Science.gov

Sample records for metallic kagome layer

  1. A novel two-dimensional MgB6 crystal: metal-layer stabilized boron kagome lattice.

    PubMed

    Xie, Sheng-Yi; Li, Xian-Bin; Tian, Wei Quan; Chen, Nian-Ke; Wang, Yeliang; Zhang, Shengbai; Sun, Hong-Bo

    2015-01-14

    Based on first-principles calculations, we designed for the first time a boron-kagome-based two-dimensional MgB6 crystal, in which two boron kagome layers sandwich a triangular magnesium layer. The two-dimensional lattice is metallic with several bands across the Fermi level, and among them a Dirac point appears at the K point of the first Brillouin zone. This metal-stabilized boron kagome system displays electron-phonon coupling, with a superconductivity critical transition temperature of 4.7 K, and thus it is another possible superconducting Mg-B compound besides MgB2. Furthermore, the proposed 2D MgB6 can also be used for hydrogen storage after decoration with Ca. Up to five H2 molecules can be attracted by one Ca with an average binding energy of 0.225 eV. The unique properties of 2D MgB6 will spur broad interest in nanoscience and technology.

  2. 59Co-NMR Probe for Stepwise Magnetization and Magnetotransport in SrCo6O11 with Metallic Kagomé Layer and Triangular Lattice with Local Moments

    NASA Astrophysics Data System (ADS)

    Mukuda, Hidekazu; Kitaoka, Yoshio; Ishiwata, Shintaro; Saito, Takashi; Shimakawa, Yuichi; Harima, Hisatomo; Takano, Mikio

    2006-09-01

    We report on novel magnetic and electronic properties of SrCo6O11 that exhibits a unique stepwise magnetization and its relevant magnetotransport phenomena investigated by the site-selective 59Co nuclear magnetic resonance (NMR) at zero and applied magnetic fields. This compound is composed of three Co sites in the unit cell, i.e., Co(1) in the metallic Kagomé layer, a Co(2) dimerized pillar between the layers and Co(3) in the triangular lattice. Zero-field NMR spectra have revealed that large local moments at the Co(3) sites are magnetically ordered without any trace of bulk magnetization M at zero field. The field-swept NMR spectra show that the internal hyperfine field at the Co(1) site is derived from fully polarized moments Ms at the Co(3) sites in the “1”-plateau state at fields higher than 2.5 T, whereas it is partially cancelled out in the “1/3”-plateau state in which one-third of Ms is induced at intermediate fields once a small field is applied. It has been clarified from a microscopic point of view that the local moments at Co(3) site undergo a field-induced ferrimagnetic (\\uparrow\\uparrow\\downarrow)-to-ferromagnetic (\\uparrow\\uparrow\\uparrow) transition. The Co(1) Kagomé layer and the dimerized pillar Co(2) site between the layers are of nonmagnetic origin, suggesting that the nearly quasi-2D metallic conductivity is dominated by nonmagnetic Co(1) and Co(2) sites. Consequently, unique magneto-transport phenomena observed in SrCo6O11 are demonstrated owing to the interaction between the conduction electrons at the Co(1) and Co(2) sites and the local moments at Co(3) sites.

  3. Magnetic field induced metal-insulator transition in a kagome nanoribbon

    NASA Astrophysics Data System (ADS)

    Dey, Moumita; Maiti, Santanu K.; Karmakar, S. N.

    2011-11-01

    In the present work, we investigate two-terminal electron transport through a finite width kagome lattice nanoribbon in presence of a perpendicular magnetic field. We employ a simple tight-binding (T-B) Hamiltonian to describe the system and obtain the transmission properties by using Green's function technique within the framework of Landauer-Büttiker formalism. After presenting an analytical description of energy dispersion relation of a kagome nanoribbon in presence of the magnetic field, we investigate numerically the transmittance spectra together with the density of states and current-voltage characteristics. It is shown that for a specific value of the Fermi energy, the kagome network can exhibit a magnetic field induced metal-insulator transition, which is the central investigation of this communication. Our analysis may be inspiring in designing low-dimensional switching devices.

  4. An sd(2) hybridized transition-metal monolayer with a hexagonal lattice: reconstruction between the Dirac and kagome bands.

    PubMed

    Zhou, Baozeng; Dong, Shengjie; Wang, Xiaocha; Zhang, Kailiang; Mi, Wenbo

    2017-03-15

    Graphene-like two-dimensional materials have garnered tremendous interest as emerging device materials due to their remarkable properties. However, their applications in spintronics have been limited by the lack of intrinsic magnetism. Here, we perform an ab initio simulation on the structural and electronic properties of several transition-metal (TM) monolayers (TM = Cr, Mo and W) with a honeycomb lattice on a 1/3 monolayer Cl-covered Si(111) surface. Due to the template effect from the halogenated Si substrate, the TM-layers will be maintained in an expanded lattice which is nearly 60% larger than that of the freestanding case. All these isolated TM-layers exhibit ferromagnetic coupling with kagome band structures related to sd(2) hybridization and a strong interfacial interaction may destroy the topological bands. Interestingly, the W-monolayer on the Cl-covered Si substrate shows a half-metallic behavior. A Dirac point formed at the K point in the spin-down channel is located exactly at the Fermi level which is crucial for the realization of a quantum spin Hall state. Moreover, the reconstruction process between the Dirac and kagome bands is discussed in detail, providing an interesting platform to study the interplay between massless Dirac fermions and heavy fermions.

  5. Fluorite and mixed-metal Kagome-related topologies in metal-organic framework compounds: synthesis, structure, and properties.

    PubMed

    Mahata, Partha; Raghunathan, Rajamani; Banerjee, Debamalya; Sen, Diptiman; Ramasesha, S; Bhat, S V; Natarajan, S

    2009-06-02

    Two new three-dimensional metal-organic frameworks (MOFs) [Mn(2)(mu(3)-OH)(H(2)O)(2)(BTC)] x 2 H(2)O, I, and [NaMn(BTC)], II (BTC = 1,2,4-benzenetricarboxylate = trimellitate) were synthesized and their structures determined by single-crystal X-ray diffraction (XRD). In I, the Mn(4) cluster, [Mn(4)(mu(3)-OH)(2)(H(2)O)(4)O(12)], is connected with eight trimellitate anions and each trimellitate anion connects to four different Mn(4) clusters, resulting in a fluorite-like structure. In II, the Mn(2)O(8) dimer is connected with two Na(+) ions through carboxylate oxygen to form mixed-metal distorted Kagome-related two-dimensional -M-O-M- layers, which are pillared by the trimellitate anions forming the three-dimensional structure. The extra-framework water molecules in I are reversibly adsorbed and are also corroborated by powder XRD studies. The formation of octameric water clusters involving free and coordinated water molecules appears to be new. Interesting magnetic behavior has been observed for both compounds. Electron spin resonance (ESR) studies indicate a broadening of the signal below the ordering temperature and appear to support the findings of the magnetic studies.

  6. Ionothermal synthesis of open-framework metal phosphates with a Kagome lattice network exhibiting canted anti-ferromagnetism

    SciTech Connect

    Wang, Guangmei; Valldor, Martin; Mallick, Bert; Mudring, Anja-Verena

    2014-01-01

    Four open-framework transition-metal phosphates; (NH4)2Co3(HPO4)2F4 (1), (NH4)Co3(HPO4)2(H2PO4)F2 (2), KCo3(HPO4)2(H2PO4)F2 (3), and KFe3(HPO4)2(H2PO4)F2 (4); are prepared by ionothermal synthesis using pyridinium hexafluorophosphate as the ionic liquid. Single-crystal X-ray diffraction analyses reveal that the four compounds contain cobalt/iron–oxygen/fluoride layers with Kagomé topology composed of interlinked face-sharing MO3F3/MO4F2 octahedra. PO3OH pseudo-tetrahedral groups augment the [M3O6F4] (1)/[M3O8F2] layers on both sides to give M3(HPO4)2F4 (1) and M3(HPO4)2F2 (2–4) layers. These layers are stacked along the a axis in a sequence AA…, resulting in the formation of a layer structure for (NH4)2Co3(HPO4)2F4(1). In NH4Co3(HPO4)2(H2PO4)F2 and KM3(HPO4)2(H2PO4)F2, the M3(HPO4)2F2 layers are stacked along the a axis in a sequence AAi… and are connected by [PO3(OH)] tetrahedra, giving rise to a 3-D open framework structure with 10-ring channels along the [001] direction. The negative charges of the inorganic framework are balanced by K+/NH4+ ions located within the channels. The magnetic transition metal cations themselves form layers with stair-case Kagomé topology. Magnetic susceptibility and magnetization measurements reveal that all four compounds exhibit a canted anti-ferromagnetic ground state (Tc = 10 or 13 K for Co and Tc = 27 K for Fe) with different canting angles. The full orbital moment is observed for both Co2+ and Fe2+.

  7. Carbon kagome lattice and orbital-frustration-induced metal-insulator transition for optoelectronics.

    PubMed

    Chen, Yuanping; Sun, Y Y; Wang, H; West, D; Xie, Yuee; Zhong, J; Meunier, V; Cohen, Marvin L; Zhang, S B

    2014-08-22

    A three-dimensional elemental carbon kagome lattice, made of only fourfold-coordinated carbon atoms, is proposed based on first-principles calculations. Despite the existence of 60° bond angles in the triangle rings, widely perceived to be energetically unfavorable, the carbon kagome lattice is found to display exceptional stability comparable to that of C(60). The system allows us to study the effects of triangular frustration on the electronic properties of realistic solids, and it demonstrates a metal-insulator transition from that of graphene to a direct gap semiconductor in the visible blue region. By minimizing s-p orbital hybridization, which is an intrinsic property of carbon, not only the band edge states become nearly purely frustrated p states, but also the band structure is qualitatively different from any known bulk elemental semiconductors. For example, the optical properties are similar to those of direct-gap semiconductors GaN and ZnO, whereas the effective masses are comparable to or smaller than those of Si.

  8. Turbulent boundary layer control through spanwise wall oscillation using Kagome lattice structures

    NASA Astrophysics Data System (ADS)

    Bird, James; Santer, Matthew; Morrison, Jonathan

    2015-11-01

    It is well established that a reduction in skin-friction and turbulence intensity can be achieved by applying in-plane spanwise forcing to a surface beneath a turbulent boundary layer. It has also been shown in DNS (M. Quadrio, P. Ricco, & C. Viotti; J. Fluid Mech; 627, 161, 2009), that this phenomenon is significantly enhanced when the forcing takes the form of a streamwise travelling wave of spanwise perturbation. In the present work, this type of forcing is generated by an active surface comprising a compliant structure, based on a Kagome lattice geometry, supporting a membrane skin. The structural design ensures negligible wall normal displacement while facilitating large in-plane velocities. The surface is driven pneumatically, achieving displacements of 3 mm approximately, at frequencies in excess of 70 Hz for a turbulent boundary layer at Reτ ~ 1000 . As the influence of this forcing on boundary layer is highly dependent on the wavenumber and frequency of the travelling wave, a flat surface was designed and optimised to allow these forcing parameters to be varied, without reconfiguration of the experiment. Simultaneous measurements of the fluid and surface motion are presented, and notable skin-friction drag reduction is demonstrated. Airbus support agreement IW202838 is gratefully acknowledged.

  9. Half-metallicity of a kagome spin lattice: the case of a manganese bis-dithiolene monolayer.

    PubMed

    Zhao, Mingwen; Wang, Aizhu; Zhang, Xiaoming

    2013-11-07

    The spin ordering in kagome lattices has long been studied in the search for real materials with a spin-liquid ground state. The synthesis of a nickel bis-dichiolene complex (Ni3C12S12) nanosheet (T. Kambe et al., J. Am. Chem. Soc., 2013, 135, 2462) paved a way for realizing real two-dimensional kagome lattices. Using first-principles calculations, we predicted that a ferromagnetic kagome spin lattice with S = 3/2 on lattice vertices can be achieved in an Mn3C12S12 monolayer formed by substituting Ni with Mn atoms in nonmagnetic Ni3C12S12. Monte Carlo simulations on the basis of the Ising model suggest that it has a Curie temperature of about 212 K. A ferromagnetic Mn3C12S12 monolayer is half metallic with high carrier mobility in one spin channel and a band gap of 1.54 eV in another spin channel, which is quite promising for spintronic device applications. Additionally, a small band gap opens up at the Dirac point of the kagome bands due to the spin-orbital coupling effects, which may be implementable for achieving a quantum anomalous Hall effect.

  10. Spin frustration in a family of pillared kagomé layers of high-spin cobalt(II) ions.

    PubMed

    Wang, Long-Fei; Li, Cui-Jin; Chen, Yan-Cong; Zhang, Ze-Min; Liu, Jiang; Lin, Wei-Quan; Meng, Yan; Li, Quan-Wen; Tong, Ming-Liang

    2015-02-02

    Based on the analogous kagomé [Co3 (imda)2 ] layers (imda=imidazole-4,5-dicarboxylate), a family of pillar-layered frameworks with the formula of [Co3 (imda)2 (L)3 ]⋅(L)n ⋅xH2 O (1: L=pyrazine, n=0, x=8; 2: L=4,4'-bipyridine, n=1, x=8; 3: L=1,4-di(pyridin-4-yl)benzene, n=1, x=13; 4: L=4,4'-di(pyridin-4-yl)-1,1'-biphenyl, n=1, x=14) have been successfully synthesized by a hydrothermal/solvothermal method. Single-crystal structural analysis shows a significant increase in the interlayer distances synchronized with the extension of the pillar ligands, namely, 7.092(3) (1), 10.921(6) (2), 14.780(5) (3), and 19.165(4) Å (4). Despite the wrinkled kagomé layers in complexes 2-4, comprehensive magnetic characterizations revealed weakening of interlayer magnetic interactions and an increase in the degree of frustration as the pillar ligand becomes longer from 1 to 4; this leads to characteristic magnetic ground states. For compound 4, which has the longest interlayer distance, the interlayer interaction is so weak that the magnetic properties observed within the range of temperature measured would correspond to the frustrated layer.

  11. New Kagomé Metal Sc3Mn3Al7Si5--Quantum Spin-Liquid Candidate?

    NASA Astrophysics Data System (ADS)

    He, Hua; Miiller, Wojciech; Aronson, Meigan

    2014-03-01

    While most of the reported Kagomé systems are semiconductors or insulators, in which the magnetic moments have a highly localized character, here we present a new intermetallic compound, Sc3Mn3Al7Si5, as a rare example of a Kagomé metal. The structure of the compound was established by single-crystal X-ray diffraction, and it crystallizes with a hexagonal structure (Sc3Ni11Si4 type) with Mn atoms forming the Kagomé lattice. The dc magnetic susceptibility measurements find a Curie-Weiss moment of ~ 0.51 μB/Mn, however, no magnetic order is found for temperatures as low as 1.8 K. Electrical resistivity and heat capacity measurements show that this compound is definitively metallic, with an enhanced specific heat Sommerfeld coefficient below 10K, indicating strong electronic correlations. Intriguingly, these features have revealed Sc3Mn3Al7Si5 as a possible quantum spin liquid. The role of the geometrically frustrated structure and Mn-ligand hybridization in the magnetism of Sc3Mn3Al7Si5 is also discussed. We acknowledge the Office of Assistant Secretary of Defense for Research and Engineering for providing the NSSEFF funds that supported this research.

  12. Metal-organic Kagome lattices M3(2,3,6,7,10,11-hexaiminotriphenylene)2 (M = Ni and Cu): from semiconducting to metallic by metal substitution.

    PubMed

    Chen, Shuang; Dai, Jun; Zeng, Xiao Cheng

    2015-02-28

    Motivated by recent experimental synthesis of a semiconducting metal-organic graphene analogue (J. Am. Chem. Soc., 2014, 136, 8859), i.e., Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 [Ni3(HITP)2], a new Kagome lattice, Cu3(HITP)2, is designed by substituting the coordination of Ni by Cu. Such substitution results in interesting changes in electronic properties of the M3(HITP)2 bulk and two-dimensional (2D) sheets. In Ni3(HITP)2, each Ni atom adopts the dsp(2) hybridization, forming a perfect 2D conjugation, whereas in Cu3(HITP)2, each Cu atom adopts the sp(3) hybridization, resulting in a distorted 2D sheet. The M3(HITP)2 bulks, assembled from M3(HITP)2 sheets via both strong π-π interaction and weak metal-metal interaction, are metallic. However, the 2D Ni3(HITP)2 sheet is a semiconductor with a narrow band gap whereas the 2D Cu3(HITP)2 sheet is a metal. Remarkably, both the 2D M3(HITP)2 Kagome lattices possess Dirac bands in the vicinity of the Fermi level. Additional ab initio molecular dynamics simulations show that both sheets exhibit high thermal stability at elevated temperatures. Our theoretical study offers new insights into tunability of electronic properties for the 2D metal-organic frameworks (MOFs).

  13. Designing artificial two dimensional electron lattice on metal surface: a Kagome-like lattice as an example.

    PubMed

    Li, Shuai; Qiu, Wen-Xuan; Gao, Jin-Hua

    2016-07-07

    Recently, a new kind of artificial two dimensional (2D) electron lattice on the nanoscale, i.e. molecular graphene, has drawn a lot of interest, where the metal surface electrons are transformed into a honeycomb lattice via absorbing a molecular lattice on the metal surface [Gomes et al., Nature, 2012, 438, 306; Wang et al., Phys. Rev. Lett., 2014, 113, 196803]. In this work, we theoretically demonstrate that this technique can be readily used to build other complex 2D electron lattices on a metal surface, which are of high interest in the field of condensed matter physics. The main challenge to build a complex 2D electron lattice is that this is a quantum antidot system, where the absorbed molecule normally exerts a repulsive potential on the surface electrons. Thus, there is no straightforward corresponding relation between the molecular lattice pattern and the desired 2D lattice of surface electrons. Here, we give an interesting example about the Kagome lattice, which has exotic correlated electronic states. We design a special molecular pattern and show that this molecular lattice can transform the surface electrons into a Kagome-like lattice. The numerical simulation is conducted using a Cu(111) surface and CO molecules. We first estimate the effective parameters of the Cu/CO system by fitting experimental data of the molecular graphene. Then, we calculate the corresponding energy bands and LDOS of the surface electrons in the presence of the proposed molecular lattice. Finally, we interpret the numerical results by the tight binding model of the Kagome lattice. We hope that our work can stimulate further theoretical and experimental interest in this novel artificial 2D electron lattice system.

  14. Tests on Double Layer Metalization

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1983-01-01

    28 page report describes experiments in fabrication of integrated circuits with double-layer metalization. Double-layer metalization requires much less silicon "real estate" and allows more flexibility in placement of circuit elements than does single-layer metalization.

  15. Kagome-type isostructural 3D-transition metal fluorosulfates with spin 3/2 and 1: synthesis, structure and characterization.

    PubMed

    Marri, Subba R; Kumar, Jitendra; Panyarat, Kitt; Horike, Satoshi; Behera, J N

    2016-11-28

    Two isostructural transition metal fluorosulfates based on Co and Ni metal ions with the molecular composition of [H3O][M(SO4)F] (where M = Co((II)) for 1 and Ni((II)) for 2) were synthesized under solvothermal conditions and structurally characterized by single crystal X-ray analysis. The materials were further characterized by complementary techniques like TGA, FTIR and PXRD. The 3D-crystal lattice consists of a kagome-type entity where sulfate groups replaced one of the metal nodes when compared with true kagome structures. Magnetic studies of the complexes were also performed which showed that the interactions at the metal center are antiferromagnetic in nature. The proton conductivity increases with the increase in humidity and was found to be 7.9 × 10(-6) S cm(-1) for 2 at RH = 98%.

  16. Two-dimensional Kagome phosphorus and its edge magnetism: a density functional theory study.

    PubMed

    Yu, Guodong; Jiang, Liwei; Zheng, Yisong

    2015-07-01

    By means of density functional theory calculations, we predict a new two-dimensional phosphorus allotrope with the Kagome-like lattice(Kagome-P). It is an indirect gap semiconductor with a band gap of 1.64 eV. The gap decreases sensitively with the compressive strain. In particular, shrinking the lattice beyond 13% can drive it into metallic state. In addition, both the AA and AB stacked Kagome-P multi-layer structures exhibit a bandgap much smaller than 1.64 eV. Edges in the Kagome-P monolayer probably suffer from the edge reconstruction. An isolated zigzag edge can induce antiferromagnetic (AF) ordering with a magnetic transition temperature of 23 K. More importantly, when applying a stretching strain beyond 4%, such an edge turns to possess a ferromagnetic ground state. A very narrow zigzag-edged Kagome-P ribbon displays the spin moment distribution similar to the zigzag-edged graphene nanoribbon because of the coupling between the opposites edges. But the inter-edge coupling in the Kagome-P ribbon vanishes more rapidly as the ribbon width increases. These properties make it a promising material in spintronics.

  17. Spin-orbit coupling induced semi-metallic state in the 1/3 hole-doped hyper-kagome Na3Ir3O8

    PubMed Central

    Takayama, Tomohiro; Yaresko, Alexander; Matsumoto, Akiyo; Nuss, Jürgen; Ishii, Kenji; Yoshida, Masahiro; Mizuki, Junichiro; Takagi, Hidenori

    2014-01-01

    The complex iridium oxide Na3Ir3O8 with a B-site ordered spinel structure was synthesized in single crystalline form, where the chiral hyper-kagome lattice of Ir ions, as observed in the spin-liquid candidate Na4Ir3O8, was identified. The average valence of Ir is 4.33+ and, therefore, Na3Ir3O8 can be viewed as a doped analogue of the hyper-kagome spin liquid with Ir4+. The transport measurements, combined with the electronic structure calculations, indicate that the ground state of Na3Ir3O8 is a low carrier density semi-metal. We argue that the semi-metallic state is produced by a competition of the molecular orbital splitting of t2g orbitals on Ir3 triangles with strong spin-orbit coupling inherent to heavy Ir ions. PMID:25351992

  18. Spin-orbit coupling induced semi-metallic state in the 1/3 hole-doped hyper-kagome Na3Ir3O8

    NASA Astrophysics Data System (ADS)

    Takayama, Tomohiro; Yaresko, Alexander; Matsumoto, Akiyo; Nuss, Jürgen; Ishii, Kenji; Yoshida, Masahiro; Mizuki, Junichiro; Takagi, Hidenori

    2014-10-01

    The complex iridium oxide Na3Ir3O8 with a B-site ordered spinel structure was synthesized in single crystalline form, where the chiral hyper-kagome lattice of Ir ions, as observed in the spin-liquid candidate Na4Ir3O8, was identified. The average valence of Ir is 4.33+ and, therefore, Na3Ir3O8 can be viewed as a doped analogue of the hyper-kagome spin liquid with Ir4+. The transport measurements, combined with the electronic structure calculations, indicate that the ground state of Na3Ir3O8 is a low carrier density semi-metal. We argue that the semi-metallic state is produced by a competition of the molecular orbital splitting of t2g orbitals on Ir3 triangles with strong spin-orbit coupling inherent to heavy Ir ions.

  19. Spin-orbit coupling induced semi-metallic state in the 1/3 hole-doped hyper-kagome Na3Ir3O8.

    PubMed

    Takayama, Tomohiro; Yaresko, Alexander; Matsumoto, Akiyo; Nuss, Jürgen; Ishii, Kenji; Yoshida, Masahiro; Mizuki, Junichiro; Takagi, Hidenori

    2014-10-29

    The complex iridium oxide Na3Ir3O8 with a B-site ordered spinel structure was synthesized in single crystalline form, where the chiral hyper-kagome lattice of Ir ions, as observed in the spin-liquid candidate Na4Ir3O8, was identified. The average valence of Ir is 4.33+ and, therefore, Na3Ir3O8 can be viewed as a doped analogue of the hyper-kagome spin liquid with Ir(4+). The transport measurements, combined with the electronic structure calculations, indicate that the ground state of Na3Ir3O8 is a low carrier density semi-metal. We argue that the semi-metallic state is produced by a competition of the molecular orbital splitting of t2g orbitals on Ir3 triangles with strong spin-orbit coupling inherent to heavy Ir ions.

  20. Magnetic structures of the low temperature phase of Mn3(VO4)2 - towards understanding magnetic ordering between adjacent Kagomé layers.

    PubMed

    Clemens, Oliver; Rohrer, Jochen; Nénert, Gwilherm

    2016-01-07

    In this article we report on a detailed analysis of the magnetic structures of the magnetic phases of the low temperature (lt-) phase of Mn3(VO4)2 (=Mn3V2O8) with a Kagomé staircase structure determined by means of powder neutron diffraction. Two magnetic transitions were found at ∼25 K (HT1 phase, Cmc'a') and ∼17 K (LT1 phase, Pmc'a'), in excellent agreement with previous reports. The LT1 phase is characterized by commensurate magnetic ordering of the magnetic moments on two magnetic sites of the Mn1a/b (2a + 2d) and Mn2 (8i) ions of the nuclear structure (where for the latter site two different overall orientations of magnetic moments within the ab-plane (Mn2a and Mn2b) can be distinguished. This results in mainly antiferromagnetic interactions between edge-sharing Mn-octahedra within the Kagomé planes. The HT1 phase is characterised by strong spin frustration resulting from the loss of ordering of the magnetic moments of Mn2a/b ions along the b-axis. Both magnetic structures are in agreement with the previously reported ferrimagnetic properties of lt-Mn3(VO4)2 and shed light on the magnetic phase diagram of the compound reported previously. The magnetic structures are discussed with respect to superexchange interaction pathways within the Kagomé layers, which appear to be predominantly antiferromagnetic. The magnetic structures of Mn3(VO4)2 are different compared to those reported for Ni3(VO4)2 and Co3(VO4)2 and represent an unique commensurate way out of spin frustration for compounds with strong antiferromagnetic superexchange interactions within the Kagomé layers. Additionally, we derive a superexchange model, which will be called redox-mediated M-M(')(d(0))-M superexchange and which can help to understand the exclusively ferromagnetic ordering of adjacent Kagomé layers found only for lt-Mn3(VO4)2.

  1. Magnetic behavior of Gd3Ru4Al12, a layered compound with distorted kagomé net

    NASA Astrophysics Data System (ADS)

    Chandragiri, Venkatesh; Iyer, Kartik K.; Sampathkumaran, E. V.

    2016-07-01

    The magnetic behavior of the compound, Gd3Ru4Al12, which was reported about two decades ago to crystallize in a hexagonal structure (space group P63/mmc), has not been investigated in the past literature despite interesting structural features (that is, magnetic layers and triangular as well as kagomé-lattice features favoring frustrated magnetism) characterizing this compound. We report here the results of studies of magnetization, heat capacity and magnetoresistance in the temperature range T  =  1.8-300 K. The results establish that there is a long-range magnetic order of antiferromagnetic type below (T N  =) 18.5 K, despite a much larger value (~80 K) of paramagnetic Curie temperature with a positive sign characteristic of ferromagnetic interaction. We attribute this to geometric frustration. The most interesting finding is that there is an additional magnetic anomaly below ~55 K before the onset of long-range order in the magnetic susceptibility data. Concurrent with this observation, the sign of isothermal change in entropy, ΔS  =  S(0)  -  S(H), where H is the externally applied magnetic field, remains positive above T N, with a broad peak. This observation indicates the presence of ferromagnetic clusters before the onset of long-range magnetic order. Thus, this compound may serve as an example of a situation in which magnetic frustration due to geometrical reasons faces competition from such magnetic precursor effects. There is also a reversal of the sign of  -ΔS in the curves for lower final fields (H  <  30 kOe) on entering the magnetically ordered state consistent with the entrance to an antiferromagetic state. The magnetoresistance behavior is consistent with the above conclusions.

  2. Magnetic behavior of Gd3Ru4Al12, a layered compound with distorted kagomé net.

    PubMed

    Chandragiri, Venkatesh; Iyer, Kartik K; Sampathkumaran, E V

    2016-05-27

    The magnetic behavior of the compound, Gd3Ru4Al12, which was reported about two decades ago to crystallize in a hexagonal structure (space group P63/mmc), has not been investigated in the past literature despite interesting structural features (that is, magnetic layers and triangular as well as kagomé-lattice features favoring frustrated magnetism) characterizing this compound. We report here the results of studies of magnetization, heat capacity and magnetoresistance in the temperature range T  =  1.8-300 K. The results establish that there is a long-range magnetic order of antiferromagnetic type below (T N  =) 18.5 K, despite a much larger value (~80 K) of paramagnetic Curie temperature with a positive sign characteristic of ferromagnetic interaction. We attribute this to geometric frustration. The most interesting finding is that there is an additional magnetic anomaly below ~55 K before the onset of long-range order in the magnetic susceptibility data. Concurrent with this observation, the sign of isothermal change in entropy, ΔS  =  S(0)  -  S(H), where H is the externally applied magnetic field, remains positive above T N, with a broad peak. This observation indicates the presence of ferromagnetic clusters before the onset of long-range magnetic order. Thus, this compound may serve as an example of a situation in which magnetic frustration due to geometrical reasons faces competition from such magnetic precursor effects. There is also a reversal of the sign of  -ΔS in the curves for lower final fields (H  <  30 kOe) on entering the magnetically ordered state consistent with the entrance to an antiferromagetic state. The magnetoresistance behavior is consistent with the above conclusions.

  3. Metal deposition using seed layers

    DOEpatents

    Feng, Hsein-Ping; Chen, Gang; Bo, Yu; Ren, Zhifeng; Chen, Shuo; Poudel, Bed

    2013-11-12

    Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.

  4. First-Principles Design of a Half-Filled Flat Band of the Kagome Lattice in Two-Dimensional Metal-Organic Frameworks

    NASA Astrophysics Data System (ADS)

    Yamada, Masahiko G.; Soejima, Tomohiro; Tsuji, Naoto; Hirai, Daisuke; Dincă, Mircea; Aoki, Hideo

    Metal-organic frameworks (MOFs) are crystalline materials composed of metal ions and bridging organic molecules, which have been the subject of numerous investigations in inorganic and materials chemistry. Owing to their typically trivial electronic states, MOFs have not attracted much attentions from condensed-matter physicists. However, recent experimental success in fabricating two-dimensional (2D) MOFs with kagome lattice structures is bridging the gap between condensed-matter physics and chemistry. Then, we design from first principles a new type of 2D MOFs with phenalenyl-based ligands to realize a half-filled flat band of the kagome lattice, which belongs to the lattice family that shows Lieb-Mielke-Tasaki's flat-band ferromagnetism. We find that trans-Au-THTAP(trihydroxytriaminophenalenyl) has an ideal band structure, where the Fermi energy is adjusted right at the nearly flat band. The spin-orbit coupling opens a band gap and gives a non-zero Chern number to the nearly flat band. This is a novel and realistic example of a system in which a nearly flat band is both ferromagnetic and topologically non-trivial. See arXiv:1510.00164.

  5. First-principles design of a half-filled flat band of the kagome lattice in two-dimensional metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Yamada, Masahiko G.; Soejima, Tomohiro; Tsuji, Naoto; Hirai, Daisuke; Dincǎ, Mircea; Aoki, Hideo

    2016-08-01

    We design from first principles a type of two-dimensional metal-organic framework (MOF) using phenalenyl-based ligands to exhibit a half-filled flat band of the kagome lattice, which is one of a family of lattices that show Lieb-Mielke-Tasaki's flat-band ferromagnetism. Among various MOFs, we find that trans-Au-THTAP (THTAP=trihydroxytriaminophenalenyl) has such an ideal band structure, where the Fermi energy is adjusted right at the flat band due to unpaired electrons of radical phenalenyl. The spin-orbit coupling opens a band gap giving a nonzero Chern number to the nearly flat band, as confirmed by the presence of the edge states in first-principles calculations and by fitting to the tight-binding model. This is a novel and realistic example of a system in which a nearly flat band is both ferromagnetic and topologically nontrivial.

  6. Magnetic behavior of metallic kagome lattices, Tb3Ru4Al12 and Er3Ru4Al12

    NASA Astrophysics Data System (ADS)

    Upadhyay, Sanjay Kumar; Iyer, Kartik K.; Sampathkumaran, E. V.

    2017-08-01

    We report the magnetic behavior of two intermetallic-based kagome lattices, Tb3Ru4Al12 and Er3Ru4Al12, crystallizing in the Gd3Ru4Al2-type hexagonal crystal structure, by measurements in the range 1.8-300 K with bulk experimental techniques (ac and dc magnetization, heat capacity, and magnetoresistance). The main finding is that the Tb compound, known to order antiferromagnetically below (T N =) 22 K, shows glassy characteristics at lower temperatures (\\ll 15 K), thus characterizing this compound as a re-entrant spin-glass. The data reveal that the glassy phase is quite complex and is of a cluster type. Since glassy behavior was not seen for the Gd analog in the past literature, this finding on the Tb compound emphasizes that this kagome family could provide an opportunity to explore the role of higher-order interactions (such as quadrupole) in bringing out magnetic frustration. Additional findings reported here for this compound are: (i) The plots of temperature dependence of magnetic susceptibility and electrical resistivity data in the range 12-20 K, just below T N , are found to be hysteretic leading to a magnetic phase in this intermediate temperature range, mimicking disorder-broadened first-order magnetic phase transitions; (ii) features attributable to an interesting magnetic phase co-existence phenomenon in the isothermal magnetoresistance in zero field, after travelling across metamagnetic transition fields, are observed. With respect to the Er compound, we do not find any evidence for long-range magnetic ordering down to 2 K, but this compound appears to be on the verge of magnetic order at 2 K.

  7. Magnetic behavior of metallic kagome lattices, Tb3Ru4Al12 and Er3Ru4Al12.

    PubMed

    Upadhyay, Sanjay Kumar; Iyer, Kartik K; Sampathkumaran, E V

    2017-08-16

    We report the magnetic behavior of two intermetallic-based kagome lattices, Tb3Ru4Al12 and Er3Ru4Al12, crystallizing in the Gd3Ru4Al2-type hexagonal crystal structure, by measurements in the range 1.8-300 K with bulk experimental techniques (ac and dc magnetization, heat capacity, and magnetoresistance). The main finding is that the Tb compound, known to order antiferromagnetically below (T N =) 22 K, shows glassy characteristics at lower temperatures ([Formula: see text]15 K), thus characterizing this compound as a re-entrant spin-glass. The data reveal that the glassy phase is quite complex and is of a cluster type. Since glassy behavior was not seen for the Gd analog in the past literature, this finding on the Tb compound emphasizes that this kagome family could provide an opportunity to explore the role of higher-order interactions (such as quadrupole) in bringing out magnetic frustration. Additional findings reported here for this compound are: (i) The plots of temperature dependence of magnetic susceptibility and electrical resistivity data in the range 12-20 K, just below T N , are found to be hysteretic leading to a magnetic phase in this intermediate temperature range, mimicking disorder-broadened first-order magnetic phase transitions; (ii) features attributable to an interesting magnetic phase co-existence phenomenon in the isothermal magnetoresistance in zero field, after travelling across metamagnetic transition fields, are observed. With respect to the Er compound, we do not find any evidence for long-range magnetic ordering down to 2 K, but this compound appears to be on the verge of magnetic order at 2 K.

  8. Biaxially textured metal substrate with palladium layer

    DOEpatents

    Robbins, William B [Maplewood, MN

    2002-12-31

    Described is an article comprising a biaxially textured metal substrate and a layer of palladium deposited on at least one major surface of the metal substrate; wherein the palladium layer has desired in-plane and out-of-plane crystallographic orientations, which allow subsequent layers that are applied on the article to also have the desired orientations.

  9. Ceramic TBS/porous metal compliant layer

    NASA Technical Reports Server (NTRS)

    Tolokan, Robert P.; Jarrabet, G. P.

    1992-01-01

    Technetics Corporation manufactures metal fiber materials and components used in aerospace applications. Our technology base is fiber metal porous sheet material made from sinter bonded metal fibers. Fiber metals have percent densities (metal content by volume) from 10 to 65 percent. Various topics are covered and include the following: fiber metal materials, compliant layer thermal bayer coatings (TBC's), pad properties, ceramic/pad TBC design, thermal shock rig, fabrication, and applications.

  10. Layered Cu7(TeO3)2(SO4)2(OH)6 with Diluted Kagomé Net Containing Frustrated Corner-Sharing Triangles.

    PubMed

    Guo, Wen-Bin; Tang, Ying-Ying; Wang, Junfeng; He, Zhangzhen

    2017-02-20

    The half-spin Kagomé antiferromagnet is one of the most promising candidates for the realization of a quantum spin liquid state because of its inherent frustration and quantum fluctuations. The search for candidates for quantum spin liquids with novel spin topologies is still a challenge. Herein, we report a new diluted Kagomé lattice in Cu7(TeO3)2(SO4)2(OH)6, showing a 9/16-depleted triangle lattice, where the corner-sharing triangle units [Cu5(OH)6O8] are separated by CuO2(OH)2. Magnetic measurements show that the title compound does not exhibit long-range antiferromagnetic order down to 2 K, suggesting strong spin frustration with f > 19.

  11. Buffer layers on biaxially textured metal substrates

    DOEpatents

    Shoup, Shara S.; Paranthamam, Mariappan; Beach, David B.; Kroeger, Donald M.; Goyal, Amit

    2001-01-01

    A method is disclosed for forming a biaxially textured buffer layer on a biaxially oriented metal substrate by using a sol-gel coating technique followed by pyrolyzing/annealing in a reducing atmosphere. This method is advantageous for providing substrates for depositing electronically active materials thereon.

  12. Interaction of metal layers with polycrystalline Si

    NASA Technical Reports Server (NTRS)

    Nakamura, K.; Olowolafe, J. O.; Lau, S. S.; Nicolet, M.-A.; Mayer, J. W.; Shima, R.

    1976-01-01

    Solid-phase reactions of metal films deposited on 0.5-micron-thick polycrystalline layers of Si grown by chemical vapor deposition at 640 C were investigated by MeV He-4 backscattering spectrometry, glancing angle X-ray diffraction, and SEM observations. For the metals Al, Ag, and Au, which form simple eutectics, heat treatment at temperatures below the eutectic results in erosion of the poly-Si layer and growth of Si crystallites in the metal film. Crystallite formation is observed at temperatures exceeding 550 C for Ag, at those exceeding 400 C for Al, and at those exceeding 200 C for Au films. For Pd, Ni, and Cr, heat treatment results in silicide formation. The same initial silicides (Pd2Si, Ni2Si, and CrSi2), are formed at similar temperatures on single-crystal substrates.

  13. High applicability of two-dimensional phosphorous in Kagome lattice predicted from first-principles calculations.

    PubMed

    Chen, Peng-Jen; Jeng, Horng-Tay

    2016-03-16

    A new semiconducting phase of two-dimensional phosphorous in the Kagome lattice is proposed from first-principles calculations. The band gaps of the monolayer (ML) and bulk Kagome phosphorous (Kagome-P) are 2.00 and 1.11 eV, respectively. The magnitude of the band gap is tunable by applying the in-plane strain and/or changing the number of stacking layers. High optical absorption coefficients at the visible light region are predicted for multilayer Kagome-P, indicating potential applications for solar cell devices. The nearly dispersionless top valence band of the ML Kagome-P with high density of states at the Fermi level leads to superconductivity with Tc of ~9 K under the optimal hole doping concentration. We also propose that the Kagome-P can be fabricated through the manipulation of the substrate-induced strain during the process of the sample growth. Our work demonstrates the high applicability of the Kagome-P in the fields of electronics, photovoltaics, and superconductivity.

  14. High applicability of two-dimensional phosphorous in Kagome lattice predicted from first-principles calculations

    PubMed Central

    Chen, Peng-Jen; Jeng, Horng-Tay

    2016-01-01

    A new semiconducting phase of two-dimensional phosphorous in the Kagome lattice is proposed from first-principles calculations. The band gaps of the monolayer (ML) and bulk Kagome phosphorous (Kagome-P) are 2.00 and 1.11 eV, respectively. The magnitude of the band gap is tunable by applying the in-plane strain and/or changing the number of stacking layers. High optical absorption coefficients at the visible light region are predicted for multilayer Kagome-P, indicating potential applications for solar cell devices. The nearly dispersionless top valence band of the ML Kagome-P with high density of states at the Fermi level leads to superconductivity with Tc of ~9 K under the optimal hole doping concentration. We also propose that the Kagome-P can be fabricated through the manipulation of the substrate-induced strain during the process of the sample growth. Our work demonstrates the high applicability of the Kagome-P in the fields of electronics, photovoltaics, and superconductivity. PMID:26980060

  15. Ionothermal synthesis of open-framework metal phosphates with a Kagomé lattice network exhibiting canted anti-ferromagnetism† †Electronic supplementary information (ESI) available: Cif files, atomic parameters, X-ray diffraction patterns, IR spectra, TG curves, and thermal ellipsoid plot and atomic label schemes of compound 1–4. See DOI: 10.1039/c4tc00290c Click here for additional data file.

    PubMed Central

    Wang, Guangmei; Valldor, Martin; Mallick, Bert

    2014-01-01

    Four open-framework transition-metal phosphates; (NH4)2Co3(HPO4)2F4 (1), (NH4)Co3(HPO4)2(H2PO4)F2 (2), KCo3(HPO4)2(H2PO4)F2 (3), and KFe3(HPO4)2(H2PO4)F2 (4); are prepared by ionothermal synthesis using pyridinium hexafluorophosphate as the ionic liquid. Single-crystal X-ray diffraction analyses reveal that the four compounds contain cobalt/iron–oxygen/fluoride layers with Kagomé topology composed of interlinked face-sharing MO3F3/MO4F2 octahedra. PO3OH pseudo-tetrahedral groups augment the [M3O6F4] (1)/[M3O8F2] layers on both sides to give M3(HPO4)2F4 (1) and M3(HPO4)2F2 (2–4) layers. These layers are stacked along the a axis in a sequence AA…, resulting in the formation of a layer structure for (NH4)2Co3(HPO4)2F4(1). In NH4Co3(HPO4)2(H2PO4)F2 and KM3(HPO4)2(H2PO4)F2, the M3(HPO4)2F2 layers are stacked along the a axis in a sequence AAi… and are connected by [PO3(OH)] tetrahedra, giving rise to a 3-D open framework structure with 10-ring channels along the [001] direction. The negative charges of the inorganic framework are balanced by K+/NH4 + ions located within the channels. The magnetic transition metal cations themselves form layers with stair-case Kagomé topology. Magnetic susceptibility and magnetization measurements reveal that all four compounds exhibit a canted anti-ferromagnetic ground state (T c = 10 or 13 K for Co and T c = 27 K for Fe) with different canting angles. The full orbital moment is observed for both Co2+ and Fe2+. PMID:25580250

  16. Ionothermal synthesis of open-framework metal phosphates with a Kagomé lattice network exhibiting canted anti-ferromagnetism†Electronic supplementary information (ESI) available: Cif files, atomic parameters, X-ray diffraction patterns, IR spectra, TG curves, and thermal ellipsoid plot and atomic label schemes of compound 1-4. See DOI: 10.1039/c4tc00290cClick here for additional data file.

    PubMed

    Wang, Guangmei; Valldor, Martin; Mallick, Bert; Mudring, Anja-Verena

    2014-09-21

    Four open-framework transition-metal phosphates; (NH4)2Co3(HPO4)2F4 (1), (NH4)Co3(HPO4)2(H2PO4)F2 (2), KCo3(HPO4)2(H2PO4)F2 (3), and KFe3(HPO4)2(H2PO4)F2 (4); are prepared by ionothermal synthesis using pyridinium hexafluorophosphate as the ionic liquid. Single-crystal X-ray diffraction analyses reveal that the four compounds contain cobalt/iron-oxygen/fluoride layers with Kagomé topology composed of interlinked face-sharing MO3F3/MO4F2 octahedra. PO3OH pseudo-tetrahedral groups augment the [M3O6F4] (1)/[M3O8F2] layers on both sides to give M3(HPO4)2F4 (1) and M3(HPO4)2F2 (2-4) layers. These layers are stacked along the a axis in a sequence AA…, resulting in the formation of a layer structure for (NH4)2Co3(HPO4)2F4(1). In NH4Co3(HPO4)2(H2PO4)F2 and KM3(HPO4)2(H2PO4)F2, the M3(HPO4)2F2 layers are stacked along the a axis in a sequence AA i … and are connected by [PO3(OH)] tetrahedra, giving rise to a 3-D open framework structure with 10-ring channels along the [001] direction. The negative charges of the inorganic framework are balanced by K(+)/NH4(+) ions located within the channels. The magnetic transition metal cations themselves form layers with stair-case Kagomé topology. Magnetic susceptibility and magnetization measurements reveal that all four compounds exhibit a canted anti-ferromagnetic ground state (Tc = 10 or 13 K for Co and Tc = 27 K for Fe) with different canting angles. The full orbital moment is observed for both Co(2+) and Fe(2+).

  17. Advanced atom chips with two metal layers.

    SciTech Connect

    Stevens, James E.; Blain, Matthew Glenn; Benito, Francisco M.; Biedermann, Grant

    2010-12-01

    A design concept, device layout, and monolithic microfabrication processing sequence have been developed for a dual-metal layer atom chip for next-generation positional control of ultracold ensembles of trapped atoms. Atom chips are intriguing systems for precision metrology and quantum information that use ultracold atoms on microfabricated chips. Using magnetic fields generated by current carrying wires, atoms are confined via the Zeeman effect and controllably positioned near optical resonators. Current state-of-the-art atom chips are single-layer or hybrid-integrated multilayer devices with limited flexibility and repeatability. An attractive feature of multi-level metallization is the ability to construct more complicated conductor patterns and thereby realize the complex magnetic potentials necessary for the more precise spatial and temporal control of atoms that is required. Here, we have designed a true, monolithically integrated, planarized, multi-metal-layer atom chip for demonstrating crossed-wire conductor patterns that trap and controllably transport atoms across the chip surface to targets of interest.

  18. Localized structures in Kagome lattices

    SciTech Connect

    Saxena, Avadh B; Bishop, Alan R; Law, K J H; Kevrekidis, P G

    2009-01-01

    We investigate the existence and stability of gap vortices and multi-pole gap solitons in a Kagome lattice with a defocusing nonlinearity both in a discrete case and in a continuum one with periodic external modulation. In particular, predictions are made based on expansion around a simple and analytically tractable anti-continuum (zero coupling) limit. These predictions are then confirmed for a continuum model of an optically-induced Kagome lattice in a photorefractive crystal obtained by a continuous transformation of a honeycomb lattice.

  19. Patterning Graphitic C-N Sheets into a Kagome Lattice for Magnetic Materials.

    PubMed

    Li, Xiaowei; Zhou, Jian; Wang, Qian; Kawazoe, Yushiyuki; Jena, Puru

    2013-01-17

    We propose porous C-N-based structures for biocompatible magnetic materials that do not contain even a single metal ion. Using first-principles calculations based on density functional theory, we show that when patterned in the form of a kagome lattice, nonmagnetic g-C3N4 not only becomes ferromagnetic but also its magnetic properties can be further enhanced by applying external strain. Similarly, the magnetic moment per atom in ferromagnetic g-C4N3 is increased three fold when patterned into a kagome lattice. The Curie temperature of g-C3N4 kagome lattice is 100 K, while that of g-C4N3 kagome lattice is much higher, namely, 520 K. To date, all of the synthesized two- and three-dimensional magnetic kagome structures contain metal ions and are toxic. The objective of our work is to stimulate an experimental effort to develop nanopatterning techniques for the synthesis of g-C3N4- and g-C4N3-based kagome lattices.

  20. Polysulfide intercalated layered double hydroxides for metal capture applications

    DOEpatents

    Kanatzidis, Mercouri G.; Ma, Shulan

    2017-04-04

    Polysulfide intercalated layered double hydroxides and methods for their use in vapor and liquid-phase metal capture applications are provided. The layered double hydroxides comprise a plurality of positively charged host layers of mixed metal hydroxides separated by interlayer spaces. Polysulfide anions are intercalated in the interlayer spaces.

  1. Site specific X-ray anomalous dispersion of the geometrically frustrated kagomé magnet, herbertsmithite, ZnCu(3)(OH)(6)Cl(2).

    PubMed

    Freedman, Danna E; Han, Tianheng H; Prodi, Andrea; Müller, Peter; Huang, Qing-Zhen; Chen, Yu-Sheng; Webb, Samuel M; Lee, Young S; McQueen, Tyrel M; Nocera, Daniel G

    2010-11-17

    Structural characterization, exploiting X-ray scattering differences at elemental absorption edges, is developed to quantitatively determine crystallographic site-specific metal disorder. We apply this technique to the problem of Zn-Cu chemical disorder in ZnCu(3)(OH)(6)Cl(2). This geometrically frustrated kagomé antiferromagnet is one of the best candidates for a spin-liquid ground state, but chemical disorder has been suggested as a mundane explanation for its magnetic properties. Using anomalous scattering at the Zn and Cu edges, we determine that there is no Zn occupation of the intralayer Cu sites within the kagomé layer; however there is Cu present on the Zn intersite, leading to a structural formula of (Zn(0.85)Cu(0.15))Cu(3)(OH)(6)Cl(2). The lack of Zn mixing onto the kagomé lattice sites lends support to the idea that the electronic ground state in ZnCu(3)(OH)(6)Cl(2) and its relatives is nontrivial.

  2. Topological edge states in acoustic Kagome lattices

    NASA Astrophysics Data System (ADS)

    Ni, Xiang; Gorlach, Maxim A.; Alu, Andrea; Khanikaev, Alexander B.

    2017-05-01

    We demonstrate that an acoustic Kagome lattice formed by an array of interconnected resonant cavities exhibits a new class of topological states protected by C3 symmetry, and it is characterised by a topological invariant in the form of a winding number in Pauli vector space. This acoustic topological metamaterial can be considered as the two-dimensional analogue of the Su-Schrieffer-Heeger model, exhibiting a topological transition when a detuning is introduced between the inter-cell and intra-cell hopping amplitudes. The topological transition caused by such detuning is accompanied by the opening of a complete topological band gap, which may host edge states. The edge states emerge on either truncated ends of the lattice terminated by a cladding layer or at the domain walls between topologically nontrivial and trivial domains. First-principles simulations based on full-wave finite element method are used to design the lattice and confirm our analytical predictions.

  3. Atomic Layer Deposition of Metal Sulfide Materials

    SciTech Connect

    Dasgupta, Neil P.; Meng, Xiangbo; Elam, Jeffrey W.; Martinson, Alex B. F.

    2015-02-17

    The field of nanoscience is delivering increasingly intricate yet elegant geometric structures incorporating an ever-expanding palette of materials. Atomic layer deposition (ALD) is a powerful driver of this field, providing exceptionally conformal coatings spanning the periodic table and atomic-scale precision independent of substrate geometry. This versatility is intrinsic to ALD and results from sequential and self-limiting surface reactions. This characteristic facilitates digital synthesis, in which the film grows linearly with the number of reaction cycles. While the majority of ALD processes identified to date produce metal oxides, novel applications in areas such as energy storage, catalysis, and nanophotonics are motivating interest in sulfide materials. Recent progress in ALD of sulfides has expanded the diversity of accessible materials as well as a more complete understanding of the unique chalcogenide surface chemistry.

  4. Emergent order in the kagome Ising magnet Dy3Mg2Sb3O14

    NASA Astrophysics Data System (ADS)

    Paddison, Joseph A. M.; Ong, Harapan S.; Hamp, James O.; Mukherjee, Paromita; Bai, Xiaojian; Tucker, Matthew G.; Butch, Nicholas P.; Castelnovo, Claudio; Mourigal, Martin; Dutton, S. E.

    2016-12-01

    The Ising model--in which degrees of freedom (spins) are binary valued (up/down)--is a cornerstone of statistical physics that shows rich behaviour when spins occupy a highly frustrated lattice such as kagome. Here we show that the layered Ising magnet Dy3Mg2Sb3O14 hosts an emergent order predicted theoretically for individual kagome layers of in-plane Ising spins. Neutron-scattering and bulk thermomagnetic measurements reveal a phase transition at ~0.3 K from a disordered spin-ice-like regime to an emergent charge ordered state, in which emergent magnetic charge degrees of freedom exhibit three-dimensional order while spins remain partially disordered. Monte Carlo simulations show that an interplay of inter-layer interactions, spin canting and chemical disorder stabilizes this state. Our results establish Dy3Mg2Sb3O14 as a tuneable system to study interacting emergent charges arising from kagome Ising frustration.

  5. Silver doped metal layers for medical applications

    NASA Astrophysics Data System (ADS)

    Kocourek, T.; Jelínek, M.; Mikšovský, J.; Jurek, K.; Weiserová, M.

    2014-04-01

    Biological, physical and mechanical properties of silver-doped layers of titanium alloy Ti6Al4V and 316L steel prepared by pulsed laser deposition were studied. Metallic silver-doped coatings could be a new route for antibacterial protection in medicine. Thin films of silver and silver-doped materials were synthesized using KrF excimer laser deposition. The materials were ablated from two targets, which were composed either from titanium alloy with silver segments or from steel with silver segments. The concentration of silver ranged from 1.54 at% to 4.32 at% for steel and from 3.04 at% to 13.05 at% for titanium alloy. The layer properties such as silver content, structure, adhesion, surface wettability, and antibacterial efficacy (evaluated by Escherichia coli and Bacillus subtilis bacteria) were measured. Film adhesion was studied using scratch test. The antibacterial efficacy changed with silver doping up to 99.9 %. Our investigation was focused on minimum Ag concentration needed to reach high antibacterial efficiency, high film adhesion, and hardness.

  6. Fano resonances in kagome fibers

    NASA Astrophysics Data System (ADS)

    Vincetti, L.; Setti, V.; Zoboli, M.

    2012-06-01

    Confinement Loss of microstructured fibers whose cladding is composed by a triangular arrangement of tubes of various shapes is theoretically and numerically investigated. Kagome Fibers belong from this family of fibers with cladding tubes with hexagonal shape. The shape of the cladding tubes is proved to strongly affect the performance of the microstructured fiber. In order to understand the reasons for this behavior, the spectral properties of the tubes that constitute the cladding are investigated first. It is proved that also these tubes suffer from additional Fano Resonances when they are given a polygonal shape. It is proved that, by using the analytical model developed for the stand alone polygonal tubes, it is possible to predict the spectral position of Fano Resonances also in microstructured fibers. This is extremely important since it suggest new ways to reduce confinement loss in kagome fibers and microstructured fibers in general.

  7. Atomic layer deposition of metal sulfide materials.

    PubMed

    Dasgupta, Neil P; Meng, Xiangbo; Elam, Jeffrey W; Martinson, Alex B F

    2015-02-17

    CONSPECTUS: The field of nanoscience is delivering increasingly intricate yet elegant geometric structures incorporating an ever-expanding palette of materials. Atomic layer deposition (ALD) is a powerful driver of this field, providing exceptionally conformal coatings spanning the periodic table and atomic-scale precision independent of substrate geometry. This versatility is intrinsic to ALD and results from sequential and self-limiting surface reactions. This characteristic facilitates digital synthesis, in which the film grows linearly with the number of reaction cycles. While the majority of ALD processes identified to date produce metal oxides, novel applications in areas such as energy storage, catalysis, and nanophotonics are motivating interest in sulfide materials. Recent progress in ALD of sulfides has expanded the diversity of accessible materials as well as a more complete understanding of the unique chalcogenide surface chemistry. ALD of sulfide materials typically uses metalorganic precursors and hydrogen sulfide (H2S). As in oxide ALD, the precursor chemistry is critical to controlling both the film growth and properties including roughness, crystallinity, and impurity levels. By modification of the precursor sequence, multicomponent sulfides have been deposited, although challenges remain because of the higher propensity for cation exchange reactions, greater diffusion rates, and unintentional annealing of this more labile class of materials. A deeper understanding of these surface chemical reactions has been achieved through a combination of in situ studies and quantum-chemical calculations. As this understanding matures, so does our ability to deterministically tailor film properties to new applications and more sophisticated devices. This Account highlights the attributes of ALD chemistry that are unique to metal sulfides and surveys recent applications of these materials in photovoltaics, energy storage, and photonics. Within each application

  8. Atomic layer deposition of metal sulfide materials

    DOE PAGES

    Dasgupta, Neil P.; Meng, Xiangbo; Elam, Jeffrey W.; ...

    2015-01-12

    The field of nanoscience is delivering increasingly intricate yet elegant geometric structures incorporating an ever-expanding palette of materials. Atomic layer deposition (ALD) is a powerful driver of this field, providing exceptionally conformal coatings spanning the periodic table and atomic-scale precision independent of substrate geometry. This versatility is intrinsic to ALD and results from sequential and self-limiting surface reactions. This characteristic facilitates digital synthesis, in which the film grows linearly with the number of reaction cycles. While the majority of ALD processes identified to date produce metal oxides, novel applications in areas such as energy storage, catalysis, and nanophotonics are motivatingmore » interest in sulfide materials. Recent progress in ALD of sulfides has expanded the diversity of accessible materials as well as a more complete understanding of the unique chalcogenide surface chemistry. ALD of sulfide materials typically uses metalorganic precursors and hydrogen sulfide (H2S). As in oxide ALD, the precursor chemistry is critical to controlling both the film growth and properties including roughness, crystallinity, and impurity levels. By modification of the precursor sequence, multicomponent sulfides have been deposited, although challenges remain because of the higher propensity for cation exchange reactions, greater diffusion rates, and unintentional annealing of this more labile class of materials. A deeper understanding of these surface chemical reactions has been achieved through a combination of in situ studies and quantum-chemical calculations. As this understanding matures, so does our ability to deterministically tailor film properties to new applications and more sophisticated devices. This Account highlights the attributes of ALD chemistry that are unique to metal sulfides and surveys recent applications of these materials in photovoltaics, energy storage, and photonics. Within each application space

  9. Impact Electrochemistry of Layered Transition Metal Dichalcogenides.

    PubMed

    Lim, Chee Shan; Tan, Shu Min; Sofer, Zdeněk; Pumera, Martin

    2015-08-25

    Layered transition metal dichalcogenides (TMDs) exhibit paramount importance in the electrocatalysis of the hydrogen evolution reaction. It is crucial to determine the size of the electrocatalytic particles as well as to establish their electrocatalytic activity, which occurs at the edges of these particles. Here, we show that individual TMD (MoS2, MoSe2, WS2, or WSe2; in general MX2) nanoparticles impacting an electrode surface provide well-defined current "spikes" in both the cathodic and anodic regions. These spikes originate from direct oxidation of the nanoparticles (from M(4+) to M(6+)) at the anodic region and from the electrocatalytic currents generated upon hydrogen evolution in the cathodic region. The positive correlation between the frequency of the impacts and the concentration of TMD nanoparticles is also demonstrated here, enabling determination of the concentration of TMD nanoparticles in colloidal form. In addition, the size of individual TMD nanoparticles can be evaluated using the charge passed during every spike. The capability of detecting both the "indirect" catalytic effect of an impacting TMD nanoparticle as well as "direct" oxidation indicates that the frequency of impacts in both the "indirect" and "direct" scenarios are comparable. This suggests that all TMD nanoparticles, which are electrochemically oxidizable (thus capable of donating electrons to electrodes), are also capable of catalyzing the hydrogen reduction reaction.

  10. Solder for oxide layer-building metals and alloys

    DOEpatents

    Kronberg, James W.

    1992-01-01

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel. The comosition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than aproximatley 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300.degree. C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  11. Solder for oxide layer-building metals and alloys

    DOEpatents

    Kronberg, J.W.

    1992-09-15

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel is disclosed. The composition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than approximately 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300 C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  12. Resin infusion of layered metal/composite hybrid and resulting metal/composite hybrid laminate

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J. (Inventor); Grimsley, Brian W. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)

    2009-01-01

    A method of fabricating a metal/composite hybrid laminate is provided. One or more layered arrangements are stacked on a solid base to form a layered structure. Each layered arrangement is defined by a fibrous material and a perforated metal sheet. A resin in its liquid state is introduced along a portion of the layered structure while a differential pressure is applied across the laminate structure until the resin permeates the fibrous material of each layered arrangement and fills perforations in each perforated metal sheet. The resin is cured thereby yielding a metal/composite hybrid laminate.

  13. Auger electron spectroscopy of contrast-forming layers on metals

    NASA Technical Reports Server (NTRS)

    Hoffmann, Siegfried; Exner, Hans Eckart

    1988-01-01

    As shown by Auger electron spectroscopy, the layers formed during contrasting metallographic polished Cu and Ni with an apparatus using intense electron bombardment consist of metal sputtered from the Au, Fe, or Pb cathode. This layer takes up oxygen from the residual atmosphere. The mechanism of contrast enhancement is the same as that of vapor-deposited interference layers.

  14. Electron doping a kagome spin liquid

    SciTech Connect

    Kelly, Z. A.; Gallagher, M. J.; McQueen, T. M.

    2016-10-13

    Herbertsmithite, ZnCu3(OH)6Cl2, is a two-dimensional kagome lattice realization of a spin liquid, with evidence for fractionalized excitations and a gapped ground state. Such a quantum spin liquid has been proposed to underlie high-temperature superconductivity and is predicted to produce a wealth of new states, including a Dirac metal at 1/3 electron doping. Here, we report the topochemical synthesis of electron-doped ZnLixCu3(OH)6Cl2 from x=0 to x=1.8 (3/5 per Cu2+). Contrary to expectations, no metallicity or superconductivity is induced. Instead, we find a systematic suppression of magnetic behavior across the phase diagram. Lastly, our results demonstrate that significant theoretical work is needed to understand and predict the role of doping in magnetically frustrated narrow band insulators, particularly the interplay between local structural disorder and tendency toward electron localization, and pave the way for future studies of doped spin liquids.

  15. Electron Doping a Kagome Spin Liquid

    NASA Astrophysics Data System (ADS)

    Kelly, Z. A.; Gallagher, M. J.; McQueen, T. M.

    2016-10-01

    Herbertsmithite, ZnCu3 (OH )6Cl2 , is a two-dimensional kagome lattice realization of a spin liquid, with evidence for fractionalized excitations and a gapped ground state. Such a quantum spin liquid has been proposed to underlie high-temperature superconductivity and is predicted to produce a wealth of new states, including a Dirac metal at 1 /3 electron doping. Here, we report the topochemical synthesis of electron-doped ZnLix Cu3 (OH )6Cl2 from x =0 to x =1.8 (3 /5 per Cu2 + ). Contrary to expectations, no metallicity or superconductivity is induced. Instead, we find a systematic suppression of magnetic behavior across the phase diagram. Our results demonstrate that significant theoretical work is needed to understand and predict the role of doping in magnetically frustrated narrow band insulators, particularly the interplay between local structural disorder and tendency toward electron localization, and pave the way for future studies of doped spin liquids.

  16. Electron doping a kagome spin liquid

    DOE PAGES

    Kelly, Z. A.; Gallagher, M. J.; McQueen, T. M.

    2016-10-13

    Herbertsmithite, ZnCu3(OH)6Cl2, is a two-dimensional kagome lattice realization of a spin liquid, with evidence for fractionalized excitations and a gapped ground state. Such a quantum spin liquid has been proposed to underlie high-temperature superconductivity and is predicted to produce a wealth of new states, including a Dirac metal at 1/3 electron doping. Here, we report the topochemical synthesis of electron-doped ZnLixCu3(OH)6Cl2 from x=0 to x=1.8 (3/5 per Cu2+). Contrary to expectations, no metallicity or superconductivity is induced. Instead, we find a systematic suppression of magnetic behavior across the phase diagram. Lastly, our results demonstrate that significant theoretical work is neededmore » to understand and predict the role of doping in magnetically frustrated narrow band insulators, particularly the interplay between local structural disorder and tendency toward electron localization, and pave the way for future studies of doped spin liquids.« less

  17. Magnetic properties and concurrence for fluid {sup 3}He on kagome lattice

    SciTech Connect

    Ananikian, N. S. Ananikian, L. N.; Lazaryan, H. A.

    2012-10-15

    We present the results of magnetic properties and entanglement for kagome lattice using Heisenberg model with two- and three-site exchange interactions in strong magnetic field. Kagome lattice correspond to the third layer of fluid {sup 3}He absorbed on the surface of graphite. The magnetic properties and concurrence as a measure of pairwise thermal entanglement are studied by means of variational mean-field like treatment based on Gibbs-Bogoliubov inequality. The system exhibits different magnetic behaviors depending on the values of the exchange parameters (J{sub 2}, J{sub 3}). We have obtained the magnetization plateaus at low temperatures. The central theme of the paper is comparing the entanglement and magnetic behavior for kagome lattice. We have found that in the antiferromagnetic region behavior of the concurrence coincides with the magnetic susceptibility one.

  18. Band structure engineered layered metals for low-loss plasmonics

    PubMed Central

    Gjerding, Morten N.; Pandey, Mohnish; Thygesen, Kristian S.

    2017-01-01

    Plasmonics currently faces the problem of seemingly inevitable optical losses occurring in the metallic components that challenges the implementation of essentially any application. In this work, we show that Ohmic losses are reduced in certain layered metals, such as the transition metal dichalcogenide TaS2, due to an extraordinarily small density of states for scattering in the near-IR originating from their special electronic band structure. On the basis of this observation, we propose a new class of band structure engineered van der Waals layered metals composed of hexagonal transition metal chalcogenide-halide layers with greatly suppressed intrinsic losses. Using first-principles calculations, we show that the suppression of optical losses lead to improved performance for thin-film waveguiding and transformation optics. PMID:28436432

  19. Band structure engineered layered metals for low-loss plasmonics.

    PubMed

    Gjerding, Morten N; Pandey, Mohnish; Thygesen, Kristian S

    2017-04-24

    Plasmonics currently faces the problem of seemingly inevitable optical losses occurring in the metallic components that challenges the implementation of essentially any application. In this work, we show that Ohmic losses are reduced in certain layered metals, such as the transition metal dichalcogenide TaS2, due to an extraordinarily small density of states for scattering in the near-IR originating from their special electronic band structure. On the basis of this observation, we propose a new class of band structure engineered van der Waals layered metals composed of hexagonal transition metal chalcogenide-halide layers with greatly suppressed intrinsic losses. Using first-principles calculations, we show that the suppression of optical losses lead to improved performance for thin-film waveguiding and transformation optics.

  20. Monte Carlo simulations of ABC stacked kagome lattice films

    NASA Astrophysics Data System (ADS)

    Yerzhakov, H. V.; Plumer, M. L.; Whitehead, J. P.

    2016-05-01

    Properties of films of geometrically frustrated ABC stacked antiferromagnetic kagome layers are examined using Metropolis Monte Carlo simulations. The impact of having an easy-axis anisotropy on the surface layers and cubic anisotropy in the interior layers is explored. The spin structure at the surface is shown to be different from that of the bulk 3D fcc system, where surface axial anisotropy tends to align spins along the surface [1 1 1] normal axis. This alignment then propagates only weakly to the interior layers through exchange coupling. Results are shown for the specific heat, magnetization and sub-lattice order parameters for both surface and interior spins in three and six layer films as a function of increasing axial surface anisotropy. Relevance to the exchange bias phenomenon in IrMn3 films is discussed.

  1. Monte Carlo simulations of ABC stacked kagome lattice films.

    PubMed

    Yerzhakov, H V; Plumer, M L; Whitehead, J P

    2016-05-18

    Properties of films of geometrically frustrated ABC stacked antiferromagnetic kagome layers are examined using Metropolis Monte Carlo simulations. The impact of having an easy-axis anisotropy on the surface layers and cubic anisotropy in the interior layers is explored. The spin structure at the surface is shown to be different from that of the bulk 3D fcc system, where surface axial anisotropy tends to align spins along the surface [1 1 1] normal axis. This alignment then propagates only weakly to the interior layers through exchange coupling. Results are shown for the specific heat, magnetization and sub-lattice order parameters for both surface and interior spins in three and six layer films as a function of increasing axial surface anisotropy. Relevance to the exchange bias phenomenon in IrMn3 films is discussed.

