene (U2 -NHC) ligand that bore an N-substituted cyclododecyl side chain. The isolation and full characterization (including X-ray diffraction studies) of key synthetic intermediates along with theoretical calculations allowed us to understand the mechanism of the overall cationization process. Finally, the newly developed complex 2 a displayed interesting latent behavior during ring-closing metathesis, which could be "switched on" under acidic conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synthesis, characterization, DNA interaction, antioxidant and anticancer activity of new ruthenium(II) complexes of thiosemicarbazone/semicarbazone bearing 9,10-phenanthrenequinone.

    PubMed

    Anitha, Panneerselvam; Chitrapriya, Nataraj; Jang, Yoon Jung; Viswanathamurthi, Periasamy

    2013-12-05

    A new series of octahedral ruthenium(II) complexes supported by tridentate ligands derived from phenanthrenequinone and derivatives of thiosemicarbazide/semicarbazide and other co-ligands have been synthesized and characterized. DNA binding experiments indicated that ruthenium(II) complexes can interact with DNA through non-intercalation and the apparent binding constant value (Kb) of [RuCl(CO)(PPh₃)(L₃)] (3) at room temperature was calculated to be 2.27 × 10(3)M(-1). The DNA cleavage studies showed that the complexes have better cleavage of pBR 322 DNA. Antioxidative activity proved that the complexes have significant radical scavenging activity against free radicals. Cytotoxic activities showed that the ruthenium(II) complexes exhibited more effective cytotoxic activity against selected cancer cells.

  14. Unusual DNA binding modes for metal anticancer complexes

    PubMed Central

    Pizarro, Ana M.; Sadler, Peter J.

    2010-01-01

    DNA is believed to be the primary target for many metal-based drugs. For example, platinum-based anticancer drugs can form specific lesions on DNA that induce apoptosis. New platinum drugs can be designed that have novel modes of interaction with DNA, such as the trinuclear platinum complex BBR3464. Also it is possible to design inert platinum(IV) pro-drugs which are non-toxic in the dark, but lethal when irradiated with certain wavelengths of light. This gives rise to novel DNA lesions which are not as readily repaired as those induced by cisplatin, and provides the basis for a new type of photoactivated chemotherapy. Finally, newly emerging ruthenium(II) organometallic complexes not only bind to DNA coordinatively, but also by H-bonding and hydrophibic interactions triggered by the introduction of extended arene rings into their versatile structures. Intriguingly osmium (the heavier congener of ruthenium) reacts differently with DNA but can also give rise to highly cytotoxic organometallic complexes. PMID:19344743

  15. Solvent assisted formation of ruthenium(III) and ruthenium(II) hydrazone complexes in one-pot with potential in vitro cytotoxicity and enhanced LDH, NO and ROS release.

    PubMed

    Jayanthi, Eswaran; Kalaiselvi, Sivalingam; Padma, Viswanatha Vijaya; Bhuvanesh, Nattamai S P; Dharmaraj, Nallasamy

    2016-01-28

    A set each of new bivalent and trivalent ruthenium complexes, [Ru(III)(HL)Cl2(EPh3)2] and [Ru(II)(L)(CO)(EPh3)2] (E = P (complexes and ) or As (complexes and )) were synthesised from the reactions of [Ru(III)Cl3(EPh3)3] with 2-hydroxynaphthaldehyde benzoic acid hydrazone (H2L) in methanol-chloroform and characterized by elemental analysis, spectral data and XRD study. A suitable mechanism to account for the formation of bivalent ruthenium carbonyl complexes from the corresponding trivalent precursors is provided by considering the role of added base in the reaction. Interaction of complexes with CT-DNA/bovine serum albumin was analysed with absorption and emission spectral titration studies. In vitro cytotoxic potential of the above ruthenium hydrazone complexes assayed against the A549 cell line revealed a significant growth inhibition. The test complexes added in IC50 concentration into the cell culture medium enhanced the release of lactate dehydrogenase, NO and reactive oxygen species in comparison with the control. Cell death induced by the complexes was studied using a propidium iodide staining assay and showed noticeable changes in the cell morphology which resembled apoptosis.

  16. A novel ruthenium(II)-polypyridyl complex inhibits cell proliferation and induces cell apoptosis by impairing DNA damage repair.

    PubMed

    Yang, Qingyuan; Zhang, Zhao; Mei, Wenjie; Sun, Fenyong

    2014-08-01

    Ruthenium complexes are widely recognized as one of the most promising DNA damaging chemotherapeutic drugs. The main goal of this study was to explore the anticancer activity and underlying mechanisms of [Ru(phen)(2)(p-BrPIP)](ClO(4))(2), a novel chemically synthesized ruthenium (Ru) complex. To this end, we employed MTT assays to determine the anticancer activity of the complex, and performed single-cell gel electrophoresis (SCGE) and Western blotting to evaluate DNA damage. Our results showed that the Ru(II)-poly complex caused severe DNA damage, possibly by downregulating key factors involved in DNA repair pathways, such as proliferating cell nuclear antigen (PCNA) and ring finger protein 8 (RNF8). In addition, this complex induced cell apoptosis by upregulating both p21 and p53. Taken together, our findings demonstrate that the Ru(II)-poly complex exhibits antitumour activity by inducing cell apoptosis, which results from the accumulation of large amounts of unrepaired DNA damage.

  17. π-Expansive Heteroleptic Ruthenium(II) Complexes as Reverse Saturable Absorbers and Photosensitizers for Photodynamic Therapy.

    PubMed

    Wang, Li; Yin, Huimin; Jabed, Mohammed A; Hetu, Marc; Wang, Chengzhe; Monro, Susan; Zhu, Xiaolin; Kilina, Svetlana; McFarland, Sherri A; Sun, Wenfang

    2017-03-20

    Five heteroleptic tris-diimine ruthenium(II) complexes [RuL(N^N)2](PF6)2 (where L is 3,8-di(benzothiazolylfluorenyl)-1,10-phenanthroline and N^N is 2,2'-bipyridine (bpy) (1), 1,10-phenanthroline (phen) (2), 1,4,8,9-tetraazatriphenylene (tatp) (3), dipyrido[3,2-a:2',3'-c]phenazine (dppz) (4), or benzo[i]dipyrido[3,2-a:2',3'-c]phenazine (dppn) (5), respectively) were synthesized. The influence of π-conjugation of the ancillary ligands (N^N) on the photophysical properties of the complexes was investigated by spectroscopic methods and simulated by density functional theory (DFT) and time-dependent DFT. Their ground-state absorption spectra were characterized by intense absorption bands below 350 nm (ligand L localized (1)π,π* transitions) and a featureless band centered at ∼410 nm (intraligand charge transfer ((1)ILCT)/(1)π,π* transitions with minor contribution from metal-to-ligand charge transfer ((1)MLCT) transition). For complexes 4 and 5 with dppz and dppn ligands, respectively, broad but very weak absorption (ε < 800 M(-1) cm(-1)) was present from 600 to 850 nm, likely emanating from the spin-forbidden transitions to the triplet excited states. All five complexes showed red-orange phosphorescence at room temperature in CH2Cl2 solution with decreased lifetimes and emission quantum yields, as the π-conjugation of the ancillary ligands increased. Transient absorption (TA) profiles were probed in acetonitrile solutions at room temperature for all of the complexes. Except for complex 5 (which showed dppn-localized (3)π,π* absorption with a long lifetime of 41.2 μs), complexes 1-4 displayed similar TA spectral features but with much shorter triplet lifetimes (1-2 μs). Reverse saturable absorption (RSA) was demonstrated for the complexes at 532 nm using 4.1 ns laser pulses, and the strength of RSA decreased in the order: 2 ≥ 1 ≈ 5 > 3 > 4. Complex 5 is particularly attractive as a broadband reverse saturable absorber due to its wide optical window (430

  18. Single-Component Phosphinous Acid Ruthenium(II) Catalysts for Versatile C-H Activation by Metal-Ligand Cooperation.

    PubMed

    Zell, Daniel; Warratz, Svenja; Gelman, Dmitri; Garden, Simon J; Ackermann, Lutz

    2016-01-22

    Well-defined ruthenium(II) phosphinous acid (PA) complexes enabled chemo-, site-, and diastereoselective C-H functionalization of arenes and alkenes with ample scope. The outstanding catalytic activity was reflected by catalyst loadings as low as 0.75 mol %, and the most step-economical access reported to date to angiotensin II receptor antagonist blockbuster drugs. Mechanistic studies indicated a kinetically relevant C-X cleavage by a single-electron transfer (SET)-type elementary process, and provided evidence for a PA-assisted C-H ruthenation step.

  19. New ruthenium(II) carbonyl complexes bearing disulfide Schiff base ligands and their applications as catalyst for some organic transformations

    NASA Astrophysics Data System (ADS)

    Prakash, Govindan; Viswanathamurthi, Periasamy

    2014-08-01

    Schiff base disulfide ligands (H2L1-6) were synthesized from the condensation of cystamine with salicylaldehyde(H2L1), 5-chlorosalicylaldehyde(H2L2), o-vanillin(H2L3), 2-hydroxyacetophenone(H2L4), 3-methyl-2-hydroxyacetophenone(H2L5), and 2-hydroxy-1-naphthaldehyde(H2L6). H2L1-6 reacts with the ruthenium precursor complex [RuHCl(CO)(PPh3)3] in benzene giving rise to six new ruthenium(II) complexes of general formula [Ru(CO)L1-6]. Characterization of the new complexes was carried out by using elemental and spectral (IR, UV-Vis, NMR (1H and 13C) and Mass) techniques. An octahedral geometry was assigned for all the complexes based on the spectral data obtained. The catalytic efficiency of the new complexes in aldehyde to amide conversion in the presence of NaHCO3, N-alkylation of aniline in the presence of t-BuOK, and transfer hydrogenation of ketones in the presence of iPrOH/KOH reactions were studied. Furthermore, the effect of solvents and catalyst/substrate ratio on the catalytic aldehyde to amide conversion were also discussed.

  20. In vitro anticancer activity and biologically relevant metabolization of organometallic ruthenium complexes with carbohydrate-based ligands.

    PubMed

    Berger, Isabella; Hanif, Muhammad; Nazarov, Alexey A; Hartinger, Christian G; John, Roland O; Kuznetsov, Maxim L; Groessl, Michael; Schmitt, Frederic; Zava, Olivier; Biba, Florian; Arion, Vladimir B; Galanski, Markus; Jakupec, Michael A; Juillerat-Jeanneret, Lucienne; Dyson, Paul J; Keppler, Bernhard K

    2008-01-01

    The synthesis and in vitro anticancer activity of dihalogenido(eta6-p-cymene)(3,5,6-bicyclophosphite-alpha-D-glucofuranoside)ruthenium(II) complexes are described. The compounds were characterized by NMR spectroscopy and ESI mass spectrometry, and the molecular structures of dichlorido-, dibromido- and diiodido(eta6-p-cymene)(3,5,6-bicyclophosphite-1,2-O-isopropylidene-alpha-D-glucofuranoside)ruthenium(II) were determined by X-ray diffraction analysis. The complexes were shown to undergo aquation of the first halido ligand in aqueous solution, followed by hydrolysis of a P--O bond of the phosphite ligand, and finally formation of dinuclear species. The hydrolysis mechanism was confirmed by DFT calculations. The aquation of the complexes was markedly suppressed in 100 mM NaCl solution, and notably only very slow hydrolysis of the P--O bond was observed. The complexes showed affinity towards albumin and transferrin and monoadduct formation with 9-ethylguanine. In vitro studies revealed that the 3,5,6-bicyclophosphite-1,2-O-cyclohexylidene-alpha-D-glucofuranoside complex is the most cytotoxic compound in human cancer cell lines (IC50 values from 30 to 300 microM depending on the cell line).

  1. New ruthenium(II) carbonyl complexes bearing disulfide Schiff base ligands and their applications as catalyst for some organic transformations.

    PubMed

    Prakash, Govindan; Viswanathamurthi, Periasamy

    2014-08-14

    Schiff base disulfide ligands (H2L(1-6)) were synthesized from the condensation of cystamine with salicylaldehyde(H2L(1)), 5-chlorosalicylaldehyde(H2L(2)), o-vanillin(H2L(3)), 2-hydroxyacetophenone(H2L(4)), 3-methyl-2-hydroxyacetophenone(H2L(5)), and 2-hydroxy-1-naphthaldehyde(H2L(6)). H2L(1-6) reacts with the ruthenium precursor complex [RuHCl(CO)(PPh3)3] in benzene giving rise to six new ruthenium(II) complexes of general formula [Ru(CO)L(1-6)]. Characterization of the new complexes was carried out by using elemental and spectral (IR, UV-Vis, NMR ((1)H and (13)C) and Mass) techniques. An octahedral geometry was assigned for all the complexes based on the spectral data obtained. The catalytic efficiency of the new complexes in aldehyde to amide conversion in the presence of NaHCO3, N-alkylation of aniline in the presence of t-BuOK, and transfer hydrogenation of ketones in the presence of iPrOH/KOH reactions were studied. Furthermore, the effect of solvents and catalyst/substrate ratio on the catalytic aldehyde to amide conversion were also discussed.

  2. Comparison of physical and photophysical properties of monometallic and bimetallic ruthenium(II) complexes containing structurally altered diimine ligands

    SciTech Connect

    Macatangay, A.; Jackman, D.C.; Merkert, J.W.

    1996-11-06

    The physical and photophysical properties of a series of monometallic, [Ru(bpy){sub 2}(dmb)]{sup 2+}, [Ru(bpy){sub 2}(BPY)]{sup 2+}, [Ru(bpy)(Obpy)]{sup 2+} and [Ru(bpy){sub 2}(Obpy)] {sup 2+}, and bimetallic, [(Ru(bpy){sub 2}){sub 2}(BPY)]{sup 4+} and [(Ru(bpy){sub 2}){sub 2}(Obpy)]{sup 4+}, complexes are examined, where bpy is 2,2{prime}-bipyridine, dmb is 4,4{prime}-dimethyl-2,2{prime}-bipyridine, BPY is 1,2-bis(4-methyl-2,2{prime}-bipyridin-4{prime}-yl)ethane, and Obpy is 1,2-bis(2,2{prime}-bipyridin-6-yl)ethane. The complexes display metal-to-ligand charge transfer transitions in the 450 nmn region, intraligand {pi}{yields}{pi}* transitions at energies greater than 300 nm, a reversible oxidation of the ruthenium(II) center in the 1.25-1.40 V vs SSCE region, a series of three reductions associated with each coordinated ligand commencing at {minus}1.3 V and ending at {approximately}{minus}1.9 V, and emission from a {sup 3}MLCT state having energy maxima between 598 and 610 nm. The Ru{sup III}/Ru{sup II} oxidation of the two bimetallic complexes is a single, two one-electron process. Relative to [Ru(bpy){sub 2}(BPY)]{sup 2+}, the Ru{sup III}/Ru{sup II} potential for [Ru-(bpy){sub 2}(Obpy)]{sup 2+} increases from 1.24 to 1.35 V, the room temperature emission lifetime decreases from 740 to 3ns, and the emission quantum yield decreases from 0.078 to 0.000 23. Similarly, relative to [(Ru(bpy){sub 2}){sub 2}(BPY)]{sup 4+}, the Ru{sup III}/Ru{sup II} potential for [(Ru(bpy){sub 2}){sub 2}(Obpy)]{sup 4+} increases from 1.28 to 1.32 V, the room temperature emission lifetime decreases from 770 to 3 ns, and the room temperature emission quantum yield decreases from 0.079 to 0.000 26.

  3. Systematical investigation of binding interaction between novel ruthenium(II) arene complex with curcumin analogs and ctDNA.

    PubMed

    Huang, Shan; Liang, Yu; Huang, Chusheng; Su, Wei; Lei, Xiaolin; Liu, Yi; Xiao, Qi

    2016-11-01

    In this study, the interaction between a novel ruthenium(II) arene complex with curcumin analogs and calf thymus DNA (ctDNA) was investigated systematically by viscosity measurement, the DNA melting approach, multispectroscopic techniques and electrochemical methods. The absorption spectra of the ctDNA-drug complex showed a slight red shift and a weak hypochromic effect. The relative viscosity and melting temperature of ctDNA increased on addition of the drug. The evidence obtained from fluorescence competitive experiments indicated that the binding mode of the drug with ctDNA was intercalative. Using acridine orange (AO) as a fluorescence probe, the drug statically quenched the fluorescence of the ctDNA-AO complex, and hydrogen bonding and van der Waals interactions played vital roles in the binding interaction between the drug and ctDNA. The influences of ionic strength, chemical denaturants and pH on the binding interaction were also investigated. Circular dichroism and Fourier transform infrared spectra suggested that this drug might bond with the G-C base pairs of ctDNA and the right-handed B-form helicity of ctDNA remained after drug binding. The intercalative binding between the drug and ctDNA was further investigated using electrochemical techniques. All these results suggested that the biological activity of ctDNA was affected by ruthenium(II) arene complex with curcumin analogs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Intra- and intermolecular interaction ECL study of novel ruthenium tris-bipyridyl complexes with different amine reductants.

    PubMed

    Sun, Shiguo; Yang, Yang; Liu, Fengyu; Fan, Jiangli; Peng, Xiaojun; Kehr, Jan; Sun, Licheng

    2009-10-14

    A series of ruthenium(II) tris-bipyridyl complexes covalently linked with different amine reductants such as tripropylamine (TPrA), ethanolamine and diethanolamine for an electrochemiluminescence (ECL) system have been synthesized. Their ECL property at different working electrodes has been studied with and without the presence of TPrA, triethanolamine (TEOA) and 2-(dibutylamino) ethanol (DBAE) as the coreactant, respectively. The results demonstrate that the conjugated ruthenium complex alone can generate ECL through intramolecular interaction at a relatively low concentration, while with intermolecular interaction the ECL intensity increases progressively and becomes increasingly dominant with increasing complex concentration. For the coreactant system ECL, the amine coreactant needed for the conjugate complexes can be significantly lowered in comparison with that of the well known [Ru(bpy)(3)](2+)/TPrA system. One amine substituent is better for the system in order to diminish the steric hindrance, and the intramolecular amine reductant employed should have a similar structure with that of the additive amine coreactant to achieve a good ECL performance, which can pave a new route to further improving the ECL efficiency and increase the sensitivity of detection through combining both intra- and intermolecular interaction.

  5. Photochemistry between a ruthenium(II) pyridylimidazole complex and benzoquinone: simple electron transfer versus proton-coupled electron transfer.

    PubMed

    Hönes, Roland; Kuss-Petermann, Martin; Wenger, Oliver S

    2013-02-01

    A ruthenium(II) complex with two 4,4'-bis(trifluoromethyl)-2,2'-bipyridine chelates and a 2-(2'-pyridyl)imidazole ligand was synthesized and characterized by electrochemical and optical spectroscopic means. The respective complex has the potential to act as a combined electron-proton donor when promoted to its long-lived (3)MLCT excited state with visible light. The possibility of proton-coupled electron transfer (PCET) between the ruthenium(II) complex and 1,4-benzoquinone as an electron/proton acceptor was explored by steady-state and time-resolved luminescence spectroscopy, as well as by transient absorption spectroscopy in the nanosecond time regime. Excited-state deactivation is found to occur predominantly via simple oxidative quenching involving no proton motion, but a minor fraction of the photoexcited complex appears to react via PCET since there is spectral evidence for semiquinone as a photoproduct. Presumably, PCET is not kinetically competitive with simple electron transfer because the latter process is sufficiently exergonic and because there is little thermodynamic benefit from coupling proton transfer to the photoinduced electron transfer.

  6. Solid-Phase Synthesis as a Platform for the Discovery of New Ruthenium Complexes for Efficient Release of Photocaged Ligands with Visible Light

    PubMed Central

    Sharma, Rajgopal; Knoll, Jessica D.; Ancona, Nicholas; Martin, Phillip D.; Turro, Claudia; Kodanko, Jeremy J.

    2015-01-01

    Ruthenium-based photocaging groups have important applications as biological tools and show great potential as therapeutics. A method was developed to rapidly synthesize, screen and identify ruthenium-based caging groups that release nitriles upon irradiation with visible light. A diverse library of tetra- and pentadentate ligands was synthesized on polystyrene resin. Ruthenium complexes of the general formula [Ru(L)(MeCN)n]m+ (n = 1–3, m = 1–2) were generated from these ligands on solid phase, then cleaved from resin for photochemical analysis. Data indicate a wide range of spectral tuning and reactivity with visible light. Three complexes that showed strong absorbance in the visible range were synthesized by solution phase for comparison. Photochemical behavior of solution- and solid-phase complexes was in good agreement, confirming that the library approach is useful in identifying candidates with desired photoreactivity in short order, avoiding time consuming chromatography and compound purification. PMID:25611351

  7. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    PubMed Central

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2012-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772

  8. Effects of histidin-2-ylidene vs. imidazol-2-ylidene ligands on the anticancer and antivascular activity of complexes of ruthenium, iridium, platinum, and gold.

    PubMed

    Schmitt, Florian; Donnelly, Kate; Muenzner, Julienne K; Rehm, Tobias; Novohradsky, Vojtech; Brabec, Viktor; Kasparkova, Jana; Albrecht, Martin; Schobert, Rainer; Mueller, Thomas

    2016-10-01

    Couples of N-heterocyclic carbene complexes of ruthenium, iridium, platinum, and gold, each differing only in the carbene ligand being either 1,3-dimethylimidazol-2-ylidene (IM) or 1,3-dimethyl-N-boc-O-methylhistidin-2-ylidene (HIS), were assessed for their antiproliferative effect on seven cancer cell lines, their interaction with DNA, their cell cycle interference, and their vascular disrupting properties. In MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays only the platinum complexes were cytotoxic at single-digit micromolar IC50 concentrations with the (HIS)Pt complex being on average twice as active as the (IM)Pt complex. The former was highly efficacious against cisplatin-resistant HT-29 colon carcinoma cells where the latter had no effect. Both Pt complexes were accumulated by cancer cells and bound to double-helical DNA equally well. Only the (HIS)Pt complex modified the electrophoretic mobility of circular DNA in vitro due to the HIS ligand causing greater morphological changes to the DNA. Both platinum complexes induced accumulation of 518A2 melanoma cells in G2/M and S phase of the cell cycle. A disruption of blood vessels in the chorioallantoic membrane of fertilized chicken eggs was observed for both platinum complexes and the (IM)gold complex. The (HIS)platinum complex was as active as cisplatin in tumor xenografted mice while being tolerated better. We found that the HIS ligand may augment the cytotoxicity of certain antitumoral metal fragments in two ways: by acting as a transmembrane carrier increasing the cellular accumulation of the complex, and by initiating a pronounced distortion and unwinding of DNA. We identified a new (HIS)platinum complex which was highly cytotoxic against cancer cells including cisplatin-resistant ones. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. New Class of Half-Sandwich Ruthenium(II) Arene Complexes Bearing the Water-Soluble CAP Ligand as an in Vitro Anticancer Agent.

    PubMed

    Guerriero, Antonella; Oberhauser, Werner; Riedel, Tina; Peruzzini, Maurizio; Dyson, Paul J; Gonsalvi, Luca

    2017-05-15

    Ruthenium(II) arene complexes of 1,4,7-triaza-9-phosphatricyclo[5.3.2.1]tridecane (CAP) were obtained. Cytotoxicity studies against cancer cell lines reveal higher activity than the corresponding PTA analogues and, in comparison to the effects on noncancerous cells, the complexes are endowed with a reasonable degree of cancer cell selectivity.

  10. Electrochemical DNA biosensor for detection of porcine oligonucleotides using ruthenium(II) complex as intercalator label redox

    SciTech Connect

    Halid, Nurul Izni Abdullah; Hasbullah, Siti Aishah; Heng, Lee Yook; Karim, Nurul Huda Abd; Ahmad, Haslina; Harun, Siti Norain

    2014-09-03

    A DNA biosensor detection of oligonucleotides via the interactions of porcine DNA with redox active complex based on the electrochemical transduction is described. A ruthenium(II) complex, [Ru(bpy){sub 2}(PIP)]{sup 2+}, (bpy = 2,2′bipyridine, PIP = 2-phenylimidazo[4,5-f[[1,10-phenanthroline]) as DNA label has been synthesized and characterized by 1H NMR and mass spectra. The study was carried out by covalent bonding immobilization of porcine aminated DNA probes sequences on screen printed electrode (SPE) modified with succinimide-acrylic microspheres and [Ru(bpy){sub 2}(PIP)]{sup 2+} was used as electrochemical redox intercalator label to detect DNA hybridization event. Electrochemical detection was performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) over the potential range where the ruthenium (II) complex was active. The results indicate that the interaction of [Ru(bpy){sub 2}(PIP)]{sup 2+} with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA.

  11. A Sulfhydryl-Reactive Ruthenium (II) Complex and Its Conjugation to Protein G as a Universal Reagent for Fluorescent Immunoassays

    PubMed Central

    Goud, Thirumani Venkatshwar; Huang, Bor-Rong; Lin, Tzu-Chau; Biellmann, Jean-François; Chen, Chien-Sheng

    2012-01-01

    To develop a fluorescent ruthenium complex for biosensing, we synthesized a novel sulfhydryl-reactive compound, 4-bromophenanthroline bis-2,2′-dipyridine Ruthenium bis (hexafluorophosphate). The synthesized Ru(II) complex was crosslinked with thiol-modified protein G to form a universal reagent for fluorescent immunoassays. The resulting Ru(II)-protein G conjugates were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The emission peak wavelength of the Ru(II)-protein G conjugate was 602 nm at the excitation of 452 nm which is similar to the spectra of the Ru(II) complex, indicating that Ru(II)-protein G conjugates still remain the same fluorescence after conjugation. To test the usefulness of the conjugate for biosensing, immunoglobulin G (IgG) binding assay was conducted. The result showed that Ru(II)-protein G conjugates were capable of binding IgG and the more cross-linkers to modify protein G, the higher conjugation efficiency. To demonstrate the feasibility of Ru(II)-protein G conjugates for fluorescent immunoassays, the detection of recombinant histidine-tagged protein using the conjugates and anti-histidine antibody was developed. The results showed that the histidine-tagged protein was successfully detected with dose-response, indicating that Ru(II)-protein G conjugate is a useful universal fluorescent reagent for quantitative immunoassays. PMID:22563441

  12. A sulfhydryl-reactive ruthenium (II) complex and its conjugation to protein G as a universal reagent for fluorescent immunoassays.

    PubMed

    Lin, Jing-Tang; Chen, Po-Chung; Goud, Thirumani Venkatshwar; Huang, Bor-Rong; Lin, Tzu-Chau; Biellmann, Jean-François; Chen, Chien-Sheng

    2012-01-01

    To develop a fluorescent ruthenium complex for biosensing, we synthesized a novel sulfhydryl-reactive compound, 4-bromophenanthroline bis-2,2'-dipyridine Ruthenium bis (hexafluorophosphate). The synthesized Ru(II) complex was crosslinked with thiol-modified protein G to form a universal reagent for fluorescent immunoassays. The resulting Ru(II)-protein G conjugates were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The emission peak wavelength of the Ru(II)-protein G conjugate was 602 nm at the excitation of 452 nm which is similar to the spectra of the Ru(II) complex, indicating that Ru(II)-protein G conjugates still remain the same fluorescence after conjugation. To test the usefulness of the conjugate for biosensing, immunoglobulin G (IgG) binding assay was conducted. The result showed that Ru(II)-protein G conjugates were capable of binding IgG and the more cross-linkers to modify protein G, the higher conjugation efficiency. To demonstrate the feasibility of Ru(II)-protein G conjugates for fluorescent immunoassays, the detection of recombinant histidine-tagged protein using the conjugates and anti-histidine antibody was developed. The results showed that the histidine-tagged protein was successfully detected with dose-response, indicating that Ru(II)-protein G conjugate is a useful universal fluorescent reagent for quantitative immunoassays.