  2. Energy dissipation in intercalated carbon nanotube forests with metal layers

    USDA-ARS?s Scientific Manuscript database

    Vertically aligned carbon nanotube (CNT) forests were synthesized to study their quasi-static mechanical properties in a layered configuration with metallization. The top and bottom surfaces of CNT forests were metalized with Ag, Fe, and In using paste, sputtering, and thermal evaporation, respectiv...

  3. Charge Modeling for Metal Layer on Insulating Substrate

    NASA Astrophysics Data System (ADS)

    Okai, Nobuhiro; Yano, Tasuku; Sohda, Yasunari

    2011-06-01

    A charging model for magnification variation in the observation of a metal pattern on an insulating substrate using a scanning electron microscope is proposed. To calculate the time evolution of charging, we replace electron trajectory with current. Negative charging of the metal layer is observed and is caused by the current from the anode, which is set above the sample, to the metal layer. The origin of the current is tertiary electrons produced by backscattered electrons colliding with the anode. By controlling tertiary-electron trajectories through the application of bias voltage to the anode, the magnification variation can be reduced to almost zero.

  4. Ternary metal-rich sulfide with a layered structure

    DOEpatents

    Franzen, Hugo F.; Yao, Xiaoqiang

    1993-08-17

    A ternary Nb-Ta-S compound is provided having the atomic formula, Nb.sub.1.72 Ta.sub.3.28 S.sub.2, and exhibiting a layered structure in the sequence S-M3-M2-M1-M2-M3-S wherein S represents sulfur layers and M1, M2, and M3 represent Nb/Ta mixed metal layers. This sequence generates seven sheets stacked along the [001] direction of an approximate body centered cubic crystal structure with relatively weak sulfur-to-sulfur van der Waals type interactions between adjacent sulfur sheets and metal-to-metal bonding within and between adjacent mixed metal sheets.

  5. Method of adhesion between an oxide layer and a metal layer

    DOEpatents

    Jennison, Dwight R.; Bogicevic, Alexander; Kelber, Jeffry A.; Chambers, Scott A.

    2004-09-14

    A method of controlling the wetting characteristics and increasing the adhesion between a metal and an oxide layer. By introducing a negatively-charged species to the surface of an oxide layer, layer-by-layer growth of metal deposited onto the oxide surface is promoted, increasing the adhesion strength of the metal-oxide interface. The negatively-charged species can either be deposited onto the oxide surface or a compound can be deposited that dissociates on, or reacts with, the surface to form the negatively-charged species. The deposited metal adatoms can thereby bond laterally to the negatively-charged species as well as vertically to the oxide surface as well as react with the negatively charged species, be oxidized, and incorporated on or into the surface of the oxide.

  6. Chemistry of layered d-metal pnictide oxides and their potential as candidates for new superconductors

    PubMed Central

    Ozawa, Tadashi C; Kauzlarich, Susan M

    2008-01-01

    Layered d-metal pnictide oxides are a unique class of compounds which consist of characteristic d-metal pnictide layers and metal oxide layers. More than 100 of these layered compounds, including the recently discovered Fe-based superconducting pnictide oxides, can be classified into nine structure types. These structure types and the chemical and physical properties of the characteristic d-metal pnictide layers and metal oxide layers of the layered d-metal pnictide oxides are reviewed and discussed. Furthermore, possible approaches to design new superconductors based on these layered d-metal pnictide oxides are proposed. PMID:27877997

  7. Rare earth zirconium oxide buffer layers on metal substrates

    DOEpatents

    Williams, Robert K.; Paranthaman, Mariappan; Chirayil, Thomas G.; Lee, Dominic F.; Goyal, Amit; Feenstra, Roeland

    2001-01-01

    A laminate article comprises a substrate and a biaxially textured (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer over the substrate, wherein 0layer can be deposited using sol-gel or metal-organic decomposition. The laminate article can include a layer of YBCO over the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer. A layer of CeO.sub.2 between the YBCO layer and the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer can also be include. Further included can be a layer of YSZ between the CeO.sub.2 layer and the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.

  8. Single-layer transition metal sulfide catalysts

    DOEpatents

    Thoma, Steven G.

    2011-05-31

    Transition Metal Sulfides (TMS), such as molybdenum disulfide (MoS.sub.2), are the petroleum industry's "workhorse" catalysts for upgrading heavy petroleum feedstocks and removing sulfur, nitrogen and other pollutants from fuels. We have developed an improved synthesis technique to produce SLTMS catalysts, such as molybdenum disulfide, with potentially greater activity and specificity than those currently available. Applications for this technology include heavy feed upgrading, in-situ catalysis, bio-fuel conversion and coal liquefaction.

  9. Layered chiral metallic meta-materials

    NASA Astrophysics Data System (ADS)

    Zheludev, Nikolay I.; Papakostas, Aris; Potts, Adrian W.; Coles, Harry J.; Bagnall, Darren M.

    2002-06-01

    Using electron beam lithographic techniques we have manufactured left and right-handed forms of an artificial medium consisting of high densities of microscopic planar chiral metallic objects distributed regularly in a plane. In this artificial medium we have for the first time observed optical manifestations of planar chirality in the form of handedness-sensitive rotation of the polarization state and elliptization of visible light diffracted from the structure. Applications of such media in functional materials are discussed.

  10. Method of depositing buffer layers on biaxially textured metal substrates

    DOEpatents

    Beach, David B.; Morrell, Jonathan S.; Paranthaman, Mariappan; Chirayil, Thomas; Specht, Eliot D.; Goyal, Amit

    2002-08-27

    A laminate article comprises a substrate and a biaxially textured (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer over the substrate, wherein 0layer can be deposited using sol-gel or metal-organic decomposition. The laminate article can include a layer of YBCO over the (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer. A layer of CeO.sub.2 between the YBCO layer and the (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer can also be include. Further included can be a layer of YSZ between the CeO.sub.2 layer and the (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.

  11. Effect of layered manufacturing techniques, alloy powders, and layer thickness on metal-ceramic bond strength.

    PubMed

    Ekren, Orhun; Ozkomur, Ahmet; Ucar, Yurdanur

    2017-07-06

    Direct metal laser sintering (DMLS) and direct metal laser melting (DMLM) have become popular for fabricating the metal frameworks of metal-ceramic restorations. How the type of layered manufacturing device, layer thickness, and alloy powder may affect the bond strength of ceramic to metal substructure is unclear. The purpose of this in vitro study was to evaluate the bond strength of dental porcelain to metal frameworks fabricated using different layered manufacturing techniques (DMLS and DMLM), Co-Cr alloy powders, and layer thicknesses and to evaluate whether a correlation exists between the bond strength and the number of ceramic remnants on the metal surface. A total of 75 bar-shaped metal specimens (n=15) were fabricated using either DMLS or DMLM. The powder alloys used were Keramit NP-S and EOS-Cobalt-Chrome SP-2 with layer thicknesses of 20 μm and 30 μm. After ceramic application, the metal-ceramic bond strength was evaluated with a 3-point-bend test. Three-way ANOVA followed by the Tukey honest significance difference test were used for statistical analysis (α=.05). De-bonding surface microstructure was observed with scanning electron microscopy. Energy dispersive spectroscopy analysis was conducted to evaluate the correlation between ceramic remnants on the metal surface and bond strength values. The mean bond strength value of DMLS was significantly higher than that of DMLM. While no statistically significant difference was found between layer thicknesses, alloy powders closely affected bond strength. Statistical comparisons revealed that the highest bond strength could be achieved with DMLS-Cobalt-Chrome SP2-20μm, and the lowest bond strength was observed in DMLS-Keramit NP-S-20μm (P≤.05). No correlation was found between porcelain remnants on the metal surface and bond strength values. The layered manufacturing device and the alloy powders evaluated in the current study closely affected the bond strength of dental porcelain to a metal framework

  12. Thermodynamics of elastic strength of the metal surface layer

    NASA Astrophysics Data System (ADS)

    Andreev, Yu. Ya.; Kiselev, D. A.

    2013-07-01

    This paper presents a physicochemical model that establishes a connection between the elastic strength of the surface layer (SL) of metal and its surface Gibbs energy. The elastic limit of SL along the low-index face of the metal single crystal under stress during the transition from elastic to plastic deformation was calculated. Calculation shows that the elastic limit of metal SL with fcc and bcc structures is approximately three orders of magnitude higher than the yield strength of these metals in bulk and close to nanohardness of the metals, in particular; for Cu(111) и Al(111), it is 5.3 and 2.8 GPa, respectively. In the light of the proposed model, the effect of lowering the elastic strength of metal SL due to adsorption of surfactant is formulated.

  13. Methods of Fabricating a Layer of Metallic Glass-Based Material Using Immersion and Pouring Techniques

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas (Inventor)

    2015-01-01

    Systems and methods in accordance with embodiments of the invention implement layers of metallic glass-based materials. In one embodiment, a method of fabricating a layer of metallic glass includes: applying a coating layer of liquid phase metallic glass to an object, the coating layer being applied in a sufficient quantity such that the surface tension of the liquid phase metallic glass causes the coating layer to have a smooth surface; where the metallic glass has a critical cooling rate less than 1000 K/s; and cooling the coating layer of liquid phase metallic glass to form a layer of solid phase metallic glass.

  14. The Thermomagnetic Instability in Superconducting Films with Adjacent Metal Layer

    NASA Astrophysics Data System (ADS)

    Vestgården, J. I.; Galperin, Y. M.; Johansen, T. H.

    2013-12-01

    Dendritic flux avalanches is a frequently encountered consequence of the thermomagnetic instability in type-II superconducting films. The avalanches, which are potentially harmful for superconductor-based devices, can be suppressed by an adjacent normal metal layer, even when the two layers are not in thermal contact. The suppression of the avalanches in this case is due to so-called magnetic braking, caused by eddy currents generated in the metal layer by propagating magnetic flux. We develop a theory of magnetic braking by analyzing coupled electrodynamics and heat flow in a superconductor-normal metal bilayer. The equations are solved by linearization and by numerical simulation of the avalanche dynamics. We find that in an uncoated superconductor, even a uniform thermomagnetic instability can develop into a dendritic flux avalanche. The mechanism is that a small non-uniformity caused by the electromagnetic non-locality induces a flux-flow hot spot at a random position. The hot spot quickly develops into a finger, which at high speeds penetrates into the superconductor, forming a branching structure. Magnetic braking slows the avalanches, and if the normal metal conductivity is sufficiently high, it can suppress the formation of the dendritic structure. During avalanches, the braking by the normal metal layer prevents the temperature from exceeding the transition temperature of the superconductor. Analytical criteria for the instability threshold are developed using the linear stability analysis. The criteria are found to match quantitatively the instability onsets obtained in simulations.

  15. Monolayer and/or few-layer graphene on metal or metal-coated substrates

    DOEpatents

    Sutter, Peter Werner; Sutter, Eli Anguelova

    2015-04-14

    Disclosed is monolayer and/or few-layer graphene on metal or metal-coated substrates. Embodiments include graphene mirrors. In an example, a mirror includes a substrate that has a surface exhibiting a curvature operable to focus an incident beam onto a focal plane. A graphene layer conformally adheres to the substrate, and is operable to protect the substrate surface from degradation due to the incident beam and an ambient environment.

  16. Correlated impurities and intrinsic spin-liquid physics in the kagome material herbertsmithite

    DOE PAGES

    Han, Tian-Heng; Norman, M. R.; Wen, J. -J.; ...

    2016-08-18

    Low energy inelastic neutron scattering on single crystals of the kagome spin-liquid compound ZnCu3(OD)6Cl2 (herbertsmithite) reveals in this paper antiferromagnetic correlations between impurity spins for energy transfers h(with stroke)ω < 0.8 meV (~ J/20). The momentum dependence differs significantly from higher energy scattering which arises from the intrinsic kagome spins. The low energy fluctuations are characterized by diffuse scattering near wave vectors (100) and (00 3/2), which is consistent with antiferromagnetic correlations between pairs of nearest-neighbor Cu impurities on adjacent triangular (Zn) interlayers. The corresponding impurity lattice resembles a simple cubic lattice in the dilute limit below the percolation threshold.more » Such an impurity model can describe prior neutron, NMR, and specific heat data. The low energy neutron data are consistent with the presence of a small spin gap (Δ ~ 0.7 meV) in the kagome layers, similar to that recently observed by NMR. Finally, the ability to distinguish the scattering due to Cu impurities from that of the planar kagome Cu spins provides an important avenue for probing intrinsic spin-liquid physics.« less

  17. Correlated impurities and intrinsic spin-liquid physics in the kagome material herbertsmithite

    NASA Astrophysics Data System (ADS)

    Han, Tian-Heng; Norman, M. R.; Wen, J.-J.; Rodriguez-Rivera, Jose A.; Helton, Joel S.; Broholm, Collin; Lee, Young S.

    2016-08-01

    Low energy inelastic neutron scattering on single crystals of the kagome spin-liquid compound ZnCu3(OD) 6Cl2 (herbertsmithite) reveals antiferromagnetic correlations between impurity spins for energy transfers ℏ ω <0.8 meV (˜J /20 ). The momentum dependence differs significantly from higher energy scattering which arises from the intrinsic kagome spins. The low energy fluctuations are characterized by diffuse scattering near wave vectors (100) and (00 3/2 ), which is consistent with antiferromagnetic correlations between pairs of nearest-neighbor Cu impurities on adjacent triangular (Zn) interlayers. The corresponding impurity lattice resembles a simple cubic lattice in the dilute limit below the percolation threshold. Such an impurity model can describe prior neutron, NMR, and specific heat data. The low energy neutron data are consistent with the presence of a small spin gap (Δ ˜0.7 meV ) in the kagome layers, similar to that recently observed by NMR. The ability to distinguish the scattering due to Cu impurities from that of the planar kagome Cu spins provides an important avenue for probing intrinsic spin-liquid physics.

  18. Correlated impurities and intrinsic spin-liquid physics in the kagome material herbertsmithite

    SciTech Connect

    Han, Tian-Heng; Norman, M. R.; Wen, J. -J.; Rodriguez-Rivera, Jose A.; Helton, Joel S.; Broholm, Collin; Lee, Young S.

    2016-08-18

    Low energy inelastic neutron scattering on single crystals of the kagome spin-liquid compound ZnCu3(OD)6Cl2 (herbertsmithite) reveals in this paper antiferromagnetic correlations between impurity spins for energy transfers h(with stroke)ω < 0.8 meV (~ J/20). The momentum dependence differs significantly from higher energy scattering which arises from the intrinsic kagome spins. The low energy fluctuations are characterized by diffuse scattering near wave vectors (100) and (00 3/2), which is consistent with antiferromagnetic correlations between pairs of nearest-neighbor Cu impurities on adjacent triangular (Zn) interlayers. The corresponding impurity lattice resembles a simple cubic lattice in the dilute limit below the percolation threshold. Such an impurity model can describe prior neutron, NMR, and specific heat data. The low energy neutron data are consistent with the presence of a small spin gap (Δ ~ 0.7 meV) in the kagome layers, similar to that recently observed by NMR. Finally, the ability to distinguish the scattering due to Cu impurities from that of the planar kagome Cu spins provides an important avenue for probing intrinsic spin-liquid physics.

  19. PASSIVATION LAYER STABILITY OF A METALLIC ALLOY WASTE FORM

    SciTech Connect

    Williamson, M.; Mickalonis, J.; Fisher, D.; Sindelar, R.

    2010-08-16

    Alloy waste form development under the Waste Forms Campaign of the DOE-NE Fuel Cycle Research & Development program includes the process development and characterization of an alloy system to incorporate metal species from the waste streams generated during nuclear fuel recycling. This report describes the tests and results from the FY10 activities to further investigate an Fe-based waste form that uses 300-series stainless steel as the base alloy in an induction furnace melt process to incorporate the waste species from a closed nuclear fuel recycle separations scheme. This report is focused on the initial activities to investigate the formation of oxyhydroxide layer(s) that would be expected to develop on the Fe-based waste form as it corrodes under aqueous repository conditions. Corrosion tests were used to evaluate the stability of the layer(s) that can act as a passivation layer against further corrosion and would affect waste form durability in a disposal environment.

  20. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-09

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices.

  1. Advanced optical interference filters based on metal and dielectric layers.

    PubMed

    Begou, Thomas; Lemarchand, Fabien; Lumeau, Julien

    2016-09-05

    In this paper, we investigate the design and the fabrication of an advanced optical interference filter based on metal and dielectric layers. This filter respects the specifications of the 2016 OIC manufacturing problem contest. We study and present all the challenges and solutions that allowed achieving a low deviation between the fabricated prototype and the target.

  2. Abrupt Depletion Layer Approximation for the Metal Insulator Semiconductor Diode.

    ERIC Educational Resources Information Center

    Jones, Kenneth

    1979-01-01

    Determines the excess surface change carrier density, surface potential, and relative capacitance of a metal insulator semiconductor diode as a function of the gate voltage, using the precise questions and the equations derived with the abrupt depletion layer approximation. (Author/GA)

  3. Trap-limited photovoltage in ultrathin metal oxide layers

    NASA Astrophysics Data System (ADS)

    Dittrich, Th.; Duzhko, V.; Koch, F.; Kytin, V.; Rappich, J.

    2002-04-01

    Photovoltage signals were observed at ultrathin metal oxide (TiO2,Cu2O, ZnO)/ metal structures by transient and spectral photovoltage (PV) techniques. The sign, the spectral behavior and the time-dependent relaxation of the PV are determined by the nature of the traps in the metal oxide layers. At lower temperatures, the relaxation of the PV signal in TiO2 layers is controlled by recombination due to the overlap of the wave functions of the spatially separated electrons and holes. At higher temperatures, thermal emission accelerates the recombination process. The Bohr radius of trapped holes, the tail of the exponential approximation of electronic states distribution above the valence band, the density of states at the valence band edge were obtained for TiO2 layers by using the proposed model of trap limited PV. The concept of trap limited PV gives a general tool for the investigation of excess carrier separation in ultrathin metal oxide or semiconductor layers with trap states.

  4. Abrupt Depletion Layer Approximation for the Metal Insulator Semiconductor Diode.

    ERIC Educational Resources Information Center

    Jones, Kenneth

    1979-01-01

    Determines the excess surface change carrier density, surface potential, and relative capacitance of a metal insulator semiconductor diode as a function of the gate voltage, using the precise questions and the equations derived with the abrupt depletion layer approximation. (Author/GA)

  5. Experimental signatures of spin liquid physics on the S=1/2 kagom'e lattice

    NASA Astrophysics Data System (ADS)

    Lee, Young

    2012-02-01

    I will describe our recent experimental progress on the quest to study novel ground states in frustrated magnets. New states of matter may be produced if quantum effects and frustration conspire to prevent the ground state from achieving classical order. Materials based on the kagom'e lattice appear to be ideal hosts for the possibility of a quantum spin liquid ground state in two-dimensions. I will discuss our work which includes single crystal growth, bulk characterization, and neutron scattering measurements of the S=1/2 kagom'e lattice material ZnCu3(OH)6Cl2 (also known as herbertsmithite). Recent susceptibility measurements on single crystals yield valuable information on the additional terms in the spin Hamiltonian beyond nearest neighbor Heisenberg exchange, and anomalous x-ray diffraction yields detailed information on the presence of a small amount of atomic impurities. Most interestingly, inelastic neutron scattering measurements of the spin correlations in a single crystal sample reveal a continuum of spinon excitations in this two-dimensional insulating magnet. We will discuss our results in relation to recent theories for spin liquid physics on the S=1/2 kagom'e lattice.

  6. Meteoric metal layers in the atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Plane, John; Whalley, Charlotte

    Radio occultation measurements from several spacecraft (e.g., Mars Express, Mars Global Sur-veyor) have revealed the presence of a "third" ion layer in the Martian atmosphere, which occurs sporadically around 90 km. Because this is the aerobraking region of the atmosphere, and the layers resemble sporadic E layers observed in the terrestrial atmosphere, it has been proposed that these layers consist of metallic ions (principally Fe+ and Mg+ ). A major problem with this hypothesis is that we have shown recently that metallic ions re-combine rapidly in a CO2 -rich atmosphere, both because of the efficiency of CO2 as the "third body" and because of the very low temperatures (about 140 K). In fact, both Fe+ and Mg+ form CO2 cluster ions about 200 times faster than current Mars models predict. These cluster ions should rapidly be destroyed by dissociative recombination with electrons, so that sporadic layers containing metallic ions would have lifetimes of only minutes. We will present a new laboratory study of all the reactions that appear to be required to solve this problem. Most importantly, we will show that the reactions of molecular magnesium ions (Mg+ .CO2 , MgO2 + and MgO+ ) with atomic O are about 20 times faster than expected. The laboratory will then be used to construct a new model of the Martian upper atmosphere, which demonstrates that the sporadic third layers must largely be composed of Mg+ and not Fe+ . These layers should then have lifetimes of more than 10 hours, in accord with observations from Mars Express made on successive orbits.

  7. Solution processed metal oxide thin film hole transport layers for high performance organic solar cells

    DOEpatents

    Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.; Lloyd, Matthew T.; Widjonarko, Nicodemus Edwin; Miedaner, Alexander; Curtis, Calvin J.; Ginley, David S.; Olson, Dana C.

    2017-01-10

    A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.

  8. Photoluminescence emission from Alq3 organic layer in metal-Alq3-metal plasmonic structure

    NASA Astrophysics Data System (ADS)

    Huang, Bohr-Ran; Liao, Chung-Chi; Fan, Wan-Ting; Wu, Jin-Han; Chen, Cheng-Chang; Lin, Yi-Ping; Li, Jung-Yu; Chen, Shih-Pu; Ke, Wen-Cheng; Chen, Nai-Chuan

    2014-06-01

    The emission properties of an organic layer embedded in a metal-organic-metal (MOM) structure were investigated. A partially radiative odd-SPW as well as a non-radiative even-SPW modes are supported by hybridization of the SPW modes on the opposite organic/metal interface in the structure. Because of the competition by this radiative SPW, the population of excitons that recombine to form non-radiative SPW should be reduced. This may account for why the photoluminescence intensity of the MOM sample is higher than that of an organic-metal sample even though the MOM sample has an additional metal layer that should intuitively act as a filter.

  9. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2015-04-28

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  10. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2013-10-22

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  11. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2014-09-16

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  12. Anisotropy in layered half-metallic Heusler alloy superlattices

    NASA Astrophysics Data System (ADS)

    Azadani, Javad G.; Munira, Kamaram; Romero, Jonathon; Ma, Jianhua; Sivakumar, Chockalingam; Ghosh, Avik W.; Butler, William H.

    2016-01-01

    We show that when two Heusler alloys are layered in the [001], [110], or [111] directions for various thicknesses to form a superlattice, the Slater-Pauling rule may still be satisfied and the resulting superlattice is often half-metallic with gaps comparable to or larger than those of its constituents. In addition, uniaxial magnetocrystalline anisotropy is induced because of the differences in the electronic structure of the two Heuslers in the superlattice. Various full-full, full-half, and half-half Heusler superlattices are studied, and potential half-metallic superlattices with perpendicular magnetocrystalline anisotropy are identified.

  13. Anisotropy in layered half-metallic Heusler alloy superlattices

    SciTech Connect

    Azadani, Javad G.; Munira, Kamaram; Sivakumar, Chockalingam; Butler, William H.; Romero, Jonathon; Ma, Jianhua; Ghosh, Avik W.

    2016-01-28

    We show that when two Heusler alloys are layered in the [001], [110], or [111] directions for various thicknesses to form a superlattice, the Slater-Pauling rule may still be satisfied and the resulting superlattice is often half-metallic with gaps comparable to or larger than those of its constituents. In addition, uniaxial magnetocrystalline anisotropy is induced because of the differences in the electronic structure of the two Heuslers in the superlattice. Various full-full, full-half, and half-half Heusler superlattices are studied, and potential half-metallic superlattices with perpendicular magnetocrystalline anisotropy are identified.

  14. Thickness and conductivity of metallic layers from eddy current measurements

    NASA Astrophysics Data System (ADS)

    Moulder, John C.; Uzal, Erol; Rose, James H.

    1992-06-01

    A robust method that uses eddy current measurements to determine the conductivity and thickness of uniform conductive layers is described. The method was tested by estimating the conductivity and thickness of aluminum and copper layers on various substrate metals, and the thickness and conductivity of free-standing foils of aluminum. The electrical impedance was measured for air-core and ferrite-core coils in the presence and absence of the layer for frequencies ranging from 1 kHz to 1 MHz. The thickness and conductivity of the metal layers were inferred by comparing the data taken with air-core coils to the exact theoretical solution of Dodd and Deeds [J. Appl. Phys. 39, 2829 (1968)] using a least-squares norm. The inferences were absolute in the sense that no calibration was used. We report experimental tests for eight different thicknesses of aluminum (20-500 μm) in free space and on four different substrates: Ti-6Al-4V, 304 stainless steel, copper, and 7075 aluminum, and for five different thicknesses of copper (100-500 μm) on 304 stainless steel. Both the thickness and conductivity could be determined accurately (typically within 10%) and simultaneously if the ratio of the layer thickness to the coil radius was between 0.20 and 0.50. For thinner samples either the thickness could be found if the conductivity were known, or vice versa.

  15. Hydrogen permeation resistant layers for liquid metal reactors

    SciTech Connect

    McGuire, J.C.

    1980-03-01

    Reviewing the literature in the tritium diffusion field one can readily see a wide divergence in results for both the response of permeation rate to pressure, and the effect of oxide layers on total permeation rates. The basic mechanism of protective oxide layers is discussed. Two coatings which are less hydrogen permeable than the best naturally occurring oxide are described. The work described is part of an HEDL-ANL cooperative research program on Tritium Permeation in Liquid Metal Cooled Reactors. This includes permeation work on hydrogen, deuterium, and tritium with the hydrogen-deuterium research leading to the developments presented.

  16. Sloshing instability and electrolyte layer rupture in liquid metal batteries

    NASA Astrophysics Data System (ADS)

    Weber, Norbert; Beckstein, Pascal; Herreman, Wietze; Horstmann, Gerrit Maik; Nore, Caroline; Stefani, Frank; Weier, Tom

    2017-05-01

    Liquid metal batteries (LMBs) are discussed today as a cheap grid scale energy storage, as required for the deployment of fluctuating renewable energies. Built as stable density stratification of two liquid metals separated by a thin molten salt layer, LMBs are susceptible to short-circuit by fluid flows. Using direct numerical simulation, we study a sloshing long wave interface instability in cylindrical cells, which is already known from aluminium reduction cells. After characterising the instability mechanism, we investigate the influence of cell current, layer thickness, density, viscosity, conductivity and magnetic background field. Finally we study the shape of the interface and give a dimensionless parameter for the onset of sloshing as well as for the short-circuit.

  17. Lipid Layer-based Corrosion Monitoring on Metal Substrates

    DTIC Science & Technology

    2013-04-01

    phospholipid bilayer works with protein complexes to regulate material transport, as well as to send and receive information between cells. While...disrupting the bilayer (9). If metal oxides are capable of disrupting and causing degradation of a phospholipid layer, it may be possible to...Strittmatter, P. Formation and Properties of 1000-Å-Diameter, Singel- Bilayer Phospholipid Vesicles. Proc. Natl. Acad. Sci. USA 1979, 76, 145–149. 6

  18. Metal-Organic Frameworks for Thin-Layer Chromatographic Applications.

    PubMed

    Schenk, Claudia; Kutzscher, Christel; Drache, Franziska; Helten, Stella; Senkovska, Irena; Kaskel, Stefan

    2017-01-25

    Preparation of thin-layer chromatographic (TLC) plates based on metal-organic frameworks (MOFs) as porous stationary phases is described. DUT-67 (DUT = Dresden University of Technology), a zirconium based MOF, was used in combination with a fluorescent indicator as stationary phase for analyzing a small selection of a wide spectrum of relevant analytes. The successful separation of benzaldehyde from trans-cinnamaldehyde and 4-aminophenol from 2-aminotoluene is reported as a model system using optimized eluent mixtures containing acetic acid.

  19. Artificial kagome arrays of nanomagnets: a frozen dipolar spin ice.

    PubMed

    Rougemaille, N; Montaigne, F; Canals, B; Duluard, A; Lacour, D; Hehn, M; Belkhou, R; Fruchart, O; El Moussaoui, S; Bendounan, A; Maccherozzi, F

    2011-02-04

    Magnetic frustration effects in artificial kagome arrays of nanomagnets are investigated using x-ray photoemission electron microscopy and Monte Carlo simulations. Spin configurations of demagnetized networks reveal unambiguous signatures of long range, dipolar interaction between the nanomagnets. As soon as the system enters the spin ice manifold, the kagome dipolar spin ice model captures the observed physics, while the short range kagome spin ice model fails.

  20. Emergent order in the kagome Ising magnet Dy3Mg2Sb3O14

    PubMed Central

    Paddison, Joseph A. M.; Ong, Harapan S.; Hamp, James O.; Mukherjee, Paromita; Bai, Xiaojian; Tucker, Matthew G.; Butch, Nicholas P.; Castelnovo, Claudio; Mourigal, Martin; Dutton, S. E.

    2016-01-01

    The Ising model—in which degrees of freedom (spins) are binary valued (up/down)—is a cornerstone of statistical physics that shows rich behaviour when spins occupy a highly frustrated lattice such as kagome. Here we show that the layered Ising magnet Dy3Mg2Sb3O14 hosts an emergent order predicted theoretically for individual kagome layers of in-plane Ising spins. Neutron-scattering and bulk thermomagnetic measurements reveal a phase transition at ∼0.3 K from a disordered spin-ice-like regime to an emergent charge ordered state, in which emergent magnetic charge degrees of freedom exhibit three-dimensional order while spins remain partially disordered. Monte Carlo simulations show that an interplay of inter-layer interactions, spin canting and chemical disorder stabilizes this state. Our results establish Dy3Mg2Sb3O14 as a tuneable system to study interacting emergent charges arising from kagome Ising frustration. PMID:27996012

  1. Emergent order in the kagome Ising magnet Dy3Mg2Sb3O14.

    PubMed

    Paddison, Joseph A M; Ong, Harapan S; Hamp, James O; Mukherjee, Paromita; Bai, Xiaojian; Tucker, Matthew G; Butch, Nicholas P; Castelnovo, Claudio; Mourigal, Martin; Dutton, S E

    2016-12-20

    The Ising model-in which degrees of freedom (spins) are binary valued (up/down)-is a cornerstone of statistical physics that shows rich behaviour when spins occupy a highly frustrated lattice such as kagome. Here we show that the layered Ising magnet Dy3Mg2Sb3O14 hosts an emergent order predicted theoretically for individual kagome layers of in-plane Ising spins. Neutron-scattering and bulk thermomagnetic measurements reveal a phase transition at ∼0.3 K from a disordered spin-ice-like regime to an emergent charge ordered state, in which emergent magnetic charge degrees of freedom exhibit three-dimensional order while spins remain partially disordered. Monte Carlo simulations show that an interplay of inter-layer interactions, spin canting and chemical disorder stabilizes this state. Our results establish Dy3Mg2Sb3O14 as a tuneable system to study interacting emergent charges arising from kagome Ising frustration.

  2. Surface plasmon dispersion in hexagonal, honeycomb and kagome plasmonic crystals.

    PubMed

    Tenner, V T; de Dood, M J A; van Exter, M P

    2016-12-26

    We present a systematic experimental study on the optical properties of plasmonic crystals (PlC) with hexagonal symmetry. We compare the dispersion and avoided crossings of surface plasmon modes around the Γ-point of Au-metal hole arrays with a hexagonal, honeycomb and kagome lattice. Symmetry arguments and group theory are used to label the six modes and understand their radiative and dispersive properties. Plasmon-plasmon interaction are accurately described by a coupled mode model, that contains effective scattering amplitudes of surface plasmons on a lattice of air holes under 60°, 120°, and 180°. We determine these rates in the experiment and find that they are dominated by the hole-density and not on the complexity of the unit-cell. Our analysis shows that the observed angle-dependent scattering can be explained by a single-hole model based on electric and magnetic dipoles.

  3. Tailoring capping layers to reduce stress gradients in copper metallization

    NASA Astrophysics Data System (ADS)

    Murray, Conal E.; Priyadarshini, Deepika; Nguyen, Son; Ryan, E. Todd

    2016-12-01

    Capping layers for back-end-of-line metallization, which primarily serve as diffusion barriers to prevent contamination, also play a role in mitigating electromigration in the underlying conductive material. Stress gradients can be generated in copper metallization due to the conditions associated with the capping process. To study the effects of deposition and subsequent annealing on the mechanical response of copper films with various capping schemes, we employed a combination of conventional and glancing incidence X-ray diffraction techniques to quantify the stress gradient maxima. The Cu films with dielectric caps, such as silicon nitride, can exhibit large gradients that decrease slightly with thermal cycling. However, Co and TaN-based metallic capping layers create significantly lower stress gradient maxima in copper features both before and after annealing. The different evolution of stress gradients in Cu films with dielectric and metallic caps due to thermal cycling reveals the interaction of dislocation-mediated, plastic deformation with the cap/Cu interface.

  4. Layer-selective half-metallicity in bilayer graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Jeon, Gi Wan; Lee, Kyu Won; Lee, Cheol Eui

    2015-05-01

    Half-metallicity recently predicted in the zigzag-edge graphene nanoribbons (ZGNRs) and the hydrogenated carbon nanotubes (CNTs) enables fully spin-polarized electric currents, providing a basis for carbon-based spintronics. In both carbon systems, the half-metallicity arises from the edge-localized electron states under an electric field, lowering the critical electric field Dc for the half-metallicity being an issue in recent works on ZGNRs. A properly chosen direction of the electric field alone has been predicted to significantly reduce Dc in the hydrogenated CNTs, which in this work turned out to be the case in narrow bilayer ZGNRs (biZGNRs). Here, our simple model based on the electrostatic potential difference between the edges predicts that for wide biZGNRs of width greater than ~2.0 nm (10 zigzag carbon chains), only one layer of the biZGNRs becomes half-metallic leaving the other layer insulating as confirmed by our density functional theory (DFT) calculations. The electric field-induced switching of the spin-polarized current path is believed to open a new route to graphene-based spintronics applications.

  5. Self-Limiting Layer Synthesis of Transition Metal Dichalcogenides

    PubMed Central

    Kim, Youngjun; Song, Jeong-Gyu; Park, Yong Ju; Ryu, Gyeong Hee; Lee, Su Jeong; Kim, Jin Sung; Jeon, Pyo Jin; Lee, Chang Wan; Woo, Whang Je; Choi, Taejin; Jung, Hanearl; Lee, Han-Bo-Ram; Myoung, Jae-Min; Im, Seongil; Lee, Zonghoon; Ahn, Jong-Hyun; Park, Jusang; Kim, Hyungjun

    2016-01-01

    This work reports the self-limiting synthesis of an atomically thin, two dimensional transition metal dichalcogenides (2D TMDCs) in the form of MoS2. The layer controllability and large area uniformity essential for electronic and optical device applications is achieved through atomic layer deposition in what is named self-limiting layer synthesis (SLS); a process in which the number of layers is determined by temperature rather than process cycles due to the chemically inactive nature of 2D MoS2. Through spectroscopic and microscopic investigation it is demonstrated that SLS is capable of producing MoS2 with a wafer-scale (~10 cm) layer-number uniformity of more than 90%, which when used as the active layer in a top-gated field-effect transistor, produces an on/off ratio as high as 108. This process is also shown to be applicable to WSe2, with a PN diode fabricated from a MoS2/WSe2 heterostructure exhibiting gate-tunable rectifying characteristics. PMID:26725854

  6. Self-Limiting Layer Synthesis of Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Kim, Youngjun; Song, Jeong-Gyu; Park, Yong Ju; Ryu, Gyeong Hee; Lee, Su Jeong; Kim, Jin Sung; Jeon, Pyo Jin; Lee, Chang Wan; Woo, Whang Je; Choi, Taejin; Jung, Hanearl; Lee, Han-Bo-Ram; Myoung, Jae-Min; Im, Seongil; Lee, Zonghoon; Ahn, Jong-Hyun; Park, Jusang; Kim, Hyungjun

    2016-01-01

    This work reports the self-limiting synthesis of an atomically thin, two dimensional transition metal dichalcogenides (2D TMDCs) in the form of MoS2. The layer controllability and large area uniformity essential for electronic and optical device applications is achieved through atomic layer deposition in what is named self-limiting layer synthesis (SLS); a process in which the number of layers is determined by temperature rather than process cycles due to the chemically inactive nature of 2D MoS2. Through spectroscopic and microscopic investigation it is demonstrated that SLS is capable of producing MoS2 with a wafer-scale (~10 cm) layer-number uniformity of more than 90%, which when used as the active layer in a top-gated field-effect transistor, produces an on/off ratio as high as 108. This process is also shown to be applicable to WSe2, with a PN diode fabricated from a MoS2/WSe2 heterostructure exhibiting gate-tunable rectifying characteristics.

  7. Enhancement of Thermal Conductance at Metal-Dielectric Interfaces Using Subnanometer Metal Adhesion Layers

    NASA Astrophysics Data System (ADS)

    Jeong, Minyoung; Freedman, Justin P.; Liang, Hongliang Joe; Chow, Cheng-Ming; Sokalski, Vincent M.; Bain, James A.; Malen, Jonathan A.

    2016-01-01

    We show that the use of subnanometer adhesion layers significantly enhances the thermal interface conductance at metal-dielectric interfaces. A metal-dielectric interface between Au and sapphire (Al2O3) is considered using Cu (low optical loss) and Cr (high optical loss) as adhesion layers. To enable high throughput measurements, each adhesion layer is deposited as a wedge such that a continuous range of thicknesses could be sampled. Our measurements of thermal interface conductance at the metal-Al2O3 interface made using frequency-domain thermoreflectance show that a 1-nm-thick adhesion layer of Cu or Cr is sufficient to enhance the thermal interface conductance by more than a factor of 2 or 4, respectively, relative to the pure Au/Al2O3 interface. The enhancement agrees with the diffuse-mismatch-model-based predictions of accumulated thermal conductance versus adhesion-layer thickness assuming that it contributes phonons with wavelengths less than its thickness, while those with longer wavelengths transmit directly from the Au.

  8. Ferromagnetic resonance and resonance modes in kagome lattices: From an open to a closed kagome structure

    NASA Astrophysics Data System (ADS)

    Dubowik, J.; Kuświk, P.; Matczak, M.; Bednarski, W.; Stobiecki, F.; Aleshkevych, P.; Szymczak, H.; Kisielewski, M.; Kisielewski, J.

    2016-06-01

    We present ferromagnetic resonance (FMR) investigations of 20 nm thick permalloy (Ni80Fe20 ) elements (width W =200 nm, length L =470 nm, period a =500 nm) arranged in open and closed artificial kagome lattices. The measurements were done at 9.4 and 34 GHz to ensure a saturated or near-saturated magnetic state of the kagome structures. The FMR data are analyzed in the framework of an analytical macrospin model which grasps the essential features of the bulk and edge modes at these microwave frequencies and is in agreement with the results of micromagnetic simulations. Polar plots of the resonance fields versus the field angle made by the direction of the magnetic field with respect to the main symmetry directions of the kagome lattice are compared with the results of the analytical model. The measured FMR spectra with a sixfold rotational symmetry qualitatively reproduce the structure expected from the theory. Magnetic dipolar interactions between the elements of the kagome lattices result in the mixing of edge and bulklike excitations at 9.4 GHz and in a systematic deviation from the model, especially for the closed kagome lattice.

  9. Protein Induces Layer-by-Layer Exfoliation of Transition Metal Dichalcogenides.

    PubMed

    Guan, Guijian; Zhang, Shuangyuan; Liu, Shuhua; Cai, Yongqing; Low, Michelle; Teng, Choon Peng; Phang, In Yee; Cheng, Yuan; Duei, Koh Leng; Srinivasan, Bharathi Madurai; Zheng, Yuangang; Zhang, Yong-Wei; Han, Ming-Yong

    2015-05-20

    Here, we report a general and facile method for effective layer-by-layer exfoliation of transition metal dichalcogenides (TMDs) and graphite in water by using protein, bovine serum albumin (BSA) to produce single-layer nanosheets, which cannot be achieved using other commonly used bio- and synthetic polymers. Besides serving as an effective exfoliating agent, BSA can also function as a strong stabilizing agent against reaggregation of single-layer nanosheets for greatly improving their biocompatibility in biomedical applications. With significantly increased surface area, single-layer MoS2 nanosheets also exhibit a much higher binding capacity to pesticides and a much larger specific capacitance. The protein exfoliation process is carefully investigated with various control experiments and density functional theory simulations. It is interesting to find that the nonpolar groups of protein can firmly bind to TMD layers or graphene to expose polar groups in water, facilitating the effective exfoliation of single-layer nanosheets in aqueous solution. The present work will enable to optimize the fabrication of various 2D materials at high yield and large scale, and bring more opportunities to investigate the unique properties of 2D materials and exploit their novel applications.

  10. Holon Wigner Crystal in a Lightly Doped Kagome Quantum Spin Liquid

    NASA Astrophysics Data System (ADS)

    Jiang, Hong-Chen; Devereaux, T.; Kivelson, S. A.

    2017-08-01

    We address the problem of a lightly doped spin liquid through a large-scale density-matrix renormalization group study of the t -J model on a kagome lattice with a small but nonzero concentration δ of doped holes. It is now widely accepted that the undoped (δ =0 ) spin-1 /2 Heisenberg antiferromagnet has a spin-liquid ground state. Theoretical arguments have been presented that light doping of such a spin liquid could give rise to a high temperature superconductor or an exotic topological Fermi liquid metal. Instead, we infer that the doped holes form an insulating charge-density wave state with one doped hole per unit cell, i.e., a Wigner crystal. Spin correlations remain short ranged, as in the spin-liquid parent state, from which we infer that the state is a crystal of spinless holons, rather than of holes. Our results may be relevant to kagome lattice herbertsmithite upon doping.

  11. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators

    NASA Astrophysics Data System (ADS)

    Guterding, Daniel; Jeschke, Harald O.; Valentí, Roser

    2016-05-01

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.

  12. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators

    PubMed Central

    Guterding, Daniel; Jeschke, Harald O.; Valentí, Roser

    2016-01-01

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions. PMID:27185665

  13. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators.

    PubMed

    Guterding, Daniel; Jeschke, Harald O; Valentí, Roser

    2016-05-17

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.

  14. Double dipole RET investigation for 32 nm metal layers

    NASA Astrophysics Data System (ADS)

    Babcock, Carl; Zou, Yi; Dunn, Derren; Baum, Zachary; Zhao, Zengqin; Matthew, Itty; LaCour, Pat

    2008-10-01

    For 32 nm test chips, aggressive resolution enhancement technology (RET) was required for 1x metal layers to enable printing minimum pitches before availability of the final 32 nm exposure tool. Using a currently installed immersion scanner with 1.2 numerical aperture (NA) for early 32 nm test chips, one of the RET strategies capable of resolving the minimum pitch with acceptable process latitude was dipole illumination. To avoid restricting the use of minimum pitch to a single orientation, we developed a double-expose/single-develop process using horizontal and vertical dipole illumination. To enable this RET, we developed algorithms to decompose general layouts, including random logic, interconnect test patterns, and SRAM designs, into two mask layers: a first exposure (E1) of predominantly vertical features, to be patterned with horizontal dipole illumination; and, a second exposure (E2) of predominantly horizontal features, to be patterned with vertical dipole illumination. We wrote this algorithm into our OPC program, which then applies sub-resolution assist features (SRAFs) separately to the E1 and E2 masks, coordinating the two to avoid problems with overlapping exposures. This was followed by two-mask OPC, using E1 and E2 as mask layers and the original layout (single layer) as the target layer. In this paper, we describe some of the issues with decomposing layout by orientation, issues that arise in SRAF application and OPC, and some approaches we examined to address these issues.

  15. Selective and low temperature transition metal intercalation in layered tellurides

    PubMed Central

    Yajima, Takeshi; Koshiko, Masaki; Zhang, Yaoqing; Oguchi, Tamio; Yu, Wen; Kato, Daichi; Kobayashi, Yoji; Orikasa, Yuki; Yamamoto, Takafumi; Uchimoto, Yoshiharu; Green, Mark A.; Kageyama, Hiroshi

    2016-01-01

    Layered materials embrace rich intercalation reactions to accommodate high concentrations of foreign species within their structures, and find many applications spanning from energy storage, ion exchange to secondary batteries. Light alkali metals are generally most easily intercalated due to their light mass, high charge/volume ratio and in many cases strong reducing properties. An evolving area of materials chemistry, however, is to capture metals selectively, which is of technological and environmental significance but rather unexplored. Here we show that the layered telluride T2PTe2 (T=Ti, Zr) displays exclusive insertion of transition metals (for example, Cd, Zn) as opposed to alkali cations, with tetrahedral coordination preference to tellurium. Interestingly, the intercalation reactions proceed in solid state and at surprisingly low temperatures (for example, 80 °C for cadmium in Ti2PTe2). The current method of controlling selectivity provides opportunities in the search for new materials for various applications that used to be possible only in a liquid. PMID:27966540

  16. Selective and low temperature transition metal intercalation in layered tellurides

    NASA Astrophysics Data System (ADS)

    Yajima, Takeshi; Koshiko, Masaki; Zhang, Yaoqing; Oguchi, Tamio; Yu, Wen; Kato, Daichi; Kobayashi, Yoji; Orikasa, Yuki; Yamamoto, Takafumi; Uchimoto, Yoshiharu; Green, Mark A.; Kageyama, Hiroshi

    2016-12-01

    Layered materials embrace rich intercalation reactions to accommodate high concentrations of foreign species within their structures, and find many applications spanning from energy storage, ion exchange to secondary batteries. Light alkali metals are generally most easily intercalated due to their light mass, high charge/volume ratio and in many cases strong reducing properties. An evolving area of materials chemistry, however, is to capture metals selectively, which is of technological and environmental significance but rather unexplored. Here we show that the layered telluride T2PTe2 (T=Ti, Zr) displays exclusive insertion of transition metals (for example, Cd, Zn) as opposed to alkali cations, with tetrahedral coordination preference to tellurium. Interestingly, the intercalation reactions proceed in solid state and at surprisingly low temperatures (for example, 80 °C for cadmium in Ti2PTe2). The current method of controlling selectivity provides opportunities in the search for new materials for various applications that used to be possible only in a liquid.

  17. Gapless spin liquid ground state in the S = 1/2 vanadium oxyfluoride kagome antiferromagnet [NH4]2[C7H14N][V7O6F18].

    PubMed

    Clark, L; Orain, J C; Bert, F; De Vries, M A; Aidoudi, F H; Morris, R E; Lightfoot, P; Lord, J S; Telling, M T F; Bonville, P; Attfield, J P; Mendels, P; Harrison, A

    2013-05-17

    The vanadium oxyfluoride [NH(4)](2)[C(7)H(14)N][V(7)O(6)F(18)] (DQVOF) is a geometrically frustrated magnetic bilayer material. The structure consists of S = 1/2 kagome planes of V(4+) d(1) ions with S = 1 V(3+) d(2) ions located between the kagome layers. Muon spin relaxation measurements demonstrate the absence of spin freezing down to 40 mK despite an energy scale of 60 K for antiferromagnetic exchange interactions. From magnetization and heat capacity measurements we conclude that the S = 1 spins of the interplane V(3+) ions are weakly coupled to the kagome layers, such that DQVOF can be viewed as an experimental model for S = 1/2 kagome physics, and that it displays a gapless spin liquid ground state.

  18. Emergence of magnetic long-range order in kagome quantum antiferromagnets

    NASA Astrophysics Data System (ADS)

    Richter, Johannes; Götze, Oliver

    2017-04-01

    The existence of a spin-liquid ground state of the s = 1/2 Heisenberg kagome antiferromagnet (KAFM) is well established. Meanwhile, also for the s = 1 Heisenberg KAFM evidence for the absence of magnetic long-range order (LRO) was found. Magnetic LRO in Heisenberg KAFMs can emerge by increasing the spin quantum number s to s > 1 and for s = 1 by an easy-plane anisotropy. In the present paper we discuss the route to magnetic order in s = 1/2 KAFMs by including an isotropic interlayer coupling (ILC) J⊥ as well as an easy-plane anisotropy in the kagome layers by using the coupled-cluster method to high orders of approximation. We consider ferro- as well as antiferromagnetic J⊥. To discuss the general question for the crossover from a purely two-dimensional (2D) to a quasi-2D and finally to a three-dimensional system we consider the simplest model of stacked (unshifted) kagome layers. Although the ILC of real kagome compounds is often more sophisticated, such a geometry of the ILC can be relevant for barlowite. We find that the spin-liquid ground state present for the strictly 2D s = 1/2 X X Z KAFM survives a finite ILC, where the spin-liquid region shrinks monotonously with increasing anisotropy. If the ILC becomes large enough (about 15% of intralayer coupling for the isotropic Heisenberg case and about 4% for the XY limit) magnetic LRO can be established, where the q = 0 symmetry is favorable if J⊥ is of moderate strength. If the strength of the ILC further increases, \\sqrt 3 × \\sqrt 3 LRO can become favorable against q = 0 LRO.

  19. Towards a global model of the meteoric metal layers

    NASA Astrophysics Data System (ADS)

    Plane, John; Feng, Wuhu; Marsh, Daniel; Janches, Diego; Chipperfield, Martyn; Burrows, John P.; Sinnhuber, Miriam

    This paper will describe a major new initiative to develop a global model of the Na, Fe, Ca and Mg layers which are produced in the upper mesosphere and lower thermosphere by mete-oric ablation. The 4M (Multi-scale Modelling of Mesospheric Metals) project brings together three components: the injection of meteoric constituents into the atmosphere; the neutral and ion-molecule chemistries of these four metals; and a general circulation model of the whole atmosphere. The injection rates are calculated by combining the meteoric input function (MIF), an astro-nomical model which determines the meteoric size distribution and infall velocity distribution as a function of location and time, and a chemical ablation model (CABMOD), which calcu-lates the ablation rates of the different meteoric elements for a meteoroid of specified mass and velocity. The atmospheric chemistries of Na, Fe, Ca and Mg are now quite well understood: the kinetics of most of their important atmospheric reactions have been studied in the laboratory under appropriate conditions. This has enabled 1-dimensional models of these metallic layers to be produced, which compare satisfactorily with observations by ground-based lidar and space-borne spectrometers. The global model which has been chosen for the 4M project is the Whole Atmosphere Chemistry Climate Model (WACCM), developed at NCAR (Boulder). The model extends from 0 -140 km and includes a full treatment of neutral chemistry and lower E region ion chemistry. We will present the initial results on modelling the global Na and Fe layers.

  20. Tunable magnetic resonance in double layered metallic structures.

    PubMed

    Zhou, L; Zhu, Y Y

    2011-12-01

    Double layered metallic gratings have been investigated both theoretically and experimentally. The authors have reported that tunable magnetic resonance (MR) can be achieved by modulating the vertical chirped width dh which could be controlled conveniently in the common electron and/or ion beam microfabrications. The linear relationship between MR wavelength and dh has been reported. By introducing the difference of electric and magnetic penetration depth, an analytic formula deduced from a modified LC model has shown good agreement with the simulation results, and an effective width for trapezoidal sandwiched microstructures has been presented. Our results may provide an alternative choice for tunable MR and broad bandwidth of magnetic metamaterials.

  1. Layered Metal Thiophosphite Materials: Magnetic, Electrochemical, and Electronic Properties.

    PubMed

    Mayorga-Martinez, Carmen C; Sofer, Zdeněk; Sedmidubský, David; Huber, Štěpán; Eng, Alex Yong Sheng; Pumera, Martin

    2017-03-29

    Beyond graphene, transitional metal dichalcogenides, and black phosphorus, there are other layered materials called metal thiophosphites (MPSx), which are recently attracting the attention of scientists. Here we present the synthesis, structural and morphological characterization, magnetic properties, electrochemical performance, and the calculated density of states of different layered metal thiophosphite materials with a general formula MPSx, and as a result of varying the metal component, we obtain CrPS4, MnPS3, FePS3, CoPS3, NiPS3, ZnPS3, CdPS3, GaPS4, SnPS3, and BiPS4. SnPS3, ZnPS3, CdPS3, GaPS4, and BiPS4 exhibit only diamagnetic behavior due to core electrons. By contrast, trisulfides with M = Mn, Fe, Co, and Ni, as well as CrPS4, are paramagnetic at high temperatures and undergo a transition to antiferromagnetic state on cooling. Within the trisulfides series the Néel temperature characterizing the transition from paramagnetic to antiferromagnetic phase increases with the increasing atomic number and the orbital component enhancing the total effective magnetic moment. Interestingly, in terms of catalysis NiPS3, CoPS3, and BiPS4 show the highest efficiency for hydrogen evolution reaction (HER), while for the oxygen evolution reaction (OER) the highest performance is observed for CoPS3. Finally, MnPS3 presents the highest oxygen reduction reaction (ORR) activity compared to the other MPSx studied here. This great catalytic performance reported for these MPSx demonstrates their promising capabilities in energy applications.

  2. Electron Scattering at Surfaces of Epitaxial Metal Layers

    NASA Astrophysics Data System (ADS)

    Chawla, Jasmeet Singh

    In the field of electron transport in metal films and wires, the 'size effect' refers to the increase in the resistivity of the films and wires as their critical dimensions (thickness of film, width and height of wires) approach or become less than the electron mean free path lambda, which is, for example, 39 nm for bulk copper at room temperature. This size-effect is currently of great concern to the semiconductor industry because the continued downscaling of feature sizes has already lead to Cu interconnect wires in this size effect regime, with a reported 2.5 times higher resistivity for 40 nm wide Cu wires than for bulk Cu. Silver is a possible alternate material for interconnect wires and titanium nitride is proposed as a gate metal in novel field-effect-transistors. Therefore, it is important to develop an understanding of how the growth, the surface morphology, and the microstructure of ultrathin (few nanometers) Cu, Ag and TiN layers affect their electrical properties. This dissertation aims to advance the scientific knowledge of electron scattering at surfaces (external surfaces and grain boundaries), that are, the primary reasons for the size-effect in metal conductors. The effect of surface and grain boundary scattering on the resistivity of Cu thin films and nanowires is separately quantified using (i) in situ transport measurements on single-crystal, atomically smooth Cu(001) layers, (ii) textured polycrystalline Cu(111) layers and patterned wires with independently varying grain size, thickness and line width, and (iii) in situ grown interfaces including Cu-Ta, Cu-MgO, Cu-vacuum and Cu-oxygen. In addition, the electron surface scattering is also measured in situ for single-crystal Ag(001), (111) twinned epitaxial Ag(001), and single-crystal TiN(001) layers. Cu(001), Ag(001), and TiN(001) layers with a minimum continuous thickness of 4, 3.5 and 1.8 nm, respectively, are grown by ultra-high vacuum magnetron sputter deposition on MgO(001) substrates with

  3. PT-symmetric phase in kagome-based photonic lattices.

    PubMed

    Chern, Gia-Wei; Saxena, Avadh

    2015-12-15

    The kagome lattice is a two-dimensional network of corner-sharing triangles and is often associated with geometrical frustration. In particular, the frustrated coupling between waveguide modes in a kagome array leads to a dispersionless flat band consisting of spatially localized modes. Here we propose a complex photonic lattice by placing PT-symmetric dimers at the kagome lattice points. Each dimer corresponds to a pair of strongly coupled waveguides. With balanced arrangement of gain and loss on individual dimers, the system exhibits a PT-symmetric phase for finite gain/loss parameter up to a critical value. The beam evolution in this complex kagome waveguide array exhibits a novel oscillatory rotation of optical power along the propagation distance. Long-lived local chiral structures originating from the nearly flat bands of the kagome structure are observed when the lattice is subject to a narrow beam excitation.

  4. Kagome-like Lattice Distortion in the Pyrochlore Material Hg2Ru2O7

    NASA Astrophysics Data System (ADS)

    van Duijn, Joost; Ruiz-Bustos, Rocío; Daoud-Aladine, Aziz

    2013-03-01

    Hg2Ru2O7 is one of the few pyrochlore materials known containing Ru5+. It undergoes a first order metal to Mott insulator transition (MIT) at T= 107 K, below which the susceptibility is significantly reduced and appears to be nearly T independent. While initially it has been suggested that below 107 K the Ru S=3/2 moments are quenched into an antiferromagnetic spin singlet ground-state, similar as to what is observed in Tl2Ru2O7, recent muon and polarized neutron diffraction experiments reveal the onset of long-range magnetic ordering below the MIT. In order to shed light on the magnetic interactions that give rise to the observed long-range ordering we have performed high resolution powder neutron diffraction experiments to determine the low temperature structure of Hg2Ru2O7. Below the MIT the symmetry is lowered from cubic to monoclinic and the Ru-Ru bonds, which are equal in the pyrochlore phase, become split into short, medium and long bonds. As a result the exchange interactions between the Ru atoms become more two dimensional. The short and medium bonds form layers, which are separated by the long bonds, that run parallel to the monoclinic ab plane. The low temperature structure can best be described as a stacking of Kagome-like layers. The work presented in this paper was supported by the Ramón y Cajal program through Grant no. RYC-2005-001064 and the Consejería de Educación y Ciencia of the Junta de Comunidades de Castilla-La Mancha through Grant no. PII1I09-0083-2105.

  5. First-principles determination of Heisenberg Hamiltonian parameters for the spin-(1)/(2) kagome antiferromagnet ZnCu3(OH)6Cl2

    NASA Astrophysics Data System (ADS)

    Jeschke, Harald O.; Salvat-Pujol, Francesc; Valentí, Roser

    2013-08-01

    Herbertsmithite [ZnCu3(OH)6Cl2] is often discussed as the best realization of the highly frustrated antiferromagnetic kagome lattice known so far. We employ density functional theory (DFT) calculations to determine eight exchange coupling constants of the underlying Heisenberg Hamiltonian. We find the nearest-neighbor coupling J1 to exceed all other couplings by far. However, next-nearest-neighbor kagome layer couplings of 0.019J1 and interlayer couplings of up to -0.035J1 slightly modify the perfect antiferromagnetic kagome Hamiltonian. Interestingly, the largest interlayer coupling is ferromagnetic, even without Cu impurities in the Zn layer. In addition, we validate our DFT approach by applying it to kapellasite, a polymorph of herbertsmithite, which is known experimentally to exhibit competing exchange interactions.

  6. Orbital reconstruction in nonpolar tetravalent transition-metal oxide layers

    NASA Astrophysics Data System (ADS)

    Bogdanov, Nikolay A.; Katukuri, Vamshi M.; Romhányi, Judit; Yushankhai, Viktor; Kataev, Vladislav; Büchner, Bernd; van den Brink, Jeroen; Hozoi, Liviu

    2015-06-01

    A promising route to tailoring the electronic properties of quantum materials and devices rests on the idea of orbital engineering in multilayered oxide heterostructures. Here we show that the interplay of interlayer charge imbalance and ligand distortions provides a knob for tuning the sequence of electronic levels even in intrinsically stacked oxides. We resolve in this regard the d-level structure of layered Sr2IrO4 by electron spin resonance. While canonical ligand-field theory predicts g||-factors less than 2 for positive tetragonal distortions as present in Sr2IrO4, the experiment indicates g|| is greater than 2. This implies that the iridium d levels are inverted with respect to their normal ordering. State-of-the-art electronic-structure calculations confirm the level switching in Sr2IrO4, whereas we find them in Ba2IrO4 to be instead normally ordered. Given the nonpolar character of the metal-oxygen layers, our findings highlight the tetravalent transition-metal 214 oxides as ideal platforms to explore d-orbital reconstruction in the context of oxide electronics.

  7. Unidirectional transmission in non-symmetric gratings containing metallic layers.

    PubMed

    Serebryannikov, A E; Ozbay, Ekmel

    2009-08-03

    The mechanism of achieving unidirectional transmission in the gratings, which only contain isotropic dielectric and metallic layers, is suggested and numerically validated. It is shown that significant transmission in one direction and nearly zero transmission in the opposite direction can be obtained in the same intrinsically isotropic gratings as those studied recently in A. E. Serebryannikov and E. Ozbay, Opt. Express 17, 278 (2009), but at a non-zero angle of incidence. The tilting, non-symmetric features of the grating and the presence of a metallic layer with a small positive real part of the index of refraction are the conditions that are necessary for obtaining the unidirectionality. Single- and multibeam operational regimes are demonstrated. The frequency and angle ranges of the unidirectional transmission can be estimated by using the conventional framework based on isofrequency dispersion contours and construction lines that properly take into account the periodic features of the interfaces, but should then be corrected because of the tunneling arising within the adjacent ranges. After proper optimization, this mechanism is expected to become an alternative to that based on the use of anisotropic materials.

  8. Wear mechanisms in metal-on-metal bearings: the importance of tribochemical reaction layers.

    PubMed

    Wimmer, Markus A; Fischer, Alfons; Büscher, Robin; Pourzal, Robin; Sprecher, Christoph; Hauert, Roland; Jacobs, Joshua J

    2010-04-01

    Metal-on-metal (MoM) bearings are at the forefront in hip resurfacing arthroplasty. Because of their good wear characteristics and design flexibility, MoM bearings are gaining wider acceptance with market share reaching nearly 10% worldwide. However, concerns remain regarding potential detrimental effects of metal particulates and ion release. Growing evidence is emerging that the local cell response is related to the amount of debris generated by these bearing couples. Thus, an urgent clinical need exists to delineate the mechanisms of debris generation to further reduce wear and its adverse effects. In this study, we investigated the microstructural and chemical composition of the tribochemical reaction layers forming at the contacting surfaces of metallic bearings during sliding motion. Using X-ray photoelectron spectroscopy and transmission electron microscopy with coupled energy dispersive X-ray and electron energy loss spectroscopy, we found that the tribolayers are nanocrystalline in structure, and that they incorporate organic material stemming from the synovial fluid. This process, which has been termed "mechanical mixing," changes the bearing surface of the uppermost 50 to 200 nm from pure metallic to an organic composite material. It hinders direct metal contact (thus preventing adhesion) and limits wear. This novel finding of a mechanically mixed zone of nanocrystalline metal and organic constituents provides the basis for understanding particle release and may help in identifying new strategies to reduce MoM wear.

  9. Microstructures of YBa2Cu3Oy Layers Deposited on Conductive Layer-Buffered Metal Tapes

    NASA Astrophysics Data System (ADS)

    Ichinose, Ataru; Hashimoto, Masayuki; Horii, Shigeru; Doi, Toshiya

    REBa2Cu3Oy (REBCO; RE: rare-earth elements)-coated conductors (CCs) have high potential for use in superconducting devices. In particular, REBCO CCs are useful for superconducting devices working at relatively high temperatures near 77 K. The important issues in their applications are high performance, reliability and low cost. To date, sufficient performance for some applications has almost been achieved by considerable efforts. The establishment of the reliability of superconducting devices is under way at present. The issue of low cost must be resolved to realize the application of superconducting devices in the near future. Therefore, we have attempted several ways to reduce the cost of REBCO CCs. The coated conductors using a Nb-doped SrTiO3 buffer layer and Ni-plated Cu and stainless steel laminate metal tapes have recently been developed to eliminate the use of electric stabilization layers of Cu and Ag, which are expected to reduce the material cost. Good superconducting properties are obtained at 77 K. The critical current density (JC) at 77 K under a magnetic self-field is determined to be more than 2x106 A/cm2. The microstructures of the CCs are analyzed by transmission electron microscopy to obtain a much higher quality. By microscopic structure analysis, an overgrowth of the buffer layer is observed at a grain boundary of the metal substrate, which is one of the reasons for the high JC.

  10. Issues involved in the atomic layer deposition of metals

    NASA Astrophysics Data System (ADS)

    Grubbs, Robert Kimes

    Auger Electron Spectroscopy (AES) was used to study the nucleation and growth of tungsten on aluminum oxide surfaces. Tungsten metal was deposited using Atomic Layer Deposition (ALD) techniques. ALD uses sequential surface reactions to deposit material with atomic layer control. W ALD is performed using sequential exposures of WF6 and Si2H6. The step-wise nature of W ALD allows nucleation studies to be performed by analyzing the W surface concentration after each ALD reaction. Nucleation and growth regions can be identified by quantifying the AES signal intensities from both the W surface and the Al2O3 substrate. W nucleation occurred in 3 ALD reaction cycles. The AES results yielded a nucleation rate of 1.0 A/ALD cycle and a growth rate of ≈3 A/ALD cycle. AES studies also explored the nucleation and growth of Al2O3 on W. Al2O3 nucleated in 1 ALD cycle giving a nucleation rate of 3.5 A/ALD cycle and a subsequent growth rate of 1.0 A/ALD cycle. Mass spectrometry was then used to study the ALD reaction chemistry of tungsten deposition. Because of the step-wise nature of the W ALD chemistry, each W ALD reaction could be studied independently. The gaseous mass products were identified from both the WF6 and Si2H6 reactions. H2, HF and SiF4 mass products were observed for the WF6 reaction. The Si2H6 reaction displayed a room temperature reaction and a 200°C reaction. Products from the room temperature Si2H6 reaction were H2 and SiF3H. The reaction at 200°C yielded only H2 as a reaction product. H2 desorption from the surface contributes to the 200°C Si2H6 reaction. AES was used to confirm that the gas phase reaction products are correlated with a change in the surface species. Atomic hydrogen reduction of metal halides and oganometallic compounds provides another method for depositing metals with atomic layer control. The quantity of atomic hydrogen necessary to perform this chemistry is critical to the metal ALD process. A thermocouple probe was constructed to

  11. Low-energy spin dynamics of the s = 1/2 kagome system herbertsmithite.

    PubMed

    Nilsen, G J; de Vries, M A; Stewart, J R; Harrison, A; Rønnow, H M

    2013-03-13

    The low-energy (ε = ħω < 1 meV), low-temperature (T = 0.05 K) spin dynamics of the s = 1/2 kagome candidate herbertsmithite are probed in the presence of magnetic fields up to 2.5 T. The zero-field spectra reveal a very weak continuum of scattering at T = 10 K and a broad inelastic peak centred at ε(max) = 0.2 meV at lower temperatures, T < 1 K. The broad peak is found to be strongly damped, with a liquid-like structure factor implying correlations at length scales up to r = 6 Å. The field dependence of the peak appears to follow the Zeeman splitting of s = 1/2 excitations, consistent with the weakly split 'doublets' observed in low-temperature specific heat. A possible explanation of these observations is a short-range correlated state involving defect spins between the kagome planes and moments in the kagome layers.

  12. Ultraviolet photodetectors based on ZnO nanorods-seed layer effect and metal oxide modifying layer effect.

    PubMed

    Zhou, Hai; Fang, Guojia; Liu, Nishuang; Zhao, Xingzhong

    2011-02-15

    Pt/ZnO nanorod (NR) and Pt/modified ZnO NR Schottky barrier ultraviolet (UV) photodetectors (PDs) were prepared with different seed layers and metal oxide modifying layer materials. In this paper, we discussed the effect of metal oxide modifying layer on the performance of UV PDs pre- and post-deposition annealing at 300°C, respectively. For Schottky barrier UV PDs with different seed layers, the MgZnO seed layer-PDs without metal oxide coating showed bigger responsivity and larger detectivity (Dλ*) than those of PDs with ZnO seed layer, and the reason was illustrated through energy band theory and the electron transport mechanism. Also the ratio of D254* to D546* was calculated above 8 × 102 for all PDs, which demonstrated that our PDs showed high selectivity for detecting UV light with less influence of light with long wavelength.

  13. Metal-semiconductor-metal neutron detectors based on hexagonal boron nitride epitaxial layers

    NASA Astrophysics Data System (ADS)

    Majety, S.; Li, J.; Cao, X. K.; Dahal, R.; Lin, J. Y.; Jiang, H. X.