  13. Mitochondria are the primary target in the induction of apoptosis by chiral ruthenium(II) polypyridyl complexes in cancer cells.

    PubMed

    Wang, Jin-Quan; Zhang, Ping-Yu; Qian, Chen; Hou, Xiao-Juan; Ji, Liang-Nian; Chao, Hui

    2014-03-01

    A series of novel chiral ruthenium(II) polypyridyl complexes (Δ-Ru1, Λ-Ru1, Δ-Ru2, Λ-Ru2, Δ-Ru3, Λ-Ru3) were synthesized and evaluated to determine their antiproliferative activities. Colocalization, inductively coupled plasma mass spectrometry, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay studies showed that these ruthenium(II) complexes accumulated preferentially in the mitochondria and exhibited cytotoxicity against various cancer cells in vitro. The complex Δ-Ru1 is of particular interest because it was found to have half-maximal inhibitory concentrations comparable to those of cisplatin and better activity than cisplatin against a cisplatin-resistant cell line, A549-CP/R. Δ-Ru1 induced alterations in the mitochondrial membrane potential and triggered intrinsic mitochondria-mediated apoptosis in HeLa cells, which involved the regulation of Bcl-2 family members and the activation of caspases. Taken together, these data suggest that Δ-Ru1 may be a novel mitochondria-targeting anticancer agent.

  14. Hollow Porous Polymeric Nanospheres of a Self-Enhanced Ruthenium Complex with Improved Electrochemiluminescent Efficiency for Ultrasensitive Aptasensor Construction.

    PubMed

    Chen, Anyi; Zhao, Min; Zhuo, Ying; Chai, Yaqin; Yuan, Ruo

    2017-09-05

    Although Ru(II)-complex-based bulk nanomaterials have received considerable attention in electrochemiluminescent (ECL) assays owing to their strong ECL signals, the ECL efficiency of these nanomaterials was quite low since the bulk nanomaterials brought about a serious inner filter effect and excess inactive emitters. Herein, hollow porous polymeric nanospheres of a self-enhanced ruthenium complex (abbreviated as Ru-HPNSs) were prepared with a polyethylenimine-ruthenium complex precursor to greatly decrease the inner filter effect and minimize inactive emitters, which significantly improved the ECL efficiency. On the basis of the novel Ru-HPNSs as efficient ECL tags and target-catalyzed hairpin hybridization as signal amplification strategy, an ultrasensitive ECL aptasensor was constructed for the detection of mucin 1 (MUC1), which showed excellent linear response to a concentration variation from 1.0 fg/mL to 100 pg/mL with the limit of detection down to 0.31 fg/mL. It is worth mentioning that this work opened a new avenue for developing high-performance ECL nanomaterials as well as ultrasensitive ECL biosensors for clinical and biochemical analysis.

  15. Ru-Ag and Ru-Au dicarbene complexes from an abnormal carbene ruthenium system.

    PubMed

    Bitzer, Mario J; Pöthig, Alexander; Jandl, Christian; Kühn, Fritz E; Baratta, Walter

    2015-07-14

    Reaction of [Ru(OAc)2(PPh3)2] with a P-functionalized imidazolium bromide easily affords a cationic abnormal carbene Ru system. Metalation with Ag2O yields a Ru-Ag complex containing an anionic dicarbene ligand, while subsequent transmetalation with Au(tht)Cl leads to the corresponding Ru-Au system. The bimetallic complexes were characterized by single crystal X-ray diffraction and are the first examples of complexes bearing anionic dicarbene ligands connecting two different d-block elements.

  16. Ultrafast transient absorption studies of ruthenium and rhenium dipyridophenazine complexes bound to DNA and polynucleotides

    NASA Astrophysics Data System (ADS)

    Creely, Caitriona M.; Kelly, John M.; Feeney, M. M.; Hudson, S.; Penedo, J. C.; Blau, Werner J.; Elias, B.; Kirsch-De Mesmaeker, Andree; Matousek, P.; Towrie, M.; Parker, A. W.; Dyer, J. S.; George, Mikhael W.; Coates, C. G.; McGarvey, John J.

    2003-03-01

    We report on ultrafast pump and probe studies of biological systems, in the form of polynucleotide and calf thymus DNA complexes. Molecules for study are bound to the polynucleotides and probed in the visible region to observe changes in the absorption over time. Various dipyridophenazine metal complexes are studied alone and complexed with DNA or synthetic polynucleotides to investigate changes occurring in their excited states upon interacting with nucleobases. Transient absorption measurements are performed pumping at 400nm and probing from 450-700nm with pulse duration of 400fs.

  17. Chemical Swarming: Depending on Concentration, an Amphiphilic Ruthenium Polypyridyl Complex Induces Cell Death via Two Different Mechanisms

    PubMed Central

    Siewert, Bianka; van Rixel, Vincent H. S.; van Rooden, Eva J.; Hopkins, Samantha L.; Moester, Miriam J. B.; Ariese, Freek; Siegler, Maxime A.

    2016-01-01

    Abstract The crystal structure and in vitro cytotoxicity of the amphiphilic ruthenium complex [3](PF6)2 are reported. Complex [3](PF6)2 contains a Ru−S bond that is stable in the dark in cell‐growing medium, but is photosensitive. Upon blue‐light irradiation, complex [3](PF6)2 releases the cholesterol–thioether ligand 2 and an aqua ruthenium complex [1](PF6)2. Although ligand 2 and complex [1](PF6)2 are by themselves not cytotoxic, complex [3](PF6)2 was unexpectedly found to be as cytotoxic as cisplatin in the dark, that is, with micromolar effective concentrations (EC50), against six human cancer cell lines (A375, A431, A549, MCF‐7, MDA‐MB‐231, and U87MG). Blue‐light irradiation (λ=450 nm, 6.3 J cm−2) had little influence on the cytotoxicity of [3](PF6)2 after 6 h of incubation time, but it increased the cytotoxicity of the complex by a factor 2 after longer (24 h) incubation. Exploring the unexpected biological activity of [3](PF6)2 in the dark elucidated an as‐yet unknown bifaceted mode of action that depended on concentration, and thus, on the aggregation state of the compound. At low concentration, it acts as a monomer, inserts into the membrane, and can deliver [1]2+ inside the cell upon blue‐light activation. At higher concentrations (>3–5 μm), complex [3](PF6)2 forms supramolecular aggregates that induce non‐apoptotic cell death by permeabilizing cell membranes and extracting lipids and membrane proteins. PMID:27373895

  18. Photochemical, electrochemical, and photoelectrochemical water oxidation catalyzed by water-soluble mononuclear ruthenium complexes.

    PubMed

    Li, Ting-Ting; Zhao, Wei-Liang; Chen, Yong; Li, Fu-Min; Wang, Chuan-Jun; Tian, Yong-Hua; Fu, Wen-Fu

    2014-10-20

    Two mononuclear ruthenium complexes [Ru(H2tcbp)(isoq)2] (1) and [Ru(H2tcbp)(pic)2] (2) (H4tcbp=4,4',6,6'-tetracarboxy-2,2'-bipyridine, isoq=isoquinoline, pic=4-picoline) are synthesized and fully characterized. Two spare carboxyl groups on the 4,4'-positions are introduced to enhance the solubility of 1 and 2 in water and to simultaneously allow them to tether to the electrode surface by an ester linkage. The photochemical, electrochemical, and photoelectrochemical water oxidation performance of 1 in neutral aqueous solution is investigated. Under electrochemical conditions, water oxidation is conducted on the deposited indium-tin-oxide anode, and a turnover number higher than 15,000 per water oxidation catalyst (WOC) 1 is obtained during 10 h of electrolysis under 1.42 V vs. NHE, corresponding to a turnover frequency of 0.41 s(-1). The low overpotential (0.17 V) of electrochemical water oxidation for 1 in the homogeneous solution enables water oxidation under visible light by using [Ru(bpy)3](2+) (P1) (bpy=2,2'-bipyridine) or [Ru(bpy)2(4,4'-(COOEt)2-bpy)](2+) (P2) as a photosensitizer. In a three-component system containing 1 or 2 as a light-driven WOC, P1 or P2 as a photosensitizer, and Na2S2O8 or [CoCl(NH3)5]Cl2 as a sacrificial electron acceptor, a high turnover frequency of 0.81 s(-1) and a turnover number of up to 600 for 1 under different catalytic conditions are achieved. In a photoelectrochemical system, the WOC 1 and photosensitizer are immobilized together on the photoanode. The electrons efficiently transfer from the WOC to the photogenerated oxidizing photosensitizer, and a high photocurrent density of 85 μA cm(-2) is obtained by applying 0.3 V bias vs. NHE.

  19. Electronic structures of ruthenium and osmium complexes of 9,10-phenanthrenequinone.

    PubMed

    Biswas, Manas Kumar; Patra, Sarat Chandra; Maity, Amarendra Nath; Ke, Shyue-Chu; Adhikary, Nirmal Das; Ghosh, Prasanta

    2012-06-18

    The reaction of 9,10-phenanthrenequinone (PQ) with [M(II)(H)(CO)(X)(PPh(3))(3)] in boiling toluene leads to the homolytic cleavage of the M(II)-H bond, affording the paramagnetic trans-[M(PQ)(PPh(3))(2)(CO)X] (M = Ru, X = Cl, 1; M = Os, X = Br, 3) and cis-[M(PQ)(PPh(3))(2)(CO)X] (M = Ru, X = Cl, 2; M = Os, X = Br, 4) complexes. Single-crystal X-ray structure determinations of 1, 2·toluene, and 4·CH(2)Cl(2), EPR spectra, and density functional theory (DFT) calculations have substantiated that 1-4 are 9,10-phenanthrenesemiquinone radical (PQ(•-)) complexes of ruthenium(II) and osmium(II) and are defined as trans-[Ru(II)(PQ(•-))(PPh(3))(2)(CO)Cl] (1), cis-[Ru(II)(PQ(•-))(PPh(3))(2)(CO)Cl] (2), trans-[Os(II)(PQ(•-))(PPh(3))(2)(CO) Br] (3), and cis-[Os(II)(PQ(•-))(PPh(3))(2)(CO)Br] (4). Two comparatively longer C-O [average lengths: 1, 1.291(3) Å; 2·toluene, 1.281(5) Å; 4·CH(2)Cl(2), 1.300(8) Å] and shorter C-C lengths [1, 1.418(5) Å; 2·toluene, 1.439(6) Å; 4·CH(2)Cl(2), 1.434(9) Å] of the OO chelates are consistent with the presence of a reduced PQ(•-) ligand in 1-4. A minor contribution of the alternate resonance form, trans- or cis-[M(I)(PQ)(PPh(3))(2)(CO)X], of 1-4 has been predicted by the anisotropic X- and Q-band electron paramagnetic resonance spectra of the frozen glasses of the complexes at 25 K and unrestricted DFT calculations on 1, trans-[Ru(PQ)(PMe(3))(2)(CO)Cl] (5), cis-[Ru(PQ)(PMe(3))(2)(CO)Cl] (6), and cis-[Os(PQ)(PMe(3))(2)(CO)Br] (7). However, no thermodynamic equilibria between [M(II)(PQ(•-))(PPh(3))(2)(CO)X] and [M(I)(PQ)(PPh(3))(2)(CO)X] tautomers have been detected. 1-4 undergo one-electron oxidation at -0.06, -0.05, 0.03, and -0.03 V versus a ferrocenium/ferrocene, Fc(+)/Fc, couple because of the formation of PQ complexes as trans-[Ru(II)(PQ)(PPh(3))(2)(CO)Cl](+) (1(+)), cis-[Ru(II)(PQ)(PPh(3))(2)(CO)Cl](+) (2(+)), trans-[Os(II)(PQ)(PPh(3))(2)(CO)Br](+) (3(+)), and cis-[Os(II)(PQ)(PPh(3))(2)(CO)Br](+) (4(+)). The trans

  20. Insight into highly selective photocatalytic oxidation of alcohols by a new trinuclear ruthenium complex with visible light.

    PubMed

    Chao, Duobin; Fu, Wen-Fu

    2014-01-07

    A new ligand bearing two tpy moieties and one bpy unit (tpy = 2,2':6',2''-terpyridine; bpy = 2,2'-bipyridine) linked by carbon-carbon single bonds and its corresponding trinuclear ruthenium complex were readily synthesized in high yield, and characterized by (1)H NMR spectroscopy, high-resolution electrospray ionization mass spectrometry (HR-ESI/MS) and elemental analysis. The ruthenium complex exhibited moderate catalytic activity towards selective oxidation of alcohols in water with visible light under an air atmosphere. Investigations of UV/vis spectra, electrochemistry and ESI/MS suggested that the catalytic cycle involves two processes, Ru(c)(II)-OH2/Ru(c)(III)-OH and Ru(c)(III)-OH/Ru(c)(IV)=O. The effective electron transfer from the excited state *[Ru(tpy)2](2+) to [Co(NH3)5Cl]Cl2 is proposed to be responsible for the good activities of this visible-light-driven system under an air atmosphere.

  1. Electrochemical Sensing of Casein Based on the Interaction between Its Phosphate Groups and a Ruthenium(III) Complex.

    PubMed

    Inaba, Iku; Kuramitz, Hideki; Sugawara, Kazuharu

    2016-01-01

    A reaction to casein, along with β-lactoglobulin, is a main cause of milk allergies, and also is a useful indicator of protein in allergic analyses. In the present study, a simple casein sensor was developed based on the interaction between a phosphate group of casein and electroactive [Ru(NH3)6](3+). We evaluated the voltammetric behavior of a casein-[Ru(NH3)6](3+) complex using a glassy carbon electrode. When the ruthenium(III) complex was combined with the phosphate groups of casein, the structure of the casein was changed. Since the hydrophobicity of casein was increased due to the binding, the casein was adsorbed onto the electrode. Furthermore, we modified an electrode with a ruthenium(III) ions/collagen film. When the sensor was applied to the detection of the casein contained in milk, the values coincided with those indicated by the manufacturer. Accordingly, this electrode could be a powerful sensor for the determination of casein in several foods.

  2. Influence of the nature of the absorption band on the potential performance of high molar extinction coefficient ruthenium(II) polypyridinic complexes as dyes for sensitized solar cells.

    PubMed

    Gajardo, Francisco; Barrera, Mauricio; Vargas, Ricardo; Crivelli, Irma; Loeb, Barbara

    2011-07-04

    When tested in solar cells, ruthenium polypyridinic dyes with extended π systems show an enhanced light-harvesting capacity that is not necessarily reflected by a high (collected electrons)/(absorbed photons) ratio. Provided that metal-to-ligand charge transfer bands, MLCT, are more effective, due to their directionality, than intraligand (IL) π-π* bands for the electron injection process in the solar cell, it seems important to explore and clarify the nature of the absorption bands present in these types of dyes. This article aims to elucidate if all the absorbed photons of these dyes are potentially useful in the generation of electric current. In other words, their potentiality as dyes must also be analyzed from the point of view of their contribution to the generation of excited states potentially useful for direct injection. Focusing on the assignment of the absorption bands and the nature of the emitting state, a systematic study for a series of ruthenium complexes with 4,4'-distyryl-2,2'-dipyridine (LH) and 4,4'-bis[p-(dimethylamino)-α-styryl]-2,2'-bipyridine (LNMe(2)) "chromophoric" ligands was undertaken. The observed experimental results were complemented with TDDFT calculations to elucidate the nature of the absorption bands, and a theoretical model was proposed to predict the available energy that could be injected from a singlet or a triplet excited state. For the series studied, the results indicate that the percentage of MLCT character to the anchored ligand for the lower energy absorption band follows the order [Ru(deebpy)(2)(LNMe(2))](PF(6))(2) > [Ru(deebpy)(2)(LH)](PF(6))(2) > [Ru(deebpy)(LH)(2)](PF(6))(2), where deebpy is 4,4'-bis(ethoxycarbonyl)-2,2'-bipyridine, predicting that, at least from this point of view, their efficiency as dyes should follow the same trend.

  3. Water oxidation catalysis: influence of anionic ligands upon the redox properties and catalytic performance of mononuclear ruthenium complexes.

    PubMed

    Tong, Lianpeng; Wang, Ying; Duan, Lele; Xu, Yunhua; Cheng, Xiao; Fischer, Andreas; Ahlquist, Mårten S G; Sun, Licheng

    2012-03-19

    Aiming at highly efficient molecular catalysts for water oxidation, a mononuclear ruthenium complex Ru(II)(hqc)(pic)(3) (1; H(2)hqc = 8-hydroxyquinoline-2-carboxylic acid and pic = 4-picoline) containing negatively charged carboxylate and phenolate donor groups has been designed and synthesized. As a comparison, two reference complexes, Ru(II)(pdc)(pic)(3) (2; H(2)pdc = 2,6-pyridine-dicarboxylic acid) and Ru(II)(tpy)(pic)(3) (3; tpy = 2,2':6',2"-terpyridine), have also been prepared. All three complexes are fully characterized by NMR, mass spectrometry (MS), and X-ray crystallography. Complex 1 showed a high efficiency toward catalytic water oxidation either driven by chemical oxidant (Ce(IV) in a pH 1 solution) with a initial turnover number of 0.32 s(-1), which is several orders of magnitude higher than that of related mononuclear ruthenium catalysts reported in the literature, or driven by visible light in a three-component system with [Ru(bpy)(3)](2+) types of photosensitizers. Electrospray ionization MS results revealed that at the Ru(III) state complex 1 undergoes ligand exchange of 4-picoline with water, forming the authentic water oxidation catalyst in situ. Density functional theory (DFT) was employed to explain how anionic ligands (hqc and pdc) facilitate the 4-picoline dissociation compared with a neutral ligand (tpy). Electrochemical measurements show that complex 1 has a much lower E(Ru(III)/Ru(II)) than that of reference complex 2 because of the introduction of a phenolate ligand. DFT was further used to study the influence of anionic ligands upon the redox properties of mononuclear aquaruthenium species, which are postulated to be involved in the catalysis cycle of water oxidation.

  4. Alcohol amination with ammonia catalyzed by an acridine-based ruthenium pincer complex: a mechanistic study.

    PubMed

    Ye, Xuan; Plessow, Philipp N; Brinks, Marion K; Schelwies, Mathias; Schaub, Thomas; Rominger, Frank; Paciello, Rocco; Limbach, Michael; Hofmann, Peter

    2014-04-23

    The mechanistic course of the amination of alcohols with ammonia catalyzed by a structurally modified congener of Milstein's well-defined acridine-based PNP-pincer Ru complex has been investigated both experimentally and by DFT calculations. Several key Ru intermediates have been isolated and characterized. The detailed analysis of a series of possible catalytic pathways (e.g., with and without metal-ligand cooperation, inner- and outer-sphere mechanisms) leads us to conclude that the most favorable pathway for this catalyst does not require metal-ligand cooperation.

  5. Role of Mediator and Effects of Temperature on ortho-C-N Bond Fusion Reactions of Aniline Using Ruthenium Templates: Isolation and Characterization of New Ruthenium Complexes of the in-Situ-Generated Ligands.

    PubMed

    Roy, Suman K; Sengupta, Debabrata; Rath, Santi Prasad; Saha, Tanushri; Samanta, Subhas; Goswami, Sreebrata

    2017-05-01

    In this work, ortho-C-N bond fusion reactions of aniline are followed by the use of two different ruthenium mediators. Reaction of aniline with [Ru(III)(terpy)Cl3] (terpy = 2,2':6',2″-terpyridine) resulted in a trans bis-aniline ruthenium(II) complex [1](+) which upon oxidation with H2O2 produced compound [2](+) of a bidentate ligand, N-phenyl-1,2-benzoquinonediimine, due to an oxidative ortho-C-N bond fusion reaction. Complex [1](+) and aniline (neat) at 185 °C produced a bis-chelated ruthenium complex (3). A previously reported complex [Ru(II)(N-phenyl-1,2-benzoquinonediimine)(aniline)2(Cl)2] (5) undergoes similar oxidation by air at 185 °C to produce complex [3]. A separate chemical reaction between aniline and strongly oxidizing tetra-n-propylammonium perruthenate [(n-pr)4N](+)[RuO4](-) in air produced a ruthenium complex [4] of a N(4)-tetraamidophenylmacrocycle ligand via multiple ortho-C-N bond fusion reaction. Notably, the yield of this product is low (5%) at 100 °C but increases to 25% in refluxing aniline. All these complexes are characterized fully by their physicochemical characterizations and X-ray structure determination. From their structural parameters and other spectroscopic studies, complex [2](+) is assigned as [Ru(II)(terpy)(N-phenyl-1,2-benzoquinonediimine)(Cl)](+) whereas complex [4] is described as a ruthenium(VI) complex comprised of a reduced deprotonated N-phenyl-1,2-diamidobenzene and N(4)-tetraamidophenylmacrocyclic ligand. Complex [2](+) exhibits one reversible oxidation at 1.32 V and one reversible reduction at -0.75 V vs Ag/AgCl reference electrode. EPR of the electrogenerated complexes has revealed that the oxidized complex is a ruthenium(III) complex with an axial EPR spectrum at gav= 2.06. The reduced complex [2], on the other hand, shows a single-line EPR signal at gav= 1.998. In contrast, complex [4] shows two successive one-electron oxidation waves at 0.5 and 0.8 V and an irreversible reduction wave at -0.9 V. EPR studies of

  6. Cytotoxic and genotoxic effects of cis-tetraammine(oxalato)ruthenium(III) dithionate on the root meristem cells of Allium cepa.

    PubMed

    Pereira, Flávia de Castro; Vilanova-Costa, Cesar Augusto Sam Tiago; de Lima, Aliny Pereira; Ribeiro, Alessandra de Santana Braga Barbosa; da Silva, Hugo Delleon; Pavanin, Luiz Alfredo; Silveira-Lacerda, Elisângela de Paula

    2009-06-01

    Ruthenium complexes have attracted much attention as possible building blocks for new transition-metal-based antitumor agents. The present study examines the mitotoxic and clastogenic effects induced in the root tips of Allium cepa by cis-tetraammine(oxalato)ruthenium(III) dithionate {cis-[Ru(C(2)O(2))(NH(3))(4)](2)(S(2)O(6))} at different exposure durations and concentrations. Correlation tests were performed to determine the effects of the time of exposure and concentration of ruthenium complex on mitotic index (MI) and mitotic aberration index. A comparison of MI results of cis-[Ru(C(2)O(2))(NH(3))(4)](2)(S(2)O(6)) to those of lead nitrate reveals that the ruthenium complex demonstrates an average mitotic inhibition eightfold higher than lead, with the frequency of cellular abnormalities almost fourfold lower and mitotic aberration threefold lower. A. cepa root cells exposed to a range of ruthenium complex concentrations did not display significant clastogenic effects. Cis-tetraammine(oxalato)ruthenium(III) dithionate therefore exhibits a remarkable capacity to inhibit mitosis, perhaps by inhibiting DNA synthesis or blocking the cell cycle in the G2 phase. Further investigation of the mechanisms of action of this ruthenium complex will be important to define its clinical potential and to contribute to a novel and rational approach to developing a new metal-based drug with antitumor properties complementary to those exhibited by the drugs already in clinical use.

  7. Highly Charged Ruthenium(II) Polypyridyl Complexes as Lysosome-Localized Photosensitizers for Two-Photon Photodynamic Therapy.

    PubMed

    Huang, Huaiyi; Yu, Bole; Zhang, Pingyu; Huang, Juanjuan; Chen, Yu; Gasser, Gilles; Ji, Liangnian; Chao, Hui

    2015-11-16

    Photodynamic therapy (PDT) is a noninvasive medical technique that has received increasing attention over the last years and been applied for the treatment of certain types of cancer. However, the currently clinically used PDT agents have several limitations, such as low water solubility, poor photostability, and limited selectivity towards cancer cells, aside from having very low two-photon cross-sections around 800 nm, which limits their potential use in TP-PDT. To tackle these drawbacks, three highly positively charged ruthenium(II) polypyridyl complexes were synthesized. These complexes selectively localize in the lysosomes, an ideal localization for PDT purposes. One of these complexes showed an impressive phototoxicity index upon irradiation at 800 nm in 3D HeLa multicellular tumor spheroids and thus holds great promise for applications in two-photon photodynamic therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Anticancer activity of ruthenium(II) arene complexes bearing 1,2,3,4-tetrahydroisoquinoline amino alcohol ligands.

    PubMed

    Chelopo, Madichaba P; Pawar, Sachin A; Sokhela, Mxolisi K; Govender, Thavendran; Kruger, Hendrik G; Maguire, Glenn E M

    2013-08-01

    Ruthenium complexes offer potential reduced toxicity compared to current platinum anticancer drugs. 1,2,3,4-tetrahydrisoquinoline amino alcohol ligands were synthesised, characterised and coordinated to an organometallic Ru(II) centre. These complexes were evaluated for activity against the cancer cell lines MCF-7, A549 and MDA-MB-231 as well as for toxicity in the normal cell line MDBK. They were observed to be moderately active against only the MCF-7 cells with the best IC₅₀ value of 34 μM for the cis-diastereomeric complex C4. They also displayed excellent selectivity by being relatively inactive against the normal MDBK cell line with SI values ranging from 2.3 to 7.4. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  9. Binding properties of ruthenium(II) complexes [Ru(bpy)2(ppn)](2+) and [Ru(phen)2(ppn)](2+) with triplex RNA: As molecular "light switches" and stabilizers for poly(U)·poly(A)*poly(U) triplex.

    PubMed

    Li, Jia; Sun, Yanmei; Zhu, Zhiyuan; Zhao, Hong; Tan, Lifeng

    2016-08-01

    Stable RNA triplexes play key roles in many biological processes, while triplexes are thermodynamically less stable than the corresponding duplexes due to the Hoogsteen base pairing. To understand the factors affecting the stabilization of RNA triplexes by octahedral ruthenium(II) complexes, the binding of [Ru(bpy)2(ppn)](2+) (1, bpy=2,2'-bipyridine, ppn=2,4-diaminopyrimido[5,6-b]dipyrido[2,3-f:2',3'-h]quinoxaline) and [Ru(phen)2(ppn)](2+) (2, phen=1,10-phenanthroline) to poly(U)·poly(A)*poly(U) (· denotes the Watson-Crick base pairing and * denotes the Hoogsteen base pairing) has been investigated. The main results obtained here suggest that complexes 1 and 2 can serve as molecular "light switches" and stabilizers for poly(U)·poly(A)*poly(U), while the effectiveness of complex 2 are more marked, suggesting that the hydrophobicity of ancillary ligands has a significant effect on the two Ru(II) complexes binding to poly(U)·poly(A)*poly(U). This study further advances our knowledge on the binding of RNA triplexes with metal complexes, particularly with octahedral ruthenium polypyridyl complexes. Copyright © 2016. Published by Elsevier Inc.

  10. New ruthenium nitrosyl pincer complexes bearing an O2 ligand. Mono-oxygen transfer.

    PubMed

    Fogler, Eran; Efremenko, Irena; Gargir, Moti; Leitus, Gregory; Diskin-Posner, Yael; Ben-David, Yehoshoa; Martin, Jan M L; Milstein, David

    2015-03-02

    We report on Ru((II))(μ(2)-O2) nitrosyl pincer complexes that can return to their original Ru(0) state by reaction with mono-oxygen scavengers. Potential intermediates were calculated by density functional theory (DFT) and a mechanism is proposed, revealing a new type of metal-ligand cooperation consisting of activation of the O2 moiety by both the metal center and the NO ligand. Reaction of the Ru(0) nitrosyl complex 1 with O2 quantitatively yielded the crystallographically characterized Ru((II)) (μ(2)-O2) nitrosyl complex 2. Reaction of 2 with the mono-oxygen scavengers phosphines or CO gave the Ru(0) complex 1 and phosphine oxides, or the carbonyl complex 3 (1 trapped by CO) and CO2, respectively. Reaction of 2 with 1 equiv of phosphine at room temperature or -40 °C resulted in immediate formation of half an equivalent of 1 and 1 equiv of phosphine oxide, while half an equivalent of 2 remained unchanged. Overnight reaction at room temperature of 2 with excess CO (≥3 equiv) resulted in 3 and CO2 gas as the only products. Reaction of 1 with 1 equiv of mono-oxygen source (dioxirane) at -78 °C yielded the Ru((II))(μ(2)-O2) complex 2. Similarly, reaction of the Ru(0) dearomatized complex 4 with O2 led to the crystallographicaly characterized Ru((II))(μ(2)-O2) complex 5. Further reaction of 5 with mono-oxygen scavengers (phosphines or CO) led to the Ru(0) complex 4 and phosphine oxides or complex 6 (4 trapped by CO) and CO2. When instead only 1 equiv of 5 was reacted with 1 equiv of phosphine at room temperature, immediate formation of half an equivalent of 4 and 1 equiv of phosphine oxide took place, while half an equivalent of 5 remained unchanged. When 5 reacted with an excess of CO (≥3 equiv), complex 6 and CO2 gas were the only products obtained. DFT studies indicate a new mode of metal-ligand cooperation involving the nitrosyl ligand in the oxygen transfer process.

  11. Photolithographic Encoding of Metal Complexes.

    PubMed

    Lang, Christiane; Bestgen, Sebastian; Welle, Alexander; Müller, Rouven; Roesky, Peter W; Barner-Kowollik, Christopher

    2015-10-12

    A platform technology for the creation of spatially resolved surfaces encoded with a monolayer consisting of different metal complexes was developed. The concept entails the light-triggered activation of a self- assembled monolayer (SAM) of UV-labile anchors, that is, phenacylsulfides, and the subsequent cycloaddition of selected diene-functionalized metal complexes at defined areas on the surface. The synthesis and characterization of the metal complexes for the UV-light assisted anchoring on the surface and a detailed study of a short-chain oligomer model system in solution confirm the high efficiency of the photoreaction. The hybrid materials obtained by this concept can potentially be utilized for the design of highly valuable catalytic or (opto-)electronic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Photodegradation of methyl orange and photoinactivation of bacteria by visible light activation of persulphate using a tris(2,2'-bipyridyl)ruthenium(II) complex.

    PubMed

    Subramanian, Gokulakrishnan; Parakh, Priyadarshini; Prakash, Halan

    2013-03-01

    Persulphate is an emerging oxidant in the field of advanced oxidation processes for the degradation of environmentally persistent organic compounds. The present study shows that visible light activation of persulphate (2 mM) using tris(2,2'-bipyridyl)ruthenium(II) (complex 1) (1 μM) caused rapid degradation (98%) of model azo dye methyl orange (MO) (12 mg L(-1)) with significant mineralization (76%), and also complete inactivation of both Gram negative and positive bacteria (∼10(7) CFU mL(-1)). BacLight LIVE/DEAD assay, scanning electron microscopy and genomic DNA analysis revealed cell membrane damage and loss of chromosomal DNA, indicating oxidative stress caused to E. coli during photoinactivation. The effect of concentration of complex 1 : persulphate ratio and presence of inorganic ions (0.1 M), such as sodium hydrogen phosphate, sodium sulphate, and sodium hydrogen carbonate, on the photodegradation of MO and photoinactivation of E. coli were studied. In addition, the effect of the presence of the organic contaminant resorcinol on the photoinactivation of E. coli was also studied. Significant degradation of MO and complete inactivation of bacteria were observed in simulated ground water. The present study is the first to reveal that activation of persulphate using a visible light absorbing metal complex in aqueous media has the ability to cause degradation of organic contaminants as well as complete inactivation of bacteria.

  13. Spectroscopic and quantum-chemical investigations of chloro-bis-bipyridyl complexes of ruthenium(II) with 4-substituted pyridine ligands

    NASA Astrophysics Data System (ADS)

    Reshetova, K. I.; Krauklis, I. V.; Litke, S. V.; Ershov, A. Yu.

    2014-07-01

    The luminescence spectra of cis-[Ru(bpy)2(L)Cl]+ (bpy is 2,2'-bipyridyl; L is pyrazine, pyridine, 4-amino-pyridine, 4-picolin, isonicotinamide, 4-cyanopyridine, or 4,4'bipyridyl) complexes are studied in alcoholic (4: 1 EtOH-MeOH) solutions at 77 K. A linear correlation is found between the energy of the lowest electronically excited metal-to-ligand charge transfer (3MLCT) state d π(Ru) → π* (bpy) and the parameter p K a of the free 4-substituted pyridines and pyrazine used as ligands L. The [B3LYP/6-31G + LanL2DZ(Ru)] hybrid method of the density functional theory is used to optimize the geometry of complexes and calculate their electronic structure and the charge distribution on the atoms of the nearest environment of the ruthenium ion. It is shown that there exists a linear unambiguous correlation between the negative charge on the nitrogen atom ( qN L) of ligands L coordinated in the complex and the parameters p K a of free ligands. The calculated energies of 3MLCT excited states almost linearly (correlation coefficient 0.958) depend on the charge qN L, which completely agrees with experimental data.

  14. The Trans-Cis Isomerisation of Bis(dioxolene)bis(pyridine)Ruthenium Complexes

    DTIC Science & Technology

    1992-03-03

    plot of l/kobsd vs. [3-chioropyridine] is linear with a positive intercept. A dissociative mechanism is proposed for the isomerisation reaction . The...3-chloropyridine] is linear with a positive intercept. A dissociative mechanism is proposed for the isomerisation reaction . The activation parameters...Russian J. Inorg. Chem. 33, 1324 (1988). 18. R. G. Wilkins, "The Study of Kinetics and Mechanism of Reactions of Transiton Metal Complexes", Alyn and

  15. Redox properties of ruthenium nitrosyl porphyrin complexes with different axial ligation: structural, spectroelectrochemical (IR, UV-visible, and EPR), and theoretical studies.

    PubMed

    Singh, Priti; Das, Atanu Kumar; Sarkar, Biprajit; Niemeyer, Mark; Roncaroli, Federico; Olabe, José A; Fiedler, Jan; Zális, Stanislav; Kaim, Wolfgang

    2008-08-18

    Experimental and computational results for different ruthenium nitrosyl porphyrin complexes [(Por)Ru(NO)(X)] ( n+ ) (where Por (2-) = tetraphenylporphyrin dianion (TPP (2 (-) )) or octaethylporphyrin dianion (OEP (2-)) and X = H 2O ( n = 1, 2, 3) or pyridine, 4-cyanopyridine, or 4- N,N-dimethylaminopyridine ( n = 1, 0)) are reported with respect to their electron-transfer behavior. The structure of [(TPP)Ru(NO)(H 2O)]BF 4 is established as an {MNO} species with an almost-linear RuNO arrangement at 178.1(3) degrees . The compound [(Por)Ru(NO)(H 2O)]BF 4 undergoes two reversible one-electron oxidation processes. Spectroelectrochemical measurements (IR, UV-vis-NIR, and EPR) indicate that the first oxidation occurs on the porphyrin ring, as evident from the appearance of diagnostic porphyrin radical-anion vibrational bands (1530 cm (-1) for OEP (*-) and 1290 cm (-1) for TPP (*-)), from the small shift of approximately 20 cm (-1) for nu NO and from the EPR signal at g iso approximately 2.00. The second oxidation, which was found to be electrochemically reversible for the OEP compound, shows a 55 cm (-1) shift in nu NO, suggesting a partially metal-centered process. The compounds [(Por)Ru(NO)(X)]BF 4, where X = pyridines, undergo a reversible one-electron reduction. The site of the reduction was determined by spectroelectrochemical studies to be NO-centered with a ca. -300 cm (-1) shift in nu NO. The EPR response of the NO (*) complexes was essentially unaffected by the variation in the substituted pyridines X. DFT calculations support the interpretation of the experimental results because the HOMO of [(TPP)Ru(NO)(X)] (+), where X = H 2O or pyridines, was calculated to be centered at the porphyrin pi system, whereas the LUMO of [(TPP)Ru(NO)(X)] (+) has about 50% pi*(NO) character. This confirms that the (first) oxidation of [(Por)Ru(NO)(H 2O)] (+) occurs on the porphyrin ring wheras the reduction of [(Por)Ru(NO)(X)] (+) is largely NO-centered with the metal remaining in

  16. Pyrithione-based ruthenium complexes as inhibitors of aldo-keto reductase 1C enzymes and anticancer agents.

    PubMed

    Kljun, Jakob; Anko, Maja; Traven, Katja; Sinreih, Maša; Pavlič, Renata; Peršič, Špela; Ude, Žiga; Codina, Elisa Esteve; Stojan, Jure; Lanišnik Rižner, Tea; Turel, Iztok

    2016-08-07

    Four ruthenium complexes of clinically used zinc ionophore pyrithione and its oxygen analog 2-hydroxypyridine N-oxide were prepared and evaluated as inhibitors of enzymes of the aldo-keto reductase subfamily 1C (AKR1C). A kinetic study assisted with docking simulations showed a mixed type of inhibition consisting of a fast reversible and a slow irreversible step in the case of both organometallic compounds 1A and 1B. Both compounds also showed a remarkable selectivity towards AKR1C1 and AKR1C3 which are targets for breast cancer drug design. The organoruthenium complex of ligand pyrithione as well as pyrithione itself also displayed toxicity on the hormone-dependent MCF-7 breast cancer cell line with EC50 values in the low micromolar range.

  17. Direct synthesis of pyridines and quinolines by coupling of γ-amino-alcohols with secondary alcohols liberating H2 catalyzed by ruthenium pincer complexes.

    PubMed

    Srimani, Dipankar; Ben-David, Yehoshoa; Milstein, David

    2013-07-28

    A novel, one-step synthesis of substituted pyridine- and quinoline-derivatives was achieved by acceptorless dehydrogenative coupling of γ-aminoalcohols with secondary alcohols. The reaction involves consecutive C-N and C-C bond formation, catalyzed by a bipyridyl-based ruthenium pincer complex with a base.

  18. Role of intercalation and redox potential in DNA photosensitization by ruthenium(II) polypyridyl complexes: assessment using DNA repair protein tests.

    PubMed

    Gicquel, Etienne; Souchard, Jean-Pierre; Magnusson, Fay; Chemaly, Jad; Calsou, Patrick; Vicendo, Patricia

    2013-08-01

    Here we report that the photoreactivity of ruthenium(II) complexes with nucleobases may not only be modulated by their photoredox properties but also by their DNA binding mode. The damage resulting from photolysis of synthetic oligonucleotides and plasmid DNA by [Ru(bpz)3](2+), [Ru(bipy)3](2+) and the two DNA intercalating agents [Ru(bpz)2dppz](2+) and [Ru(bipy)2dppz](2+) has been monitored by polyacrylamide gel electrophoresis and by tests using proteins involved in DNA repair processes (DNA-PKCs, Ku80, Ku70, and PARP-1). The data show that intercalation controls the nature of the DNA damage photo-induced by ruthenium(II) complexes reacting with DNA via an electron transfer process. The intercalating agent [Ru(bpz)2dppz](2+) is a powerful DNA breaker inducing the formation of both single and double (DSBs) strand breaks which are recognized by the PARP-1 and DNA-PKCs proteins respectively. [Ru(bpz)2dppz](2+) is the first ruthenium(II) complex described in the literature that is able to induce DSBs by an electron transfer process. In contrast, its non-intercalating parent compound, [Ru(bpz)3](2+), is mostly an efficient DNA alkylating agent. Photoadducts are recognized by the proteins Ku70 and Ku80 as with cisplatin adducts. This result suggests that photoaddition of [Ru(bpz)2dppz](2+) is strongly affected by its DNA intercalation whereas its photonuclease activity is exalted. The data clearly show that DNA intercalation decreases drastically the photonuclease activity of ruthenium(II) complexes oxidizing guanine via the production of singlet oxygen. Interestingly, the DNA sequencing data revealed that the ligand dipyridophenazine exhibits on single-stranded oligonucleotides a preference for the 5'-TGCGT-3' sequence. Moreover the use of proteins involved in DNA repair processes to detect DNA damage was a powerful tool to examine the photoreactivity of ruthenium(II) complexes with nucleic acids.

  19. A chelate-stabilized ruthenium(sigma-pyrrolato) complex: resolving ambiguities in nuclearity and coordination geometry through 1H PGSE and 31P solid-state NMR studies.

    PubMed

    Foucault, Heather M; Bryce, David L; Fogg, Deryn E

    2006-12-11

    Reaction of RuCl2(PPh3)3 with LiNN' (NN' = 2-[(2,6-diisopropylphenyl)imino]pyrrolide) affords a single product, with the empirical formula RuCl[(2,6-iPr2C6H3)N=CHC4H3N](PPh3)2. We identify this species as a sigma-pyrrolato complex, [Ru(NN')(PPh3)2]2(mu-Cl)2 (3b), rather than mononuclear RuCl(NN')(PPh3)2 (3a), on the basis of detailed 1D and 2D NMR characterization in solution and in the solid state. Retention of the chelating, sigma-bound iminopyrrolato unit within 3b, despite the presence of labile (dative) chloride and PPh3 donors, indicates that the chelate effect is sufficient to inhibit sigma --> pi isomerization of 3b to a piano-stool, pi-pyrrolato structure. 2D COSY, SECSY, and J-resolved solid-state 31P NMR experiments confirm that the PPh3 ligands on each metal center are magnetically and crystallographically inequivalent, and 31P CP/MAS NMR experiments reveal the largest 99Ru-31P spin-spin coupling constant (1J(99Ru,31P) = 244 +/- 20 Hz) yet measured. Finally, 31P dipolar-chemical shift spectroscopy is applied to determine benchmark phosphorus chemical shift tensors for phosphine ligands in hexacoordinate ruthenium complexes.

  20. Pivotal Role of a Pentacoordinate (3)MC State on the Photocleavage Efficiency of a Thioether Ligand in Ruthenium(II) Complexes: A Theoretical Mechanistic Study.

    PubMed

    Göttle, Adrien J; Alary, Fabienne; Boggio-Pasqua, Martial; Dixon, Isabelle M; Heully, Jean-Louis; Bahreman, Azadeh; Askes, Sven H C; Bonnet, Sylvestre

    2016-05-02

    A mechanistic study of the photocleavage of the methylthioethanol ligand (Hmte) in the series of ruthenium complexes [Ru(tpy)(N-N)(Hmte)](2+) (tpy = 2,2':6',2″-terpyridine, N-N = bpy (2,2'-bipyridine), biq (2,2'-biquinoline), dcbpy (6,6'-dichloro-2,2'-bipyridine), dmbpy (6,6'-dimethyl-2,2'-bipyridine)) was performed using density functional theory. These studies reveal the decisive role of two quasi-degenerate triplet metal-centered states, denoted (3)MChexa and (3)MCpenta, on the lowest triplet potential energy surface. It also shows how the population of the specific pentacoordinate (3)MCpenta state, characterized by a geometry more accessible for the attack of a solvent molecule, is a key step for the efficiency of the photosubstitution reaction. The difference in the photosubstitution quantum yields experimentally observed for this series of complexes (from φ = 0.022 for N-N = bpy up to φ = 0.30 for N-N = dmbpy) is rationalized by the existence of this (3)MCpenta photoreactive state and by the different topologies of the triplet excited-state potential energy surfaces, rather than by the sole steric properties of these polypyridinyl ligands.

  1. N-heterocyclic carbene metal complexes as bio-organometallic antimicrobial and anticancer drugs.

    PubMed

    Patil, Siddappa A; Patil, Shivaputra A; Patil, Renukadevi; Keri, Rangappa S; Budagumpi, Srinivasa; Balakrishna, Geetha R; Tacke, Matthias

    2015-01-01

    Late transition metal complexes that bear N-heterocyclic carbene (NHC) ligands have seen a speedy growth in their use as both, metal-based drug candidates and potentially active homogeneous catalysts in a plethora of C-C and C-N bond forming reactions. This review article focuses on the recent developments and advances in preparation and characterization of NHC-metal complexes (metal: silver, gold, copper, palladium, nickel and ruthenium) and their biomedical applications. Their design, syntheses and characterization have been reviewed and correlated to their antimicrobial and anticancer efficacies. All these initial discoveries help validate the great potential of NHC-metal derivatives as a class of effective antimicrobial and anticancer agents.

  2. Cytotoxic potency of self-assembled Ruthenium(II)-NHC complexes with pincer type 2, 6-bis(N-methylimidazolylidene/benzimidazolylidene)pyrazine ligands.

    PubMed

    Roymahapatra, Gourisannkar; Dinda, Joydev; Mishra, Anjan; Mahapatra, Ambikesh; Hwang, Wen-Shu; Mandal, Santi M

    2015-01-01

    To study the cytotoxic potency of self-assembled Ruthenium(II)-NHC complexes with 2,6-di-(N-methylimidazolylidene/benzimidazolylidene)pyrazine ligands. Ru(II)-N-heterocyclic (Ru-NHC) complexes, Bis-[2,6-di-(N-methylimidazol-2-ylidene)pyrazine]ruthenium(II) hexaflurophosphate (3), Bis-[2,6-di-(N-methylbenzimidazol-2-ylidene)pyrazine]ruthenium(II) hexaflurophosphate (4) have been synthesized from corresponding ligands 2,6-di-(N-methylimidazolium)pyrazine dichloride (1); 2,6-di-(N-methylbenzimidazolium)pyrazine dichloride (2). Complexes were studied to determine their pro-apoptotic activity against HCT15 and Hep2 cell lines, and antimicrobial activity against Pseudomonas aeruginosa, Staphylococcus epidermidis and Candida albicans. Both, complex 3 and 4, formed a nanosphere structure in aqueous growth medium. Cytotoxicity study revealed that complex 3 was more effective than complex 4. Complexes mainly target cellular DNA and bacterial cell wall. This is the first report on the formation of nanoball structure of Ru(II)-NHC complexes. Thus, complex 3 provides a new insight to develop antitumor or antimicrobial drug.

  3. A Proton-Switchable Bifunctional Ruthenium Complex That Catalyzes Nitrile Hydroboration.

    PubMed

    Geri, Jacob B; Szymczak, Nathaniel K

    2015-10-14

    A new bifunctional pincer ligand framework bearing pendent proton-responsive hydroxyl groups was prepared and metalated with Ru(II) and subsequently isolated in four discrete protonation states. Stoichiometric reactions with H2 and HBPin showed facile E-H (E = H or BPin) activation across a Ru(II)-O bond, providing access to unusual Ru-H species with strong interactions with neighboring proton and boron atoms. These complexes were found to promote the catalytic hydroboration of ketones and nitriles under mild conditions, and the activity was highly dependent on the ligand's protonation state. Mechanistic experiments revealed a crucial role of the pendent hydroxyl groups for catalytic activity.

  4. Ruthenium(II) and osmium(II) vinyl complexes as highly sensitive and selective chromogenic and fluorogenic probes for the sensing of carbon monoxide in air.

    PubMed

    Toscani, Anita; Marín-Hernández, Cristina; Moragues, María E; Sancenón, Félix; Dingwall, Paul; Brown, Neil J; Martínez-Máñez, Ramón; White, Andrew J P; Wilton-Ely, James D E T

    2015-10-05

    The detection of carbon monoxide in solution and air has been achieved using simple, inexpensive systems based on the vinyl complexes [M(CHCHR)Cl(CO)(BTD)(PPh3 )2 ] (R=aryl, BTD=2,1,3-benzothiadiazole). Depending on the nature of the vinyl group, chromogenic and fluorogenic responses signalled the presence of this odourless, tasteless, invisible, and toxic gas. Solutions of the complexes in CHCl3 underwent rapid change between easily differentiated colours when exposed to air samples containing CO. More significantly, the adsorption of the complexes on silica produced colorimetric probes for the naked-eye detection of CO in the gas phase. Structural data for key species before and after the addition of CO were obtained by means of single X-ray diffraction studies. In all cases, the ruthenium and osmium vinyl complexes studied showed a highly selective response to CO with exceptionally low detection limits. Naked-eye detection of CO at concentrations as low as 5 ppb in air was achieved with the onset of toxic levels (i.e., 100 ppm), thus resulting in a remarkably clear colour change. Moreover, complexes bearing pyrenyl, naphthyl, and phenanthrenyl moieties were fluorescent, and greater sensitivities were achieved (through turn-on emission fluorescence) in the presence of CO both in solution and air. This behaviour was explored computationally using time-dependent density functional theory (TDDFT) experiments. In addition, the systems were shown to be selective for CO over all other gases tested, including water vapour and common organic solvents. Supporting the metal complexes on cellulose strips for use in an existing optoelectronic device allows numerical readings for the CO concentration to be obtained and provision of an alarm system.

  5. Rapid water oxidation electrocatalysis by a ruthenium complex of the tripodal ligand tris(2-pyridyl)phosphine oxide.

    PubMed

    Walden, Andrew G; Miller, Alexander J M

    2015-04-16

    The tris(2-pyridyl)phosphine oxide (Py3PO) complex [Ru(Py3PO)(bpy)(OH2)](2+) (bpy is 2,2'-bipyridine) is a pH-dependent water oxidation electrocatalyst that accelerates dramatically with increasing pH-up to 780 s(-1) at pH 10 (∼1 V overpotential). Despite retaining the pentakis(pyridine) ligand arrangement common to previously reported catalysts, the tripodal Py3PO ligand framework supports much faster electrocatalysis. The early stages of the catalytic cycle are proposed to follow the typical pattern of single-site ruthenium catalysts, with two sequential 1H(+)/1e(-) proton-coupled electron transfer (PCET) oxidations, but the pH-dependent onset of catalysis and rapid rates are distinguishing features of the present system.

  6. Influence of the Steric Bulk and Solvent on the Photoreactivity of Ruthenium Polypyridyl Complexes Coordinated to l-Proline

    PubMed Central

    2017-01-01

    Ruthenium polypyridyl complexes are good candidates for photoactivated chemotherapy (PACT) provided that they are stable in the dark but efficiently photosubstitute one of their ligands. Here the use of the natural amino acid l-proline as a protecting ligand for ruthenium-based PACT compounds is investigated in the series of complexes Λ-[Ru(bpy)2(l-prol)]PF6 ([1a]PF6; bpy = 2,2′-bipyridine and l-prol = l-proline), Λ-[Ru(bpy)(dmbpy)(l-prol)]PF6 ([2a]PF6 and [2b]PF6; dmbpy = 6,6′-dimethyl-2,2′-bipyridine), and Λ-[Ru(dmbpy)2(l-prol)]PF6 ([3a]PF6). The synthesis of the tris-heteroleptic complex bearing the dissymmetric proline ligand yielded only two of the four possible regioisomers, called [2a]PF6 and [2b]PF6. Both isomers were isolated and characterized by a combination of spectroscopy and density functional theory calculations. The photoreactivity of all four complexes [1a]PF6, [2a]PF6, [2b]PF6, and [3a]PF6 was studied in water (H2O) and acetonitrile (MeCN) using UV–vis spectroscopy, circular dichroism spectroscopy, mass spectrometry, and 1H NMR spectroscopy. In H2O, upon visible-light irradiation in the presence of oxygen, no photosubstitution took place, but the amine of complex [1a]PF6 was photooxidized to an imine. Contrary to expectations, enhancing the steric strain by the addition of two ([2b]PF6) or four ([3a]PF6) methyl substituents did not lead, in phosphate-buffered saline (PBS), to ligand photosubstitution. However, it prevented photoxidation, probably as a consequence of the electron-donating effect of the methyl substituents. In addition, whereas [2b]PF6 was photostable in PBS, [2a]PF6 quantitatively isomerized to [2b]PF6 upon light irradiation. In pure MeCN, [2a]PF6 and [3a]PF6 showed non-selective photosubstitution of both the l-proline and dmbpy ligands, whereas the non-strained complex [1a]PF6 was photostable. Finally, in H2O–MeCN mixtures, [3a]PF6 showed selective photosubstitution of l-proline, thus demonstrating the active role

  7. Metal oxide films on metal

    DOEpatents

    Wu, Xin D.; Tiwari, Prabhat

    1995-01-01

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  8. Sequential picosecond isomerizations in a photochromic ruthenium sulfoxide complex triggered by pump-repump-probe spectroscopy.

    PubMed

    King, Albert W; Jin, Yuhuan; Engle, James T; Ziegler, Christopher J; Rack, Jeffrey J

    2013-02-18

    The complex [Ru(bpy)(2)(bpSO)](PF(6))(2), where bpy is 2,2'-bipydine and bpSO is 1,2-bis(phenylsulfinyl)ethane, exhibits three distinct isomers which are accessible upon metal-to-ligand charge-transfer (MLCT) irradiation. This complex and its parent, [Ru(bpy)(2)(bpte)](PF(6))(2), where bpte is 1,2-bis(phenylthio)ethane, have been synthesized and characterized by UV-visible spectroscopy, NMR, X-ray crystallography, and femtosecond transient absorption spectroscopy. A novel method of 2-color Pump-Repump-Probe spectroscopy has been employed to investigate all three isomers of the bis-sulfoxide complex. This method allows for observation of the isomerization dynamics of sequential isomerizations of each sulfoxide from MLCT irradiation of the S,S-bonded complex to ultimately form the O,O-bonded metastable complex. One-dimensional (1-D) and two-dimensional (2-D) (COSY, NOESY, and TOCSY) (1)H NMR data show the thioether and ground state S,S-bonded sulfoxide complexes to be rigorously C(2) symmetric and are consistent with the crystal structures. Transient absorption spectroscopy reveals that the S,S to S,O isomerization occurs with an observed time constant of 56.8 (±7.4) ps. The S,O to O,O isomerization time constant was found to be 59 (±4) ps by pump-repump-probe spectroscopy. The composite S,S- to O,O-isomer quantum yield is 0.42.

  9. Acid-base equilibria of various oxidation states of aqua-ruthenium complexes with 1,10-phenanthroline-5,6-dione in aqueous media.

    PubMed

    Fujihara, Tetsuaki; Wada, Tohru; Tanaka, Koji

    2004-02-21

    Syntheses and pH dependent electrochemical properties of aqua-ruthenium(II) complexes, [Ru(trpy)(PDA-N,N')(OH2)](ClO4)2 ([1](ClO4)2) and [Ru(trpy)(PD-N,N')(OH2)](ClO4)2 ([2](ClO4)2) (trpy = 2,2':6',2''-terpyridine, PDA = 6-acetonyl-6-hydroxy-1,10-phenanthroline-5-one, PD = 1,10-phenanthroline-5,6-dione) are presented. Treatment of [Ru(trpy)(PD-N,N')Cl](PF6) with AgClO4 in a mixed solvent of acetone and H2O selectively produced the acetonyl-PD complex [1](ClO4)2, and the similar treatment in a mixed solvent of 2-methoxyethanol and H2O gave the PD complex [2](ClO4)2. The molecular structures of both complexes were determined by X-ray structural analysis. The proton dissociation constants of various oxidations state of [1]2+ and [2]2+ were evaluated by simulation of E(1/2) values of those redox potentials depending on pH. The simulation revealed that the acetonyl-PD complex [1]2+ underwent successive Ru(II)/Ru(III) and Ru(III)/Ru(IV) redox couples though the two redox reactions were not separated in the cyclic voltammograms. The redox behavior of [2]2+ in H2O is reasonably explained by not only the similar successive metal-centered redox reactions but also simultaneous two-electron quinone/catechol redox couple of the PD ligand including the contribution of hydration on a carbonyl carbon.