    2012-10-01

    Hexagonal boron nitride (hBN) possesses extraordinary potential for solid-state neutron detector applications. This stems from the fact that the boron-10 (10B) isotope has a capture cross-section of 3840 barns for thermal neutrons that is orders of magnitude larger than other isotopes. Epitaxial layers of hBN have been synthesized by metal organic chemical vapor deposition (MOCVD). Experimental measurements indicated that the thermal neutron absorption coefficient and length of natural hBN epilayers are about 0.0036 μm-1 and 277 μm, respectively. To partially address the key requirement of long carrier lifetime and diffusion length for a solid-state neutron detector, micro-strip metal-semiconductor-metal detectors were fabricated and tested. A good current response was generated in these detectors using continuous irradiation with a thermal neutron beam, corresponding to an effective conversion efficiency approaching ~80% for absorbed neutrons.

  14. Method for producing functionally graded nanocrystalline layer on metal surface

    DOEpatents

    Ajayi, Oyelayo O.; Hershberger, Jeffrey G.

    2010-03-23

    An improved process for the creation or formation of nanocrystalline layers on substrates' surfaces is provided. The process involves "prescuffing" the surface of a substrate such as a metal by allowing friction to occur on the surface by a load-bearing entity making rubbing contact and moving along and on the substrate's surface. The "prescuffing" action is terminated when the coefficient of friction between the surface and the noise is rising significantly. Often, the significant rise in the coefficient of friction is signaled by a change in pitch of the scuffing action sound emanating from the buffeted surface. The "prescuffing" gives rise to a harder and smoother surface which withstands better any inadequate lubrication that may take place when the "prescuffed" surface is contacted by other surfaces.

  15. Vertical bipolar charge plasma transistor with buried metal layer.

    PubMed

    Nadda, Kanika; Kumar, M Jagadesh

    2015-01-19

    A self-aligned vertical Bipolar Charge Plasma Transistor (V-BCPT) with a buried metal layer between undoped silicon and buried oxide of the silicon-on-insulator substrate, is reported in this paper. Using two-dimensional device simulation, the electrical performance of the proposed device is evaluated in detail. Our simulation results demonstrate that the V-BCPT not only has very high current gain but also exhibits high BVCEO · f(T) product making it highly suitable for mixed signal high speed circuits. The proposed device structure is also suitable for realizing doping-less bipolar charge plasma transistor using compound semiconductors such as GaAs, SiC with low thermal budgets. The device is also immune to non-ideal current crowding effects cropping up at high current densities.

  16. Vertical Bipolar Charge Plasma Transistor with Buried Metal Layer

    PubMed Central

    Nadda, Kanika; Kumar, M. Jagadesh

    2015-01-01

    A self-aligned vertical Bipolar Charge Plasma Transistor (V-BCPT) with a buried metal layer between undoped silicon and buried oxide of the silicon-on-insulator substrate, is reported in this paper. Using two-dimensional device simulation, the electrical performance of the proposed device is evaluated in detail. Our simulation results demonstrate that the V-BCPT not only has very high current gain but also exhibits high BVCEO · fT product making it highly suitable for mixed signal high speed circuits. The proposed device structure is also suitable for realizing doping-less bipolar charge plasma transistor using compound semiconductors such as GaAs, SiC with low thermal budgets. The device is also immune to non-ideal current crowding effects cropping up at high current densities. PMID:25597295

  17. Quantum-spin-liquid states in the two-dimensional kagome antiferromagnets ZnxCu4-x(OD)6Cl2.

    PubMed

    Lee, S-H; Kikuchi, H; Qiu, Y; Lake, B; Huang, Q; Habicht, K; Kiefer, K

    2007-11-01

    A three-dimensional system of interacting spins typically develops static long-range order when it is cooled. If the spins are quantum (S=1/2), however, novel quantum paramagnetic states may appear. The most highly sought state among them is the resonating-valence-bond state, in which every pair of neighbouring quantum spins forms an entangled spin singlet (valence bonds) and these singlets are quantum mechanically resonating among themselves. Here we provide an experimental indication for such quantum paramagnetic states existing in frustrated antiferromagnets, Zn(x)Cu(4-x)(OD)(6)Cl(2), where the S=1/2 magnetic Cu2+ moments form layers of a two-dimensional kagome lattice. We find that in Cu(4)(OD)(6)Cl(2), where distorted kagome planes are weakly coupled, a dispersionless excitation mode appears in the magnetic excitation spectrum below approximately 20 K, whose characteristics resemble those of quantum spin singlets in a solid state, known as a valence-bond solid, that breaks translational symmetry. Doping with non-magnetic Zn2+ ions reduces the distortion of the kagome lattice, and weakens the interplane coupling but also dilutes the magnetic occupancy of the kagome lattice. The valence-bond-solid state is suppressed, and for ZnCu(3)(OD)(6)Cl(2), where the kagome planes are undistorted and 90% occupied by the Cu2+ ions, the low-energy spin fluctuations become featureless.

  18. Inhibiting Metal Oxide Atomic Layer Deposition: Beyond Zinc Oxide.

    PubMed

    Sampson, Matthew D; Emery, Jonathan D; Pellin, Michael J; Martinson, Alex B F

    2017-04-05

    Atomic layer deposition (ALD) of several metal oxides is selectivity inhibited on alkanethiol self-assembled monolayers (SAMs) on Au, and the eventual nucleation mechanism is investigated. The inhibition ability of the SAM is significantly improved by the in situ H2-plasma pretreatment of the Au substrate prior to the gas-phase deposition of a long-chain alkanethiol, 1-dodecanethiol (DDT). This more rigorous surface preparation inhibits even aggressive oxide ALD precursors, including trimethylaluminum and water, for at least 20 cycles. We study the effect that the ALD precursor purge times, growth temperature, alkanethiol chain length, alkanethiol deposition time, and plasma treatment time have on Al2O3 ALD inhibition. This is the first example of Al2O3 ALD inhibition from a vapor-deposited SAM. The inhibitions of Al2O3, ZnO, and MnO ALD processes are compared, revealing the versatility of this selective surface treatment. Atomic force microscopy and grazing-incidence X-ray fluorescence further reveal insight into the mechanism by which the well-defined surface chemistry of ALD may eventually be circumvented to allow metal oxide nucleation and growth on SAM-modified surfaces.

  19. Symmetry Reduction in the Quantum Kagome Antiferromagnet Herbertsmithite

    NASA Astrophysics Data System (ADS)

    Zorko, A.; Herak, M.; Gomilšek, M.; van Tol, J.; Velázquez, M.; Khuntia, P.; Bert, F.; Mendels, P.

    2017-01-01

    Employing complementary torque magnetometry and electron spin resonance on single crystals of herbertsmithite, the closest realization to date of a quantum kagome antiferromagnet featuring a spin-liquid ground state, we provide novel insight into different contributions to its magnetism. At low temperatures, two distinct types of defects with different magnetic couplings to the kagome spins are found. Surprisingly, their magnetic response contradicts the threefold symmetry of the ideal kagome lattice, suggesting the presence of a global structural distortion that may be related to the establishment of the spin-liquid ground state.

  20. Symmetry Reduction in the Quantum Kagome Antiferromagnet Herbertsmithite.

    PubMed

    Zorko, A; Herak, M; Gomilšek, M; van Tol, J; Velázquez, M; Khuntia, P; Bert, F; Mendels, P

    2017-01-06

    Employing complementary torque magnetometry and electron spin resonance on single crystals of herbertsmithite, the closest realization to date of a quantum kagome antiferromagnet featuring a spin-liquid ground state, we provide novel insight into different contributions to its magnetism. At low temperatures, two distinct types of defects with different magnetic couplings to the kagome spins are found. Surprisingly, their magnetic response contradicts the threefold symmetry of the ideal kagome lattice, suggesting the presence of a global structural distortion that may be related to the establishment of the spin-liquid ground state.

  1. Silver-doped metal layers for medical applications

    NASA Astrophysics Data System (ADS)

    Kocourek, T.; Jelínek, M.; Mikšovský, J.; Jurek, K.; Weiserová, M.

    2014-08-01

    Biological, physical and mechanical properties of silver-doped layers of titanium alloy Ti6Al4V and 316 L steel prepared by pulsed laser deposition were studied. Metallic silver-doped coatings could be a new route for antibacterial protection in medicine. Thin films of silver and silver-doped materials were synthesized using KrF excimer laser deposition. The materials were ablated from two targets, which were composed either from titanium alloy with silver segments or from steel with silver segments. The concentration of silver ranged from 1.54 to 4.32 at% for steel and from 3.04 to 13.05 at% for titanium alloy. The layer properties such as silver content, structure, adhesion, surface wettability, and antibacterial efficiency (evaluated by Escherichia coli and Bacillus subtilis bacteria) were measured. Film adhesion was studied using a scratch test. The antibacterial efficiency changed with silver doping up to 99.9 %. Our investigation was focused on the minimum Ag concentration needed to reach high antibacterial efficiency, high film adhesion, and hardness.

  2. The stratum corneum comprises three layers with distinct metal-ion barrier properties

    PubMed Central

    Kubo, Akiharu; Ishizaki, Itsuko; Kubo, Akiko; Kawasaki, Hiroshi; Nagao, Keisuke; Ohashi, Yoshiharu; Amagai, Masayuki

    2013-01-01

    The stratum corneum (SC), the outermost barrier of mammalian bodies, consists of layers of cornified keratinocytes with intercellular spaces sealed with lipids. The insolubility of the SC has hampered in-depth analysis, and the SC has been considered a homogeneous barrier. Here, we applied time-of-flight secondary ion mass spectrometry to demonstrate that the SC consists of three layers with distinct properties. Arginine, a major component of filaggrin-derived natural moisturizing factors, was concentrated in the middle layer, suggesting that this layer functions in skin hydration. Topical application of metal ions revealed that the outer layer allowed their passive influx and efflux, while the middle and lower layers exhibited distinct barrier properties, depending on the metal tested. Notably, filaggrin deficiency abrogated the lower layer barrier, allowing specific metal ions to permeate viable layers. These findings elucidate the multi-layered barrier function of the SC and its defects in filaggrin-deficient atopic disease patients. PMID:23615774

  3. Topological excitations in a kagome magnet.

    PubMed

    Pereiro, Manuel; Yudin, Dmitry; Chico, Jonathan; Etz, Corina; Eriksson, Olle; Bergman, Anders

    2014-09-08

    Chirality--that is, left or right handedness--is present in many scientific areas, and particularly in condensed matter physics. Inversion symmetry breaking relates chirality with skyrmions, which are protected field configurations with particle-like and topological properties. Here we show that a kagome magnet, with Heisenberg and Dzyaloshinskii-Moriya interactions, causes non-trivial topological and chiral magnetic properties. We also find that under special circumstances, skyrmions emerge as excitations, having stability even at room temperature. Chiral magnonic edge states of a kagome magnet offer, in addition, a promising way to create, control and manipulate skyrmions. This has potential for applications in spintronics, that is, for information storage or as logic devices. Collisions between these particle-like excitations are found to be elastic at very low temperature in the skyrmion-skyrmion channel, albeit without mass-conservation. Skyrmion-antiskyrmion collisions are found to be more complex, where annihilation and creation of these objects have a distinct non-local nature.

  4. Inorganic-Organic Coating via Molecular Layer Deposition Enables Long Life Sodium Metal Anode.

    PubMed

    Zhao, Yang; Goncharova, Lyudmila V; Zhang, Qian; Kaghazchi, Payam; Sun, Qian; Lushington, Andrew; Wang, Biqiong; Li, Ruying; Sun, Xueliang

    2017-09-13

    Metallic Na anode is considered as a promising alternative candidate for Na ion batteries (NIBs) and Na metal batteries (NMBs) due to its high specific capacity, and low potential. However, the unstable solid electrolyte interphase layer caused by serious corrosion and reaction in electrolyte will lead to big challenges, including dendrite growth, low Coulombic efficiency and even safety issues. In this paper, we first demonstrate the inorganic-organic coating via advanced molecular layer deposition (alucone) as a protective layer for metallic Na anode. By protecting Na anode with controllable alucone layer, the dendrites and mossy Na formation have been effectively suppressed and the lifetime has been significantly improved. Moreover, the molecular layer deposition alucone coating shows better performances than the atomic layer deposition Al2O3 coating. The novel design of molecular layer deposition protected Na metal anode may bring in new opportunities to the realization of the next-generation high energy-density NIBs and NMBs.

  5. Quantum kagome frustrated antiferromagnets: One route to quantum spin liquids

    NASA Astrophysics Data System (ADS)

    Mendels, Philippe; Bert, Fabrice

    2016-03-01

    After introducing the field of Highly Frustrated Magnetism through the quest for a quantum spin liquid in dimension higher than one, we focus on the emblematic case of the kagome network. From a theoretical point of view, the simple Heisenberg case for an antiferromagnetic kagome lattice decorated with quantum spins has been a long-standing problem, not solved yet. Experimental realizations have remained scarce for long until the discovery of herbertsmithite ZnCu3(OH)6Cl2 in 2005. This is one of the very few quantum kagome spin liquid candidates that triggered a burst of activity both on theory and experiment sides. We give a survey of theory outcomes on the "kagome" problem, review the experimental properties of that model candidate and shortly discuss them with respect to recent theoretical results.

  6. Buffer layers on metal alloy substrates for superconducting tapes

    DOEpatents

    Jia, Quanxi; Foltyn, Stephen R.; Arendt, Paul N.; Groves, James R.

    2004-10-05

    An article including a substrate, at least one intermediate layer upon the surface of the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the at least one intermediate layer, and a layer of a SrRuO.sub.3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO.sub.3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO.sub.3 buffer material in such an article, J.sub.c 's of up to 1.3.times.10.sup.6 A/cm.sup.2 have been demonstrated with projected I.sub.c 's of over 200 Amperes across a sample 1 cm wide.

  7. Low resistance barrier layer for isolating, adhering, and passivating copper metal in semiconductor fabrication

    DOEpatents

    Weihs, Timothy P.; Barbee, Jr., Troy W.

    2002-01-01

    Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).

  8. CdCu{sub 3}(OH){sub 6}Cl{sub 2}: A new layered hydroxide chloride

    SciTech Connect

    McQueen, T.M.; Han, T.H.; Freedman, D.E.; Stephens, P.W.; Lee, Y.S.; Nocera, D.G.

    2011-12-15

    A new transition metal hydroxide chloride containing kagome layers of magnetic ions, CdCu{sub 3}(OH){sub 6}Cl{sub 2}, has been synthesized and structurally characterized. The actual low symmetry P2{sub 1}/n structure can be derived from the ideal trigonal one with a change in cation distribution and coherent distortions of the anion framework. The result is a fundamentally different Cu{sup 2+} kagome framework than found in the related Herbertsmithite and Kapellasite minerals. Magnetization measurements show no transition to long range magnetic order above T=2 K, despite strong antiferromagnetic interactions with a Weiss temperature of {theta}{sub w}=-150 K. Furthermore, we show that the structure of CdCu{sub 3}(OH){sub 6}Cl{sub 2} and related hydroxide chlorides can be rationalized on the basis of [(OH){sub 3}Cl]{sup 4-} pseudopolyatomic anions that pack and rotate, in much the same way as do traditional polyatomic anions. This opens the door to rational design of new and useful hydroxide chloride materials. - Graphical Abstract: The [(OH){sub 3}Cl]{sup 4-} pseudopolyatomic anion and the kagome lattice of CdCu{sub 3}[(OH){sub 3}Cl]{sub 2}. Highlights: Black-Right-Pointing-Pointer A new understanding of hydroxide chlorides, based on the polyatomic anion [(OH){sub 3}Cl]{sup 4-}. Black-Right-Pointing-Pointer Synthesis and structure of a new layered hydroxide chloride, CdCu{sub 3}(OH){sub 6}Cl{sub 2}, are reported. Black-Right-Pointing-Pointer A new compound is reported with kagome layers of Cu{sup 2+}.

  9. Hybrid functional studies of defects in layered transition metal oxides

    NASA Astrophysics Data System (ADS)

    Hoang, Khang; Johannes, Michelle

    2014-03-01

    Layered oxides LiMO2 (M is a transition metal) have been studied extensively for Li-ion battery cathodes. It is known that defects have strong impact on the electrochemical performance. A detailed understanding of native point defects in LiMO2 is however still lacking, thus hindering rational design of more complex materials for battery applications. In fact, first-principles defect calculations in LiMO2 are quite challenging because standard density functional theory (DFT) calculations using the generalized gradient approximation (GGA) of the exchange-correlation functional fail to reproduce the correct physics. The GGA+U extension can produce reasonable results, but the transferability of U across the compounds is limited. In this talk, we present our DFT studies of defects in LiMO2 (M=Co, Ni) using the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid functional. The dominant point defects will be identified and compared with experiment; and their impact on the structural stability and the charge (electronic and ionic) and mass transport will be addressed. We will also discuss possible shortcomings of the HSE functional in the study of these electron-correlated materials.

  10. Dislocated double-layer metal gratings: an efficient unidirectional coupler.

    PubMed

    Liu, Tianran; Shen, Yang; Shin, Wonseok; Zhu, Qiangzhong; Fan, Shanhui; Jin, Chongjun

    2014-07-09

    We propose theoretically and demonstrate experimentally a dislocated double-layer metal grating structure, which operates as a unidirectional coupler capable of launching surface plasmon polaritons in a desired direction under normal illumination. The structure consists of a slanted dielectric grating sandwiched between two gold gratings. The upper gold grating has a nonzero lateral relative displacement with respect to the lower one. Numerical simulations show that a grating structure with 7 periods can convert 49% of normally incident light into surface plasmons with a contrast ratio of 78 between the powers of the surface plasmons launched in two opposite directions. We explain the unidirectional coupling phenomenon by the dislocation-induced interference of the diffracted waves from the upper and lower gold gratings. Furthermore, we developed a simple and cost-effective technique to fabricate the structure via tilted two-beam interference lithography and subsequent shadow deposition of gold. The experimental results demonstrate a coupling efficiency of 36% and a contrast ratio of 43. The relatively simple periodic nature of our structure lends itself to large-scale low-cost fabrication and simple theoretical analysis. Also, unlike the previous unidirectional couplers based on aperiodic structures, the design parameters of our unidirectional coupler can be determined analytically. Therefore, this structure can be an important component for surface-plasmon-based nanophotonic circuits by providing an efficient interface between free-space and surface plasmon waves.

  11. Ambipolar field-effect transistors by few-layer InSe with asymmetry contact metals

    NASA Astrophysics Data System (ADS)

    Lin, Chang-Yu; Ulaganathan, Rajesh Kumar; Sankar, Raman; Chou, Fang-Cheng

    2017-07-01

    Group IIIA-VIA layered semiconductors (MX, where M = Ga and In, X = S, Se, and Te) have attracted tremendous interest for their anisotropic optical, electronic, and mechanical properties. In this study, we demonstrated that metal and InSe junctions can lead to carrier behaviors in few-layered InSe FETs. These results indicate that the polarity of few-layered InSe FETs can be determined by using metals with different work functions. We adopted FET S/D metal contacts with asymmetric work functions to reduce the Schottky barriers of electrons and holes, and discovered that few-layered InSe FETs with carefully selected metal contacts can achieve ambipolar behaviors. These results indicate that group IIIA-VIA layered semiconductor FETs with asymmetry contact metals have great potential for applications in photovoltaic devices, optical sensors, and CMOS inverter circuits.

  12. sd(2) Graphene: Kagome band in a hexagonal lattice.

    PubMed

    Zhou, Miao; Liu, Zheng; Ming, Wenmei; Wang, Zhengfei; Liu, Feng

    2014-12-05

    Graphene, made of sp^{2} hybridized carbon, is characterized with a Dirac band, representative of its underlying 2D hexagonal lattice. The fundamental understanding of graphene has recently spurred a surge in the search for 2D topological quantum phases in solid-state materials. Here, we propose a new form of 2D material, consisting of sd^{2} hybridized transition metal atoms in hexagonal lattice, called sd^{2} "graphene." The sd^{2} graphene is characterized by bond-centered electronic hopping, which transforms the apparent atomic hexagonal lattice into the physics of a kagome lattice that may exhibit a wide range of topological quantum phases. Based on first-principles calculations, room-temperature quantum anomalous Hall states with an energy gap of ∼0.1  eV are demonstrated for one such lattice made of W, which can be epitaxially grown on a semiconductor surface of 1/3 monolayer Cl-covered Si(111), with high thermodynamic and kinetic stability.

  13. Improving Metal-Oxide-Metal (MOM) Diode Performance Via the Optimization of the Oxide Layer

    NASA Astrophysics Data System (ADS)

    Dodd, Linzi E.; Shenton, Samantha A.; Gallant, Andrew J.; Wood, David

    2015-05-01

    Small area metal-oxide-metal (MOM) diodes are being investigated in many research groups for the detection of THz frequency radiation. In order to create a high-speed rectifying device, the central oxide layer of the MOM structure must be thin and have known physical characteristics. The thickness, structure and uniformity of the oxide can be controlled during the fabrication process. In the work presented here, the effects of both oxygen plasma concentration and annealing temperature during fabrication of MOM diodes have been explored. It has been found that, by reducing the oxygen gas concentration from previous work, the layer can be more repeatable and uniform. Furthermore, for an anneal temperature up to a threshold temperature in the to range, the performance of the diodes is excellent, with a value of zero-bias curvature coefficient (CCZB) that can be up to . For higher temperature treatments, the value of CCZB decreases to a maximum of . Similar trends in AC tests can be seen for voltage and current responsivity values.

  14. Silicon surface passivation by metal layers for low-temperature epitaxy

    NASA Astrophysics Data System (ADS)

    Kühnle, Jürgen; Bergmann, Ralf; Werner, Jürgen H.; Albrecht, Martin

    1996-06-01

    A novel surface passivation technique permits low-temperature homoepitaxy of Si above the stability limit (450°C) of a conventional hydrogen passivation. An evaporated metal film replaces the hydrogen passivation by a more stable metal layer and thus allows for epitaxial growth up to 570°C. Our passivation by a metal layer (PAMELA) technique is particularly suitable for liquid phase epitaxy.

  15. Metallic wave-impedance matching layers for broadband terahertz optical systems.

    PubMed

    Kröll, Josef; Darmo, Juraj; Unterrainer, Karl

    2007-05-28

    We examine the potential of ultra-thin metallic layers for broadband wave-impedance matching in the terahertz frequency range. The metallic layer is modeled using Fresnel formulae for stratified optical medium. Experimental data for chromium and indium-tin-oxide layers, measured using time-domain terahertz spectroscopy over the frequency range 0.4 - 4.5 THz, are compared with theoretical results.

  16. Influence of head size on the development of metallic wear and on the characteristics of carbon layers in metal-on-metal hip joints

    PubMed Central

    Sprecher, Christoph M; Wimmer, Markus A; Milz, Stefan; Taeger, Georg

    2009-01-01

    Background and purpose Particles originating from the articulating surfaces of hip endoprostheses often induce an inflammatory response, which can be related to implant failure. We therefore analyzed the metal content in capsular tissue from 44 McKee-Farrar metal-on-metal hip prostheses (with 3 different head sizes) and we also analyzed the morphological structure of layers located on articulating surfaces. Methods Atomic absorption spectrometry (AAS) was used to analyze the metal content in capsular tissue. Visually detectable carbon layers located on the articulating surfaces were evaluated using scanning electron microscopy (SEM), energy-dispersive Xray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). Results Metallic debris was detected in all capsular tissue samples but no statistically significant differences in metal content were found in relation to implant head size. The morphological characteristics of the different layer zones allowed an exact analysis of contact and non-contact areas. Furthermore, surface layers appear to have a protective function because they can prevent sharp-edged particles from damaging the prostheses surface. Interpretation The implant head size does not appear to influence the amount of metallic debris. The layers obviously act like a lubricating agent because the protection function does not occur in regions without layers where the metal surface often shows numerous scratches. As layers are not generated immediately after the implantation of hip prostheses, these findings may at least partially explain the high amount of wear early after implantation. PMID:19421914

  17. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery.

    PubMed

    Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-06-07

    Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery.

  18. Experimental investigation on coupling flows between liquid and liquid metal layers

    NASA Astrophysics Data System (ADS)

    Yano, Kanako; Tasaka, Yuji; Murai, Yuichi; Takeda, Yasushi; Yanagisawa, Takatoshi

    2008-11-01

    This study aims to clarify coupling of flows between liquid metal and other usual liquids, e.g. water or oil, in fluid dynamical systems. In past studies for two-layer Rayleigh-Bénard system where the immiscible two liquids are layered, two types of coupling were observed; these are called as ``mechanical coupling'' and ``thermal coupling.'' As a typical character of low Pr fluid, large-scale structure in the liquid metal layer has oscillating motion. In this study we investigate ``thermal coupling'' especially how the oscillation of cells in the liquid metal layer propagates to the upper liquid layer and vice versa by changing a ratio of the height of the layers and viscosity of the upper layer fluid. Visualization of the liquid metal motion was conducted by means of ultrasonic velocity profiling, and then the oscillating motion is expressed on the space-time velocity map. PIV measurement of the upper, transparent fluid layer shows the modulation of the convective motion due to the oscillation in the liquid metal layer. Point-wise measurement of temperature at several positions in the fluid layer represents the modulation quantitatively.

  19. Octa-Kagomé Lattice Compounds Showing Quantum Critical Behaviors: Spin Gap Ground State versus Antiferromagnetic Ordering.

    PubMed

    Tang, Yingying; Peng, Cheng; Guo, Wenbin; Wang, Jun-Feng; Su, Gang; He, Zhangzhen

    2017-09-29

    Search for a new geometrically frustrated lattice is a great challenge. Herein, we report on a successful synthesis of two new layered compounds BiOCu2(XO3)(SO4)(OH)·H2O [X = Te (1) and Se (2)] with a new type of geometrically frustrated lattice (i.e., the octa-kagomé lattice) between kagomé and star motifs. Magnetic measurements confirmed that 1 exhibits a spin gap ground state, while 2 possesses a typical antiferromagnetic ordering at low-temperature. Such different magnetic behaviors between two isostructural compounds are suggested to originate from a slightly structural modification induced by nonmagnetic XO3 anionic groups. Theoretical simulations suggest that the origin of gapped ground state in 1 may be due to the dimerization of Cu(2+) ions, while 2 may break the limiting of such dimerization, leading to an antiferromagnetic ordering.

  20. Intrinsic Quantum Anomalous Hall Effect in the Kagome Lattice Cs_{2}LiMn_{3}F_{12}.

    PubMed

    Xu, Gang; Lian, Biao; Zhang, Shou-Cheng

    2015-10-30

    In a kagome lattice, the time reversal symmetry can be broken by a staggered magnetic flux emerging from ferromagnetic ordering and intrinsic spin-orbit coupling, leading to several well-separated nontrivial Chern bands and intrinsic quantum anomalous Hall effect. Based on this idea and ab initio calculations, we propose the realization of the intrinsic quantum anomalous Hall effect in the single layer Cs_{2}Mn_{3}F_{12} kagome lattice and on the (001) surface of a Cs_{2}LiMn_{3}F_{12} single crystal by modifying the carrier coverage on it, where the band gap is around 20 meV. Moreover, a simplified tight binding model based on the in-plane ddσ antibonding states is constructed to understand the topological band structures of the system.

  1. Intrinsic quantum anomalous Hall effect in the kagome lattice Cs2LiMn3F12

    DOE PAGES

    Xu, Gang; Lian, Biao; Zhang, Shou -Cheng

    2015-10-27

    In a kagome lattice, the time reversal symmetry can be broken by a staggered magnetic flux emerging from ferromagnetic ordering and intrinsic spin-orbit coupling, leading to several well-separated nontrivial Chern bands and intrinsic quantum anomalous Hall effect. Based on this idea and ab initio calculations, we propose the realization of the intrinsic quantum anomalous Hall effect in the single layer Cs2Mn3F12 kagome lattice and on the (001) surface of a Cs2LiMn3F12 single crystal by modifying the carrier coverage on it, where the band gap is around 20 meV. Furthermore, a simplified tight binding model based on the in-plane ddσ antibondingmore » states is constructed to understand the topological band structures of the system.« less

  2. Buffer layers on metal alloy substrates for superconducting tapes

    DOEpatents

    Jia, Quanxi; Foltyn, Stephen R.; Arendt, Paul N.; Groves, James R.

    2004-06-29

    An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer, and a layer of a SrRuO.sub.3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO.sub.3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO.sub.3 buffer material in such an article, J.sub.c 's of up to 1.3.times.10.sup.6 A/cm.sup.2 have been demonstrated with projected IC's of over 200 Amperes across a sample 1 cm wide.

  3. Masking ability of opaque thickness on layered metal-ceramic.

    PubMed

    Pieper, Cari M; Waldemarin, Renato Fa; Camacho, Guilherme B

    2016-09-01

    This study evaluated the masking ability of two opaques applied in different thicknesses. Eighty NiCr metal discs 16 mm in diameter and 1.0 mm thick were prepared. The disks were divided into 8 groups (n = 10). Ceramic opaque in paste (groups 1 to 4) or powder (groups 5 to 8) presentations were applied. They were machined with aluminum oxide burs to the following thicknesses: G1 and G5 = 0.10 mm; G2 and G6 = 0.15 mm; G3 and G7 = 0.20 mm and G4 and G8 = 0.30 mm. Dentin ceramic 0.7 mm thick was applied over these discs, sintered and glazed according manufacturer's instructions. Color was assessed with a Minolta CR10 spectrocolorimeter on the CIELab scale. Powder opaque had higher values on (L) and (ΔE) variables, and lower values on (a) and (b) variables compared to paste opaque. For opaque thickness, 0.10 mm had higher ΔE than all other thicknesses. L values were higher for 0.20 mm and 0.30 mm. Lowest and highest a* values were observed for 0.10 mm and 0.30 mm, respectively. No difference was observed for b* values. There were differences between paste and powder opaque types; 0.10 mm thickness behaves differently from the other thicknesses, with higher ΔE, while 0.15 mm does not differ statistically from thicker layers. Sociedad Argentina de Investigación Odontológica.

  4. New Method to Determine the Schottky Barrier in Few-Layer Black Phosphorus Metal Contacts.

    PubMed

    Lee, Su Yeong; Yun, Won Seok; Lee, J D

    2017-03-01

    Schottky barrier height and carrier polarity are seminal concepts for a practical device application of the interface between semiconductor and metal electrode. Investigation of those concepts is usually made by a conventional method such as the Schottky-Mott rule, incorporating the metal work function and semiconductor electron affinity, or the Fermi level pinning effect, resulting from the metal-induced gap states. Both manners are, however, basically applied to the bulk semiconductor metal contacts. To explore few-layer black phosphorus metal contacts far from the realm of bulk, we propose a new method to determine the Schottky barrier by scrutinizing the layer-by-layer phosphorus electronic structure from the first-principles calculation combined with the state-of-the-art band unfolding technique. In this study, using the new method, we calculate the Schottky barrier height and determine the contact polarity of Ti, Sc, and Al metal contacts to few-layer (mono-, bi-, tri-, and quadlayer) black phosphorus. This gives a significant physical insight toward the utmost layer-by-layer manipulation of electronic properties of few-layer semiconductor metal contacts.

  5. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers.

    PubMed

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-18

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  6. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers

    NASA Astrophysics Data System (ADS)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-01

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  7. Using optical diagnostics to determine the melt temperature field in layer-by-layer laser alloying of metal powder

    NASA Astrophysics Data System (ADS)

    Zavalov, Yu. N.; Dubrov, A. V.; Mirzade, F. Kh.; Dubrovin, N. G.; Makarova, E. S.; Dubrov, V. D.

    2017-07-01

    The results of application of optical diagnostics in the estimation of the temperature field at the melt surface in layer-by-layer laser alloying of metal powder are presented. It is demonstrated that surface concavity induced by the thermocapillary effect upon nonuniform heating may distort pyrometry data considerably. The use of external illumination provides an opportunity to determine the shape of the melt surface. The obtained minimum estimate of the temperature gradient in the metal region affected by laser radiation is 2.8 × 104 K/cm.

  8. Polarization-dependent plasmonic coupling in dual-layer metallic structures at terahertz frequencies.

    PubMed

    Zhang, Zhong Xiang; Chan, Kam Tai

    2011-01-31

    Dual-layer metallic wire-hole structures were fabricated and their terahertz transmission properties were measured. They exhibit polarization-dependent transmittance with large extinction ratios. Simulation and experimental results on structures with different wire-to-hole orientations provide strong evidence that the resonance peaks are caused by plasmonic coupling between the two metallic layers. A simplified LC-circuit model is proposed to explain the coupling mechanism and to estimate the peak frequencies. Our results suggest that specific electromagnetic response can be achieved by appropriate design of the geometrical patterns on the two metallic layers and a suitable polarization of the incident wave.

  9. Superior Stable and Long Life Sodium Metal Anodes Achieved by Atomic Layer Deposition.

    PubMed

    Zhao, Yang; Goncharova, Lyudmila V; Lushington, Andrew; Sun, Qian; Yadegari, Hossein; Wang, Biqiong; Xiao, Wei; Li, Ruying; Sun, Xueliang

    2017-03-03

    Na-metal batteries are considered as the promising alternative candidate for Li-ion battery beneficial from the wide availability and low cost of sodium, high theoretical specific capacity, and high energy density based on the plating/stripping processes and lowest electrochemical potential. For Na-metal batteries, the crucial problem on metallic Na is one of the biggest challenges. Mossy or dendritic growth of Na occurs in the repetitive Na stripping/plating process with an unstable solid electrolyte interphase layer of nonuniform ionic flux, which can not only lead to the low Coulombic efficiency, but also can create short circuit risks, resulting in possible burning or explosion. In this communication, the atomic layer deposition of Al2 O3 coating is first demonstrated for the protection of metallic Na anode for Na-metal batteries. By protecting Na foil with ultrathin Al2 O3 layer, the dendrites and mossy Na formation have been effectively suppressed and lifetime has been significantly improved. Furthermore, the thickness of protective layer has been further optimized with 25 cycles of Al2 O3 layer presenting the best performance over 500 cycles. The novel design of atomic layer deposition protected metal Na anode may bring in new opportunities to the realization of the next-generation high energy-density Na metal batteries.

  10. Characterization of metal oxide layers grown on CVD graphene

    SciTech Connect

    Matsubayashi, Akitomo; Abel, Joseph; Prasad Sinha, Dhiraj; Lee, Ji Ung; LaBella, Vincent P.

    2013-03-15

    Growth of a fully oxidized aluminum oxide layer with low surface roughness on graphene grown by chemical vapor deposition is demonstrated. This is accomplished by the deposition of a 0.2 nm thick titanium seed layer on the graphene prior to the deposition of the aluminum under ultra high vacuum conditions, which was subsequently oxidized. The stoichiometry and surface roughness of the oxide layers were measured for a range of titanium and aluminum depositions utilizing ex situ x-ray photoelectron spectrometry and atomic force microscopy. These fully oxidized films are expected to produce good dielectric layers for use in graphene based electronic devices.

  11. Surface plasmon dispersion engineering via double-metallic AU/AG layers for nitride light-emitting diodes

    DOEpatents

    Tansu, Nelson; Zhao, Hongping; Zhang, Jing; Liu, Guangyu

    2014-04-01

    A double-metallic deposition process is used whereby adjacent layers of different metals are deposited on a substrate. The surface plasmon frequency of a base layer of a first metal is tuned by the surface plasmon frequency of a second layer of a second metal formed thereon. The amount of tuning is dependent upon the thickness of the metallic layers, and thus tuning can be achieved by varying the thicknesses of one or both of the metallic layers. In a preferred embodiment directed to enhanced LED technology in the green spectrum regime, a double-metallic Au/Ag layer comprising a base layer of gold (Au) followed by a second layer of silver (Ag) formed thereon is deposited on top of InGaN/GaN quantum wells (QWs) on a sapphire/GaN substrate.

  12. Modeling Metallic Ion Transport During the Lifetime of an Intermediate Layer

    NASA Astrophysics Data System (ADS)

    Bishop, R. L.; Earle, G. D.

    2001-05-01

    Intermediate layers are one of several phenomena that occur at midlatitudes in the nighttime E region. These ionization layers which typically form on the bottomside of the F region, are frequently observed by the Arecibo Incoherent Scatter Facility. Although their occurrence is relatively common, they exhibit diverse structure. Their altitude of formation, vertical thickness, and motion show significant nightly variations. Layer structure is influenced by a number of factors including composition, electric fields, and fluctuations in the neutral wind field. A numerical simulation has been employed to investigate the effects of composition on layer development. Specifically, the simulation, named LEAD (Layer Evolution And Dynamics), explores the transport of metallic ions during the formation and subsequent motion of a layer due to a time varying meridional wind field. We discuss the relative molecular/metallic ratio inside the layer during its evolution, the time scales for metallic ion dominance within the layer, and the motion of metallic ions in the adjacent altitude regions. We present animated results from LEAD which allow detailed inspection of ion composition variations throughout the process of layer evolution and descent.

  13. ZnO buffer layer for metal films on silicon substrates

    SciTech Connect

    Ihlefeld, Jon

    2014-09-16

    Dramatic improvements in metallization integrity and electroceramic thin film performance can be achieved by the use of the ZnO buffer layer to minimize interfacial energy between metallization and adhesion layers. In particular, the invention provides a substrate metallization method utilizing a ZnO adhesion layer that has a high work of adhesion, which in turn enables processing under thermal budgets typically reserved for more exotic ceramic, single-crystal, or metal foil substrates. Embodiments of the present invention can be used in a broad range of applications beyond ferroelectric capacitors, including microelectromechanical systems, micro-printed heaters and sensors, and electrochemical energy storage, where integrity of metallized silicon to high temperatures is necessary.

  14. Improvement of corrosion resistance of transparent conductive multilayer coating consisting of silver layers and transparent metal oxide layers

    SciTech Connect

    Koike, Katsuhiko; Yamazaki, Fumiharu; Okamura, Tomoyuki; Fukuda, Shin

    2007-05-15

    An optical filter for plasma display panel (PDP) requires an electromagnetic shield with very high ability. The authors investigated a transparent conductive multilayer coating consisting of silver (Ag) layers and transparent metal oxide layers. The durability of the multilayer sputter coating, including the silver layer, is very sensitive to the surrounding atmosphere. For example, after an exposure test they found discolored points on the multilayer sputter coatings, possibly caused by migration of silver atoms in the silver layers. In their investigation, they modified the top surface of the multilayer sputter coatings with transition metals to improve the corrosion resistance of the multilayer coating. Specifically, they deposited transition metals 0.5-2 nm thick on the top surface of the multilayer coatings by sputtering. They chose indium tin oxide (ITO) as the transparent metal oxide. They applied the multilayer sputter coatings of seven layers to a polyethylene terephthalate (PET) film substrate. A cross-sectional structure of the film with the multilayer coatings is PET film/ITO/Ag/ITO/Ag/ITO/Ag/ITO. They evaluated the corrosion resistance of the films by a salt-water immersion test. In the test, they immersed the film with multilayer coatings into salt water, and then evaluated the appearance, transmittance, and electrical resistance of the multilayer coatings. They investigated several transition metals as the modifying material, and found that titanium and tantalum drastically improved the resistance of the multilayer coatings to the salt-water exposure without a significant decline in transmittance. They also investigated the relation between elapsed time after deposition of the modifying materials and resistance to the salt water. Furthermore, they investigated the effects of a heat treatment and an oxide plasma treatment on resistance to the salt water.

  15. Vibrational Properties of a Two-Dimensional Silica Kagome Lattice

    PubMed Central

    2016-01-01

    Kagome lattices are structures possessing fascinating magnetic and vibrational properties, but in spite of a large body of theoretical work, experimental realizations and investigations of their dynamics are scarce. Using a combination of Raman spectroscopy and density functional theory calculations, we study the vibrational properties of two-dimensional silica (2D-SiO2), which has a kagome lattice structure. We identify the signatures of crystalline and amorphous 2D-SiO2 structures in Raman spectra and show that, at finite temperatures, the stability of 2D-SiO2 lattice is strongly influenced by phonon–phonon interaction. Our results not only provide insights into the vibrational properties of 2D-SiO2 and kagome lattices in general but also suggest a quick nondestructive method to detect 2D-SiO2. PMID:28024359

  16. Space Group Symmetry Fractionalization in a Chiral Kagome Heisenberg Antiferromagnet.

    PubMed

    Zaletel, Michael P; Zhu, Zhenyue; Lu, Yuan-Ming; Vishwanath, Ashvin; White, Steven R

    2016-05-13

    The anyonic excitations of a spin liquid can feature fractional quantum numbers under space group symmetries. Detecting these fractional quantum numbers, which are analogs of the fractional charge of Laughlin quasiparticles, may prove easier than the direct observation of anyonic braiding and statistics. Motivated by the recent numerical discovery of spin-liquid phases in the kagome Heisenberg antiferromagnet, we theoretically predict the pattern of space group symmetry fractionalization in the kagome lattice SO(3)-symmetric chiral spin liquid. We provide a method to detect these fractional quantum numbers in finite-size numerics which is simple to implement in the density matrix renormalization group. Applying these developments to the chiral spin liquid phase of a kagome Heisenberg model, we find perfect agreement between our theoretical prediction and numerical observations.

  17. Unconventional fermi surface instabilities in the kagome Hubbard model.

    PubMed

    Kiesel, Maximilian L; Platt, Christian; Thomale, Ronny

    2013-03-22

    We investigate the competing Fermi surface instabilities in the kagome tight-binding model. Specifically, we consider on-site and short-range Hubbard interactions in the vicinity of van Hove filling of the dispersive kagome bands where the fermiology promotes the joint effect of enlarged density of states and nesting. The sublattice interference mechanism devised by Kiesel and Thomale [Phys. Rev. B 86, 121105 (2012)] allows us to explain the intricate interplay between ferromagnetic fluctuations and other ordering tendencies. On the basis of the functional renormalization group used to obtain an adequate low-energy theory description, we discover finite angular momentum spin and charge density wave order, a twofold degenerate d-wave Pomeranchuk instability, and f-wave superconductivity away from van Hove filling. Together, this makes the kagome Hubbard model the prototypical scenario for several unconventional Fermi surface instabilities.

  18. Design of a Kagome lattice from soft anisotropic particles.

    PubMed

    Fejer, Szilard N; Wales, David J

    2015-09-07

    We present a simple model of triblock Janus particles based on discoidal building blocks, which can form energetically stabilized Kagome structures. We find 'magic number' global minima in small clusters whenever particle numbers are compatible with a perfect Kagome structure, without constraining the accessible three-dimensional configuration space. The preference for planar structures with two bonds per patch among all other possible minima on the landscape is enhanced when sedimentation forces are included. For the building blocks in question, structures containing three bonds per patch become progressively higher in energy compared to Kagome structures as sedimentation forces increase. Rearrangements between competing structures, as well as ring formation mechanisms are characterised and found to be highly cooperative.

  19. Magnetic phase diagrams of classical triangular and kagome antiferromagnets.

    PubMed

    Gvozdikova, M V; Melchy, P-E; Zhitomirsky, M E

    2011-04-27

    We investigate the effect of geometrical frustration on the H-T phase diagrams of the classical Heisenberg antiferromagnets on triangular and kagome lattices. The phase diagrams for the two models are obtained from large-scale Monte Carlo simulations. For the kagome antiferromagnet, thermal fluctuations are unable to lift degeneracy completely and stabilize translationally disordered multipolar phases. We find a substantial difference in the temperature scales of the order by disorder effect related to different degeneracy of the low- and the high-field classical ground states in the kagome antiferromagnet. In the low-field regime, the Kosterlitz-Thouless transition into a spin-nematic phase is produced by unbinding of half-quantum vortices.

  20. Vibrational Properties of a Two-Dimensional Silica Kagome Lattice.

    PubMed

    Björkman, Torbjörn; Skakalova, Viera; Kurasch, Simon; Kaiser, Ute; Meyer, Jannik C; Smet, Jurgen H; Krasheninnikov, Arkady V

    2016-12-27

    Kagome lattices are structures possessing fascinating magnetic and vibrational properties, but in spite of a large body of theoretical work, experimental realizations and investigations of their dynamics are scarce. Using a combination of Raman spectroscopy and density functional theory calculations, we study the vibrational properties of two-dimensional silica (2D-SiO2), which has a kagome lattice structure. We identify the signatures of crystalline and amorphous 2D-SiO2 structures in Raman spectra and show that, at finite temperatures, the stability of 2D-SiO2 lattice is strongly influenced by phonon-phonon interaction. Our results not only provide insights into the vibrational properties of 2D-SiO2 and kagome lattices in general but also suggest a quick nondestructive method to detect 2D-SiO2.

  1. Role of the spin magnitude of the magnetic ion in determining the frustration and low-temperature properties of kagome lattices.

    PubMed

    Pati, Swapan K; Rao, C N R

    2005-12-15

    In view of the variety of low-temperature magnetic properties reported recently for kagome lattices with transition-metal ions in different oxidation states, we have investigated the low-energy spectrum and low-temperature thermodynamic properties of antiferromagnetic kagome lattices with varying magnitudes of site spins, employing quantum many-body Heisenberg models. The ground state and the low-lying excitation spectrum are found to depend strongly on the nature of the spin magnitude of the magnetic ions. The system remains highly frustrated if spins are half-odd-integer in magnitude, while the frustration is very weak or almost absent for integer spins or mixed-spin systems. In fact, for a mixed-spin kagome system with a certain magnitude, the whole system behaves as a classical magnet with a ferrimagnetic ground state without any frustration. These theoretical findings are consistent with a few experimental observations recently reported in the literature and would be of value in designing new kagome systems with unusual and interesting low-temperature magnetic properties.

  2. Emerging interface dipole versus screening effect in copolymer/metal nano-layered systems

    NASA Astrophysics Data System (ADS)

    Torrisi, V.; Ruffino, F.; Liscio, A.; Grimaldi, M. G.; Marletta, G.

    2015-12-01

    Despite to the importance on the charge carrier injection and transport at organic/metal interface, there is yet an incomplete estimation of the various contribution to the overall dipole. This work shows how the mapping of the surface potential performed by Kelvin Probe Force Microscopy (KPFM) allows the direct observation of the interface dipole within an organic/metal multilayered structure. Moreover, we show how the sub-surface sensitivity of the KPFM depends on the thickness and surface coverage of the metallic layer. This paper proposes a way to control the surface potential of the exposed layer of an hybrid layered system by controlling the interface dipole at the organic/metal interface as a function of the nanometer scale thickness and the surface coverage of the metallic layer. We obtained a layered system constituted by repeated sequence of a copolymer film, poly(n-butylacrylate)-b-polyacrilic acid, and Au layer. We compared the results obtained by means of scanning probe microscopy technique with the results of the KPFM technique, that allows us to obtain high-contrast images of the underlying layer of copolymer behind a typical threshold, on the nanoscale, of the thickness of the metal layer. We considered the effect of the morphology of the gold layer on the covered area at different thicknesses by using the scanning electron microscopy technique. This finding represents a step forward towards the using of dynamic atomic force microscopy based characterization to explore the electrical properties of the sub-surface states of layered nanohybrid, that is a critical point for nanohybrid applications in sensors and energy storage devices.

  3. Double sporadic metal layers as observed by colocated Fe and Na lidars at Wuhan, China

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Yi, Fan; Huang, Kaiming

    2017-02-01

    In this paper, we report a set of double sporadic layer events observed by Fe and Na lidars over Wuhan, China. The two sporadic metal layers above normal layer were named as upper and middle sporadic metal layers, respectively. In these events, the upper, middle, and normal Fe layers presented altitude separately. There were nine double sporadic Fe events observed in 163 nights during 2010-2013. Eight of the nine events were observed in summer. The maximum ratios of peak density for upper and middle sporadic Fe layers to normal Fe layer were up to 375% and 225%, respectively. The peak altitudes of upper (middle) sporadic Fe layers were in the range of 102-107 km (95-98.5 km). The double sporadic Fe layers lasted more than 2 h. Interestingly, we found that density enhancement occurred simultaneously in upper, middle, and normal Fe layers on two events. On the nine Fe events, there existed five nights of colocated Na lidar observations. We found that double sporadic Na and Fe layers simultaneously appeared. They presented similar structures, altitudes, and temporal variations in all five compared events. A little different from Fe, the middle sporadic Na layer was not separated from Na main layer maybe for the wide altitude range of Na main layer. The ratios of upper (middle) sporadic Fe and Na peak values were in the range of 6.6-52 (0.57-6.58). While the exact formation mechanism responsible for double sporadic metal layers is still unclear, some possible explanations and corresponding observations are discussed.

  4. Spectral and total temperature-dependent emissivities of few-layer structures on a metallic substrate.

    PubMed

    Blandre, Etienne; Chapuis, Pierre-Olivier; Vaillon, Rodolphe

    2016-01-25

    We investigate the thermal radiative emission of few-layer structures deposited on a metallic substrate and its dependence on temperature with the Fluctuational Electrodynamics approach. We highlight the impact of the variations of the optical properties of metallic layers on their temperature-dependent emissivity. Fabry-Pérot spectral selection involving at most two transparent layers and one thin reflective layer leads to well-defined peaks and to the amplification of the substrate emission. For a single Fabry-Pérot layer on a reflective substrate, an optimal thickness that maximizes the emissivity of the structure can be determined at each temperature. A thin lossy layer deposited on the previous structure can enhance interference phenomena, and the analysis of the participation of each layer to the emission shows that the thin layer is the main source of emission. Eventually, we investigate a system with two Fabry-Pérot layers and a metallic thin layer, and we show that an optimal architecture can be found. The total hemispherical emissivity can be increased by one order of magnitude compared to the substrate emissivity.

  5. Proliferation of the synovial lining cell layer in suggested metal hypersensitivity.

    PubMed

    Burkandt, Andreas; Katzer, Alexander; Thaler, Karlheinz; Von Baehr, Volker; Friedrich, Reinhard E; Rüther, Wolfgang; Amling, Michael; Zustin, Jozef

    2011-01-01

    Synovial tissues in joints with prostheses display characteristic morphological changes in cases with aseptic failure, particularly macrophage infiltration. Since proliferation of the synovial lining cell layer represents a feature characteristic of autoimmune joint diseases, the possibility of morphological changes of the synovial lining cell layer in periprosthetic tissues was investigated. Synovial biopsies from five groups of morphologically well-defined lesions (osteoarthritis, rheumatoid arthritis, aseptic loosened metal-on-polyethylene and metal-on-metal arthroplasty and suggested metal hypersensitivity) were compared using a conventional staining method and immunohistochemistry. The synovial lining cell layer was substantially enlarged in both rheumatoid arthritis and cases suggestive of metal hypersensitivity. Macrophage infiltrates were apparent in rheumatoid arthritis and all specimens from retrieved hip arthroplasties. Although both synovial and subsynovial macrophages were positive for CD163 (indicating synovial M2 macrophages), the remaining fibroblast-like synoviocytes and scattered stromal fibroblasts showed a positive reaction with the D2-40 antibody (indicating fibroblast-like synoviocytes). Furthermore, in contrast to CD163-positive macrophages, the enlarged D2-40-positive fibroblast-like synoviocytes displayed cytoplasmatic tubular projections. Proliferation of the periprosthetic synovial lining cell layer occurred in cases with unexplained groin pain following metal-on-metal hip resurfacing arthroplasty, suggestive of hypersensitivity. Despite some important study limitations, the present observation adds to the evidence that metal hypersensitivity shares characteristic morphological features with autoimmune diseases of the joints.

  6. Construction of layered structures on valve metal alloys by microplasma oxidation

    NASA Astrophysics Data System (ADS)

    Baranova, T. A.; Chubenko, A. K.; Mamaev, A. I.; Mamaeva, V. A.; Kovalskaya, Ya B.

    2016-11-01

    Process of layered structure materials creation based on aluminum alloys is presented. Microplasma texturing method, microplasma oxidation method and chemical metallization method were used to create these structures. Non-conductive nonmetallic inorganic coatings were produced by microplasma oxidation method. Obtained structures showed high durability under thermal stress loads due to substrate metal - non-conductive nonmetallic inorganic coating phase boundary texturing.

  7. A Kagome Map of Spin Liquidsx

    NASA Astrophysics Data System (ADS)

    Essafi, Karim; Benton, Owen; Jaubert, Ludovic D. C.

    Competing interactions in frustrated magnets prevent ordering down to very low temperatures and stabilize exotic highly degenerate phases where strong correlations coexist with fluctuations. We study a very general nearest-neighbour Heisenberg spin model Hamiltonian on the kagome lattice which consist of Dzyaloshinskii-Moriya, ferro- and antiferromagnetic interactions. We present a three-fold mapping which transforms the well-known Heisenberg antiferromagnet (HAF) and XXZ model onto two lines of time-reversal Hamiltonians. The mapping is exact for both classical and quantum spins, i.e. preserves the energy spectrums of the HAF and XXZ model. As a consequence, our three-fold mapping gives rise to a connected network of quantum spin liquids centered around the Ising antiferromagnet. We show that this quantum disorder spreads over an extended region of the phase diagram at linear order in spin wave theory, which overlaps with the parameter region of Herbertsmithite ZnCu3(OH)6Cl2. At the classical level, all the phases have an extensively degenerate ground-state which present a variety of properties such as ferromagnetically induced pinch points in the structure factor and spontaneous scalar chirality which was absent in the original HAF and XXZ models. This work was supported by the Okinawa Institute of Science and Technology Graduate University.

  8. Localized modes in nonlinear binary kagome ribbons.

    PubMed

    Beličev, P P; Gligorić, G; Radosavljević, A; Maluckov, A; Stepić, M; Vicencio, R A; Johansson, M

    2015-11-01

    The localized mode propagation in binary nonlinear kagome ribbons is investigated with the premise to ensure controlled light propagation through photonic lattice media. Particularity of the linear system characterized by the dispersionless flat band in the spectrum is the opening of new minigaps due to the "binarism." Together with the presence of nonlinearity, this determines the guiding mode types and properties. Nonlinearity destabilizes the staggered rings found to be nondiffracting in the linear system, but can give rise to dynamically stable ringlike solutions of several types: unstaggered rings, low-power staggered rings, hour-glass-like solutions, and vortex rings with high power. The type of solutions, i.e., the energy and angular momentum circulation through the nonlinear lattice, can be controlled by suitable initial excitation of the ribbon. In addition, by controlling the system "binarism" various localized modes can be generated and guided through the system, owing to the opening of the minigaps in the spectrum. All these findings offer diverse technical possibilities, especially with respect to the high-speed optical communications and high-power lasers.

  9. Elasticity of a filamentous kagome lattice

    NASA Astrophysics Data System (ADS)

    Mao, Xiaoming; Stenull, Olaf; Lubensky, T. C.

    2013-04-01

    The diluted kagome lattice, in which bonds are randomly removed with probability 1-p, consists of straight lines that intersect at points with a maximum coordination number of 4. If lines are treated as semiflexible polymers and crossing points are treated as cross-links, this lattice provides a simple model for two-dimensional filamentous networks. Lattice-based effective-medium theories and numerical simulations for filaments modeled as elastic rods, with stretching modulus μ and bending modulus κ, are used to study the elasticity of this lattice as functions of p and κ. At p=1, elastic response is purely affine, and the macroscopic elastic modulus G is independent of κ. When κ=0, the lattice undergoes a first-order rigidity-percolation transition at p=1. When κ>0, G decreases continuously as p decreases below one, reaching zero at a continuous rigidity-percolation transition at p=pb≈0.605 that is the same for all nonzero values of κ. The effective-medium theories predict scaling forms for G, which exhibit crossover from bending-dominated response at small κ/μ to stretching-dominated response at large κ/μ near both p=1 and pb, that match simulations with no adjustable parameters near p=1. The affine response as p→1 is identified with the approach to a state with sample-crossing straight filaments treated as elastic rods.

  10. Anomalous electron transport in metal/carbon multijunction devices by engineering of the carbon thickness and selecting metal layer

    NASA Astrophysics Data System (ADS)

    Dwivedi, Neeraj; Dhand, Chetna; Rawal, Ishpal; Kumar, Sushil; Malik, Hitendra K.; Lakshminarayanan, Rajamani

    2017-06-01

    A longstanding concern in the research of amorphous carbon films is their poor electrical conductivity at room temperature which constitutes a major barrier for the development of cost effective electronic and optoelectronic devices. Here, we propose metal/carbon hybrid multijunction devices as a promising facile way to overcome room temperature electron transport issues in amorphous carbon films. By the tuning of carbon thickness and swapping metal layers, we observe giant (upto ˜7 orders) reduction of electrical resistance in metal/carbon multijunction devices with respect to monolithic amorphous carbon device. We engineer the maximum current (electrical resistance) from about 10-7 to 10-3 A (˜107 to 103 Ω) in metal (Cu or Ti)/carbon hybrid multijunction devices with a total number of 10 junctions. The introduction of thin metal layers breaks the continuity of relatively higher resistance carbon layer as well as promotes the nanostructuring of carbon. These contribute to low electrical resistance of metal/carbon hybrid multijunction devices, with respect to monolithic carbon device, which is further reduced by decreasing the thickness of carbon layers. We also propose and discuss equivalent circuit model to explain electrical resistance in monolithic carbon and metal/carbon multijunction devices. Cu/carbon multijunction devices display relatively better electrical transport than Ti/carbon devices owing to low affinity of Cu with carbon that restricts carbide formation. We also observe that in metal/carbon multijunction devices, the transport mechanism changes from Poole-Frenkel/Schottky model to the hopping model with a decrease in carbon thickness. Our approach opens a new route to develop carbon-based inexpensive electronic and optoelectronic devices.

  11. Modeling and Simulation of Ballistic Penetration of Ceramic-Polymer-Metal Layered Systems

    DTIC Science & Technology

    2016-01-01

    foam 0.32 18 [18] Backing metal Aluminum 6061-T6 (Al) 2.70 23 [19] Projectile Tungsten Heavy Alloy (WHA) 17.71 157 [19] velocity gradient can be written...ARL-RP-0562 ● JAN 2016 US Army Research Laboratory Modeling and Simulation of Ballistic Penetration of Ceramic-Polymer- Metal ...Penetration of Ceramic-Polymer- Metal Layered Systems by JD Clayton Weapons and Materials Research Directorate, ARL Reprinted from

  12. Holon Wigner Crystal in a Lightly Doped Kagome Quantum Spin Liquid

    DOE PAGES

    Jiang, Hong -Chen; Devereaux, T.; Kivelson, S. A.

    2017-08-07

    We address the problem of a lightly doped spin liquid through a large-scale density-matrix renormalization group study of the t–J model on a kagome lattice with a small but nonzero concentration δ of doped holes. It is now widely accepted that the undoped (δ = 0) spin-1/2 Heisenberg antiferromagnet has a spin-liquid ground state. Theoretical arguments have been presented that light doping of such a spin liquid could give rise to a high temperature superconductor or an exotic topological Fermi liquid metal. Instead, we infer that the doped holes form an insulating charge-density wave state with one doped hole permore » unit cell, i.e., a Wigner crystal. Spin correlations remain short ranged, as in the spin-liquid parent state, from which we infer that the state is a crystal of spinless holons, rather than of holes. In conclusion, our results may be relevant to kagome lattice herbertsmithite upon doping.« less

  13. Linearity optimization of atomic layer deposited ZrO{sub 2} metal-insulator-metal capacitors by inserting interfacial Zr-doped chromia layers

    SciTech Connect

    Lutzer, B.; Simsek, S.; Zimmermann, C.; Bethge, O.; Bertagnolli, E.; Stoeger-Pollach, M.

    2016-03-28

    In order to improve the electrical behaviour of metal-insulator-metal capacitors with ZrO{sub 2} insulator grown by Atomic Layer Deposition, the influence of the insertion of interfacial Cr layers between Pt electrodes and the zirconia is investigated. An improvement of the α-voltage coefficient of capacitance as low as 567 ppm/V{sup 2} is achieved for a single layer of Cr while maintaining a high capacitance density of 10.7 fF/μm{sup 2} and a leakage current of less than 1.2 × 10{sup −8} A/cm{sup 2} at +1 V. The role of the interface is discussed by means of X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy showing the formation of Zr stabilized chromia oxide phase with a dielectric constant of 16.

  14. Lateral amorphous selenium metal-insulator-semiconductor-insulator-metal photodetectors using ultrathin dielectric blocking layers for dark current suppression

    NASA Astrophysics Data System (ADS)

    Chang, Cheng-Yi; Pan, Fu-Ming; Lin, Jian-Siang; Yu, Tung-Yuan; Li, Yi-Ming; Chen, Chieh-Yang

    2016-12-01

    We fabricated amorphous selenium (a-Se) photodetectors with a lateral metal-insulator-semiconductor-insulator-metal (MISIM) device structure. Thermal aluminum oxide, plasma-enhanced chemical vapor deposited silicon nitride, and thermal atomic layer deposited (ALD) aluminum oxide and hafnium oxide (ALD-HfO2) were used as the electron and hole blocking layers of the MISIM photodetectors for dark current suppression. A reduction in the dark current by three orders of magnitude can be achieved at electric fields between 10 and 30 V/μm. The effective dark current suppression is primarily ascribed to electric field lowering in the dielectric layers as a result of charge trapping in deep levels. Photogenerated carriers in the a-Se layer can be transported across the blocking layers to the Al electrodes via Fowler-Nordheim tunneling because a high electric field develops in the ultrathin dielectric layers under illumination. Since the a-Se MISIM photodetectors have a very low dark current without significant degradation in the photoresponse, the signal contrast is greatly improved. The MISIM photodetector with the ALD-HfO2 blocking layer has an optimal signal contrast more than 500 times the contrast of the photodetector without a blocking layer at 15 V/μm.

  15. Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons.

    PubMed

    Koski, Kristie J; Wessells, Colin D; Reed, Bryan W; Cha, Judy J; Kong, Desheng; Cui, Yi

    2012-08-22

    We have developed a chemical method to intercalate a variety of zerovalent metal atoms into two-dimensional (2D) layered Bi(2)Se(3) chalcogenide nanoribbons. We use a chemical reaction, such as a disproportionation redox reaction, to generate dilute zerovalent metal atoms in a refluxing solution, which intercalate into the layered Bi(2)Se(3) structure. The zerovalent nature of the intercalant allows superstoichiometric intercalation of metal atoms such as Ag, Au, Co, Cu, Fe, In, Ni, and Sn. We foresee the impact of this methodology in establishing novel fundamental physical behaviors and in possible energy applications.

  16. LOW VELOCITY IMPACT RESPONSE OF A LAMINATED COMPOSITE TUBE WITH A METALLIC BUMPER LAYER

    SciTech Connect

    Ibekwe, S.I.; Li, G.; Pang, S.S.; and Smith, B. H.

    2006-07-01

    A thin metallic sheet was bonded to the outer surface of a laminated composite curved beam as a bumper layer. It was believed that a metallic bumper layer such as an aluminum thin sheet would be able to intercept any lateral impacting force and absorb impact energy through plastic deformation. Since aluminum is comparatively light weight, a thin sheet will not result in a significant increase in structural weight. Results showed that impact damage occurred primarily in the bumper layer, thereby resulting in a much higher residual bending strength compared to the control specimen.

  17. Atomic-Scale Tuning of Layered Binary Metal Oxides for High Temperature Moving Assemblies

    DTIC Science & Technology

    2015-06-01

    AFRL-OSR-VA-TR-2015-0166 Atomic -Scale Tuning of Layered Binary Metal OxideS ASHLIE MARTINI UNIVERSITY OF CALIFORNIA MERCED Final Report 06/01/2015...COVERED (From - To)      01-05-2012 to 30-04-2015 4.  TITLE AND SUBTITLE Atomic -Scale Tuning of Layered Binary Metal Oxides for High Temperature Moving...understand, at an atomic level, the material properties that influence the thermal, mechanical and tribological behavior of intrinsically layered binary

  18. Layer-by-Layer Deposition with Polymers Containing Nitrilotriacetate, A Convenient Route to Fabricate Metal- and Protein-Binding Films.

    PubMed

    Wijeratne, Salinda; Liu, Weijing; Dong, Jinlan; Ning, Wenjing; Ratnayake, Nishanka Dilini; Walker, Kevin D; Bruening, Merlin L

    2016-04-27

    This paper describes a convenient synthesis of nitrilotriacetate (NTA)-containing polymers and subsequent layer-by-layer adsorption of these polymers on flat surfaces and in membrane pores. The resulting films form NTA-metal-ion complexes and capture 2-3 mmol of metal ions per mL of film. Moreover, these coatings bind multilayers of polyhistidine-tagged proteins through association with NTA-metal-ion complexes. Inclusion of acrylic acid repeat units in NTA-containing copolymers promotes swelling to increase protein binding in films on Au-coated wafers. Adsorption of NTA-containing films in porous nylon membranes gives materials that capture ∼46 mg of His-tagged ubiquitin per mL. However, the binding capacity decreases with the protein molecular weight. Due to the high affinity of NTA for metal ions, the modified membranes show modest leaching of Ni(2+) in binding and rinsing buffers. Adsorption of NTA-containing polymers is a simple method to create metal- and protein-binding films and may, with future enhancement of stability, facilitate development of disposable membranes that rapidly purify tagged proteins.

  19. Immobilization of Metal Nanoparticles in Surface Layer of Silica Matrices

    NASA Astrophysics Data System (ADS)

    Katok, Kseniia; Tertykh, Valentin; Yanishpolskii, Victor

    Gold and silver nanoparticles were obtained by in situ reduction with silicon hydride groups grafted to the mesoporous MCM-41 silica surface. Nickel-, cobalt-, and iron-containing silicas were synthesized by chemisorption of appropriate metal acetylacetonates with following reduction in the acetylene atmosphere. Such metal-containing MCM-41 matrices have been applied for preparation of carbon nanostructures at pyrolytic decomposition of acetylene. From transmission electron microscopy (TEM) data a lot of carbon nanotubes were formed, namely tubes with external diameter of 10-35 nm for Ni-, 42-84 nm for Co-, and 14-24 nm for Fecontaining silicas. In the metal absence on the silica surface low yield of nanotubes (up to 2%) was detected.

  20. Electronic states of monatomic layers of alkali and rare earth metals adsorbed on graphene surfaces

    NASA Astrophysics Data System (ADS)

    Alisultanov, Z. Z.

    2013-02-01

    The electronic states of ordered layers of alkali and rare earth metals adsorbed on graphene surfaces are examined using an Anderson model. The behavior of the density of states of these systems is analyzed. The case of an adsorbed metallic nanolayer with a discrete energy spectrum is discussed. A system whose electronic states can be controlled by an applied electric field is proposed and is of great practical interest. The qualitative difference between the existing theoretical approach to this problem and the present paper is that the former uses a "single adatom" formalism that does not deal with the band structure of the metallic adlayer. A way of describing the electronic states of an adsorbed layer of Gd and other metallic layers which form a fractal structure on a graphene surface is also examined.

  1. Microstructure and composition of annealed Al/Ti-metallization layers.

    PubMed

    Hofmann, M; Gemming, T; Wetzig, K

    2004-06-01

    Al/Ti multilayers with columnar grains were deposited by electron-beam evaporation on piezoelectric LiNbO(3) substrates. After annealing in air and under vacuum conditions dissolution of the Ti interlayer was observed for all samples. The original Ti interlayer dissolved completely and globular Al(3)Ti grains were formed within an Al matrix. All samples had an oxidized adhesive Ti bottom layer and a 10 nm thin Al layer below this adhesive Ti bottom layer, which remains intact after the applied heat treatment. This resistance against dissolution by interdiffusion could be caused by the oxidation. These changes in the microstructure and in the chemical composition were investigated by conventional and analytical TEM.

  2. Noise and vibration level reduction by covering metal structures with layers of damping materials. [considering viscoelastic insulation layers

    NASA Technical Reports Server (NTRS)

    Rugina, I.; Paven, H. T. O.