  10. Formazans and their metal complexes

    NASA Astrophysics Data System (ADS)

    Sigeikin, Gennadii I.; Lipunova, Galina N.; Pervova, I. G.

    2006-10-01

    The current data on the structure of formazans in crystals and in solutions are considered and some problems of tautomeric and conformational equilibria are discussed. Some novel classes of formazans synthesised over the past decade are presented. The results of structural studies of formazan complexes with various types of metal coordination are generalised. Examples of synthesis of formazan-containing polymers are given. Special emphasis is placed on analytical and practical applications of formazan derivatives.

  11. MOLYBDENUM, RUTHENIUM, AND THE HEAVY r-PROCESS ELEMENTS IN MODERATELY METAL-POOR MAIN-SEQUENCE TURNOFF STARS

    SciTech Connect

    Peterson, Ruth C.

    2013-05-01

    The ratios of elemental abundances observed in metal-poor stars of the Galactic halo provide a unique present-day record of the nucleosynthesis products of its earliest stars. While the heaviest elements were synthesized by the r- and s-processes, dominant production mechanisms of light trans-ironic elements were obscure until recently. This work investigates further our 2011 conclusion that the low-entropy regime of a high-entropy wind (HEW) produced molybdenum and ruthenium in two moderately metal-poor turnoff stars that showed extreme overabundances of those elements with respect to iron. Only a few, rare nucleosynthesis events may have been involved. Here we determine abundances for Mo, Ru, and other trans-Fe elements for 28 similar stars by matching spectral calculations to well-exposed near-UV Keck HIRES spectra obtained for beryllium abundances. In each of the 26 turnoff stars with Mo or Ru line detections and no evidence for s-process production (therefore old), we find Mo and Ru to be three to six times overabundant. In contrast, the maximum overabundance is reduced to factors of three and two for the neighboring elements zirconium and palladium. Since the overproduction peaks sharply at Mo and Ru, a low-entropy HEW is confirmed as its origin. The overabundance level of the heavy r-process elements varies significantly, from none to a factor of four, but is uncorrelated with Mo and Ru overabundances. Despite their moderate metallicity, stars in this group trace the products of different nucleosynthetic events: possibly very few events, possibly events whose output depended on environment, metallicity, or time.

  12. Influence of solvent on the spectroscopic properties of cyano complexes of ruthenium(II)

    SciTech Connect

    Timpson, C.J.; Meyer, J.M.; Bignozzi, C.A.; Sullivan, P.B.; Kober, E.M.

    1996-02-22

    Specific solute-solvent interactions are known to play an important role in optical and thermal electron transfer involving transition-metal complexes. These interactions can influence both spectroscopic energies and redox potentials in a significant way. Their existence has been documented in the literature, and qualitative models have been proposed, but they have yet to be examined quantitatively. Literature examples include mixed cyano-pyridyl complexes of Fe(II) and Ru(II) where specific interactions occur with the cyanide ligands. We extend that work here and report the effect of solvent on absorption, emission, and Ru{sup III/II} reduction potentials in the series cis-[Ru(bpy){sub 2}(py)(CN)]{sup +}, cis-Ru(bpy){sub 2}(CN){sub 2}, [Ru(tpy)(CN){sub 3}]{sup -}, [Ru(bpy)(CN){sub 4}]{sup 2-}, and [Ru(MQ{sup +})(CN){sub 5}]{sup 2-}, where there is a sequential increase in the number of cyanide ligands. The goals were to obtain systematic data on specific solvent effects in these complexes, to analyze the effects, and to develop models to explain them. UV-visible spectra, emission spectra, and Ru{sup III/II} reduction potentials have been measured. The shifts in the metal-to-ligand charge transfer (MLCT) absorption (E{sub abs}) or emission (E{sub em}) band energies with solvent increase linearly with the number of cyano ligands and correlate well with the Gutmann `acceptor number` of the solvent. 32 refs., 8 figs., 4 tabs.

  13. Nitro/Nitrosyl-Ruthenium Complexes Are Potent and Selective Anti-Trypanosoma cruzi Agents Causing Autophagy and Necrotic Parasite Death

    PubMed Central

    Bastos, Tanira M.; Barbosa, Marília I. F.; da Silva, Monize M.; da C. Júnior, José W.; Meira, Cássio S.; Guimaraes, Elisalva T.; Ellena, Javier; Moreira, Diogo R. M.; Batista, Alzir A.

    2014-01-01

    cis-[RuCl(NO2)(dppb)(5,5′-mebipy)] (complex 1), cis-[Ru(NO2)2(dppb)(5,5′-mebipy)] (complex 2), ct-[RuCl(NO)(dppb)(5,5′-mebipy)](PF6)2 (complex 3), and cc-[RuCl(NO)(dppb)(5,5′-mebipy)](PF6)2 (complex 4), where 5,5′-mebipy is 5,5′-dimethyl-2,2′-bipyridine and dppb is 1,4-bis(diphenylphosphino)butane, were synthesized and characterized. The structure of complex 2 was determined by X-ray crystallography. These complexes exhibited a higher anti-Trypanosoma cruzi activity than benznidazole, the current antiparasitic drug. Complex 3 was the most potent, displaying a 50% effective concentration (EC50) of 2.1 ± 0.6 μM against trypomastigotes and a 50% inhibitory concentration (IC50) of 1.3 ± 0.2 μM against amastigotes, while it displayed a 50% cytotoxic concentration (CC50) of 51.4 ± 0.2 μM in macrophages. It was observed that the nitrosyl complex 3, but not its analog lacking the nitrosyl group, releases nitric oxide into parasite cells. This release has a diminished effect on the trypanosomal protease cruzain but induces substantial parasite autophagy, which is followed by a series of irreversible morphological impairments to the parasites and finally results in cell death by necrosis. In infected mice, orally administered complex 3 (five times at a dose of 75 μmol/kg of body weight) reduced blood parasitemia and increased the survival rate of the mice. Combination index analysis of complex 3 indicated that its in vitro activity against trypomastigotes is synergic with benznidazole. In addition, drug combination enhanced efficacy in infected mice, suggesting that ruthenium-nitrosyl complexes are potential constituents for drug combinations. PMID:25092707

  14. Thiol-Activated HNO Release from a Ruthenium Antiangiogenesis Complex and HIF-1α Inhibition for Cancer Therapy

    PubMed Central

    2016-01-01

    Metallonitrosyl complexes are promising as nitric oxide (NO) donors for the treatment of cardiovascular, endothelial, and pathogenic diseases, as well as cancer. Recently, the reduced form of NO– (protonated as HNO, nitroxyl, azanone, isoelectronic with O2) has also emerged as a candidate for therapeutic applications including treatment of acute heart failure and alcoholism. Here, we show that HNO is a product of the reaction of the RuII complex [Ru(bpy)2(SO3)(NO)]+ (1) with glutathione or N-acetyl-L-cysteine, using met-myoglobin and carboxy-PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) as trapping agents. Characteristic absorption spectroscopic profiles for HNO reactions with met-myoglobin were obtained, as well as EPR evidence from carboxy-PTIO experiments. Importantly, the product HNO counteracted NO-induced as well as hypoxia-induced stabilization of the tumor-suppressor HIF-1α in cancer cells. The functional disruption of neovascularization by HNO produced by this metallonitrosyl complex was demonstrated in an in vitro angiogenesis model. This behavior is consistent with HNO biochemistry and contrasts with NO-mediated stabilization of HIF-1α. Together, these results demonstrate for the first time thiol-dependent production of HNO by a ruthenium complex and subsequent destabilization of HIF-1α. This work suggests that the complex warrants further investigation as a promising antiangiogenesis agent for the treatment of cancer. PMID:27191177

  15. Cyclic alkyl amino carbene (CAAC) ruthenium complexes as remarkably active catalysts for ethenolysis

    SciTech Connect

    Marx, Vanessa M.; Sullivan, Alexandra H.; Melaimi, Mohand; Virgil, Scott C.; Keitz, Benjamin K.; Weinberger, David S.; Bertrand, Guy; Grubbs, Robert H.

    2014-12-17

    In this paper, an expanded family of ruthenium-based metathesis catalysts bearing cyclic alkyl amino carbene (CAAC) ligands was prepared. These catalysts exhibited exceptional activity in the ethenolysis of the seed-oil derivative methyl oleate. In many cases, catalyst turnover numbers (TONs) of more than 100,000 were achieved, at a catalyst loading of only 3 ppm. Remarkably, the most active catalyst system was able to achieve a TON of 340 000, at a catalyst loading of only 1 ppm. Finally, this is the first time a series of metathesis catalysts has exhibited such high performance in cross-metathesis reactions employing ethylene gas, with activities sufficient to render ethenolysis applicable to the industrial-scale production of linear α-olefins (LAOs) and other terminal-olefin products.

  16. Cyclic alkyl amino carbene (CAAC) ruthenium complexes as remarkably active catalysts for ethenolysis

    DOE PAGES

    Marx, Vanessa M.; Sullivan, Alexandra H.; Melaimi, Mohand; ...

    2014-12-17

    In this paper, an expanded family of ruthenium-based metathesis catalysts bearing cyclic alkyl amino carbene (CAAC) ligands was prepared. These catalysts exhibited exceptional activity in the ethenolysis of the seed-oil derivative methyl oleate. In many cases, catalyst turnover numbers (TONs) of more than 100,000 were achieved, at a catalyst loading of only 3 ppm. Remarkably, the most active catalyst system was able to achieve a TON of 340 000, at a catalyst loading of only 1 ppm. Finally, this is the first time a series of metathesis catalysts has exhibited such high performance in cross-metathesis reactions employing ethylene gas, withmore » activities sufficient to render ethenolysis applicable to the industrial-scale production of linear α-olefins (LAOs) and other terminal-olefin products.« less

  17. A ruthenium(II) complex as turn-on Cu(II) luminescent sensor based on oxidative cyclization mechanism and its application in vivo

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfei; Liu, Zonglun; Yang, Kui; Zhang, Yi; Xu, Yongqian; Li, Hongjuan; Wang, Chaoxia; Lu, Aiping; Sun, Shiguo

    2015-02-01

    Copper ions play a vital role in a variety of fundamental physiological processes not only in human beings and plants, but also for extensive insects and microorganisms. In this paper, a novel water-soluble ruthenium(II) complex as a turn-on copper(II) ions luminescent sensor based on o-(phenylazo)aniline was designed and synthesized. The azo group would undergo a specific oxidative cyclization reaction with copper(II) ions and turn into high luminescent benzotriazole, triggering significant luminescent increasements which were linear to the concentrations of copper(II) ions. The sensor distinguished by its high sensitivity (over 80-fold luminescent switch-on response), good selectivity (the changes of the emission intensity in the presence of other metal ions or amino acids were negligible) and low detection limit (4.42 nM) in water. Moreover, the copper(II) luminescent sensor exhibited good photostability under light irradiation. Furthermore, the applicability of the proposed sensor in biological samples assay was also studied and imaged copper(II) ions in living pea aphids successfully.

  18. A ruthenium(II) complex as turn-on Cu(II) luminescent sensor based on oxidative cyclization mechanism and its application in vivo

    PubMed Central

    Zhang, Yunfei; Liu, Zonglun; Yang, Kui; Zhang, Yi; Xu, Yongqian; Li, Hongjuan; Wang, Chaoxia; Lu, Aiping; Sun, Shiguo

    2015-01-01

    Copper ions play a vital role in a variety of fundamental physiological processes not only in human beings and plants, but also for extensive insects and microorganisms. In this paper, a novel water-soluble ruthenium(II) complex as a turn-on copper(II) ions luminescent sensor based on o-(phenylazo)aniline was designed and synthesized. The azo group would undergo a specific oxidative cyclization reaction with copper(II) ions and turn into high luminescent benzotriazole, triggering significant luminescent increasements which were linear to the concentrations of copper(II) ions. The sensor distinguished by its high sensitivity (over 80-fold luminescent switch-on response), good selectivity (the changes of the emission intensity in the presence of other metal ions or amino acids were negligible) and low detection limit (4.42 nM) in water. Moreover, the copper(II) luminescent sensor exhibited good photostability under light irradiation. Furthermore, the applicability of the proposed sensor in biological samples assay was also studied and imaged copper(II) ions in living pea aphids successfully. PMID:25640000

  19. Proton coupled electron transfer from the excited state of a ruthenium(II) pyridylimidazole complex.

    PubMed

    Pannwitz, Andrea; Wenger, Oliver S

    2016-04-28

    Proton coupled electron transfer (PCET) from the excited state of [Ru(bpy)2pyimH](2+) (bpy = 2,2'-bipyridine; pyimH = 2-(2'-pyridyl)imidazole) to N-methyl-4,4'-bipyridinium (monoquat, MQ(+)) was studied. While this complex has been investigated previously, our study is the first to show that the formal bond dissociation free energy (BDFE) of the imidazole-N-H bond decreases from (91 ± 1) kcal mol(-1) in the electronic ground state to (43 ± 5) kcal mol(-1) in the lowest-energetic (3)MLCT excited state. This makes the [Ru(bpy)2pyimH](2+) complex a very strong (formal) hydrogen atom donor even when compared to metal hydride complexes, and this is interesting for light-driven (formal) hydrogen atom transfer (HAT) reactions with a variety of different substrates. Mechanistically, formal HAT between (3)MLCT excited [Ru(bpy)2pyimH](2+) and monoquat in buffered 1 : 1 (v : v) CH3CN/H2O was found to occur via a sequence of reaction steps involving electron transfer from Ru(ii) to MQ(+) coupled to release of the N-H proton to buffer base, followed by protonation of reduced MQ(+) by buffer acid. Our study is relevant in the larger contexts of photoredox catalysis and light-to-chemical energy conversion.

  20. Multi-targeted organometallic ruthenium(II)-arene anticancer complexes bearing inhibitors of poly(ADP-ribose) polymerase-1: A strategy to improve cytotoxicity.

    PubMed

    Wang, Zhigang; Qian, Hui; Yiu, Shek-Man; Sun, Jianwei; Zhu, Guangyu

    2014-02-01

    Small-molecule inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1) have currently drawn much attention as promising chemotherapeutic drug candidates, and there is a need to develop more potent PARP inhibitors with improved bioavailability. Here we report a strategy to improve the cytotoxicity of PARP inhibitors by conjugation with organometallic ruthenium(II)-arene compounds. We also report a systematic study to reveal the mechanism of action of these ruthenium-PARP inhibitor conjugates. The complexes have been synthesized and characterized spectroscopically. The improved antiproliferative activity from the as-prepared complexes in four human cancer cell lines has indicated their potential for further development as antitumor drugs. Cellular uptake study reveals that the most active complex 3 easily entered into cells. Target validation assays show that the complexes inhibited PARP-1 slightly better than the original PARP inhibitors, that complex 3 strongly bound to DNA and inhibited transcription, and that this complex arrested the cell cycle at the G0/G1 stage. This type of information could shed light on the design of the next generation of more active ruthenium-PARP inhibitor conjugates.

  1. Exploring metallodrug-protein interactions by mass spectrometry: comparisons between platinum coordination complexes and an organometallic ruthenium compound.

    PubMed

    Casini, Angela; Gabbiani, Chiara; Michelucci, Elena; Pieraccini, Giuseppe; Moneti, Gloriano; Dyson, Paul J; Messori, Luigi

    2009-06-01

    Electrospray ionisation mass spectrometry was used to analyse the reactions of metal compounds with mixtures of selected proteins. Three representative medicinally relevant compounds, cisplatin, transplatin and the organometallic ruthenium compound RAPTA-C, were reacted with a pool of three proteins, ubiquitin, cytochrome c and superoxide dismutase, and the reaction products were analysed using high-resolution mass spectrometry. Highly informative electrospray ionisation mass spectra were acquired following careful optimisation of the experimental conditions. The formation of metal-protein adducts was clearly observed for the three proteins. In addition, valuable information was obtained on the nature of the protein-bound metallofragments, on their distribution among the three different proteins and on the binding kinetics. The platinum compounds were less reactive and considerably less selective in protein binding than RAPTA-C, which showed a high affinity towards ubiquitin and cytochrome c, but not superoxide dismutase. In addition, competition studies between cisplatin and RAPTA-C showed that the two metallodrugs have affinities for the same amino acid residues on protein binding.

  2. Tuning the cytotoxic properties of new ruthenium(III) and ruthenium(II) complexes with a modified bis(arylimino)pyridine Schiff base ligand using bidentate pyridine-based ligands.

    PubMed

    Garza-Ortiz, Ariadna; Maheswari, Palanisamy Uma; Lutz, Martin; Siegler, Maxime A; Reedijk, Jan

    2014-06-01

    Synthesis, spectroscopy, characterization, structures, and cytotoxicity studies of 2,6-bis(2,6-diisopropylphenyliminomethyl)pyridine (LLL) ruthenium compounds are described. The starting compound [RuCl3(LLL)] has been fully characterized using IR spectroscopy, UV-vis spectroscopy, electrospray ionization mass spectrometry, and NMR spectroscopy. In addition, the crystal structure of the ligand LLL has been determined using single-crystal X-ray diffraction. With the ruthenium(III) trichloride compound as starting material, a new family of Ru(II) complexes with a number of neutral and charged bidentate co-ligands have been synthesized and used for characterization and cytotoxicity studies. The synthesis of the corresponding [Ru(II)LLL(LL)Cl](+/0) complexes with co-ligands- LL is 1,10-phenanthroline, 2,2'-bipyridyl, 2-(phenylazo)pyridine, 2-(phenylazo)-3-methylpyridine, 2-(tolylazo)pyridine, or the anionic 2-picolinate-is reported. Analytical, spectroscopic (IR spectroscopy, UV-vis spectroscopy, (1)H NMR spectroscopy, and electrospray ionization mass spectrometry), and structural characterization of the new compounds is described. Crystal structure analyses of two Ru(II) compounds show a slightly distorted octahedral Ru(II) geometry with tridentate LLL coordinated in a planar meridional fashion, and the chelating co-ligand (LL) and a chloride ion complete the octahedron. The co-ligand plays a significant role in modulating the physicochemical and cytotoxic properties of these new ruthenium complexes. The in vitro cytotoxicity of these new Ru(II) complexes (half-maximal inhibitory concentration, IC50, of 0.5-1.5 μM), in comparison with the parent Ru(III) compound (half-maximal inhibitory concentration of 3.9-4.3 μM) is higher for several of the human cancer cell lines tested. The cytotoxic activity of some of the new ruthenium compounds is even higher than that of cisplatin in the same cancer cell lines. The cytotoxicity of these new anticancer compounds is

  3. Ground- and excited-state properties of ruthenium(II) complexes containing tridentate azine ligands, Ru(tpy)(bpy)L{sup 2+}, where L is a polymerizable acetylene

    SciTech Connect

    Rasmussen, S.C.; Ronco, S.E.; Mlsna, D.A.; Billadeau, M.A.; Pennington, W.T.; Kolis, J.W.; Petersen, J.D.

    1995-02-15

    A series of polypyridyl ruthenium(II) complexes containing monodentate pyridyl- and cyano-substituted acetylenes have been prepared. Complexes of the type Ru(tpy)(bpy)L{sup 2+} (where tpy = 2,2{prime}:6{prime}:2{double_prime}-terpyridine (C{sub 15}H{sub 11}N{sub 3}), bpy = 2,2{prime}-bipyridine (C{sub 10}H{sub 8}N{sub 2}), and L = pyridine (py) (C{sub 5}H{sub 5}N), pyridylacetylene (PA) (C{sub 7}H{sub 5}N), phenylpyridylacetylene (PPA) (C{sub 10}H{sub 9}N), dipyridylacetylene (DPA) (C{sub 12}H{sub 8}N{sub 2}), CH{sub 3}CN, cyanoacetylene (CA) (C{sub 3}HN), and cyanophenylacetylene (CPA) (C{sub 9}H{sub 5}N)) have been prepared, and their synthesis and characterization are reported herein. The complexes [Ru(tpy)(bpy)(PPA)](PF{sub 6}){sub 2}{center_dot}(CH{sub 3}){sub 2}CO, [Ru(tpy)(bpy)(PA)](PF{sub 6}){sub 2}{center_dot}(CH{sub 3}){sub 2}CO, and [Ru(tpy)(bpy)(CH{sub 3}CN)](PF{sub 6}){sub 2} have been crystallized and the crystal structures determined. [Ru(tpy)(bpy)(CH{sub 3}CN)](PF{sub 6}){sub 2} crystallizes in the monoclinic P2{sub 1}/c space group. [Ru(tpy)(bpy)(PA)](PF{sub 6}){sub 2}{center_dot}(CH{sub 3}){sub 2}CO crystallizes in the triclinic P{bar 1} space group. [Ru(tpy)(bpy)(PPA)](PF{sub 6}){sub 2}{center_dot}(CH{sub 3}){sub 2}CO crystallizes in the triclinic P{bar 1} space group. The inclusion of the functionalized acetylene groups makes these complexes possible precursors to metal-coordinated polyacetylenes.

  4. Facile concerted proton-electron transfers in a ruthenium terpyridine-4'-carboxylate complex with a long distance between the redox and basic sites.

    PubMed

    Manner, Virginia W; Dipasquale, Antonio G; Mayer, James M

    2008-06-11

    We have designed and prepared ruthenium complexes with terpyridine-4'-carboxylate (tpyCOO) ligands, in which there are six bonds between the redox-active Ru and the basic carboxylate. The protonated Ru(II) complex, RuII(dipic)(tpyCOOH) (Ru(II)COOH), is prepared in one-pot from [(p-cymene)RuCl2]2, tpyCOONa, and then sodium pyridine-2,6-dicarboxylate [Na(dipic)]. A crystal structure of the deprotonated Ru(II) complex, Ru(II)COO-, shows a distance of 6.9 A between the metal and basic sites. The Ru(III) complex (Ru(III)COO) has been isolated by one-electron oxidation of Ru(II)COO- with triarylaminium radical cations (NAr3*+). Ru(III)COO has a bond dissociation free energy (BDFE) of 81 +/- 1 kcal mol(-1), from pKa and E1/2 measurements. It oxidizes 2,4,6-tri-tert-butylphenol (BDFE = 77 +/- 1 kcal mol(-1)) by removal of e- and H+ (triple bond H*) to form 2,4,6-tri-tert-butylphenoxyl radical and Ru(II)COOH, with a second-order rate constant of (2.3 0.2) x 10(4) M(-1) s(-1) and a kH/kD of 7.7 1.2. Thermochemical analysis suggests a concerted proton-electron transfer (CPET) mechanism for this reaction, despite the 6.9 A distance between the redox-active Ru and the H+-accepting oxygen. Ru(III)COO also oxidizes the hydroxylamine TEMPOH to the stable free radical TEMPO and xanthene to bixanthyl. These reactions appear to be similar to processes that have been previously termed hydrogen atom transfer.

  5. Use of ion mobility mass spectrometry and a collision cross-section algorithm to study an organometallic ruthenium anticancer complex and its adducts with a DNA oligonucleotide.

    PubMed

    Williams, Jonathan P; Lough, Julie Ann; Campuzano, Iain; Richardson, Keith; Sadler, Peter J

    2009-11-01

    We report the development of an enhanced algorithm for the calculation of collision cross-sections in combination with Travelling-Wave ion mobility mass spectrometry technology and its optimisation and evaluation through the analysis of an organoruthenium anticancer complex [(eta6-biphenyl)Ru(II)(en)Cl]+. Excellent agreement was obtained between the experimentally determined and theoretically determined collision cross-sections of the complex and its major product ion formed via collision-induced dissociation. Collision cross-sections were also experimentally determined for adducts of this ruthenium complex with the single-stranded oligonucleotide hexamer d(CACGTG). Ion mobility tandem mass spectrometry measurements have allowed the binding sites for ruthenium on the oligonucleotide to be determined.

  6. Ruthenium(II) carbonyl complexes bearing CCC-pincer bis-(carbene) ligands: synthesis, structures and activities toward recycle transfer hydrogenation reactions.

    PubMed

    Naziruddin, Abbas Raja; Huang, Zhao-Jiunn; Lai, Wei-Chih; Lin, Wan-Jung; Hwang, Wen-Shu

    2013-09-28

    A new series of ruthenium(II) carbonyl complexes with benzene-based CCC-pincer bis-(carbene) ligands, [((R)CCC(R))Ru(CO)2(X)](0/+) and [((R)CCC(R))Ru(CO)(NN)](+) ((R)CCC(R) = 2,6-bis-(1-alkylimidazolylidene)benzene, R = Me or (n)Bu; X = I, Br, CH3CN, or 6-(aminomethyl)pyridine (ampy); NN = 2·CH3CN, or chelating ampy or bipyridine), was synthesized and fully characterized. X-Ray structure determinations revealed that these eight complexes have pseudo-octahedral configurations around the ruthenium center with the pincer ligand occupying three meridional sites. These complexes prove to be efficient precatalysts demonstrating very good activity and reusability for the transfer hydrogenation of ketones.

  7. An unsymmetrical binuclear ruthenium(II) complex of tris(2-pyridyl)-1,3,5-triazine and its identification by sup 1 H NMR spectroscopy

    SciTech Connect

    Chirayil, S.; Hegde, V.; Jahng, Yurngdong; Thummel, R.P. )

    1991-06-26

    The use of tris(2-pyridyl)-1,3,5-triazine (TPT) for use as a bridging ligand that incorporates two Ru(II) atoms in nonequivalent sites such that one Ru(II) is bound in a bidentate fashion and the other is bound in a tridentate manner is described herein. The use of bpy-d{sub 8} as an auxiliary ligand in the formation and characterization of an unsymmetrical mononuclear ruthenium (I) complex has been extended to the perdeuterio analog of 2,2{prime};6,2{double prime}-terpyridine (Tpy), and its use in the characterization of a binuclear complex of TPT are reported. {sup 1}H NMR chemical shift data for the ligands and the ruthenium complexes are presented. 15 refs., 3 figs., 1 tab.

  8. Ruthenium complexes with heteropoly anion PW{sub 11}O{sub 39}{sup 7-} and their redox properties

    SciTech Connect

    Detusheva, L.G.; Kuznetsova, L.I.; Likholobov, V.A.

    1994-02-01

    A new heteropoly complex PW{sub 11}Ru{sup IV} and complexes of Ru{sup II}, Ru{sup III} and Ru{sup V} based thereon have been obtained. Using spectrophotometry the states of Ru{sup III} and Ru{sup IV} complexes in solution, the pH range of their stability, and the interaction of PW{sub 11}Ru{sup IV} with ClO{sub 4}{sup -}, SO{sub 4}{sup 2-}, Cl{sup -} ions have been studied. A conclusion has been thus made that the ruthenium ion in such a complex is not incorporated in the heteropolyanion lattice, but is attached only to its external oxygen atoms. Kinetics of oxidation of PW{sub 11}Ru{sup IV} and PW{sub 11}Ru{sup III} with potassium chlorate have been studied. The activation energy and pre-exponential factor have been found for the reaction. The possibility that ClO{sub 4}{sup -} and ClO{sub 3}{sup -} in aqueous solutions can be activated by PW{sub 11}Ru{sup II} with the former and by PW{sub 11}Ru{sup III} and PW{sub 11}Ru{sup IV} with the latter has been demonstrated.

  9. Nitric oxide binding and photodelivery based on ruthenium(II) complexes of 4-arylazo-3,5-dimethylpyrazole.

    PubMed

    Ortiz, Mayreli; Torréns, Mabel; Mola, José L; Ortiz, Pedro J; Fragoso, Alex; Díaz, Alicia; Cao, Roberto; Prados, Pilar; de Mendoza, Javier; Otero, Antonio; Antiñolo, Antonio; Lara, Agustin

    2008-07-21

    Two fluorescent ligands, 3,5-dimethyl-4-(6'-sulfonylammonium-1'-azonaphthyl)pyrazole (dmpzn, 1) and 3,5-dimethyl-4-(4'-N,N'-dimethylaminoazophenyl)pyrazole (dmpza, 2) were obtained by condensation of ketoenolic derivatives with hydrazine. 1 and 2 formed the novel dinuclear complexes [(H(2)O)(3)ClRu(micro-L)(2)RuCl(H(2)O)(3)] (3 or 4) and [(H(2)O)(NO)Cl(2)Ru(micro-L)(2)RuCl(2)(NO)(H(2)O)] (6 or 7) (where L 1 = 2 or , respectively) which were characterized by IR, NMR and elemental analysis. The nitrosyl complexes were prepared by bubbling purified nitric oxide through methanol solutions of the corresponding ruthenium(II) chloroderivative or by reaction of the appropriate ligands with Ru(NO)Cl(3). Complexes 3 and 4 were found to bind NO, resulting in an increase in fluorescence. Ligand 1 also formed the mononuclear nitrosyl complex [Ru(NO)(bpy)(2)(dmpzn)]Cl(2) (8) which released NO in water at physiological pH and in the solid state as revealed by fluorescence and IR measurements, respectively.

  10. Varying the electronic structure of surface-bound ruthenium(II) polypyridyl complexes.

    PubMed

    Ashford, Dennis L; Brennaman, M Kyle; Brown, Robert J; Keinan, Shahar; Concepcion, Javier J; Papanikolas, John M; Templeton, Joseph L; Meyer, Thomas J

    2015-01-20

    In the design of light-harvesting chromophores for use in dye-sensitized photoelectrosynthesis cells (DSPECs), surface binding to metal oxides in aqueous solutions is often inhibited by synthetic difficulties. We report here a systematic synthesis approach for preparing a family of Ru(II) polypyridyl complexes of the type [Ru(4,4'-R2-bpy)2(4,4'-(PO3H2)2-bpy)](2+) (4,4'(PO3H2)2-bpy = [2,2'-bipyridine]-4,4'-diylbis(phosphonic acid); 4,4'-R2-bpy = 4,4'-R2-2,2'-bipyridine; and R = OCH3, CH3, H, or Br). In this series, the nature of the 4,4'-R2-bpy ligand is modified through the incorporation of electron-donating (R = OCH3 or CH3) or electron-withdrawing (R = Br) functionalities to tune redox potentials and excited-state energies. Electrochemical measurements show that the ground-state potentials, E(o')(Ru(3+/2+)), vary from 1.08 to 1.45 V (vs NHE) when the complexes are immobilized on TiO2 electrodes in aqueous HClO4 (0.1 M) as a result of increased Ru dπ-π* back-bonding caused by the lowering of the π* orbitals on the 4,4'-R2-bpy ligand. The same ligand variations cause a negligible shift in the metal-to-ligand charge-transfer absorption energies. Emission energies decrease from λmax = 644 to 708 nm across the series. Excited-state redox potentials are derived from single-mode Franck-Condon analyses of room-temperature emission spectra and are discussed in the context of DSPEC applications.

  11. Conversion of cellulose and cellobiose into sorbitol catalyzed by ruthenium supported on a polyoxometalate/metal-organic framework hybrid.

    PubMed

    Chen, Jinzhu; Wang, Shengpei; Huang, Jing; Chen, Limin; Ma, Longlong; Huang, Xing

    2013-08-01

    Cellulose and cellobiose were selectively converted into sorbitol over water-tolerant phosphotungstic acid (PTA)/metal- organic-framework-hybrid-supported ruthenium catalysts, Ru-PTA/MIL-100(Cr), under aqueous hydrogenation conditions. The goal was to investigate the relationship between the acid/metal balance of bifunctional catalysts Ru-PTA/MIL-100(Cr) and their performance in the catalytic conversion of cellulose and cellobiose into sugar alcohols. The control of the amount and strength of acid sites in the supported PTA/MIL-100(Cr) was achieved through the effective control of encapsulated-PTA loading in MIL-100(Cr). This design and preparation method led to an appropriately balanced Ru-PTA/MIL-100(Cr) in terms of Ru dispersion and hydrogenation capacity on the one hand, and acid site density of PTA/MIL-100(Cr) (responsible for acid-catalyzed hydrolysis) on the other hand. The ratio of acid site density to the number of Ru surface atoms (nA /nRu ) of Ru-PTA/MIL-100(Cr) was used to monitor the balance between hydrogenation and hydrolysis functions; the optimum balance between the two catalytic functions, that is, 8.84metal bifunctional catalysts for biomass conversion.

  12. Multifaceted interplay between lipophilicity, protein interaction and luminescence parameters of non-intercalative ruthenium(II) polypyridyl complexes controlling cellular imaging and cytotoxic properties.

    PubMed

    Mazuryk, Olga; Magiera, Katarzyna; Rys, Barbara; Suzenet, Franck; Kieda, Claudine; Brindell, Małgorzata

    2014-12-01

    Here, we examine the photophysical properties of five ruthenium(II) complexes comprising two 4,7-diphenyl-1,10-phenanthroline (dip) ligands and functionalized bipyridine (R₁bpy-R₂, where R₁= H or CH3, R₂= H, CH₃, COO⁻,4-[3-(2-nitro-1H-imidazol-1-yl)propyl] or 1,3-dicyclohexyl-1-carbonyl-urea) towards development of luminescence probes for cellular imaging. These complexes have been shown to interact with albumin and the formed adducts exhibited up to eightfold increase in the luminescence quantum yield as well as the average lifetime of emission. It was demonstrated that they cannot bind to DNA through the intercalation mode and its luminescence in the presence of DNA is quenching. Cell viability experiments indicated that all complexes possess significant dose-dependent cytotoxicity (with IC₅₀ 5-19 μM) on 4T1 breast cancer cell line and their anti-proliferative activity correlates very well with their lipophilicity. Cellular uptake was studied by measuring the ruthenium content in cells using ICP-MS technique. As expected, the better uptake is directly related to higher lipophilicity of doubly charged ruthenium complexes while uptake of monocationic one is much lower in spite of the highest lipophilicity. Additionally staining properties were assessed using flow cytometry and fluorescence microscopy. These experiments showed that complex with 1,3-dicyclohexyl-1-carbonyl-urea substituent exhibits the best staining properties in spite of the lowest luminescence quantum yield in buffered solution (pH 7.4). Our results point out that both the imaging and cytotoxic properties of the studied ruthenium complexes are strongly influence by the level of internalization and protein interaction.

  13. Determination of Oxygen by Means of a Biogas and Gas - Interference Study Using an Optical Tris (4,7-Diphenyl-1,10-Phenanthroline) Ruthenium(II) Dichloride Complex Sensor.

    PubMed

    Brglez, Polonca; Holobar, Andrej; Pivec, Aleksandra; Nataša, Belšak; Kolar, Mitja

    2012-03-01

    Biogas is a mixture of gases produced by anaerobic fermentation where biomass or animal waste is decomposed and methane and carbon dioxide are mainly released. Biogas also has a very high moisture content (up to 80%), temperatures of around 60 °C, high pressure, and can contain other gases (N2, H2S, NH3 and H2). We searched for an appropriate measuring system for the determining of oxygen in biogas, since the production process of biogas must be run under anaerobic conditions; as the presence of oxygen decreases the quality of the biogas. Ruthenium (II) complexes are by far the most widely-used oxygen dyes within optical oxygen sensors. In general, they have efficient luminescences, relatively long-life metal-ligand charge-transfer excited states, fast response times, strong visible absorptions, large Stokes shifts, and high-photochemical stability. The purpose of this work was to characterise and optimize an optical oxygen sensor using tris (4,7-diphenyl-1,10-phenanthroline) ruthenium(II) dichloride complex for measuring oxygen. Different sensor properties were additionally studied, focusing on the interference of external light, temperature, and various gases. A special gas-mixing chamber was developed for gas interference study, and on-line experiments are presented for oxygen determination within the pilot biogas reactor.

  14. Energy-Storage Applications for a pH Gradient between Two Benzimidazole-Ligated Ruthenium Complexes That Engage in Proton-Coupled Electron-Transfer Reactions in Solution.

    PubMed

    Motoyama, Daisuke; Yoshikawa, Kai; Ozawa, Hiroaki; Tadokoro, Makoto; Haga, Masa-Aki

    2017-06-05

    The judicious selection of pairs of benzimidazole-ligated ruthenium complexes allowed the construction of a rechargeable proton-coupled electron-transfer (PCET)-type redox battery. A series of ruthenium(II) and -(III) complexes were synthesized that contain substituted benzimidazoles that engage in PCET reactions. The formation of intramolecular Ru-C cyclometalation bonds stabilized the resulting ruthenium(III) complexes, in which pKa values of the imino N-H protons on the benzimidazoles are usually lower than those for the corresponding ruthenium(II) complexes. As a proof-of-concept study for a solution redox battery based on such PCET reactions, the charging/discharging cycles of several pairs of ruthenium complexes were examined by chronopotentiometry in an H-type device with half-cells separated by a Nafion membrane in unbuffered CH3CN/H2O (1/1, v/v) containing 0.1 M NaCl. During the charging/discharging cycles, the pH value of the solution gradually changed accompanied by a change of the open-circuit potential (OCP). The changes for the OCP and pH value of the solution in the anodic and cathodic half-cells were in good agreement with the predicted values from the Pourbaix diagrams for the pairs of ruthenium complexes used. Accordingly, the careful selection of pairs of ruthenium complexes with a sufficient potential gradient and a suitably large pKa difference is crucial: the charge generated between the two ruthenium complexes changes the OCP and the pH difference between the two cells in an unbuffered solution, given that the PCET reactions occur at both electrodes and that discharging leads to the original state. Because the electric energy is stored as a pH gradient between the half-cells, new possibilities for PCET-type rocking-chair redox batteries arise.

  15. Preparation of hexacoordinating benzimidazole containing ligand and hexakis(benzimidazole-ruthenium(II)) complex. Molecular structure of C6{CH2-(N-benzimidazole-RuCl2(p-cymene))}6.

    PubMed

    Požgan, Franc; Toupet, Loïc; Dixneuf, Pierre H

    2011-07-07

    A hexabenzimidazole ligand was synthesised and used to prepare a hexakis{benzimidazole-ruthenium(II)} complex containing six RuCl(2)(arene) units of which the X-ray structure analysis shows a helical arrangement with alternating up and down benzymidazole-ruthenium(II) branches attached to a central benzene ring. The reactivity of the prepared complex with phosphite and carbonate was investigated and revealed the weakness of (benzimidazole)N-Ru bonds and the release of the polydentate ligand.

  16. Direct Observation of Photoinduced Charge Separation in Ruthenium Complex/Ni(OH)2 Nanoparticle Hybrid

    NASA Astrophysics Data System (ADS)

    Tang, Yu; Pattengale, Brian; Ludwig, John; Atifi, Abderrahman; Zinovev, Alexander V.; Dong, Bin; Kong, Qingyu; Zuo, Xiaobing; Zhang, Xiaoyi; Huang, Jier

    2015-12-01

    Ni(OH)2 have emerged as important functional materials for solar fuel conversion because of their potential as cost-effective bifunctional catalysts for both hydrogen and oxygen evolution reactions. However, their roles as photocatalysts in the photoinduced charge separation (CS) reactions remain unexplored. In this paper, we investigate the CS dynamics of a newly designed hybrid catalyst by integrating a Ru complex with Ni(OH)2 nanoparticles (NPs). Using time resolved X-ray absorption spectroscopy (XTA), we directly observed the formation of the reduced Ni metal site (~60 ps), unambiguously demonstrating CS process in the hybrid through ultrafast electron transfer from Ru complex to Ni(OH)2 NPs. Compared to the ultrafast CS process, the charge recombination in the hybrid is ultraslow (≫50 ns). These results not only suggest the possibility of developing Ni(OH)2 as solar fuel catalysts, but also represent the first time direct observation of efficient CS in a hybrid catalyst using XTA.

  17. Direct Observation of Photoinduced Charge Separation in Ruthenium Complex/Ni(OH)2 Nanoparticle Hybrid

    PubMed Central

    Tang, Yu; Pattengale, Brian; Ludwig, John; Atifi, Abderrahman; Zinovev, Alexander V.; Dong, Bin; Kong, Qingyu; Zuo, Xiaobing; Zhang, Xiaoyi; Huang, Jier

    2015-01-01

    Ni(OH)2 have emerged as important functional materials for solar fuel conversion because of their potential as cost-effective bifunctional catalysts for both hydrogen and oxygen evolution reactions. However, their roles as photocatalysts in the photoinduced charge separation (CS) reactions remain unexplored. In this paper, we investigate the CS dynamics of a newly designed hybrid catalyst by integrating a Ru complex with Ni(OH)2 nanoparticles (NPs). Using time resolved X-ray absorption spectroscopy (XTA), we directly observed the formation of the reduced Ni metal site (~60 ps), unambiguously demonstrating CS process in the hybrid through ultrafast electron transfer from Ru complex to Ni(OH)2 NPs. Compared to the ultrafast CS process, the charge recombination in the hybrid is ultraslow (≫50 ns). These results not only suggest the possibility of developing Ni(OH)2 as solar fuel catalysts, but also represent the first time direct observation of efficient CS in a hybrid catalyst using XTA. PMID:26673578

  18. Systematic manipulation of the light-harvesting properties for tridentate cyclometalated ruthenium(II) complexes.

    PubMed

    Koivisto, Bryan D; Robson, Kiyoshi C D; Berlinguette, Curtis P

    2009-10-19

    The response of the metal-to-ligand charge-transfer (MLCT) band to variability in terminal substituents within a related set of tridentate polypyridyl and cyclometalated Ru(II) complexes is reported. These complexes are formulated as [Ru(tpy-R(1))(tpy-R(2))](PF(6))(2) (1-6; tpy = 2,2':6',2''-terpyridine; R(1) = -H, -2-furyl, or -OMe; R(2) = -H, -2-furyl, or -CO(2)H) and [Ru(tpy-R(2))(dpb-R(1))]PF(6) (7-10; Hdpb = 1,3-di(pyridin-2-yl)benzene; R(2) = -H or -2-furyl; R(1) = -H or -OMe). Absorption spectra for the [Ru(tpy-R(1))(tpy-R(2))](2+) series highlight the sensitivity of the MLCT band to the indicated substituents at the 4' position of one or both tpy ligands (e.g., a bathochromic shift up to 24 nm coupled with a 2-fold increase in absorption intensity). Similar observations are made for the [Ru(tpy-R(2))(dpb-R(1))](+) series, where a single Ru-N dative bond is replaced by a Ru-C sigma-bond to form a cyclometalated complex. The reduced symmetry at the metal center within this series results in a broadening of the lowest-energy MLCT band, while an additional set of transitions at higher energies emerges that involves an excited state localized on the cyclometalating ligand. These MLCT transitions collectively render a broad absorption envelope of substantial intensity at wavelengths longer than ca. 525 nm. Optimal results are obtained for compound 10 (R(1) = -OMe; R(2) = -2-furyl), where a strong electron-donating group is situated para to the Ru-C bond (lambda(max) = 523 nm; epsilon = 2.6 x 10(4) M(-1) cm(-1)). This approach imparts substantial polarization within the molecule, which should benefit excited-state electron-transfer reactions for photosensitizing applications (e.g., dye-sensitized solar cells). Spectroscopic data are corroborated by electrochemical and TD-DFT measurements for all compounds.

  19. Formation of a ruthenium(IV)-oxo complex by electron-transfer oxidation of a coordinatively saturated ruthenium(II) complex and detection of oxygen-rebound intermediates in C-H bond oxygenation.

    PubMed

    Kojima, Takahiko; Nakayama, Kazuya; Ikemura, Kenichiro; Ogura, Takashi; Fukuzumi, Shunichi

    2011-08-03

    A coordinatively saturated ruthenium(II) complex having tetradentate tris(2-pyridylmethyl)amine (TPA) and bidentate 2,2'-bipyridine (bpy), [Ru(TPA)(bpy)](2+) (1), was oxidized by a Ce(IV) ion in H(2)O to afford a Ru(IV)-oxo complex, [Ru(O)(H(+)TPA)(bpy)](3+) (2). The crystal structure of the Ru(IV)-oxo complex 2 was determined by X-ray crystallography. In 2, the TPA ligand partially dissociates to be in a facial tridentate fashion and the uncoordinated pyridine moiety is protonated. The spin state of 2, which showed paramagnetically shifted NMR signals in the range of 60 to -20 ppm, was determined to be an intermediate spin (S = 1) by the Evans' method with (1)H NMR spectroscopy in acetone-d(6). The reaction of 2 with various oraganic substrates in acetonitrile at room temperature afforded oxidized and oxygenated products and a solvent-bound complex, [Ru(H(+)TPA)(bpy)(CH(3)CN)], which is intact in the presence of alcohols. The oxygenation reaction of saturated C-H bonds with 2 proceeds by two-step processes: the hydrogen abstraction with 2, followed by the dissociation of the alcohol products from the oxygen-rebound complexes, Ru(III)-alkoxo complexes, which were successfully detected by ESI-MS spectrometry. The kinetic isotope effects in the first step for the reaction of dihydroanthrathene (DHA) and cumene with 2 were determined to be 49 and 12, respectively. The second-order rate constants of C-H oxygenation in the first step exhibited a linear correlation with bond dissociation energies of the C-H bond cleavage.

  20. New uses for old complexes: The very first report on the trypanocidal activity of symmetric trinuclear ruthenium complexes.

    PubMed

    Possato, Bruna; Carneiro, Zumira Aparecida; de Albuquerque, Sérgio; Nikolaou, Sofia

    2017-11-01

    This work reports on the trypanocidal activity of a series of symmetric triruthenium complexes combined with azanaphthalene ligands of general formula [Ru3O(CH3COO)6(L)3]PF6 (L=(1) quinazoline (qui), (2) 5-nitroisoquinoline (5-nitroiq), (3) 5-bromoisoquinoline (5-briq), (4) isoquinoline (iq), (5) 5-aminoisoquinoline (5-amiq), and (6) 5,6,7,8-tetrahydroisoquinoline (thiq)). All complexes within the series presented in vitro trypanocidal activity against both the trypomastigote and amastigote forms of T. cruzi. The IC50 values obtained for complexes 1-6 ranged from 1.39 to 165.9μM for the trypomastigote form and from 1.06 to 53.16μM for the amastigote form. These values were lower than the values observed for the metallic core [Ru3O(CH3COO)6(CH3OH)3](+) itself and for the free ligands in all cases. Remarkably, complex 6 displayed lower IC50 values than the reference drug (benznidazole) for the acute (trypomastigote form) and chronic (amastigote form) phases of Chagas disease. These findings, combined with the low toxicity against healthy cells (LLK-MK2 strain) and a high SI value (Selectivity Index >10) make complex 6 an excellent candidate for in vivo tests. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Photodissociation of a ruthenium(II) arene complex and its subsequent interactions with biomolecules: a density functional theory study.

    PubMed

    Wang, Hanlu; DeYonker, Nathan J; Zhang, Xiting; Zhao, Cunyuan; Ji, Liangnian; Mao, Zong-Wan

    2012-10-01

    The piano-stool Ru(II) arene complex [(η⁶-benz)Ru(bpm)(py)]²⁺ (benz = benzene, bpm = 2,2'-bipyrimidine, and py = pyridine), which is conventionally nonlabile (on a timescale and under conditions relevant for biological reactivity), can be activated by visible light to selectively photodissociate the monodentate ligand (py). In the present study, the aquation and binding of the photocontrolled ruthenium(II) arene complex [(η⁶-benz)Ru(bpm)(py)]²⁺ to various biomolecules are studied by density functional theory (DFT) and time-dependent DFT (TDDFT). Potential energy curves (PECs) calculated for the Ru-N (py) bonds in [(η⁶-benz)Ru(bpm)(py)]²⁺ in the singlet and triplet state give useful insights into the photodissociation mechanism of py. The binding energies of the various biomolecules are calculated, which allows the order of binding affinities among the considered nuleic-acid- or protein-binding sites to be discerned. The kinetics for the replacement of water in the aqua complex with biomolecules is also considered, and the results demonstrate that guanine is superior to other biomolecules in terms of coordinating with the Ru(II) aqua adduct, which is in reasonable agreement with experimental observations.

  2. Hydrodefluorination of carbon-fluorine bonds by the synergistic action of a ruthenium-palladium catalyst.

    PubMed

    Sabater, Sara; Mata, Jose A; Peris, Eduardo

    2013-01-01

    Catalytic hydrodefluorination of organic molecules is a major organometallic challenge, owing to the strength of C-F sigma bonds, and it is a process with multiple industrial applications. Here we report a new heterodimetallic ruthenium-palladium complex based on a triazolyl-di-ylidene ligand. The complex is remarkably active in the hydrodefluorination of aromatic and aliphatic carbon-fluorine bonds under mild reaction conditions. We observe that both metals are required to promote the reaction process. The overall process implies that the palladium fragment facilitates the C-F activation, whereas the ruthenium centre allows the reduction of the substrate via transfer hydrogenation from isopropanol/sodium t-butoxide. The activity of this heterodimetallic complex is higher than that shown by a mixture of the related homodimetallic complexes of ruthenium and palladium, demonstrating the catalytic benefits of the heterodimetallic complex linked by a single-frame ligand.

  3. Synthesis and reactivity of [penta(4-halogenophenyl)cyclopentadienyl][hydrotris(indazolyl)borato]ruthenium(II) complexes: rotation-induced Fosbury flop in an organometallic molecular turnstile.

    PubMed

    Carella, Alexandre; Launay, Jean-Pierre; Poteau, Romuald; Rapenne, Gwénaël

    2008-01-01

    The preparation of ruthenium(II) complexes coordinated to a penta(4-halogeno)phenylcyclopentadienyl ligand and to the hydrotris(indazolyl)borate ligand are detailed. Our strategy involves first the coordination of the penta(4-bromo)phenylcyclopentadienyl ligand by reaction with the ruthenium-carbonyl cluster followed by the coordination of the tripodal ligand. The pentabrominated precursor was successfully converted to the pentaiodinated derivative by using the Klapars-Buchwald methodology, applied for the first time on organometallic substrates. Cross-coupling reactions were performed on both pentabromo and pentaiodo complexes to introduce in a single step the five peripheric ferrocenyl fragments required to obtain a potential molecular motor. The two ligands present in the ruthenium complexes undergo a correlated rotation that was established both experimentally by NMR experiments and an X-ray diffraction study, and theoretically by DFT calculations. The potential-energy curve obtained by DFT revealed the energy barrier of the gearing mechanism to be only 4.5 kcal mol(-1). These sterically highly constrained complexes can be regarded as organometallic molecular turnstiles.

  4. Exploring the Cellular Accumulation of Metal Complexes

    PubMed Central

    Puckett, Cindy A.; Ernst, Russell J.; Barton, Jacqueline K.

    2010-01-01

    Transition metal complexes offer great potential as diagnostic and therapeutic agents, and a growing number of biological applications have been explored. To be effective, these complexes must reach their intended target inside the cell. Here we review the cellular accumulation of metal complexes, including their uptake, localization, and efflux. Metal complexes are taken up inside cells through various mechanisms, including passive diffusion and entry through organic and metal transporters. Emphasis is placed on the methods used to examine cellular accumulation, to identify the mechanism(s) of uptake, and to monitor possible efflux. Conjugation strategies that have been employed to improve the cellular uptake characteristics of metal complexes are also described. PMID:20104335

  5. Monomeric and oligomeric complexes of ruthenium and osmium with tetra-2-pyridyl-1,4-pyrazine (TPPZ)

    SciTech Connect

    Arana, C.R.; Abruna, H.D. )

    1993-01-20

    The authors have prepared a series of monometallic and homo- and heterodimetallic and -trimetallic complexes of Ru and Os with the ligand tetra-2-pyridyl-1,4-pyrazine (tppz) along with mixed-ligand complexes with terpyridine and vinylterpyridine. Their electrochemical and spectroscopic properties were studied and are reported herein. All monometallic complexes were found to be luminescent at both room and liquid-nitrogen temperatures. Electrochemical measurements of dimetallic and trimetallic complexes point to metal-metal interactions as well as to modulations in the [pi]-accepting character of the bridging pyrazine ligand induced by the metal centers. 17 refs., 14 figs., 4 tabs.

  6. Physicochemical Studies and Anticancer Potency of Ruthenium η-p-Cymene Complexes Containing Antibacterial Quinolones.

    PubMed

    Kljun, Jakob; Bytzek, Anna K; Kandioller, Wolfgang; Bartel, Caroline; Jakupec, Michael A; Hartinger, Christian G; Keppler, Bernhard K; Turel, Iztok

    2011-05-09

    With the aim of exploring the anticancer properties of organometallic compounds with bioactive ligands, Ru(arene) compounds of the antibacterial quinolones nalidixic acid (2) and cinoxacin (3) were synthesized, and their physicochemical properties were compared to those of chlorido(η(6)-p-cymene)(ofloxacinato-κ(2)O,O)ruthenium(II) (1). All compounds undergo a rapid ligand exchange reaction from chlorido to aqua species. 2 and 3 are significantly more stable than 1 and undergo minor conversion to an unreactive [(cym)Ru(μ-OH)(3)Ru(cym)](+) species (cym = η(6)-p-cymene). In the presence of human serum albumin 1-3 form adducts with this transport protein within 20 min of incubation. With guanosine 5'-monophosphate (5'-GMP; as a simple model for reactions with DNA) very rapid reactions yielding adducts via its N7 atom were observed, illustrating that DNA is a possible target for this compound class. A moderate capacity of inhibiting tumor cell proliferation in vitro was observed for 1 in CH1 ovarian cancer cells, whereas 2 and 3 turned out to be inactive.

  7. Evaluation of optical excitation conditions for ruthenium complex for biosensor optodes

    NASA Astrophysics Data System (ADS)

    Pieper, Sean; Zhong, Zhong; Lear, Kevin L.; Reardon, Ken

    2007-03-01

    Development of a fiber optic biosensor incorporating genetically engineered enzymes which catalyze chlorinated ethenes in an oxygen-consuming reaction for in situ monitoring of groundwater contaminants motivates optimization of optode excitation conditions. These conditions affect the sensitivity, signal-to-noise, and optode service life impacting the quality of the overall biosensor. Optodes are generally comprised of a fluorophore conjugated with a polymer as a substrate cross linked at the distal end of a fiber optic. We investigate the excitation conditions of tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) chloride (Ru(dpp)3) conjugated with poly(vinyl alcohol) (PVOH) as an optode. A reported advantage of Ru(dpp)3 is that it has no emission spectral shift occurring under varying chemical and environmental conditions. Photostability degradation due to photobleaching of Ru(dpp)3 with PVOH as a substrate is explored by varying the optical irradiance of the fluorophore containing optode. Other issues relating to practical implementation of Ru(dpp)3 as oxygen sensitive biosensors will be discussed.