    1974-01-01

    One of the most important methods of reducing the noise and vibration level is the damping of the secondary sources, such as metal plates, often used in vehicle structures, by means of covering materials with high internal viscosity. Damping layers are chosen at an optimum thickness corresponding to the frequency and temperature range in which a certain structure works. The structure's response corresponding to various real situations is analyzed by means of a measuring chain including electroacoustical or electromechanical transducers. The experimental results provide the dependence of the loss factor and damping transmission coefficient as a function of the damping layer thickness or of the frequency for various viscoelastic covering materials.

  3. Influence of Passivation Layers for Metal Grating-Based Quantum Well Infrared Photodetectors

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Fu, Yong-Qi; Yang, Le-Chen; Zhang, Bao-Shun; Li, Hai-Jun; Fu, Kai; Xiong, Min

    2012-06-01

    To improve absorption of quantum well infrared photodetectors (QWIPs), a coupling layer with metallic grating is designed and fabricated above the quantum well. The metal grating is composed of 100 nm Au film on top, and a 20-nm Ti thin layer between the Au film and the sapphire substrate is coated as an adhesion/buffer layer. To protect the photodetector from oxidation and to decrease leakage, a SiO2 film is deposited by means of plasma-enhanced chemical vapor deposition. A value of about 800 nm is an optimized thickness for the SiO2 applied in the metallic grating-based mid-infrared QWIP. In addition, a QWIP passivation layer is studied experimentally. The results demonstrate that the contribution from the layer is positive for metal grating coupling with the quantum well. The closer the permittivity of the two dielectric layers (SiO2 and the passivation layers), and the closer the two transmission peaks, the greater the QWIP enhancement will be.

  4. Spin tuning of electron-doped metal-phthalocyanine layers.

    PubMed

    Stepanow, Sebastian; Lodi Rizzini, Alberto; Krull, Cornelius; Kavich, Jerald; Cezar, Julio C; Yakhou-Harris, Flora; Sheverdyaeva, Polina M; Moras, Paolo; Carbone, Carlo; Ceballos, Gustavo; Mugarza, Aitor; Gambardella, Pietro

    2014-04-09

    The spin state of organic-based magnets at interfaces is to a great extent determined by the organic environment and the nature of the spin-carrying metal center, which is further subject to modifications by the adsorbate-substrate coupling. Direct chemical doping offers an additional route for tailoring the electronic and magnetic characteristics of molecular magnets. Here we present a systematic investigation of the effects of alkali metal doping on the charge state and crystal field of 3d metal ions in Cu, Ni, Fe, and Mn phthalocyanine (Pc) monolayers adsorbed on Ag. Combined X-ray absorption spectroscopy and ligand field multiplet calculations show that Cu(II), Ni(II), and Fe(II) ions reduce to Cu(I), Ni(I), and Fe(I) upon alkali metal adsorption, whereas Mn maintains its formal oxidation state. The strength of the crystal field at the Ni, Fe, and Mn sites is strongly reduced upon doping. The combined effect of these changes is that the magnetic moment of high- and low-spin ions such as Cu and Ni can be entirely turned off or on, respectively, whereas the magnetic configuration of MnPc can be changed from intermediate (3/2) to high (5/2) spin. In the case of FePc a 10-fold increase of the orbital magnetic moment accompanies charge transfer and a transition to a high-spin state.

  5. Atomic layer deposition to prevent metal transfer from implants: An X-ray fluorescence study

    NASA Astrophysics Data System (ADS)

    Bilo, Fabjola; Borgese, Laura; Prost, Josef; Rauwolf, Mirjam; Turyanskaya, Anna; Wobrauschek, Peter; Kregsamer, Peter; Streli, Christina; Pazzaglia, Ugo; Depero, Laura E.

    2015-12-01

    We show that Atomic Layer Deposition is a suitable coating technique to prevent metal diffusion from medical implants. The metal distribution in animal bone tissue with inserted bare and coated Co-Cr alloys was evaluated by means of micro X-ray fluorescence mapping. In the uncoated implant, the migration of Co and Cr particles from the bare alloy in the biological tissues is observed just after one month and the number of particles significantly increases after two months. In contrast, no metal diffusion was detected in the implant coated with TiO2. Instead, a gradient distribution of the metals was found, from the alloy surface going into the tissue. No significant change was detected after two months of aging. As expected, the thicker is the TiO2 layer, the lower is the metal migration.

  6. Metallic layer-by-layer photonic crystals for linearly-polarized thermal emission and thermophotovoltaic device including same

    DOEpatents

    Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P.

    2016-07-26

    Metallic thermal emitters consisting of two layers of differently structured nickel gratings on a homogeneous nickel layer are fabricated by soft lithography and studied for polarized thermal radiation. A thermal emitter in combination with a sub-wavelength grating shows a high extinction ratio, with a maximum value close to 5, in a wide mid-infrared range from 3.2 to 7.8 .mu.m, as well as high emissivity up to 0.65 at a wavelength of 3.7 .mu.m. All measurements show good agreement with theoretical predictions. Numerical simulations reveal that a high electric field exists within the localized air space surrounded by the gratings and the intensified electric-field is only observed for the polarizations perpendicular to the top sub-wavelength grating. This result suggests how the emissivity of a metal can be selectively enhanced at a certain range of wavelengths for a given polarization.

  7. Copper Benzenetricarboxylate Metal-Organic Framework Nucleation Mechanisms on Metal Oxide Powders and Thin Films formed by Atomic Layer Deposition.

    PubMed

    Lemaire, Paul C; Zhao, Junjie; Williams, Philip S; Walls, Howard J; Shepherd, Sarah D; Losego, Mark D; Peterson, Gregory W; Parsons, Gregory N

    2016-04-13

    Chemically functional microporous metal-organic framework (MOF) crystals are attractive for filtration and gas storage applications, and recent results show that they can be immobilized on high surface area substrates, such as fiber mats. However, fundamental knowledge is still lacking regarding initial key reaction steps in thin film MOF nucleation and growth. We find that thin inorganic nucleation layers formed by atomic layer deposition (ALD) can promote solvothermal growth of copper benzenetricarboxylate MOF (Cu-BTC) on various substrate surfaces. The nature of the ALD material affects the MOF nucleation time, crystal size and morphology, and the resulting MOF surface area per unit mass. To understand MOF nucleation mechanisms, we investigate detailed Cu-BTC MOF nucleation behavior on metal oxide powders and Al2O3, ZnO, and TiO2 layers formed by ALD on polypropylene substrates. Studying both combined and sequential MOF reactant exposure conditions, we find that during solvothermal synthesis ALD metal oxides can react with the MOF metal precursor to form double hydroxy salts that can further convert to Cu-BTC MOF. The acidic organic linker can also etch or react with the surface to form MOF from an oxide metal source, which can also function as a nucleation agent for Cu-BTC in the mixed solvothermal solution. We discuss the implications of these results for better controlled thin film MOF nucleation and growth.

  8. Magnetic properties of doped kagomé antiferromagnet

    NASA Astrophysics Data System (ADS)

    Koretsune, Takashi; Ogata, Masao

    In order to clarify the carrier doping effect in the frustrated system, we study the t-J model on the kagomé lattice using high-temperature expansion method. As in the triangular lattice [T. Koretsune, M. Ogata, Phys. Rev. Lett. 89 (2002) 116401], the sign of hopping integral t is important in the kagomé lattice. When t<0, the possibility of ferromagnetism has been discussed [T. Koretsune, M. Ogata, J. Phys. Soc. Japan 72 (2003) 2437]. On the contrary, in the case of t>0, it is found that uniform spin susceptibility is strongly suppressed with hole doping. The peak of spin susceptibility, which is expected to be around T=J/20 in the Heisenberg model, goes to high temperature region. Furthermore, short-range magnetic correlation is enhanced with hole doping. This is interesting since nearest-neighbor spin correlation without hole doping itself is strongly enhanced by quantum fluctuation. These behavior are qualitatively similar to those of the triangular lattice. However, the difference from non-frustrated lattices as square lattice is more prominent in the kagomé lattice, which is related to the fact that frustration in the kagomé lattice is strong enough to destabilize the magnetic order in the Heisenberg model even at T=0.

  9. Multistep soft chemistry method for valence reduction in transition metal oxides with triangular (CdI2-type) layers.

    PubMed

    Blakely, Colin K; Bruno, Shaun R; Poltavets, Viktor V

    2014-03-14

    Transition metal (M) oxides with MO2 triangular layers demonstrate a variety of physical properties depending on the metal oxidation states. In the known compounds, metal oxidation states are limited to either 3+ or mixed-valent 3+/4+. A multistep soft chemistry synthetic route for novel phases with M(2+/3+)O2 triangular layers is reported.

  10. Metallic stereostructured layer: An approach for broadband polarization state manipulation

    SciTech Connect

    Xiong, Xiang; Hu, Yuan-Sheng; Jiang, Shang-Chi; Hu, Yu-Hui; Fan, Ren-Hao; Ma, Guo-Bin; Shu, Da-Jun; Peng, Ru-Wen; Wang, Mu

    2014-11-17

    In this letter, we report a full-metallic broadband wave plate assembled by standing metallic L-shaped stereostructures (LSSs). We show that with an array of LSSs, high polarization conversion ratio is achieved within a broad frequency band. Moreover, by rotating the orientation of the array of LSSs, the electric components of the reflection beam in two orthogonal directions and their phase difference can be independently tuned. In this way, all the polarization states on the Poincaré sphere can be realized. As examples, the functionalities of a quarter wave plate and a half wave plate are experimentally demonstrated with both reflection spectra and focal-plane-array imaging. Our designing provides a unique approach in realizing the broadband wave plate to manipulate the polarization state of light.

  11. Spin Transport in Single Layer Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Phillips, Michael; Aji, Vivek

    Inversion symmetry breaking and strong spin orbit coupling in two dimensional transition metal dichalcogenides leads to interesting new phenomena such as the valley hall and spin hall effects. The nontrivial Berry curvature of the bands yields transverse spin currents in applied field. In this talk we characterize the spin transport in hole-doped systems. Due to the large spin-splitting, time-reversal invariance, and the large separation of hole pockets in momentum space, spin flip scattering involves inter-valley processes with large momentum. As such, one expects large spin life times and a large spin hall angle. We analyze the robustness of the phenomena to various scattering processes and explore the viability of transition metal dichalcogenides for spintronic applications. We acknowledge the support of the NSF via Grant NSF DMR-1506707.

  12. Negative Linear Compressibility Due to Layer Sliding in a Layered Metal-Organic Framework.

    PubMed

    Zeng, Qingxin; Wang, Kai; Qiao, Yuancun; Li, Xiaodong; Zou, Bo

    2017-04-06

    Negative linear compressibility (NLC) is a rare and counterintuitive phenomenon because materials with this property would expand along one specific direction when uniformly compressed. NLC materials have a broad range of potential applications in designing pressure sensors, artificial muscles, and so on. Designing and searching for systems with NLC is desired and crucial for material and compression science. Herein, with the help of high-pressure X-ray diffraction measurements and density functional theory calculations, we find that the 2D layered Co(SCN)2(pyrazine)2 exhibits NLC with a new mechanism: layer sliding. When compressed, the ab planes slide along the a axis, leading to the decrease of lattice parameter β, which results in the NLC effect along principal axis X3 (≈ -0.84a - 0.55c). The layer sliding mechanism opens exciting opportunities for seeking, designing, and synthesizing new classes of materials with anomalous mechanical properties in monoclinic layered or other related systems.

  13. Layer-number dependent high-frequency vibration modes in few-layer transition metal dichalcogenides induced by interlayer couplings

    NASA Astrophysics Data System (ADS)

    Tan, Qing-Hai; Zhang, Xin; Luo, Xiang-Dong; Zhang, Jun; Tan, Ping-Heng

    2017-03-01

    Two-dimensional transition metal dichalcogenides (TMDs) have attracted extensive attention due to their many novel properties. The atoms within each layer in two-dimensional TMDs are joined together by covalent bonds, while van der Waals interactions combine the layers together. This makes its lattice dynamics layer-number dependent. The evolutions of ultralow frequency (< 50 cm‑1) modes, such as shear and layer-breathing modes have been well-established. Here, we review the layer-number dependent high-frequency (> 50 cm‑1) vibration modes in few-layer TMDs and demonstrate how the interlayer coupling leads to the splitting of high-frequency vibration modes, known as Davydov splitting. Such Davydov splitting can be well described by a van der Waals model, which directly links the splitting with the interlayer coupling. Our review expands the understanding on the effect of interlayer coupling on the high-frequency vibration modes in TMDs and other two-dimensional materials. Project supported by the National Basic Research Program of China (No. 2016YFA0301200), the National Natural Science Foundation of China (Nos. 11225421, 11474277, 11434010, 61474067, 11604326, 11574305 and 51527901), and the National Young 1000 Talent Plan of China.

  14. The enhancement of neutral metal Na layer above thunderstorms

    NASA Astrophysics Data System (ADS)

    Yu, Bingkun; Xue, Xianghui; Lu, Gaopeng; Kuo, Chengling; Dou, Xiankang; Gao, Qi; Qie, Xiushu; Wu, Jianfei; Tang, Yihuan

    2017-04-01

    Na (sodium) exists as layers of atoms in the mesosphere/lower thermosphere (MLT) at altitudes between 80 and 105 km. It has lower ionization potential of 5.139 eV than atmospheric species, such as O2 (12.06 eV). Tropospheric thunderstorms affect the lower ionosphere and the ionospheric sporadic E (Es) at 100 km can also be influenced by lightning. The mechanism is expected to be associated with transient luminous events (TLE) as red sprites and gigantic jets at upper atmosphere. However, measurements of ionospheric electric fields of 20mV·m-1 above thunderstorms are less than estimated value (>48 0mV·m-1) to excite ionization in the lower ionosphere. We found an enhancement of Na layer above thunderstorms. The increase of Na density in the statistical result can be as much as 500 cm-3 and it will have an impact on ionospheric chemistry and modify the conductivity properties of the MLT region. The ionospheric observations made with two digisondes near the Na lidar, the thunderstorm model, ionosphere model, and Na chemistry model are all used to discuss the possible mechanisms responsible for the enhancement of Na layer after thunderstorms.

  15. Enhancing current-induced torques by abutting additional spin polarizer layer to nonmagnetic metal layer.

    PubMed

    Go, Gyungchoon; Lee, Kyung-Jin; Kim, Young Keun

    2017-04-04

    Recently, the switching of a perpendicularly magnetized ferromagnet (FM) by injecting an in-plane current into an attached non-magnet (NM) has become of emerging technological interest. This magnetization switching is attributed to the spin-orbit torque (SOT) originating from the strong spin-orbit coupling of the NM layer. However, the switching efficiency of the NM/FM structure itself may be insufficient for practical use, as for example, in spin transfer torque (STT)-based magnetic random access memory (MRAM) devices. Here we investigate spin torque in an NM/FM structure with an additional spin polarizer (SP) layer abutted to the NM layer. In addition to the SOT contribution, a spin-polarized current from the SP layer creates an extra spin chemical potential difference at the NM/FM interface and gives rise to a STT on the FM layer. We show that, using typical parameters including device width, thickness, spin diffusion length, and the spin Hall angle, the spin torque from the SP layer can be much larger than that from the spin Hall effect (SHE) of the NM.

  16. Enhancing current-induced torques by abutting additional spin polarizer layer to nonmagnetic metal layer

    PubMed Central

    Go, Gyungchoon; Lee, Kyung-Jin; Kim, Young Keun

    2017-01-01

    Recently, the switching of a perpendicularly magnetized ferromagnet (FM) by injecting an in-plane current into an attached non-magnet (NM) has become of emerging technological interest. This magnetization switching is attributed to the spin-orbit torque (SOT) originating from the strong spin-orbit coupling of the NM layer. However, the switching efficiency of the NM/FM structure itself may be insufficient for practical use, as for example, in spin transfer torque (STT)-based magnetic random access memory (MRAM) devices. Here we investigate spin torque in an NM/FM structure with an additional spin polarizer (SP) layer abutted to the NM layer. In addition to the SOT contribution, a spin-polarized current from the SP layer creates an extra spin chemical potential difference at the NM/FM interface and gives rise to a STT on the FM layer. We show that, using typical parameters including device width, thickness, spin diffusion length, and the spin Hall angle, the spin torque from the SP layer can be much larger than that from the spin Hall effect (SHE) of the NM. PMID:28374805

  17. Enhancing current-induced torques by abutting additional spin polarizer layer to nonmagnetic metal layer

    NASA Astrophysics Data System (ADS)

    Go, Gyungchoon; Lee, Kyung-Jin; Kim, Young Keun

    2017-04-01

    Recently, the switching of a perpendicularly magnetized ferromagnet (FM) by injecting an in-plane current into an attached non-magnet (NM) has become of emerging technological interest. This magnetization switching is attributed to the spin-orbit torque (SOT) originating from the strong spin-orbit coupling of the NM layer. However, the switching efficiency of the NM/FM structure itself may be insufficient for practical use, as for example, in spin transfer torque (STT)-based magnetic random access memory (MRAM) devices. Here we investigate spin torque in an NM/FM structure with an additional spin polarizer (SP) layer abutted to the NM layer. In addition to the SOT contribution, a spin-polarized current from the SP layer creates an extra spin chemical potential difference at the NM/FM interface and gives rise to a STT on the FM layer. We show that, using typical parameters including device width, thickness, spin diffusion length, and the spin Hall angle, the spin torque from the SP layer can be much larger than that from the spin Hall effect (SHE) of the NM.

  18. Layer-by-layer self-assembled conductor network composites in ionic polymer metal composite actuators with high strain response

    NASA Astrophysics Data System (ADS)

    Liu, Sheng; Montazami, Reza; Liu, Yang; Jain, Vaibhav; Lin, Minren; Heflin, James R.; Zhang, Q. M.

    2009-07-01

    We investigate the electromechanical response of conductor network composite (CNC) fabricated by the layer-by-layer (LbL) self-assembly method. The process makes it possible for CNCs to be fabricated at submicron thickness with high precision and quality. This CNCs exhibits high strain ˜6.8% under 4 V, whereas the RuO2/Nafion CNCs exhibit strain ˜3.3%. The high strain and submicron thickness of the LbL layers in an ionic polymer metal composite (IPMC) yield large and fast actuation. The response time of a 26 μm thick IPMC with 0.4 μm thick LbL CNCs to step voltage of 4 V is 0.18 s.

  19. Diverse and tunable electronic structures of single-layer metal phosphorus trichalcogenides for photocatalytic water splitting

    SciTech Connect

    Liu, Jian; Li, Xi-Bo; Wang, Da; Liu, Li-Min E-mail: limin.liu@csrc.ac.cn; Lau, Woon-Ming; Peng, Ping E-mail: limin.liu@csrc.ac.cn

    2014-02-07

    The family of bulk metal phosphorus trichalcogenides (APX{sub 3}, A = M{sup II}, M{sub 0.5}{sup I}M{sub 0.5}{sup III}; X = S, Se; M{sup I}, M{sup II}, and M{sup III} represent Group-I, Group-II, and Group-III metals, respectively) has attracted great attentions because such materials not only own magnetic and ferroelectric properties, but also exhibit excellent properties in hydrogen storage and lithium battery because of the layered structures. Many layered materials have been exfoliated into two-dimensional (2D) materials, and they show distinct electronic properties compared with their bulks. Here we present a systematical study of single-layer metal phosphorus trichalcogenides by density functional theory calculations. The results show that the single layer metal phosphorus trichalcogenides have very low formation energies, which indicates that the exfoliation of single layer APX{sub 3} should not be difficult. The family of single layer metal phosphorus trichalcogenides exhibits a large range of band gaps from 1.77 to 3.94 eV, and the electronic structures are greatly affected by the metal or the chalcogenide atoms. The calculated band edges of metal phosphorus trichalcogenides further reveal that single-layer ZnPSe{sub 3}, CdPSe{sub 3}, Ag{sub 0.5}Sc{sub 0.5}PSe{sub 3}, and Ag{sub 0.5}In{sub 0.5}PX{sub 3} (X = S and Se) have both suitable band gaps for visible-light driving and sufficient over-potentials for water splitting. More fascinatingly, single-layer Ag{sub 0.5}Sc{sub 0.5}PSe{sub 3} is a direct band gap semiconductor, and the calculated optical absorption further convinces that such materials own outstanding properties for light absorption. Such results demonstrate that the single layer metal phosphorus trichalcogenides own high stability, versatile electronic properties, and high optical absorption, thus such materials have great chances to be high efficient photocatalysts for water-splitting.

  20. A Strategy to Create Spin-Split Metallic Bands on Silicon Using a Dense Alloy Layer

    PubMed Central

    Gruznev, Dimitry V.; Bondarenko, Leonid V.; Matetskiy, Andrey V.; Yakovlev, Alexey A.; Tupchaya, Alexandra Y.; Eremeev, Sergey V.; Chulkov, Evgeniy V.; Chou, Jyh-Pin; Wei, Ching-Ming; Lai, Ming-Yu; Wang, Yuh-Lin; Zotov, Andrey V.; Saranin, Alexander A.

    2014-01-01

    To exploit Rashba effect in a 2D electron gas on silicon surface for spin transport, it is necessary to have surface reconstruction with spin-split metallic surface-state bands. However, metals with strong spin-orbit coupling (e.g., Bi, Tl, Sb, Pt) induce reconstructions on silicon with almost exclusively spin-split insulating bands. We propose a strategy to create spin-split metallic bands using a dense 2D alloy layer containing a metal with strong spin-orbit coupling and another metal to modify the surface reconstruction. Here we report two examples, i.e., alloying reconstruction with Na and Tl/Si(111)1 × 1 reconstruction with Pb. The strategy provides a new paradigm for creating metallic surface state bands with various spin textures on silicon and therefore enhances the possibility to integrate fascinating and promising capabilities of spintronics with current semiconductor technology. PMID:24752038

  1. Various disordered ground states and 1/3 magnetization-plateau-like behavior in the S =1/2 Ti3 + kagome lattice antiferromagnets Rb2NaTi3F12 , Cs2NaTi3F12 , and Cs2KTi3F12

    NASA Astrophysics Data System (ADS)

    Goto, Masato; Ueda, Hiroaki; Michioka, Chishiro; Matsuo, Akira; Kindo, Koichi; Yoshimura, Kazuyoshi

    2016-09-01

    We have investigated the crystal structure and magnetic properties of three kagome lattice antiferromagnets, Rb2Na Ti3F12 , Cs2Na Ti3F12 , and Cs2K Ti3F12 , using single crystals. These compounds represent a S =1 /2 kagome system consisting of magnetic Ti3 + ions, which is expected to have negligibly small Dzyaloshinsky-Moriya interaction. The structural analyses revealed that each of the three compounds has a slightly distorted kagome lattice. The distortion of the kagome lattice becomes small as the ionic radii of constituent alkali metals increase. All three compounds have nearly the same Weiss temperature of -45 K, and the ground states are disordered and strongly depend on the distortion. The ground states of Rb2Na Ti3F12 , Cs2Na Ti3F12 , and Cs2K Ti3F12 are found to be a two-component state including approximately 1/3 nearly free spins, a gapless disordered state, and a gapped disordered state, respectively. Our experimental results suggest that the ground state of the ideal S =1 /2 Heisenberg kagome lattice antiferromagnet is gapped. In addition, the magnetization curves of Cs2Na Ti3F12 and Cs2K Ti3F12 show anomalies at approximately 1/3 of the full magnetic moment of Ti3 +, which are a notable observation of signs of the theoretically proposed 1/3 magnetization plateau in S =1 /2 kagome antiferromagnets.

  2. Broadband perfect absorber based on one ultrathin layer of refractory metal.

    PubMed

    Deng, Huixu; Li, Zhigang; Stan, Liliana; Rosenmann, Daniel; Czaplewski, David; Gao, Jie; Yang, Xiaodong

    2015-06-01

    Broadband perfect absorber based on one ultrathin layer of the refractory metal chromium without structure patterning is proposed and demonstrated. The ideal permittivity of the metal layer for achieving broadband perfect absorption is derived based on the impedance transformation method. Since the permittivity of the refractory metal chromium matches this ideal permittivity well in the visible and near-infrared range, a silica-chromium-silica three-layer absorber is fabricated to demonstrate the broadband perfect absorption. The experimental results under normal incidence show that the absorption is above 90% over the wavelength range of 0.4-1.4 μm, and the measurements under angled incidence within 400-800 nm prove that the absorber is angle-insensitive and polarization-independent.

  3. Electrical contact characteristics of mechanically mated Y Ba Cu O bulks with deposited metal layer

    NASA Astrophysics Data System (ADS)

    Imaizumi, with deposited metal layer T.; Sawa, K.; Tomita, M.; Murakami, M.; Sakai, N.; Hirabayashi, I.

    2005-10-01

    We have measured contact resistances between two bulk YBCO superconductor blocks with the application to a persistent current switch (PCS) in mind. In order to reduce a contact resistance, we deposited indium and silver on the sample surfaces. The resistance was reduced by increasing the thickness of the deposited metal layers, but it saturated when the thickness reached a certain level. The saturation thickness was much smaller in indium than silver. Such a difference is understandable by considering the hardness of these two metals. The resistance was also reduced by increasing the mechanical load. Overloading however caused the coupling of metal layers, resulting in the peeling off of the deposited layers when the switch was opened.

  4. Broadband perfect absorber based on one ultrathin layer of refractory metal

    SciTech Connect

    Deng, Huixu; Li, Zhigang; Stan, Liliana; Rosenmann, Daniel; Czaplewski, David; Gao, Jie; Yang, Xiaodong

    2015-06-01

    Broadband perfect absorber based on one ultrathin layer of the refractory metal chromium without structure pat- terning is proposed and demonstrated. The ideal permittivity of the metal layer for achieving broadband perfect absorption is derived based on the impedance transformation method. Since the permittivity of the refractory metal chromium matches this ideal permittivity well in the visible and near-infrared range, a silica-chromium-silica three-layer absorber is fabricated to demonstrate the broadband perfect absorption. The experimental results under normal incidence show that the absorption is above 90% over the wavelength range of 0.4–1.4 μm, and the measurements under angled incidence within 400–800 nm prove that the absorber is angle-insensitive and polarization- independent.

  5. Fresnel coefficients and Fabry-Perot formula for spatially dispersive metallic layers

    NASA Astrophysics Data System (ADS)

    Pitelet, Armel; Mallet, Émilien; Centeno, Emmanuel; Moreau, Antoine

    2017-07-01

    The repulsion between free electrons inside a metal makes its optical response spatially dispersive, so that it is not described by Drude's model but by a hydrodynamic model. We give here fully analytic results for a metallic slab in this framework, thanks to a two-mode cavity formalism leading to a Fabry-Perot formula, and show that a simplification can be made that preserves the accuracy of the results while allowing much simpler analytic expressions. For metallic layers thicker than 2.7 nm modified Fresnel coefficients can actually be used to accurately predict the response of any multilayer with spatially dispersive metals (for reflection, transmission, or the guided modes). Finally, this explains why adding a small dielectric layer [Y. Luo et al., Phys. Rev. Lett. 111, 093901 (2013), 10.1103/PhysRevLett.111.093901] allows one to reproduce the effects of nonlocality in many cases, and especially for multilayers.

  6. The enhancement of neutral metal Na layer above thunderstorms

    NASA Astrophysics Data System (ADS)

    Yu, B.; Xue, X.; Lu, G.; Dou, X.; Gao, Q.; Qie, X.; Wu, J.; Tang, Y.; Holzworth, R.

    2016-12-01

    Na (sodium) exists as layers of atoms in the mesosphere/lower thermosphere (MLT) at altitudes between 80 and 105 km. It has lower ionization potential of 5.139 eV than atmospheric species, such as O2 (12.06 eV). Tropospheric thunderstorms affect the lower ionosphere and the ionospheric sporadic E (Es) at 100 km can also be influenced by lightning. The mechanism is expected to be associated with transient luminous events (TLE) as red sprites and gigantic jets at upper atmosphere. However, measurements of ionospheric electric fields of 20mV·m-1 above thunderstorms are less than estimated value (>48 0mV·m-1) to excite ionization in the lower ionosphere. We found an enhancement of Na layer above thunderstorms. The increase of Na density in the statistical result can be as much as 500 cm-3 and it will have an impact on ionospheric chemistry and modify the conductivity properties of the MLT region.

  7. Exploiting Semiconductor to Metallic Phase Transformation in Layered Transition Metal Dichalcogenides for Ohmic contact Contacts

    NASA Astrophysics Data System (ADS)

    Kappera, Rajesh; Voiry, Damien; Jen, Wesley; Yalcin, Sibel Ebru; Gupta, Gautam; Mohite, Aditya; Chhowalla, Manish; Material Science department, Rutgers University, Piscataway, NJ, 08854, USA Team; CenterIntegrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87544, US Team

    2014-03-01

    Achieving ohmic contacts to transition metal dichalcogenides (MoS2, WS2, WSe2 and MoSe2) has been a challenge for researchers owing to the formation of a large Schottky barrier between metal and semiconductor. This results in low on-currents, mobilities and sub-threshold swings in the devices made with these materials. Here we report a universal strategy using chemical approach to reversibly transform the semiconducting phase (2H) to metallic phase (1T). Taking advantage of the metallic phase, we have fabricated hybrid transistors, which have 1T phase contacts and semiconducting 2H phase of the material as the channel. The metallic phase dramatically reduces the Schottky barrier between the metal and the semiconductor thereby mitigating the high contact resistance issues. This strategy should be applicable to several other applications such as catalysis, supercapacitors and batteries. Detailed synthesis, structural, electrical and optical characterization will be described.

  8. Plasmonically sensitized metal-oxide electron extraction layers for organic solar cells

    PubMed Central

    Trost, S.; Becker, T.; Zilberberg, K.; Behrendt, A.; Polywka, A.; Heiderhoff, R.; Görrn, P.; Riedl, T.

    2015-01-01

    ZnO and TiOx are commonly used as electron extraction layers (EELs) in organic solar cells (OSCs). A general phenomenon of OSCs incorporating these metal-oxides is the requirement to illuminate the devices with UV light in order to improve device characteristics. This may cause severe problems if UV to VIS down-conversion is applied or if the UV spectral range (λ < 400 nm) is blocked to achieve an improved device lifetime. In this work, silver nanoparticles (AgNP) are used to plasmonically sensitize metal-oxide based EELs in the vicinity (1–20 nm) of the metal-oxide/organic interface. We evidence that plasmonically sensitized metal-oxide layers facilitate electron extraction and afford well-behaved highly efficient OSCs, even without the typical requirement of UV exposure. It is shown that in the plasmonically sensitized metal-oxides the illumination with visible light lowers the WF due to desorption of previously ionosorbed oxygen, in analogy to the process found in neat metal oxides upon UV exposure, only. As underlying mechanism the transfer of hot holes from the metal to the oxide upon illumination with hν < Eg is verified. The general applicability of this concept to most common metal-oxides (e.g. TiOx and ZnO) in combination with different photoactive organic materials is demonstrated. PMID:25592174

  9. Plasmonically sensitized metal-oxide electron extraction layers for organic solar cells.

    PubMed

    Trost, S; Becker, T; Zilberberg, K; Behrendt, A; Polywka, A; Heiderhoff, R; Görrn, P; Riedl, T

    2015-01-16

    ZnO and TiOx are commonly used as electron extraction layers (EELs) in organic solar cells (OSCs). A general phenomenon of OSCs incorporating these metal-oxides is the requirement to illuminate the devices with UV light in order to improve device characteristics. This may cause severe problems if UV to VIS down-conversion is applied or if the UV spectral range (λ < 400 nm) is blocked to achieve an improved device lifetime. In this work, silver nanoparticles (AgNP) are used to plasmonically sensitize metal-oxide based EELs in the vicinity (1-20 nm) of the metal-oxide/organic interface. We evidence that plasmonically sensitized metal-oxide layers facilitate electron extraction and afford well-behaved highly efficient OSCs, even without the typical requirement of UV exposure. It is shown that in the plasmonically sensitized metal-oxides the illumination with visible light lowers the WF due to desorption of previously ionosorbed oxygen, in analogy to the process found in neat metal oxides upon UV exposure, only. As underlying mechanism the transfer of hot holes from the metal to the oxide upon illumination with hν < Eg is verified. The general applicability of this concept to most common metal-oxides (e.g. TiOx and ZnO) in combination with different photoactive organic materials is demonstrated.

  10. Plasmonically sensitized metal-oxide electron extraction layers for organic solar cells

    NASA Astrophysics Data System (ADS)

    Trost, S.; Becker, T.; Zilberberg, K.; Behrendt, A.; Polywka, A.; Heiderhoff, R.; Görrn, P.; Riedl, T.

    2015-01-01

    ZnO and TiOx are commonly used as electron extraction layers (EELs) in organic solar cells (OSCs). A general phenomenon of OSCs incorporating these metal-oxides is the requirement to illuminate the devices with UV light in order to improve device characteristics. This may cause severe problems if UV to VIS down-conversion is applied or if the UV spectral range (λ < 400 nm) is blocked to achieve an improved device lifetime. In this work, silver nanoparticles (AgNP) are used to plasmonically sensitize metal-oxide based EELs in the vicinity (1-20 nm) of the metal-oxide/organic interface. We evidence that plasmonically sensitized metal-oxide layers facilitate electron extraction and afford well-behaved highly efficient OSCs, even without the typical requirement of UV exposure. It is shown that in the plasmonically sensitized metal-oxides the illumination with visible light lowers the WF due to desorption of previously ionosorbed oxygen, in analogy to the process found in neat metal oxides upon UV exposure, only. As underlying mechanism the transfer of hot holes from the metal to the oxide upon illumination with hν < Eg is verified. The general applicability of this concept to most common metal-oxides (e.g. TiOx and ZnO) in combination with different photoactive organic materials is demonstrated.

  11. Canted antiferromagnetism in KNi3[PO3(F,OH)]2[PO2(OH)2]F2 with a stair-case Kagomé lattice

    NASA Astrophysics Data System (ADS)

    Liu, Li-Chen; Ren, Wei-Jian; Huang, Ya-Xi; Pan, Yuanming; Mi, Jin-Xiao

    2017-10-01

    A new nickel phosphate KNi3[PO3(F,OH)]2[PO2(OH)2]F2 has been synthesized using a modified hydrothermal method. Structural characterizations show that it adopts a 3D framework structure with 2D layers of Ni octahedra in a stair-case Kagomé lattice. The Ni2 octahedron at the inversion center shares two trans-faces with Ni1 octahedra to form a linear trimer (Ni3O8F6) as the basic structural unit. The Ni-trimers are linked between themselves by sharing F-corners and to [PO3(F,OH)] tetrahedral groups by sharing O-corners to form 2D stair-case Kagomé layers, which are parallel to the (100) plane and are stacked along the a-axis. Successive Kagomé layers are combined together by [PO2(OH)2] tetrahedral groups and interstice cations K+. Magnetic measurements reveal that KNi3[PO3(F,OH)]2[PO2(OH)2]F2 exhibits a canted antiferromagnetic ordering with a ferromagnetic component at low temperatures.

  12. Simple metal under tensile stress: layer-dependent herringbone reconstruction of thin potassium films on graphite

    PubMed Central

    Yin, Feng; Kulju, Sampo; Koskinen, Pekka; Akola, Jaakko; Palmer, Richard E.

    2015-01-01

    While understanding the properties of materials under stress is fundamentally important, designing experiments to probe the effects of large tensile stress is difficult. Here tensile stress is created in thin films of potassium (up to 4 atomic layers) by epitaxial growth on a rigid support, graphite. We find that this “simple” metal shows a long-range, periodic “herringbone” reconstruction, observed in 2- and 3- (but not 1- and 4-) layer films by low-temperature scanning tunneling microscopy (STM). Such a pattern has never been observed in a simple metal. Density functional theory (DFT)simulations indicate that the reconstruction consists of self-aligned stripes of enhanced atom density formed to relieve the tensile strain. At the same time marked layer-dependent charging effects lead to substantial variation in the apparent STM layer heights. PMID:25959681

  13. Stress Analysis of a Three-Layer Metal Composite System of Bearing Assemblies During Grinding

    NASA Astrophysics Data System (ADS)

    Pashnyov, V. A.; Pimenov, D. Yu.

    2015-03-01

    A mathematical model of the stress state of a three-layer metal composite system caused by cutting forces during grinding the working layer of the system is elaborated. The implementation of the model by using the finite-element method made it possible to assess the effect of structure of the system, the deformation properties of layer materials, and grinding conditions on the distribution and level of normal and tangential stresses in layers, which determine the load-carrying capacity of the system. The results of an analysis of stress fields can serve as a basis for determining the grinding conditions ensuring retention of the load-carrying capacity of the metal composite system.

  14. Melt layer behavior of metal targets irradiatead by powerful plasma streams

    NASA Astrophysics Data System (ADS)

    Bandura, A. N.; Byrka, O. V.; Chebotarev, V. V.; Garkusha, I. E.; Makhlaj, V. A.; Solyakov, D. G.; Tereshin, V. I.; Wuerz, H.

    2002-12-01

    In this paper melt layer erosion of metal targets under pulsed high-heat loads is studied. Experiments with steel, copper, aluminum and titanium samples were carried out in two plasma accelerator devices with different time durations of the heat load. The surfaces of the resolidified melt layers show a considerable roughness with microcraters and ridge like relief on the surface. For each material the mass loss was determined. Melt layer erosion by melt motion was clearly identified. However it is masked by boiling, bubble expansion and bubble collapse and by formation of a Kelvin-Helmholtz instability. The experimental results can be used for validation of numerical codes which model melt layer erosion of metallic armour materials in off-normal events, in tokamaks.

  15. Maximal light-energy transfer through a dielectric/metal-layered electrode on a photoactive device.

    PubMed

    Kim, Kyoung-Ho; Park, Q-Han

    2014-01-27

    We report the fabrication of an optimized low reflective dielectric/metal-layered electrode that provides significant electrical conductivity and light transparency in the near-infrared wavelength regime. By making the metal film thickness thick enough and choosing a proper dielectric layer with a certain thickness, we show that our suggested electrode significantly reduces the light reflection while preserving high electrical conductivity. We demonstrate our optimized electrodes present a highly conductive surface with a sheet resistance of 5.2 Ω/sq and a high light transmittance of near 85% in the near-infrared regime. We also apply our optimized electrode to thin-film organic photovoltaic devices and show the electrode helps in absorbing light energy inside an active layer. We believe that this simple but powerful layered electrode will pave the way for designing transparent electrodes on photoactive devices.

  16. Adhesion of oxide layer to metal-doped aluminum hydride surface: Density functional calculations

    NASA Astrophysics Data System (ADS)

    Takezawa, Tomoki; Itoi, Junichi; Kannan, Takashi

    2017-07-01

    The density functional theory (DFT) calculations were carried out to evaluate the adhesion energy of the oxide layer to the metal-doped surface of hydrogen storage material, aluminum hydride (alane, AlH3). The total energy calculations using slab model revealed that the surface doping of some metals to aluminum hydride weakens the adhesion strength of the oxide layer. The influence of titanium, iron, cobalt, and zirconium doping on adhesion strength were evaluated. Except for iron doping, the adhesion strength becomes weak by the doping.

  17. FTIR spectroscopy structural analysis of the interaction between Lactobacillus kefir S-layers and metal ions

    NASA Astrophysics Data System (ADS)

    Gerbino, E.; Mobili, P.; Tymczyszyn, E.; Fausto, R.; Gómez-Zavaglia, A.

    2011-02-01

    FTIR spectroscopy was used to structurally characterize the interaction of S-layer proteins extracted from two strains of Lactobacillus kefir (the aggregating CIDCA 8348 and the non-aggregating JCM 5818) with metal ions (Cd +2, Zn +2, Pb +2 and Ni +2). The infrared spectra indicate that the metal/protein interaction occurs mainly through the carboxylate groups of the side chains of Asp and Glut residues, with some contribution of the NH groups belonging to the peptide backbone. The frequency separation between the νCOO - anti-symmetric and symmetric stretching vibrations in the spectra of the S-layers in presence of the metal ions was found to be ca. 190 cm -1 for S-layer CIDCA 8348 and ca. 170 cm -1 for JCM 5818, denoting an unidentate coordination in both cases. Changes in the secondary structures of the S-layers induced by the interaction with the metal ions were also noticed: a general trend to increase the amount of β-sheet structures and to reduce the amount of α-helices was observed. These changes allow the proteins to adjust their structure to the presence of the metal ions at minimum energy expense, and accordingly, these adjustments were found to be more important for the bigger ions.

  18. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode.

    PubMed

    Yan, Kai; Lee, Hyun-Wook; Gao, Teng; Zheng, Guangyuan; Yao, Hongbin; Wang, Haotian; Lu, Zhenda; Zhou, Yu; Liang, Zheng; Liu, Zhongfan; Chu, Steven; Cui, Yi

    2014-10-08

    Stable cycling of lithium metal anode is challenging due to the dendritic lithium formation and high chemical reactivity of lithium with electrolyte and nearly all the materials. Here, we demonstrate a promising novel electrode design by growing two-dimensional (2D) atomic crystal layers including hexagonal boron nitride (h-BN) and graphene directly on Cu metal current collectors. Lithium ions were able to penetrate through the point and line defects of the 2D layers during the electrochemical deposition, leading to sandwiched lithium metal between ultrathin 2D layers and Cu. The 2D layers afford an excellent interfacial protection of Li metal due to their remarkable chemical stability as well as mechanical strength and flexibility, resulting from the strong intralayer bonds and ultrathin thickness. Smooth Li metal deposition without dendritic and mossy Li formation was realized. We showed stable cycling over 50 cycles with Coulombic efficiency ∼97% in organic carbonate electrolyte with current density and areal capacity up to the practical value of 2.0 mA/cm(2)and 5.0 mAh/cm(2), respectively, which is a significant improvement over the unprotected electrodes in the same electrolyte.

  19. Process for preparation of a seed layer for selective metal deposition

    DOEpatents

    Bernhardt, Anthony F.

    1992-01-01

    Disclosed is a process for selective metal deposition comprising of the steps of: a. formation of an initial surface on a substrate, said initial surface being comprised of at least two layers of which the uppermost is inert, b. exposing the surface to a source of heat in pre-determined places wherein surface activation is desired, and c. deposition of metal on activated portions of said surface.

  20. Synthesis and stabilization of supported metal catalysts by atomic layer deposition.

    PubMed

    Lu, Junling; Elam, Jeffrey W; Stair, Peter C

    2013-08-20

    Supported metal nanoparticles are among the most important catalysts for many practical reactions, including petroleum refining, automobile exhaust treatment, and Fischer-Tropsch synthesis. The catalytic performance strongly depends on the size, composition, and structure of the metal nanoparticles, as well as the underlying support. Scientists have used conventional synthesis methods including impregnation, ion exchange, and deposition-precipitation to control and tune these factors, to establish structure-performance relationships, and to develop better catalysts. Meanwhile, chemists have improved the stability of metal nanoparticles against sintering by the application of protective layers, such as polymers and oxides that encapsulate the metal particle. This often leads to decreased catalytic activity due to a lack of precise control over the thickness of the protective layer. A promising method of catalyst synthesis is atomic layer deposition (ALD). ALD is a variation on chemical vapor deposition in which metals, oxides, and other materials are deposited on surfaces by a sequence of self-limiting reactions. The self-limiting character of these reactions makes it possible to achieve uniform deposits on high-surface-area porous solids. Therefore, design and synthesis of advanced catalysts on the nanoscale becomes possible through precise control over the structure and composition of the underlying support, the catalytic active sites, and the protective layer. In this Account, we describe our advances in the synthesis and stabilization of supported metal catalysts by ALD. After a short introduction to the technique of ALD, we show several strategies for metal catalyst synthesis by ALD that take advantage of its self-limiting feature. Monometallic and bimetallic catalysts with precise control over the metal particle size, composition, and structure were achieved by combining ALD sequences, surface treatments, and deposition temperature control. Next, we describe

  1. Theory of strain in single-layer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Rostami, Habib; Roldán, Rafael; Cappelluti, Emmanuele; Asgari, Reza; Guinea, Francisco

    2015-11-01

    Strain engineering has emerged as a powerful tool to modify the optical and electronic properties of two-dimensional crystals. Here we perform a systematic study of strained semiconducting transition metal dichalcogenides. The effect of strain is considered within a full Slater-Koster tight-binding model, which provides us with the band structure in the whole Brillouin zone (BZ). From this, we derive an effective low-energy model valid around the K point of the BZ, which includes terms up to second order in momentum and strain. For a generic profile of strain, we show that the solutions for this model can be expressed in terms of the harmonic oscillator and double quantum well models, for the valence and conduction bands respectively. We further study the shift of the position of the electron and hole band edges due to uniform strain. Finally, we discuss the importance of spin-strain coupling in these 2D semiconducting materials.

  2. Lithium metal protected by atomic layer deposition metal oxide for high performance anodes

    DOE PAGES

    Chen, Lin; Connell, Justin G.; Nie, Anmin; ...

    2017-05-26

    We present that lithium metal is a highly desirable anode material for lithium batteries due to its extremely high theoretical capacity (3860 mA h g-1), low potential (-3.04 V versus standard hydrogen electrode), and low density (0.534 g cm-3). However, dendrite growth during cycling and low coulombic efficiency, resulting in safety hazards and fast battery fading, are huge barriers to commercialization. Herein, we used atomic layer deposition (ALD) to prepare conformal, ultrathin aluminum oxide coatings on lithium. We investigated the growth mechanism during Al2O3 ALD on lithium by in situ quartz crystal microbalance and found larger growth than expected duringmore » the initial cycles. We also discovered that the ALD Al2O3 enhances the wettability of the Li surface towards both carbonate and ether electrolytes, leading to uniform and dense SEI formation and reduced electrolyte consumption during battery operation. Scanning electron microscopy verified that the bare Li surfaces become rough and dendritic after electrochemical cycling, whereas the ALD Al2O3 coated Li surfaces remain smooth and uniform. Analysis of the Li surfaces after cycling using X-ray photoelectron spectroscopy and in situ transmission electron microscopy revealed that the ALD Al2O3 coating remains intact during electrochemical cycling, and that Li ions diffuse through the coating and deposit on the underlying Li. Coin cell testing demonstrated more than two times longer cycling life for the ALD Al2O3 protected Li, and a coulombic efficiency as high as ~98% at a practical current rate of 1 mA cm-2. More significantly, when the electrolyte volume was reduced from 20 to 5 μL, the stabilizing effect of the ALD coating became even more pronounced and the cycling life was around four times longer. Finally, these results indicate that ALD Al2O3 coatings are a promising strategy to stabilize Li anodes for high performance energy storage devices such as Li–S batteries.« less

  3. Angular and positional dependence of Purcell effect for layered metal-dielectric structures

    NASA Astrophysics Data System (ADS)

    Gubaydullin, A. R.; Mazlin, V. A.; Ivanov, K. A.; Kaliteevski, M. A.; Balocco, C.

    2016-04-01

    We study the angular dependence of the spontaneous emission enhancement of a dipole source inserted into a layered metal-dielectric metamaterial. We analyse the dependence of Purcell effect from the position of the dipole in the layered hyperbolic media. We analyse the impact of the complex structure of eigenmodes of the system operating in hyperbolic regime. We have shown that the spontaneous emission rate of the dipole emitter depends on its position, which mainly affect the interaction with Langmuir modes.

  4. Spin Frustration in an Organic Radical Ion Salt Based on a Kagome-Coupled Chain Structure.

    PubMed

    Postulka, Lars; Winter, Stephen M; Mihailov, Adam G; Mailman, Aaron; Assoud, Abdeljalil; Robertson, Craig M; Wolf, Bernd; Lang, Michael; Oakley, Richard T

    2016-08-31

    Electro-oxidation of the quinoidal bisdithiazole BT in dichloroethane in the presence of [Bu4N][GaBr4] affords the 1:1 radical ion salt [BT][GaBr4], crystals of which belong to the trigonal space group P3. The packing pattern of the radical cations provides a rare example of an organic kagome basket structure, with S = 1/2 radical ion chains located at the triangular corners of a trihexagonal lattice. Magnetic measurements over a wide temperature range from 30 mK to 300 K suggest strongly frustrated AFM interactions on the scale of J/kb ∼ 30 K, but reveal no anomalies that would be associated with magnetic order. These observations are discussed in terms of the symmetry allowed magnetic interactions within and between the frustrated layers.

  5. Solar cycle response and long-term trends in the mesospheric metal layers

    NASA Astrophysics Data System (ADS)

    Dawkins, E. C. M.

    2016-12-01

    The meteoric metal layers (Na, Fe, K) - which form as a result of the ablation of incoming meteors - act as unique tracers for chemical and dynamical processes that occur within the upper mesosphere/lower thermosphere (MLT) region. Here we examine whether these metal layers are sensitive indicators of decadal long-term changes within the upper atmosphere. Output from the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model (WACCM) is used to assess the response of the Na, K and Fe layers across a 50-year period (1955-2005). At short timescales, the K layer has previously been shown to exhibit a very different seasonal behavior compared to the other metals. In this work, we demonstrate that this unusual behavior is also exhibited at longer timescales (both the 11-yr solar cycle and 50-year periods), with K displaying a much more pronounced response to atmospheric temperature changes than either Na or Fe. The contrasting 11-year solar cycle behavior of the K and Na layers predicted by the model is confirmed using new satellite and lidar observations for the period 2004-2015. Overall, the results presented here demonstrate that the unusual behavior of K compared to Na and Fe is present not only at diurnal and seasonal timescales, but also over longer-term periods, which may lead to the K layer being a sensitive indicator of long-term changes in the MLT region.

  6. Active diagenetic formation of metal-rich layers in N. E. Atlantic sediments

    NASA Astrophysics Data System (ADS)

    Wallace, H. E.; Thomson, J.; Wilson, T. R. S.; Weaver, P. P. E.; Higgs, N. C.; Hydes, D. J.

    1988-06-01

    Sediment cores from the Porcupine Abyssal Plain exhibit an indurated layer 0.5-3 cm thick at depths of approximately 50 cm. This is some 15-20 cm below the glacial/Holocene transition as interpreted by radiocarbon dating and the palaeontological criteria of RUDDIMAN and MCINTYRE (1981). The layer is forming currently at the oxic/post-oxic boundary in the sediments, as revealed by pore water data: O 2 and NO -3 are present in solution above the layer, while Fe 2+, Mn 2+, PO 3-4 and NH +4 are present in solution below, and all these species show concentration gradients indicating fluxes into the layer. These data are consistent with the hypothesis for the initiation and sustained formation of such layers proposed by WILSONet al. (1986a,b). The elements Mn, Ni, Co, Fe, P, V, Cu, Zn and U are all enriched to varying degrees in the vicinity of the layer. Some differential stratification of these elements in the vertical, consistent with a redox control, is observed at one site with a 0.5 cm layer, with Mn, Ni and Co above, Fe, P, V and Cu in the layer, and U below. At another site the metal-rich layer has higher Fe and P concentrations and is more indurated. Here all enrichments except Co are contained within a single layer sample, 3 cm thick.

  7. Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers

    DOE PAGES

    Anasori, Babak; Shi, Chenyang; Moon, Eun Ju; ...

    2016-02-24

    In this paper, a transition from metallic to semiconducting-like behavior has been demonstrated in two-dimensional (2D) transition metal carbides by replacing titanium with molybdenum in the outer transition metal (M) layers of M3C2 and M4C3 MXenes. The MXene structure consists of n + 1 layers of near-close packed M layers with C or N occupying the octahedral site between them in an [MX]nM arrangement. Recently, two new families of ordered 2D double transition metal carbides MXenes were discovered, M'2M"C2 and M'2M"2C3 – where M' and M" are two different early transition metals, such as Mo, Cr, Ta, Nb, V, andmore » Ti. The M' atoms only occupy the outer layers and the M" atoms fill the middle layers. In other words, M' atomic layers sandwich the middle M"–C layers. Using X-ray atomic pair distribution function (PDF) analysis on Mo2TiC2 and Mo2Ti2C3 MXenes, we present the first quantitative analysis of structures of these novel materials and experimentally confirm that Mo atoms are in the outer layers of the [MC]nM structures. The electronic properties of these Mo-containing MXenes are compared with their Ti3C2 counterparts, and are found to be no longer metallic-like conductors; instead the resistance increases mildly with decreasing temperatures. Density functional theory (DFT) calculations suggest that OH terminated Mo–Ti MXenes are semiconductors with narrow band gaps. Measurements of the temperature dependencies of conductivities and magnetoresistances have confirmed that Mo2TiC2Tx exhibits semiconductor-like transport behavior, while Ti3C2Tx is a metal. Finally, this finding opens new avenues for the control of the electronic and optical applications of MXenes and for exploring new applications, in which semiconducting properties are required.« less

  8. Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers

    SciTech Connect

    Anasori, Babak; Shi, Chenyang; Moon, Eun Ju; Xie, Yu; Voigt, Cooper A.; Kent, Paul R. C.; May, Steven J.; Billinge, Simon J. L.; Barsoum, Michel W.; Gogotsi, Yury

    2016-02-24

    In this paper, a transition from metallic to semiconducting-like behavior has been demonstrated in two-dimensional (2D) transition metal carbides by replacing titanium with molybdenum in the outer transition metal (M) layers of M3C2 and M4C3 MXenes. The MXene structure consists of n + 1 layers of near-close packed M layers with C or N occupying the octahedral site between them in an [MX]nM arrangement. Recently, two new families of ordered 2D double transition metal carbides MXenes were discovered, M'2M"C2 and M'2M"2C3 – where M' and M" are two different early transition metals, such as Mo, Cr, Ta, Nb, V, and Ti. The M' atoms only occupy the outer layers and the M" atoms fill the middle layers. In other words, M' atomic layers sandwich the middle M"–C layers. Using X-ray atomic pair distribution function (PDF) analysis on Mo2TiC2 and Mo2Ti2C3 MXenes, we present the first quantitative analysis of structures of these novel materials and experimentally confirm that Mo atoms are in the outer layers of the [MC]nM structures. The electronic properties of these Mo-containing MXenes are compared with their Ti3C2 counterparts, and are found to be no longer metallic-like conductors; instead the resistance increases mildly with decreasing temperatures. Density functional theory (DFT) calculations suggest that OH terminated Mo–Ti MXenes are semiconductors with narrow band gaps. Measurements of the temperature dependencies of conductivities and magnetoresistances have confirmed that Mo2TiC2Tx exhibits semiconductor-like transport behavior, while Ti3C2Tx is a metal. Finally, this finding opens new avenues for the control of the electronic and optical applications of MXenes and for exploring new applications, in

  9. APCVD Transition Metal Oxides - Functional Layers in "Smart windows"

    NASA Astrophysics Data System (ADS)

    Gesheva, K. A.; Ivanova, T. M.; Bodurov, G. K.

    2014-11-01

    Transition metal oxides (TMO) exhibit electrochromic effect. Under a small voltage they change their optical transmittance from transparent to collored (absorbing) state. The individual material can manifest its electrochromic properties only when it is part of electrochromic (EC) multilayer system. Smart window is controlling the energy of solar flux entering the building or car and makes the interiors comfortable and energy utilization more effective. Recently the efforts of material researchers in this field are directed to price decreasing. APCVD technology is considered as promissing as this process permits flowthrough large-scale production process. The paper presents results on device optimization based on WO3-MoO3 working electrode. Extensive research reveals that WO3-MoO3 structure combines positive features of single oxides: excellent electrochromic performance of WO3 and better kinetic properties of MoO3 deposition. The achieved color efficiency of APCVD WO3-MoO3 films is 200cm2/C and optical modulation of 65-70% are practically favorable electrochromic characteristics. To respond to low cost requirement, the expensive hexacarbonyl can be replaced with acetylacetonate. We have started with this precursor to fabricate mixed WxV1-xO3 films. The films possess excellent surface coverage and high growth-rate. CVD deposition of VO2, a promissing thermochromic thin film material is also presented.

  10. Laminated metal composite formed from low flow stress layers and high flow stress layers using flow constraining elements and method of making same

    SciTech Connect

    Syn, C.K.; Lesuer, D.R.

    1994-12-31

    This invention relates to a laminated metal composite, comprising alternating layers of low flow stress material and high flow stress material, and formed using flow constraining elements around each low flow stress layer; and a method of making same. A composite is a combination of at least two chemically distinct materials with a distinct interface separating the two materials. A metal matrix composite (MMC) is a composite material composed of a metal and a nonmetallic reinforcing agent such as silicon carbide (SiC) or graphite in continuous or discontinuous fiber, whisker, or discrete particulate form. A laminate is a material composed of several bonded layers. It is possible to have a laminate composed of multi-layers of a single type of material bonded to each other. However, such a laminate would not be considered to be a composite. The term {open_quotes}laminated metal composite{close_quotes} (LMC), as used herein, is intended to include a structural material composed of: (1) layers of metal or metal alloys interleaved with (2) a different metal, a metal alloy, or a metal matrix composite (MMC) containing strengthening agents.

  11. Ba[Co3(VO4)2(OH)2] with a regular Kagomé lattice.

    PubMed

    Dordević, Tamara; Karanović, Ljiljana

    2013-02-01

    The new layered title compound, barium di-μ-hydroxido-di-μ-vanadato-tricobaltate(II), was prepared under low-temperature hydrothermal conditions. Its crystal structure comprises Co(2+) and O(2-) ions in the Kagomé geometry. The octahedral Co(3)O(6)(OH)(2) Kagomé layers, made up of edge-shared CoO(4)(OH)(2) octahedra with Co on a site of 2/m symmetry, alternate along the c axis with barium vanadate heteropolyhedral layers, in which Ba is on a site of 3m symmetry and V is on a site of 3m symmetry. All three O atoms and the H atom also occupy special positions: two O atoms and the H atom are on sites with 3m symmetry and one O atom is on a site with m symmetry. Ba[Co(3)(VO(4))(2)(OH)(2)] represents the first compound from the four-component BaO-CoO-V(2)O(5)-H(2)O system and its structure is topologically related to the minerals vesignieite, Ba[Cu(3)(VO(4))(2)(OH)(2)], and bayldonite, Pb[Cu(3)(AsO(4))(2)(OH)(2)].

  12. High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals.

    PubMed

    Muller, Guillaume A; Cook, John B; Kim, Hyung-Seok; Tolbert, Sarah H; Dunn, Bruce

    2015-03-11

    Single-layer and few-layer transition metal dichalcogenides have been extensively studied for their electronic properties, but their energy-storage potential has not been well explored. This paper describes the structural and electrochemical properties of few-layer TiS2 nanocrystals. The two-dimensional morphology leads to very different behavior, compared to corresponding bulk materials. Only small structural changes occur during lithiation/delithiation and charge storage characteristics are consistent with intercalation pseudocapacitance, leading to materials that exhibit both high energy and power density.

  13. Laminated metal composite formed from low flow stress layers and high flow stress layers using flow constraining elements and making same

    DOEpatents

    Syn, Chol K.; Lesuer, Donald R.

    1995-01-01

    A laminated metal composite of low flow stress layers and high flow stress layers is described which is formed using flow constraining elements, preferably in the shape of rings, individually placed around each of the low flow stress layers while pressure is applied to the stack to bond the layers of the composite together, to thereby restrain the flow of the low flow stress layers from the stack during the bonding. The laminated metal composite of the invention is made by the steps of forming a stack of alternate layers of low flow stress layers and high flow stress layers with each layer of low flow stress material surrounded by an individual flow constraining element, such as a ring, and then applying pressure to the top and bottom surfaces of the resulting stack to bond the dissimilar layers together, for example, by compression rolling the stack. In a preferred embodiment, the individual flow constraining elements surrounding the layers of low flow stress material are formed of a material which may either be the same material as the material comprising the high flow stress layers, or have similar flow stress characteristics to the material comprising the high flow stress layers. Additional sacrificial layers may be added to the top and bottom of the stack to avoid damage to the stack during the bonding step; and these additional layers may then be removed after the bonding step.

  14. Laminated metal composite formed from low flow stress layers and high flow stress layers using flow constraining elements and making same

    DOEpatents

    Syn, C.K.; Lesuer, D.R.

    1995-07-04

    A laminated metal composite of low flow stress layers and high flow stress layers is described which is formed using flow constraining elements, preferably in the shape of rings, individually placed around each of the low flow stress layers while pressure is applied to the stack to bond the layers of the composite together, to thereby restrain the flow of the low flow stress layers from the stack during the bonding. The laminated metal composite of the invention is made by the steps of forming a stack of alternate layers of low flow stress layers and high flow stress layers with each layer of low flow stress material surrounded by an individual flow constraining element, such as a ring, and then applying pressure to the top and bottom surfaces of the resulting stack to bond the dissimilar layers together, for example, by compression rolling the stack. In a preferred embodiment, the individual flow constraining elements surrounding the layers of low flow stress material are formed of a material which may either be the same material as the material comprising the high flow stress layers, or have similar flow stress characteristics to the material comprising the high flow stress layers. Additional sacrificial layers may be added to the top and bottom of the stack to avoid damage to the stack during the bonding step; and these additional layers may then be removed after the bonding step. 5 figs.

  15. Alleviation of fermi-level pinning effect at metal/germanium interface by the insertion of graphene layers

    SciTech Connect

    Baek, Seung-heon Chris; Seo, Yu-Jin; Oh, Joong Gun; Albert Park, Min Gyu; Bong, Jae Hoon; Yoon, Seong Jun; Lee, Seok-Hee; Seo, Minsu; Park, Seung-young; Park, Byong-Guk

    2014-08-18

    In this paper, we report the alleviation of the Fermi-level pinning on metal/n-germanium (Ge) contact by the insertion of multiple layers of single-layer graphene (SLG) at the metal/n-Ge interface. A decrease in the Schottky barrier height with an increase in the number of inserted SLG layers was observed, which supports the contention that Fermi-level pinning at metal/n-Ge contact originates from the metal-induced gap states at the metal/n-Ge interface. The modulation of Schottky barrier height by varying the number of inserted SLG layers (m) can bring about the use of Ge as the next-generation complementary metal-oxide-semiconductor material. Furthermore, the inserted SLG layers can be used as the tunnel barrier for spin injection into Ge substrate for spin-based transistors.

  16. Defect guidance in kagome-clad fibers: the role of photonic band gaps and self-similarity of the lattice

    NASA Astrophysics Data System (ADS)

    Perez, H.; Zheltikov, A. M.

    2017-01-01

    We examine the influence of the structural self-similarity of the kagome lattice on the defect modes and waveguiding properties of hollow-core kagome-cladding fibers. We show that the guidance of such fibers is influenced by photonic band gaps (PBGs) which appear for a subset of the kagome lattice. Using these insights, we provide design considerations to further decrease loss in kagome-clad fibers.

  17. Solvent-free synthesis of new metal phosphites with double-layered, pillared-layered, and framework structures

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Zhang, Wei; Shi, Zhonghua; Chen, Yaoqiang; Lin, Zhien

    2014-12-01

    Three new metal phosphites, formulated as (H3O)2·Mn2(HPO3)3 (1), Co(bpy) (H2O) (HPO3) (2), and H2tmpda·Zn3(HPO3)4 (3), have been synthesized under solvent-free conditions, where bpy = 4,4‧-bipyridine, and tmpda = N,N,N‧,N‧-tetramethyl-1,3-propanediamine. Compound 1 has a double-layered structure with a thickness of 5.68 Å. Compound 2 has an inorganic-organic hybrid framework with cobalt phosphite layers pillared by bpy ligands. Compound 3 has a three-dimensional open-framework structure containing 8-ring channels. The temperature dependence of the magnetic susceptibility of compounds 1 and 2 were also investigated.

  18. Characteristics of Spontaneous Emission of Polarized Atoms in Metal Dielectric Multiple Layer Structures

    NASA Astrophysics Data System (ADS)

    Zhao, Li-Ming; Gu, Ben-Yuan; Zhou, Yun-Song

    2007-11-01

    The spontaneous emission (SE) progress of polarized atoms in a stratified structure of air-dielectric(D0)-metal(M)-dielectric(D1)-air can be controlled effectively by changing the thickness of the D1 layer and rotating the polarized direction of atoms. It is found that the normalized SE rate of atoms located inside the D0 layer crucially depends on the atomic position and the thickness of the D1 layer. When the atom is located near the D0-M interface, the normalized atomic SE rate as a function of the atomic position is abruptly onset for the thin D1 layer. However, with the increasing thickness of the D1 layer, the corresponding curve profile exhibits plateau and stays nearly unchanged. The substantial change of the SE rate stems from the excitation of the surface plasmon polaritons in metal-dielectric interface, and the feature crucially depends on the thickness of D1 layer. If atoms are positioned near the D0-air interface, the substantial variation of the normalized SE rate appears when rotating the polarized direction of atoms. These findings manifest that the atomic SE processes can be flexibly controlled by altering the thickness of the dielectric layer D1 or rotating the orientation of the polarization of atoms.

  19. In situ distributions and characteristics of heavy metals in full-scale landfill layers.

    PubMed

    He, Pin-Jing; Xiao, Zheng; Shao, Li-Ming; Yu, Ji-Yu; Lee, Duu-Jong

    2006-10-11

    The leachate from methanogenic landfill normally contains low concentrations of heavy metals. Little samples had ever been collected from the full-scale landfill piles owing to technical difficulty for well drilling. We drilled two wells in Hangzhou Tianziling landfill, 20 m and 32 m in depth each, and collected solid samples of waste age of 1-4 years from both wells. The total amounts, the sequentially extracted amounts, and the chemical binding forms of heavy metals of the samples collected at different depths were measured. With the correlation between leachate production amount and the yearly rainfall amount, the leached ratio of the heavy metals were estimated only 0.13%, 1.8%, 0.15%, and 0.19% of Cu, Cd, Pb, and Zn, respectively. The heavy metals amounts in the main compositions of MSW, like glass, food waste, paper, coal cinders, were measured using fresh MSW samples. Afterward, the contents of heavy metals initially landfilled were estimated. A positive correlation was noted between the measured and the estimated initial contents of heavy metals, indicating that the low migration of heavy metals in landfill layers. However, among the metals investigated, Zn has shown better mobility inside landfill layers. Acid volatile sulfide (AVS) and the simultaneously extracted metals (SEM) were measured for all collected samples with optimal reaction conditions identified to yield nearly perfect sulfide recovery as follows: 100 g wet samples, 80 mL min(-1) N(2) flow rate, reaction time of 150 min. The SEM/AVS ratios ranged 25-45, indicating that the AVS was insufficient to immobilize the SEM. Sequential extraction using six-fraction scheme revealed that the sum of exchangeable and the avid soluble fractions of heavy metals follow: Zn>Cd>Cu, Ni, Pb>Cr. The insoluble fraction of heavy metals in MSW was high, for instance, over 80% for Cr and Pb high insoluble fractions of heavy metals in the landfilled MSW and the sorption capability of the methanogenic landfill layers

  20. Effect of electron collecting metal oxide layer in normal and inverted structure polymer solar cells

    SciTech Connect

    Ng, A.; Liu, X.; Sun, Y. C.; Djurišić, A. B.; Ng, A. M. C.; Chan, W. K.

    2013-12-04

    We performed a systematic study of the effect of electron collecting metal oxide layer on the performance of P3HT: PCBM solar cells. Zinc oxide (ZnO) or titanium dioxide (TiO{sub 2}) buffer layers were prepared by either e-beam evaporation or solution processing method. We also compared the photovoltaic performance of inserting the buffer layer between indium tin oxide (ITO) and the polymer layer for the inverted structure (ITO/ ZnO or TiO{sub 2}/P3HT:PCBM/V{sub 2}O{sub 5}/Au) as well as inserting the buffers layers between the polymer and the aluminum electrode for the conventional structure (ITO/V{sub 2}O{sub 5}/P3HT:PCBM/ZnO or TiO{sub 2}/Al). The results are shown in detail.

  1. Strengthening and toughening of layered Ti-Al metal composites by controlling local strain contribution

    NASA Astrophysics Data System (ADS)

    Huang, M.; Chen, J. S.; Wu, H.; Fan, G. H.; Geng, L.

    2017-07-01

    Layered Ti-Al metal composites (LMCs) with different thickness ratios of the Ti and Al layers were fabricated by hot-rolling and annealing. To study the effect of layer thickness on the mechanical properties of LMCs from the viewpoint of local strain distribution, the strain evolution of LMCs was investigated via in-situ tensile testing. It is found that the mechanical properties of LMCs are correlated with the degree of strain localization. Suppressing strain localization during plastic deformation is crucial to achieve the goal of both strengthening and toughening in LMCs. Additionally, the layered structure can facilitate the redistribution of strain localization, and the transfer of strain localization can be effectively controlled by changing the thickness ratio of the Ti and Al layers.

  2. Metal to Insulator Quantum-Phase Transition in Few-Layered ReS₂.

    PubMed

    Pradhan, Nihar R; McCreary, Amber; Rhodes, Daniel; Lu, Zhengguang; Feng, Simin; Manousakis, Efstratios; Smirnov, Dmitry; Namburu, Raju; Dubey, Madan; Walker, Angela R Hight; Terrones, Humberto; Terrones, Mauricio; Dobrosavljevic, Vladimir; Balicas, Luis

    2015-12-09

    In ReS2, a layer-independent direct band gap of 1.5 eV implies a potential for its use in optoelectronic applications. ReS2 crystallizes in the 1T'-structure, which leads to anisotropic physical properties and whose concomitant electronic structure might host a nontrivial topology. Here, we report an overall evaluation of the anisotropic Raman response and the transport properties of few-layered ReS2 field-effect transistors. We find that ReS2 exfoliated on SiO2 behaves as an n-type semiconductor with an intrinsic carrier mobility surpassing μ(i) ∼ 30 cm(2)/(V s) at T = 300 K, which increases up to ∼350 cm(2)/(V s) at 2 K. Semiconducting behavior is observed at low electron densities n, but at high values of n the resistivity decreases by a factor of >7 upon cooling to 2 K and displays a metallic T(2)-dependence. This suggests that the band structure of 1T'-ReS2 is quite susceptible to an electric field applied perpendicularly to the layers. The electric-field induced metallic state observed in transition metal dichalcogenides was recently claimed to result from a percolation type of transition. Instead, through a scaling analysis of the conductivity as a function of T and n, we find that the metallic state of ReS2 results from a second-order metal-to-insulator transition driven by electronic correlations. This gate-induced metallic state offers an alternative to phase engineering for producing ohmic contacts and metallic interconnects in devices based on transition metal dichalcogenides.

  3. Large area nanoscale metal meshes for use as transparent conductive layers

    NASA Astrophysics Data System (ADS)

    Jin, Yuanhao; Li, Qunqing; Chen, Mo; Li, Guanhong; Zhao, Yudan; Xiao, Xiaoyang; Wang, Jiaping; Jiang, Kaili; Fan, Shoushan

    2015-10-01

    We report on the experimental realization of using super-aligned carbon nanotubes (SACNTs) as etching masks for the fabrication of large area nanoscale metal meshes. This method can easily be extended to different metals on both rigid and flexible substrates. The as-fabricated metal meshes, including the ones made of gold, copper, and aluminum, are suitable for use as transparent conductive layers (TCLs). The metal meshes, which are similar to the SACNT networks in their dimensional features of tens of nanometers, exhibit compatible performance in terms of optical transmittance and sheet resistance. Moreover, because the metal meshes are fabricated as an integrated material, there is no junction resistance between the interconnected metal nanostructures, which markedly lowers their sheet resistance at high temperatures. The fabrication of such an effective etching mask involves a simple drawing process of the SACNT networks prepared and a common deposition process. This approach should be easy to extend to various research fields and has broad prospects in commercial applications.We report on the experimental realization of using super-aligned carbon nanotubes (SACNTs) as etching masks for the fabrication of large area nanoscale metal meshes. This method can easily be extended to different metals on both rigid and flexible substrates. The as-fabricated metal meshes, including the ones made of gold, copper, and aluminum, are suitable for use as transparent conductive layers (TCLs). The metal meshes, which are similar to the SACNT networks in their dimensional features of tens of nanometers, exhibit compatible performance in terms of optical transmittance and sheet resistance. Moreover, because the metal meshes are fabricated as an integrated material, there is no junction resistance between the interconnected metal nanostructures, which markedly lowers their sheet resistance at high temperatures. The fabrication of such an effective etching mask involves a simple

  4. Sol-gel deposition of buffer layers on biaxially textured metal substances

    SciTech Connect

    Shoup, S.S.; Paranthamam, M.; Beach, D.B.; Kroeger, D.M.; Goyal, A.

    2000-06-20

    A method is disclosed for forming a biaxially textured buffer layer on a biaxially oriented metal substrate by using a sol-gel coating technique followed by pyrolyzing/annealing in a reducing atmosphere. This method is advantageous for providing substrates for depositing electronically active materials thereon.

  5. Sol-gel deposition of buffer layers on biaxially textured metal substances

    DOEpatents

    Shoup, Shara S.; Paranthamam, Mariappan; Beach, David B.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    A method is disclosed for forming a biaxially textured buffer layer on a biaxially oriented metal substrate by using a sol-gel coating technique followed by pyrolyzing/annealing in a reducing atmosphere. This method is advantageous for providing substrates for depositing electronically active materials thereon.

  6. Elasto-plastic analysis of interface layers for fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Doghri, I.; Leckie, F. A.

    1991-01-01

    The mismatch in coefficients of thermal expansion (CTE) of fiber and matrix in metal matrix composites reinforced with ceramic fibers induces high thermal stresses in the matrix. Elasto-plastic analyses - with different degrees of simplification and modelization - show that an interface layer with a sufficiently high CTE can reduce the tensile hoop stress in the matrix substantially.

  7. A fluorescent, photochromic and thermochromic trifunctional material based on a layered metal-viologen complex.

    PubMed

    Wan, Fang; Qiu, Li-Xia; Zhou, Liang-Liang; Sun, Yan-Qiong; You, Yi

    2015-11-14

    The azide anion as an energy acceptor and an electron donor has been introduced into a metal-viologen compound to form a 2D layered viologen-based trifunctional material, which exhibits the rare discolored function of reversible photochromism and thermochromism. Interestingly, its fluorescence can be switched by visible light irradiation and heating in air.

  8. Metallic conduction induced by direct anion site doping in layered SnSe2

    PubMed Central

    Kim, Sang Il; Hwang, Sungwoo; Kim, Se Yun; Lee, Woo-Jin; Jung, Doh Won; Moon, Kyoung-Seok; Park, Hee Jung; Cho, Young-Jin; Cho, Yong-Hee; Kim, Jung-Hwa; Yun, Dong-Jin; Lee, Kyu Hyoung; Han, In-taek; Lee, Kimoon; Sohn, Yoonchul

    2016-01-01

    The emergence of metallic conduction in layered dichalcogenide semiconductor materials by chemical doping is one of key issues for two-dimensional (2D) materials engineering. At present, doping methods for layered dichalcogenide materials have been limited to an ion intercalation between layer units or electrostatic carrier doping by electrical bias owing to the absence of appropriate substitutional dopant for increasing the carrier concentration. Here, we report the occurrence of metallic conduction in the layered dichalcogenide of SnSe2 by the direct Se-site doping with Cl as a shallow electron donor. The total carrier concentration up to ~1020 cm−3 is achieved by Cl substitutional doping, resulting in the improved conductivity value of ~170 S·cm−1 from ~1.7 S·cm−1 for non-doped SnSe2. When the carrier concentration exceeds ~1019 cm−3, the conduction mechanism is changed from hopping to degenerate conduction, exhibiting metal-insulator transition behavior. Detailed band structure calculation reveals that the hybridized s-p orbital from Sn 5s and Se 4p states is responsible for the degenerate metallic conduction in electron-doped SnSe2. PMID:26792630

  9. Resistive switching in a metal-insulator-metal device with γ-APTES as the insulator layer

    NASA Astrophysics Data System (ADS)

    Lin, Jing-Jenn; Lin, Shih-Hung; Wu, You-Lin

    2017-10-01

    Gamma-aminopropyltriethoxysilane (γ-APTES) is an organosilane material commonly used for biomedical sensing. Sensors with a γ-APTES surface layer have been reported for use in pH, DNA, and cell detection. However, no application of γ-APTES on resistive switching random access memory (RRAM) devices has yet been reported. In this paper, we report, for the first time, the resistive switching characteristics of using γ-APTES as the insulator layer in an RRAM device. The resistive switching of the γ-APTES layer embedded with ZnO nanoparticles is also investigated in this work. A unipolar resistive switching characteristic is found when the γ-APTES is employed as an insulator layer in a device with a metal-insulator-metal (MIM) structure. The stability and reliability of the resistive switching characteristics of the device can be improved after adding zinc oxide (ZnO) nanoparticles at the expense of reducing the ratio of the resistance of a high-resistance state (RHRS) to the resistance of a low-resistance state (RLRS).

  10. Preparation of silica stabilized Tobacco mosaic virus templates for the production of metal and layered nanoparticles.

    PubMed

    Royston, Elizabeth S; Brown, Adam D; Harris, Michael T; Culver, James N

    2009-04-15

    The use of biological molecules as templates for the production of metal nanoparticles and wires is often limited by the stability of the bio-template and its affinity for nucleating metal deposition. In this study, Tobacco mosaic virus (TMV) was used as a model bio-template to investigate the use of silica coatings as a means to both enhance template stability and increase its affinity for metal ions. Results indicate that the unmodified TMV particle can function as a template for the growth of thin (<1 nm) silica layers. However, this thin silica shell did not enhance the stability of the template during metal deposition. To increase silica growth on the TMV template, a pretreatment with aniline was used to produce a uniform silica attractive surface. Aniline pretreated templates yielded significant silica layers of >20 nm in thickness. These silica shells conferred a high degree of stability to the TMV particle and promoted the deposition of various metal nanoparticles through conventional silica mineralization chemistries. This process provides a simple and robust method for the layering of inorganics onto a biological template.

  11. Thermal Rayleigh-Marangoni convection in a three-layer liquid-metal-battery model.

    PubMed

    Köllner, Thomas; Boeck, Thomas; Schumacher, Jörg

    2017-05-01

    The combined effects of buoyancy-driven Rayleigh-Bénard convection (RC) and surface tension-driven Marangoni convection (MC) are studied in a triple-layer configuration which serves as a simplified model for a liquid metal battery (LMB). The three-layer model consists of a liquid metal alloy cathode, a molten salt separation layer, and a liquid metal anode at the top. Convection is triggered by the temperature gradient between the hot electrolyte and the colder electrodes, which is a consequence of the release of resistive heat during operation. We present a linear stability analysis of the state of pure thermal conduction in combination with three-dimensional direct numerical simulations of the nonlinear turbulent evolution on the basis of a pseudospectral method. Five different modes of convection are identified in the configuration, which are partly coupled to each other: RC in the upper electrode, RC with internal heating in the molten salt layer, and MC at both interfaces between molten salt and electrode as well as anticonvection in the middle layer and lower electrode. The linear stability analysis confirms that the additional Marangoni effect in the present setup increases the growth rates of the linearly unstable modes, i.e., Marangoni and Rayleigh-Bénard instability act together in the molten salt layer. The critical Grashof and Marangoni numbers decrease with increasing middle layer thickness. The calculated thresholds for the onset of convection are found for realistic current densities of laboratory-sized LMBs. The global turbulent heat transfer follows scaling predictions for internally heated RC. The global turbulent momentum transfer is comparable with turbulent convection in the classical Rayleigh-Bénard case. In summary, our studies show that incorporating Marangoni effects generates smaller flow structures, alters the velocity magnitudes, and enhances the turbulent heat transfer across the triple-layer configuration.

  12. Thermal Rayleigh-Marangoni convection in a three-layer liquid-metal-battery model

    NASA Astrophysics Data System (ADS)

    Köllner, Thomas; Boeck, Thomas; Schumacher, Jörg

    2017-05-01

    The combined effects of buoyancy-driven Rayleigh-Bénard convection (RC) and surface tension-driven Marangoni convection (MC) are studied in a triple-layer configuration which serves as a simplified model for a liquid metal battery (LMB). The three-layer model consists of a liquid metal alloy cathode, a molten salt separation layer, and a liquid metal anode at the top. Convection is triggered by the temperature gradient between the hot electrolyte and the colder electrodes, which is a consequence of the release of resistive heat during operation. We present a linear stability analysis of the state of pure thermal conduction in combination with three-dimensional direct numerical simulations of the nonlinear turbulent evolution on the basis of a pseudospectral method. Five different modes of convection are identified in the configuration, which are partly coupled to each other: RC in the upper electrode, RC with internal heating in the molten salt layer, and MC at both interfaces between molten salt and electrode as well as anticonvection in the middle layer and lower electrode. The linear stability analysis confirms that the additional Marangoni effect in the present setup increases the growth rates of the linearly unstable modes, i.e., Marangoni and Rayleigh-Bénard instability act together in the molten salt layer. The critical Grashof and Marangoni numbers decrease with increasing middle layer thickness. The calculated thresholds for the onset of convection are found for realistic current densities of laboratory-sized LMBs. The global turbulent heat transfer follows scaling predictions for internally heated RC. The global turbulent momentum transfer is comparable with turbulent convection in the classical Rayleigh-Bénard case. In summary, our studies show that incorporating Marangoni effects generates smaller flow structures, alters the velocity magnitudes, and enhances the turbulent heat transfer across the triple-layer configuration.

  13. Intrinsic quantum anomalous Hall effect in the kagome lattice Cs2LiMn3F12

    SciTech Connect

    Xu, Gang; Lian, Biao; Zhang, Shou -Cheng

    2015-10-27

    In a kagome lattice, the time reversal symmetry can be broken by a staggered magnetic flux emerging from ferromagnetic ordering and intrinsic spin-orbit coupling, leading to several well-separated nontrivial Chern bands and intrinsic quantum anomalous Hall effect. Based on this idea and ab initio calculations, we propose the realization of the intrinsic quantum anomalous Hall effect in the single layer Cs2Mn3F12 kagome lattice and on the (001) surface of a Cs2LiMn3F12 single crystal by modifying the carrier coverage on it, where the band gap is around 20 meV. Furthermore, a simplified tight binding model based on the in-plane ddσ antibonding states is constructed to understand the topological band structures of the system.

  14. Detection of a persistent meteoric metal layer in the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Crismani, M. M. J.; Schneider, N. M.; Plane, J. M. C.; Evans, J. S.; Jain, S. K.; Chaffin, M. S.; Carrillo-Sanchez, J. D.; Deighan, J. I.; Yelle, R. V.; Stewart, A. I. F.; McClintock, W.; Clarke, J.; Holsclaw, G. M.; Stiepen, A.; Montmessin, F.; Jakosky, B. M.

    2017-06-01

    Interplanetary dust particles sporadically enter planetary atmospheres at orbital velocities and ablate as collisions occur with ambient gases to produce a persistent layer of metallic atoms (for example, Fe, Mg, Na) in their upper atmospheres. Such layers are well studied at Earth, but have not been directly detected elsewhere in the Solar System. Here we report the detection of a meteoric layer consisting of Mg+ ions near an altitude of 90 km in the Martian atmosphere from ultraviolet remote sensing observations by NASA's MAVEN spacecraft. We observe temporal variability in the Mg+ layer over the course of a Martian year, moving up and down in altitude seasonally and in response to dust storms, and displaying diurnal fluctuations in density. We also find that most meteor showers do not significantly perturb this layer, which constrains the fluence of eleven observed Martian meteor showers to less than our estimated global dust flux. The persistence and variability of the Mg+ layer are difficult to explain with existing models and reconcile with other transient layers of ions observed in the Martian ionosphere. We suggest that the transient layers are not sourced from the persistent Mg+ layer and thus not derived from meteoric material, but are ambient ions produced by some unknown mechanism.

  15. Heat-resistant organic molecular layer as a joint interface for metal reduction on plastics surfaces

    NASA Astrophysics Data System (ADS)

    Sang, Jing; Aisawa, Sumio; Hirahara, Hidetoshi; Kudo, Takahiro; Mori, Kunio

    2016-04-01

    Heat-resistant organic molecular layers have been fabricated by triazine-based silane coupling agent for metal reduction on plastic surfaces using adsorption method. These molecular layers were used as an interfacial layer between polyamide (PA6) and metal solution to reduce Ag+ ion to Ag0. The interfacial behaviors of triazine molecular layer at the interfaces between PA6 and Ag solution were investigated using quartz crystal microbalance (QCM). The kinetics of molecular adsorption on PA6 was investigated by using triazine-based silane coupling agent solutions at different pH and concentration. X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), and local nano thermal analysis were employed to characterize the surfaces and interfaces. The nano thermal analysis results show that molecular layers of triazine-based silane coupling agent greatly improved heat resistance of PA6 resin from 170 °C up to 230 °C. This research developed an in-depth insight for molecular behaviors of triazine-based silane coupling agent at the PA6 and Ag solution interfaces and should be of significant value for interfacial research between plastics and metal solution in plating industry.

  16. Structure and nano-mechanical characteristics of surface oxide layers on a metallic glass.

    PubMed

    Caron, A; Qin, C L; Gu, L; González, S; Shluger, A; Fecht, H-J; Louzguine-Luzgin, D V; Inoue, A

    2011-03-04

    Owing to their low elastic moduli, high specific strength and excellent processing characteristics in the undercooled liquid state, metallic glasses are promising materials for applications in micromechanical systems. With miniaturization of metallic mechanical components down to the micrometer scale, the importance of a native oxide layer on a glass surface is increasing. In this work we use TEM and XPS to characterize the structure and properties of the native oxide layer grown on Ni(62)Nb(38) metallic glass and their evolution after annealing in air. The thickness of the oxide layer almost doubled after annealing. In both cases the oxide layer is amorphous and consists predominantly of Nb oxide. We investigate the friction behavior at low loads and in ambient conditions (i.e. at T = 295 K and 60% air humidity) of both as-cast and annealed samples by friction force microscopy. After annealing the friction coefficient is found to have significantly increased. We attribute this effect to the increase of the mechanical stability of the oxide layer upon annealing.

  17. Thermal properties of a pyroelectric-ceramic infrared detector with metallic intermediate layer

    NASA Astrophysics Data System (ADS)

    Lee, Moon H.; Bae, Seong H.; Bhalla, Amar S.

    1998-06-01

    Infrared thermal detectors were prepared with pyroelectric PSN-PT-PZ (1/47/52) ceramics, where a signal electrode had a structure Au/metallic buffer/Pb(Zr,Ti)O3 ceramic. The effect of a metallic buffer layer on the voltage responsivity was investigated with a response to a step signal, made by a dynamic pyroelectric measurement. A pyroelectric ceramic wafer was prepared by a mixed-oxide technique. The Au layer (thickness 50 nm) and the metallic buffers (thickness 0 to 20 nm) of Cr, NiCr (80:20), and Ti were prepared by dc magnetron sputtering. In order to improve the light absorptivity, Au black was coated on the Au signal electrode by thermal evaporation. A detector without a buffer layer showed a noisy and fluctuating output signal. Among the three kinds of buffer materials, NiCr (80:20) and Ti adhered well with ceramics and showed good electrical and thermal contact, whereas Cr resulted in bad contacts. Considering the output voltage and thermal properties, the optimum thickness of the buffer layer was about 15 to 20 nm, and sensors with a Ti buffer 15 to 20 nm in thickness showed good detectivity. Thus, the stability and reliability of the infrared thermal sensors could be improved by using an appropriate buffer layer.

  18. Solar Cycle Response and Long-Term Trends in the Mesospheric Metal Layers

    NASA Technical Reports Server (NTRS)

    Dawkins, E. C. M.; Plane, J. M. C.; Chipperfield, M.; Feng, W.; Marsh, D. R.; Hoffner, J.; Janches, D.

    2016-01-01

    The meteoric metal layers (Na, Fe, and K) which form as a result of the ablation of incoming meteors act as unique tracers for chemical and dynamical processes that occur within the upper mesosphere lower thermosphere region. In this work, we examine whether these metal layers are sensitive Fe indicators of decadal long-term changes within the upper atmosphere. Output from a whole-atmosphere climate model is used to assess the response of the Na, K, and Fe layers across a 50 year period (1955-2005). At short timescales, the K layer has previously been shown to exhibit a very different seasonal behavior compared to the other metals. Here we show that this unusual behavior is also exhibited at longer time scales (both the 11 year solar cycle and 50 year periods), where K displays a much more pronounced response to atmospheric temperature changes than either Na or Fe. The contrasting solar cycle behavior of the K and Na layers predicted by the model is confirmed using satellite and lidar observations for the period 2004-2013.

  19. Magnetization plateaus of dipolar spin ice on kagome lattice

    SciTech Connect

    Xie, Y. L.; Wang, Y. L.; Yan, Z. B.; Liu, J.-M.

    2014-05-07

    Unlike spin ice on pyrochlore lattice, the spin ice structure on kagome lattice retains net magnetic charge, indicating non-negligible dipolar interaction in modulating the spin ice states. While it is predicted that the dipolar spin ice on kagome lattice exhibits a ground state with magnetic charge order and √3 × √3 spin order, our work focuses on the magnetization plateau of this system. By employing the Wang-Landau algorithm, it is revealed that the lattice exhibits the fantastic three-step magnetization in response to magnetic field h along the [10] and [01] directions, respectively. For the h//[1 0] case, an additional √3/6M{sub s} step, where M{sub s} is the saturated magnetization, is observed in a specific temperature range, corresponding to a new state with charge order and short-range spin order.

  20. Photonic crystal slow light waveguides in a kagome lattice.

    PubMed

    Schulz, Sebastian A; Upham, Jeremy; O'Faolain, Liam; Boyd, Robert W

    2017-08-15

    Slow light photonic crystal waveguides tightly compress propagating light and increase interaction times, showing immense potential for all-optical delay and enhanced light-matter interactions. Yet, their practical application has largely been limited to moderate group index values (<100), due to a lack of waveguides that reliably demonstrate slower light. This limitation persists because nearly all such research has focused on a single photonic crystal lattice type: the triangular lattice. Here, we present waveguides based on the kagome lattice that demonstrate an intrinsically high group index and exhibit slow and stopped light. We experimentally demonstrate group index values of >150, limited by our measurement resolution. The kagome-lattice waveguides are an excellent starting point for further slow light engineering in photonic crystal waveguides.

  1. Monte Carlo simulations of kagome lattices with magnetic dipolar interactions

    NASA Astrophysics Data System (ADS)

    Plumer, Martin; Holden, Mark; Way, Andrew; Saika-Voivod, Ivan; Southern, Byron

    Monte Carlo simulations of classical spins on the two-dimensional kagome lattice with only dipolar interactions are presented. In addition to revealing the sixfold-degenerate ground state, the nature of the finite-temperature phase transition to long-range magnetic order is discussed. Low-temperature states consisting of mixtures of degenerate ground-state configurations separated by domain walls can be explained as a result of competing exchange-like and shape-anisotropy-like terms in the dipolar coupling. Fluctuations between pairs of degenerate spin configurations are found to persist well into the ordered state as the temperature is lowered until locking in to a low-energy state. Results suggest that the system undergoes a continuous phase transition at T ~ 0 . 43 in agreement with previous MC simulations but the nature of the ordering process differs. Preliminary results which extend this analysis to the 3D fcc ABC-stacked kagome systems will be presented.

  2. Quantum spin liquid in a breathing kagome lattice

    NASA Astrophysics Data System (ADS)

    Schaffer, Robert; Huh, Yejin; Hwang, Kyusung; Kim, Yong Baek

    2017-02-01

    Motivated by recent experiments on the vanadium oxyfluoride material DQVOF, we examine possible spin liquid phases on a breathing kagome lattice of S =1 /2 spins. By performing a projective symmetry group analysis, we determine the possible phases for both fermionic and bosonic Z2 spin liquids on this lattice, and establish the correspondence between the two. The nature of the ground state of the Heisenberg model on the isotropic kagome lattice is a hotly debated topic, with both Z2 and U(1) spin liquids argued to be plausible ground states. Using variational Monte Carlo techniques, we show that a gapped Z2 spin liquid emerges as the clear ground state in the presence of this breathing anisotropy. Our results suggest that the breathing anisotropy helps to stabilize this spin liquid ground state, which may aid us in understanding the results of experiments and help to direct future numerical studies on these systems.

  3. Topological Magnon Bands in a Kagome Lattice Ferromagnet.

    PubMed

    Chisnell, R; Helton, J S; Freedman, D E; Singh, D K; Bewley, R I; Nocera, D G; Lee, Y S

    2015-10-02

    There is great interest in finding materials possessing quasiparticles with topological properties. Such materials may have novel excitations that exist on their boundaries which are protected against disorder. We report experimental evidence that magnons in an insulating kagome ferromagnet can have a topological band structure. Our neutron scattering measurements further reveal that one of the bands is flat due to the unique geometry of the kagome lattice. Spin wave calculations show that the measured band structure follows from a simple Heisenberg Hamiltonian with a Dzyaloshinkii-Moriya interaction. This serves as the first realization of an effectively two-dimensional topological magnon insulator--a new class of magnetic material that should display both a magnon Hall effect and protected chiral edge modes.

  4. Thermal Hall Effect of Spin Excitations in a Kagome Magnet.

    PubMed

    Hirschberger, Max; Chisnell, Robin; Lee, Young S; Ong, N P

    2015-09-04

    At low temperatures, the thermal conductivity of spin excitations in a magnetic insulator can exceed that of phonons. However, because they are charge neutral, the spin waves are not expected to display a thermal Hall effect. However, in the kagome lattice, theory predicts that the Berry curvature leads to a thermal Hall conductivity κ(xy). Here we report observation of a large κ(xy) in the kagome magnet Cu(1-3, bdc) which orders magnetically at 1.8 K. The observed κ(xy) undergoes a remarkable sign reversal with changes in temperature or magnetic field, associated with sign alternation of the Chern flux between magnon bands. The close correlation between κ(xy) and κ(xx) firmly precludes a phonon origin for the thermal Hall effect.

  5. Combustion zone durability program-B. Task VIII. Sputter deposited ceramic and metallic coatings. Executive summary. [Graded metal; metal/ceramic layered; dense surface ceramic

    SciTech Connect

    Patten, J. W.; Moss, R. W.; Hays, D. D.

    1980-11-01

    The graded metal coatings are of the CoCrAlY type modified by including high Cr surface compositions, gradients in Cr and Al composition, underlayers and graded Pt additions, and Hf substitutions for Y. The metal ceramic layered coatings consist of alternate metal (Ni, Ni-Cr, CoCrAlY or Pt) and ceramic (Al/sub 2/O/sub 3/ or ZrO/sub 2/ + Y) layers. Investigations of dense surface ceramic coatings are directed towards methods for obtaining adherent impermeable ceramic protective coatings for gas turbine hot section components. Increased coating adherence is being sought through two coating designs intended to accomodate expansion and modulus mismatches at the coating-substrate interface.

  6. Core–Shell Nanoparticle Coating as an Interfacial Layer for Dendrite-Free Lithium Metal Anodes

    DOE PAGES

    Liu, Wei; Li, Weiyang; Zhuo, Denys; ...

    2017-02-08

    Lithium metal based batteries represent a major challenge and opportunity in enabling a variety of devices requiring high-energy-density storage. However, dendritic lithium growth has limited the practical application of lithium metal anodes. Here we report a nanoporous, flexible and electrochemically stable coating of silica@poly(methyl methacrylate) (SiO2@PMMA) core–shell nanospheres as an interfacial layer on lithium metal anode. This interfacial layer is capable of inhibiting Li dendrite growth while sustaining ionic flux through it, which is attributed to the nanoscaled pores formed among the nanospheres. Lastly, enhanced Coulombic efficiencies during lithium charge/discharge cycles have been achieved at various current densities and arealmore » capacities.« less

  7. Electronic and magnetic properties of single-layer M P X3 metal phosphorous trichalcogenides

    NASA Astrophysics Data System (ADS)

    Chittari, Bheema Lingam; Park, Youngju; Lee, Dongkyu; Han, Moonsup; MacDonald, Allan H.; Hwang, Euyheon; Jung, Jeil

    2016-11-01

    We survey the electronic structure and magnetic properties of two-dimensional (2D) M P X3 (M =V,Cr,Mn,Fe,Co,Ni,Cu,Zn, and X =S,Se,Te ) transition-metal chalcogenophosphates to shed light on their potential role as single-layer van der Waals materials that possess magnetic order. Our ab initio calculations predict that most of these single-layer materials are antiferromagnetic semiconductors. The band gaps of the antiferromagnetic states decrease as the atomic number of the chalcogen atom increases (from S to Se to Te), leading in some cases to half-metallic ferromagnetic states or to nonmagnetic metallic states. We find that the competition between antiferromagnetic and ferromagnetic states can be substantially influenced by gating and by strain engineering. The sensitive interdependence we find between magnetic, structural, and electronic properties establishes the potential of this 2D materials class for applications in spintronics.

  8. Ab initio study of magnetic single layer MPX3 metal-phosphorous-trichalcogenides

    NASA Astrophysics Data System (ADS)

    Chittari, Bheema Lingam; Hwang, Euyheon; Jung, Jeil; MacDonald, Allan H.

    We analyze the electronic structure of two dimensional (2D) MPX3 (M= V, Cr, Mn, Fe, Co, Ni, Cu, Zn, and X = S, Se, Te) transition metal thiophosphates, viewing them as single layer van der Waals materials that can exhibit magnetic order. Our ab initio calculations for MPX3 single layer compounds predict both semiconducting phases with variable band gap sizes and metallic phases, and an intimate interplay between magnetic order and the presence of a gap. A systematic trend of decreasing band gaps in antiferromagnetic states is observed as the chalcogen atoms S, Se, and Te change from smaller to larger atomic number, Ferromagnetic, antiferromagnetic, and nonmagnetic phases, and lattice constant changes accompanied by distortions in crystal symmetry, occur as the metal atom is varied. The sensitive interdependence between magnetic, structural, and electronic properties suggests the important potential of this class of 2D magnetic van der Waals materials for strain and field-effect carrier tunable spintronics.

  9. Crystal and Magnetic Structures in Layered, Transition Metal Dihalides and Trihalides

    DOE PAGES

    McGuire, Michael A.

    2017-04-27

    Materials composed of two dimensional layers bonded to one another through weak van der Waals interactions often exhibit strongly anisotropic behaviors and can be cleaved into very thin specimens and sometimes into monolayer crystals. Interest in such materials is driven by the study of low dimensional physics and the design of functional heterostructures. Binary compounds with the compositions MX2 and MX3 where M is a metal cation and X is a halogen anion often form such structures. Magnetism can be incorporated by choosing a transition metal with a partially filled d-shell for M, enabling ferroic responses for enhanced functionality. Heremore » we give a brief overview of binary transition metal dihalides and trihalides, summarizing their crystallographic properties and long-range-ordered magnetic structures, focusing on those materials with layered crystal structures and partially filled d-shells required for combining low dimensionality and cleavability with magnetism.« less

  10. Mode propagation in optical nanowaveguides with dielectric cores and surrounding metal layers.

    PubMed

    Lapchuk, Anatoly S; Shin, Dongho; Jeong, Ho-Seop; Kyong, Chun Su; Shin, Dong-Ik

    2005-12-10

    The mode spectrum in an optical nanowaveguide consisting of a dielectric-core layer surrounded by two identical metal layers is investigated. A simple model based on mode matching to predict the properties of mode propagation in such optical nanowaveguides is proposed. It is shown that quasi-TM00 and quasi-TM10 modes supported by an optical microstrip line do not have a cutoff frequency, regardless of the size of the metal strips, the thickness of the dielectric slab, and the cross-sectional shape. The transverse size of the TM00 mode supported by a nanosized microstrip line was found to be approximately equal to the transverse dimension of the microstrip line. In closed rectangular and elliptical nanowaveguides, i.e., in which all dielectric surfaces are covered with metal films, the cross-sectional shape of the waveguide should be stretched along one side to produce propagation conditions for the fundamental mode.

  11. Core–Shell Nanoparticle Coating as an Interfacial Layer for Dendrite-Free Lithium Metal Anodes

    PubMed Central

    2017-01-01

    Lithium metal based batteries represent a major challenge and opportunity in enabling a variety of devices requiring high-energy-density storage. However, dendritic lithium growth has limited the practical application of lithium metal anodes. Here we report a nanoporous, flexible and electrochemically stable coating of silica@poly(methyl methacrylate) (SiO2@PMMA) core–shell nanospheres as an interfacial layer on lithium metal anode. This interfacial layer is capable of inhibiting Li dendrite growth while sustaining ionic flux through it, which is attributed to the nanoscaled pores formed among the nanospheres. Enhanced Coulombic efficiencies during lithium charge/discharge cycles have been achieved at various current densities and areal capacities. PMID:28280780

  12. First-principles study of the noble metal-doped BN layer

    SciTech Connect

    Zhou, Yungang; Yang, Ping; Sun, Xin; Wang, Zhiguo; Zu, Xiaotao T.; Gao, Fei

    2011-04-18

    Intriguing electronic and magnetic properties of BN layer with noble metal (Pd, Pt, Ag and Au) doping are obtained by first-principles calculations. Adsorbed Pd (or Pt) reduces the band gap of BN sheet owing to the induction of impurity states. The unpaired electrons in the Ag (or Au)-adsorbed and the Pd (or Pt)-substituted BN layers are polarized, and thus exhibit a magnetic moment of 1.0 µB, leading to these BN configurations to be magnetic semiconductors. The half-metallic feature of the Ag-substituted BN layer, along with the delocalization of spin states, renders this configuration an excellent spin filter material. Thus, these findings offer a unique opportunity for developing BN-based nanoscale devices.

  13. Layer modeling of zinc removal from metallic mixture of waste printed circuit boards by vacuum distillation.

    PubMed

    Gao, Yujie; Li, Xingang; Ding, Hui

    2015-08-01

    A layer model was established to elucidate the mechanism of zinc removal from the metallic mixture of waste printed circuit boards by vacuum distillation. The removal process was optimized by response surface methodology, and the optimum operating conditions were the chamber pressure of 0.1Pa, heating temperature of 923K, heating time of 60.0min, particle size of 70 mesh (0.212mm) and initial mass of 5.25g. Evaporation efficiency of zinc, the response variable, was 99.79%, which indicates that the zinc can be efficiently removed. Based on the experimental results, a mathematical model, which bears on layer structure, evaporation, mass transfer and condensation, interprets the mechanism of the variable effects. Especially, in order to reveal blocking effect on the zinc removal, the Blake-Kozeny-Burke-Plummer equation was introduced into the mass transfer process. The layer model can be applied to a wider range of metal removal by vacuum distillation.

  14. Isolation and characterization of nanosheets containing few layers of the Aurivillius family of oxides and metal-organic compounds

    SciTech Connect

    Sreedhara, M.B.; Prasad, B.E.; Moirangthem, Monali; Murugavel, R.; Rao, C.N.R.

    2015-04-15

    Nanosheets containing few-layers of ferroelectric Aurivillius family of oxides, Bi{sub 2}A{sub n−1}B{sub n}O{sub 3n+3} (where A=Bi{sup 3+}, Ba{sup 2+} etc. and B=Ti{sup 4+}, Fe{sup 3+} etc.) with n=3, 4, 5, 6 and 7 have been prepared by reaction with n-butyllithium, followed by exfoliation in water. The few-layer samples have been characterized by Tyndall cones, atomic force microscopy, optical spectroscopy and other techniques. The few-layer species have a thickness corresponding to a fraction of the c-parameter along which axis the perovskite layers are stacked. Magnetization measurements have been carried out on the few-layer samples containing iron. Few-layer species of a few layered metal-organic compounds have been obtained by ultrasonication and characterized by Tyndall cones, atomic force microscopy, optical spectroscopy and magnetic measurements. Significant changes in the optical spectra and magnetic properties are found in the few-layer species compared to the bulk samples. Few-layer species of the Aurivillius family of oxides may find uses as thin layer dielectrics in photovoltaics and other applications. - Graphical abstract: Exfoliation of the layered Aurivillius oxides into few-layer nanosheets by chemical Li intercalation using n-BuLi followed by reaction in water. Exfoliation of the layered metal-organic compounds into few-layer nanosheets by ultrasonication. - Highlights: • Few-layer nanosheets of Aurivillius family of oxides with perovskite layers have been generated by lithium intercalation. • Few-layer nanosheets of few layered metal-organic compounds have been generated by ultrasonication. • Few-layer nanosheets of the Aurivillius oxides have been characterized by AFM, TEM and optical spectroscopy. • Aurivillius oxides containing Fe show layer dependent magnetic properties. • Exfoliated few-layer metal-organic compounds show changes in spectroscopic and magnetic properties compared with bulk materials.

  15. Damped Topological Magnons in the Kagome-Lattice Ferromagnets

    NASA Astrophysics Data System (ADS)

    Chernyshev, A. L.; Maksimov, P. A.

    2016-10-01

    We demonstrate that interactions can substantially undermine the free-particle description of magnons in ferromagnets on geometrically frustrated lattices. The anharmonic coupling, facilitated by the Dzyaloshinskii-Moriya interaction, and a highly degenerate two-magnon continuum yield a strong, nonperturbative damping of the high-energy magnon modes. We provide a detailed account of the effect for the S =1 /2 ferromagnet on the kagome lattice and propose further experiments.

  16. Damped Topological Magnons in the Kagome-Lattice Ferromagnets.

    PubMed

    Chernyshev, A L; Maksimov, P A

    2016-10-28

    We demonstrate that interactions can substantially undermine the free-particle description of magnons in ferromagnets on geometrically frustrated lattices. The anharmonic coupling, facilitated by the Dzyaloshinskii-Moriya interaction, and a highly degenerate two-magnon continuum yield a strong, nonperturbative damping of the high-energy magnon modes. We provide a detailed account of the effect for the S=1/2 ferromagnet on the kagome lattice and propose further experiments.

  17. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    DOEpatents

    Wrenn, G.E. Jr.; Holcombe, C.E. Jr.

    1988-09-13

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  18. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    DOEpatents

    Wrenn, Jr., George E.; Holcombe, Jr., Cressie E.

    1988-01-01

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  19. Antiferromagnetic magnons in diluted triangular and Kagome lattices (abstract)

    SciTech Connect

    Huber, D.L. ); Ching, W.Y. )

    1993-05-15

    Numerical results are presented for the local field distribution and the distribution of linearized magnon modes in diluted triangular and Kagome lattices. A nearest-neighbor antiferromagnetic Heisenberg spin Hamiltonian is assumed, and the linearization is carried out with respect to classical ground states obtained by means of an energy minimization algorithm.[sup 1] In the case of the triangular lattice, the density of states associated with a 20% vacancy concentration is used to calculate the magnon contribution to the specific heat. With an exchange integral inferred from the Curie--Weiss constant, quantitative agreement is obtained with the experimental results for La[sub 0.2]Gd[sub 0.8]CuO[sub 2] reported by Ramirez [ital et] [ital al].[sup 2] over the interval 0.1 K[le][ital T][le]0.2 K. The behavior of the diluted Kagome lattice is compared with that of the triangular array. In contrast to the latter, the local fields in the diluted Kagome lattice take on the discrete values 2[ital JS], [ital JS], and 0. In the case of a 14% vacancy concentration, the distribution of magnon modes resembles that of the fully occupied array with a noncoplanar ground state. The relevance of these results to the behavior of SrCr[sub 8]Ga[sub 4]O[sub 19] is discussed.[sup 3

  20. Striped spin liquid crystal ground state instability of kagome antiferromagnets.

    PubMed

    Clark, Bryan K; Kinder, Jesse M; Neuscamman, Eric; Chan, Garnet Kin-Lic; Lawler, Michael J

    2013-11-01

    The Dirac spin liquid ground state of the spin 1/2 Heisenberg kagome antiferromagnet has potential instabilities. This has been suggested as the reason why it does not emerge as the ground state in large-scale numerical calculations. However, previous attempts to observe these instabilities have failed. We report on the discovery of a projected BCS state with lower energy than the projected Dirac spin liquid state which provides new insight into the stability of the ground state of the kagome antiferromagnet. The new state has three remarkable features. First, it breaks spatial symmetry in an unusual way that may leave spinons deconfined along one direction. Second, it breaks the U(1) gauge symmetry down to Z(2). Third, it has the spatial symmetry of a previously proposed "monopole" suggesting that it is an instability of the Dirac spin liquid. The state described herein also shares a remarkable similarity to the distortion of the kagome lattice observed at low Zn concentrations in Zn-paratacamite and in recently grown single crystals of volborthite suggesting it may already be realized in these materials.

  1. Application of Al-Nb alloy film to metal capping layer on Cu

    NASA Astrophysics Data System (ADS)

    Takeyama, Mayumi B.; Noya, Atsushi

    2016-02-01

    An Al-Nb alloy film with the Al72Nb28 composition is applied as a candidate metal capping layer on Cu interconnects. In the Al72Nb28/Cu/SiO2/Si model system, the preferential oxidation of Al forming a thin surface Al2O3 layer occurs owing to oxidation in air for 1 h at temperatures up to ˜300 °C, resulting in the protection of the layers underneath from further oxidation, although a slight Cu intermixing into Al-Nb occurs. With increasing oxidation temperature up to 500 °C, the surface Al2O3 layer still grows by the preferential oxidation of Al and rejects Cu atoms from the surface oxidized layer. Although Nb atoms are left behind in the surface oxidized layer, they are in a metallic state owing to the high solubility of oxygen before forming an oxide. The extremely low solubility of Nb in Cu also protects Cu without excess intermixing. A good passivation characteristic of the Al72Nb28 alloy film on Cu is demonstrated.

  2. Intercalation of highly dispersed metal nanoclusters into a layered metal oxide for photocatalytic overall water splitting.

    PubMed

    Oshima, Takayoshi; Lu, Daling; Ishitani, Osamu; Maeda, Kazuhiko

    2015-02-23

    Metal nanoclusters (involving metals such as platinum) with a diameter smaller than 1 nm were deposited on the interlayer nanospace of KCa2 Nb3 O10 using the electrostatic attraction between a cationic metal complex (e.g., [Pt(NH3 )4 ]Cl2 ) and a negatively charged two-dimensional Ca2 Nb3 O10 (-) sheet, without the aid of any additional reagent. The material obtained possessed eight-fold greater photocatalytic activity for water splitting into H2 and O2 under band-gap irradiation than the previously reported analog using a RuO2 promoter. This study highlighted the superior functionality of Pt nanoclusters with diameters smaller than 1 nm for photocatalytic overall water splitting. This material shows the greatest efficiency among nanosheet-based photocatalysts reported to date.

  3. Transmission enhancement based on strong interference in metal-semiconductor layered film for energy harvesting.

    PubMed

    Li, Qiang; Du, Kaikai; Mao, Kening; Fang, Xu; Zhao, Ding; Ye, Hui; Qiu, Min

    2016-07-12

    A fundamental strategy to enhance optical transmission through a continuous metallic film based on strong interference dominated by interface phase shift is developed. In a metallic film coated with a thin semiconductor film, both transmission and absorption are simultaneously enhanced as a result of dramatically reduced reflection. For a 50-nm-thick Ag film, experimental transmission enhancement factors of 4.5 and 9.5 are realized by exploiting Ag/Si non-symmetric and Si/Ag/Si symmetric geometries, respectively. These planar layered films for transmission enhancement feature ultrathin thickness, broadband and wide-angle operation, and reduced resistance. Considering one of their potential applications as transparent metal electrodes in solar cells, a calculated 182% enhancement in the total transmission efficiency relative to a single metallic film is expected. This strategy relies on no patterned nanostructures and thereby may power up a wide spectrum of energy-harvesting applications such as thin-film photovoltaics and surface photocatalysis.

  4. Transmission enhancement based on strong interference in metal-semiconductor layered film for energy harvesting

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Du, Kaikai; Mao, Kening; Fang, Xu; Zhao, Ding; Ye, Hui; Qiu, Min

    2016-07-01

    A fundamental strategy to enhance optical transmission through a continuous metallic film based on strong interference dominated by interface phase shift is developed. In a metallic film coated with a thin semiconductor film, both transmission and absorption are simultaneously enhanced as a result of dramatically reduced reflection. For a 50-nm-thick Ag film, experimental transmission enhancement factors of 4.5 and 9.5 are realized by exploiting Ag/Si non-symmetric and Si/Ag/Si symmetric geometries, respectively. These planar layered films for transmission enhancement feature ultrathin thickness, broadband and wide-angle operation, and reduced resistance. Considering one of their potential applications as transparent metal electrodes in solar cells, a calculated 182% enhancement in the total transmission efficiency relative to a single metallic film is expected. This strategy relies on no patterned nanostructures and thereby may power up a wide spectrum of energy-harvesting applications such as thin-film photovoltaics and surface photocatalysis.

  5. Synthesizing new types of ultrathin 2D metal oxide nanosheets via half-successive ion layer adsorption and reaction

    NASA Astrophysics Data System (ADS)

    Gao, Linjie; Li, Yaguang; Xiao, Mu; Wang, Shufang; Fu, Guangsheng; Wang, Lianzhou

    2017-06-01

    Two-dimensional (2D) metal oxide nanosheets have demonstrated their great potential in a broad range of applications. The existing synthesis strategies are mainly preparing 2D nanosheets from layered and specific transition metal oxides. How to prepare the other types of metal oxides as ultrathin 2D nanosheets remains unsolved, especially for metal oxides containing alkali, alkaline earth metal, and multiple metal elements. Herein, we developed a half-successive ion layer adsorption and reaction (SILAR) method, which could synthesize those types of metal oxides as ultrathin 2D nanosheets. The synthesized 2D metal oxides nanosheets are within 1 nm level thickness and 500 m2 · g-1 level surface area. This method allows us to develop many new types of ultrathin 2D metal oxides nanosheets that have never been prepared before.

  6. High performance metal-supported solid oxide fuel cells with Gd-doped ceria barrier layers

    NASA Astrophysics Data System (ADS)

    Klemensø, Trine; Nielsen, Jimmi; Blennow, Peter; Persson, Åsa H.; Stegk, Tobias; Christensen, Bjarke Holl; Sønderby, Steffen

    Metal-supported solid oxide fuel cells are believed to have commercial advantages compared to conventional anode (Ni-YSZ) supported cells, with the metal-supported cells having lower material costs, increased tolerance to mechanical and thermal stresses, and lower operational temperatures. The implementation of a metallic support has been challenged by the need to revise the cell fabrication route, as well as electrode microstructures and material choices, to compete with the energy output and stability of full ceramic cells. The metal-supported SOFC design developed at Risø DTU has been improved, and an electrochemical performance beyond the state-of-the-art anode-supported SOFC is demonstrated possible, by introducing a CGO barrier layer in combination with Sr-doped lanthanum cobalt oxide (LSC) cathode. Area specific resistances (ASR) down to 0.27 Ω cm 2, corresponding to a maximum power density of 1.14 W cm -2 at 650 °C and 0.6 V, were obtained on cells with barrier layers fabricated by magnetron sputtering. The performance is dependent on the density of the barrier layer, indicating Sr 2+ diffusion is occurring at the intermediate SOFC temperatures. The optimized design further demonstrate improved durability with steady degradation rates of 0.9% kh -1 in cell voltage for up to 3000 h galvanostatic testing at 650 °C and 0.25 A cm -2.

  7. Reaction layer formation and fracture at chemically vapor deposited diamond/metal interfaces

    SciTech Connect

    Perry, S.S.; Somorjai, G.A. )

    1994-07-01

    Chemically vapor deposited (CVD) diamond films have been deposited by a microwave enhanced deposition process on metal substrates including titanium, tungsten, molybdenum, and copper. Boundary reaction layers formed at the interface during the growth of the CVD diamond films have been investigated for each of these systems. In these studies, the interface has been exposed by mechanically deforming the metal substrate to cause film delamination. Where the diamond film has adhered to the substrate through the growth process, delamination procedures have been carried out under controlled conditions in order to preserve the integrity of the interfacial species. The exposed interfaces were characterized by x-ray photoelectron spectroscopy, scanning Auger microscopy, secondary electron microscopy, and Raman microprobe spectroscopy. Reaction layers composed of carbides and oxides of the native metal were detected at the interfaces of titanium, tungsten, and molybdenum while only traces of carbon and oxygen were detected at the diamond/copper interface. We believe that both the chemical composition and morphology of the interface influence the adhesive properties of the diamond coating. Correlated investigations of the interfacial surfaces reveal that fracture of the diamond/metal interface occurs discretely at the diamond nucleation plane or within a reaction layer near the diamond interface.

  8. A silicon homojunction infrared detector having an active metal film on an n[sup ++] layer

    SciTech Connect

    Tohyama, Shigeru; Tanabe, Akihito; Teranishi, Nobukazu . Microelectronics Research Labs.)

    1994-09-01

    A silicon n[sup ++]pn homojunction infrared detector, in which a degenerate n[sup ++] layer is backed by a metal film forming an ohmic contact, has been proposed and studied. The metal film is a photoelectric conversion region along with then[sup ++] layer. Although, for an n[sup ++]pn detector without the metal film, very poor rectifying properties are observed when the n[sup ++] layer thickness is extremely reduced, the new detector, employing a thin PtSi film as the metal film, shows normal diode I-V characteristics, since the PtSi film provides increased surface conductivity. The new detector has achieved an increase in operable temperature, or an extension of cutoff wavelength, and operated with cutoff wavelengths of 11.9 [mu]m, 18.7 [mu]m and about 30 [mu]m at 70 K, 50 K, and 30 K, respectively, because the saturation current density for the new detector has been reduced to about one tenth that for the previously reported n[sup ++]pn detector. The responsivity for the new detector has increased to 1.1--3.8 times as large as that for the previously reported n[sup ++]pn detector, when both detectors have the same cutoff wavelength.

  9. Engineering damping in insulating magnet-metal bilayers using ultrathin spacer layers

    NASA Astrophysics Data System (ADS)

    Aradhya, Sriharsha V.; Jermain, Colin L.; Paik, Hanjong; Heron, John T.; Schlom, Darrell G.; Ralph, Daniel C.; Buhrman, Robert A.

    2015-03-01

    Insulating magnetic materials, particularly yttrium iron garnet (YIG), are of significant interest for fundamental research as well as technological applications. Thus far copper spacer layers of ~10 nm - 1 μm thickness sandwiched between YIG and heavy metal films have been shown to modulate the damping of the magnetic layer either higher or lower. We report on the effect of ultrathin nonmagnetic spacer layers on the damping of YIG with different heavy metal overlayers. We start with YIG films grown by oxide molecular beam epitaxy with thicknesses below 20 nm and Gilbert damping as low as 0.0005. We observe that a spacer layer can increase the damping by 50% in YIG/spacer/Ta samples compared to YIG/Ta, and the increase can be as large 500% for YIG/spacer/Pt compared to YIG/Pt. These observations suggest a significant increase in the effective spin mixing conductance at the YIG-heavy metal interface that might be used to improve the efficiency of the spin torque produced by the spin Hall effect.

  10. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide

    SciTech Connect

    Zhao, Zhao; Zhang, Haijun; Yuan, Hongtao; Wang, Shibing; Lin, Yu; Zeng, Qiaoshi; Xu, Gang; Liu, Zhenxian; Solanki, G. K.; Patel, K. D.; Cui, Yi; Hwang, Harold Y.; Mao, Wendy L.

    2015-06-19

    Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from the pristine states. Here, we systematically investigated the pressurized behavior of MoSe2 up to ~60 GPa using multiple experimental techniques and ab-initio calculations. MoSe2 evolves from an anisotropic two-dimensional layered network to a three-dimensional structure without a structural transition, which is a complete contrast to MoS2. The role of the chalcogenide anions in stabilizing different layered patterns is underscored by our layer sliding calculations. MoSe2 possesses highly tunable transport properties under pressure, determined by the gradual narrowing of its band-gap followed by metallization. The continuous tuning of its electronic structure and band-gap in the range of visible light to infrared suggest possible energy-variable optoelectronics applications in pressurized transition-metal dichalcogenides.

  11. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide

    DOE PAGES

    Zhao, Zhao; Zhang, Haijun; Yuan, Hongtao; ...

    2015-06-19

    Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from the pristine states. Here, we systematically investigated the pressurized behavior of MoSe2 up to ~60 GPa using multiple experimental techniques and ab-initio calculations. MoSe2 evolves from an anisotropic two-dimensional layered network to a three-dimensional structure without a structural transition, which is a complete contrast to MoS2. The role of the chalcogenide anions in stabilizing different layered patterns is underscored by our layer sliding calculations. MoSe2 possesses highly tunablemore » transport properties under pressure, determined by the gradual narrowing of its band-gap followed by metallization. The continuous tuning of its electronic structure and band-gap in the range of visible light to infrared suggest possible energy-variable optoelectronics applications in pressurized transition-metal dichalcogenides.« less

  12. Compressed few-layer black phosphorus nanosheets from semiconducting to metallic transition with the highest symmetry.

    PubMed

    Xiao, Guanjun; Cao, Ye; Qi, Guangyu; Wang, Lingrui; Zeng, Qingxin; Liu, Chuang; Ma, Zhiwei; Wang, Kai; Yang, Xinyi; Sui, Yongming; Zheng, Weitao; Zou, Bo

    2017-08-03

    The high-pressure response of few-layer black phosphorus (BP) nanosheets remains elusive, despite the special interest in it particularly after the achievement of an exotic few-layer BP based field effect transistor. Here, we identified a pressure-induced reversible phase transition on few-layer BP nanosheets by performing in situ ADXRD and Raman spectroscopy with the assistance of DAC apparatus. The few-layer BP nanosheets transformed from orthorhombic semiconductors to simple cubic metal with increasing pressure, which is well interpreted using the pressure-induced inverse Peierls distortion. The obtained simple cubic BP nanosheets exhibited an enhanced isothermal bulk modulus of 147.0(2) GPa, and negative Grüneisen parameters that were attributed to the pressure-driven softening of phonon energies. Note that the simple cubic BP nanosheets adopted the highest symmetry which is in stark contrast to the general phase transformation under high pressure. First-principles calculations indicated that the metallic BP was significantly related to the band overlapped metallization, resulting from the traversing of density of states across the Fermi level at high pressure. Such findings paved a potential pathway to design targeted BP nanostructures with functional properties at extremes, and opened up possibilities for conceptually new devices.

  13. Exchange coupling in metallic multilayers with a top FeRh layer

    NASA Astrophysics Data System (ADS)

    Yamada, S.; Tanikawa, K.; Hirayama, J.; Kanashima, T.; Taniyama, T.; Hamaya, K.

    2016-05-01

    We study magnetic properties of metallic multilayers with FeRh/ferromagnet interfaces grown by low-temperature molecular beam epitaxy. Room-temperature coercivity of the ferromagnetic layers is significantly enhanced after the growth of FeRh, proving the existence of the exchange coupling between the antiferromagnetic FeRh layer and the ferromagnetic layer. However, exchange bias is not clearly observed probably due to the presence of disordered structures, which result from the lattice strain at the FeRh/ferromagnet interfaces due to the lattice mismatch. We infer that the lattice matched interface between FeRh and ferromagnetic layers is a key parameter for controlling magnetic switching fields in such multilayer systems.

  14. Exchange coupling in metallic multilayers with a top FeRh layer

    SciTech Connect

    Yamada, S. Kanashima, T.; Hamaya, K.; Tanikawa, K.; Hirayama, J.; Taniyama, T.

    2016-05-15

    We study magnetic properties of metallic multilayers with FeRh/ferromagnet interfaces grown by low-temperature molecular beam epitaxy. Room-temperature coercivity of the ferromagnetic layers is significantly enhanced after the growth of FeRh, proving the existence of the exchange coupling between the antiferromagnetic FeRh layer and the ferromagnetic layer. However, exchange bias is not clearly observed probably due to the presence of disordered structures, which result from the lattice strain at the FeRh/ferromagnet interfaces due to the lattice mismatch. We infer that the lattice matched interface between FeRh and ferromagnetic layers is a key parameter for controlling magnetic switching fields in such multilayer systems.

  15. Enablement of DSA for VIA layer with a metal SIT process flow

    NASA Astrophysics Data System (ADS)

    Schneider, L.; Farys, V.; Serret, E.; Fenouillet-Beranger, C.

    2016-03-01

    For technologies beyond 10 nm, 1D gridded designs are commonly used. This practice is common particularly in the case of Self-Aligned Double Patterning (SADP) metal processes where Vertical Interconnect Access (VIA) connecting metal line layers are placed along a discrete grid thus limiting the number of VIA pitches. In order to create a Vertical Interconnect Access (VIA) layer, graphoepitaxy Directed Self-Assembly (DSA) is the prevailing candidate. The technique relies on the creation of a confinement guide using optical microlithography methods, in which the BCP is allowed to separate into distinct regions. The resulting patterns are etched to obtain an ordered VIA layer. Guiding pattern variations impact directly on the placement of the target and one must ensure that it does not interfere with circuit performance. To prevent flaws, design rules are set. In this study, for the first time, an original framework is presented to find a consistent set of design rules for enabling the use of DSA in a production flow using Self Aligned Double Patterning (SADP) for metal line layer printing. In order to meet electrical requirements, the intersecting area between VIA and metal lines must be sufficient to ensure correct electrical connection. The intersecting area is driven by both VIA placement variability and metal line printing variability. Based on multiple process assumptions for a 10 nm node, the Monte Carlo method is used to set a maximum threshold for VIA placement error. In addition, to determine a consistent set of design rules, representative test structures have been created and tested with our in-house placement estimator: the topological skeleton of the guiding pattern [1]. Using this technique, structures with deviation above the maximum tolerated threshold are considered as infeasible and the appropriate set of design rules is extracted. In a final step, the design rules are verified with further test structures that are randomly generated using

  16. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet

    DOE PAGES

    Fu, Mingxuan; Imai, Takahashi; Han, Tian -Heng; ...

    2015-11-06

    Here, the kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu3(OH)6Cl2], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility χkagome, deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction. Combined with themore » magnetic field dependence of χkagome that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.« less

  17. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet.

    PubMed

    Fu, Mingxuan; Imai, Takashi; Han, Tian-Heng; Lee, Young S

    2015-11-06

    The kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu3(OH)6Cl2], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility χ(kagome), deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction. Combined with the magnetic field dependence of χ(kagome) that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.

  18. Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: highly active visible light photocatalysts with improved chemical stability.

    PubMed

    Gunjakar, Jayavant L; Kim, Tae Woo; Kim, Hyo Na; Kim, In Young; Hwang, Seong-Ju

    2011-09-28

    Mesoporous layer-by-layer ordered nanohybrids highly active for visible light-induced O(2) generation are synthesized by self-assembly between oppositely charged 2D nanosheets of Zn-Cr-layered double hydroxide (Zn-Cr-LDH) and layered titanium oxide. The layer-by-layer ordering of two kinds of 2D nanosheets is evidenced by powder X-ray diffraction and cross-sectional high resolution-transmission electron microscopy. Upon the interstratification process, the original in-plane atomic arrangements and electronic structures of the component nanosheets remain intact. The obtained heterolayered nanohybrids show a strong absorption of visible light and a remarkably depressed photoluminescence signal, indicating an effective electronic coupling between the two component nanosheets. The self-assembly between 2D inorganic nanosheets leads to the formation of highly porous stacking structure, whose porosity is controllable by changing the ratio of layered titanate/Zn-Cr-LDH. The resultant heterolayered nanohybrids are fairly active for visible light-induced O(2) generation with a rate of ∼1.18 mmol h(-1) g(-1), which is higher than the O(2) production rate (∼0.67 mmol h(-1) g(-1)) by the pristine Zn-Cr-LDH material, that is, one of the most effective visible light photocatalysts for O(2) production, under the same experimental condition. This result highlights an excellent functionality of the Zn-Cr-LDH-layered titanate nanohybrids as efficient visible light active photocatalysts. Of prime interest is that the chemical stability of the Zn-Cr-LDH is significantly improved upon the hybridization, a result of the protection of the LDH lattice by highly stable titanate layer. The present findings clearly demonstrate that the layer-by-layer-ordered assembly between inorganic 2D nanosheets is quite effective not only in improving the photocatalytic activity of the component semiconductors but also in synthesizing novel porous LDH-based hybrid materials with improved chemical

  19. Exclusion of metal oxide by an RF sputtered Ti layer in flexible perovskite solar cells: energetic interface between a Ti layer and an organic charge transporting layer.

    PubMed

    Ameen, Sadia; Akhtar, M Shaheer; Seo, Hyung-Kee; Nazeeruddin, Mohammad Khaja; Shin, Hyung-Shik

    2015-04-14

    In this work, the effects of a titanium (Ti) layer on the charge transport and recombination rates of flexible perovskite solar cells were studied. Ti as an efficient barrier layer was deposited directly on PET-ITO flexible substrates through RF magnetic sputtering using a Ti-source and a pressure of ∼5 mTorr. A Ti coated PET-ITO was used for the fabrication of a flexible perovskite solar cell without using any metal oxide layer. The fabricated flexible perovskite solar cell was composed of a PET-ITO/Ti/perovskite (CH3NH3PbI3)/organic hole transport layer of 2,2',7,7'-tetrakis [N,N'-di-p-methoxyphenylamine]-9,9'-spirobifluorene (spiro-OMeTAD)-Li-TFSI/Ag. A high conversion efficiency of ∼8.39% along with a high short circuit current (JSC) of ∼15.24 mA cm(-2), an open circuit voltage (VOC) of ∼0.830 V and a high fill factor (FF) of ∼0.66 was accomplished by the fabricated flexible perovskite solar cell under a light illumination of ∼100 mW cm(-2) (1.5 AM). Intensity-modulated photocurrent (IMPS)/photovoltage spectroscopy (IMVS) studies demonstrated that the fabricated flexible perovskite solar cell considerably reduced the recombination rate.

  20. Micro-layers of polystyrene film preventing metal oxidation: implications in cultural heritage conservation

    NASA Astrophysics Data System (ADS)

    Giambi, Francesca; Carretti, Emiliano; Dei, Luigi; Baglioni, Piero

    2014-12-01

    Protection of surfaces directly exposed to the detrimental action of degradative agents (i.e. oxygen, air pollutants and bacteria) is one of the most important challenges in the field of conservation of works of art. Metallic objects are subjected to specific surface corrosion phenomena that, over the years, make mandatory the research of innovative materials that should avoid the direct contact between the metal surface and the weathering agents. In this paper, the set-up, characterisation and application of a new reversible material for preserving metal artefacts are reported. Micro-layers constituted of low-adhesive polystyrene (PS) films obtained from recycling waste packaging materials made of expanded PS were studied. The morphology and thickness of PS films were characterised by optical, atomic force and scanning electron microscopy (SEM). A further check on thickness was carried out by means of visible spectrophotometry doping the films with a hydrophobic dye. Thermal properties of the PS micro-layers were studied by means of differential scanning calorimetry coupled with optical microscopy. Permeability of the PS films to water vapour was also determined. The potential of the low-adhesive PS films, that enabled an easy removal in case of film deterioration, for preventing metal oxidation was investigated on brass specimens by simulating standard artificial corrosion programmes. Morphological and chemical (coupling the energy-dispersive X-rays spectrometry to SEM measurements) analyses carried out on these metal samples showed promising results in terms of surface protection against corrosion.

  1. Homogeneous cationic substitution for two-dimensional layered metal oxide nanosheets via a galvanic exchange reaction.

    PubMed

    Lim, Joohyun; Lee, Jang Mee; Park, Boyeon; Jin, Xiaoyan; Hwang, Seong-Ju

    2017-01-05

    The galvanic exchange reaction of an exfoliated 2D layered metal oxide nanosheet (NS) with excess substituent metal cations enables the synthesis of a mixed metal oxide 2D NS with controllable cation compositions and physicochemical properties. The reaction of the exfoliated MnO2 NS with Fe(2+) or Sn(2+) ions at 90 °C induces the uniform galvanic replacement of Mn ions with these substituent ions, whereas the same reaction at 25 °C results in the intercalative restacking of the negatively-charged MnO2 NS with Fe(2+) or Sn(2+) cations. Upon the galvanic exchange reaction, the highly anisotropic MnO2 2D NS retains its original 2D morphology and layered structure, which is in stark contrast to 0D nanoparticles yielding hollow nanospheres via the galvanic exchange reaction. This observation is attributable to the thin thickness of the 2D NS allowing the simultaneous replacement of all the component surface-exposed metal ions. The resulting substitution of the MnO2 NS with Fe and Sn ions remarkably improves the electrode performance of the carbon-coated derivatives of the MnO2 NS for lithium ion batteries. The present study clearly demonstrates that the galvanic exchange reaction can provide an efficient method not only to tailor cation compositions but also to improve the functionalities of 2D metal oxide NSs and their carbon-coated derivatives.

  2. Optical properties of surface layers of Co-based amorphous metallic alloys

    NASA Astrophysics Data System (ADS)

    Poperenko, L. V.; Kravets, V. G.; Lysenko, S. I.; Vinnichenko, K. L.

    2005-04-01

    The modification of roughness and structure of the surface layers of a cobalt-based amorphous metal alloy after thermal treatment at elevated and cryogenic temperatures and under the influence of an external magnetic field is studied by light scattering and atomic force microscopy. The parameters of the surface roughness were calculated from the measured indicatrices of light scattering. It is shown that heating of the metal ribbons to T=350-475 °C partially relieves stresses arising in the course of the ribbon preparation and increases the surface roughness compared to freshly prepared samples.

  3. Performance limits of tunnel transistors based on mono-layer transition-metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Jiang, Xiang-Wei; Li, Shu-Shen

    2014-05-01

    Performance limits of tunnel field-effect transistors based on mono-layer transition metal dichalcogenides are investigated through numerical quantum mechanical simulations. The atomic mono-layer nature of the devices results in a much smaller natural length λ, leading to much larger electric field inside the tunneling diodes. As a result, the inter-band tunneling currents are found to be very high as long as ultra-thin high-k gate dielectric is possible. The highest on-state driving current is found to be close to 600 μA/μm at Vg = Vd = 0.5 V when 2 nm thin HfO2 layer is used for gate dielectric, outperforming most of the conventional semiconductor tunnel transistors. In the five simulated transition-metal dichalcogenides, mono-layer WSe2 based tunnel field-effect transistor shows the best potential. Deep analysis reveals that there is plenty room to further enhance the device performance by either geometry, alloy, or strain engineering on these mono-layer materials.

  4. Diffusion barrier performance of novel Ti/TaN double layers for Cu metallization

    NASA Astrophysics Data System (ADS)

    Zhou, Y. M.; He, M. Z.; Xie, Z.

    2014-10-01

    Novel Ti/TaN double layers offering good stability as a barrier against Cu metallization have been made achievable by annealing in vacuum better than 1 × 10-3 Pa. Ti/TaN double layers were formed on SiO2/Si substrates by DC magnetron sputtering and then the properties of Cu/Ti/TaN/SiO2/Si film stacks were studied. It was found that the Ti/TaN double layers provide good diffusion barrier between Cu and SiO2/Si up to 750 °C for 30 min. The XRD, Auger and EDS results show that the Cu-Si compounds like Cu3Si were formed by Cu diffusion through Ti/TaN barrier for the 800 °C annealed samples. It seems that the improved diffusion barrier property of Cu/Ti/TaN/SiO2/Si stack is due to the diffusion of nitrogen along the grain boundaries in Ti layer, which would decrease the defects in Ti film and block the diffusion path for Cu diffusion with increasing annealing temperature. The failure mechanism of Ti/TaN bi-layer is similar to the Cu/TaN/Si metallization system in which Cu atoms diffuse through the grain boundary of barrier and react with silicon to form Cu3Si.