  8. Role of the Support in Catalysis: Activation of a Mononuclear Ruthenium Complex for Ethene Dimerization by Chemisorption on Dealuminated ZeoACHTUNGTRENUNGlite Y

    SciTech Connect

    Ogino, I.; Gates, B

    2009-01-01

    A set of supported ruthenium complexes with systematically varied ratios of chemisorbed to physisorbed species was formed by contacting cis-[Ru(acac){sub 2}(C{sub 2}H{sub 4}){sub 2}] (I; acac = C{sub 5}H{sub 7}O{sub 2}{sup -}) with dealuminated zeolite Y. Extended X-ray absorption fine structure (EXAFS) spectra used to characterize the samples confirmed the systematic variation in the loadings of the two supported species and demonstrated that removal of bidentate acac ligands from I accompanied chemisorption to form [Ru(acac)(C{sub 2}H{sub 4}){sub 2}]{sup +} attached through two RuO bonds to the Al sites of the zeolite. A high degree of uniformity in the chemisorbed species was demonstrated by sharp bands in the infrared (IR) spectrum characteristic of ruthenium dicarbonyls that formed when CO reacted with the anchored complex. When the ruthenium loading exceeded 1.0 wt % (Ru/Al {approx} 1:6), the additional adsorbed species were simply physisorbed. Ethene ligands on the chemisorbed species reacted to form butenes when the temperature was raised to approximately 393 K; acac ligands remained bonded to Ru. In contrast, ethene ligands on the physisorbed complex simply desorbed under the same conditions. The chemisorption activated the ruthenium complex and facilitated dimerization of the ethene, which occurred catalytically. IR and EXAFS spectra of the supported samples indicate that (1) Ru centers in the chemisorbed species are more electron deficient than those in the physisorbed species and (2) Ru-ethene bonds in the chemisorbed species are less symmetric than those in the physisorbed species, which implies the presence of a preferred configuration for the catalytic dimerization.

  9. Manipulating the Rate-Limiting Step in Water Oxidation Catalysis by Ruthenium Bipyridine–Dicarboxylate Complexes

    DOE PAGES

    Shaffer, David W.; Xie, Yan; Szalda, David J.; ...

    2016-11-01

    In order to gain a deeper mechanistic understanding of water oxidation by [(bda)Ru(L)2] catalysts (bdaH2 = [2,2'-bipyridine]-6,6'-dicarboxylic acid; L = pyridine-type ligand), a series of modified catalysts with one and two trifluoromethyl groups in the 4 position of the bda2– ligand was synthesized and studied using stopped-flow kinetics. The additional $-$CF3 groups increased the oxidation potentials for the catalysts and enhanced the rate of electrocatalytic water oxidation at low pH. Stopped-flow measurements of cerium(IV)-driven water oxidation at pH 1 revealed two distinct kinetic regimes depending on catalyst concentration. At relatively high catalyst concentration (ca. ≥10–4 M), the rate-determining step (RDS)more » was a proton-coupled oxidation of the catalyst by cerium(IV) with direct kinetic isotope effects (KIE > 1). At low catalyst concentration (ca. ≤10–6 M), the RDS was a bimolecular step with kH/kD ≈ 0.8. The results support a catalytic mechanism involving coupling of two catalyst molecules. The rate constants for both RDSs were determined for all six catalysts studied. The presence of $-$CF3 groups had inverse effects on the two steps, with the oxidation step being fastest for the unsubstituted complexes and the bimolecular step being faster for the most electron-deficient complexes. Finally, though the axial ligands studied here did not significantly affect the oxidation potentials of the catalysts, the nature of the ligand was found to be important not only in the bimolecular step but also in facilitating electron transfer from the metal center to the sacrificial oxidant.« less

  10. Manipulating the Rate-Limiting Step in Water Oxidation Catalysis by Ruthenium Bipyridine–Dicarboxylate Complexes

    SciTech Connect

    Shaffer, David W.; Xie, Yan; Szalda, David J.; Concepcion, Javier J.

    2016-11-01

    In order to gain a deeper mechanistic understanding of water oxidation by [(bda)Ru(L)2] catalysts (bdaH2 = [2,2'-bipyridine]-6,6'-dicarboxylic acid; L = pyridine-type ligand), a series of modified catalysts with one and two trifluoromethyl groups in the 4 position of the bda2– ligand was synthesized and studied using stopped-flow kinetics. The additional $-$CF3 groups increased the oxidation potentials for the catalysts and enhanced the rate of electrocatalytic water oxidation at low pH. Stopped-flow measurements of cerium(IV)-driven water oxidation at pH 1 revealed two distinct kinetic regimes depending on catalyst concentration. At relatively high catalyst concentration (ca. ≥10–4 M), the rate-determining step (RDS) was a proton-coupled oxidation of the catalyst by cerium(IV) with direct kinetic isotope effects (KIE > 1). At low catalyst concentration (ca. ≤10–6 M), the RDS was a bimolecular step with kH/kD ≈ 0.8. The results support a catalytic mechanism involving coupling of two catalyst molecules. The rate constants for both RDSs were determined for all six catalysts studied. The presence of $-$CF3 groups had inverse effects on the two steps, with the oxidation step being fastest for the unsubstituted complexes and the bimolecular step being faster for the most electron-deficient complexes. Finally, though the axial ligands studied here did not significantly affect the oxidation potentials of the catalysts, the nature of the ligand was found to be important not only in the bimolecular step but also in facilitating electron transfer from the metal center to the sacrificial oxidant.

  11. Ruthenium(III)/phosphine/pyridine complexes applied in the hydrogenation reactions of polar and apolar double bonds

    NASA Astrophysics Data System (ADS)

    Rodrigues, Claudia; Delolo, Fábio G.; Ferreira, Lucas M.; da S. Maia, Pedro I.; Deflon, Victor M.; Rabeah, Jabor; Brückner, Angelika; Norinder, Jakob; Börner, Armin; Bogado, André L.; Batista, Alzir A.

    2016-05-01

    In this work, five ruthenium(III) complexes containing phosphine and pyridine based ligands with general formula mer-[RuCl3(dppb)(N)] [where dppb = 1,4-bis(diphenylphosphino)butane and N = pyridine (py), 4-methylpyridine (4-Mepy), 4-vinylpyridine (4-Vpy), 4-tert-butylpyridine (4-tBupy) and 4-phenylpyridine (4-Phpy)] were synthesized and characterized using spectroscopic and electrochemical techniques, as well as magnetic susceptibility to check the paramagnetism of these compounds. These complexes were tested as catalytic precursors in hydrogenation reactions with cyclohexene, undecanal and cyclohexanecarboxaldehyde, as compounds bearing Cdbnd C and Cdbnd O groups. Broad screening was carried out in order to find the optimal reaction conditions with the highest conversion. It was found that by using a ratio of Ru-catalyst/substrate = 1:530 at 80 °C and 15 bar of H2 for 24 h, cyclohexene can be reduced. Hydrogenation of undecanal was possible using a Ru-catalyst/substrate ratio of 1:100 at 160 °C and 100 bar for 24 h, and for the reduction of cyclohexanecarboxaldehyde the reaction conditions were Ru-catalyst/substrate ratio of 1:100 at 160 °C and 50 bar for 24 h.

  12. Synthesis and Assessment of Antibacterial Activities of Ruthenium(III) Mixed Ligand Complexes Containing 1,10-Phenanthroline and Guanide

    PubMed Central

    Hailemariam, Tizazu

    2016-01-01

    In this work, two complexes of ruthenium(III) ([Ru(phen)2Cl2]Cl·2H2O and [Ru(phen)2(G)Cl]2Cl·H2O) were synthesized from 1,10-phenanthroline alone as well as from both 1,10-phenanthroline and guanide. The synthesis was checked using halide test, conductance measurement, and spectroscopic (ICP-OES, FTIR, and UV/Vis) analysis. Their in vitro antibacterial activities were also investigated on two Gram-positive (Staphylococcus aureus (S. aureus) and methicillin resistant Staphylococcus aureus (MRSA)) and two Gram-negative (Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae)) bacteria. These complexes showed wide-range better activities than the commercially available controls (Chloramphenicol and Ciprofloxacin) against even the most drug resistant K. pneumoniae. [Ru(phen)2(G)Cl]2Cl·H2O inhibited S. aureus, MRSA, E. coli, and K. pneumoniae by 17.5%, 27.4%, 16%, and 52%, respectively, better than Chloramphenicol. It also inhibited these pathogens by 5.9%, 5.1%, 2.3%, and 17.2%, respectively, better than Ciprofloxacin. Similarly, [Ru(Phen)2(Cl)2]Cl·2H2O inhibited these pathogens by 11%, 8.7%, 0.1%, and 31.2%, respectively, better than Chloramphenicol. Therefore, after in vivo cytotoxicity investigations, these compounds can be considered as potential antibiotic drugs. PMID:27833473

  13. Structural Studies on Dinuclear Ruthenium(II) Complexes That Bind Diastereoselectively to an Antiparallel Folded Human Telomere Sequence

    PubMed Central

    2013-01-01

    We report DNA binding studies of the dinuclear ruthenium ligand [{Ru(phen)2}2tpphz]4+ in enantiomerically pure forms. As expected from previous studies of related complexes, both isomers bind with similar affinity to B-DNA and have enhanced luminescence. However, when tested against the G-quadruplex from human telomeres (which we show to form an antiparallel basket structure with a diagonal loop across one end), the ΛΛ isomer binds approximately 40 times more tightly than the ΔΔ, with a stronger luminescence. NMR studies show that the complex binds at both ends of the quadruplex. Modeling studies, based on experimentally derived restraints obtained for the closely related [{Ru(bipy)2}2tpphz]4+, show that the ΛΛ isomer fits neatly under the diagonal loop, whereas the ΔΔ isomer is unable to bind here and binds at the lateral loop end. Molecular dynamics simulations show that the ΔΔ isomer is prevented from binding under the diagonal loop by the rigidity of the loop. We thus present a novel enantioselective binding substrate for antiparallel basket G-quadruplexes, with features that make it a useful tool for quadruplex studies. PMID:24088028

  14. Direct Observation of Photoinduced Charge Separation in Ruthenium Complex/Ni(OH)2 Nanoparticle Hybrid

    DOE PAGES

    Tang, Yu; Pattengale, Brian A.; Ludwig, John M.; ...

    2015-12-17

    We report that Ni(OH)2 have emerged as important functional materials for solar fuel conversion because of their potential as cost-effective bifunctional catalysts for both hydrogen and oxygen evolution reactions. However, their roles as photocatalysts in the photoinduced charge separation (CS) reactions remain unexplored. In this paper, we investigate the CS dynamics of a newly designed hybrid catalyst by integrating a Ru complex with Ni(OH)2 nanoparticles (NPs). Using time resolved X-ray absorption spectroscopy (XTA), we directly observed the formation of the reduced Ni metal site (~60 ps), unambiguously demonstrating CS process in the hybrid through ultrafast electron transfer from Ru complexmore » to Ni(OH)2 NPs. Compared to the ultrafast CS process, the charge recombination in the hybrid is ultraslow (>>50 ns). These results not only suggest the possibility of developing Ni(OH)2 as solar fuel catalysts, but also represent the first time direct observation of efficient CS in a hybrid catalyst using XTA.« less

  15. Ruthenium(II) bipyridine complexes bearing new keto-enol azoimine ligands: Synthesis, structure, electrochemistry and DFT calculations

    NASA Astrophysics Data System (ADS)

    Al-Noaimi, Mousa; Awwadi, Firas F.; Mansi, Ahmad; Abdel-Rahman, Obadah S.; Hammoudeh, Ayman; Warad, Ismail

    2015-01-01

    The novel azoimine ligand, Phsbnd NHsbnd Ndbnd C(COCH3)sbnd NHPh(Ctbnd CH) (H2L), was synthesized and its molecular structure was determined by X-ray crystallography. Catalytic hydration of the terminal acetylene of H2L in the presence of RuCl3·3H2O in ethanol at reflux temperature yielded a ketone (L1 = Phsbnd Ndbnd Nsbnd C(COCH3)dbnd Nsbnd Ph(COCH3) and an enol (L2 = Phsbnd Ndbnd Nsbnd C(COCH3)dbnd Nsbnd PhC(OH)dbnd CH2) by Markovnikov addition of water. Two mixed-ligand ruthenium complexes having general formula, trans-[Ru(bpy)(Y)Cl2] (1-2) (where Y = L1 (1) and Y = L2 (2), bpy is 2.2‧-bipyrdine) were achieved by the stepwise addition of equimolar amounts of (H2L) and bpy ligands to RuCl3·3H2O in absolute ethanol. Theses complexes were characterized by elemental analyses and spectroscopic (IR, UV-Vis, and NMR (1D 1H NMR, 13C NMR, (DEPT-135), (DEPT-90), 2D 1H-1H and 13C-1H correlation (HMQC) spectroscopy)). The two complexes exhibit a quasi-reversible one electron Ru(II)/Ru(III) oxidation couple at 604 mV vs. ferrocene/ferrocenium (Cp2Fe0/+) couple along with one electron ligand reduction at -1010 mV. The crystal structure of complex 1 showed that the bidentate ligand L1 coordinates to Ru(II) by the azo- and imine-nitrogen donor atoms. The complex adopts a distorted trans octahedral coordination geometry of chloride ligands. The electronic spectra of 1 and 1+ in dichloromethane have been modeled by time-dependent density functional theory (TD-DFT).

  16. Ruthenium(II) bipyridine complexes bearing new keto-enol azoimine ligands: synthesis, structure, electrochemistry and DFT calculations.

    PubMed

    Al-Noaimi, Mousa; Awwadi, Firas F; Mansi, Ahmad; Abdel-Rahman, Obadah S; Hammoudeh, Ayman; Warad, Ismail

    2015-01-25

    The novel azoimine ligand, Ph-NH-N=C(COCH3)-NHPh(C≡CH) (H2L), was synthesized and its molecular structure was determined by X-ray crystallography. Catalytic hydration of the terminal acetylene of H2L in the presence of RuCl3·3H2O in ethanol at reflux temperature yielded a ketone (L1=Ph-N=N-C(COCH3)=N-Ph(COCH3) and an enol (L2=Ph-N=N-C(COCH3)=N-PhC(OH)=CH2) by Markovnikov addition of water. Two mixed-ligand ruthenium complexes having general formula, trans-[Ru(bpy)(Y)Cl2] (1-2) (where Y=L1 (1) and Y=L2 (2), bpy is 2.2'-bipyrdine) were achieved by the stepwise addition of equimolar amounts of (H2L) and bpy ligands to RuCl3·3H2O in absolute ethanol. Theses complexes were characterized by elemental analyses and spectroscopic (IR, UV-Vis, and NMR (1D (1)H NMR, (13)C NMR, (DEPT-135), (DEPT-90), 2D (1)H-(1)H and (13)C-(1)H correlation (HMQC) spectroscopy)). The two complexes exhibit a quasi-reversible one electron Ru(II)/Ru(III) oxidation couple at 604 mV vs. ferrocene/ferrocenium (Cp2Fe(0/+)) couple along with one electron ligand reduction at -1010 mV. The crystal structure of complex 1 showed that the bidentate ligand L1 coordinates to Ru(II) by the azo- and imine-nitrogen donor atoms. The complex adopts a distorted trans octahedral coordination geometry of chloride ligands. The electronic spectra of 1 and 1+ in dichloromethane have been modeled by time-dependent density functional theory (TD-DFT). Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Oxidative Stress and Antimicrobial Activity of Chromium(III) and Ruthenium(II) Complexes on Staphylococcus aureus and Escherichia coli

    PubMed Central

    Páez, Paulina L.; Bazán, Claudia M.; Bongiovanni, María E.; Toneatto, Judith; Albesa, Inés; Becerra, María C.; Argüello, Gerardo A.

    2013-01-01

    The prevalence of antibiotic resistance has resulted in the need for new approaches to be developed to combat previously easily treatable infections. The main aim of this work was to establish the potential of the synthetic α-diimine chromium(III) and ruthenium(II) complexes (where the α-diimine ligands are bpy = 2,2-bipyridine, phen = 1,10-phenanthroline, and dppz = dipyrido[3,2-a:2′,3′-c]-phenazine) like [Cr(phen)3]3+, [Cr(phen)2(dppz)]3+, [Ru(phen)3]2+, and [Ru(bpy)3]2+ as antibacterial agents by generating oxidative stress. The [Cr(phen)3]3+ and [Cr(phen)2(dppz)]3+ complexes showed activity against Gram positive and Gram negative bacteria with minimum inhibitory concentrations (MICs) ranging from 0.125 μg/mL to 1 μg/mL, while [Ru(phen)3]2+ and [Ru(bpy)3]2+ do not exhibit antimicrobial activity against the two bacterial genera studied at the concentration range used. When ciprofloxacin was combined with [Cr(phen)3]3+ for the inhibition of Staphylococcus aureus and Escherichia coli, an important synergistic effect was observed, FIC 0.066 for S. aureus and FIC 0.064 for E. coli. The work described here shows that chromium(III) complexes are bactericidal for S. aureus and E. coli. Our results indicate that α-diimine chromium(III) complexes may be interesting to open new paths for metallodrug chemotherapy against different bacterial genera since some of these complexes have been found to exhibit remarkable antibacterial activities. PMID:24093107

  18. Comparison of homoleptic and heteroleptic 2,2'-bipyridine and 1,10-phenanthroline ruthenium complexes as chemiluminescence and electrochemiluminescence reagents in aqueous solution.

    PubMed

    Cooke, Michaela M; Doeven, Egan H; Hogan, Conor F; Adcock, Jacqui L; McDermott, Geoffrey P; Conlan, Xavier A; Barnett, Neil W; Pfeffer, Frederick M; Francis, Paul S

    2009-03-02

    We have conducted a comprehensive comparative study of Ru(bipy)(3)(2+), Ru(bipy)(2)(phen)(2+), Ru(bipy)(phen)(2)(2+), and Ru(phen)(3)(2+) as chemiluminescence and electrochemiluminescence (ECL) reagents, to address several previous conflicting observations and gain a greater insight into their potential for chemical analysis. Clear trends were observed in many of their spectroscopic and electrochemical properties, but the relative chemiluminescence or ECL intensity with a range of analytes/co-reactants is complicated by the contribution of numerous (sometimes opposing) factors. Significantly, the reversibility of cyclic voltammetric responses for the complexes decreased as the number of phenanthroline ligands was increased, due to the lower stability of their ruthenium(III) form in the aqueous solvent. This trend was also evident over a longer timescale when the ruthenium(III) form was spectrophotometrically monitored after chemical oxidation of the ruthenium(II) complexes. In general, the greater stability of Ru(bipy)(3)(3+) resulted in lower blank signals, although this effect was less pronounced with ECL, where the reagent is oxidised in the presence of the co-reactants. Nevertheless, this shows the need to compare signal-to-blank ratios or detection limits, rather than the more common comparisons of overall signal intensity for different ruthenium complexes. Furthermore, our results support previous observations that, compared to Ru(bipy)(3)(2+), Ru(phen)(3)(2+) provides greater ECL and chemiluminescence intensities with oxalate, which in some circumstances translates to superior detection limits, but they do not support the subsequent generalised notion that Ru(phen)(3)(2+) is a more sensitive reagent than Ru(bipy)(3)(2+) for all analytes.

  19. RECOVERY OF RUTHENIUM VALUES

    DOEpatents

    Grummitt, W.E.; Hardwick, W.H.

    1961-01-01

    A process is given for the recovery of ruthenium from its aqueous solutions by oxidizing the ruthenium to the octavalent state and subsequently extracting the ruthenium into a halogen-substituted liquid paraffin.

  20. Ruthenium Bis-diimine Complexes with a Chelating Thioether Ligand: Delineating 1,10-Phenanthrolinyl and 2,2'-Bipyridyl Ligand Substituent Effects

    SciTech Connect

    Al-Rawashdeh, Nathir A. F.; Chatterjee, Sayandev; Krause, Jeanette A.; Connick, William B.

    2014-01-06

    A new series of ruthenium(II) bis-diimine complexes with a chelating thioether donor ligand has been prepared: Ru(diimine)2(dpte)2+ (diimine=1,10-phenanthroline (phen) (1); 5-CH3-phen (2), 5-Cl-phen (3); 5-Br-phen (4); 5-NO2-phen (5); 3,4,7,8-tetramethyl-phen (6); 4,7-diphenyl-phen (7); 5,5'-dimethyl-2,2'-bipyridine (8); 4,4'-di-tert-butyl-2,2'-bipyridine (9)). Crystal structures of 2, 5, 7 and 9 show that the complexes form 2 of the 12 possible conformational/configurational isomers, adopting compact C2-symmetric structures with short intramolecular transannular interactions between the diimine ligands and dpte phenyl groups; crystals of 2 and 5 contain non-statistical distributions of geometric isomers. In keeping with the π-acidity of the dpte, the Ru(III/II) couple, E°'(Ru3+/2+), occurs at relatively high potentials (1.4-1.7 V vs Ag/AgCl), and the lowest spin-allowed MLCT absorption band occurs near 400 nm. Surprisingly, the complexes also exhibit fluid-solution luminescence originating from a lowest MLCT excited state with lifetimes in the 140-750 ns time range; in acetonitrile, compound 8 undergoes photo-induced solvolysis. Variations in the MLCT energies and redox potentials are quantitatively described using a summative Hammett parameter (σT), as well as using Lever's electrochemical parameters (EL). Recommended parameterizations for 2,2'-bipyridyl and 1,10-phenanthrolinyl ligands were derived from analysis of correlations based on 199 measurements of E°'(Ru3+/2+) for 99 homo- and heteroleptic ruthenium(II) tris-diimine complexes. Variations in E°'(Ru3+/2+) due to substituents at the 4- and 4'-positions of bipyridyl ligands and 4- and 7-positions of phenanthrolinyl ligands are significantly more strongly correlated with σp+ than either σm or σp. Substituents at the 5- and 6-positions of phenanthrolinyl ligands are best described by σm and have effects comparable to those of substituents at the 3- and 8-positions. Correlations of EL with σT for 20

  1. Isolation and characterization of a dimeric ruthenium(II) complex. An intermediate in the ruthenium-catalyzed oxygen oxidation of thioethers to sulfoxides

    SciTech Connect

    Riley, D.P.; Thompson, M.R.; Lyon, J. III

    1988-12-01

    Complexes of the type Ru/sup II/X/sub 2/(MeSO)/sub 2 or 3/(PR/sub 3/) are excellent catalysts for the selective oxygen oxidation of thioethers to sulfoxides. The complex RuCl/sub 2/(Me/sub 2/SO)/sub 3/(PPh/sub 3/) is an example of such a catalyst, and its solution chemistry under simulated catalytic conditions reveals that only one detectable complex is present. This presumed catalytic complex has been isolated and characterized by /sup 1/H, /sup 13/C, and /sup 31/P NMR and by an x-ray structure determination to be the chlorotri-/mu/-chlorotris(dimethyl sulfoxide)bis(triphenylphosphine)diruthenium, 2. Single crystals of 2 are monoclinic with space group P/sub 2/sub 1//c/ with a = 16.662(3)/angstrom/, b = 16.576(3)/angstrom/, c = 19.282(3)/angstrom/, and /beta/ = 98.86(1)/degree/. Both Ru centers are coordinated in a distorted octahedral fashion having three /mu/-bridged chlorine atoms shared between them. Ru/sub 1/ possesses three terminal ligands, one chloride, one triphenylphosphine and a dimethyl sulfoxide. Ru/sub 2/ is terminally bonded to two Me/sub 2/SO centers and one triphenylphosphine. The /mu/-bridged chlorine atoms are bonded in an asymmetric fashion due to the differing trans-influences of the Cl/sup /minus//, (CH/sub 3/)/sub 2/SO and PPh/sub 3/ ligands bonded to the metal centers. Ru-/mu/Cl distances range from 2.436(2)/angstrom/ to 2.490(2)/angstrom/, and Ru-S distances from 2.205(2)/angstrom/ to 2.269(2)/angstrom/.

  2. Photochemical activation of ruthenium(II)-pyridylamine complexes having a pyridine-N-oxide pendant toward oxygenation of organic substrates.

    PubMed

    Kojima, Takahiko; Nakayama, Kazuya; Sakaguchi, Miyuki; Ogura, Takashi; Ohkubo, Kei; Fukuzumi, Shunichi

    2011-11-09

    Ruthenium(II)-acetonitrile complexes having η(3)-tris(2-pyridylmethyl)amine (TPA) with an uncoordinated pyridine ring and diimine such as 2,2'-bipyridine (bpy) and 2,2'-bipyrimidine (bpm), [Ru(II)(η(3)-TPA)(diimine)(CH(3)CN)](2+), reacted with m-chloroperbenzoic acid to afford corresponding Ru(II)-acetonitrile complexes having an uncoordinated pyridine-N-oxide arm, [Ru(II)(η(3)-TPA-O)(diimine)(CH(3)CN)](2+), with retention of the coordination environment. Photoirradiation of the acetonitrile complexes having diimine and the η(3)-TPA with the uncoordinated pyridine-N-oxide arm afforded a mixture of [Ru(II)(TPA)(diimine)](2+), intermediate-spin (S = 1) Ru(IV)-oxo complex with uncoordinated pyridine arm, and intermediate-spin Ru(IV)-oxo complex with uncoordinated pyridine-N-oxide arm. A Ru(II) complex bearing an oxygen-bound pyridine-N-oxide as a ligand and bpm as a diimine ligand was also obtained, and its crystal structure was determined by X-ray crystallography. Femtosecond laser flash photolysis of the isolated O-coordinated Ru(II)-pyridine-N-oxide complex has been investigated to reveal the photodynamics. The Ru(IV)-oxo complex with an uncoordinated pyridine moiety was alternatively prepared by reaction of the corresponding acetonitrile complex with 2,6-dichloropyridine-N-oxide (Cl(2)py-O) to identify the Ru(IV)-oxo species. The formation of Ru(IV)-oxo complexes was concluded to proceed via intermolecular oxygen atom transfer from the uncoordinated pyridine-N-oxide to a Ru(II) center on the basis of the results of the reaction with Cl(2)py-O and the concentration dependence of the consumption of the starting Ru(II) complexes having the uncoordinated pyridine-N-oxide moiety. Oxygenation reactions of organic substrates by [Ru(II)(η(3)-TPA-O)(diimine)(CH(3)CN)](2+) were examined under irradiation (at 420 ± 5 nm) and showed selective allylic oxygenation of cyclohexene to give cyclohexen-1-ol and cyclohexen-1-one and cumene oxygenation to afford cumyl alcohol

  3. Investigation of the Contact Resistance between Ti/TiN and Ru in Metal-1/Plate Contacts of Ruthenium Insulator Silicon Capacitor

    NASA Astrophysics Data System (ADS)

    Yun, Ju Young; Kim, Byung Hee; Seo, Jung Hun; Lee, Jong Myeong; Kang, Sang Bom; Choi, Gil Heyun; Chung, U In; Moon, Joo Tae

    2003-04-01

    The contact resistance between Ti/TiN and a Ru electrode in metal-1/plate contacts of ruthenium insulator silicon (RIS) capacitor is investigated. When physical vapor deposition (PVD) Ti/TiN was used as a barrier metal for the metal contact process, a high contact resistance of more than 5000 Ω/contact was obtained due to the oxidation of Ti by the residual oxygen in Ru electrode. On the other hand, with a plasma enhanced chemical vapor deposition (PECVD) Ti/CVD TiN barrier metal, oxidation of Ti was not observed and subsequently a low contact resistance of 15 Ω/contact was obtained. The absence of Ti oxidation with PECVD Ti/CVD TiN can be explained by the reduction of oxygen in the Ru electrode due to the H2 plasma environment in the PECVD-Ti process.

  4. New copper(I) and heteronuclear copper(I)-ruthenium(II) complexes: Synthesis, structural characterization and cytotoxicity.

    PubMed

    Lopes, João; Alves, David; Morais, Tânia S; Costa, Paulo J; Piedade, M Fátima M; Marques, Fernanda; Villa de Brito, Maria J; Helena Garcia, M

    2017-04-01

    A new family of copper(I) complexes of general formula [Cu(dppe)(NN)](+) have been synthesized and fully characterized, with dppe=1.2-bis(diphenylphosphino)ethane and NN representing several bidentate heteroaromatic ligands: 2,2'-bipy=2.2'-bipyridine (1), Me2bpy=4.4'-dimethyl-2,2'-bipyridine (2), dpytz=3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine (3), dpp=2.3-bis(2-pyridyl)pyrazine (4), and the metallaligand [Ru(η(5)-C5H5)(PPh3)(dpp)](+) (5), yielding the bimetallic copper(I)-ruthenium(II) complex [Cu(dppe)(μ-dpp)Ru(η(5)-C5H5)(PPh3)](2+) (6). The single crystal structures of complexes (2) and (4) were determined by X-ray diffraction studies. All the complexes exhibit high cytotoxicity against the human cancer cells A2780 and MCF7 with IC50 values far lower than those found for the antitumor drug cisplatin in the same cell lines and even surpassing cisplatin resistance in the A2780cisR cells. They display IC50 values on the human embryonic kidney HEK293 non-tumoral cells of the same order of magnitude as those found for the tumoral cells. In the ovarian cells the compounds induce rapid production of reactive oxygen species (ROS) probably through mitochondrial pathways. According to the results reported here, these compounds can be considered as prospective antitumoral agents that deserve further evaluation. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. pH luminescence switching, dihydrogen phosphate sensing, and cellular uptake of a heterobimetallic ruthenium(II)-rhenium(I) complex.

    PubMed

    Zheng, Ze-Bao; Wu, Yong-Quan; Wang, Ke-Zhi; Li, Fuyou

    2014-02-28

    A new heterobimetallic ruthenium(II)-rhenium(I) complex of [Ru(bpy)2(HL)Re(CO)3Cl](ClO4)2·6H2O (RuHLRe) {bpy = 2,2'-bipyridine and HL = 2-(4-(2,6-di(pyridin-2-yl)pyridin-4-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline} was synthesised and characterised by elemental analysis, proton nuclear magnetic resonance spectroscopy, and mass spectrometry. The ground- and excited-state acid-base properties of RuHLRe were studied using UV-Vis absorption spectrophotometric and spectrofluorimetric titrations in a 100 : 1 (v/v) Britton-Robinson buffer-CH3CN solution combined with luminescence lifetime measurements. The complex exhibited two-step separate protonation-deprotonation processes in both the ground and excited states. The complex acted as pH-induced "off-on-off" luminescence switches (I(on)/I(off) = 31.0 and 14.6), with one of the switching actions being driven by pH variations over the physiological pH range (5.3-8.0). Importantly, cellular imaging and cytotoxicity experiments demonstrated that RuHLRe rapidly and selectively illuminated the membrane of HeLa cells over fixed cells and exhibited reduced cytotoxicity at the imaging concentration compared to the Re(I)-free parent Ru(II) complex. In addition, RuHLRe acted as an efficient "turn on" emission sensor for H2PO4(-) and "turn off" emission sensor for F(-) and OAc(-).

  6. Selective Photodissociation of Acetonitrile Ligands in Ruthenium Polypyridyl Complexes Studied by Density Functional Theory.

    PubMed

    Tu, Yi-Jung; Mazumder, Shivnath; Endicott, John F; Turro, Claudia; Kodanko, Jeremy J; Schlegel, H Bernhard

    2015-08-17

    Metal complexes that release ligands upon photoexcitation are important tools for biological research and show great potential as highly specific therapeutics. Upon excitation with visible light, [Ru(TQA)(MeCN)2](2+) [TQA = tris(2-quinolinylmethyl)amine] exchanges one of the two acetonitriles (MeCNs), whereas [Ru(DPAbpy)MeCN](2+) [DPAbpy = N-(2,2'-bipyridin-6-yl)-N,N-bis(pyridin-2-ylmethyl)amine] does not release MeCN. Furthermore, [Ru(TQA)(MeCN)2](2+) is highly selective for release of the MeCN that is perpendicular to the plane of the two axial quinolines. Density functional theory calculations provide a clear explanation for the photodissociation behavior of these two complexes. Excitation by visible light and intersystem crossing leads to a six-coordinate (3)MLCT state. Dissociation of acetonitrile can occur after internal conversion to a dissociative (3)MC state, which has an occupied dσ* orbital that interacts in an antibonding fashion with acetonitrile. For [Ru(TQA)(MeCN)2](2+), the dissociative (3)MC state is lower than the (3)MLCT state. In contrast, the (3)MC state of [Ru(DPAbpy)MeCN](2+) that releases acetonitrile has an energy higher than that of the (3)MLCT state, indicating dissociation is unfavorable. These results are consistent with the experimental observations that efficient photodissociation of acetonitrile occurs for [Ru(TQA)(MeCN)2](2+) but not for [Ru(DPAbpy)MeCN](2+). For the release of the MeCN ligand in [Ru(TQA)(MeCN)2](2+) that is perpendicular to the axial quinoline rings, the (3)MLCT state has an occupied quinoline π* orbital that can interact with a dσ* Ru-NCCH3 antibonding orbital as the Ru-NCCH3 bond is stretched and the quinolines bend toward the departing acetonitrile. This reduces the barrier for the formation of the dissociative (3)MC state, leading to the selective photodissociation of this acetonitrile. By contrast, when the acetonitrile is in the plane of the quinolines or bpy, no interaction occurs between the ligand

  7. Thermal and photochemical reduction of aqueous chlorine by ruthenium(II) polypyridyl complexes.

    PubMed

    Saha, B; Stanbury, D M

    2000-03-20

    Studies are reported on the reactions of aqueous chlorine with a series of substitution-inert, one-electron metal-complex reductants, which includes [Ru(bpy)3]2+, [Ru(4,4'-Me2bpy)3]2+, [Ru(4,7-Me2phen)3]2+, [Ru(terpy)2]2+, and [Fe(3,4,7,8-Me4phen)3]2+. The reactions were studied by spectrophotometry at 25 degrees C in acidic chloride media at mu = 0.3 M. In general the reactions have the stoichiometry 2[ML3]2+ + Cl2-->2[ML3]3+ + 2Cl-. In the case of [Ru(bpy)3]2+, the reaction is quite photosensitive; the thermal reaction is so slow as to be practically immeasurable. The reactions of [Ru(4,4'-Me2bpy)3]2+ and [Ru(4,7-Me2phen)3]2+ are also highly photosensitive, giving pseudo-first-order rate constants that depend on the monochromator slit width in a stopped-flow instrument; however, the thermal rates are fast enough that they can be obtained by extrapolation of kobs to zero slit width. The reactions of [Ru(terpy)2]2+ and [Fe(3,4,7,8-Me4phen)3]2+ show no appreciable photosensitivity, allowing direct determination of their thermal rate laws. From the kinetic effects of pH, [Cl2]tot, and [Cl-] it is evident that all of the thermal rate laws have a first-order dependence on [ML3]2+ and on [Cl2]. The second-order rate constants decrease as Eo for the complex increases, consistent with the predictions of Marcus theory for an outer-sphere electron-transfer mechanism. Quantum yields at 460 nm for the reactions of [Ru(4,4'-Me2bpy)3]2+ and [Ru(4,7-Me2phen)3]2+ exceed 0.1 and show a dependence on [Cl2] indicative of competition among spontaneous decay of *Ru, nonreactive quenching by Cl2, and reactive quenching by Cl2.

  8. Rapid and highly sensitive dual-channel detection of cyanide by bis-heteroleptic ruthenium(II) complexes.

    PubMed

    Khatua, Snehadrinarayan; Samanta, Debabrata; Bats, Jan W; Schmittel, Michael

    2012-07-02

    Two new ruthenium complexes [Ru(bipy)(2)(PDA)](2+) (1) and [Ru(phen)(2)(PDA)](2+) (2) (PDA = 1,10-phenanthroline-4,7-dicarboxaldehyde) have been synthesized to detect cyanide based on the well-known formation of cyanohydrins. Both 1[PF(6)](2) and 2[PF(6)](2) were fully characterized by various spectroscopic techniques and their solid state structures determined by single-crystal X-ray diffraction. Their anion binding properties in pure and aqueous acetonitrile were thoroughly examined using two different channels, i.e., UV-vis absorption and photoluminescence (PL). After addition of only 2 equiv of CN(-), the PL intensity of 1[PF(6)](2) and 2[PF(6)](2) was enhanced ∼55-fold within 15 s along with a diagnostic blue shift of the emission by more than 100 nm. PL titrations of 1[PF(6)](2) and 2[PF(6)](2) with CN(-) in CH(3)CN furnished the very high overall cyanohydrin formation constants log β([CN(-)]) = 15.36 ± 0.44 (β([CN(-)]) = 2.3 × 10(15) M(-2)) and log β([CN(-)]) = 16.37 ± 0.53 (β([CN(-)]) = 2.3 × 10(16) M(-2)), respectively. For both probes, the second constant, K(2), is about 57-84 times less than K(1), suggesting that the cyanohydrin reaction is stepwise. The stepwise mechanism is further supported by results of a (1)H NMR titration of 2[PF(6)](2) with CN(-). The high selectivity of 2[PF(6)](2) for CN(-) was established by PL in the presence of other competing anions. Furthermore, the color change from orange-red to yellow and the appearance of a orange luminescence, which can be observed by the naked eye, provides a simple real-time method for cyanide detection. Finally, theoretical calculations were carried out to elucidate the details of the electronic structure and transitions involved in the ruthenium probes and their cyanide adducts.

  9. Effects of tethering alkyl chains for amphiphilic ruthenium complex dyes on their adsorption to titanium oxide and photovoltaic properties.

    PubMed

    Ni, Jen-Shyang; Hung, Chun-Yi; Liu, Ken-Yen; Chang, Yu-Hsun; Ho, Kuo-Chuan; Lin, King-Fu

    2012-11-15

    Ruthenium (II) complex dye, Ru(4,4'-dicarboxyl-2,2'-bipyridine)(4-nonyl-2,2'-bipyridine) (NCS)(2), (denoted as RuC9) tethering single alkyl chain was synthesized and well characterized. Its adsorption behavior onto the mesoporous TiO(2) and photovoltaic properties were compared with Z907 which has similar chemical structure but tethers two alkyl chains. RuC9 dyes tend to aggregate into vesicles in the acetonitrile/t-butanol co-solvent as a result of the amphiphilic structure, whereas Z907 dyes aggregate into lamellae. The dye-sensitized solar cell (DSSC) with RuC9 dye showed higher short-circuit photocurrent than that with Z907, attributing to its higher molar optical extinction coefficient and more adsorption amount onto the mesoporous TiO(2). However, the DSSC with Z907 dye has higher open-circuit photovoltage and power conversion efficiency, presumably due to the fact that Z907 with more alkyl chains formed a molecular layer with higher hydrophobicity. It reduced the charge recombination in the interface between the dye-sensitized mesoporous TiO(2) and electrolyte as verified by the electrochemical impedance spectroscopy and intensity modulated photocurrent and photovoltage spectroscopies.

  10. Design, synthesis and characterisation of new chimeric ruthenium(II)-gold(I) complexes as improved cytotoxic agents.

    PubMed

    Massai, Lara; Fernández-Gallardo, Jacob; Guerri, Annalisa; Arcangeli, Annarosa; Pillozzi, Serena; Contel, María; Messori, Luigi

    2015-06-28

    Two heterobimetallic complexes, i.e. [RuCl2(p-cymene)(μ-dppm)AuC] (1) and [RuCl2(p-cymene)(μ-dppm)Au(S-thiazoline)] (3), based on known cytotoxic [Ru(p-cymene)Cl2(PR3)] and [AuX(PR3)] (X = Cl, SR) molecular scaffolds, with the diphosphane linker 1,1-bis(diphenylphosphino)methane, dppm, were conveniently prepared and characterised. Remarkably, the new compounds manifested a more favourable in vitro pharmacological profile toward cancer cells than individual ruthenium and gold species being either more cytotoxic or more selective. The interactions of the studied compounds with (pBR322) DNA and their inhibitory effects on cathepsin B were also assessed. In addition, their reactivity toward suitable models of protein targets was explored and clear evidence gained for disruption of the bimetallic motif and for protein binding of monometallic fragments. Overall, the data reported here strongly support the concept of multifunctional heterometallic compounds as "improved" candidate agents for cancer treatment. The mechanistic and pharmacological implications of the present findings are discussed.

  11. Resonance Raman and time-resolved resonance Raman evidence for enhanced localization in the [sup 3]MLCT states of ruthenium(II) complexes with the inherently asymmetric ligand 2-(2-pyridyl)pyrazine

    SciTech Connect

    Danzer, G.D.; Golus, J.A.; Kincaid, J.R. )

    1993-09-22

    The resonance Raman (RR) and time-resolved resonance Raman (TR[sup 3]) spectra of ruthenium(II) complexes containing the inherently asymmetric 2-(2-pyridyl)pyrazine (pypz) and its selectively deuteriated analogue are reported. The spectrum of the ground-state species is interpretable in terms of vibrationally isolated fragments with the exception of several modes which involve the interring and adjacent bonds. More importantly, the TR[sup 3] spectra of the (triplet) metal-to-ligand-charge-transfer state are shown to be consistent with the presence of a coordinated pypz in which the electronic charge is polarized toward the pyrazine fragment. A detailed discussion of the spectral analysis which leads to this conclusion is provided, and the potential implication of the effect for the design of practical devices is discussed. 19 refs., 4 figs., 1 tab.

  12. Substituents Dependent Capability of bis(ruthenium-dioxolene-terpyridine)Complexes Toward Water Oxidation

    SciTech Connect

    Wada, T.; Muckerman, J.; Fujita, E.; Tanaka, K.

    2010-12-23

    The bridging ligand, 1,8-bis(2,2':6',2{double_prime}-terpyrid-4'-yl)anthracene (btpyan) was synthesized by the Miyaura-Suzuki cross coupling reaction of anthracenyl-1,8-diboronic acid and 4'-triflyl-2,2':6'-2{double_prime}-terpyridine in the presence of Pd(PPh{sub 3}){sub 4} (5 mol%) with 68% in yield. Three ruthenium-dioxolene dimers, [Ru{sub 2}(OH){sub 2}(dioxolene){sub 2}(btpyan)]{sup 0} (dioxolene = 3,6-di-tert-butyl-1,2-benzosemiquinone ([1]{sup 0}), 3,5-dichloro-1,2-benzosemiquinone ([2]{sup 0}) and 4-nitro-1,2-benzosemiquinone ([3]{sup 0})) were prepared by the reaction of [Ru{sub 2}Cl{sub 6}(btpyan)]{sup 0} with the corresponding catechol. The electronic structure of [1]{sup 0} is approximated by [Ru{sub 2}{sup II}(OH){sub 2}(sq){sub 2}(btpyan)]{sup 0} (sq = semiquinonato). On the other hand, the electronic states of [2]{sup 0} and [3]{sup 0} are close to [Ru{sub 2}{sup III}(OH){sub 2} (cat){sub 2}(btpyan)]{sup 0} (cat = catecholato), indicating that a dioxolene having electron-withdrawing groups stabilizes [Ru{sub 2}{sup III}(OH){sub 2}(cat){sub 2}(btpyan)]{sup 0} rather than [Ru{sub 2}{sup II}(OH){sub 2}(sq){sub 2}(btpyan)]{sup 0} as resonance isomers. No sign was found of deprotonation of the hydroxo groups of [1]{sup 0}, whereas [2]{sup 0} and [3]{sup 0} showed an acid-base equilibrium in treatments with t-BuOLi followed by HClO{sub 4}. Furthermore, controlled potential electrolysis of [1]{sup 0} deposited on an ITO (indium-tin oxide) electrode catalyzed the four-electron oxidation of H{sub 2}O to evolve O{sub 2} at potentials more positive than +1.6 V (vs. SCE) at pH 4.0. On the other hand, the electrolysis of [2]{sup 0} and [3]{sup 0} deposited on ITO electrodes did not show catalytic activity for water oxidation under similar conditions. Such a difference in the reactivity among [1]{sup 0}, [2]{sup 0} and [3]{sup 0} is ascribed to the shift of the resonance equilibrium between [Ru{sub 2}{sup II}(OH){sub 2}(sq){sub 2}(btpyan)]{sup 0} and [Ru{sub 2

  13. Hydrogen elimination from a hydroxycyclopentadienyl ruthenium(II) hydride: study of hydrogen activation in a ligand-metal bifunctional hydrogenation catalyst.

    PubMed

    Casey, Charles P; Johnson, Jeffrey B; Singer, Steven W; Cui, Qiang

    2005-03-09

    At high temperatures in toluene, [2,5-Ph(2)-3,4-Tol(2)(eta(5)-C(4)COH)]Ru(CO)(2)H (3) undergoes hydrogen elimination in the presence of PPh(3) to produce the ruthenium phosphine complex [2,5-Ph(2)-3,4-Tol(2)-(eta(4)-C(4)CO)]Ru(PPh(3))(CO)(2) (6). In the absence of alcohols, the lack of RuH/OD exchange, a rate law first order in Ru and zero order in phosphine, and kinetic deuterium isotope effects all point to a mechanism involving irreversible formation of a transient dihydrogen ruthenium complex B, loss of H(2) to give unsaturated ruthenium complex A, and trapping by PPh(3) to give 6. DFT calculations showed that a mechanism involving direct transfer of a hydrogen from the CpOH group to form B had too high a barrier to be considered. DFT calculations also indicated that an alcohol or the CpOH group of 3 could provide a low energy pathway for formation of B. PGSE NMR measurements established that 3 is a hydrogen-bonded dimer in toluene, and the first-order kinetics indicate that two molecules of 3 are also involved in the transition state for hydrogen transfer to form B, which is the rate-limiting step. In the presence of ethanol, hydrogen loss from 3 is accelerated and RuD/OH exchange occurs 250 times faster than in its absence. Calculations indicate that the transition state for dihydrogen complex formation involves an ethanol bridge between the acidic CpOH and hydridic RuH of 3; the alcohol facilitates proton transfer and accelerates the reversible formation of dihydrogen complex B. In the presence of EtOH, the rate-limiting step shifts to the loss of hydrogen from B.

  14. SO2-Binding Properties of Cationic η6,η1-NCN-Pincer Arene Ruthenium Platinum Complexes: Spectroscopic and Theoretical Studies

    SciTech Connect

    Bonnet, Sylvestre A.; Van Lenthe, Joop H.; van Dam, Hubertus JJ; van Koten, Gerard; Klein Gebbink, Robertus J M

    2011-03-01

    The SO2-binding properties of a series of η6,η1-NCN-pincer ruthenium platinum complexes have been studied by both UV-visible spectroscopy, and theoretical calculations. When an electronwithdrawing [Ru(C5R5)]+ fragment (R = H or Me) is η6-coordinated to the phenyl ring of the NCNpincer platinum fragment (cf. [2]+ and [3]+, see scheme 1), the characteristic orange coloration (pointing to η1- SO2 binding to Pt) of a solution of the parent NCN-pincer platinum complex 1 in dichloromethane upon SO2-bubbling is not observed. However, when the ruthenium center is η6- coordinated to a phenyl substituent linked in para-position to the carbon-to-platinum bond, i.e. complex [4]+, the SO2-binding property of the NCN-platinum center seems to be retained, as bubbling SO2 into a solution of the latter complex produces the characteristic orange color. We performed theoretical calculations at the MP2 level of approximation and TD-DFT studies, which enabled us to interpret the absence of color change in the case of [2]+ as an absence of coordination of SO2 to platinum. We analyze this absence or weaker SO2-coordination in dichloromethane to be a consequence of the relative electron-poorness of the platinum center in the respective η6- ruthenium coordinated NCN-pincer platinum complexes, that leads to a lower binding energy and an elongated calculated Pt-S bond distance. We also discuss the effects of electrostatic interactions in these cationic systems, which also seems to play a destabilizing role for complex [2(SO2)]+.

  15. Troponate/Aminotroponate Ruthenium-Arene Complexes: Synthesis, Structure, and Ligand-Tuned Mechanistic Pathway for Direct C-H Bond Arylation with Aryl Chlorides in Water.

    PubMed

    Dwivedi, Ambikesh D; Binnani, Chinky; Tyagi, Deepika; Rawat, Kuber S; Li, Pei-Zhou; Zhao, Yanli; Mobin, Shaikh M; Pathak, Biswarup; Singh, Sanjay K

    2016-07-05

    A series of water-soluble troponate/aminotroponate ruthenium(II)-arene complexes were synthesized, where O,O and N,O chelating troponate/aminotroponate ligands stabilized the piano-stool mononuclear ruthenium-arene complexes. Structural identities for two of the representating complexes were also established by single-crystal X-ray diffraction studies. These newly synthesized troponate/aminotroponate ruthenium-arene complexes enable efficient C-H bond arylation of arylpyridine in water. The unique structure-activity relationship in these complexes is the key to achieve efficient direct C-H bond arylation of arylpyridine. Moreover, the steric bulkiness of the carboxylate additives systematically directs the selectivity toward mono- versus diarylation of arylpyridines. Detailed mechanistic studies were performed using mass-spectral studies including identification of several key cyclometalated intermediates. These studies provided strong support for an initial cycloruthenation driven by carbonate-assisted deprotonation of 2-phenylpyridine, where the relative strength of η(6)-arene and the troponate/aminotroponate ligand drives the formation of cyclometalated 2-phenylpyridine Ru-arene species, [(η(6)-arene)Ru(κ(2)-C,N-phenylpyridine) (OH2)](+) by elimination of troponate/aminotroponate ligands and retaining η(6)-arene, while cyclometalated 2-phenylpyridine Ru-troponate/aminotroponate species [(κ (2)-troponate/aminotroponate)Ru(κ(2)-C,N-phenylpyridine)(OH2)2] was generated by decoordination of η(6)-arene ring during initial C-H bond activation of 2-phenylpyridine. Along with the experimental mass-spectral evidence, density functional theory calculation also supports the formation of such species for these complexes. Subsequently, these cycloruthenated products activate aryl chloride by facile oxidative addition to generate C-H arylated products.

  16. Synthesis, Electrochemistry, and Photophysical Studies of Ruthenium(II) Polypyridine Complexes with D-π-A-π-D Type Ligands and Their Application Studies as Organic Memories.

    PubMed

    Leung, Ming-Yi; Leung, Sammual Yu-Lut; Wu, Di; Yu, Tao; Yam, Vivian Wing-Wah

    2016-09-19

    A new class of ruthenium(II) polypyridine complexes with a series of D-π-A-π-D type (D=donor, A=acceptor) ligands was synthesized and characterized by (1) H NMR spectroscopy, mass spectrometry, and elemental analysis. The photophysical and electrochemical properties of the complexes were also investigated. The newly synthesized ruthenium(II) polypyridine complexes were found to exhibit two intense absorption bands at both high-energy (λ=333-369 nm) and low-energy (λ=520-535 nm) regions. They are assigned as intraligand (IL) π→π* transitions of the bipyridine (bpy) and π-conjugated bpy ligands, and IL charge-transfer (CT) transitions from the donor to the acceptor moiety with mixing of dπ(Ru(II) )→π*(bpy) and dπ(Ru(II) )→π*(L) MLCT characters, respectively. In addition, all complexes were demonstrated to exhibit intense red emissions at approximately λ=727-744 nm in degassed dichloromethane at 298 K or in n-butyronitrile glass at 77 K. Nanosecond transient absorption (TA) spectroscopy has also been carried out, establishing the presence of the charge-separated state. In order to understand the electrochemical properties of the complexes, cyclic voltammetry has also been performed. Two quasi-reversible oxidation couples and three quasi-reversible reduction couples were observed. One of the ruthenium(II) complexes has been utilized in the fabrication of memory devices, in which an ON/OFF current ratio of over 10(4) was obtained.

  17. Tris-bipyridine based dinuclear ruthenium(ii)-osmium(iii) complex dyads grafted onto TiO2 nanoparticles for mimicking the artificial photosynthetic Z-scheme.

    PubMed

    Favereau, Ludovic; Makhal, Abhinandan; Provost, David; Pellegrin, Yann; Blart, Errol; Göransson, Erik; Hammarström, Leif; Odobel, Fabrice

    2017-02-08

    The Z-Scheme function within molecular systems has been rarely reported for solar energy conversion although it offers the possibility to achieve higher efficiency than single photon absorber photosystems due to the use of a wider range of visible light. In this study, we synthesized and investigated the electrochemical and spectroscopic properties of two new dyads based on ruthenium and osmium tris-bipyridine complexes covalently linked via a butane bridge to explore their ability to realize the Z-scheme function once immobilized on TiO2. These dyads can be grafted onto a nanocrystalline TiO2 film via the osmium complex bearing two dicarboxylic acid bipyridine ligands, while the ruthenium complex contains either two unsubstituted bipyridine ancillary ligands (RuH-Os) or two (4,4'-bis-trifluoromethyl-bipyridine) ancillary ligands (RuCF3-Os). Transient absorption spectroscopy studies of the Ru(ii)-Os(iii) dyads with femtosecond and nanosecond lasers were conducted both in solution and on TiO2. For both conditions, the photophysical studies revealed that the MLCT excited state of the ruthenium complex is strongly quenched and predominantly decays by energy transfer to the LMCT of the adjacent Os(iii) complex, in spite of the high driving force for electron transfer. This unexpected result, which is in sharp contrast to previously reported Ru(ii)-Os(iii) dyads, precluded us to achieve the expected Z-scheme function. However, the above results may be a guide for designing new artificial molecular systems reproducing the complex function of a Z-scheme with molecular systems grafted onto a TiO2 mesoporous film.

  18. Synthesis, characterization and anticancer effect of the ruthenium (II) polypyridyl complexes on HepG2 cells.

    PubMed

    Wan, Dan; Lai, Shang-Hai; Yang, Hui-Hui; Tang, Bing; Zhang, Cheng; Yin, Hui; Zeng, Chuan-Chuan; Liu, Yun-Jun

    2016-12-01

    As one of the major cell regulated center, mitochondria are closely associated with cell proliferation, apoptosis of tumor cell. In this work, four new ruthenium (II) polypyridyl complexes [Ru(bpy)2(FTTP)](ClO4)2 (1) (FTTP=11-(3-fluoro-naphthalen-2-yloxy)-4,5,9,14-tetraaza-benzo[b]triphenylene, bpy=2,2'-bipyridine), [Ru(phen)2(FTTP)](ClO4)2 (2) (phen=1,10-phenanthroline), [Ru(bpy)2(PTTP)](ClO4)2 (3) (PTTP=2-phenoxy-1,4,8,9-tetraazatriphenylene) and [Ru(phen)2(PTTP)](ClO4)2 (4) were synthesized and characterized by elemental analysis, ESI-MS, (1)H NMR and (13)C NMR. The cytotoxic activity, ability of inhibiting cell invasion, cell cycle arrest and apoptosis-inducing mechanism of these Ru(II) complexes have been investigated in detail by MTT (3-(4,5-dimethylthiazole)-2,5-diphenyltetrazolium bromide) method, invasion assay, comet assay as well as western blotting techniques. Notably, complexes 1-4 displayed high cytotoxic activity against liver carcinoma HepG2 cells and the IC50 values of complexes 1-4 against HepG2 cells are 10.4±1.2, 9.3±0.6, 29.1±1.5 and 5.6±1.2μM, respectively. The comet assay showed that the complexes can induce DNA damage. The acridine orange (AO) and ethidium bromide (EB) staining method indicated that the complexes can cause apoptosis in HepG2 cells. Further studies showed that complexes 1-4 caused cell cycle arrest at G0/G1 phase and induced HepG2 cells apoptosis through a ROS-mediated mitochondrial dysfunction pathway, which involved an increase in the levels of reactive oxygen species (ROS), a decrease in the mitochondrial membrane potential, activation of caspases and Bcl-2 family proteins.