  5. Parametric studies to determine the effect of compliant layers on metal matrix composite systems

    NASA Technical Reports Server (NTRS)

    Caruso, J. J.; Chamis, C. C.; Brown, H. C.

    1990-01-01

    Computational simulation studies are conducted to identify compliant layers to reduce matrix stresses which result from the coefficient of thermal expansion mismatch and the large temperature range over which the current metal matrix composites will be used. The present study includes variations of compliant layers and their properties to determine their influence on unidirectional composite and constituent response. Two simulation methods are used for these studies. The first approach is based on a three-dimensional linear finite element analysis of a 9 fiber unidirectional composite system. The second approach is a micromechanics based nonlinear computer code developed to determine the behavior of metal matrix composite system for thermal and mechanical loads. The results show that an effective compliant layer for the SCS 6 (SiC)/Ti-24Al-11Nb (Ti3Al + Nb) and SCS 6 (SiC)/Ti-15V-3Cr-3Sn-3Al (Ti-15-3) composite systems should have modulus 15 percent that of the matrix and a coefficient of thermal expansion of the compliant layer roughly equal to that of the composite system without the CL. The matrix stress in the longitudinal and the transverse tangent (loop) direction are tensile for the Ti3Al + Nb and Ti-15-3 composite systems upon cool down from fabrication. The fiber longitudinal stress is compressive from fabrication cool down. Addition of a recommended compliant layer will result in a reduction in the composite modulus.

  6. Metal-gate-induced reduction of the interfacial layer in Hf oxide gate stacks

    SciTech Connect

    Goncharova, L. V.; Dalponte, M.; Gustafsson, T.; Celik, O.; Garfunkel, E.; Lysaght, P. S.; Bersuker, G.

    2007-03-15

    The properties of high-{kappa} metal oxide gate stacks are often determined in the final processing steps following dielectric deposition. We report here results from medium energy ion scattering and x-ray photoelectron spectroscopy studies of oxygen and silicon diffusion and interfacial layer reactions in multilayer gate stacks. Our results show that Ti metallization of HfO{sub 2}/SiO{sub 2}/Si stacks reduces the SiO{sub 2} interlayer and (to a more limited extent) the HfO{sub 2} layer. We find that Si atoms initially present in the interfacial SiO{sub 2} layer incorporate into the bottom of the high-{kappa} layer. Some evidence for Ti-Si interdiffusion through the high-{kappa} film in the presence of a Ti gate in the crystalline HfO{sub 2} films is also reported. This diffusion is likely to be related to defects in crystalline HfO{sub 2} films, such as grain boundaries. High-resolution transmission electron microscopy and corresponding electron energy loss spectroscopy scans show aggressive Ti-Si intermixing and oxygen diffusion to the outermost Ti layer, given high enough annealing temperature. Thermodynamic calculations show that the driving forces exist for some of the observed diffusion processes.

  7. Performance limits of tunnel transistors based on mono-layer transition-metal dichalcogenides

    SciTech Connect

    Jiang, Xiang-Wei Li, Shu-Shen

    2014-05-12

    Performance limits of tunnel field-effect transistors based on mono-layer transition metal dichalcogenides are investigated through numerical quantum mechanical simulations. The atomic mono-layer nature of the devices results in a much smaller natural length λ, leading to much larger electric field inside the tunneling diodes. As a result, the inter-band tunneling currents are found to be very high as long as ultra-thin high-k gate dielectric is possible. The highest on-state driving current is found to be close to 600 μA/μm at V{sub g} = V{sub d} = 0.5 V when 2 nm thin HfO{sub 2} layer is used for gate dielectric, outperforming most of the conventional semiconductor tunnel transistors. In the five simulated transition-metal dichalcogenides, mono-layer WSe{sub 2} based tunnel field-effect transistor shows the best potential. Deep analysis reveals that there is plenty room to further enhance the device performance by either geometry, alloy, or strain engineering on these mono-layer materials.

  8. Effects of fiber and interfacial layer architectures on the thermoplastic response of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Freed, Alan D.; Arnold, Steven M.

    1992-01-01

    Examined here is the effect of fiber and interfacial layer morphologies on thermal fields in metal matrix composites (MMCs). A micromechanics model based on an arbitrarily layered concentric cylinder configuration is used to calculate thermal stress fields in MMCs subjected to spatially uniform temperature changes. The fiber is modelled as a layered material with isotropic or orthotropic elastic layers, whereas the surrounding matrix, including interfacial layers, is treated as a strain-hardening, elastoplastic, von Mises solid with temperature-dependent parameters. The solution to the boundary-value problem of an arbitrarily layered concentric cylinder under the prescribed thermal loading is obtained using the local/global stiffness matrix formulation originally developed for stress analysis of multilayered elastic media. Examples are provided that illustrate how the morphology of the SCS6 silicon carbide fiber and the use of multiple compliant layers at the fiber/matrix interface affect the evolution of residual stresses in SiC/Ti composites during fabrication cool-down.

  9. Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures

    PubMed Central

    Peng, Shouzhong; Wang, Mengxing; Yang, Hongxin; Zeng, Lang; Nan, Jiang; Zhou, Jiaqi; Zhang, Youguang; Hallal, Ali; Chshiev, Mairbek; Wang, Kang L.; Zhang, Qianfan; Zhao, Weisheng

    2015-01-01

    Spin-transfer-torque magnetic random access memory (STT-MRAM) attracts extensive attentions due to its non-volatility, high density and low power consumption. The core device in STT-MRAM is CoFeB/MgO-based magnetic tunnel junction (MTJ), which possesses a high tunnel magnetoresistance ratio as well as a large value of perpendicular magnetic anisotropy (PMA). It has been experimentally proven that a capping layer coating on CoFeB layer is essential to obtain a strong PMA. However, the physical mechanism of such effect remains unclear. In this paper, we investigate the origin of the PMA in MgO/CoFe/metallic capping layer structures by using a first-principles computation scheme. The trend of PMA variation with different capping materials agrees well with experimental results. We find that interfacial PMA in the three-layer structures comes from both the MgO/CoFe and CoFe/capping layer interfaces, which can be analyzed separately. Furthermore, the PMAs in the CoFe/capping layer interfaces are analyzed through resolving the magnetic anisotropy energy by layer and orbital. The variation of PMA with different capping materials is attributed to the different hybridizations of both d and p orbitals via spin-orbit coupling. This work can significantly benefit the research and development of nanoscale STT-MRAM. PMID:26656721

  10. Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures.

    PubMed

    Peng, Shouzhong; Wang, Mengxing; Yang, Hongxin; Zeng, Lang; Nan, Jiang; Zhou, Jiaqi; Zhang, Youguang; Hallal, Ali; Chshiev, Mairbek; Wang, Kang L; Zhang, Qianfan; Zhao, Weisheng

    2015-12-11

    Spin-transfer-torque magnetic random access memory (STT-MRAM) attracts extensive attentions due to its non-volatility, high density and low power consumption. The core device in STT-MRAM is CoFeB/MgO-based magnetic tunnel junction (MTJ), which possesses a high tunnel magnetoresistance ratio as well as a large value of perpendicular magnetic anisotropy (PMA). It has been experimentally proven that a capping layer coating on CoFeB layer is essential to obtain a strong PMA. However, the physical mechanism of such effect remains unclear. In this paper, we investigate the origin of the PMA in MgO/CoFe/metallic capping layer structures by using a first-principles computation scheme. The trend of PMA variation with different capping materials agrees well with experimental results. We find that interfacial PMA in the three-layer structures comes from both the MgO/CoFe and CoFe/capping layer interfaces, which can be analyzed separately. Furthermore, the PMAs in the CoFe/capping layer interfaces are analyzed through resolving the magnetic anisotropy energy by layer and orbital. The variation of PMA with different capping materials is attributed to the different hybridizations of both d and p orbitals via spin-orbit coupling. This work can significantly benefit the research and development of nanoscale STT-MRAM.

  11. Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures

    NASA Astrophysics Data System (ADS)

    Peng, Shouzhong; Wang, Mengxing; Yang, Hongxin; Zeng, Lang; Nan, Jiang; Zhou, Jiaqi; Zhang, Youguang; Hallal, Ali; Chshiev, Mairbek; Wang, Kang L.; Zhang, Qianfan; Zhao, Weisheng

    2015-12-01

    Spin-transfer-torque magnetic random access memory (STT-MRAM) attracts extensive attentions due to its non-volatility, high density and low power consumption. The core device in STT-MRAM is CoFeB/MgO-based magnetic tunnel junction (MTJ), which possesses a high tunnel magnetoresistance ratio as well as a large value of perpendicular magnetic anisotropy (PMA). It has been experimentally proven that a capping layer coating on CoFeB layer is essential to obtain a strong PMA. However, the physical mechanism of such effect remains unclear. In this paper, we investigate the origin of the PMA in MgO/CoFe/metallic capping layer structures by using a first-principles computation scheme. The trend of PMA variation with different capping materials agrees well with experimental results. We find that interfacial PMA in the three-layer structures comes from both the MgO/CoFe and CoFe/capping layer interfaces, which can be analyzed separately. Furthermore, the PMAs in the CoFe/capping layer interfaces are analyzed through resolving the magnetic anisotropy energy by layer and orbital. The variation of PMA with different capping materials is attributed to the different hybridizations of both d and p orbitals via spin-orbit coupling. This work can significantly benefit the research and development of nanoscale STT-MRAM.

  12. Synthesis and Characterization of Layered Double Hydroxides Containing Optically Active Transition Metal Ion

    NASA Astrophysics Data System (ADS)

    Tyagi, S. B.; Kharkwal, Aneeta; Nitu; Kharkwal, Mamta; Sharma, Raghunandan

    2017-01-01

    The acetate intercalated layered double hydroxides of Zn and Mn, have been synthesized by chimie douce method. The materials were characterized by XRD, TGA, CHN, IR, XPS, SEM-EDX and UV-visible spectroscopy. The photoluminescence properties was also studied. The optical properties of layered hydroxides are active transition metal ion dependent, particularly d1-10 system plays an important role. Simultaneously the role of host - guest orientation has been considered the basis of photoluminescence. Acetate ion can be exchanged with iodide and sulphate ions. The decomposed product resulted the pure phase Mn doped zinc oxide are also reported.

  13. Metal Surface Modification for Obtaining Nano- and Sub-Nanostructured Protective Layers

    NASA Astrophysics Data System (ADS)

    Ledovskykh, Volodymyr; Vyshnevska, Yuliya; Brazhnyk, Igor; Levchenko, Sergiy

    2017-03-01

    Regularities of the phase protective layer formation in multicomponent systems involving inhibitors with different mechanism of protective action have been investigated. It was shown that optimization of the composition of the inhibition mixture allows to obtain higher protective efficiency owing to improved microstructure of the phase layer. It was found that mechanism of the film formation in the presence of NaNO2-PHMG is due to deposition of slightly soluble PHMG-Fe complexes on the metal surface. On the basis of the proposed mechanism, the advanced surface engineering methods for obtaining nanoscaled and sub-nanostructured functional coatings may be developed.

  14. Strain-induced semiconductor to metal transition in few-layer black phosphorus from first principles

    NASA Astrophysics Data System (ADS)

    Ju, Weiwei; Li, Tongwei; Wang, Hui; Yong, Yongliang; Sun, Jinfeng

    2015-02-01

    Electronic structures of few-layer black phosphorus (BP) with biaxial strain are investigated by using methods based on density functional theory. The compressive strain can result in a semiconductor-metal transition (SMT) for few-layer BP, whereas the tensile strain only affects the band gaps. The critical compressive strain for the SMT is larger in the thinner 2D BP. The band structures and charge densities are calculated in order to provide imperative understanding on SMT. With the compressive strain, the energy of conduction bands moves down, which is induced by the structural change and is essential reason of SMT.

  15. Enhanced Magnetoelectric Coupling in Layered Structure of Piezoelectric Bimorph and Metallic Alloy

    NASA Astrophysics Data System (ADS)

    Petrov, V. M.; Bichurin, M. I.; Lavrentyeva, K. V.; Leontiev, V. S.

    2016-08-01

    We have investigated the enhanced magnetoelectric (ME) coupling in a layered structure of piezoelectric bimorph and magnetostrictive metallic alloy. The observed ME coefficient in the piezoelectric bimorph-based structure was found to be two times higher than in the traditional piezoelectric/magnetostrictive bilayer. The observed enhancement in ME coupling strength is related to equal signs of induced voltage in both lead zirconate titanate layers with opposite poling directions due to the flexural deformations. The piezoelectric bimorph-based structure has promising potential for sensor and technological applications.

  16. Metal Surface Modification for Obtaining Nano- and Sub-Nanostructured Protective Layers.

    PubMed

    Ledovskykh, Volodymyr; Vyshnevska, Yuliya; Brazhnyk, Igor; Levchenko, Sergiy

    2017-12-01

    Regularities of the phase protective layer formation in multicomponent systems involving inhibitors with different mechanism of protective action have been investigated. It was shown that optimization of the composition of the inhibition mixture allows to obtain higher protective efficiency owing to improved microstructure of the phase layer. It was found that mechanism of the film formation in the presence of NaNO2-PHMG is due to deposition of slightly soluble PHMG-Fe complexes on the metal surface. On the basis of the proposed mechanism, the advanced surface engineering methods for obtaining nanoscaled and sub-nanostructured functional coatings may be developed.

  17. A metal-semiconductor-metal detector based on ZnO nanowires grown on a graphene layer

    NASA Astrophysics Data System (ADS)

    Xu, Qiang; Cheng, Qijin; Zhong, Jinxiang; Cai, Weiwei; Zhang, Zifeng; Wu, Zhengyun; Zhang, Fengyan

    2014-02-01

    High quality ZnO nanowires (NWs) were grown on a graphene layer by a hydrothermal method. The ZnO NWs revealed higher uniform surface morphology and better structural properties than ZnO NWs grown on SiO2/Si substrate. A low dark current metal-semiconductor-metal photodetector based on ZnO NWs with Au Schottky contact has also been fabricated. The photodetector displays a low dark current of 1.53 nA at 1 V bias and a large UV-to-visible rejection ratio (up to four orders), which are significantly improved compared to conventional ZnO NW photodetectors. The improvement in UV detection performance is attributed to the existence of a surface plasmon at the interface of the ZnO and the graphene.

  18. A metal-semiconductor-metal detector based on ZnO nanowires grown on a graphene layer.

    PubMed

    Xu, Qiang; Cheng, Qijin; Zhong, Jinxiang; Cai, Weiwei; Zhang, Zifeng; Wu, Zhengyun; Zhang, Fengyan

    2014-02-07

    High quality ZnO nanowires (NWs) were grown on a graphene layer by a hydrothermal method. The ZnO NWs revealed higher uniform surface morphology and better structural properties than ZnO NWs grown on SiO2/Si substrate. A low dark current metal-semiconductor-metal photodetector based on ZnO NWs with Au Schottky contact has also been fabricated. The photodetector displays a low dark current of 1.53 nA at 1 V bias and a large UV-to-visible rejection ratio (up to four orders), which are significantly improved compared to conventional ZnO NW photodetectors. The improvement in UV detection performance is attributed to the existence of a surface plasmon at the interface of the ZnO and the graphene.

  19. Frustration and Dzyaloshinsky-Moriya anisotropy in the kagome francisites Cu3Bi (SeO3)2 O2X (X = Br , Cl )

    NASA Astrophysics Data System (ADS)

    Rousochatzakis, Ioannis; Richter, Johannes; Zinke, Ronald; Tsirlin, Alexander A.

    2015-01-01

    We investigate the antiferromagnetic canting instability of the spin-1/2 kagome ferromagnet, as realized in the layered cuprates Cu3Bi (SeO3)2 O2X (X = Br , Cl ). While the local canting can be explained in terms of competing exchange interactions, the direction of the ferrimagnetic order parameter fluctuates strongly even at short distances on account of frustration which gives rise to an infinite ground state degeneracy at the classical level. In analogy with the kagome antiferromagnet, the accidental degeneracy is fully lifted only by nonlinear 1 /S corrections, rendering the selected uniform canted phase very fragile even for spins-1/2, as shown explicitly by coupled-cluster calculations. To account for the observed ordering, we show that the minimal description of these systems must include the microscopic Dzyaloshinsky-Moriya interactions, which we obtain from density-functional band-structure calculations. The model explains all qualitative properties of the kagome francisites, including the detailed nature of the ground state and the anisotropic response under a magnetic field. The predicted magnon excitation spectrum and quantitative features of the magnetization process call for further experimental investigations of these compounds.

  20. Structure change, layer sliding, and metallization in high-pressure MoS2

    NASA Astrophysics Data System (ADS)

    Tosatti, Erio; Hromadova, Liliana; Martonak, Roman

    2013-03-01

    Based on ab initio calculations and metadynamics simulations, we predict that 2H-MoS2, a layered insulator, will metallize under pressures in excess of 20-30 GPa. In the same pressure range, simulations and enthalpy optimization predict a structural transition. Reminiscent of this material's frictional properties, free mutual sliding of layers takes place at this transition, where the original 2Hc stacking changes to a 2Ha stacking typical of 2H-NbSe2, a transformation which explains for the first time previously mysterious X-ray diffraction data. Phonon and electron phonon calculations suggest that metallic pristine MoS2 will require ultrahigh pressures in order to develop superconductivity. Supported by EU-Japan Project LEMSUPER, by a SNF Sinergia Project, and by the Slovak Research and Development Agency

  1. New layered metal oxides as positive electrode materials for room-temperature sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mu, Lin-Qin; Hu, Yong-Sheng; Chen, Li-Quan

    2015-03-01

    In order to achieve better Na storage performance, most layered oxide positive electrode materials contain toxic and expensive transition metals Ni and/or Co, which are also widely used for lithium-ion batteries. Here we report a new quaternary layered oxide consisting of Cu, Fe, Mn, and Ti transition metals with O3-type oxygen stacking as a positive electrode for room-temperature sodium-ion batteries. The material can be simply prepared by a high-temperature solid-state reaction route and delivers a reversible capacity of 94 mAh/g with an average storage voltage of 3.2 V. This paves the way for cheaper and non-toxic batteries with high Na storage performance. Project supported by the National Natural Science Foundation of China (Grant Nos. 51222210 and 11234013) and the One Hundred Talent Project of the Chinese Academy of Sciences.

  2. Anisotropy in the optical properties of bulk and layered transition metal dichalcogenide ReS2

    NASA Astrophysics Data System (ADS)

    Das, Suvadip; Pradhan, Nihar; Garcia, Carlos; Rhodes, Daniel; McGill, Stephen; Balicas, Luis; Manousakis, Efstratios

    Unlike most transition metal dichalcogenides, ReS2 in the distorted 1T' phase, is a direct gap semiconductor. We measured the temperature dependent photoluminescence in both bulk and layered ReS2 and examined the evolution of the peaks with the number of layers. We obtained strong signatures of optical anisotropy in the absorption spectroscopy and photocurrent response which makes this material a potential candidate for optoelectronic applications. Many body calculations including electron-hole interactions as implemented in the GW+BSE approach, agrees with the strong anisotropy in the optical properties of bulk and monolayer ReS2. A shift in the excitonic peaks by about 0.8 eV introduced by solving the Bethe-Salpeter equation indicates strong contribution from excitonic bound states in this transition metal dichalcogenide.

  3. Electronic and optical properties of monolayer and few-layer of distorted transition-metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Darancet, Pierre; Millis, Andrew J.; Marianetti, Chris A.

    2014-03-01

    Groups IV, V, and VI- transition-metal dichalcogenides (TMDC) are layered compounds exhibiting a wealth of competing phenomena, ranging from charge density waves (CDW) to Mott transitions. We present investigations using density functional theory (DFT) and DFT+U regarding the electronic structure and electronic correlations arising in distorted tantalum disulfide (TaS2). We show that the monolayer material is a Mott insulator while the bulk is a metal, in contradiction with much of the existing literature, which argues that the bulk material is a Mott insulator. Properties of the few layer system will also be presented.Finally, we will discuss the influence of these competing energy scales on the transport and optical properties of these materials. This work is funded by NSF under contract DMR-1122594. Computation time is provided by NERSC and NY Blue Gene.

  4. Photo-modulation of the spin Hall conductivity of mono-layer transition metal dichalcogenides

    SciTech Connect

    Sengupta, Parijat; Bellotti, Enrico

    2016-05-23

    We report on a possible optical tuning of the spin Hall conductivity in mono-layer transition metal dichalcogenides. Light beams of frequencies much higher than the energy scale of the system (the off-resonant condition) do not excite electrons but rearrange the band structure. The rearrangement is quantitatively established using the Floquet formalism. For such a system of mono-layer transition metal dichalcogenides, the spin Hall conductivity (calculated with the Kubo expression in presence of disorder) exhibits a drop at higher frequencies and lower intensities. Finally, we compare the spin Hall conductivity of the higher spin-orbit coupled WSe{sub 2} to MoS{sub 2}; the spin Hall conductivity of WSe{sub 2} was found to be larger.

  5. Anion exchange kinetics of nanodimensional layered metal hydroxides: use of isoconversional analysis.

    PubMed

    Majoni, Stephen; Hossenlopp, Jeanne M

    2010-12-16

    Anion exchange reactions of nanodimensional layered metal hydroxide compounds are utilized to create materials with targeted physical and chemical properties and also as a means for controlled release of intercalated anions. The kinetics of this important class of reaction are generally characterized by model-based approaches. In this work, a different approach based on isothermal, isoconversional analysis was utilized to determine effective activation energies with respect to extent of reaction. Two different layered metal hydroxide materials were chosen for reaction with chloride anions, using a temperature range of 30-60 °C. The concentrations of anions released into solution and the changes in polycrystalline solid phases were evaluated using model-based (Avrami-Erofe'ev nucleation-growth model) and model-free (integral isoconversional) methods. The results demonstrate the utility of the isoconversional approach for identifying when fitting to a single model is not appropriate, particularly for characterizing the temperature dependence of the reaction kinetics.

  6. Growth of micrometric oxide layers for the study of metallic surfaces decontamination by laser

    NASA Astrophysics Data System (ADS)

    Carvalho, Luisa; Pacquentin, Wilfried; Tabarant, Michel; Maskrot, Hicham; Semerok, Alexandre

    2017-09-01

    The nuclear industry produces a wide range of radioactive waste in term of level of hazard, contaminants and material. For metallic equipment like steam generators, the radioactivity is mainly located in the oxide surface. In order to study and develop techniques for dismantling and for decontamination in a safe way, it is important to have access to oxide layers with a representative distribution of non-radioactive contaminants. We propose a method of formation of oxide layer on stainless steel 304L with europium (Eu) as contaminant marker. In this method, an Eu-solution is sprayed on the stainless steel samples. The specimen are firstly treated with a pulsed nanosecond laser and secondly the steel samples are exposed to a 600°C furnace for various durations in order to grow an oxide layer. The oxide structure and in-depth distribution of Eu in the oxide layer are analysed by scanning electron microscopy coupled with energy dispersive X-ray microanalyzer, and by glow discharge optical emission or mass spectrometry. The oxide layers were grown to thicknesses in the range of 200 nm to 4.5 μm regarding to the laser treatment parameters and the heating duration. These contaminated oxides have a `duplex structure' with a mean weight percentage of 0.5% of europium in the volume of the oxide layer. It appears that europium implementation prevents the oxide growth by furnace but has no impact on laser heating. These oxide layers are used to study the decontamination of metallic surfaces such as stainless steel 304L using a nanosecond pulsed laser.

  7. Synthesis, characterization and application of two-dimensional layered metal hydroxides for environmental remediation purposes

    NASA Astrophysics Data System (ADS)

    Machingauta, Cleopas

    Two-dimensional layered nano composites, which include layered double hydroxides (LDHs), hydroxy double salts (HDSs) and layered hydroxide salts (LHSs) are able to intercalate different molecular species within their gallery space. These materials have a tunable structural composition which has made them applicable as fire retardants, adsorbents, catalysts, catalyst support materials, and ion exchangers. Thermal treatment of these materials results in destruction of the layers and formation of mixed metal oxides (MMOs) and spinels. MMOs have the ability to adsorb anions from solution and may also regenerate layered structures through a phenomenon known as memory effect. Zinc-nickel hydroxy nitrate was used for the uptake of a series of halogenated acetates (HAs). HAs are pollutants introduced into water systems as by-products of water chlorination and pesticide degradation; their sequestration from water is thus crucial. Optimization of layered materials for controlled uptake requires an understanding of their ion-exchange kinetics and thermodynamics. Exchange kinetics of these anions was monitored using ex-situ PXRD, UV-vis, HPLC and FTIR. It was revealed that exchange rates and uptake efficiencies are related to electronic spatial extents and the charge on carboxyl-oxygen atoms. In addition, acetate and nitrate-based HDSs were used to explore how altering the hydroxide layer affects uptake of acetate/nitrate ions. Changing the metal identities affects the interaction of the anions with the layers. From FTIR, we observed that nitrates coordinate in a D3h and Cs/C 2v symmetry; the nitrates in D3h symmetry were easily exchangeable. Interlayer hydrogen bonding was also revealed to be dependent on metal identity. Substituting divalent cations with trivalent cations produces materials with a higher charge density than HDSs and LHSs. A comparison of the uptake efficiency of zinc-aluminum, zinc-gallium and zinc-nickel hydroxy nitrates was performed using trichloroacetic

  8. Antibacterial and bioactive calcium titanate layers formed on Ti metal and its alloys.

    PubMed

    Kizuki, Takashi; Matsushita, Tomiharu; Kokubo, Tadashi

    2014-07-01

    An antibacterial and bioactive titanium (Ti)-based material was developed for use as a bone substitute under load-bearing conditions. As previously reported, Ti metal was successively subjected to NaOH, CaCl2, heat, and water treatments to form a calcium-deficient calcium titanate layer on its surface. When placed in a simulated body fluid (SBF), this bioactive Ti formed an apatite layer on its surface and tightly bonded to bones in the body. To address concerns regarding deep infection during orthopedic surgery, Ag(+) ions were incorporated on the surface of this bioactive Ti metal to impart antibacterial properties. Ti metal was first soaked in a 5 M NaOH solution to form a 1 μm-thick sodium hydrogen titanate layer on the surface and then in a 100 mM CaCl2 solution to form a calcium hydrogen titanate layer via replacement of the Na(+) ions with Ca(2+) ions. The Ti material was subsequently heated at 600 °C for 1 h to transform the calcium hydrogen titanate into calcium titanate. This heat-treated titanium metal was then soaked in 0.01-10 mM AgNO3 solutions at 80 °C for 24 h. As a result, 0.1-0.82 at.% Ag(+) ions and a small amount of H3O(+) ions were incorporated into the surface calcium titanate layers. The resultant products formed apatite on their surface in an SBF, released 0.35-3.24 ppm Ag(+) ion into the fetal bovine serum within 24 h, and exhibited a strong antibacterial effect against Staphylococcus aureus. These results suggest that the present Ti metals should exhibit strong antibacterial properties in the living body in addition to tightly bonding to the surrounding bone through the apatite layer that forms on their surfaces in the body.

  9. PbCu3TeO7: an S = 1/2 staircase kagome lattice with significant intra-plane and inter-plane couplings.

    PubMed

    Koteswararao, B; Kumar, R; Chakraborty, Jayita; Jeon, Byung-Gu; Mahajan, A V; Dasgupta, I; Kim, Kee Hoon; Chou, F C

    2013-08-21

    We have synthesized polycrystalline and single-crystal samples of PbCu3TeO7 and studied its properties via magnetic susceptibility, χ(T), and heat-capacity, Cp(T), measurements and also electronic structure calculations. Whereas the crystal structure is suggestive of the presence of a quasi-2D network of Cu(2+) (S = 1/2) buckled staircase kagome layers, the χ(T) data show magnetic anisotropy and three magnetic anomalies at temperatures TN1 ∼ 36 K, TN2 ∼ 25 K, and TN3 ∼ 17 K. The χ(T) data follow the Curie-Weiss law above 200 K and a Curie-Weiss temperature θCW ∼- 150 K is obtained. The data deviate from the simple Curie-Weiss law below 200 K, which is well above TN1, suggesting the presence of competing magnetic interactions. The magnetic anomaly at TN3 appears to be of first order from magnetization measurements, although our Cp(T) results do not display any anomaly at TN3. The hopping integrals obtained from our electronic structure calculations suggest the presence of significant intra-kagome (next-nearest neighbor and diagonal) and inter-kagome couplings. These couplings take the PbCu3TeO7 system away from a disordered ground state and lead to long-range order, in contrast to what might be expected for an ideal (isotropic) 2D kagome system.

  10. Thin-layer chromatographie separation of alkaline earth metals on diethylaminoethyl cellulose.

    PubMed

    Ishida, K

    1969-12-01

    Thin-layer Chromatographic behaviour of magnesium, calcium, strontium and barium on diethylaminoethyl cellulose has been investigated in methanol-nitric acid mixtures. R(f) values are in the order magnesium > calcium > strontium > barium. The differences in R(f) values are large enough to allow good separations of the four metal ions from each other. The best separation is obtained by the ascending technique with methanol-8M nitric acid (20:1, v v ).

  11. Melt layer erosion of metallic armour targets during off-normal events in tokamaks

    NASA Astrophysics Data System (ADS)

    Bazylev, B.; Wuerz, H.

    2002-12-01

    Melt layer erosion by melt motion is the dominating erosion mechanism for metallic armours under high heat loads. A 1-D fluid dynamics simulation model for calculation of melt motion was developed and validated against experimental results for tungsten from the e-beam facility JEBIS and beryllium from the e-beam facility JUDITH. The driving force in each case is the gradient of the surface tension. Due to the high velocity which develops in the Be melt considerable droplet splashing occurs.

  12. Ag/Ni Metallization Bilayer: A Functional Layer for Highly Efficient Polycrystalline SnSe Thermoelectric Modules

    NASA Astrophysics Data System (ADS)

    Park, Sang Hyun; Jin, Younghwan; Ahn, Kyunghan; Chung, In; Yoo, Chung-Yul

    2017-02-01

    The structural and electrical characteristics of Ag/Ni bilayer metallization on polycrystalline thermoelectric SnSe were investigated. Two difficulties with thermoelectric SnSe metallization were identified for Ag and Ni single layers: Sn diffusion into the Ag metallization layer and unexpected cracks in the Ni metallization layer. The proposed Ag/Ni bilayer was prepared by hot-pressing, demonstrating successful metallization on the SnSe surface without interfacial cracks or elemental penetration into the metallization layer. Structural analysis revealed that the Ni layer reacts with SnSe, forming several crystalline phases during metallization that are beneficial for reducing contact resistance. Detailed investigation of the Ni/SnSe interface layer confirms columnar Ni-Sn intermetallic phases [(Ni3Sn and Ni3Sn2) and Ni5.63SnSe2] that suppress Sn diffusion into the Ag layer. Electrical specific-contact resistivity (5.32 × 10-4 Ω cm2) of the Ag/Ni bilayer requires further modification for development of high-efficiency polycrystalline SnSe thermoelectric modules.

  13. Design technology co-optimization for 14/10nm metal1 double patterning layer

    NASA Astrophysics Data System (ADS)

    Duan, Yingli; Su, Xiaojing; Chen, Ying; Su, Yajuan; Shao, Feng; Zhang, Recco; Lei, Junjiang; Wei, Yayi

    2016-03-01

    Design and technology co-optimization (DTCO) can satisfy the needs of the design, generate robust design rule, and avoid unfriendly patterns at the early stage of design to ensure a high level of manufacturability of the product by the technical capability of the present process. The DTCO methodology in this paper includes design rule translation, layout analysis, model validation, hotspots classification and design rule optimization mainly. The correlation of the DTCO and double patterning (DPT) can optimize the related design rule and generate friendlier layout which meets the requirement of the 14/10nm technology node. The experiment demonstrates the methodology of DPT-compliant DTCO which is applied to a metal1 layer from the 14/10nm node. The DTCO workflow proposed in our job is an efficient solution for optimizing the design rules for 14/10 nm tech node Metal1 layer. And the paper also discussed and did the verification about how to tune the design rule of the U-shape and L-shape structures in a DPT-aware metal layer.

  14. Atomic-layer-deposition-assisted formation of carbon nanoflakes on metal oxides and energy storage application.

    PubMed

    Guan, Cao; Zeng, Zhiyuan; Li, Xianglin; Cao, Xiehong; Fan, Yu; Xia, Xinhui; Pan, Guoxiang; Zhang, Hua; Fan, Hong Jin

    2014-01-29

    Nanostructured carbon is widely used in energy storage devices (e.g., Li-ion and Li-air batteries and supercapacitors). A new method is developed for the generation of carbon nanoflakes on various metal oxide nanostructures by combining atomic layer deposition (ALD) and glucose carbonization. Various metal oxide@nanoflake carbon (MO@f-C) core-branch nanostructures are obtained. For the mechanism, it is proposed that the ALD Al2 O3 and glucose form a composite layer. Upon thermal annealing, the composite layer becomes fragmented and moves outward, accompanied by carbon deposition on the alumina skeleton. When tested as electrochemical supercapacitor electrode, the hierarchical MO@f-C nanostructures exhibit better properties compared with the pristine metal oxides or the carbon coating without ALD. The enhancement can be ascribed to increased specific surface areas and electric conductivity due to the carbon flake coating. This peculiar carbon coating method with the unique hierarchical nanostructure may provide a new insight into the preparation of 'oxides + carbon' hybrid electrode materials for energy storage applications.

  15. The metal interlayer in the charge generation layer of tandem organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Hao; Lin, Ming-Wei; Wen, Ten-Chin; Guo, Tzung-Fang

    2013-10-01

    This work studies the interface in the charge generation layer (CGL), consisting of aluminum (Al) doped in poly(ethylene glycol) dimethyl ether as an n-type layer and 2, 3, 5, 6-tetrafluoro-7, 7, 8, 8-tetracyanoquinodimethane (F4-TCNQ) doped in N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4-4'-diamine as an p-type layer, in tandem organic light-emitting diodes (OLEDs). Introducing a thin high work function metal interlayer (e.g., Ag or Au) effectively improves the transport and inhibits the accumulation of charges in the CGL, which markedly reduces the operating voltage and enhances the efficiency of tandem OLEDs. We attribute that the high density of surface states on metal clusters (interlayer) reduce the junction barrier to facilitate the transport of carriers through CGL. Experimental results show enhancements of tandem OLEDs by an additional metal interlayer as follows: luminous efficiency increases from 37.2 to 51.4 cd A-1, the light turn-on voltage decreases from 9.2 to 6.6 V, and luminescence at 10 mA cm-2 increases from 3712 to 5211 cd m-2.

  16. Single-Layer Limit of Metallic Indium Overlayers on Si(111).

    PubMed

    Park, Jae Whan; Kang, Myung Ho

    2016-09-09

    Density-functional calculations are used to identify one-atom-thick metallic In phases grown on the Si(111) surface, which have long been sought in quest of the ultimate two-dimensional (2D) limit of metallic properties. We predict two metastable single-layer In phases, one sqrt[7]×sqrt[3] phase with a coverage of 1.4 monolayer (ML; here 1 ML refers to one In atom per top Si atom) and the other sqrt[7]×sqrt[7] phase with 1.43 ML, which indeed agree with experimental evidences. Both phases reveal quasi-1D arrangements of protruded In atoms, leading to 2D-metallic but anisotropic band structures and Fermi surfaces. This directional feature contrasts with the free-electron-like In-overlayer properties that are known to persist up to the double-layer thickness, implying that the ultimate 2D limit of In overlayers may have been achieved in previous studies of double-layer In phases.

  17. Prediction of transmittance spectra for transparent composite electrodes with ultra-thin metal layers

    SciTech Connect

    Zhao, Zhao; Alford, T. L.; Khorasani, Arash Elhami; Theodore, N. D.; Dhar, A.

    2015-11-28

    Recent interest in indium-free transparent composite-electrodes (TCEs) has motivated theoretical and experimental efforts to better understand and enhance their electrical and optical properties. Various tools have been developed to calculate the optical transmittance of multilayer thin-film structures based on the transfer-matrix method. However, the factors that affect the accuracy of these calculations have not been investigated very much. In this study, two sets of TCEs, TiO{sub 2}/Au/TiO{sub 2} and TiO{sub 2}/Ag/TiO{sub 2}, were fabricated to study the factors that affect the accuracy of transmittance predictions. We found that the predicted transmittance can deviate significantly from measured transmittance for TCEs that have ultra-thin plasmonic metal layers. The ultrathin metal layer in the TCE is typically discontinuous. When light interacts with the metallic islands in this discontinuous layer, localized surface plasmons are generated. This causes extra light absorption, which then leads to the actual transmittance being lower than the predicted transmittance.

  18. Origin of photogenerated carrier recombination at the metal-active layer interface in polymer solar cells.

    PubMed

    Kumar, Mukesh; Dubey, Ashish; Reza, Khan Mamun; Adhikari, Nirmal; Qiao, Qiquan; Bommisetty, Venkat

    2015-11-07

    The role of the metal-active layer interface in photogenerated recombination has been investigated using nanoscale current sensing atomic force microscopy (CS-AFM) and intensity modulated photocurrent spectroscopy (IMPS) in as-deposited, pre-annealed and post-annealed bulk heterojunction (BHJ) solar cells. Aluminum (Al) confined post-annealed BHJ solar cells exhibited a significantly improved device efficiency compared to pre-annealed BHJ solar cells having similar photocarrier harvesting ability in the active layer. The nanoscale topography and CS-AFM results indicate a uniform PCBM rich phase at the metal-active layer interface in the post-annealed cells, but PCBM segregation in the pre-annealed cells. These two different annealing processes showed different carrier dynamics revealed using IMPS under various light intensities. The IMPS results suggest reduced photo generated carrier recombination in uniform PCBM rich post-annealed BHJ solar cells. This study reveals the importance of the metal-bend interface in BHJ solar cells in order to obtain efficient charge carrier extraction for high efficiency.

  19. Atomic layer deposition by reaction of molecular oxygen with tetrakisdimethylamido-metal precursors

    SciTech Connect

    Provine, J Schindler, Peter; Torgersen, Jan; Kim, Hyo Jin; Karnthaler, Hans-Peter; Prinz, Fritz B.

    2016-01-15

    Tetrakisdimethylamido (TDMA) based precursors are commonly used to deposit metal oxides such as TiO{sub 2}, ZrO{sub 2}, and HfO{sub 2} by means of chemical vapor deposition and atomic layer deposition (ALD). Both thermal and plasma enhanced ALD (PEALD) have been demonstrated with TDMA-metal precursors. While the reactions of TDMA-type precursors with water and oxygen plasma have been studied in the past, their reactivity with pure O{sub 2} has been overlooked. This paper reports on experimental evaluation of the reaction of molecular oxygen (O{sub 2}) and several metal organic precursors based on TDMA ligands. The effect of O{sub 2} exposure duration and substrate temperature on deposition and film morphology is evaluated and compared to thermal reactions with H{sub 2}O and PEALD with O{sub 2} plasma.

  20. Friction modifier using adherent metallic multilayered or mixed element layer conversion coatings

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F. (Inventor); Defalco, Frank G. (Inventor); Starks, Sr., Lloyd L. (Inventor)

    2012-01-01

    A process for creating conversion coatings and spin, drawing, and extrusion finishes for surfaces, wherein the conversion coatings and spin, drawing, and extrusion finishes contain potassium, phosphorus, nitrogen, silicon, and one or more non-alkaline metals. The process comprises forming a first aqueous solution of silicate, potassium hydroxide, and ammonium hydroxide; forming a second aqueous solution of water, phosphoric acid, ammonium hydroxide, an alkali metal hydroxide, and one or more non-alkaline metals, and then combining the first solution with the second solution to form a final solution. This final solution forms an anti-friction multi-layer conversion coating or a spin, drawing, and extrusion finish on a surface when applied to the surface, either directly or as an additive in lubricating fluids.

  1. Extraordinary terahertz transmission through a double-layer metal array with closed ring resonators

    NASA Astrophysics Data System (ADS)

    Guo, Yadong; Yuan, Zongheng; Yuan, Yuyang; Wang, Sheng; Zhang, Wentao

    2016-07-01

    In this paper, we numerically investigate the transmission properties of a terahertz metamaterial. This metamaterial is composed of metal-dielectric-metal, which consists of metallic layers with an air hole array and one coaxial closed ring resonator in the air hole. The metamaterial in the THz range of 0.2-1 THz has three transmission peaks. We provide an explanation of the transmission peaks by means of the surface plasmon polaritons and magnetic polaritons resonance based on the distribution of the surface current. Then according to the magnetic polaritons resonance, the equivalent circuit model of the metamaterial is established. The effects of geometric parameters on the transmission peaks are discussed and studied by an equivalent circuit model and surface plasmon polaritons dispersion relation. Our metamaterial promises dual-band potential applications such as filters.

  2. Photocatalytic Water Oxidation over Metal Oxide Nanosheets Having a Three-Layer Perovskite Structure.

    PubMed

    Oshima, Takayoshi; Eguchi, Miharu; Maeda, Kazuhiko

    2016-02-19

    Metal oxide nanosheets having a three-layer perovskite structure were studied as photocatalysts for water oxidation in the presence of IO3 (-) as a reversible electron acceptor. This work examined the effects of the lateral dimensions and composition of the nanosheets as well as metal oxide co-catalysts deposited on the restacked nanosheets. Depositing metal oxides capable of promoting reduction reactions on the nanosheets were found to promote the water oxidation activity. In contrast, the lateral dimensions and the degree of crystallinity of the nanosheets had little effect on the activity. Experimental results demonstrated that the reduction of IO3 (-) is the rate-limiting step in this reaction and that nanosheets with less distorted structures are advantageous with regard to increasing both light absorption and the mobility of photoexcited charge carriers.

  3. Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe2.

    PubMed

    Zhang, Chendong; Chen, Yuxuan; Johnson, Amber; Li, Ming-Yang; Li, Lain-Jong; Mende, Patrick C; Feenstra, Randall M; Shih, Chih-Kang

    2015-10-14

    By using a comprehensive form of scanning tunneling spectroscopy, we have revealed detailed quasi-particle electronic structures in transition metal dichalcogenides, including the quasi-particle gaps, critical point energy locations, and their origins in the Brillouin zones. We show that single layer WSe2 surprisingly has an indirect quasi-particle gap with the conduction band minimum located at the Q-point (instead of K), albeit the two states are nearly degenerate. We have further observed rich quasi-particle electronic structures of transition metal dichalcogenides as a function of atomic structures and spin-orbit couplings. Such a local probe for detailed electronic structures in conduction and valence bands will be ideal to investigate how electronic structures of transition metal dichalcogenides are influenced by variations of local environment.

  4. Thin-film composite materials as a dielectric layer for flexible metal-insulator-metal capacitors.

    PubMed

    Tiwari, Jitendra N; Meena, Jagan Singh; Wu, Chung-Shu; Tiwari, Rajanish N; Chu, Min-Ching; Chang, Feng-Chih; Ko, Fu-Hsiang

    2010-09-24

    A new organic-organic nanoscale composite thin-film (NCTF) dielectric has been synthesized by solution deposition of 1-bromoadamantane and triblock copolymer (Pluronic P123, BASF, EO20-PO70-EO20), in which the precursor solution has been achieved with organic additives. We have used a sol-gel process to make a metal-insulator-metal capacitor (MIM) comprising a nanoscale (10 nm-thick) thin-film on a flexible polyimide (PI) substrate at room temperature. Scanning electron microscope and atomic force microscope revealed that the deposited NCTFs were crack-free, uniform, highly resistant to moisture absorption, and well adhered on the Au-Cr/PI. The electrical properties of 1-bromoadamantane-P123 NCTF were characterized by dielectric constant, capacitance, and leakage current measurements. The 1-bromoadamantane-P123 NCTF on the PI substrate showed a low leakage current density of 5.5 x 10(-11) A cm(-2) and good capacitance of 2.4 fF at 1 MHz. In addition, the calculated dielectric constant of 1-bromoadamantane-P123 NCTF was 1.9, making them suitable candidates for use in future flexible electronic devices as a stable intermetal dielectric. The electrical insulating properties of 1-bromoadamantane-P123 NCTF have been improved due to the optimized dipole moments of the van der Waals interactions.

  5. Contact resistance at planar metal contacts on bilayer graphene and effects of molecular insertion layers.

    PubMed

    Nouchi, Ryo

    2017-03-01

    The possible origins of metal-bilayer graphene (BLG) contact resistance are investigated by taking into consideration the bandgap formed by interfacial charge transfer at the metal contacts. Our results show that a charge injection barrier (Schottky barrier) does not contribute to the contact resistance because the BLG under the contacts is always degenerately doped. We also showed that the contact-doping-induced increase in the density of states (DOS) of BLG under the metal contacts decreases the contact resistance owing to enhanced charge carrier tunnelling at the contacts. The contact doping can be enhanced by inserting molecular dopant layers into the metal contacts. However, carrier tunnelling through the insertion layer increases the contact resistance, and thus, alternative device structures should be employed. Finally, we showed that the inter-band transport by variable range hopping via in-gap states is the largest contributor to contact resistance when the carrier type of the gated channel is opposite to the contact doping carrier type. This indicates that the strategy of contact resistance reduction by the contact-doping-induced increase in the DOS is effective only for a single channel transport branch (n- or p-type) depending on the contact doping carrier type.

  6. A further comparison of graphene and thin metal layers for plasmonics.

    PubMed

    He, Xiaoyong; Gao, Pingqi; Shi, Wangzhou

    2016-05-21

    Which one is much more suitable for plasmonic materials, graphene or metal? To address this problem well, the plasmonic properties of thin metal sheets at different thicknesses have been investigated and compared with a graphene layer. As demonstration examples, the propagation properties of insulator-metal-insulator and metamaterials (MMs) structures are also shown. The results manifest that the plasmonic properties of the graphene layer are comparable to that of thin metal sheets with the thickness of tens of nanometers. For the graphene MMs structure, by using the periodic stack structure in the active region, the resonant transmission strength significantly improves. At the optimum period number, 3-5 periods of graphene/SiO2, the graphene MMs structure manifests good frequency and amplitude tunable properties simultaneously, and the resonant strength is also strong with large values of the Q-factor. Therefore, graphene is a good tunable plasmonic material. The results are very helpful to develop novel graphene plasmonic devices, such as modulators, antenna and filters.

  7. A further comparison of graphene and thin metal layers for plasmonics

    NASA Astrophysics Data System (ADS)

    He, Xiaoyong; Gao, Pingqi; Shi, Wangzhou

    2016-05-01

    Which one is much more suitable for plasmonic materials, graphene or metal? To address this problem well, the plasmonic properties of thin metal sheets at different thicknesses have been investigated and compared with a graphene layer. As demonstration examples, the propagation properties of insulator-metal-insulator and metamaterials (MMs) structures are also shown. The results manifest that the plasmonic properties of the graphene layer are comparable to that of thin metal sheets with the thickness of tens of nanometers. For the graphene MMs structure, by using the periodic stack structure in the active region, the resonant transmission strength significantly improves. At the optimum period number, 3-5 periods of graphene/SiO2, the graphene MMs structure manifests good frequency and amplitude tunable properties simultaneously, and the resonant strength is also strong with large values of the Q-factor. Therefore, graphene is a good tunable plasmonic material. The results are very helpful to develop novel graphene plasmonic devices, such as modulators, antenna and filters.

  8. Metal to insulator quantum-phase transition in few-layered ReS2

    NASA Astrophysics Data System (ADS)

    Pradhan, Nihar; McCreary, Amber; Rhodes, Daniel; Lu, Zhenguang; Smirnov, Dmitry; Manousakis, Efstratios; Feng, Simin; Namburu, Raju; Dubey, Madan; Hight Walker, Angela; Terrones, Humberto; Terrones, Mauricio; Dobrosavljevic, Vladimir; Balicas, Luis

    ReS2 a layer-independent direct band-gap semiconductor of 1.5 eV implies a potential for its use in optoelectronic applications. Here, we present an overall evaluation of transport and anisotropic Raman of few-layered ReS2 FET. ReS2 exfoliated on SiO2 behaves as an n-type semiconductor with an intrinsic carrier mobility surpassing μi ~30 cm2/Vs at T = 300 K which increases up to ~350 cm2/vs at 2 K. Semiconducting behavior is observed at low electron densities n, but at high values of nthe resistivity decreases by a factor >7 upon cooling to 2 K and displays a metallicT2 -dependence. The electric-field induced metallic state observed in MoS2 was recently claimed to result from a percolation type of transition. Instead, through a scaling analysis of the conductivity as a function of Tand n, we find that the metallic state of ReS2 results from a second-order metal to insulator transition driven by electronic correlations. Supported by U.S. Army Research Office MURI Grant No. W911NF-11-1-0362.

  9. Metal to insulator quantum-phase transition in few-layered ReS2

    NASA Astrophysics Data System (ADS)

    Pradhan, Nihar; Rhodes, Daniel; Lu, Zhenguang; Smirnov, Dmitry; Manousakis, Efstratios; Dobrosavljevic, Vladimir; Balicas, Luis; McCreary, Amber; Feng, Simin; Terrones, Maurico; Namburu, Raju; Dubey, Madan; Hight Walker, Angela; Terrones, Humberto

    ReS2 a layer-independent direct band-gap semiconductor of 1.5 eV implies a potential for its use in optoelectronic applications. Here, we present an overall evaluation of transport and anisotropic Raman of few-layered ReS2 FET. ReS2 exfoliated on SiO2 behaves as an n-type semiconductor with an intrinsic carrier mobility surpassing μi ~ 30cm2 /Vs at T = 300 K which increases up to ~ 350cm2 /vs at 2 K. Semiconducting behavior is observed at low electron densities n, but at high values of nthe resistivity decreases by a factor > 7 upon cooling to 2 K and displays a metallicT2-dependence. The electric-field induced metallic state observed in MoS2 was recently claimed to result from a percolation type of transition. Instead, through a scaling analysis of the conductivity as a function of Tand n, we find that the metallic state of ReS2 results from a second-order metal to insulator transition driven by electronic correlations. Supported by U.S. Army Research Office MURI Grant No. W911NF-11-1-0362.

  10. Detection of metal binding sites on functional S-layer nanoarrays using single molecule force spectroscopy.

    PubMed

    Tang, Jilin; Ebner, Andreas; Kraxberger, Bernhard; Leitner, Michael; Hykollari, Alba; Kepplinger, Christian; Grunwald, Christian; Gruber, Hermann J; Tampé, Robert; Sleytr, Uwe B; Ilk, Nicola; Hinterdorfer, Peter

    2009-10-01

    Crystalline bacterial cell surface layers (S-layers) show the ability to recrystallize into highly regular pattern on solid supports. In this study, the genetically modified S-layer protein SbpA of Lysinibacillus sphaericus CCM 2177, carrying a hexa-histidine tag (His(6)-tag) at the C-terminus, was used to generate functionalized two-dimensional nanoarrays on a silicon surface. Atomic force microscopy (AFM) was applied to explore the topography and the functionality of the fused His(6)-tags. The accessibility of the His(6)-tags was demonstrated by in-situ anti-His-tag antibody binding to the functional S-layer array. The metal binding properties of the His(6)-tag was investigated by single molecule force microscopy. For this purpose, newly developed tris-NTA was tethered to the AFM tips via a flexible polyethylene glycol (PEG) linker. The functionalized tips showed specific interactions with S-layer containing His(6)-tags in the presence of nickel ions. Thus the His(6)-tag is located at the outer surface of the S-layer and can be used for stable but reversible attachment of functional tris-NTA derivatives.

  11. Impacts of a sudden stratospheric warming on the mesospheric metal layers

    NASA Astrophysics Data System (ADS)

    Feng, Wuhu; Kaifler, Bernd; Marsh, Daniel R.; Höffner, Josef; Hoppe, Ulf-Peter; Williams, Bifford P.; Plane, John M. C.

    2017-09-01

    We report measurements of atomic sodium, iron and temperature in the mesosphere and lower thermosphere (MLT) made by ground-based lidars at the ALOMAR observatory (69°N, 16°E) during a major sudden stratospheric warming (SSW) event that occurred in January 2009. The high resolution temporal observations allow the responses of the Na and Fe layers to the SSW at high northern latitudes to be investigated. A significant cooling with temperatures as low as 136 K around 90 km was observed on 22-23 January 2009, along with substantial depletions of the Na and Fe layers (an 80% decrease in the column abundance with respect to the mean over the observation period). The Whole Atmosphere Community Climate Model (WACCM) incorporating the chemistry of Na, Fe, Mg and K, and nudged with reanalysis data below 60 km, captures well the timing of the SSW, although the extent of the cooling and consequently the depletion in the Na and Fe layers is slightly underestimated. The model also predicts that the perturbations to the metal layers would have been observable even at equatorial latitudes. The modelled Mg layer responds in a very similar way to Na and Fe, whereas the K layer is barely affected by the SSW because of the enhanced conversion of K+ ions to K atoms at the very low temperatures.

  12. New First Order Raman-active Modes in Few Layered Transition Metal Dichalcogenides

    PubMed Central

    Terrones, H.; Corro, E. Del; Feng, S.; Poumirol, J. M.; Rhodes, D.; Smirnov, D.; Pradhan, N. R.; Lin, Z.; Nguyen, M. A. T.; Elías, A. L.; Mallouk, T. E.; Balicas, L.; Pimenta, M. A.; Terrones, M.

    2014-01-01

    Although the main Raman features of semiconducting transition metal dichalcogenides are well known for the monolayer and bulk, there are important differences exhibited by few layered systems which have not been fully addressed. WSe2 samples were synthesized and ab-initio calculations carried out. We calculated phonon dispersions and Raman-active modes in layered systems: WSe2, MoSe2, WS2 and MoS2 ranging from monolayers to five-layers and the bulk. First, we confirmed that as the number of layers increase, the E′, E″ and E2g modes shift to lower frequencies, and the A′1 and A1g modes shift to higher frequencies. Second, new high frequency first order A′1 and A1g modes appear, explaining recently reported experimental data for WSe2, MoSe2 and MoS2. Third, splitting of modes around A′1 and A1g is found which explains those observed in MoSe2. Finally, exterior and interior layers possess different vibrational frequencies. Therefore, it is now possible to precisely identify few-layered STMD. PMID:24572993

  13. Complex and noncentrosymmetric stacking of layered metal dichalcogenide materials created by screw dislocations

    DOE PAGES

    Shearer, Melinda J.; Samad, Leith; Zhang, Yi; ...

    2017-02-08

    The interesting and tunable properties of layered metal dichalcogenides heavily depend on their phase and layer stacking. Here, we show and explain how the layer stacking and physical properties of WSe2 are influenced by screw dislocations. A one-to-one correlation of atomic force microscopy and high- and low-frequency Raman spectroscopy of many dislocated WSe2 nanoplates reveals variations in the number and shapes of dislocation spirals and different layer stackings that are determined by the number, rotation, and location of the dislocations. Plates with triangular dislocation spirals form noncentrosymmetric stacking that gives rise to strong second-harmonic generation and enhanced photoluminescence, plates withmore » hexagonal dislocation spirals form the bulk 2H layer stacking commonly observed, and plates containing mixed dislocation shapes have intermediate noncentrosymmetric stackings with mixed properties. Multiple dislocation cores and other complexities can lead to more complex stackings and properties. Finally, these previously unobserved properties and layer stackings in WSe2 will be interesting for spintronics and valleytronics.« less

  14. Complex and Noncentrosymmetric Stacking of Layered Metal Dichalcogenide Materials Created by Screw Dislocations.

    PubMed

    Shearer, Melinda J; Samad, Leith; Zhang, Yi; Zhao, Yuzhou; Puretzky, Alexander; Eliceiri, Kevin W; Wright, John C; Hamers, Robert J; Jin, Song

    2017-03-08

    The interesting and tunable properties of layered metal dichalcogenides heavily depend on their phase and layer stacking. Here, we show and explain how the layer stacking and physical properties of WSe2 are influenced by screw dislocations. A one-to-one correlation of atomic force microscopy and high- and low-frequency Raman spectroscopy of many dislocated WSe2 nanoplates reveals variations in the number and shapes of dislocation spirals and different layer stackings that are determined by the number, rotation, and location of the dislocations. Plates with triangular dislocation spirals form noncentrosymmetric stacking that gives rise to strong second-harmonic generation and enhanced photoluminescence, plates with hexagonal dislocation spirals form the bulk 2H layer stacking commonly observed, and plates containing mixed dislocation shapes have intermediate noncentrosymmetric stackings with mixed properties. Multiple dislocation cores and other complexities can lead to more complex stackings and properties. These previously unobserved properties and layer stackings in WSe2 will be interesting for spintronics and valleytronics.

  15. Embbeded dipolar vortices driven by Lorentz forces in a shallow liquid metal layer

    NASA Astrophysics Data System (ADS)

    Lara, Cinthya G.; Cuevas, Sergio

    2014-11-01

    We present an experimental and numerical study of the vortex pattern that results from the action of a localized Lorentz force in a thin liquid metal layer (GaInSn) contained in a square box. The fluid motion is generated by the interaction of a uniform D.C. current and a non-uniform magnetic field produced by square-shaped permanent magnet much smaller that the container. Unlike the simple vortex dipole created by a localized Lorentz force in a layer of electrolyte, a more complex vortex pattern is formed in a liquid metal layer. Experiments show the appearance of two ``embedded'' vortex dipoles with a quasi-stagnat zone in the region of highest magnetic field intensity. The observed pattern can be explained by noticing that the localized magnetic field acts as a magnetic obstacle for the imposed flow. Using the Ultrasonic Doppler Velocimetry technique, we obtained the velocity profiles along the symmetry axis. We developed a quasi-two-dimensional numerical model that takes into account the effect of the boundary layers adhered to the bottom wall, the Hartmann friction and the induced effects. Numerical simulations show a satisfactory qualitative and quantitative agreement with the experimental results. Work supported by CONACYT, Mexico under Project 131399. C. G. Lara acknowledges a grant from CONACYT.

  16. Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative.

    PubMed

    Habteyes, Terefe G; Dhuey, Scott; Wood, Erin; Gargas, Daniel; Cabrini, Stefano; Schuck, P James; Alivisatos, A Paul; Leone, Stephen R

    2012-06-26

    Drastic chemical interface plasmon damping is induced by the ultrathin (∼2 nm) titanium (Ti) adhesion layer; alternatively, molecular adhesion is implemented for lithographic fabrication of plasmonic nanostructures without significant distortion of the plasmonic characteristics. As determined from the homogeneous linewidth of the resonance scattering spectrum of individual gold nanorods, an ultrathin Ti layer reduces the plasmon dephasing time significantly, and it reduces the plasmon scattering amplitude drastically. The increased damping rate and decreased plasmon amplitude are due to the dissipative dielectric function of Ti and the chemical interface plasmon damping where the conduction electrons are transferred across the metal-metal interface. In addition, a pronounced red shift due to the Ti adhesion layer, more than predicted using electromagnetic simulation, suggests the prevalence of interfacial reactions. By extending the experiment to conductively coupled ring-rod nanostructures, it is shown that a sharp Fano-like resonance feature is smeared out due to the Ti layer. Alternatively, vapor deposition of (3-mercaptopropyl)trimethoxysilane on gently cleaned and activated lithographic patterns functionalizes the glass surface sufficiently to link the gold nanostructures to the surface by sulfur-gold chemical bonds without observable plasmon damping effects.

  17. Gluing together metallic and covalent layers to form Ru2C under ambient conditions.

    PubMed

    Sun, Weiwei; Li, Yunguo; Zhu, Li; Ma, Yanming; Di Marco, Igor; Johansson, Börje; Korzhavyi, Pavel

    2015-04-21

    Ru2C has recently been synthesised at high pressure and high temperature, and was assumed to have a structure with space group P3̅m1. However, subsequent theoretical work has revealed that this structure is unstable under ambient conditions, which motivated us to look for the stable structure. In this work, we explore the structures of Ru2C by using an unbiased swarm structure searching algorithm. The structures with R3m and R3̅m symmetries have been found to be lower in energy than the P3̅m1 structure, at the same time being dynamically stable under ambient conditions. These layered structures consist of alternating Ru bilayers and C monolayers in the R3m structure, and alternating Ru tetra-layers and C bilayers in the R3̅m structure. The C layers are more evenly distributed and more covalently bound to the Ru layers in the R3m structure than in the R3̅m structure. Instead, in the R3̅m structure there exists more Ru-Ru metallic bonding, which has a crucial role in diminishing the hardness of this material. Our findings should stimulate further explorations of the structures and properties of the heavy transition metal carbides and nitrides, potentially leading to industrial applications.

  18. Interface-controlled layer exchange in metal-induced crystallization of germanium thin films

    NASA Astrophysics Data System (ADS)

    Hu, Shu; Marshall, Ann F.; McIntyre, Paul C.

    2010-08-01

    Low-temperature synthesis of polycrystalline germanium (poly-Ge) thin films is of great interest in thin-film photovoltaic and electronics applications. We demonstrate metal (Al)-induced crystallization to form poly-Ge thin films on both glass and polymer substrates at temperatures as low as 200 °C. An interfacial diffusion control layer, intentionally interposed between the Al and the underlying amorphous Ge (a-Ge) layer, is found to achieve layer exchange while suppressing uncontrolled Ge crystallization within the bilayer samples. Germanium thin films with micron-size grains and (111)-preferred orientation are prepared by controlled Ge nucleation and Ge lateral overgrowth of Al during a-Ge crystallization.

  19. Transitions metal dichalcogenides: Growth, fermiology studies, and few-layered transport properties

    NASA Astrophysics Data System (ADS)

    Rhodes, Daniel

    Transition metal dichalcogenides (TMDs or TMDCs) have garnered much interest recently due to their weakly layered structures, allowing for mechanical exfoliation down to a single atomic layer. As such, it is pertinent to re-examine the bulk properties of these materials in order to completely understand and predict what is happening in the few-layered limit. A large majority of these systems were first investigated in the 1950s and 1960s. As such, many of the current growth methods rely on these reports, making new growth techniques for lowering defects of importance as well. In this thesis, both topics are taken into consideration and discussed, though the latter remains to be investigated in much more detail and should be the work of future research efforts. (Abstract shortened by ProQuest.).

  20. Electro-vortex flows in a square layer of liquid metal

    NASA Astrophysics Data System (ADS)

    Kolesnichenko, I.; Khripchenko, S.; Buchenau, D.; Gerbeth, G.

    2005-03-01

    We study electro-vortex flows generated by electro-magnetic forces in a shallow square layer of liquid metal. The force driving the flow is produced by the interaction between the electric current flowing through the layer and its own magnetic field. Rotational parts of that force are particularly caused by ferromagnetic yokes placed around the layer. Depending of the position and type of those yokes flows of one-, two- or four-eddies are initiated. The basic flow structure and the related velocity oscillations have been investigated both by experimental techniques using the ultrasound Doppler velocimetry and by numerical calculations. Compared to the single vortex flow the double vortex flow shows a much higher level of large-scale velocity oscillations. The theoretical model turned out to be in good agreement with the experimental data. Figs 11, Refs 15.

  1. Revealing extraordinary tensile plasticity in layered Ti-Al metal composite

    NASA Astrophysics Data System (ADS)

    Huang, M.; Fan, G. H.; Geng, L.; Cao, G. J.; Du, Y.; Wu, H.; Zhang, T. T.; Kang, H. J.; Wang, T. M.; Du, G. H.; Xie, H. L.

    2016-12-01

    Layered Ti-Al metal composite (LMC) fabricated by hot-pressing and hot-rolling process displays higher ductility than that of both components. In this paper, a combination of digital image correlation (DIC) and X-ray tomography revealed that strain delocalization and constrained crack distribution are the origin of extraordinary tensile ductility. Strain delocalization was derived from the transfer of strain partitioning between Ti and Al layer, which relieved effectively the strain localization of LMC. Furthermore, the extensive cracks of LMC were restricted in the interface due to constraint effect. Layered architecture constrained the distribution of cracks and significantly relieved the strain localization. Meanwhile, the transfer of strain partitioning and constrained crack distribution were believed to inhibit the strain localization of Ti and change the deformation mechanisms of Ti. Our finding enriches current understanding about simultaneously improving the strength and ductility by structural design.

  2. Revealing extraordinary tensile plasticity in layered Ti-Al metal composite

    PubMed Central

    Huang, M.; Fan, G. H.; Geng, L.; Cao, G. J.; Du, Y.; Wu, H.; Zhang, T. T.; Kang, H. J.; Wang, T. M.; Du, G. H.; Xie, H. L.

    2016-01-01

    Layered Ti-Al metal composite (LMC) fabricated by hot-pressing and hot-rolling process displays higher ductility than that of both components. In this paper, a combination of digital image correlation (DIC) and X-ray tomography revealed that strain delocalization and constrained crack distribution are the origin of extraordinary tensile ductility. Strain delocalization was derived from the transfer of strain partitioning between Ti and Al layer, which relieved effectively the strain localization of LMC. Furthermore, the extensive cracks of LMC were restricted in the interface due to constraint effect. Layered architecture constrained the distribution of cracks and significantly relieved the strain localization. Meanwhile, the transfer of strain partitioning and constrained crack distribution were believed to inhibit the strain localization of Ti and change the deformation mechanisms of Ti. Our finding enriches current understanding about simultaneously improving the strength and ductility by structural design. PMID:27917923

  3. Investigation of Thickness Dependence of Metal Layer in Al/Mo/4H-SiC Schottky Barrier Diodes.

    PubMed

    Lee, Seula; Lee, Jinseon; Kang, Tai-Young; Kyoung, Sinsu; Jung, Eun Sik; Kim, Kyung Hwan

    2015-11-01

    In this paper, we present the preparation and characterization of Schottky barrier diodes based on silicon carbide with various Schottky metal layer thickness values. In this structure, molybdenum and aluminum were employed as the Schottky barrier metal and top electrode, respectively. Schottky metal layers were deposited with thicknesses ranging from 1000 to 3000 Å, and top electrodes were deposited with thickness as much as 3000 Å. The deposition of both metal layers was performed using the facing target sputtering (FTS) method, and the fabricated samples were annealed with the tubular furnace at 300 degrees C under argon ambient for 10 min. The Schottky barrier height, series resistance, and ideality factor was calculated from the forward I-V characteristic curve using the methods proposed by Cheung and Cheung, and by Norde. For as-deposited Schottky diodes, we observed an increase of the threshold voltage (V(T)) as the thickness of the Schottky metal layer increased. After the annealing, the Schottky barrier heights (SBHs) of the diodes, including Schottky metal layers of over 2000 Å, increased. In the case of the Schottky metal layer deposited to 1000 Å, the barrier heights decreased due to the annealing process. This may have been caused by the interfacial penetration phenomenon through the Schottky metal layer. For variations of V(T), the SBH changed with a similar tendency. The ideality factor and series resistance showed no significant changes before or after annealing. This indicates that this annealing condition is appropriate for Mo SiC structures. Our results confirm that it is possible to control V(T) by adjusting the thickness of the Schottky metal layer.

  4. Metallization of Epitaxial VO2 Films by Ionic Liquid Gating through Initially Insulating TiO2 Layers.

    PubMed

    Passarello, Donata; Altendorf, Simone G; Jeong, Jaewoo; Samant, Mahesh G; Parkin, Stuart S P

    2016-09-14

    Ionic liquid gating has been shown to metallize initially insulating layers formed from several different oxide materials. Of these vanadium dioxide (VO2) is of especial interest because it itself is metallic at temperatures above its metal-insulator transition. Recent studies have shown that the mechanism of ionic liquid gated induced metallization is entirely distinct from that of the thermally driven metal-insulator transition and is derived from oxygen migration through volume channels along the (001) direction of the rutile structure of VO2. Here we show that it is possible to metallize the entire volume of 10 nm thick layers of VO2 buried under layers of rutile titanium dioxide (TiO2) up to 10 nm thick. Key to this process is the alignment of volume channels in the respective oxide layers, which have the same rutile structure with clamped in-plane lattice constants. The metallization of the VO2 layers is accompanied by large structural expansions of up to ∼6.5% in the out-of-plane direction, but the structure of the TiO2 layer is hardly affected by gating. The TiO2 layers become weakly conducting during the gating process, but in contrast to the VO2 layers, the conductivity disappears on exposure to air. Indeed, even after air exposure, X-ray photoelectron spectroscopy studies show that the VO2 films have a reduced oxygen content after metallization. Ionic liquid gating of the VO2 films through initially insulating TiO2 layers is not consistent with conventional models that have assumed the gate induced carriers are of electrostatic origin.

  5. Confined spin wave spectra of Kagome artificial spin ice arrays

    NASA Astrophysics Data System (ADS)

    Panagiotopoulos, I.

    2017-01-01

    The spin wave modes of elongated magnetic islands arranged in Kagome artificial spin-ice arrays are micromagnetically simulated in the frequency regime between 3 and 16 GHz. The edge modes are more suitable in order to detect the signatures of various types of local order of the spin-ice lattice as they are much more sensitive to the magnetic configurations of neighboring elements. The spectra of arrays consisting up to 30 elements can be decomposed to those originating from local magnetic states of their vertices.

  6. Rate of thermal transitions in kagome spin ice

    NASA Astrophysics Data System (ADS)

    Liashko, S. Y.; Uzdin, V. M.; Jónsson, H.

    2016-08-01

    The rate of thermal transitions in a kagome spin ice element is calculated using harmonic transition state theory for magnetic systems. Each element consists of six prolate magnetic islands. Minimum energy paths on the multidimensional energy surface are found to estimate activation energy. Vibrational frequencies are also calculated to estimate the rate of the various transitions. An overall transition rate between equivalent ground states is calculated by using the stationary state approximation including all possible transition paths. The resulting transition rate is in a good agreement with experimentally measured lifetime.

  7. Density matrix renormalization group numerical study of the kagome antiferromagnet.

    PubMed

    Jiang, H C; Weng, Z Y; Sheng, D N

    2008-09-12

    We numerically study the spin-1/2 antiferromagnetic Heisenberg model on the kagome lattice using the density-matrix renormalization group method. We find that the ground state is a magnetically disordered spin liquid, characterized by an exponential decay of spin-spin correlation function in real space and a magnetic structure factor showing system-size independent peaks at commensurate magnetic wave vectors. We obtain a spin triplet excitation gap DeltaE(S=1)=0.055+/-0.005 by extrapolation based on the large size results, and confirm the presence of gapless singlet excitations. The physical nature of such an exotic spin liquid is also discussed.

  8. Novel nanofiltration membranes consisting of a sulfonated pentablock copolymer rejection layer for heavy metal removal.

    PubMed

    Thong, Zhiwei; Han, Gang; Cui, Yue; Gao, Jie; Chung, Tai-Shung; Chan, Sui Yung; Wei, Shawn

    2014-12-02

    Facing stringent regulations on wastewater discharge containing heavy metal ions, various industries are demanding more efficient and effective treatment methods. Among the methods available, nanofiltration (NF) is a feasible and promising option. However, the development of new membrane materials is constantly required for the advancement of this technology. This is a report of the first attempt to develop a composite NF membrane comprising a molecularly designed pentablock copolymer selective layer for the removal of heavy metal ions. The resultant NF membrane has a mean effective pore diameter of 0.50 nm, a molecular weight cutoff of 255 Da, and a reasonably high pure water permeability (A) of 2.4 LMH/bar. The newly developed NF membrane can effectively remove heavy metal cations such as Pb(2+), Cd(2+), Zn(2+), and Ni(2+) with a rejection of >98.0%. On the other hand, the membrane also shows reasonably high rejections toward anions such as HAsO4(2-) (99.9%) and HCrO4(-) (92.3%). This performance can be attributed to (1) the pentablock copolymer's unique ability to form a continuous water transport passageway with a defined pore size and (2) the incorporation of polyethylenimine as a gutter layer between the selective layer and the substrate. To the best of our knowledge, this is the first reported NF membrane comprising this pentablock copolymer as the selective material. The promising preliminary results achieved in this study provide a useful platform for the development of new NF membranes for heavy metal removal.

  9. A difference in using atomic layer deposition or physical vapour deposition TiN as electrode material in metal-insulator-metal and metal-insulator-silicon capacitors.

    PubMed

    Groenland, A W; Wolters, R A M; Kovalgin, A Y; Schmitz, J

    2011-09-01

    In this work, metal-insulator-metal (MIM) and metal-insulator-silicon (MIS) capacitors are studied using titanium nitride (TiN) as the electrode material. The effect of structural defects on the electrical properties on MIS and MIM capacitors is studied for various electrode configurations. In the MIM capacitors the bottom electrode is a patterned 100 nm TiN layer (called BE type 1), deposited via sputtering, while MIS capacitors have a flat bottom electrode (called BE type 2-silicon substrate). A high quality 50-100 nm thick SiO2 layer, made by inductively-coupled plasma CVD at 150 degrees C, is deposited as a dielectric on top of both types of bottom electrodes. BE type 1 (MIM) capacitors have a varying from low to high concentration of structural defects in the SiO2 layer. BE type 2 (MIS) capacitors have a low concentration of structural defects and are used as a reference. Two sets of each capacitor design are fabricated with the TiN top electrode deposited either via physical vapour deposition (PVD, i.e., sputtering) or atomic layer deposition (ALD). The MIM and MIS capacitors are electrically characterized in terms of the leakage current at an electric field of 0.1 MV/cm (I leak) and for different structural defect concentrations. It is shown that the structural defects only show up in the electrical characteristics of BE type 1 capacitors with an ALD TiN-based top electrode. This is due to the excellent step coverage of the ALD process. This work clearly demonstrates the sensitivity to process-induced structural defects, when ALD is used as a step in process integration of conductors on insulation materials.

  10. Anion-intercalated layered double hydroxides modified test strips for detection of heavy metal ions.

    PubMed

    Wang, Nan; Sun, Jianchao; Fan, Hai; Ai, Shiyun

    2016-01-01

    In this work, a novel approach for facile and rapid detection of heavy metal ions using anion-intercalated layered double hydroxides (LDHs) modified test strips is demonstrated. By intercalating Fe(CN)6(4-) or S(2-) anions into the interlayers of LDHs on the filter paper, various heavy metal ions can be easily detected based on the color change before and after reaction between the anions and the heavy metal ions. Upon the dropping of heavy metal ions solutions to the test strips, the colors of the test strips changed instantly, which can be easily observed by naked eyes. With the decrease of the concentration, the color depth changed obviously. The lowest detection concentration can be up to 1×10(-6) mol L(-1). Due to the easily intercalation of anions into the interlayer of the LDHs on test trips, this procedure provides a general method for the construction of LDHs modified test strips for detection of heavy metal ions. The stability of the prepared test strips is investigated. Furthermore, all the results were highly reproducible. The test strips may have potential applications in environmental monitoring fields.

  11. Vapor phase hydrogenation of furfural over nickel mixed metal oxide catalysts derived from layered double hydroxides

    SciTech Connect

    Sulmonetti, Taylor P.; Pang, Simon H.; Claure, Micaela Taborga; Lee, Sungsik; Cullen, David A.; Agrawal, Pradeep K.; Jones, Christopher W.

    2016-05-01

    The hydrogenation of furfural is investigated over various reduced nickel mixed metal oxides derived from layered double hydroxides (LDHs) containing Ni-Mg-Al and Ni-Co-Al. Upon reduction, relatively large Ni(0) domains develop in the Ni-Mg-Al catalysts, whereas in the Ni-Co-Al catalysts smaller metal particles of Ni(0) and Co(0), potentially as alloys, are formed, as evidenced by XAS, XPS, STEM and EELS. All the reduced Ni catalysts display similar selectivities towards major hydrogenation products (furfuryl alcohol and tetrahydrofurfuryl alcohol), though the side products varied with the catalyst composition. The 1.1Ni-0.8Co-Al catalyst showed the greatest activity per titrated site when compared to the other catalysts, with promising activity compared to related catalysts in the literature. The use of base metal catalysts for hydrogenation of furanic compounds may be a promising alternative to the well-studied precious metal catalysts for making biomass-derived chemicals if catalyst selectivity can be improved in future work by alloying or tuning metal-oxide support interactions.

  12. Vapor phase hydrogenation of furfural over nickel mixed metal oxide catalysts derived from layered double hydroxides

    SciTech Connect

    Sulmonetti, Taylor P.; Pang, Simon H.; Claure, Micaela Taborga; Lee, Sungsik; Cullen, David A.; Agrawal, Pradeep K.; Jones, Christopher W.

    2016-03-09

    The hydrogenation of furfural is investigated over various reduced nickel mixed metal oxides derived from layered double hydroxides (LDHs) containing Ni-Mg-Al and Ni-Co-Al. Upon reduction, relatively large Ni(0) domains develop in the Ni-Mg-Al catalysts, whereas in the Ni-Co-Al catalysts smaller metal particles of Ni(0) and Co(0), potentially as alloys, are formed, as evidenced by XAS, XPS, STEM and EELS. All the reduced Ni catalysts display similar selectivities towards major hydrogenation products (furfuryl alcohol and tetrahydrofurfuryl alcohol), though the side products varied with the catalyst composition. The 1.1Ni-0.8Co-Al catalyst showed the greatest activity per titrated site when compared to the other catalysts, with promising activity compared to related catalysts in the literature. In conclusion, the use of base metal catalysts for hydrogenation of furanic compounds may be a promising alternative to the well-studied precious metal catalysts for making biomass-derived chemicals if catalyst selectivity can be improved in future work by alloying or tuning metal-oxide support interactions.

  13. Vapor phase hydrogenation of furfural over nickel mixed metal oxide catalysts derived from layered double hydroxides

    DOE PAGES

    Sulmonetti, Taylor P.; Pang, Simon H.; Claure, Micaela Taborga; ...

    2016-03-09

    The hydrogenation of furfural is investigated over various reduced nickel mixed metal oxides derived from layered double hydroxides (LDHs) containing Ni-Mg-Al and Ni-Co-Al. Upon reduction, relatively large Ni(0) domains develop in the Ni-Mg-Al catalysts, whereas in the Ni-Co-Al catalysts smaller metal particles of Ni(0) and Co(0), potentially as alloys, are formed, as evidenced by XAS, XPS, STEM and EELS. All the reduced Ni catalysts display similar selectivities towards major hydrogenation products (furfuryl alcohol and tetrahydrofurfuryl alcohol), though the side products varied with the catalyst composition. The 1.1Ni-0.8Co-Al catalyst showed the greatest activity per titrated site when compared to the othermore » catalysts, with promising activity compared to related catalysts in the literature. In conclusion, the use of base metal catalysts for hydrogenation of furanic compounds may be a promising alternative to the well-studied precious metal catalysts for making biomass-derived chemicals if catalyst selectivity can be improved in future work by alloying or tuning metal-oxide support interactions.« less

  14. Selectivity of layered double hydroxides and their derivative mixed metal oxides as sorbents of hydrogen sulfide.

    PubMed

    Othman, Mohamed A; Zahid, Waleed M; Abasaeed, Ahmed E

    2013-06-15

    In the context of finding high efficient sorbent materials for removing hydrogen sulfide (H2S) from air stream, a screening study was performed to find the best combination of metals for the synthesis of layered double hydroxides (LDHs) and their derivative mixed metal oxides. Based on selectivity of 998 natural mineral species of sulfur-containing compounds, Cu(2+), Ni(2+) and Zn(2+) were selected as divalent metals, and Fe(3+), Al(3+) and Cr(3+) as trivalent metals to synthesis the LDHs sorbents. 10 LDHs materials and their calcined mixed metal oxides, Ni(0.66)Al(0.34), Cu(0.35)Ni(0.32)Al(0.33), Zn(0.66)Al(0.34), Cu(0.36)Zn(0.32)Al(0.32), Ni(0.64)Fe(0.36), Cu(0.35)Ni(0.31)Fe(0.34), Ni(0.66)Cr(0.34), Cu(0.35)Ni(0.31)Cr(0.34), Zn(0.66)Cr(0.34), Cu(0.33)Zn(0.32)Cr(0.35) were synthesized, characterized chemically and physically, and then tested using breakthrough test to determine their sulfur uptake. Ni(0.64)Fe(0.36) mixed metal oxides was found to have the best uptake of hydrogen sulfide (136 mg H₂S/g). Regeneration of spent Ni(0.64)Fe(0.36) mixed metal oxides was studied using two different mixture solutions, NaCl/NaOH and acetate-buffer/NaCl/NaOH. The latter mixture successfully desorbed the sulfur from the Ni0.64Fe0.36 sorbent for 2 cycles of regeneration/sorption. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Fluorescence quenching and excitation transfer between semiconducting and metallic organic layers

    NASA Astrophysics Data System (ADS)

    Åsberg, Peter; Nilsson, Peter; Inganäs, Olle

    2004-09-01

    Here we present a simple approach to study the interaction of singlet excitons with polarons in conjugated polymers in organic electronic devices. Interlayer quenching constants KIL of 1.5M-1 between a fluorescent molecule and a doped polymer in a layered sample demonstrates the importance of understanding the quenching of excited states in polymeric devices. A combination of Förster resonance energy transfer and quenching of photoluminescence between a fluorescent molecule and a conjugated polymer in its semiconducting and metallic states were studied. The polymer is a chiral 3-substituted polythiophene (POWT) and the fluorescent molecule is fluorescein bound to dextran (D-FITC). Bilayer samples with fluorescein on top of the POWT were fabricated and studied with absorption spectroscopy, fluorescence microscopy, and electrochemical doping methods. When POWT is electrochemically dedoped it is possible to enhance the photoluminescence in the polymer layer by excitation transfer from the fluorescein layer. Our results demonstrate that PL from the polythiophene disappears rapidly as soon as the layer is doped. As the doping of polymer layer increases the fluorescence from the fluorescein on top of the polymer decreases, due to excitation quenching. Models for excitation transfer and excitation quenching in POWT/FITC bilayer devices have been developed. This model predicts a linear relationship between the PL from the two molecules, in agreement with our experimental findings. These results are relevant for the development of electroluminescent devices or solar cells based on conjugated polymers.

  16. Single-layer CVD-grown graphene decorated with metal nanoparticles as a promising biosensing platform.

    PubMed

    Gutés, Albert; Carraro, Carlo; Maboudian, Roya

    2012-03-15

    A new approach to the development of a single-layer graphene sensor decorated with metal nanoparticles is presented. Chemical vapor deposition is used to grow single layer graphene on copper. Decoration of the single-layer graphene is achieved by electroless deposition of Au nanoparticles using the copper substrate as a source of electrons. Transfer of the decorated single-layer graphene on glassy carbon electrodes offers a sensitive platform for biosensor development. As a proof of concept, 10 units of glucose oxidase were deposited on the surface in a Nafion matrix to stabilize the enzyme as well as to prevent interference from ascorbic acid and uric acid. Amperometric linear response calibration in the μmoll(-1) is obtained. The presented methodology enables highly sensitive platforms for biosensor development, providing a scalable roll-to-roll production with a much more reproducible scheme when compared to the graphene biosensors reported previously based on drop-cast of multi-layer graphene suspensions.

  17. Chromatic Mechanical Response in 2-D Layered Transition Metal Dichalcogenide (TMDs) based Nanocomposites

    NASA Astrophysics Data System (ADS)

    Rahneshin, Vahid; Khosravi, Farhad; Ziolkowska, Dominika A.; Jasinski, Jacek B.; Panchapakesan, Balaji

    2016-10-01

    The ability to convert photons of different wavelengths directly into mechanical motion is of significant interest in many energy conversion and reconfigurable technologies. Here, using few layer 2H-MoS2 nanosheets, layer by layer process of nanocomposite fabrication, and strain engineering, we demonstrate a reversible and chromatic mechanical response in MoS2-nanocomposites between 405 nm to 808 nm with large stress release. The chromatic mechanical response originates from the d orbitals and is related to the strength of the direct exciton resonance A and B of the few layer 2H-MoS2 affecting optical absorption and subsequent mechanical response of the nanocomposite. Applying uniaxial tensile strains to the semiconducting few-layer 2H-MoS2 crystals in the nanocomposite resulted in spatially varying energy levels inside the nanocomposite that enhanced the broadband optical absorption up to 2.3 eV and subsequent mechanical response. The unique photomechanical response in 2H-MoS2 based nanocomposites is a result of the rich d electron physics not available to nanocomposites based on sp bonded graphene and carbon nanotubes, as well as nanocomposite based on metallic nanoparticles. The reversible strain dependent optical absorption suggest applications in broad range of energy conversion technologies that is not achievable using conventional thin film semiconductors.

  18. Chromatic Mechanical Response in 2-D Layered Transition Metal Dichalcogenide (TMDs) based Nanocomposites

    PubMed Central

    Rahneshin, Vahid; Khosravi, Farhad; Ziolkowska, Dominika A.; Jasinski, Jacek B.; Panchapakesan, Balaji

    2016-01-01

    The ability to convert photons of different wavelengths directly into mechanical motion is of significant interest in many energy conversion and reconfigurable technologies. Here, using few layer 2H-MoS2 nanosheets, layer by layer process of nanocomposite fabrication, and strain engineering, we demonstrate a reversible and chromatic mechanical response in MoS2-nanocomposites between 405 nm to 808 nm with large stress release. The chromatic mechanical response originates from the d orbitals and is related to the strength of the direct exciton resonance A and B of the few layer 2H-MoS2 affecting optical absorption and subsequent mechanical response of the nanocomposite. Applying uniaxial tensile strains to the semiconducting few-layer 2H-MoS2 crystals in the nanocomposite resulted in spatially varying energy levels inside the nanocomposite that enhanced the broadband optical absorption up to 2.3 eV and subsequent mechanical response. The unique photomechanical response in 2H-MoS2 based nanocomposites is a result of the rich d electron physics not available to nanocomposites based on sp bonded graphene and carbon nanotubes, as well as nanocomposite based on metallic nanoparticles. The reversible strain dependent optical absorption suggest applications in broad range of energy conversion technologies that is not achievable using conventional thin film semiconductors. PMID:27713550

  19. Chromatic Mechanical Response in 2-D Layered Transition Metal Dichalcogenide (TMDs) based Nanocomposites.

    PubMed

    Rahneshin, Vahid; Khosravi, Farhad; Ziolkowska, Dominika A; Jasinski, Jacek B; Panchapakesan, Balaji

    2016-10-07

    The ability to convert photons of different wavelengths directly into mechanical motion is of significant interest in many energy conversion and reconfigurable technologies. Here, using few layer 2H-MoS2 nanosheets, layer by layer process of nanocomposite fabrication, and strain engineering, we demonstrate a reversible and chromatic mechanical response in MoS2-nanocomposites between 405 nm to 808 nm with large stress release. The chromatic mechanical response originates from the d orbitals and is related to the strength of the direct exciton resonance A and B of the few layer 2H-MoS2 affecting optical absorption and subsequent mechanical response of the nanocomposite. Applying uniaxial tensile strains to the semiconducting few-layer 2H-MoS2 crystals in the nanocomposite resulted in spatially varying energy levels inside the nanocomposite that enhanced the broadband optical absorption up to 2.3 eV and subsequent mechanical response. The unique photomechanical response in 2H-MoS2 based nanocomposites is a result of the rich d electron physics not available to nanocomposites based on sp bonded graphene and carbon nanotubes, as well as nanocomposite based on metallic nanoparticles. The reversible strain dependent optical absorption suggest applications in broad range of energy conversion technologies that is not achievable using conventional thin film semiconductors.

  20. Modeling hydrodynamic flows in plasma fluxes when depositing metal layer on the surface of catalyst converters

    NASA Astrophysics Data System (ADS)

    Chinakhov, D. A.; Sarychev, V. D.; Granovsky, A. Yu; Solodsky, S. A.; Nevsky, S. A.; Konovalov, S. V.

    2017-01-01

    Air pollution with harmful substances resulting from combustion of liquid hydrocarbons and emitted into atmosphere became one of the global environmental problems in the late 20th century. The systems of neutralization capable to reduce toxicity of exhaust gases several times are very important for making environmentally safer combustion products discharged into the atmosphere. As revealed in the literature review, one of the most promising purification procedures is neutralization of burnt gases by catalyst converter systems. The principal working element in the converter is a catalytic layer of metals deposited on ceramics, with thickness 20-60 micron and a well-developed micro-relief. The paper presents a thoroughly substantiated new procedure of deposing a nano-scale surface layer of metal-catalyst particles, furthering the utilization of catalysts on a new level. The paper provides description of mathematical models and computational researches into plasma fluxes under high-frequency impulse input delivered to electrode material, explorations of developing Kelvin-Helmholtz, Marangoni and magnetic hydrodynamic instabilities on the surface of liquid electrode metal droplet in the nano-scale range of wavelengths to obtain a flow of nano-meter particles of cathode material. The authors have outlined a physical and mathematical model of magnetic and hydrodynamic instability for the case of melt flowing on the boundary with the molten metal with the purpose to predict the interphase shape and mutual effect of formed plasma jet and liquid metal droplet on the electrode in the nano-scale range of wavelengths at high-frequency impact on the boundary “electrode-liquid layer”.

  1. Orientation of diamagnetic layered transition metal oxide particles in 1-tesla magnetic fields.

    PubMed

    Sklute, Elizabeth C; Eguchi, Miharu; Henderson, Camden N; Angelone, Mark S; Yennawar, Hemant P; Mallouk, Thomas E

    2011-02-16

    The magnetic field-driven orientation of microcrystals of six diamagnetic layered transition metal oxides (HLaNb(2)O(7), HCa(2)Nb(3)O(10)·0.5H(2)O, KNaCa(2)Nb(4)O(13), KTiTaO(5), KTiNbO(5), and H(2.2)K(1.8)Nb(6)O(17)·nH(2)O) suspended in epoxy resins was studied by X-ray diffraction using permanent magnets producing a 0.8 T field. Although the degree of orientation, quantified as the Hermans order parameter, was strongly affected by the particle size distribution, in all cases microcrystals with ∼1-2 μm lateral dimensions were found to orient with the magnetic field vector in the layer plane. Control of the orientation of ionically conducting layered oxides is of interest for practical applications in batteries and fuel cells. The consistent direction of orientation of the lamellar oxides studied can be rationalized in the framework of a quantitative bond anisotropy model developed by Uyeda (Phys. Chem. Miner.1993, 20, 77-80). The asymmetry of metal-oxygen bonding at the faces of the octahedral layers results in long and short M-O bonds perpendicular to the plane of the sheets. This distortion of the M-O octahedra, which is a structural feature of almost all layered materials that contain octahedral bonding frameworks, gives rise to the diamagnetic anisotropy and results in an easy axis or plane of magnetization in the plane of the sheets.

  2. Chemical doping effect in the LaRu3Si2 superconductor with a kagome lattice

    NASA Astrophysics Data System (ADS)

    Li, Baoxuan; Li, Sheng; Wen, Hai-Hu

    2016-09-01

    LaRu3Si2 is a superconductor with a kagome lattice and transition temperature of 7 K. By doping different rare-earth and transition-metal elements on the La and Ru sites, the evolution of superconductivity has been extensively investigated. It is found that, except for doping Fe to Ru sites, all other dopants with rare-earth (Y, Lu, and Ce) or transition metals (Ni, Cr, and Cu) seem to suppress superconducting transition temperature in LaRu3Si2 very slowly. The quick suppression of superconductivity by Fe doping can be described by the Abrikosov-Gorkov relation. By fitting and analyzing the magnetic susceptibility data under a high magnetic field with the Curie-Weiss law, we find that the effective magnetic moments for Ni and Cr doped samples are very small, indicating that these ions actually do not behave like strong magnetic scattering centers as Fe ions do in the present environment. Our experiments on systematically doped samples and related analysis indicate that the superconducting gap in LaRu3Si2 has no sign change.

  3. Metallicity of Ca2Cu6P5 with single and double copper-pnictide layers

    DOE PAGES

    Li, Li; Parker, David; Chi, Miaofang; ...

    2016-02-16

    We report thermodynamic and transport properties, and also theoretical calculations, for Cu-based compound Ca2Cu6P5 and compare with CaCu2-δP2. Both materials have layers of edge-sharing copper pnictide tetrahedral CuP4, similar to Fe–As and Fe–Se layers (with FeAs4, FeSe4) in the iron-based superconductors. Despite the presence of this similar transition-metal pnictide layer, we find that both Ca2Cu6P5 and CaCu2-δP2 have temperature-independent magnetic susceptibility and show metallic behavior with no evidence of either magnetic ordering or superconductivity down to 1.8 K CaCu2-δP2 is slightly off-stoichiometric, with δ = 0.14. Theoretical calculations suggest that unlike Fe 3d-based magnetic materials with a large density ofmore » states (DOS) at the Fermi surface, Cu have comparatively low DOS, with the majority of the 3d spectral weight located well below Fermi level. The room-temperature resistivity value of Ca2Cu6P5 is only 9 μΩ-cm, due to a substantial plasma frequency and an inferred electron-phonon coupling λ of 0.073 (significantly smaller than that of metallic Cu). Also, microscopy result shows that Cu–Cu distance along the c-axis within the double layers can be very short (2.5 Å), even shorter than metallic elemental copper bond (2.56 Å). The value of dρ/dT for CaCu2-δP2 at 300 K is approximately three times larger than in Ca2Cu6P5, which suggests the likelihood of stronger electron-phonon coupling. Lastly, this study shows that the details of Cu–P layers and bonding are important for their transport characteristics. In addition, it emphasizes the remarkable character of the DOS of ‘122’ iron-based materials, despite much structural similarities.« less

  4. Fundamental studies of diffusion barriers for copper metallization and atomic layer deposited high-kappa films

    NASA Astrophysics Data System (ADS)

    Majumder, Prodyut

    Copper is used as interconnect material due to its lower resistivity, higher melting point and higher electromigration resistance than those of Al. However, Cu diffuses rapidly into Si and SiO2, to form Cu-silicides at temperatures as low as 200°C. Being highly resistive, Cu-silicides are detrimental in the performance of the integrated circuits. The continued downscaling of device dimensions has placed a high priority on the development of thin diffusion barrier layers in copper metallization. The effectiveness and performance of Mo-based bi-layers, such as Mo/WN, Mo/Ti, and Mo/TiN, and a ternary single layer, Mo-V nitride, deposited using magnetron sputtering are investigated in this work. The Cu/barrier film(s)/Si structures are annealed at high temperatures in N2 and the interactions between the layers along with the possible formation of any anneal-induced reaction products are evaluated using different techniques. The formation of Cu3Si due to the intermixing of Cu and Si is indicative of barrier breakdown. The decreasing device dimensions in microelectronic circuits set high demands for film conformality as the barrier layer thickness is anticipated to decrease to 1.9 nm for the 25 nm node (by 2015). In order to meet future requirement of ultrathin barriers, the apparently counter-intuitive approach of using insulating films, such as HfO2 and Al2O 3, deposited using atomic layer deposition (ALD) technique has been studied and revealed interesting and promising results. In microelectronics fabrication, there is also a need for thin films with high dielectric constant (kappa) in order to continue device dimension reduction of logic and memory devices. With conventional SiO2 based materials, continued scale minimization mandates single digit atomic layer thicknesses of the dielectric layers that lead to the ultimate limitation of quantum mechanical tunneling. To overcome this limitation, high-kappa metal oxides have been recognized as future gate dielectrics

  5. Growth and spectroscopic characterization of monolayer and few-layer hexagonal boron nitride on metal substrates

    NASA Astrophysics Data System (ADS)

    Feigelson, Boris N.; Bermudez, Victor M.; Hite, Jennifer K.; Robinson, Zachary R.; Wheeler, Virginia D.; Sridhara, Karthik; Hernández, Sandra C.

    2015-02-01

    Atomically thin two dimensional hexagonal boron nitride (2D h-BN) is one of the key materials in the development of new van der Waals heterostructures due to its outstanding properties including an atomically smooth surface, high thermal conductivity, high mechanical strength, chemical inertness and high electrical resistance. The development of 2D h-BN growth is still in the early stages and largely depends on rapid and accurate characterization of the grown monolayer or few layers h-BN films. This paper demonstrates a new approach to characterizing monolayer h-BN films directly on metal substrates by grazing-incidence infrared reflection absorption spectroscopy (IRRAS). Using h-BN films grown by atmospheric-pressure chemical vapor deposition on Cu and Ni substrates, two new sub-bands are found for the A2u out-of-plane stretching mode. It is shown, using both experimental and computational methods, that the lower-energy sub-band is related to 2D h-BN coupled with substrate, while the higher energy sub-band is related to decoupled (or free-standing) 2D h-BN. It is further shown that this newly-observed fine structure in the A2u mode can be used to assess, quickly and easily, the homogeneity of the h-BN-metal interface and the effects of metal surface contamination on adhesion of the layer.

  6. Targeted Single-Site MOF Node Modification: Trivalent Metal Loading via Atomic Layer Deposition

    SciTech Connect

    Kim, In Soo; Borycz, Joshua; Platero-Prats, Ana E.; Tussupbayev, Samat; Wang, Timothy C.; Farha, Omar K.; Hupp, Joseph T.; Gagliardi, Laura; Chapman, Karena W.; Cramer, Christopher J.; Martinson, Alex B. F.

    2015-07-02

    Postsynthetic functionalization of metal organic frameworks (MOFs) enables the controlled, high-density incorporation of new atoms on a crystallographically precise framework. Leveraging the broad palette of known atomic layer deposition (ALD) chemistries, ALD in MOFs (AIM) is one such targeted approach to construct diverse, highly functional, few-atom clusters. In this paper, we demonstrate the saturating reaction of trimethylindium (InMe3) with the node hydroxyls and ligated water of NU-1000, which takes place without significant loss of MOF crystallinity or internal surface area. We computationally identify the elementary steps by which trimethylated trivalent metal compounds (ALD precursors) react with this Zr-based MOF node to generate a uniform and well characterized new surface layer on the node itself, and we predict a final structure that is fully consistent with experimental X-ray pair distribution function (PDF) analysis. Finally, we further demonstrate tunable metal loading through controlled number density of the reactive handles (–OH and –OH2) achieved through node dehydration at elevated temperatures.

  7. Long-Term Passivation of Strongly Interacting Metals with Single-Layer Graphene

    PubMed Central

    2015-01-01

    The long-term (>18 months) protection of Ni surfaces against oxidation under atmospheric conditions is demonstrated by coverage with single-layer graphene, formed by chemical vapor deposition. In situ, depth-resolved X-ray photoelectron spectroscopy of various graphene-coated transition metals reveals that a strong graphene–metal interaction is of key importance in achieving this long-term protection. This strong interaction prevents the rapid intercalation of oxidizing species at the graphene–metal interface and thus suppresses oxidation of the substrate surface. Furthermore, the ability of the substrate to locally form a passivating oxide close to defects or damaged regions in the graphene overlayer is critical in plugging these defects and preventing oxidation from proceeding through the bulk of the substrate. We thus provide a clear rationale for understanding the extent to which two-dimensional materials can protect different substrates and highlight the key implications for applications of these materials as barrier layers to prevent oxidation. PMID:26499041

  8. Contact resistance at planar metal contacts on bilayer graphene and effects of molecular insertion layers

    NASA Astrophysics Data System (ADS)

    Nouchi, Ryo

    2017-03-01

    The possible origins of metal–bilayer graphene (BLG) contact resistance are investigated by taking into consideration the bandgap formed by interfacial charge transfer at the metal contacts. Our results show that a charge injection barrier (Schottky barrier) does not contribute to the contact resistance because the BLG under the contacts is always degenerately doped. We also showed that the contact-doping-induced increase in the density of states (DOS) of BLG under the metal contacts decreases the contact resistance owing to enhanced charge carrier tunnelling at the contacts. The contact doping can be enhanced by inserting molecular dopant layers into the metal contacts. However, carrier tunnelling through the insertion layer increases the contact resistance, and thus, alternative device structures should be employed. Finally, we showed that the inter-band transport by variable range hopping via in-gap states is the largest contributor to contact resistance when the carrier type of the gated channel is opposite to the contact doping carrier type. This indicates that the strategy of contact resistance reduction by the contact-doping-induced increase in the DOS is effective only for a single channel transport branch (n- or p-type) depending on the contact doping carrier type.

  9. Targeted Single-Site MOF Node Modification: Trivalent Metal Loading via Atomic Layer Deposition

    DOE PAGES

    Kim, In Soo; Borycz, Joshua; Platero-Prats, Ana E.; ...

    2015-07-02

    Postsynthetic functionalization of metal organic frameworks (MOFs) enables the controlled, high-density incorporation of new atoms on a crystallographically precise framework. Leveraging the broad palette of known atomic layer deposition (ALD) chemistries, ALD in MOFs (AIM) is one such targeted approach to construct diverse, highly functional, few-atom clusters. In this paper, we demonstrate the saturating reaction of trimethylindium (InMe3) with the node hydroxyls and ligated water of NU-1000, which takes place without significant loss of MOF crystallinity or internal surface area. We computationally identify the elementary steps by which trimethylated trivalent metal compounds (ALD precursors) react with this Zr-based MOF nodemore » to generate a uniform and well characterized new surface layer on the node itself, and we predict a final structure that is fully consistent with experimental X-ray pair distribution function (PDF) analysis. Finally, we further demonstrate tunable metal loading through controlled number density of the reactive handles (–OH and –OH2) achieved through node dehydration at elevated temperatures.« less

  10. Improved adhesion of Cu on pre-etched polytetrafluoroethylene by PECVD deposited thin metallic layers

    NASA Astrophysics Data System (ADS)

    Haag, C.; Suhr, H.

    1988-10-01

    The adhesion of copper to PTFE has been studied with regard to the influence of a pretreatment in discharges of reactive gases, such as O2 and CF4/O2, and a subsequent deposition of thin metallic interlayers of Pd, Pt, Au, and Cu by PECVD methods. Adhesion forces could be enhanced by about the factor of 10 compared with merely pretreated surfaces up to 5 N/mm, which, as scanning electron micrographs prove, corresponds to the tensile strength of the bulk material. SIMS spectra of the back surface of a peeled copper stripe show the typical signals of PTFE. The thermal stability of the layers was established by dipping the samples into a tin bath of 540 K. The enhanced adhesion is not only due to the changes in surface morphology by etching. It can be attributed to chemical effects, i. e. chemical bonds between substrate atoms and the interlayer, and physical effects, caused by implantation of metal ions into the upper surface layers accompanied by a probable electron transfer from PTFE to metal.

  11. Layered spherical carbon composites with nanoparticles of different metals grown simultaneously inside and outside.

    PubMed

    Tang, Shaochun; Vongehr, Sascha; Meng, Xiangkang

    2012-03-09

    We report a general one-step route to place nanoparticles (NPs) of different noble metals controllably into interior or surface locations of submicron nanoporous carbon spheres (CSs). In particular, Pd and Au NPs can be easily put either inside or outside of the CSs by selecting these metals' differently charged precursor ions. Employing mixed precursor solutions, the method allows different metals to grow simultaneously yet selectively in the separate locations, thus resulting in composites with a complex layered structure, for example Pd or Au outside and Ag inside, Au or Pt outside and Pd inside, and other combinations. The synthesis is fast and needs no additional steps like a functionalization of surfaces. It crucially involves microwave heating, the power setting of which further influences the locations and sizes of the NPs especially in the interior of the amorphous carbon matrix. The three-dimensional composite structures are analyzed by transmission electron microscopy and energy dispersed x-ray spectroscopy combined with quantitative analysis by comparison with simulation. The UV-visible absorption of monometallic and layered composites is compared. The involved mechanisms leading to the selective decoration are discussed; important aspects being the charge of the precursor ions and selective microwave absorption.

  12. Layered transition metal dichalcogenides: promising near-lattice-matched substrates for GaN growth

    PubMed Central

    Gupta, Priti; Rahman, A. A.; Subramanian, Shruti; Gupta, Shalini; Thamizhavel, Arumugam; Orlova, Tatyana; Rouvimov, Sergei; Vishwanath, Suresh; Protasenko, Vladimir; Laskar, Masihhur R.; Xing, Huili Grace; Jena, Debdeep; Bhattacharya, Arnab

    2016-01-01

    Most III-nitride semiconductors are grown on non-lattice-matched substrates like sapphire or silicon due to the extreme difficulty of obtaining a native GaN substrate. We show that several layered transition-metal dichalcogenides are closely lattice-matched to GaN and report the growth of GaN on a range of such layered materials. We report detailed studies of the growth of GaN on mechanically-exfoliated flakes WS2 and MoS2 by metalorganic vapour phase epitaxy. Structural and optical characterization show that strain-free, single-crystal islands of GaN are obtained on the underlying chalcogenide flakes. We obtain strong near-band-edge emission from these layers, and analyse their temperature-dependent photoluminescence properties. We also report a proof-of-concept demonstration of large-area growth of GaN on CVD MoS2. Our results show that the transition-metal dichalcogenides can serve as novel near-lattice-matched substrates for nitride growth. PMID:27025461

  13. A flexible ligand-based wavy layered metal-organic framework for lithium-ion storage.

    PubMed

    An, Tiance; Wang, Yuhang; Tang, Jing; Wang, Yang; Zhang, Lijuan; Zheng, Gengfeng

    2015-05-01

    A substantial challenge for direct utilization of metal-organic frameworks (MOFs) as lithium-ion battery anodes is to maintain the rigid MOF structure during lithiation/delithiation cycles. In this work, we developed a flexible, wavy layered nickel-based MOF (C20H24Cl2N8Ni, designated as Ni-Me4bpz) by a solvothermal approach of 3,3',5,5'-tetramethyl-4,4'-bipyrazole (H2Me4bpz) with nickel(II) chloride hexahydrate. The obtained MOF materials (Ni-Me4bpz) with metal azolate coordination mode provide 2-dimensional layered structure for Li(+) intercalation/extraction, and the H2Me4bpz ligands allow for flexible rotation feature and structural stability. Lithium-ion battery anodes made of the Ni-Me4bpz material demonstrate excellent specific capacity and cycling performance, and the crystal structure is well preserved after the electrochemical tests, suggesting the potential of developing flexible layered MOFs for efficient and stable electrochemical storage. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Contacts and transport characteristics of few-layer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Wang, Junjie; Li, Jing; Shevrin, Jacob; Nguyen, An; Mallouk, Tom; Zhu, J.; Rhodes, Daniel; Balicas, Luis; Watanabe, K.; Taniguchi, T.

    2014-03-01

    Two-dimensional layered transition metal dichalcogenides (TMDs) are potentially useful for electronic and optoelectronic applications. However, the lack of reliable methods to make ohmic contacts has been a major challenge. This work addresses two aspects of this challenge, i.e. interface cleanness and conductivity of the material in the contact area. Using gentle Ar ion milling immediately before the deposition of metal electrodes, we can completely remove polymer residue from prior lithography without significantly damaging the few-layer TMD sheet. Gate stacks made of Au and HfO2 films can inject carriers up to 3 ×1013 cm-2. We make van der Pauw devices of few-layer (< 5 L) TMD (MoS2, WS2, WSe2) sheets using Ti/Au contacts with area < 2 (um)2 and observe contact resistance less than 10 k Ω at high carrier densities, where the sheet conductance is well above 2e2/h. We eliminate hysteresis in the transfer curve of TMD devices by pulsing the gate voltage. Ambipolar conduction is observed in WSe2 devices, with an on/off ratio exceeding 106 for both electrons and holes. WSe2 devices supported on h-BN show field-effect (hole) mobility > 100 cm2/(Vs) at 300K. We discuss the effects of the various approaches taken above.

  15. Electronics and optoelectronics of quasi-1D layered transition metal trichalcogenides

    NASA Astrophysics Data System (ADS)

    Island, Joshua O.; Molina-Mendoza, Aday J.; Barawi, Mariam; Biele, Robert; Flores, Eduardo; Clamagirand, José M.; Ares, José R.; Sánchez, Carlos; van der Zant, Herre S. J.; D'Agosta, Roberto; Ferrer, Isabel J.; Castellanos-Gomez, Andres

    2017-06-01

    The isolation of graphene and transition metal dichalcongenides has opened a veritable world to a great number of layered materials which can be exfoliated, manipulated, and stacked or combined at will. With continued explorations expanding to include other layered materials with unique attributes, it is becoming clear that no one material will fill all the post-silicon era requirements. Here we review the properties and applications of layered, quasi-1D transition metal trichalcogenides (TMTCs) as novel materials for next generation electronics and optoelectronics. The TMTCs present a unique chain-like structure which gives the materials their quasi-1D properties such as high anisotropy ratios in conductivity and linear dichroism. The range of band gaps spanned by this class of materials (0.2 eV-2 eV) makes them suitable for a wide variety of applications including field-effect transistors, infrared, visible and ultraviolet photodetectors, and unique applications related to their anisotropic properties which opens another degree of freedom in the development of next generation electronics. In this review we survey the historical development of these remarkable materials with an emphasis on the recent activity generated by the isolation and characterization of atomically thin titanium trisulfide (TiS3).

  16. Divergent layer topologies in divalent metal aliphatic dicarboxylate coordination polymers containing 3-pyridylmethylnicotinamide

    NASA Astrophysics Data System (ADS)

    White, Charmaine L.; Torres Salgado, Maria D.; Mizzi, Jessica E.; LaDuca, Robert L.

    2015-12-01

    Hydrothermal reaction of the requisite metal salt, an aliphatic dicarboxylic acid, and the hydrogen-bonding capable dipyridylamide ligand 3-pyridylmethylnicotinamide (3-pmna) resulted in four coordination polymers whose connectedness and layer topology depend on the metal coordination environment and dicarboxylate binding mode. These new crystalline phases were characterized by single crystal X-ray diffraction. [Cu(ox)(3-pmna)]n (1, ox = oxalate) manifests stacked 3-connected (6,3) herringbone layer motifs. {[Cd(mal)(3-pmna)(H2O)]·3H2O}n (2, mal = malonate) shows a 4-connected (4,4) grid topology with entrained water molecule trimeric chains in the interlamellar regions. {[Cd2(suc)2(3-pmna)(H2O)2]·3H2O}n (3, suc = succinate) possesses {Cd2O2} dimer-based [Cd(suc)]n layers pillared by 3-pmna ligands into a 5-connected sandwich motif with 4862 topology. {[Cd(glu)(3-pmna)(H2O)]·3H2O}n (4, glu = glutarate) manifests a rippled (4,4) grid topology. Luminescent behavior in the cadmium complexes is ascribed to intra-ligand molecular orbital transitions. Thermal decomposition behavior is also discussed herein.

  17. Extending the Family of V(4+) S=(1/2) Kagome Antiferromagnets.

    PubMed

    Clark, Lucy; Aidoudi, Farida H; Black, Cameron; Arachchige, Kasun S A; Slawin, Alexandra M Z; Morris, Russell E; Lightfoot, Philip

    2015-12-14

    The ionothermal synthesis, structure, and magnetic susceptibility of a novel inorganic-organic hybrid material, imidazolium vanadium(III,IV) oxyfluoride [C3 H5 N2 ][V9 O6 F24 (H2 O)2 ] (ImVOF) are presented. The structure consists of inorganic vanadium oxyfluoride slabs with kagome layers of V(4+) S=${{ 1/2 }}$ ions separated by a mixed valence layer. These inorganic slabs are intercalated with imidazolium cations. Quinuclidinium (Q) and pyrazinium (Pyz) cations can also be incorporated into the hybrid structure type to give QVOF and PyzVOF analogues, respectively. The highly frustrated topology of the inorganic slabs, along with the quantum nature of the magnetism associated with V(4+) , means that these materials are excellent candidates to host exotic magnetic ground states, such as the highly sought quantum spin liquid. Magnetic susceptibility measurements of all samples suggest an absence of conventional long-range magnetic order down to 2 K despite considerable antiferromagnetic exchange.

  18. A stable organic-inorganic hybrid layer protected lithium metal anode for long-cycle lithium-oxygen batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Jinhui; Yang, Jun; Zhou, Jingjing; Zhang, Tao; Li, Lei; Wang, Jiulin; Nuli, Yanna

    2017-10-01

    A stable organic-inorganic hybrid layer (OIHL) is direct fabricated on lithium metal surface by the interfacial reaction of lithium metal foil with 1-chlorodecane and oxygen/carbon dioxide mixed gas. This favorable OIHL is approximately 30 μm thick and consists of lithium alkyl carbonate and lithium chloride. The lithium-oxygen batteries with OIHL protected lithium metal anode exhibit longer cycle life (340 cycles) than those with bare lithium metal anode (50 cycles). This desirable performance can be ascribed to the robust OIHL which prevents the growth of lithium dendrites and the corrosion of lithium metal.

  19. Shift and elimination of microwave Fabry-Perot resonances in a dielectric covered with a thin metal layer

    NASA Astrophysics Data System (ADS)

    Ragulis, Paulius; Simniškis, Rimantas; Kancleris, Žilvinas

    2015-04-01

    In this paper, we consider a plane electromagnetic wave incident onto a dielectric plate, which has one surface covered with a thin layer of metal. An oblique incident angle was considered for the TE (s polarization in optic) and TM (p polarization) plane waves. The thin metal layer is treated as an infinitesimal thickness. It was characterized by a surface conductivity and accounted for by a tangential magnetic field component step induced by the current flow in the metal layer. Compact expressions, which describe the reflection, transmission and absorption in a dielectric plate covered with a thin layer of metal, have been obtained. It was shown that by choosing the appropriate surface conductivity, the Fabry-Perot transmission resonances can be shifted to the position where the maximum reflection is observed in the case of an uncovered dielectric. On the other hand, the elimination of the Fabry-Perot resonances can be also achieved by choosing a proper metal surface conductivity. Measurements of the reflection from the glass covered with a thin layer of metal have been performed in a wide microwave frequency range (2-12 GHz) revealing a large difference in the measured reflection coefficient from the dielectric and metalized surfaces. The measured results fit well with those calculated by employing analytical expressions obtained in this paper.

  20. Capacitance of the double electrical layer on the copper-group metals in molten alkali metal halides

    NASA Astrophysics Data System (ADS)

    Kirillova, E. V.; Stepanov, V. P.

    2016-08-01

    The electrochemical impedance is measured to study the capacitance of the double electrical layer of metallic Au, Ag, and Cu as a function of potential and temperature in nine molten salts, namely, the chlorides, bromides, and iodides of sodium, potassium, and cesium. The C- E curve of a gold electrode has an additional minimum in the anodic branch. This minimum for silver is less pronounced and is only observed at low ac signal frequencies in cesium halides. The additional minimum is not detected for copper in any salt under study. This phenomenon is explained on the assumption that the adsorption of halide anions on a positively charged electrode surface has a predominantly chemical rather than an electrostatic character. The specific adsorption in this case is accompanied by charge transfer through the interface and the formation of an adsorbent-adsorbate covalent bond.

  1. Theory of quantum kagome ice and vison zero modes

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Ping; Hermele, Michael

    2017-02-01

    We derive an effective Z2 gauge theory to describe the quantum kagome ice (QKI) state that has been observed by Carrasquilla et al. [Nat. Commun. 6, 7421 (2015), 10.1038/ncomms8421] in Monte Carlo studies of the S =1/2 kagome XYZ model in a Zeeman field. The numerical results on QKI are consistent with, but do not confirm or rule out, the hypothesis that it is a Z2 spin liquid. Our effective theory allows us to explore this hypothesis and make a striking prediction for future numerical studies, namely, that symmetry-protected vison zero modes arise at lattice disclination defects, leading to a Curie defect term in the spin susceptibility, and a characteristic (Ndis-1 )ln2 contribution to the entropy, where Ndis is the number of disclinations. Only the Z2 Ising symmetry is required to protect the vison zero modes. This is remarkable because a unitary Z2 symmetry cannot be responsible for symmetry-protected degeneracies of local degrees of freedom. We also discuss other signatures of symmetry fractionalization in the Z2 spin liquid, and phase transitions out of the Z2 spin liquid to nearby ordered phases.

  2. Supersymmetry protected topological phases of isostatic lattices and kagome antiferromagnets

    NASA Astrophysics Data System (ADS)

    Lawler, Michael J.

    2016-10-01

    I generalize the theory of phonon topological band structures of isostatic lattices to frustrated antiferromagnets. I achieve this with a discovery of a many-body supersymmetry (SUSY) in the phonon problem of balls and springs and its connection to local constraints satisfied by ground states. The Witten index of the SUSY model demands the Maxwell-Calladine index of mechanical structures. "Spontaneous supersymmetry breaking" is identified as the need to gap all modes in the bulk to create the topological isostatic lattice state. Since ground states of magnetic systems also satisfy local constraint conditions (such as the vanishing of the total spin on a triangle), I identify a similar SUSY structure for many common models of antiferromagnets including the square, triangluar, kagome, pyrochlore nearest-neighbor antiferromagnets, and the J2=J1/2 square-lattice antiferromagnet. Remarkably, the kagome family of antiferromagnets is the analog of topological isostatic lattices among this collection of models. Thus, a solid-state realization of the theory of phonon topological band structure may be found in frustrated magnetic materials.

  3. Kagome lattice from an exciton-polariton perspective

    NASA Astrophysics Data System (ADS)

    Gulevich, D. R.; Yudin, D.; Iorsh, I. V.; Shelykh, I. A.

    2016-09-01

    We study a system of microcavity pillars arranged into a kagome lattice. We show that polarization-dependent tunnel coupling of microcavity pillars leads to the emergence of the effective spin-orbit interaction consisting of the Dresselhaus and Rashba terms, similar to the case of polaritonic graphene studied earlier. The appearance of the effective spin-orbit interaction combined with the time-reversal symmetry breaking resulting from the application of the magnetic field leads to the nontrivial topological properties of the Bloch bundles of polaritonic wave function. These are manifested in the opening of the gap in the band structure and topological edge states localized on the boundary. Such states are analogs of the edge states arising in topological insulators. Our study of polarization properties of the edge states clearly demonstrates that opening of the gap is associated with the band inversion in the region of the Dirac points of the Brillouin zone where the two bands corresponding to polaritons of opposite polarizations meet. For one particular type of boundary we observe a highly nonlinear energy dispersion of the edge state which makes a polaritonic kagome lattice a promising system for observation of edge state solitons.

  4. Chiral spin liquid in a frustrated anisotropic kagome Heisenberg model.

    PubMed

    He, Yin-Chen; Sheng, D N; Chen, Yan

    2014-04-04

    Kalmeyer-Laughlin (KL) chiral spin liquid (CSL) is a type of quantum spin liquid without time-reversal symmetry, and it is considered as the parent state of an exotic type of superconductor--anyon superconductor. Such an exotic state has been sought for more than twenty years; however, it remains unclear whether it can exist in a realistic system where time-reversal symmetry is breaking (T breaking) spontaneously. By using the density matrix renormalization group, we show that KL CSL exists in a frustrated anisotropic kagome Heisenberg model, which has spontaneous T breaking. We find that our model has two topological degenerate ground states, which exhibit nonvanishing scalar chirality order and are protected by finite excitation gap. Furthermore, we identify this state as KL CSL by the characteristic edge conformal field theory from the entanglement spectrum and the quasiparticles braiding statistics extracted from the modular matrix. We also study how this CSL phase evolves as the system approaches the nearest-neighbor kagome Heisenberg model.

  5. Topological thermal Hall effect in frustrated kagome antiferromagnets

    NASA Astrophysics Data System (ADS)

    Owerre, S. A.

    2017-01-01

    In frustrated magnets the Dzyaloshinsky-Moriya interaction (DMI) arising from spin-orbit coupling can induce a magnetic long-range order. Here, we report a theoretical prediction of the thermal Hall effect in frustrated kagome magnets such as KCr3(OH) 6(SO4) 2 and KFe3(OH) 6(SO4)2 . The thermal Hall effects in these materials are induced by scalar spin chirality as opposed to DMI in previous studies. The scalar spin chirality originates from the magnetic-field-induced chiral spin configuration due to noncoplanar spin textures, but in general it can be spontaneously developed as a macroscopic order parameter in chiral quantum spin liquids. Therefore, we infer that there is a possibility of the thermal Hall effect in frustrated kagome magnets such as herbertsmithite ZnCu3(OH) 6Cl2 and the chromium compound Ca10Cr7O28 , although they also show evidence of magnetic long-range order in the presence of applied magnetic field or pressure.

  6. Superfluidity of bosons in kagome lattices with frustration.

    PubMed

    You, Yi-Zhuang; Chen, Zhu; Sun, Xiao-Qi; Zhai, Hui

    2012-12-28

    In this Letter we consider spinless bosons in a kagome lattice with nearest-neighbor hopping and on-site interaction, and the sign of hopping is inverted by insetting a π flux in each triangle of the kagome lattice so that the lowest single particle band is perfectly flat. We show that in the high-density limit, despite the infinite degeneracy of the single particle ground states, interaction will select out the Bloch state at the K point of the Brillouin zone for boson condensation at the lowest temperature. As the temperature increases, the single-boson superfluid order can be easily destroyed, while an exotic triple-boson paired superfluid order will remain. We establish that this trion superfluid exists in a broad temperature regime until the temperature is increased to the same order of hopping and then the system turns into normal phases. Finally, we show that time-of-flight measurement of the momentum distribution and its noise correlation can be used to distinguish these three phases.

  7. Pulsed field magnetization in rare-earth kagome systems.

    PubMed

    Hoch, M J R; Zhou, H D; Mun, E; Harrison, N

    2016-02-03

    The rare-earth kagome systems R 3Ga5SiO14 (R  =  Nd or Pr) exhibit cooperative paramagnetism at low temperatures. Evidence for correlated spin clusters in these weakly frustrated systems has previously been obtained from neutron scattering and from ESR and NMR results. The present pulsed field (0-60 T, 25 ms) magnetization measurements made on single crystals of Nd3Ga5SiO14 (NGS) and Pr3Ga5SiO14 (PGS) at temperatures down to 450 mK have revealed striking differences in the magnetic responses of the two materials. For NGS the magnetization shows a low field plateau, saturation in high transient fields, and significant hysteresis while the PGS magnetization does not saturate in transient fields up to 60 T and shows no hysteresis or plateaus. Nd(3+) is a Kramers ion while Pr(3+) is a non-Kramers ion and the crystal field effects are quite different in the two systems. For the conditions used in the experiments the magnetization behavior is not in agreement with Heisenberg model predictions for kagome systems in which easy-axis anisotropy is much larger than the exchange coupling. The extremely slow spin dynamics found below 4 K in NGS is, however, consistent with the model for Kramers ions and provides a basis for explaining the pulsed field magnetization features.

  8. Complex magnetic order in the kagomé staircase compound Co3V2O8

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Lynn, J. W.; Huang, Q.; Woodward, F. M.; Yildirim, T.; Lawes, G.; Ramirez, A. P.; Rogado, N.; Cava, R. J.; Aharony, A.; Entin-Wohlman, O.; Harris, A. B.

    2006-07-01

    Co3V2O8 (CVO) has a different type of geometrically frustrated magnetic lattice, a kagomé staircase, where the full frustration of a conventional kagomé lattice is partially relieved. The crystal structure consists of two inequivalent (magnetic) Co sites, one-dimensional chains of Co(2) spine sites, linked by Co(1) cross-tie sites. Neutron powder diffraction has been used to solve the basic magnetic and crystal structures of this system, while polarized and unpolarized single crystal diffraction measurements have been used to reveal a rich variety of incommensurate phases, interspersed with lock-in transitions to commensurate phases. CVO initially orders magnetically at 11.3K into an incommensurate, transversely polarized, spin density wave state, with wave vector k=(0,δ,0) with δ=0.55 and the spin direction along the a axis. δ is found to decrease monotonically with decreasing temperature and then locks into a commensurate antiferromagnetic structure with δ=(1)/(2) for 6.9layer where the spine site and cross-tie sites have ordered moments of 1.39μB and 1.17μB , respectively, and an antiferromagnetic layer where the spine-site has an ordered moment of 2.55μB , while the cross-tie sites are fully frustrated and have no observable ordered moment. Below 6.9K , the magnetic structure becomes incommensurate again, and the presence of higher-order satellite peaks indicates that the magnetic structure deviates from a simple sinusoid. δ continues to decrease with decreasing temperature and locks in again at δ=(1)/(3) over a narrow temperature range (6.2

  9. Bipolar switching polarity reversal by electrolyte layer sequence in electrochemical metallization cells with dual-layer solid electrolytes.

    PubMed

    Soni, Rohit; Meuffels, Paul; Petraru, Adrian; Hansen, Mirko; Ziegler, Martin; Vavra, Ondrej; Kohlstedt, Hermann; Jeong, Doo Seok

    2013-12-21

    Bipolar switching behaviours of electrochemical metallization (ECM) cells with dual-layer solid electrolytes (SiOx-Ge0.3Se0.7) were analyzed. Type 1 ECM cell, Pt (bottom electrode)/SiOx/Ge0.3Se0.7/Cu (top electrode), exhibited typical eightwise current-voltage (I-V) hysteresis of ECM cells whereas Type 2 ECM cell, Pt (bottom electrode)/Ge0.3Se0.7/SiOx/Cu(top electrode), showed counter-eightwise hysteresis. In addition, absolute off-switching voltage in Type 2 cell is lower than that in Type 1 cell while on-switching voltage in both cells is almost the same. An attempt to understand this electrolyte-stack-sequence-depending switching polarity reversal was made in terms of the ECM cell potential change upon the electrolyte stack sequence and the consequent change in Cu filament growth direction. Relevant experimental evidence for the hypothesis was obtained regarding the switching behaviours. Furthermore, given the switching polarity reversal, feasibility of serial complementary resistive switches was also demonstrated.

  10. Determination of heavy metals by thin-layer chromatography-square-wave anodic stripping voltammetry

    SciTech Connect

    Aldstadt, J.H.; Dewald, H.D. )

    1992-12-15

    A square-wave anodic stripping voltammetric method is described for low parts per million determination of heavy metals separated by thin-layer chromatography (TLC). Heavy metal samples are separated on carboxymethyl cellulose TLC plates and detected by anodic stripping voltammetry (ASV) using a cellulose dialysis membrane-covered mercury film electrode (CM-MFE) placed directly on the TLC plate surface in a thin film of supporting electrolyte solution. The fast scan rates possible in square-wave voltammetry during the stripping step eliminate the need to deoxygenate the sample. Results are presented for a mixture of Pb(II), Cd(II), Cu(II), and Zn(II). Calibration curves for Pb(II) were linear over the range 10-500 ng, with a relative standard deviation of the peak current over a set of eight separate 100-ng Pb(II) samples of 16%. 25 refs., 7 figs.

  11. Evidence of photo-induced dynamic competition of metallic and insulating phase in a layered manganite.

    PubMed

    Li, Yuelin; Walko, Donald A; Li, Qing'an; Liu, Yaohua; Rosenkranz, Stephan; Zheng, Hong; Mitchell, J F

    2015-12-16

    We show evidence that the competition between the antiferromagetic metallic phase and the charge- and orbital-ordered insulating phase at the reentrant phase boundary of a layered manganite, La0.99Sr2.01Mn2O7, can be manipulated using ultrafast optical excitation. The time-dependent evolution of the Jahn-Teller superlattice reflection, which indicates the formation of the charge and orbital order, was measured at different laser fluences. The laser-induced enhancement and reduction the Jahn-Teller reflection intensity shows a reversal of sign between earlier (~10 ns) and later (~150 ns) time delays during the relaxation after photo excitation. This effect is consistent with a scenario whereby the laser excitation modulates the local competition between the metallic and the insulating phases.

  12. Evidence of Photo-induced Dynamic Competition of Metallic and Insulating Phase in a Layered Manganite.

    SciTech Connect

    Li, Yuelin; Walko, Donald A.; Li, Qing'an; Liu, Yaohua; Rosenkranz, Stephan; Zheng, Hong; Mitchell, J. F.

    2015-12-16

    We show evidence that the competition between the antiferromagetic metallic phase and the charge- and orbital-ordered insulating phase at the reentrant phase boundary of a layered manganite, LaSr2Mn2O7, can be manipulated using ultrafast optical excitation. The time- dependent evolution of the Jahn-Teller superlattice reflection, which indicates the formation of the charge and orbital order, was measured at different laser fluences. The laser-induced enhancement and reduction the Jahn-Teller reflection intensity shows a reversal of sign between earlier (~10 ns) and later (~150 ns) time delays during the relaxation after photo excitation. This effect is consistent with a scenario whereby the laser excitation modulates the local competition between the metallic and the insulating phases.

  13. Nanostructural model of metal-insulator transition in layered LixZrNCl superconductors

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    2008-03-01

    The self-organized dopant percolative filamentary model, entirely orbital in character (no fictive spins), has recently quantitatively and specifically explained chemical trends in ceramic layered cuprate superconductors. Here, this model explains the observation of an abrupt jump ΔTc(x) in LixZrNCl powders over a wide composition range Δx , as well as many other features in the resistivity, lattice constants, Raman spectra, upper critical field, and Meissner volume factor. The ceramic data confirm one-dimensional features in realistic structural models of three-dimensional metal-insulator transitions that had been previously only hypothetical. These data provide a “missing link” between the metal-insulator transition in semiconductor impurity bands and cuprate superconductors. They show that all three material families are united by exhibiting an intermediate phase, absent from crystals, but seen in many properties of network glasses.

  14. Self-Supporting Metal-Organic Layers as Single-Site Solid Catalysts.

    PubMed

    Cao, Lingyun; Lin, Zekai; Peng, Fei; Wang, Weiwei; Huang, Ruiyun; Wang, Cheng; Yan, Jiawei; Liang, Jie; Zhang, Zhiming; Zhang, Teng; Long, Lasheng; Sun, Junliang; Lin, Wenbin

    2016-04-11

    Metal-organic layers (MOLs) represent an emerging class of tunable and functionalizable two-dimensional materials. In this work, the scalable solvothermal synthesis of self-supporting MOLs composed of [Hf6O4(OH)4(HCO2)6] secondary building units (SBUs) and benzene-1,3,5-tribenzoate (BTB) bridging ligands is reported. The MOL structures were directly imaged by TEM and AFM, and doped with 4'-(4-benzoate)-(2,2',2''-terpyridine)-5,5''-dicarboxylate (TPY) before being coordinated with iron centers to afford highly active and reusable single-site solid catalysts for the hydrosilylation of terminal olefins. MOL-based heterogeneous catalysts are free from the diffusional constraints placed on all known porous solid catalysts, including metal-organic frameworks. This work uncovers an entirely new strategy for designing single-site solid catalysts and opens the door to a new class of two-dimensional coordination materials with molecular functionalities.

  15. Evidence of photo-induced dynamic competition of metallic and insulating phase in a layered manganite

    DOE PAGES

    Li, Yuelin; Walko, Daonld A.; Li, Qing'an; ...

    2015-11-17

    We show evidence that the competition between the antiferromagetic metallic phase and the charge- and orbital-ordered insulating phase at the reentrant phase boundary of a layered manganite, LaSr2Mn2O7, can be manipulated using ultrafast optical excitation. The time-dependent evolution of the Jahn-Teller superlattice reflection, which indicates the formation of the charge and orbital order, was measured at different laser fluences. The laser-induced enhancement and reduction the Jahn-Teller reflection intensity shows a reversal of sign between earlier (~10 ns) and later (~150 ns) time delays during the relaxation after photo excitation. This effect is consistent with a scenario whereby the laser excitationmore » modulates the local competition between the metallic and the insulating phases.« less

  16. Collective electromagnetic emission from molecular layers on metal nanostructures mediated by surface plasmons

    NASA Astrophysics Data System (ADS)

    Giannini, V.; Sánchez-Gil, J. A.; García-Ramos, J. V.; Méndez, E. R.

    2007-06-01

    Collective electromagnetic processes stemming from molecular emission close to complex nanostructured metal surfaces pumped at and/or near surface-plasmon resonances are theoretically investigated. A classical electrodynamics model is used to describe macroscopically the surface molecular layer emission. Generalized Fresnel coefficients are analytically obtained for planar surfaces, indeed predicting collective quenching for redshifted emission at given angles. The model is introduced into a scattering formulation based on surface integral equations in order to explore collective spontaneous emission near metallic nanoantennas and surface-enhanced Raman scattering. Frequency-shifted near-field patterns and properly defined enhancement factors are obtained that manifest collective processes and cannot be simply inferred from calculations of near fields at the pump frequency.

  17. Evidence of photo-induced dynamic competition of metallic and insulating phase in a layered manganite

    SciTech Connect

    Li, Yuelin; Walko, Daonld A.; Li, Qing'an; Liu, Yaohua; Rosenkranz, Stephen; Zheng, Hong; Mitchell, J. F.

    2015-11-17

    We show evidence that the competition between the antiferromagetic metallic phase and the charge- and orbital-ordered insulating phase at the reentrant phase boundary of a layered manganite, LaSr2Mn2O7, can be manipulated using ultrafast optical excitation. The time-dependent evolution of the Jahn-Teller superlattice reflection, which indicates the formation of the charge and orbital order, was measured at different laser fluences. The laser-induced enhancement and reduction the Jahn-Teller reflection intensity shows a reversal of sign between earlier (~10 ns) and later (~150 ns) time delays during the relaxation after photo excitation. This effect is consistent with a scenario whereby the laser excitation modulates the local competition between the metallic and the insulating phases.

  18. Solution-Processed Metal Oxides as Efficient Carrier Transport Layers for Organic Photovoltaics.

    PubMed

    Choy, Wallace C H; Zhang, Di

    2016-01-27

    Carrier (electron and hole) transport layers (CTLs) are essential components for boosting the performance of various organic optoelectronic devices such as organic solar cells and organic light-emitting diodes. Considering the drawbacks of conventional CTLs (easily oxidized/unstable, demanding/costly fabrication, etc.), transition metal oxides with good carrier transport/extraction and superior stability have drawn extensive research interest as CTLs for next-generation devices. In recent years, many research efforts have been made toward the development of solution-based metal oxide CTLs with the focus on low- or even room-temperature processes, which can potentially be compatible with the deposition processes of organic materials and can significantly contribute to the low-cost and scale-up of organic devices. Here, the recent progress of different types of solution-processed metal oxide CTLs are systematically reviewed in the context of organic photovoltaics, from synthesis approaches to device performance. Different approaches for further enhancing the performance of solution-based metal oxide CTLs are also discussed, which may push the future development of this exciting field.

  19. Lithium Metal Anodes with an Adaptive "Solid-Liquid" Interfacial Protective Layer.

    PubMed

    Liu, Kai; Pei, Allen; Lee, Hye Ryoung; Kong, Biao; Liu, Nian; Lin, Dingchang; Liu, Yayuan; Liu, Chong; Hsu, Po-Chun; Bao, Zhenan; Cui, Yi

    2017-04-05

    Lithium metal is an attractive anode for the next generation of high energy density lithium-ion batteries due to its high specific capacity (3,860 mAh g(-1)) and lowest overall anode potential. However, the key issue is that the static solid electrolyte interphase cannot match the dynamic volume changes of the Li anode, resulting in side reactions, dendrite growth, and poor electrodeposition behavior, which prevent its practical applications. Here, we show that the "solid-liquid" hybrid behavior of a dynamically cross-linked polymer enables its use as an excellent adaptive interfacial layer for Li metal anodes. The dynamic polymer can reversibly switch between its "liquid" and "solid" properties in response to the rate of lithium growth to provide uniform surface coverage and dendrite suppression, respectively, thereby enabling the stable operation of lithium metal electrodes. We believe that this example of engineering an adaptive Li/electrolyte interface brings about a new and promising way to address the intrinsic problems of lithium metal anodes.