  19. Photochemistry of Metal-Metal Bonded Transition Element Complexes

    DTIC Science & Technology

    1980-12-12

    CONTRACT NO0014-75-C-0880 Task No. NR 051-579 TECHNICAL REPORT NO. 25 PHOTOCHEMISTRY OF METAL-METAL BONDED TRANSITION ELEMENT COMPLEXES by Mark S . Wrighton...unlimited. 17, Di:- t. Ii t I / Avolil:J, ; Codc’s ! Photochemistry of Metal-Metal Bonded Transition Element Complexes Mark S . Wrighton, James L. Graff...publication in the ACS Symposium Series, "Reactivity of MetalrMetal Bonds", M. H. Chisholm, ed.) IA c*Addre~ s orrespondence to this author, ; r[ I . - - 1

  20. Synthesis of three series of ruthenium tris-diimine complexes containing acridine-based π-extended ligands using an efficient "chemistry on the complex" approach.

    PubMed

    Lefebvre, Jean-François; Saadallah, Dounia; Traber, Philipp; Kupfer, Stephan; Gräfe, Stefanie; Dietzek, Benjamin; Baussanne, Isabelle; De Winter, Julien; Gerbaux, Pascal; Moucheron, Cécile; Chavarot-Kerlidou, Murielle; Demeunynck, Martine

    2016-10-18

    The preparation and characterization of three series of novel ruthenium(ii) complexes are reported, each series differing by the nature of the ancillary ligands (2,2'-bipyridine - bpy, 1,10-phenanthroline - phen or 1,4,5,8-tetraazaphenanthrene - TAP). The third ligand was either the heptacyclic heterocycle dipyrido[3,2-a:2',3'-c]quinolino[3,2-h]phenazine (dpqp) substituted at position 12 by an hydroxyl (oxo), 2,2-dimethoxyethylamine (DMEA) or halogeno (Cl or Br) substituent, or the octacyclic dipyrido[3,2-a:2',3'-c]pyrido[2,3,4-de]quinolino[3,2-h]phenazine (dppqp), prepared by a multi-step "chemistry on the complex" strategy from [RuL2(oxo-dpqp)](PF6)2. The three steps, halogenation, substitution by a dimethoxyethylamino group and cyclization in trifluoroacetic acid, were performed in reasonable to high yields depending on the nature of the ancillary ligands. Isolation and purification processes were facilitated by the ability to switch the solubility of the complex from aqueous to organic solvents, depending on the counter-ion. All new complexes were fully characterized; in particular their absorption properties were compared by UV-vis spectroscopy. Finally, π-stacking properties induced by these extended ligands were studied by (1)H NMR studies and quantum chemical calculations.

  1. Hydrogen chemistry of ruthenium complexes containing one chelating (P-P) or (P-N) ligand per Ru atom

    SciTech Connect

    James, B.

    1995-12-01

    Hydrogenation catalysts are of interest to a variety of fields such as fuels preparation. This report describes a hydrogenation catalysts concerning ruthenium. The most versatile hydrogenation catalysts appear to be based on Ru(P-P) species containing one chelating ditertiaryphosphine(P-P) ligand per metal, particularly for asymmetric hydrogenation when (P-P) is chiral. We have studied the interaction of H{sub 2} with, and catalytic hydrogenation activity (toward olefins ketones, nitrites and imines) of, systems containing the {open_quote}RuCl{sub 2}(P-P){close_quote} moiety or corresponding chelating (P-N) ligands where N is a tertiary amine. Variation in conditions leads to detection or isolation of, for example, ({eta}{sup 2}-H{sub 2})(P-P)Ru({mu}-Cl){sub 3}RuCl(P-P) (1), ({eta}{sup 2}-H{sub 2})(P-P)Ru({mu}-Cl){sub 2}({mu}-H)Ru(H)(P-P) (2), and [Ru(H)Cl(P-P)]{sub 3} (3), as well as analogous species where the {eta}{sup 2}-H{sub 2} of 1 or 2 is replaced by olefin, ketone, nitrile, or imine. The connectivity between 1-3, and kinetic and mechanistic details of selected catalytic hydrogenations will be discussed. Within (P-N) systems, the mononuclear species ({eta}{sup 2}-H{sub 2})RuCl{sub 2}(P-N)(PR{sub 3}) and Ru(H)Cl(P-N)(PR{sub 3}) are formed (R = Ph or p-tolyl), as well as species analogous to 2.

  2. Synthesis of ruthenium metal doped titanium dioxide nanoparticles for CO{sub 2} hydrogenation

    SciTech Connect

    Upadhyay, Praveenkumar; Srivastava, Vivek

    2016-04-13

    Two different types of Ru metal doped TiO{sub 2} nanoparticles were synthesized using a sole gel method with and without ionic liquid. It was clearly observed during characterizing the Ru-TiO{sub 2}-IL catalyst with respect to Ru-TiO{sub 2} catalyst that Ru metal is dispersed while using ionic liquid as reaction medium for catalyst synthesis. TEM image also reveals the presence of agglomeration free, stable and well dispersed Ru metal doped TiO{sub 2} nanoparticles in Ru-TiO{sub 2}-IL over a Ru-TiO{sub 2} catalyst. Such unique feature of the Ru-TiO{sub 2}-IL catalyst reflected in terms of high TON /TOF value of formic acid during the hydrogenation reaction of CO{sub 2} in task specific ionic liquid medium. Low catalysts loading, moisture/air stability, high selectivity, an easy reaction protocol for catalyst synthesis as well as stress-free reaction condition along with 6 times catalysts recycling is the major outcomes of the proposed protocol.

  3. Synthesis of ruthenium metal doped titanium dioxide nanoparticles for CO2 hydrogenation

    NASA Astrophysics Data System (ADS)

    Upadhyay, Praveenkumar; Srivastava, Vivek

    2016-04-01

    Two different types of Ru metal doped TiO2 nanoparticles were synthesized using a sole gel method with and without ionic liquid. It was clearly observed during characterizing the Ru-TiO2-IL catalyst with respect to Ru-TiO2 catalyst that Ru metal is dispersed while using ionic liquid as reaction medium for catalyst synthesis. TEM image also reveals the presence of agglomeration free, stable and well dispersed Ru metal doped TiO2 nanoparticles in Ru-TiO2-IL over a Ru-TiO2 catalyst. Such unique feature of the Ru-TiO2-IL catalyst reflected in terms of high TON /TOF value of formic acid during the hydrogenation reaction of CO2 in task specific ionic liquid medium. Low catalysts loading, moisture/air stability, high selectivity, an easy reaction protocol for catalyst synthesis as well as stress-free reaction condition along with 6 times catalysts recycling is the major outcomes of the proposed protocol.

  4. Synthesis, DNA Cleavage Activity, Cytotoxicity, Acetylcholinesterase Inhibition, and Acute Murine Toxicity of Redox-Active Ruthenium(II) Polypyridyl Complexes.

    PubMed

    Alatrash, Nagham; Narh, Eugenia S; Yadav, Abhishek; Kim, Mahn-Jong; Janaratne, Thamara; Gabriel, James; MacDonnell, Frederick M

    2017-07-06

    Four mononuclear [(L-L)2 Ru(tatpp)](2+) and two dinuclear [(L-L)2 Ru(tatpp)Ru(L-L)2 ](4+) ruthenium(II) polypyridyl complexes (RPCs) containing the 9,11,20,22-tetraazatetrapyrido[3,2-a:2',3'-c:3'',2''-l:2''',3'''-n]pentacene (tatpp) ligand were synthesized, in which L-L is a chelating diamine ligand such as 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), 3,4,7,8-tetramethyl-1,10-phenanthroline (Me4 phen) or 4,7-diphenyl-1,10-phenanthroline (Ph2 phen). These Ru-tatpp analogues all undergo reduction reactions with modest reducing agents, such as glutathione (GSH), at pH 7. These, plus several structurally related but non-redox-active RPCs, were screened for DNA cleavage activity, cytotoxicity, acetylcholinesterase (AChE) inhibition, and acute mouse toxicity, and their activities were examined with respect to redox activity and lipophilicity. All of the redox-active RPCs show single-strand DNA cleavage in the presence of GSH, whereas none of the non-redox-active RPCs do. Low-micromolar cytotoxicity (IC50 ) against malignant H358, CCL228, and MCF7 cultured cell lines was mainly restricted to the redox-active RPCs; however, they were substantially less toxic toward nonmalignant MCF10 cells. The IC50 values for AChE inhibition in cell-free assays and the acute toxicity of RPCs in mice revealed that whereas most RPCs show potent inhibitory action against AChE (IC50 values <15 μm), Ru-tatpp complexes as a class are surprisingly well tolerated in animals relative to other RPCs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Electron transfer across multiple hydrogen bonds: the case of ureapyrimidinedione-substituted vinyl ruthenium and osmium complexes.

    PubMed

    Pichlmaier, Markus; Winter, Rainer F; Zabel, Manfred; Zális, Stanislav

    2009-04-08

    Ruthenium and osmium complexes 2a,b and 3a,b featuring the N-4,6-dioxo-5,5-dibutyl- or the N-4,6-dioxo-5,5-di-(2-propenyl)-1,4,5,6-tetrahydropyrimidin-2-yl-N'(4-ethenylphenyl)-urea ligand dimerize by a self-complementary quadruply hydrogen-bonding donor/donor/acceptor/acceptor (DDAA) motif. We provide evidence that the dimeric structures are maintained in nonpolar solvents and in 0.1 M NBu(4)PF(6)/CH(2)Cl(2) supporting electrolyte solution. All complexes are reversibly oxidized in two consecutive two-electron oxidations (DeltaE(1/2) approximately = 500 mV) without any discernible potential splitting for the oxidation of the individual hydrogen-bridged redox active moieties. IR and UV/vis/NIR spectroelectrochemistry show a one-step conversion of the neutral to the dication without any discernible features of an intermediate monooxidized radical cation. Oxidation-induced IR changes of the NH and CO groups that are involved in hydrogen bonding are restricted to the styryl-bonded urea NH function. IR band assignments are aided by quantum chemical calculations. Our experimental findings clearly show that, at least in the present systems, the ureapyrimidinedione (Upy) DDAA hydrogen-bonding motif does not support electron transfer. The apparent reason is that neither of the hydrogen-bonding functionalities contributes to the occupied frontier levels. This results in nearly degenerate pairs of MOs representing the in-phase and out-of-phase combinations of the individual monomeric building blocks.

  6. Luminescent Ruthenium(II) Complex Bearing Bipyridine and N-Heterocyclic Carbene-based C∧N∧C Pincer Ligand for Live-Cell Imaging of Endocytosis

    PubMed Central

    Tsui, Wai-Kuen; Chung, Lai-Hon; Wong, Matthew Man-Kin; Tsang, Wai-Him; Lo, Hoi-Shing; Liu, Yaxiang; Leung, Chung-Hang; Ma, Dik-Lung; Chiu, Sung-Kay; Wong, Chun-Yuen

    2015-01-01

    Luminescent ruthenium(II)-cyanide complex with N-heterocyclic carbene pincer ligand C∧N∧C = 2,6-bis(1-butylimidazol-2-ylidene)pyridine and 2,2′-bipyridine (bpy) shows minimal cytotoxicity to both human breast carcinoma cell (MCF-7) and human retinal pigmented epithelium cell (RPE) in a wide range of concentration (0.1–500 μM), and can be used for the luminescent imaging of endocytosis of the complex in these cells. PMID:25765974

  7. The influence of ruthenium on vascular tone.

    PubMed

    Pauwels, Bart; Boydens, Charlotte; Van de Voorde, Johan

    2015-09-01

    Over the past few years, ruthenium has been under attention for development of organometallic drugs with various therapeutic applications. Because of its favourable characteristics, ruthenium is perfectly suitable for drug design. Ruthenium-containing complexes exert a wide range of biological effects. However, so far, the influence of ruthenium itself on vascular tone has never been studied. The effect of ruthenium was analysed through organ bath studies measuring isometric tension on mice thoracic aorta. After obtaining a stable contraction plateau, cumulative concentration-response curves of the ruthenium-compounds (RuCl3 , Ruthenium Red, [RuCl2 (CO)3 ]2 and RuCl2 (DMSO)4 ) (30-600 μmol/l) were performed. The effect of RuCl3 after contraction with different contractile agents was evaluated. Furthermore, the influence of ruthenium-containing molecules on endogenous (acetylcholine) and exogenous (sodium nitroprusside) NO-mediated relaxations was determined. All studied ruthenium compounds elicit, to some extent, a decrease of the contraction level. Looking further into the underlying mechanism, we found that RuCl3 relaxes aortic rings only when contracted with norepinephrine. This RuCl3 -induced relaxation can be prevented by the antioxidants ascorbic acid and N-acetyl L-cysteine. In addition, ruthenium compounds may diminish acetylcholine- or sodium nitroprusside-induced relaxations. Ruthenium-containing molecules can influence vascular tone induced by norepinephrine due to oxidative inactivation. Moreover, they can undermine NO-mediated responses. This should be considered when developing ruthenium-containing drugs. © 2015 Royal Pharmaceutical Society.

  8. Ruthenium(II) complexes of saccharin with dipyridoquinoxaline and dipyridophenazine: Structures, biological interactions and photoinduced DNA damage activity.

    PubMed

    Kumar, Priyaranjan; Dasari, Srikanth; Patra, Ashis K

    2017-08-18

    Ruthenium complexes trans-[Ru(sac)2(dpq)2] (1) and trans-[Ru(sac)2(dppz)2] (2) where sac is artificial sweetener saccharin (o-sulfobenzimide; 1,2-benzothiazole-3(2H)-one1,1-dioxide (Hsac)), dpq = dipyrido[3,2-d:2',3'-f]quinoxaline and dppz = dipyrido[3,2-a:2',3'-c]phenazine have been synthesized and thoroughly characterized using various analytical and spectral techniques. Saccharin known to act as carbonic anhydrase IX (CA IX) inhibitor which is a biomarker for highly aggressive and proliferative tumor in hypoxic stress, so inhibition of CA IX is a potential strategy for anticancer chemotherapy. The solid state structures, photophysical properties, photostability, DNA and protein binding affinity, and DNA photocleavage activity were explored. The structural analysis revealed Ru(II) centre is in discrete mononuclear, distorted octahedral {RuN6} coordination geometry with two monoanionic nitrogen donor saccharinate ligands and two neutral bidentate nitrogen donors ligands dpq and dppz. cis-[Ru(sac)2(dppz)2] (cis-2) geometrical isomer was also isolated and structurally characterized by X-ray crystallography. The photo-induced dissociation of monodentate saccharin ligand is observed when irradiated at UV-A light of 365 nm. The complexes show significant binding affinity to the calf thymus DNA (Kb ∼ 10(5) M(-1)) through significant intercalation through planar dpq and dppz ligands. Interaction of complexes 1 and 2 with bovine serum albumin (BSA) showed remarkable tryptophan emission quenching (KBSA ∼10(5) M(-1)). The complexes showed appreciable photoinduced DNA cleavage activity upon irradiation of low power UV-A light of 365 nm from supercoiled (SC) to its nicked circular (NC) form at micromolar complex concentrations. Photocleavage mechanistic studies in presence of O2 reveals involvement of reactive oxygen species (ROS) mediated through ligand-centered (3)ππ* and/or (3)MLCT excited states generated upon photoactivation leads to nicking of

  9. Cellular responses of BRCA1-defective and triple-negative breast cancer cells and in vitro BRCA1 interactions induced by metallo-intercalator ruthenium(II) complexes containing chloro-substituted phenylazopyridine

    PubMed Central

    2014-01-01

    Background Triple-negative breast cancer (TNBC) is defined by the absence of expression of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2. Breast cancers with a BRCA1 mutation are also frequently triple-negative. Currently, there is a lack of effective therapies and known specific molecular targets for this aggressive breast cancer subtype. To address this concern, we have explored the cellular responses of BRCA1-defective and triple-negative breast cancer cells, and in vitro BRCA1 interactions induced by the ruthenium(II) complexes containing the bidentate ligand, 5-chloro-2-(phenylazo)pyridine. Methods Triple-negative MDA-MB-231, BRCA1-defective HCC1937 and BRCA1-competent MCF-7 breast cancer cell lines were treated with ruthenium(II) complexes. The cytoxoxicity of ruthenium-induced breast cancer cells was evaluated by a real time cellular analyzer (RTCA). Cellular uptake of ruthenium complexes was determined by ICP-MS. Cell cycle progression and apoptosis were assessed using propidium iodide and Annexin V flow cytometry. The N-terminal BRCA1 RING protein was used for conformational and functional studies using circular dichroism and in vitro ubiquitination. Results HCC1937 cells were significantly more sensitive to the ruthenium complexes than the MDA-MB-231 and MCF-7 cells. Treatment demonstrated a higher degree of cytotoxicity than cisplatin against all three cell lines. Most ruthenium atoms were retained in the nuclear compartment, particularly in HCC1937 cells, after 24 h of incubation, and produced a significant block at the G2/M phase. An increased induction of apoptotic cells as well as an upregulation of p53 mRNA was observed in all tested breast cancer cells. It was of interest that BRCA1 mRNA and replication of BRCA1-defective cells were downregulated. Changes in the conformation and binding constants of ruthenium-BRCA1 adducts were observed, causing inactivation of the RING heterodimer BRCA1/BARD1-mediated E3

  10. Cellular responses of BRCA1-defective and triple-negative breast cancer cells and in vitro BRCA1 interactions induced by metallo-intercalator ruthenium(II) complexes containing chloro-substituted phenylazopyridine.

    PubMed

    Nhukeaw, Tidarat; Temboot, Pornvichai; Hansongnern, Kanidtha; Ratanaphan, Adisorn

    2014-02-07

    Triple-negative breast cancer (TNBC) is defined by the absence of expression of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2. Breast cancers with a BRCA1 mutation are also frequently triple-negative. Currently, there is a lack of effective therapies and known specific molecular targets for this aggressive breast cancer subtype. To address this concern, we have explored the cellular responses of BRCA1-defective and triple-negative breast cancer cells, and in vitro BRCA1 interactions induced by the ruthenium(II) complexes containing the bidentate ligand, 5-chloro-2-(phenylazo)pyridine. Triple-negative MDA-MB-231, BRCA1-defective HCC1937 and BRCA1-competent MCF-7 breast cancer cell lines were treated with ruthenium(II) complexes. The cytoxoxicity of ruthenium-induced breast cancer cells was evaluated by a real time cellular analyzer (RTCA). Cellular uptake of ruthenium complexes was determined by ICP-MS. Cell cycle progression and apoptosis were assessed using propidium iodide and Annexin V flow cytometry. The N-terminal BRCA1 RING protein was used for conformational and functional studies using circular dichroism and in vitro ubiquitination. HCC1937 cells were significantly more sensitive to the ruthenium complexes than the MDA-MB-231 and MCF-7 cells. Treatment demonstrated a higher degree of cytotoxicity than cisplatin against all three cell lines. Most ruthenium atoms were retained in the nuclear compartment, particularly in HCC1937 cells, after 24 h of incubation, and produced a significant block at the G2/M phase. An increased induction of apoptotic cells as well as an upregulation of p53 mRNA was observed in all tested breast cancer cells. It was of interest that BRCA1 mRNA and replication of BRCA1-defective cells were downregulated. Changes in the conformation and binding constants of ruthenium-BRCA1 adducts were observed, causing inactivation of the RING heterodimer BRCA1/BARD1-mediated E3 ubiquitin ligase activity

  11. Photoisomerisation in Aminoazobenzene-Substituted Ruthenium(II) Tris(bipyridine) Complexes: Influence of the Conjugation Pathway.

    PubMed

    Amar, Anissa; Savel, Paul; Akdas-Kilig, Huriye; Katan, Claudine; Meghezzi, Hacène; Boucekkine, Abdou; Malval, Jean-Pierre; Fillaut, Jean-Luc

    2015-05-26

    Transition-metal complexes containing stimuli-responsive systems are attractive for applications in optical devices, photonic memory, photosensing, as well as luminescence imaging. Amongst them, photochromic metal complexes offer the possibility of combining the specific properties of the metal centre and the optical response of the photochromic group. The synthesis, the electrochemical properties and the photophysical characterisation of a series of donor-acceptor azobenzene derivatives that possess bipyridine groups connected to a 4-dialkylaminoazobenzene moiety through various linkers are presented. DFT and TD-DFT calculations were performed to complement the experimental findings and contribute to their interpretation. The position and nature of the linker (ethynyl, triazolyl, none) were engineered and shown to induce different electronic coupling between donor and acceptor in ligands and complexes. This in turn led to strong modulations in terms of photoisomerisation of the ligands and complexes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ruthenium(II) polypyridyl complexes with hydrophobic ancillary ligand as Aβ aggregation inhibitors.

    PubMed

    Vyas, Nilima A; Ramteke, Shefali N; Kumbhar, Avinash S; Kulkarni, Prasad P; Jani, Vinod; Sonawane, Uddhavesh B; Joshi, Rajendra R; Joshi, Bimba; Erxleben, Andrea

    2016-10-04

    The synthesis, spectral and electrochemical characterization of the complexes of the type [Ru(NN)2(txbg)](2+) where NN is 2,2'-bipyridine (bpy) (1), 1,10-phenanthroline (phen) (2), dipyrido [3,2-d:2',3f] quinoxaline (dpq) (3), and dipyrido[3,2-a:2',3'-c]phenazine (dppz) (4) which incorporate the tetra-xylene bipyridine glycoluril (txbg) as the ancillary ligand are described in detail. Crystal structures of ligand txbg and complex 2 were solved by single crystal X-ray diffraction. Thioflavin T (ThT) fluorescence and Transmission Electron Microscopy (TEM) results indicated that at micromolar concentration all complexes exhibit significant potential of Aβ aggregation inhibition, while the ligand txbg displayed weak activity towards Aβ aggregation. Complex 1 showed relatively low inhibition (70%) while complexes 2-4 inhibited nearly 100% Aβ aggregation after 240 h of incubation. The similar potential of complexes 2-4 and absence of any trend in their activity with the planarity of polypyridyl ligands suggests there is no marked effect of planarity of coligands on their inhibitory potential. Further studies on acetylcholinesterase (AChE) inhibition indicated very weak activity of these complexes against AChE. Detailed interactions of Aβ with both ligand and complex 2 have been studied by molecular modeling. Complex 2 showed interactions involving all three polypyridyl ligands with hydrophobic region of Aβ. Furthermore, the toxicity of these complexes towards human neuroblastoma cells was evaluated by MTT assay and except complex 4, the complexes displayed very low toxicity.

  13. Hydrogen generation from water/methanol under visible light using aerogel prepared strontium titanate (SrTiO3) nanomaterials doped with ruthenium and rhodium metals.

    PubMed

    Kuo, Yenting; Klabunde, Kenneth J

    2012-07-27

    Nanostructured strontium titanate visible-light-driven photocatalysts containing rhodium and ruthenium were synthesized by a modified aerogel synthesis using ruthenium chloride and rhodium nitrate as dopant precursors, and titanium isopropoxide and strontium metal as the metal sources. The well-defined crystalline SrTiO(3) structure was confirmed by means of x-ray diffraction. After calcination at 500 °C, diffuse reflectance spectroscopy shows an increase in light absorption at 370 nm due to the presence of Rh(3 + ); however an increase of the calcination temperature to 600 °C led to a decrease in intensity, probably due to a loss of surface area. An increase in the rhodium doping level also led to an increase in absorption at 370 nm; however, the higher amounts of dopant lowered the photocatalytic activity. The modified aerogel synthesis allows greatly enhanced H(2) production performance from an aqueous methanol solution under visible light irradiation compared with lower surface area conventional materials. We believe that this enhanced activity is due to the higher surface areas while high quality nanocrystalline materials are still obtained. Furthermore, the surface properties of these nanocrystalline aerogel materials are different, as exhibited by the higher activities in alkaline solutions, while conventional materials (obtained via high temperature solid-state synthesis methods) only exhibit reasonable hydrogen production in acidic solutions. Moreover, an aerogel synthesis approach gives the possibility of thin-film formation and ease of incorporation into practical solar devices.

  14. Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity.

    PubMed

    Banerjee, Samya; Chakravarty, Akhil R

    2015-07-21

    Curcumin is a polyphenolic species. As an active ingredient of turmeric, it is well-known for its traditional medicinal properties. The therapeutic values include antioxidant, anti-inflammatory, antiseptic, and anticancer activity with the last being primarily due to inhibition of the transcription factor NF-κB besides affecting several biological pathways to arrest tumor growth and its progression. Curcumin with all these positive qualities has only remained a potential candidate for cancer treatment over the years without seeing any proper usage because of its hydrolytic instability involving the diketo moiety in a cellular medium and its poor bioavailability. The situation has changed considerably in recent years with the observation that curcumin in monoanionic form could be stabilized on binding to a metal ion. The reports from our group and other groups have shown that curcumin in the metal-bound form retains its therapeutic potential. This has opened up new avenues to develop curcumin-based metal complexes as anticancer agents. Zinc(II) complexes of curcumin are shown to be stable in a cellular medium. They display moderate cytotoxicity against prostate cancer and neuroblastoma cell lines. A similar stabilization and cytotoxic effect is reported for (arene)ruthenium(II) complexes of curcumin against a variety of cell lines. The half-sandwich 1,3,5-triaza-7-phosphatricyclo-[3.3.1.1]decane (RAPTA)-type ruthenium(II) complexes of curcumin are shown to be promising cytotoxic agents with low micromolar concentrations for a series of cancer cell lines. In a different approach, cobalt(III) complexes of curcumin are used for its cellular delivery in hypoxic tumor cells using intracellular agents that reduce the metal and release curcumin as a cytotoxin. Utilizing the photophysical and photochemical properties of the curcumin dye, we have designed and synthesized photoactive curcumin metal complexes that are used for cellular imaging by fluorescence microscopy and

  15. Synthesis, Characterization, In Vitro Cytotoxicity, and Apoptosis-Inducing Properties of Ruthenium(II) Complexes

    PubMed Central

    Xu, Li; Zhong, Nan-Jing; Xie, Yang-Yin; Huang, Hong-Liang; Jiang, Guang-Bin; Liu, Yun-Jun

    2014-01-01

    Two new Ru(II) complexes, [Ru(bpy)2(FAMP)](ClO4)2 1 and 2, are synthesized and characterized by elemental analysis, electrospray mass spectrometry, and 1H nuclear magnetic resonance. The in vitro cytotoxicities and apoptosis-inducing properties of these complexes are extensively studied. Complexes 1 and 2 exhibit potent antiproliferative activities against a panel of human cancer cell lines. The cell cycle analysis shows that complexes 1 and 2 exhibit effective cell growth inhibition by triggering G0/G1 phase arrest and inducing apoptosis by mitochondrial dysfunction. The in vitro DNA binding properties of the two complexes are investigated by different spectrophotometric methods and viscosity measurements. PMID:24804832

  16. Comparison of the Antiproliferative Activity of Two Antitumour Ruthenium(III) Complexes With Their Apotransferrin and Transferrin-Bound Forms in a Human Colon Cancer Cell Line

    PubMed