  20. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes

    NASA Astrophysics Data System (ADS)

    Lin, Dingchang; Liu, Yayuan; Liang, Zheng; Lee, Hyun-Wook; Sun, Jie; Wang, Haotian; Yan, Kai; Xie, Jin; Cui, Yi

    2016-07-01

    Metallic lithium is a promising anode candidate for future high-energy-density lithium batteries. It is a light-weight material, and has the highest theoretical capacity (3,860 mAh g-1) and the lowest electrochemical potential of all candidates. There are, however, at least three major hurdles before lithium metal anodes can become a viable technology: uneven and dendritic lithium deposition, unstable solid electrolyte interphase and almost infinite relative dimension change during cycling. Previous research has tackled the first two issues, but the last is still mostly unsolved. Here we report a composite lithium metal anode that exhibits low dimension variation (˜20%) during cycling and good mechanical flexibility. The anode is composed of 7 wt% ‘lithiophilic’ layered reduced graphene oxide with nanoscale gaps that can host metallic lithium. The anode retains up to ˜3,390 mAh g-1 of capacity, exhibits low overpotential (˜80 mV at 3 mA cm-2) and a flat voltage profile in a carbonate electrolyte. A full-cell battery with a LiCoO2 cathode shows good rate capability and flat voltage profiles.

  1. Metal based gas diffusion layers for enhanced fuel cell performance at high current densities

    NASA Astrophysics Data System (ADS)

    Hussain, Nabeel; Van Steen, Eric; Tanaka, Shiro; Levecque, Pieter

    2017-01-01

    The gas diffusion layer strongly influences the performance and durability of polymer electrolyte fuel cells. A major drawback of current carbon fiber based GDLs is the non-controlled variation in porosity resulting in a random micro-structure. Moreover, when subjected to compression these materials show significant reduction in porosity and permeability leading to water management problems and mass transfer losses within the fuel cell. This study investigated the use of uniform perforated metal sheets as GDLs in conjunction with microchannel flowfields. A metal sheet design with a pitch of 110 μm and a hole diameter of 60 μm in combination with an MPL showed superior performance in the high current density region compared to a commercially available carbon paper based GDL in a single cell environment. Fuel cell testing with different oxidants (air, heliox and oxygen) indicate that the metal sheet offers both superior diffusion and reduced flooding in comparison to the carbon based GDL. The presence of the MPL has been found to be critical to the functionality of the metal sheet suggesting that the MPL design may represent an important optimisation parameter for further improvements in performance.

  2. Effect of Individual Layer Shape on the Mechanical Properties of Dissimilar Al Alloys Laminated Metal Composite Sheets

    NASA Astrophysics Data System (ADS)

    Chen, Zejun; Wu, Xia; Hu, Hongbo; Chen, Quanzhong; Liu, Qing

    2014-03-01

    For the dissimilar laminated metal composite sheets (LMCS) fabricated by roll bonding technology, the great differences of mechanical properties between the constituent metals lead to the non-uniform deformation and individual layer necking. The individual layer shape affects the mechanical properties and microstructure of dissimilar LMCS. The Al/Al alloy (1100/7075) LMCS with the same thickness and ratio of dissimilar metals, but different individual layer shapes, have been successfully fabricated by hot accumulative roll bonding in conjunction with cold rolling technology. Some effective methods (such as sheet crown, warp degree, and slant angle) were presented to quantitatively evaluate the individual layer shape and necking of constituent metals. The microstructure and mechanical properties of 1100/7075 LMCS with different individual layer shapes were investigated. The effects of bonding interface on the mechanical properties were obtained based on the assessment of individual layer shapes and necking. The strength and elongation of LMCS decrease with the increase of variation of individual layer shapes and necking when the number of layers keeps constant. The research results offer some theoretical guides and references for adjusting the control measures of compatibility deformation, optimizing the hot roll bonding technologies, and designing the novel high-performance dissimilar LMCS.

  3. Numerical investigation of metal-semiconductor-insulator-semiconductor passivated hole contacts based on atomic layer deposited AlO x

    NASA Astrophysics Data System (ADS)

    Ke, Cangming; Xin, Zheng; Ling, Zhi Peng; Aberle, Armin G.; Stangl, Rolf

    2017-08-01

    Excellent c-Si tunnel layer surface passivation has been obtained recently in our lab, using atomic layer deposited aluminium oxide (ALD AlO x ) in the tunnel layer regime of 0.9 to 1.5 nm, investigated to be applied for contact passivation. Using the correspondingly measured interface properties, this paper compares the theoretical collection efficiency of a conventional metal-semiconductor (MS) contact on diffused p+ Si to a metal-semiconductor-insulator-semiconductor (MSIS) contact on diffused p+ Si or on undoped n-type c-Si. The influences of (1) the tunnel layer passivation quality at the tunnel oxide interface (Q f and D it), (2) the tunnel layer thickness and the electron and hole tunnelling mass, (3) the tunnel oxide material, and (4) the semiconductor capping layer material properties are investigated numerically by evaluation of solar cell efficiency, open-circuit voltage, and fill factor.

  4. Metallic atomically-thin layered silicon epitaxially grown on silicene/ZrB2

    DOE PAGES

    Gill, Tobias; Fleurence, Antoine; Warner, Ben; ...

    2017-01-19

    We observe a new two-dimensional (2D) silicon crystal, using low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) and it's formed by depositing additional Si atoms onto spontaneously-formed epitaxial silicene on a ZrB2 thin film. From scanning tunnelling spectroscopy (STS) studies, we find that this atomically-thin layered silicon has distinctly different electronic properties. Angle resolved photoelectron spectroscopy (ARPES) reveals that, in sharp contrast to epitaxial silicene, the layered silicon exhibits significantly enhanced density of states at the Fermi level resulting from newly formed metallic bands. Furthermore, the 2D growth of this material could allow for direct contacting to themore » silicene surface and demonstrates the dramatic changes in electronic structure that can occur by the addition of even a single monolayer amount of material in 2D systems.« less

  5. Effect of insulating layer on the Field Electron Emission Performance of Nano-Apex Metallic Emitters

    NASA Astrophysics Data System (ADS)

    AL-Qudah, Ala'a. A.; Mousa, Marwan S.; Fischer, A.

    2015-10-01

    This paper deals with the process of electron emission from the surface of metals (before and after coating with controlled layers of dielectric materials) into the vacuum due to an intense applied external electric field. This process is usually called cold field electron emission (CFE). The research work reported here includes the current-voltage (I-V) characteristics presented as Fowler-Nordheim (FN) plots and scanning electron micrographs in addition to the spatial emission current distributions (electron emission images). The process of coating the clean tungsten (W) emitters by layers of dielectric epoxylite resin was easy, and the measurements were performed under UHV ∼ 10-8 mbar. From comparing the results obtained in this work, significant improvement in properties of the emitters after coating are observed.

  6. Metallic atomically-thin layered silicon epitaxially grown on silicene/ZrB 2

    DOE PAGES

    Gill, Tobias G.; Fleurence, Antoine; Warner, Ben; ...

    2017-02-17

    We observe a new two-dimensional (2D) silicon crystal, using low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) and it's formed by depositing additional Si atoms onto spontaneously-formed epitaxial silicene on a ZrB2 thin film. From scanning tunnelling spectroscopy (STS) studies, we find that this atomically-thin layered silicon has distinctly different electronic properties. Angle resolved photoelectron spectroscopy (ARPES) reveals that, in sharp contrast to epitaxial silicene, the layered silicon exhibits significantly enhanced density of states at the Fermi level resulting from newly formed metallic bands. Furthermore, the 2D growth of this material could allow for direct contacting to themore » silicene surface and demonstrates the dramatic changes in electronic structure that can occur by the addition of even a single monolayer amount of material in 2D systems.« less

  7. Charge generation layers comprising transition metal-oxide/organic interfaces: Electronic structure and charge generation mechanism

    NASA Astrophysics Data System (ADS)

    Meyer, J.; Kröger, M.; Hamwi, S.; Gnam, F.; Riedl, T.; Kowalsky, W.; Kahn, A.

    2010-05-01

    The energetics of an archetype charge generation layer (CGL) architecture comprising of 4,4',4″-tris(N-carbazolyl)triphenylamine (TCTA), tungsten oxide (WO3), and bathophenanthroline (BPhen) n-doped with cesium carbonate (Cs2CO3) are determined by ultraviolet and inverse photoemission spectroscopy. We show that the charge generation process occurs at the interface between the hole-transport material (TCTA) and WO3 and not, as commonly assumed, at the interface between WO3 and the n-doped electron-transport material (BPhen:Cs2CO3). However, the n-doped layer is also essential to the realization of an efficient CGL structure. The charge generation mechanism occurs via electron transfer from the TCTA highest occupied molecular orbital level to the transition metal-oxide conduction band.

  8. Metallic atomically-thin layered silicon epitaxially grown on silicene/ZrB2

    NASA Astrophysics Data System (ADS)

    Gill, Tobias G.; Fleurence, Antoine; Warner, Ben; Prüser, Henning; Friedlein, Rainer; Sadowski, Jerzy T.; Hirjibehedin, Cyrus F.; Yamada-Takamura, Yukiko

    2017-06-01

    Using low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM), we observe a new two-dimensional (2D) silicon crystal that is formed by depositing additional Si atoms onto spontaneously-formed epitaxial silicene on a ZrB2 thin film. From scanning tunnelling spectroscopy (STS) studies, we find that this atomically-thin layered silicon has distinctly different electronic properties. Angle resolved photoelectron spectroscopy (ARPES) reveals that, in sharp contrast to epitaxial silicene, the layered silicon exhibits significantly enhanced density of states at the Fermi level resulting from newly formed metallic bands. The 2D growth of this material could allow for direct contacting to the silicene surface and demonstrates the dramatic changes in electronic structure that can occur by the addition of even a single monolayer amount of material in 2D systems.

  9. Flat metallic surface gratings with sub-10 nm gaps controlled by atomic-layer deposition

    NASA Astrophysics Data System (ADS)

    Chen, Borui; Ji, Dengxin; Cheney, Alec; Zhang, Nan; Song, Haomin; Zeng, Xie; Thomay, Tim; Gan, Qiaoqiang; Cartwright, Alexander

    2016-09-01

    Atomic layer lithography is a recently reported new technology to fabricate deep-subwavelength features down to 1-2 nm, based on combinations of electron beam lithography (EBL) and atomic layer deposition (ALD). However, the patterning area is relatively small as limited by EBL, and the fabrication yield is not very high due to technical challenges. Here we report an improved procedure to fabricate flat metallic surfaces with sub-10 nm features based on ALD processes. To demonstrate the scalability of the new manufacturing method, we combine the ALD process with large area optical interference patterning, which is particularly promising for the development of practical applications for nanoelectronics and nanophotonics with extremely strong confinement of electromagnetic fields.

  10. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets

    NASA Astrophysics Data System (ADS)

    Chhowalla, Manish; Shin, Hyeon Suk; Eda, Goki; Li, Lain-Jong; Loh, Kian Ping; Zhang, Hua

    2013-04-01

    Ultrathin two-dimensional nanosheets of layered transition metal dichalcogenides (TMDs) are fundamentally and technologically intriguing. In contrast to the graphene sheet, they are chemically versatile. Mono- or few-layered TMDs -- obtained either through exfoliation of bulk materials or bottom-up syntheses -- are direct-gap semiconductors whose bandgap energy, as well as carrier type (n- or p-type), varies between compounds depending on their composition, structure and dimensionality. In this Review, we describe how the tunable electronic structure of TMDs makes them attractive for a variety of applications. They have been investigated as chemically active electrocatalysts for hydrogen evolution and hydrosulfurization, as well as electrically active materials in opto-electronics. Their morphologies and properties are also useful for energy storage applications such as electrodes for Li-ion batteries and supercapacitors.

  11. Atomic layer deposition of metal oxides on pristine and functionalized graphene.

    PubMed

    Wang, Xinran; Tabakman, Scott M; Dai, Hongjie

    2008-07-02

    We investigate atomic layer deposition (ALD) of metal oxide on pristine and functionalized graphene. On pristine graphene, ALD coating can only actively grow on edges and defect sites, where dangling bonds or surface groups react with ALD precursors. This affords a simple method to decorate and probe single defect sites in graphene planes. We used perylene tetracarboxylic acid (PTCA) to functionalize the graphene surface and selectively introduced densely packed surface groups on graphene. Uniform ultrathin ALD coating on PTCA graphene was achieved over a large area. The functionalization method could be used to integrate ultrathin high-kappa dielectrics in future graphene electronics.

  12. Concurrent tailoring of fabrication process and interphase layer to reduce residual stresses in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, C. C.; Morel, M.

    1991-01-01

    A methodology is presented to reduce the residual matrix stresses in continuous fiber metal matrix composites (MMC) by optimizing the fabrication process and interphase layer characteristics. The response of the fabricated MMC was simulated based on nonlinear micromechanics. Application cases include fabrication tailoring, interphase tailoring, and concurrent fabrication-interphase optimization. Two composite systems, silicon carbide/titanium and graphite/copper, are considered. Results illustrate the merits of each approach, indicate that concurrent fabrication/interphase optimization produces significant reductions in the matrix residual stresses and demonstrate the strong coupling between fabrication and interphase tailoring.

  13. Enhancement of intensity in a periodically layered metal-dielectric waveguide with magnetized plasma

    NASA Astrophysics Data System (ADS)

    Hasanbeigi, A.; Ashrafi, A.; Mehdian, H.

    2017-07-01

    Recently, a periodically layered metal-dielectric structure was introduced as a new type of tunable radiation source by Adamo et al. [Phys. Rev. Lett. 103, 113901 (2009); J. Opt. 12, 024012 (2010)]. It is anticipated that the proposed structure forms an important part of future THz systems. In this paper, the effect of plasma, as an extra controlling parameter, on this radiation source has been investigated. The results of the numerical calculations show that the presence of plasma can lead to a significant increase in the output power, and therefore, the device can be tuned over a wide frequency range by changing the plasma density.

  14. Synthesis of Graphene Layers from Metal-Carbon Melts: Nucleation and Growth Kinetics

    NASA Astrophysics Data System (ADS)

    Amini, Shaahin

    A new method for growth of large-area graphene, which can lead to a scalable low-cost high-throughput production technology, was demonstrated. The method is based on growing of graphene films on the surface of metal-carbon melts and involves dissolving carbon in a molten metal at a specified temperature and then allowing the dissolved carbon to nucleate and grow on top of the melt at a lower temperature. The synthesized graphene layers were subjected to detailed microscopic and Raman spectroscopic characterizations. The deconvolution of the Raman 2D band was used to accurately determine the number of atomic planes in the resulting graphene layers and access their quality. The results indicated that the technology can provide bulk graphite films, few-layer graphene as well as high-quality single layer graphene on metals. It was also shown that upon cooling of supersaturated metal-carbon melts; graphite would also grow inside the melt either with flake or sphere morphology, depending on the solidification rate and degree of supersaturation. At small solidification rates, graphite crystals are normally bounded by faceted low index basal and prismatic planes which grow by lateral movement of ledges produced by 2D-nucleation or dislocations. At higher growth rates, however, both interfaces become kinetically rough, and growth becomes limited by diffusion of carbon to the growing interface. The roughening transition from faceted to non-faceted was found to depend on the driving force and nature of growing plane. Due to high number of C-C dangling bonds in prismatic face, its roughening transition occurs at smaller driving forces. At intermediate rates, the prismatic interfaces become rough and grow faster while the basal plane is still faceted, leading to formation of flake graphite. At higher growth rates, both interfaces grow with a relatively similar rate leading to initiation of graphite sphere formation, which later grows by a multi-stage growth mechanism. An

  15. Emergent Gauge Fields from Curvature in Single Layers of Transition-Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Ochoa, Héctor; Zarzuela, Ricardo; Tserkovnyak, Yaroslav

    2017-01-01

    We analyze the electron dynamics in corrugated layers of transition-metal dichalcogenides. Due to the strong spin-orbit coupling, the intrinsic (Gaussian) curvature leads to an emergent gauge field associated with the Berry connection of the spinor wave function. We discuss the gauge field created by topological defects of the lattice, namely, tetragonal and octogonal disclinations and edge dislocations. Ripples and topological disorder induce the same dephasing effects as a random magnetic field, suppressing the weak localization effects. This geometric magnetic field can be detected in an Aharonov-Bohm interferometry experiment by measuring the local density of states in the vicinity of corrugations.

  16. Buried layer tungsten deposits in porous silicon: Metal penetration depth and film purity determinants

    SciTech Connect

    Blewer, R.S.; Tsao, S.S.; Gutierrez, G.M.

    1987-01-01

    Infiltration of anodically prepared porous silicon with tungsten hexafluoride gas has been investigated as a function of silicon porosity, source gas pressure and carrier gas type and flow rate. The depth of tungsten metallization in the silicon has been shown to depend most sensitively on the WF/sub 6/ partial pressure, and less on the flow rate and carrier gas type. Penetration depths of >30 ..mu..m have been attained. Structural integrity of the tungsten layer is dependent on the porosity of the starting material and the degree of internal oxidation of the porous silicon surface area. 6 refs., 8 figs.

  17. Post heat treatment effects on double layer metal structures for VLSI applications

    NASA Technical Reports Server (NTRS)

    Wade, T. E.; Trotter, J. D.

    1978-01-01

    The realization of high yield double layer metal systems using wet chemistry processes and the ability to extend yields beyond that attainable with wet chemistry by means of post sintering processes at temperatures below 500 C for potential applications in very large scale integration structures were studied. Yields in excess of 98% and average total contact resistance of less than 150 ohms and 200 ohms were realized for a series of 560 vias of 0.5 X 0.5 mils and 0.2 X 0.2 mils in size, respectively.

  18. Research Update: Magnetoionic control of magnetization and anisotropy in layered oxide/metal heterostructures

    NASA Astrophysics Data System (ADS)

    Duschek, K.; Pohl, D.; Fähler, S.; Nielsch, K.; Leistner, K.

    2016-03-01

    Electric field control of magnetization and anisotropy in layered structures with perpendicular magnetic anisotropy is expected to increase the versatility of spintronic devices. As a model system for reversible voltage induced changes of magnetism by magnetoionic effects, we present several oxide/metal heterostructures polarized in an electrolyte. Room temperature magnetization of Fe-O/Fe layers can be changed by 64% when applying only a few volts in 1M KOH. In a next step, the bottom interface of the in-plane magnetized Fe layer is functionalized by an L10 FePt(001) underlayer exhibiting perpendicular magnetic anisotropy. During subsequent electrocrystallization and electrooxidation, well defined epitaxial Fe3O4/Fe/FePt heterostructures evolve. The application of different voltages leads to a thickness change of the Fe layer sandwiched between Fe-O and FePt. At the point of transition between rigid magnet and exchange spring magnet regime for the Fe/FePt bilayer, this induces a large variation of magnetic anisotropy.

  19. Nanotribological properties of water films adsorbing atop, and absorbing below, graphene layers supported by metal substrates

    NASA Astrophysics Data System (ADS)

    Liu, Zijian; Curtis, C. K.; Stine, R.; Sheehan, P.; Krim, J.

    The tribological properties of graphite, a common lubricant with known sensitivity to the presence of water, have been studied extensively at the macroscopic and microscopic scales. Although far less attention has been devoted to the tribological properties of graphene, it has been established that the tribological response to the presence of water is dissimilar from that of graphite. We report here a quartz crystal microbalance study of the nanotribological properties of water films adsorbed/absorbed on graphene layers prepared by either chemical decomposition on nickel(111) substrates or transfer of freestanding graphene layers to aluminum substrates. Sliding friction levels of the water films were also measured for metal surfaces in the absence of a graphene layer. We observe very high friction levels for water adsorbed atop graphene on Ni(111) and very low levels for water on aluminum. For the case of graphene/aluminum, the data indicate that the water is absorbing between the graphene layer and the aluminum. Dissipation levels moreover indicate the presence of an interstitial water increases sliding friction between the graphene and the aluminum substrate Work supported by NSF and NRL.

  20. Pressure-Free Bonding of Metallic Plates with Ni Affinity Layers Using Cu Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ishizaki, Toshitaka; Akedo, Kunio; Satoh, Toshikazu; Watanabe, Ryota

    2014-01-01

    This study investigated the pressure-free bonding of metallic plates using Cu nanoparticles capped by fatty acid and amine as the bonding material. The application of Ni layers to Cu plates prior to bonding significantly improved their adhesion to sintered Cu nanoparticles, resulting in higher strengths even without pressure compared to samples bonded using an ordinary Pb-rich solder at a similar temperature. The shear strength could be enhanced if the thickness of Ni layers was larger than 1 nm. The same effect was also observed when Al plates with Ni layers were bonded by Cu nanoparticles. In contrast, Ti, Mn, and Cr layers were found to be ineffective with regard to improving bond strength. Cu plates bonded by Cu nanoparticles capped by fatty acid and amine with different alkyl chain lengths from 6 to 18 showed an optimal strength with a length of 10, where the Cu particles were small enough to sinter effectively but not so small as to oxidize.

  1. Impact of the Metal Adhesion Layer on the Radiation Power of Plasmonic Photoconductive Terahertz Sources

    NASA Astrophysics Data System (ADS)

    Turan, Deniz; Corzo-Garcia, Sofia Carolina; Yardimci, Nezih Tolga; Castro-Camus, Enrique; Jarrahi, Mona

    2017-08-01

    The use of plasmonic contact electrodes in a photoconductive terahertz source offers high optical-to-terahertz conversion efficiencies. The high efficiency is because plasmonic contact electrodes concentrate a large portion of the incident optical pump beam in close proximity to the contact electrodes. By reducing the average transport path length of the photo-generated carriers from the contact electrodes, a larger number of the photocarriers drift to the terahertz radiating elements of the photoconductive source within a sub-picosecond time scale. Therefore, higher terahertz radiation power levels are achieved compared to a similar photoconductive source without plasmonic contact electrodes. Au is a preferred metal for plasmonic contact electrodes because of the strong plasmonic enhancement factors it offers at near-infrared optical wavelengths. However, it requires an adhesion layer to stick well to most III-V semiconductor substrates used in photoconductive terahertz sources. In this paper, we analyze the impact of the Au adhesion layer on the performance of plasmonic photoconductive sources fabricated on a GaAs substrate. Our analysis suggests that Cr is the most promising adhesion layer for plasmonic contact electrodes. We show that the use of a Cr adhesion layer instead of Ti, which is used in previously demonstrated plasmonic photoconductive sources, offers up to an 80% enhancement in the generated terahertz powers. We report record-high terahertz power emissions of up to 6.7 mW from plasmonic photoconductive sources with Cr/Au contacts.

  2. The Surface Layer States in Metallic Materials Subjected to Dry Sliding and Electric Current

    NASA Astrophysics Data System (ADS)

    Fadin, V. V.; Aleutdinova, M. I.; Potekaev, A. I.; Kulikova, O. A.

    2017-09-01

    The structure and properties of surface layers of metallic materials undergoing structural-phase changes as a result of their contact interactions in the form of dry sliding friction on steel in combination with exposure to electric currents are investigated. This impact results in the formation of a composite surface layer whose structural constituents are the particles of FeO oxide, FCC- and BCC-iron, and quasi-amorphous initial material. Sliding of materials at the contact current density higher than 150 A/cm2 gives rise to the formation of local, low-stability structures which, as a result of phase transformations, are observed as sectors of quasiliquid plastic flow on the sliding surface. It is shown that the average temperatures of the Cu - steel material contact do not exceed 300°C, i.e., none of the surface-layer constituents reaches its melting temperature. It is shown that quasi-liquid plastic flow favors stress relaxation and maintains the strength of the surface layer, which ensures its lower wear.

  3. Control of valence and conduction band energies in layered transition metal phosphates via surface functionalization.

    PubMed

    Lentz, Levi C; Kolb, Brian; Kolpak, Alexie M

    2016-05-18

    Layered transition metal phosphates and phosphites (TMPs) are a class of materials composed of layers of 2D sheets bound together via van der Waals interactions and/or hydrogen bonds. Explored primarily for use in proton transfer, their unique chemical tunability also makes TMPs of interest for forming large-scale hybrid materials. Further, unlike many layered materials, TMPs can readily be solution exfoliated to form single 2D sheets or bilayers, making them exciting candidates for a variety of applications. However, the electronic properties of TMPs have largely been unstudied to date. In this work, we use first-principles computations to investigate the atomic and electronic structure of TMPs with a variety of stoichiometries. We demonstrate that there exists a strong linear relationship between the band gap and the ionic radius of the transition metal cation in these materials, and show that this relationship, which opens opportunities for engineering new compositions with a wide range of band gaps, arises from constraints imposed by the phosphorus-oxygen bond geometry. In addition, we find that the energies of the valence and conduction band edges can be systematically tuned over a range of ∼3 eV via modification of the functional group extending from the phosphorus. Based on the Hammett constant of this functional group, we identify a simple, predictive relationship for the ionization potential and electron affinity of layered TMPs. Our results thus provide guidelines for systematic design of TMP-derived functional materials, which may enable new approaches for optimizing charge transfer in electronics, photovoltaics, electrocatalysts, and other applications.

  4. Emergent magnetic monopoles, disorder, and avalanches in artificial kagome spin ice (invited)

    NASA Astrophysics Data System (ADS)

    Hügli, R. V.; Duff, G.; O'Conchuir, B.; Mengotti, E.; Heyderman, L. J.; Rodríguez, A. Fraile; Nolting, F.; Braun, H. B.

    2012-04-01

    We study artificial spin ice with isolated elongated nanoscale islands arranged in a kagome lattice and solely interacting via long range dipolar fields. The artificial kagome spin ice displays a phenomenology similar to the microscopic pyrochlore system, where excitations at sub-Kelvin temperatures consist of emergent monopole quasiparticles that are connected via a solenoidal flux line, a classical and observable version of the Dirac string. We show that magnetization reversal in kagome spin ice is fundamentally different from the nucleation and extensive domain growth scenario expected for a generic 2D system. Here, the magnetization reverses in a strictly 1D fashion: After nucleation, a monopole-antimonopole dissociates along a 1D path, leaving a (Dirac) string of islands with reversed magnetization in its wake. Since the 2D artificial spin ice spontaneously decays into a 1D subsystem, magnetization reversal in kagome spin ice provides an example of dimensional reduction via frustration.

  5. A test resonator for Kagome Hollow-core Photonic Crystal Fibers for resonant rotation sensing

    NASA Astrophysics Data System (ADS)

    Fsaifes, Ihsan; Feugnet, Gilles; Ravaille, Alexia; Debord, Benoït; Gérôme, Frédéric; Baz, Assaad; Humbert, Georges; Benabid, Fetah; Schwartz, Sylvain; Bretenaker, Fabien

    2017-01-01

    We build ring resonators to assess the potentialities of Kagome Hollow-Core Photonic Crystal Fibers for future applications to resonant rotation sensing. The large mode diameter of Kagome fibers permits to reduce the free space fiber-to-fiber coupling losses, leading to cavities with finesses of about 30 for a diameter equal to 15 cm. Resonance linewidths of 3.2 MHz with contrasts as large as 89% are obtained. Comparison with 7-cell photonic band gap (PBG) fiber leads to better finesse and contrast with Kagome fiber. Resonators based on such fibers are compatible with the angular random walk required for medium to high performance rotation sensing. The small amount of light propagating in silica should also permit to further reduce the Kerr-induced non-reciprocity by at least three orders of magnitudes in 7-cell Kagome fiber compared with 7-cell PBG fiber.

  6. Fluorescence anisotropy excitation by polarization-shaped laser pulses after transmission through a kagome fiber

    NASA Astrophysics Data System (ADS)

    Otto, J.; Patas, A.; Althoff, J.; Lindinger, A.

    2016-08-01

    We report improved fluorescence contrast between dyes by two-photon excitation with polarization-shaped laser pulses after transmission through a kagome fiber utilizing the anisotropy of the dye molecules. Particularly phase- and polarization-tailored pulse shapes are employed for two-photon excited fluorescence of dyes in a liquid environment at the distal end of the kagome fiber. The distortions due to the optical fiber properties are precompensated in order to receive predefined polarization-shaped laser pulses after the kagome fiber. This enables to optimally excite one dye in one polarization direction and simultaneously the other dye in the other polarization direction. The presented method has a high potential for endoscopic applications due to the unique properties of kagome fibers for guiding ultrashort laser pulses.

  7. μ SR insight into the impurity problem in quantum kagome antiferromagnets

    NASA Astrophysics Data System (ADS)

    Gomilšek, M.; Klanjšek, M.; Pregelj, M.; Luetkens, H.; Li, Y.; Zhang, Q. M.; Zorko, A.

    2016-07-01

    Impurities, which are unavoidable in real materials, may play an important role in the magnetism of frustrated spin systems with a spin-liquid ground state. We address the impurity issue in quantum kagome antiferromagnets by investigating ZnCu3(OH) 6SO4 (Zn-brochantite) by means of muon spin spectroscopy. We show that muons dominantly couple to impurities, originating from Cu-Zn intersite disorder, and that the impurity spins are highly correlated with the kagome spins, allowing us to probe the host kagome physics via a Kondo-like effect. The low-temperature plateau in the impurity susceptibility suggests that the kagome spin-liquid ground state is gapless. The corresponding spin fluctuations exhibit an unconventional spectral density and a nontrivial field dependence.

  8. Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets.

    PubMed

    Lv, Ruitao; Robinson, Joshua A; Schaak, Raymond E; Sun, Du; Sun, Yifan; Mallouk, Thomas E; Terrones, Mauricio

    2015-01-20

    CONSPECTUS: In the wake of the discovery of the remarkable electronic and physical properties of graphene, a vibrant research area on two-dimensional (2D) layered materials has emerged during the past decade. Transition metal dichalcogenides (TMDs) represent an alternative group of 2D layered materials that differ from the semimetallic character of graphene. They exhibit diverse properties that depend on their composition and can be semiconductors (e.g., MoS2, WS2), semimetals (e.g., WTe2, TiSe2), true metals (e.g., NbS2, VSe2), and superconductors (e.g., NbSe2, TaS2). The properties of TMDs can also be tailored according to the crystalline structure and the number and stacking sequence of layers in their crystals and thin films. For example, 2H-MoS2 is semiconducting, whereas 1T-MoS2 is metallic. Bulk 2H-MoS2 possesses an indirect band gap, but when 2H-MoS2 is exfoliated into monolayers, it exhibits direct electronic and optical band gaps, which leads to enhanced photoluminescence. Therefore, it is important to learn to control the growth of 2D TMD structures in order to exploit their properties in energy conversion and storage, catalysis, sensing, memory devices, and other applications. In this Account, we first introduce the history and structural basics of TMDs. We then briefly introduce the Raman fingerprints of TMDs of different layer numbers. Then, we summarize our progress on the controlled synthesis of 2D layered materials using wet chemical approaches, chemical exfoliation, and chemical vapor deposition (CVD). It is now possible to control the number of layers when synthesizing these materials, and novel van der Waals heterostructures (e.g., MoS2/graphene, WSe2/graphene, hBN/graphene) have recently been successfully assembled. Finally, the unique optical, electrical, photovoltaic, and catalytic properties of few-layered TMDs are summarized and discussed. In particular, their enhanced photoluminescence (PL), photosensing, photovoltaic conversion, and

  9. Stretching-tunable metal gratings fabricated on an elastomeric substrate using a water-soluble sacrificial layer

    NASA Astrophysics Data System (ADS)

    Gu, Ronghua; Ji, Min; Xuan, Yan; Cui, Yushuang; Yuan, Changsheng; Li, Wen-Di; Ge, Haixiong; Chen, Yanfeng

    2015-11-01

    We report a new method to fabricate stretching-tunable metal gratings on elastomeric substrates by combining nanoimprint lithography and metal transfer using a patterned sacrificial layer. Fabrication of metal lines with a period of 550 nm and a linewidth of 270 nm was demonstrated on polydimethylsiloxane (PDMS) membranes using this process. Optical diffraction characterization was used to measure the period of stretched gratings on the PDMS membrane and demonstrates tuning of the grating period by deforming the carrying PDMS substrate. The pattern transfer process using a water-soluble sacrificial layer can also be applied to fabrication of other deformable micro- and nano-devices.

  10. Metal ceramic alloy structure and surface layer modification during electron-ion-plasma irradiation of its surface

    NASA Astrophysics Data System (ADS)

    Ovcharenko, V. E.; Ivanov, Yu. F.; Shilko, E. V.; Mokhovikov, A. A.; Baohai, Yu; Tianyng, Xiong; Hua, Xu Yun; Lisheng, Zhong

    2016-11-01

    The paper presents research findings on the problems of electron-beam irradiation in noble gases plasma with different indexes of ionizing energy and atomic weight, and a surface layer structure modification versus a surface layer microhardness, wear and bending resistances and corrosion stability of 50% TiC/50% (Ni + 20% Cr) metal ceramic alloy samples. Discussions on the issues of the ways impulse electron-beam irradiation in the conditions of various types of noble gas plasma influences the mechanism of a metal ceramic alloy surface layer structure-phase state modification has been also presented.

  11. Development of Ion-Plasma Refractory Metallic Layers of Heat-Insulating Coatings for Cooled Turbine Rotor Blades

    NASA Astrophysics Data System (ADS)

    Budinovskii, S. A.; Muboyadzhyan, S. A.; Gayamov, A. M.; Matveev, P. V.

    2014-03-01

    Alloys ZhS32 and ZhS36 with heat-protection coatings (HPC) consisting of external ceramic layers and internal refractory metallic layers are studied. The coated alloys are tested for heat fastness and high-temperature strength at 1100 - 1150°C. The HPC with a metallic layer of the (Ni - Cr - Al - Hf) + Al system are shown to be more advantageous than similar HPC based on an SPD-2 + VSDP-16 commercial refractory coating. The effect of the HPC on the characteristics of high-temperature strength and fatigue resistance of alloys ZhS32 and ZhS36 is investigated.

  12. a Comprehensive Model of Global Transport and Localized Layering of Metallic Ions in the Upper Atmosphere.

    NASA Astrophysics Data System (ADS)

    Carter, Leonard Nelson, Jr.

    1995-01-01

    The physics and chemistry of atmospheric metallic ions have been an active area of research for many years; however, a number of issues remain unresolved. Numerical models have been developed and used to establish and validate theories of metallic ion dynamics. While agreement with observational measurements has generally been satisfactory, these models have embodied highly simplified pictures of the total physical system, usually focusing on a single aspect of metallic dynamics. The model described herein is considered the first to simulate all phases of the life cycle of metallic ions. This cycle begins with the initial deposition of metallics through meteor ablation and sputtering, followed by conversion of neutral atoms to ions through photoionization and charge exchange with ambient ions. Global ion transport arising from daytime electric fields and poleward/downward diffusion along geomagnetic field lines, localized transport and layer formation through descending convergent nulls in the thermospheric tidal wind field, and finally annihilation by chemical neutralization and compound formation are treated. The end result of this developmental effort is a model that has not only shown good agreement with observations, but has also shed new light on the interdependencies of the physical and chemical processes affecting atmospheric metallics. The model has been used, in both one- and two -dimensional versions, to simulate ion dynamics in the vertical dimension (at Arecibo, PR, 19^circ N, 67^circW), and in the vertical and meridional dimensions from the equator to 45^circN, ranging over a 90 to 4000 km altitude span. Model output analysis confirms the dominant role of both global and local transport to the ions' life cycle, showing that upward forcing from the equatorial electric field is critical to global movement, and that diurnal and semidiurnal tidal winds are responsible for the formation of dense ion layers in the 90-150 km height region. The model also

  13. New chemistry for the growth of first-row transition metal films by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Klesko, Joseph Peter

    Thin films containing first-row transition metals are widely used in microelectronic, photovoltaic, catalytic, and surface-coating applications. In particular, metallic films are essential for interconnects and seed, barrier, and capping layers in integrated circuitry. Traditional vapor deposition methods for film growth include PVD, CVD, or the use of plasma. However, these techniques lack the requisite precision for film growth at the nanoscale, and thus, are increasingly inadequate for many current and future applications. By contrast, ALD is the favored approach for depositing films with absolute surface conformality and thickness control on 3D architectures and in high aspect ratio features. However, the low-temperature chemical reduction of most first-row transition metal cations to their zero-valent state is very challenging due to their negative electrochemical potentials. A lack of strongly-reducing coreagents has rendered the thermal ALD of metallic films an intractable problem for many elements. Additionally, several established ALD processes for metal films are plagued by low growth rates, impurity incorporation, poor nucleation, high surface roughness, or the need for hazardous coreagents. Finally, stoichiometric control of ternary films grown by ALD is rare, but increasingly important, with emerging applications for metal borate films in catalysis and lithium ion batteries. The research herein is focused toward the development of new ALD processes for the broader application of metal, metal oxide, and metal borate thin films to future nanoscale technologies. These processes display self-limited growth and support the facile nucleation of smooth, continuous, high-purity films. Bis(trimethylsilyl) six-membered rings are employed as strongly-reducing organic coreagents for the ALD of titanium and antimony metal films. Additionally, new processes are developed for the growth of high-purity, low-resistivity cobalt and nickel metal films by exploiting the

  14. Flatband voltage control in p-metal gate metal-oxide-semiconductor field effect transistor by insertion of TiO2 layer

    NASA Astrophysics Data System (ADS)

    Maeng, W. J.; Kim, Woo-Hee; Koo, Ja Hoon; Lim, S. J.; Lee, Chang-Soo; Lee, Taeyoon; Kim, Hyungjun

    2010-02-01

    Titanium oxide (TiO2) layer was used to control the flatband voltage (VFB) of p-type metal-oxide-semiconductor field effect transistors. TiO2 was deposited by plasma enhanced atomic layer deposition (PE-ALD) on hafnium oxide (HfO2) gate dielectrics. Comparative studies between TiO2 and Al2O3 as capping layer have shown that improved device properties with lower capacitance equivalent thickness (CET), interface state density (Dit), and flatband voltage (VFB) shift were achieved by PE-ALD TiO2 capping layer.

  15. Modified kagome physics in the natural spin-1/2 kagome lattice systems: kapellasite Cu3Zn(OH)6Cl2 and haydeeite Cu3Mg(OH)6Cl2.

    PubMed

    Janson, O; Richter, J; Rosner, H

    2008-09-05

    The recently discovered natural minerals Cu3Zn(OH)6Cl2 and Cu3Mg(OH)6Cl2 are spin 1/2 systems with an ideal kagome geometry. Based on electronic structure calculations, we develop a realistic model which includes couplings across the kagome hexagons beyond the original kagome model that are intrinsic in real kagome materials. Exact diagonalization studies for the derived model reveal a strong impact of these couplings on the magnetic ground state. Our predictions could be compared to and supplied with neutron scattering, thermodynamic data, and NMR data.

  16. Finite-temperature transition of the antiferromagnetic Heisenberg model on a distorted kagome lattice.

    PubMed

    Masuda, Hiroshi; Okubo, Tsuyoshi; Kawamura, Hikaru

    2012-08-03

    Motivated by the recent experiment on kagome-lattice antiferromagnets, we study the zero-field ordering behavior of the antiferromagnetic classical Heisenberg model on a uniaxially distorted kagome lattice by Monte Carlo simulations. A first-order transition, which has no counterpart in the corresponding undistorted model, takes place at a very low temperature. The origin of the transition is ascribed to a cooperative proliferation of topological excitations inherent to the model.

  17. Chromium oxide as a metal diffusion barrier layer: An x-ray absorption fine structure spectroscopy study

    NASA Astrophysics Data System (ADS)

    Ahamad Mohiddon, Md.; Lakshun Naidu, K.; Ghanashyam Krishna, M.; Dalba, G.; Ahmed, S. I.; Rocca, F.

    2014-01-01

    The interaction at the interface between chromium and amorphous Silicon (a-Si) films in the presence of a sandwich layer of chromium oxide is investigated using X-ray absorption fine structure (XAFS) spectroscopy. The oxidized interface was created, in situ, prior to the deposition of a 400 nm tick a-Si layer over a 50 nm tick Cr layer. The entire stack of substrate/metallic Cr/Cr2O3/a-Si was then annealed at temperatures from 300 up to 700 °C. Analysis of the near edge and extended regions of each XAFS spectrum shows that only a small fraction of Cr is able to diffuse through the oxide layer up to 500 °C, while the remaining fraction is buried under the oxide layer in the form of metallic Cr. At higher temperatures, diffusion through the oxide layer is enhanced and the diffused metallic Cr reacts with a-Si to form CrSi2. At 700 °C, the film contains Cr2O3 and CrSi2 without evidence of unreacted metallic Cr. The activation energy and diffusion coefficient of Cr are quantitatively determined in the two temperature regions, one where the oxide acts as diffusion barrier and another where it is transparent to Cr diffusion. It is thus demonstrated that chromium oxide can be used as a diffusion barrier to prevent metal diffusion into a-Si.

  18. Effects of sputtering power Schottky metal layers on rectifying performance of Mo-SiC Schottky contacts

    NASA Astrophysics Data System (ADS)

    Lee, Seula; Lee, Jinseon; You, Sslimsearom; Kyoung, Sinsu; Kim, Kyung Hwan

    2016-01-01

    In this study, Schottky barrier diodes based on silicon carbide with various levels of Schottky metal layer input power were prepared and characterized. In this structure, molybdenum and aluminum were employed as the Schottky metal and top electrode, respectively. Schottky metal layers were deposited with input power ranging from 30 to 210 W. Schottky metal layers and top electrodes were deposited with a thickness of 3000 Å. The Schottky barrier heights, series resistances, and ideality factor were calculated from current-voltage (I-V) curves obtained using the Cheung-Cheung and Norde methods. All deposition processes were conducted using a facing targets sputtering system. Turn on voltage was minimized when the input power was 90 W, at which point electrical characteristics were observed to have properties superior to those at other levels of input power.

  19. Unconventional magneto-transport in novel layered cobalt oxides

    NASA Astrophysics Data System (ADS)

    Terasaki, Ichiro

    2008-03-01

    Among strongly correlated transition-metal oxides, cobalt oxides are known to have unique features arising from the spin-state degree of freedom tightly coupled with Co valence. The Co^4+ ion in the low spin-state is responsible for anomalous metallic states such as large thermopower in NaxCoO2 and unconventional superconductivity in hydrated NaxCoO2. The Co^2+ ion favors the high-spin state, which makes magnetic insulators. The Co^3+ ion is most interesting in the sense that the low-, intermediate- and high-spin states are nearly degenerate, where a spin-state crossover/transition occurs with temperature or pressure. Recently we have discovered two complex layered cobalt oxides, which exhibit unprecedented transport originated from interplay between charge, orbital and spin-states. The first one is SrCo6O11, in which the Co-O Kagome lattice and two-types of Co-O pillars are stacked along the c axis [1]. The conduction electrons in the Kagome lattice interact with Ising spins in the pillars, and shows two-step plateau in the magnetoresistance along the c axis. The second one is Sr3YCo4O10.5, which exhibits a ferromagnetic insulating state below 340 K. Various substitutions of Sr, Y and Co sites dramatically suppress this ferromagnetic state, and concomitantly modify the magneto- and thermoelectric transport. We will discuss the structure-property relationship based on structure analyses. The main part of this work was done in collaboration with S. Ishiwata, W. Kobayashi, and M. Takano. [1] S. Ishiwata et al., Chem. Mater. 17, 2789 (2005) ; Phys. Rev. Lett. 98, 217201 (2007) [2] W. Kobayashi et al. Phys. Rev. B 72, 104408 (2005) ; S. Ishiwata et al. Phys. Rev. B75, 220406(R) (2002)

  20. Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High Concentration Electrolyte Layer

    SciTech Connect

    Zheng, Jianming; Yan, Pengfei; Mei, Donghai; Engelhard, Mark H.; Cartmell, Samuel S.; Polzin, Bryant; Wang, Chong M.; Zhang, Jiguang; Xu, Wu

    2016-02-08

    Lithium (Li) metal has been extensively investigated as an anode for rechargeable battery applications due to its ultrahigh specific capacity and the lowest redox potential. However, significant challenges including dendrite growth and low Coulombic efficiency are still hindering the practical applications of rechargeable Li metal batteries. Here, we demonstrate that long-term cycling of Li metal batteries can be realized by the formation of a transient high concentration electrolyte layer near the surface of Li metal anode during high rate discharge process. The highly concentrated Li+ ions in this transient layer will immediately solvate with the available solvent molecules and facilitate the formation of a stable and flexible SEI layer composed of a poly(ethylene carbonate) framework integrated with other organic/inorganic lithium salts. This SEI layer largely suppresses the corrosion of Li metal anode by free organic solvents and enables the long-term operation of Li metal batteries. The fundamental findings in this work provide a new direction for the development and operation of Li metal batteries that could be operated at high current densities for a wide range of applications.

  1. Electrical properties of hybrid (ferromagnetic metal)-(layered semiconductor) Ni/p-GaSe structures

    SciTech Connect

    Bakhtinov, A. P. Vodopyanov, V. N.; Kovalyuk, Z. D.; Netyaga, V. V.; Lytvyn, O. S.

    2010-02-15

    Two-barrier Ni/n-Ga2Se3/p-GaSe structures with nanoscale Ni-alloy grains caused by reactions at the 'metal-layered semiconductor' interface were formed after growing Ni layers on the p-GaSe (0001) surface. Current-voltage and capacitance-voltage characteristics of hybrid structures were studied in the temperature range of 220-350 K. The dependence of the impedance spectra on the bias voltage was studied at various temperatures. The frequency dependences of the impedance at high frequencies (f = 10{sup 6} Hz) are discussed in terms of the phenomena of spin injection and extraction in structures with an ultrathin spin-selective Ni/n-Ga{sub 2}Se{sub 3} barrier and the effects of spin diffusion and relaxation in the semiconductor substrate. The room-temperature phenomena of the Coulomb blockade and negative differential capacitance were detected. These phenomena are explained based on an analysis of transport processes in a narrow region near the 'ferromagnetic metal-semiconductor' interface, where nanoscale grains are arranged.

  2. Transition Metal-Oxide Free Perovskite Solar Cells Enabled by a New Organic Charge Transport Layer.

    PubMed

    Chang, Sehoon; Han, Ggoch Ddeul; Weis, Jonathan G; Park, Hyoungwon; Hentz, Olivia; Zhao, Zhibo; Swager, Timothy M; Gradečak, Silvija

    2016-04-06

    Various electron and hole transport layers have been used to develop high-efficiency perovskite solar cells. To achieve low-temperature solution processing of perovskite solar cells, organic n-type materials are employed to replace the metal oxide electron transport layer (ETL). Although PCBM (phenyl-C61-butyric acid methyl ester) has been widely used for this application, its morphological instability in films (i.e., aggregation) is detrimental. Herein, we demonstrate the synthesis of a new fullerene derivative (isobenzofulvene-C60-epoxide, IBF-Ep) that serves as an electron transporting material for methylammonium mixed lead halide-based perovskite (CH3NH3PbI(3-x)Cl(x)) solar cells, both in the normal and inverted device configurations. We demonstrate that IBF-Ep has superior morphological stability compared to the conventional acceptor, PCBM. IBF-Ep provides higher photovoltaic device performance as compared to PCBM (6.9% vs 2.5% in the normal and 9.0% vs 5.3% in the inverted device configuration). Moreover, IBF-Ep devices show superior tolerance to high humidity (90%) in air. By reaching power conversion efficiencies up to 9.0% for the inverted devices with IBF-Ep as the ETL, we demonstrate the potential of this new material as an alternative to metal oxides for perovskite solar cells processed in air.

  3. White light emission from GaN stack layers doped by different rare-earth metals

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Liu, Chang

    2015-02-01

    Experimental progress of electroluminescence devices (ELDs) employing GaN doped with rare-earth metals had been significantly made targeting RGB displays. However, reports on the theoretical models to design the devices and the applications were limited. Our previous paper proposed a device model using the quantum collision theory and Judd-Ofelt approximation to design the ELDs for white light illumination. In the present study, the model is modified by considering the light extraction efficiency and optical loss during propagating in the films. To improve the luminous efficiency, an ELD with three stack layers of GaN:Tm/GaN:Er/GaN:Eu is proposed and designed. The model predicts that the color of the integrated light can be controlled by applied voltage, thickness of each doping layer and doping concentrations of the rare earth metals. The luminous efficacy of white light emission at a bias of -100 V is calculated to be 274 lm/W, which is much higher than that of fluorescent lumps. The proposed ELD will open a door to efficient solid-state lighting.

  4. Shear-Induced Isostructural Phase Transition and Metallization of Layered Tungsten Disulfide under Nonhydrostatic Compression

    SciTech Connect

    Duwal, Sakun; Yoo, Choong-Shik

    2016-02-16

    Pressure-induced structural and electronic transformations of tungsten disulfide (WS2) have been studied to 60 GPa, in both hydrostatic and non-hydrostatic conditions, using four-probe electrical resistance measurements, micro-Raman spectroscopy and synchrotron x-ray diffraction. Our results show the evidence for an isostructural phase transition from hexagonal 2Hc phase to hexagonal 2Ha phase, which accompanies the metallization at ~37 GPa. This isostructural transition occurs displacively over a large pressure range between 15 and 45 GPa and is driven by the presence of strong shear stress developed in the layer structure of WS2 under non-hydrostatic compression. Interestingly, this transition is absent in hydrostatic conditions using He pressure medium, underscoring its strong dependence on the state of stress. We also attribute the absence to the incorporation of He atoms between the layers, mitigating the development of shear stress. We also conjecture a possibility of magnetic ordering in WS2 that may occur at low temperature near the metallization.

  5. Shear-Induced Isostructural Phase Transition and Metallization of Layered Tungsten Disulfide under Nonhydrostatic Compression

    DOE PAGES

    Duwal, Sakun; Yoo, Choong-Shik

    2016-02-16

    Pressure-induced structural and electronic transformations of tungsten disulfide (WS2) have been studied to 60 GPa, in both hydrostatic and non-hydrostatic conditions, using four-probe electrical resistance measurements, micro-Raman spectroscopy and synchrotron x-ray diffraction. Our results show the evidence for an isostructural phase transition from hexagonal 2Hc phase to hexagonal 2Ha phase, which accompanies the metallization at ~37 GPa. This isostructural transition occurs displacively over a large pressure range between 15 and 45 GPa and is driven by the presence of strong shear stress developed in the layer structure of WS2 under non-hydrostatic compression. Interestingly, this transition is absent in hydrostatic conditionsmore » using He pressure medium, underscoring its strong dependence on the state of stress. We also attribute the absence to the incorporation of He atoms between the layers, mitigating the development of shear stress. We also conjecture a possibility of magnetic ordering in WS2 that may occur at low temperature near the metallization.« less

  6. Long-range wetting transparency on top of layered metal-dielectric substrates

    PubMed Central

    Noginov, M. A.; Barnakov, Yuri A.; Liberman, Vladimir; Prayakarao, Srujana; Bonner, Carl E.; Narimanov, Evgenii E.

    2016-01-01

    It has been recently shown that scores of physical and chemical phenomena (including spontaneous emission, scattering and Förster energy transfer) can be controlled by nonlocal dielectric environments provided by metamaterials with hyperbolic dispersion and simpler metal/dielectric structures. At this time, we have researched van der Waals interactions and experimentally studied wetting of several metallic, dielectric and composite multilayered substrates. We have found that the wetting angle of water on top of MgF2 is highly sensitive to the thickness of the MgF2 layer and the nature of the underlying substrate that could be positioned as far as ~100 nm beneath the water/MgF2 interface. We refer to this phenomenon as long range wetting transparency. The latter effect cannot be described in terms of the most basic model of dispersion van der Waals-London forces based on pair-wise summation of dipole-dipole interactions across an interface or a gap separating the two media. We infer that the experimentally observed gradual change of the wetting angle with increase of the thickness of the MgF2 layer can possibly be explained by the distance dependence of the Hamaker function (describing the strength of interaction), which originates from retardation of electromagnetic waves at the distances comparable to a wavelength. PMID:27324650

  7. Metallization and biopatterning on ultra-flexible substrates via dextran sacrificial layers.

    PubMed

    Tseng, Peter; Pushkarsky, Ivan; Di Carlo, Dino

    2014-01-01

    Micro-patterning tools adopted from the semiconductor industry have mostly been optimized to pattern features onto rigid silicon and glass substrates, however, recently the need to pattern on soft substrates has been identified in simulating cellular environments or developing flexible biosensors. We present a simple method of introducing a variety of patterned materials and structures into ultra-flexible polydimethylsiloxane (PDMS) layers (elastic moduli down to 3 kPa) utilizing water-soluble dextran sacrificial thin films. Dextran films provided a stable template for photolithography, metal deposition, particle adsorption, and protein stamping. These materials and structures (including dextran itself) were then readily transferrable to an elastomer surface following PDMS (10 to 70∶1 base to crosslinker ratios) curing over the patterned dextran layer and after sacrificial etch of the dextran in water. We demonstrate that this simple and straightforward approach can controllably manipulate surface wetting and protein adsorption characteristics of PDMS, covalently link protein patterns for stable cell patterning, generate composite structures of epoxy or particles for study of cell mechanical response, and stably integrate certain metals with use of vinyl molecular adhesives. This method is compatible over the complete moduli range of PDMS, and potentially generalizable over a host of additional micro- and nano-structures and materials.

  8. Metallization and Biopatterning on Ultra-Flexible Substrates via Dextran Sacrificial Layers

    PubMed Central

    Tseng, Peter; Pushkarsky, Ivan; Di Carlo, Dino

    2014-01-01

    Micro-patterning tools adopted from the semiconductor industry have mostly been optimized to pattern features onto rigid silicon and glass substrates, however, recently the need to pattern on soft substrates has been identified in simulating cellular environments or developing flexible biosensors. We present a simple method of introducing a variety of patterned materials and structures into ultra-flexible polydimethylsiloxane (PDMS) layers (elastic moduli down to 3 kPa) utilizing water-soluble dextran sacrificial thin films. Dextran films provided a stable template for photolithography, metal deposition, particle adsorption, and protein stamping. These materials and structures (including dextran itself) were then readily transferrable to an elastomer surface following PDMS (10 to 70∶1 base to crosslinker ratios) curing over the patterned dextran layer and after sacrificial etch of the dextran in water. We demonstrate that this simple and straightforward approach can controllably manipulate surface wetting and protein adsorption characteristics of PDMS, covalently link protein patterns for stable cell patterning, generate composite structures of epoxy or particles for study of cell mechanical response, and stably integrate certain metals with use of vinyl molecular adhesives. This method is compatible over the complete moduli range of PDMS, and potentially generalizable over a host of additional micro- and nano-structures and materials. PMID:25153326

  9. Long-range wetting transparency on top of layered metal-dielectric substrates

    NASA Astrophysics Data System (ADS)

    Noginov, M. A.; Barnakov, Yuri A.; Liberman, Vladimir; Prayakarao, Srujana; Bonner, Carl E.; Narimanov, Evgenii E.

    2016-06-01

    It has been recently shown that scores of physical and chemical phenomena (including spontaneous emission, scattering and Förster energy transfer) can be controlled by nonlocal dielectric environments provided by metamaterials with hyperbolic dispersion and simpler metal/dielectric structures. At this time, we have researched van der Waals interactions and experimentally studied wetting of several metallic, dielectric and composite multilayered substrates. We have found that the wetting angle of water on top of MgF2 is highly sensitive to the thickness of the MgF2 layer and the nature of the underlying substrate that could be positioned as far as ~100 nm beneath the water/MgF2 interface. We refer to this phenomenon as long range wetting transparency. The latter effect cannot be described in terms of the most basic model of dispersion van der Waals-London forces based on pair-wise summation of dipole-dipole interactions across an interface or a gap separating the two media. We infer that the experimentally observed gradual change of the wetting angle with increase of the thickness of the MgF2 layer can possibly be explained by the distance dependence of the Hamaker function (describing the strength of interaction), which originates from retardation of electromagnetic waves at the distances comparable to a wavelength.

  10. Tuning the topological states in metal-organic bilayers

    NASA Astrophysics Data System (ADS)

    de Lima, F. Crasto; Ferreira, Gerson J.; Miwa, R. H.

    2017-09-01

    We have investigated the energetic stability and the electronic properties of metal-organic topological insulator bilayers (BLs), (MC4S4)3BL , with M = Ni and Pt, using first-principles calculations and tight-binding model. Our findings show that (MC4S4)3BL is an appealing platform to perform electronic band structure engineering, based on the topologically protected chiral edge states. The energetic stability of the BLs is ruled by van der Waals interactions, the AA stacking being the energetically most stable one. The electronic band structure is characterized by a combination of bonding and antibonding kagome band sets, revealing that (NiC4S4)3BL presents a Z2-metallic phase, whereas (PtC4S4)3BL may present Z2-metallic phase or quantum spin Hall phase. Those nontrivial topological states were confirmed by the formation of chiral edge states in (MC4S4)3BL nanoribbons. We show that the localization of the edge states can be controlled with a normal external electric field, breaking the mirror symmetry. Hence, the sign of electric field selects in which layer each set of edge states are located. Such a control on the (layer) localization of the topological edge states brings us an additional and interesting degree of freedom to control the transport properties in layered metal-organic topological insulators.

  11. Dependence of bonding interactions in Layered Double Hydroxides on metal cation chemistry

    NASA Astrophysics Data System (ADS)

    Shamim, Mostofa; Dana, Kausik

    2016-12-01

    The evolution of various Infrared bands of Layered Double Hydroxides (LDH) with variable Zn:Al ratio was analyzed to correlate it with the changes in octahedral metal cation chemistry, interlayer carbonate anion and hydroxyl content of LDH. The synthesized phase-pure LDHs were crystallized as hexagonal 2H polytype with a Manasseite structure. The broad and asymmetric hydroxyl stretching region (2400-4000 cm-1) can be deconvoluted into four different bands. With increase in Zn2+:Al3+ metal ratio, the peak position of stretching frequencies of Al3+sbnd OH and carbonate-bridged hydroxyl (water) decrease almost linearly. Individual band's peak position and area under the curve have been successfully correlated with the carbonate and hydroxyl content of LDH. Due to lowering of symmetry of the carbonate anion, the IR-inactive peak νCsbnd O, symm at 1064 cm-1 becomes IR active. The peak position of metal-oxygen bands and carbonate bending modes are practically unaffected by the Zn2+:Al3+ ratio but the area under the individual M-O bands shows a direct correlation.

  12. Triplet proximity effect in superconducting heterostructures with a half-metallic layer

    NASA Astrophysics Data System (ADS)

    Mironov, S.; Buzdin, A.

    2015-11-01

    We present the Usadel theory describing the superconducting proximity effect in heterostructures with a half-metallic layer. It is shown that the full spin polarization inside the half-metals gives rise to an additional component of the Green's function which results in the giant triplet spin-valve effect in superconductor (S)-ferromagnet (F)-half-metal (HM) trilayers and provides a natural explanation for the φ0-junction formation in the S/F/HM/F/S systems. In addition, we consider the exactly solvable model of the S/F/HM trilayers of atomic thickness and demonstrate that it reproduces the main features of the spin-valve effect found within the Usadel approach. Our results are shown to be in qualitative agreement with the recent experimental data on the spin-valve effect in MoGe /Ni /Cu /CrO2 hybrids [Singh et al., Phys. Rev. X 5, 021019 (2015), 10.1103/PhysRevX.5.021019].

  13. New metallic quasi-two-dimensional structures of graphene and molybdenum disulfide layers with embedded rhenium atoms

    NASA Astrophysics Data System (ADS)

    Demin, V. A.; Chernozatonskii, L. A.

    2015-01-01

    New metallic structures in the system of graphene and molybdenum disulfide layers with embedded rhenium atoms, in which the graphene layer is rotated by 30° to the molybdenum disulfide layer and the Re atom either substitutes the molybdenum atom in the MoS2 layer or is located between the layers mainly interacting with three sulfur atoms and six carbon atoms, are examined. In the latter case, a high electron density of states has been found in the Fermi level, which indicates a high metallicity of the graphene30°-(Re)-MoS2 bilayer in comparison with other bilayer structures considered earlier. All proposed structures are energetically stable. Possible applications of the studied bilayers have been considered as well.

  14. Even–odd layer-dependent magnetotransport of high-mobility Q-valley electrons in transition metal disulfides

    PubMed Central

    Wu, Zefei; Xu, Shuigang; Lu, Huanhuan; Khamoshi, Armin; Liu, Gui-Bin; Han, Tianyi; Wu, Yingying; Lin, Jiangxiazi; Long, Gen; He, Yuheng; Cai, Yuan; Yao, Yugui; Zhang, Fan; Wang, Ning

    2016-01-01

    In few-layer transition metal dichalcogenides (TMDCs), the conduction bands along the ΓK directions shift downward energetically in the presence of interlayer interactions, forming six Q valleys related by threefold rotational symmetry and time reversal symmetry. In even layers, the extra inversion symmetry requires all states to be Kramers degenerate; whereas in odd layers, the intrinsic inversion asymmetry dictates the Q valleys to be spin-valley coupled. Here we report the transport characterization of prominent Shubnikov-de Hass (SdH) oscillations and the observation of the onset of quantum Hall plateaus for the Q-valley electrons in few-layer TMDCs. Universally in the SdH oscillations, we observe a valley Zeeman effect in all odd-layer TMDC devices and a spin Zeeman effect in all even-layer TMDC devices, which provide a crucial information for understanding the unique properties of multi-valley band structures of few-layer TMDCs. PMID:27651106

  15. Effect of process parameters on hardness, temperature profile and solidification of different layers processed by direct metal laser sintering (DMLS)

    NASA Astrophysics Data System (ADS)

    Ahmed, Sazzad Hossain; Mian, Ahsan; Srinivasan, Raghavan

    2016-07-01

    In DMLS process objects are fabricated layer by layer from powdered material by melting induced by a controlled laser beam. Metallic powder melts and solidifies to form a single layer. Solidification map during layer formation is an important route to characterize micro-structure and grain morphology of sintered layer. Generally, solidification leads to columnar, equiaxed or mixture of these two types grain morphology depending on solidification rate and thermal gradient. Eutectic or dendritic structure can be formed in fully equiaxed zone. This dendritic growth has a large effect on material properties. Smaller dendrites generally increase ductility of the layer. Thus, materials can be designed by creating desired grain morphology in certain regions using DMLS process. To accomplish this, hardness, temperature distribution, thermal gradient and solidification cooling rate in processed layers will be studied under change of process variables by using finite element analysis, with specific application to Ti-6Al-4V.

  16. Effect of process parameters on hardness, temperature profile and solidification of different layers processed by direct metal laser sintering (DMLS)

    SciTech Connect

    Ahmed, Sazzad Hossain; Mian, Ahsan Srinivasan, Raghavan

    2016-07-12

    In DMLS process objects are fabricated layer by layer from powdered material by melting induced by a controlled laser beam. Metallic powder melts and solidifies to form a single layer. Solidification map during layer formation is an important route to characterize micro-structure and grain morphology of sintered layer. Generally, solidification leads to columnar, equiaxed or mixture of these two types grain morphology depending on solidification rate and thermal gradient. Eutectic or dendritic structure can be formed in fully equiaxed zone. This dendritic growth has a large effect on material properties. Smaller dendrites generally increase ductility of the layer. Thus, materials can be designed by creating desired grain morphology in certain regions using DMLS process. To accomplish this, hardness, temperature distribution, thermal gradient and solidification cooling rate in processed layers will be studied under change of process variables by using finite element analysis, with specific application to Ti-6Al-4V.

  17. Even-odd layer-dependent magnetotransport of high-mobility Q-valley electrons in transition metal disulfides

    NASA Astrophysics Data System (ADS)

    Wu, Zefei; Xu, Shuigang; Lu, Huanhuan; Khamoshi, Armin; Liu, Gui-Bin; Han, Tianyi; Wu, Yingying; Lin, Jiangxiazi; Long, Gen; He, Yuheng; Cai, Yuan; Yao, Yugui; Zhang, Fan; Wang, Ning

    2016-09-01

    In few-layer transition metal dichalcogenides (TMDCs), the conduction bands along the ΓK directions shift downward energetically in the presence of interlayer interactions, forming six Q valleys related by threefold rotational symmetry and time reversal symmetry. In even layers, the extra inversion symmetry requires all states to be Kramers degenerate; whereas in odd layers, the intrinsic inversion asymmetry dictates the Q valleys to be spin-valley coupled. Here we report the transport characterization of prominent Shubnikov-de Hass (SdH) oscillations and the observation of the onset of quantum Hall plateaus for the Q-valley electrons in few-layer TMDCs. Universally in the SdH oscillations, we observe a valley Zeeman effect in all odd-layer TMDC devices and a spin Zeeman effect in all even-layer TMDC devices, which provide a crucial information for understanding the unique properties of multi-valley band structures of few-layer TMDCs.

  18. Meteoric Metal Layer in Mars' Atmosphere: Steady-state Flux and Meteor Showers

    NASA Astrophysics Data System (ADS)

    Crismani, Matteo; Schneider, Nicholas; Jain, Sonal; Plane, John; Diego Carrillo-Sanchez, Juan; Deighan, Justin; Stevens, Michael; Evans, Scott; Chaffin, Michael; Stewart, Ian; Jakosky, Bruce

    2016-04-01

    We report on a steady state metal ion layer at Mars produced by meteoric ablation in the upper atmosphere as observed by the Imaging Ultraviolet Spectrograph (IUVS) on MAVEN. The response of the Martian atmosphere to meteoroid influx constrains cometary activity, dust dynamics, ionospheric production at Mars and meteoric smoke may represent a site of nucleation for high altitude clouds. Using observations that span more than an Earth year, we find this layer is global and steady state, contrary to previous observations, but in accordance with predictions. IUVS observations cover a range of observation conditions, which allows us to determine the variability of the Mg+ layer seasonally and geographically. In December 2015, Mars encountered three predicted meteor showers, and analysis of these events will determine whether Mars' atmosphere responds to such events dramatically, as was the case with comet Siding Spring, or more similarly to Earth. Mg is also detected, but Mg/Mg+ less than predicted by factor >3, indicative of undetermined chemical processes in the Mars atmosphere.

  19. Layered Post-Transition-Metal Dichalcogenides (X-M-M-X) and Their Properties.

    PubMed

    Luxa, Jan; Wang, Yong; Sofer, Zdenek; Pumera, Martin

    2016-12-23

    A(III) B(VI) chalcogenides are an interesting group of layered semiconductors with several attractive properties, such as tunable band gaps and the formation of solid solutions. Unlike the typically sandwiched structure of transition-metal dichalcogenides, A(III) B(VI) layered chalcogenides with hexagonal symmetry are stacked through the X-M-M-X motif, in which M is gallium and indium, and X is sulfur, selenium, and tellurium. In view of the inadequate study of the electrochemical properties and great interest in layered materials towards energy-related research, herein the inherent electrochemistry of GaS, GaSe, GaTe, and InSe has been studied, as well as the exploration of their potential as hydrogen evolution reaction (HER) electrocatalysts. All four materials show redox peaks during cyclic voltammetry measurements. Furthermore, insights into catalysis of the HER are provided; these indicate the conductivity and number of active sites of the materials. All of these findings have important implications on their possible applications.

  20. Design and numerical simulation of a silicon-based linear polarizer with double-layered metallic nano-gratings

    NASA Astrophysics Data System (ADS)

    Lin, Yu; Hu, Jingpei; Wang, Chinhua

    2016-10-01

    With the increasing demand for linearly polarized elements with high performance in many fields and applications, design and fabrication of sub-wavelength metallic linear polarizer have made tremendous progress in recent years. In this paper, we proposed a novel structure of a silicon-based linear polarizer working in the infrared (3-5μm) waveband with a double-layered metallic grating structure. A two-layer metallic grating with a transition layer of low refractive index is fabricated on a silicon substrate. In contrast to those conventional single layer metallic polarizing grating, the multilayer polarizing structure has the advantages of easy fabrication and high performance. Numerical simulation results show that an extinction ratio of linear polarization can be up to 58.5dB and the TM-polarized light transmission is greater than 90%. The behaviors and advantages of the proposed multilayer polarizer are compared with that of a traditional single-layer metallic grating. The proposed silicon-based linear polarizer will have great potential applications in real-time polarization imaging with high extinction ratio and high transmission.